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Harmonic diffeomorphisms with rotational
symmetry

By Frédéric Hélein at Palaiseau

Let 4 be a Riemannian manifold with boundary of class C' which is diffeomorphic to
the unit open ball B = {xe R"||x| < 1}, where n = 3. And let ¢ be a diffeomorphism of class
C1 between B" and .. B"is equipped with the canonical Euclidean metric ¢. Asin [CH] and
[H] we can use the chart ¢ ~* in order to represent ./". So we need only to study the identity
map (which we note Id) from (B", ¢) into (B", i) where / is the pull-back image of the metric
on A" by ¢.

We will say that the map ¢ is rotationally symmetric or SO (n)-equivariant if the
pull-back image of the metric on A" by ¢ can be represented with two continuous maps /1,
and h, from [0, 1] into (0, 4 c0) by the formula

) hiy(x) = hy, () x'xIr 2 4 hy () [0 — x"xr 2]
where r = | x|, §;; is the Kronecker symbol, and because of the continuity of / in 0,

) /1//(0) = h,(0).

We consider the space H' » (B", B") of the maps in Sobolev space H' from B" to B”
which agree with Id on the boundary of B”. The energy functional is defined as follows: for
any map uin H' % (B", B") we denote by «, the partial derivative du'/é x*, and we define the
energy of u by

(3) E(w) = [ewdx = (1/2) [ Y h;lu(x)]uzuidx.

2 Q ad,j

Amapu:(B",c) — (B", h)iscalled weakly harmonic ifitis a critical point of the energy
functional, moreover if this map is regular it will be called harmonic (see [EL]). In the case
where @ or equivalentely Id : (B", ¢) — (B", ) is weakly harmonic then the following system
of equations is verified in the distribution sense on B” (see [CH])

A

[y () + by ()] for y=1,..,n.
ox

0

ox’

4) [;hixx)} =y

i
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If ¢ is rotationally symmetric, ¢ is weakly harmonic if and only if we have in the
distribution sense (see [CG], here the dash denotes the derivative with respect to r):

(5) (n—=D[rh' +2h, ] =rh,+2(n—1h,.
Finally Id is minimizing if for any map u in H' = (B", B"), E(u) = E(Id).

We want to know if harmonic diffeomorphisms as above are minimizing. In [CH] it
was shown that any harmonic diffeomorphism between Riemannian manifolds of dimension
2 are minimizing and some examples of minimizing diffeomorphisms were given in higher
dimensions. In [H] we gave sufficient conditions which ensures that some harmonic
diffeomorphisms in dimension 3 are minimizing. Particularly this condition is true for a
rotationally symmetric map on B?. In the present paper we show the following

Theorem. Let n be an integer not smaller than 3. Let 1d:(B",6;;) — (B", h;;) be
a harmonic diffeomorphism of class C'. If this map is SO(n)-equivariant then
Id: (B",6;;) — (B", h;;) is minimizing.

Proof. As in [L] and in [H] the proof is based on a comparison with a null
Lagrangian. Let u be a map in H' = (B", B"), and let us show that #(x) = £(Id). Thank a
result of density in [CH], Appendix A, it suffices to work with a map « of class C! on B".
First we will show that for any x in B, e(u)(x) is not smaller than L{(u(x), Vu(x)) and that
equality holds when # = Id where L is a Lagrangian, and second we will show that Lis a null
Lagrangian, i.e. that the integral over B" of L(u(x), V u(x)) depends only on the trace of u on
B",

First step.  Let x be in B"\ {0}, there exists an orthonormal basis of /&" in which u(x)
has coordinates |u(x)|(1,0,...,0). We start by working in this basis. Then

@ hij(u) =0 ifisj,
® /;(w) =h (lu) ifis1,
® hy,(u)= h//(lu])-

So

e(u)(x) = (1/2)2[@/(!141)]%;]2 + X hl(lul)luélzJ

2<i<n

=<1/2>z[ v D e g

a L2<ign -1

Ly (n—1Dh (ul) = A, (ul)

2<icizn (n—1)(n—2) (|Ll;]2+|llé{{2)}.

We use the following assumption the proof of which is given in the lemma at the end of
this paper

(6) VyeB",(n—Dh (Iy)—h,(yD) 20,
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then,
hy(ul) |uf ul
) > 1 7 s
e()(x) 2 zgy‘§n n—1 | uju
Py (n— 1) hy (lu]) — hy(lu) 1,4,~"'u§~
25i<icn (n—1)n-—2) uluj|’
h,(lu)) (n— 1A, (ul) —h,(u]) o ludbud o
Let L, (Jul) = -;/ziji’ L, (lu]) = = —Li)(n — 2;/ Jand Uy, = y I:;f . We obtain
e(u)(x) = Ly(u) Y. U+ L (u)—L,(uD] X U,
1gi<jsn 25i<jsn
or
(N e()(x) = L,(ul) 2. Ui

1Z5i<j=n

+ L (u)— Ly (uD] X Y, HEwUa,

1<i<jsn 1Za<bsn

P P!

ab -
where I1{7 (u) = Pt le?

(u), and P{(u) = & — u' (x)u (x)|u(x)| ">

Last inequality (7) does not vary under a change of orthonormal coordinates, hence is
true in any system of Euclidean coordinates. Moreover it is obvious that if # = Id equality
holds in (7).

Second step. We prove that the right hand term in (7) that we will denote L is a null
Lagrangian. We pose

LwVwy= Y Y CwUd
1<i<jsn 1Z2a<bsn
58688
where of course C2(u) = Ly, ({u))3 + [Ly (jul) — L, (u)]IT{ (), and 67 = shsh|
i Yj

Let us introduce the exterior n-form 1 on {(x, y)e B" x B"} defined by

p= Y C,-’}b(y)dxlx\...Adx"_lAdy"Adx“*lA...
1<i<js<n 1Za<bzn

AdXPTV A Ay AdxPTE A L A dX

We remark that if I' = {(x,y)e B" x B"|y = u(x)} is the graph of u then

®) { L, Vwdx = [y,
Bn r

so it suffices to prove that 1 is closed i.e. dyp = 0 to get our conclusion. But the condition
dyp = 0 is equivalent to
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a ab a ab (’) vab
(9) a—ylcjk“‘é}‘jck, +5y—,‘(,j = ().

Coefficients IT i”jb are characterized by

ab ba ab ba
{ Hijz”‘Hij:_Hji:Hji»

if {a,b} n {i,j} = 0, e - o,
b,
(o O R |
ay2 b2
\ if {a,b} N {i,j} = {a, b}, me—1— (“)!jlz(”)
2

Let us verify that (9) is always true. There are three cases

(@) {a,b}n{i,j,k} =0, then (9) is obvious.

L (y])— 1///(“’[)’

Tk Then (9) is
»yi-

(b) {a,b}n{i,j,k} = {a} = {i}. Let us note f(y)=
equivalent to

-

0
oy’

J _ . .
LA»y*y ] - 3 My*yi1 =0,
which is always true.
(©) {a,b} n{i,j,k} = {a,b}, and (a,b) = (i,]), then (9) is equivalent (o

6ia LAy v+ a);, LAy T =0

< PELL(yD =[O+ "2 S ) + 29401 ) + 752 () + v* "2 () = 0
< [YILL(yD+ 2L, () = 2L,(»)
< (m—D[ylhL+2h ] =|ylh,+2(n— Dhy,,

0
oy L (1D = fODIOD* + (") 1] +

)

which is precisely (5).
To terminate our proof we must show the following lemma:

Lemma. [f 1d:(B",0,;) — (B", hy;) is harmonic and SO (n)-equivariant then (6) is
verified.

Proof. This follows immediatly from (2) and from

Il = DA (yD =R, (D] =20 —2h,(1y)) 20.  Q.E.D.

The author is pleased to express his gratitude to Jean-Michel Coron for his helpful
advices.
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