Corrigé de l'examen du 29 mars 2016

Durée : 4 heures. Les notes de cours sont autorisées.

1 Exercice : variété symplectique

Soit \mathcal{M} une variété de dimension 2n. On appelle $forme \ symplectique \ sur <math>\mathcal{M}$ une 2-forme $\omega \in \Omega^2(\mathcal{M})$ qui satisfait les deux propriétés suivantes : (a) $d\omega = 0$; (b) en tout point $M \in \mathcal{M}$, l'application $V \longmapsto V \perp \omega_M$ est un isomorphisme de $T_M \mathcal{M}$ vers $T_M^* \mathcal{M}$. On dit alors que (\mathcal{M}, ω) est une $variété \ symplectique$.

- (i) Sur \mathbb{R}^{2n} muni des coordonnées $(x^1,\cdots,x^n,p_1,\cdots,p_n)$, on considère la 2-forme $\omega=dp_i\wedge dx^i$ (où le signe $\sum_{i=1}^n$ est sous-entendu). Montrer que ω est une forme symplectique. **Réponse** Pour tout $V=v^i\frac{\partial}{\partial x^i}+w_i\frac{\partial}{\partial p_i}, V \perp \omega=w_idx^i-v^idp_i$, donc l'application $V\longmapsto V \perp \omega_{\mathrm{M}}$ est clairement un isomorphisme.
- (ii) Soit (\mathcal{M}, ω) une variété symplectique quelconque. Montrer que, pour toute fonction $F \in \Omega^0(\mathcal{M})$, il existe un unique champ de vecteur, que l'on notera X_F , tel que $dF + X_F \perp \omega = 0$. **Réponse** C'est une conséquence de la propriété (b) : pour tout point $M \in \mathcal{M}$, il existe un unique $X_F(M) \in T_M \mathcal{M}$ tel que $X_F(M) \perp \omega = -dF_M$.
- (iii) Dans le cas où $\mathcal{M} = \mathbb{R}^{2n}$ et $\omega = dp_i \wedge dx^i$, expliciter $X_F = \xi^i \frac{\partial}{\partial x^i} + \psi_i \frac{\partial}{\partial p_i}$ en fonction de F. **Réponse** — Nous reprenons les calculs de la question (i). La condition sur X_F s'écrit $\frac{\partial F}{\partial x^i} dx^i + \frac{\partial F}{\partial p_i} dp_i + \psi_i dx^i - \xi^i dp_i = 0$. En en déduit que $X_F = \frac{\partial F}{\partial p_i} \frac{\partial}{\partial x^i} - \frac{\partial F}{\partial x^i} \frac{\partial}{\partial p_i}$.
- (iv) Montrer que, sur une variété symplectique quelconque (\mathcal{M}, ω) , pour toute fonction $F \in \Omega^0(\mathcal{M})$, $L_{X_F}\omega = 0$. **Réponse** — On utilise la formule de Cartan : $L_{X_F}\omega = d(X_{F_F} + \omega) + X_{F_F} + d\omega = d(-dF) + X_{F_F} + 0 = d(-dF) + d\omega$

Réponse — On utilise la formule de Cartan : $L_{X_F}\omega = d(X_F \perp \omega) + X_F \perp d\omega = d(-dF) + X_F \perp 0 = 0$.

Dans la suite, sur une variété symplectique quelconque (\mathcal{M}, ω) , on définit le crochet de Poisson de deux fonctions $F, G \in \Omega^0(\mathcal{M})$ comme étant la fonction $\{F, G\} \in \Omega^0(\mathcal{M})$ définie par $\{F, G\} := \omega(X_F, X_G)$.

(v) Calculer de deux façons différentes (sans utiliser les coordonnées) la dérivée de Lie $L_{X_G}(X_F \perp \omega)$. **Réponse** — Première façon, en utilisant la règle de Leibniz pour la dérivée de Lie :

$$L_{X_G}(X_F \perp \omega) = (L_{X_G}X_F) \perp \omega + X_F \perp (L_{X_G}\omega) = -[X_F, X_G] \perp \omega + X_F \perp 0 = -[X_F, X_G] \perp \omega.$$

Deuxième façon, en utilisant la formule de Cartan :

$$L_{X_G}(X_F \sqcup \omega) = d(X_G \sqcup (X_F \sqcup \omega)) + X_G \sqcup d(X_F \sqcup \omega) = d(\omega(X_F, X_G)) + X_G \sqcup F(-dF) = d\{F, G\}.$$

- (vi) En déduire une expression pour $d\{F,G\}$. **Réponse** — $d\{F,G\} = -[X_F,X_G] \perp \omega$.
- (vii) A partir de la question précédente, déterminer $X_{\{F,G\}}$. **Réponse** — $X_{\{F,G\}} = [X_F, X_G]$, par unicité de la solution de $d\{F,G\} + [X_F, X_G] \perp \omega = 0$.

2 Exercice : transformée de Legendre

Soit V un espace vectoriel réel muni d'un système de coordonnées linéaires $x=(x^1,\cdots,x^n)$. Pour tout ouvert $U\subset V$ et pour toute fonction $f\in\mathcal{C}^\infty(U)$ à valeurs réelles, on note U^* l'image de U par $df:U\longrightarrow V^*$, et on définit, dans les cas où cela a un sens, la transformée de Legendre de f comme étant l'application $\overline{f}\in\mathcal{C}^\infty(U^*)$ telle que

$$\overline{f}(\overline{x}) = \langle \overline{x}, x \rangle - f(x) = \overline{x}_i x^i - f(x), \text{ si } \overline{x} = df_x. \quad \forall x \in U,$$

$$\tag{1}$$

(i) Soit $f \in \mathcal{C}^{\infty}(U)$. A quelle condition sur les dérivées partielles secondes de f est-il possible de définir localement la transformée de Legendre?

Réponse — Cela est possible si, pour tout $\overline{x} \in U^*$, il existe un unique $x \in U$ tel que $\overline{x} = df_x$. Il suffit donc que $x \longmapsto df_s$ soit un difféomorphisme. Cette propriété est vraie localement, en vertu du théorème d'inversion locale, si la différentielle de cette application est inversible. Cela signifie que la matrice hessienne $(\frac{\partial^2 f}{\partial x^i \partial x^j})_{i,j}$ est inversible.

Dans la suite nous supposerons que la transformée de Legendre de $f \in \mathcal{C}^{\infty}(U)$ est bien définie.

(ii) Déterminer la transformée de Legendre, si elle existe, de $f \in \mathcal{C}^{\infty}(\mathbb{R}^2)$ définie par $f(x) = \frac{1}{2}[(x^1)^2 + (x^2)^2]$. Même question pour $f(x) = \frac{1}{2}[a_1(x^1)^2 + a_2(x^2)^2]$, où $a_1, a_2 \in \mathbb{R}$. **Réponse** — L'application $x \longmapsto df_x$ s'écrit ici $(x^1, x^2) \longmapsto x^1 dx^1 + x^2 dx^2$, on a donc $(\overline{x}_1, \overline{x}_2) = (x^1, x^2)$ et $\overline{f}(\overline{x}_1, \overline{x}_2) = \overline{x}_i x^i - f(x) = (x^1)^2 + (x^2)^2 - \frac{1}{2}[(x^1)^2 + (x^2)^2] = \frac{1}{2}[(\overline{x}_1)^2 + (\overline{x}_2)^2]$.

 $(x^{1}, x^{2}) \text{ et } \overline{f}(\overline{x}_{1}, \overline{x}_{2}) = \overline{x}_{i}x^{i} - f(x) = (x^{1})^{2} + (x^{2})^{2} - \frac{1}{2}[(x^{1})^{2} + (x^{2})^{2}] = \frac{1}{2}[(\overline{x}_{1})^{2} + (\overline{x}_{2})^{2}].$ Si $f(x) = \frac{1}{2}[a_{1}(x^{1})^{2} + a_{2}(x^{2})^{2}], x \longmapsto df_{x}$ s'écrit ici $(x^{1}, x^{2}) \longmapsto a_{1}x^{1}dx^{1} + a_{2}x^{2}dx^{2}.$ Cette application est inversible ssi $a_{1} \neq 0$ et $a_{2} \neq 0$. Alors $\overline{f}(\overline{x}_{1}, \overline{x}_{2}) = a_{1}(x^{1})^{2} + a_{2}(x^{2})^{2} - \frac{1}{2}[a_{1}(x^{1})^{2} + a_{2}(x^{2})^{2}] = \frac{1}{2}[\frac{1}{a_{1}}(\overline{x}_{1})^{2} + \frac{1}{a_{1}}(\overline{x}_{2})^{2}].$

On note $W:=V\oplus\mathbb{R}\oplus V^*\oplus\mathbb{R}$, avec les coordonnées $(x,y,\overline{x},\overline{y})=(x^1,\cdots,x^n,y,\overline{x}_1,\cdots,\overline{x}_n,\overline{y})$. On introduit $J^1(V,\mathbb{R})$, l'espace des jets des fonctions définies sur V, muni des coordonnées (x,y,p) et de la forme de contact $\theta=dy-p_idx^i$ et $J^1(V^*,\mathbb{R})$, l'espace des jets des fonctions définies sur V^* , muni des coordonnées $(\overline{x},\overline{y},\overline{p})$ et de la forme de contact $\overline{\theta}=d\overline{y}-\overline{p}^id\overline{x}_i$. On considère les applications

(id est $(x, y, p) \circ \pi = (x, y, \overline{x})$ et $(\overline{x}, \overline{y}, \overline{p}) \circ \overline{\pi} = (\overline{x}, \overline{y}, x)$).

(iii) Calculer $\pi^*\theta$ et $\overline{\pi}^*\overline{\theta}$. Que peut-on dire de la somme de ces deux formes? **Réponse** — $\pi^*\theta = dy - \overline{x}_i dx^i$ et $\overline{\pi}^*\overline{\theta} = d\overline{y} - x^i d\overline{x}_i$. Donc $\pi^*\theta + \overline{\pi}^*\overline{\theta} = dy + d\overline{y} - \overline{x}_i dx^i - x^i d\overline{x}_i = d(y + \overline{y} - \overline{x}_i x^i)$. Donc $\pi^*\theta + \overline{\pi}^*\overline{\theta}$ est exacte.

(iv) On considère la sous-variété $\mathcal{H}:=\{(x,y,\overline{x},\overline{y})\in W;\,y+\overline{y}=\langle\overline{x},x\rangle\}$, où $\langle\overline{x},x\rangle:=\overline{x}_ix^i$ et on note $\theta^1:=\pi^*\theta|_{\mathcal{H}}$ et $\theta^2:=\overline{\pi}^*\overline{\theta}|_{\mathcal{H}}$. Montrer que $\theta^1+\theta^2=0$.

Réponse — La fonction $y + \overline{y} - \overline{x}_i x^i$ est constante sur \mathcal{H} , par définition. Donc, d'après la question précédente, $\theta^1 + \theta^2 = (\pi^* \theta + \overline{\pi}^* \overline{\theta})|_{\mathcal{H}} = d(y + \overline{y} - \overline{x}_i x^i)|_{\mathcal{H}} = 0$.

(v) Montrer que les restrictions de π et $\overline{\pi}$ à \mathcal{H} sont des difféomorphismes.

Réponse — L'inverse de $\pi|_{\mathcal{H}}$ est définie par $(x, y, p) \longmapsto (x, y, p, p_i x^i - y)$, l'inverse de $\overline{\pi}|_{\mathcal{H}}$ par $(\overline{x}, \overline{y}, \overline{p}) \longmapsto (\overline{p}, \overline{p}^i \overline{x}_i - \overline{y}, \overline{x}, \overline{y})$.

(vi) Soit $U \subset \mathbb{R}^n$ et $f \in \mathcal{C}^{\infty}(U)$. On définit la sous-variété $\Gamma := (\pi|_{\mathcal{H}})^{-1} \circ j^1 f(U)$ et on pose $\overline{\omega} := d\overline{x}_1 \wedge \cdots \wedge d\overline{x}_n$. A quelle condition sur f a-t-on $\overline{\omega}|_{\Gamma} \neq 0$?

Réponse — On a $j^1 f(U) = \{(x, f(x), df_x); x \in U\}$, donc $\Gamma = \{(x, f(x), df_x, \langle df_x, x \rangle - f(x)); x \in U\}$. La condition $\overline{\omega}|_{\Gamma} \neq 0$ signifie que $[(\pi|_{\mathcal{H}})^{-1} \circ j^1]^* \overline{\omega} \neq 0$, id est

$$d\frac{\partial f}{\partial x^1} \wedge \dots \wedge d\frac{\partial f}{\partial x^n} = \det\left(\frac{\partial^2 f}{\partial x^i x^j}\right)_{i,j} \neq 0,$$

donc que la matrice hessienne de f est inversible. On retrouve la même condition que celle trouvée à la question (i) pour la transformée de Legendre de f soit localement définie.

(vii) On suppose que $\overline{\omega}|_{\Gamma} \neq 0$. Montrer $(\overline{\pi}|_{\mathcal{H}})(\Gamma)$ est le 1-graphe d'une fonction que l'on précisera (on pourra montrer que $\theta^1|_{\Gamma} = 0$).

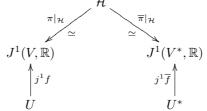
Réponse — Comme $\pi|_{\mathcal{H}}$ est un difféomorphisme,

$$((\pi|_{\mathcal{H}})^{-1} \circ j^1 f)^* \theta^1 = (j^1 f)^* ((\pi|_{\mathcal{H}})^{-1})^* \theta^1 = (j^1 f)^* ((\pi|_{\mathcal{H}})^{-1})^* (\pi|_{\mathcal{H}})^* \theta = (j^1 f)^* \theta = 0.$$

Donc $\theta^1|_{\Gamma} = 0$. Mais comme $\theta^1 + \theta^2 = 0$, on a aussi $\theta^2|_{\Gamma} = 0$; donc $(\overline{\pi}|_{\mathcal{H}})^* \overline{\theta}|_{\Gamma} = d\overline{y} - x^i d\overline{x}_i|_{\Gamma} = 0$.

La condition $\overline{\omega}|_{\Gamma} \neq 0$ signifie que nous pouvons localement paramétriser Γ par les variables \overline{x} . Donc il existe des fonctions ξ, η, \overline{f} définies sur un ouvert $U^* \subset V^*$ telles que $\Gamma = \{(\xi(\overline{x}), \eta(\overline{x}), \overline{x}, \overline{f}(\overline{x})); \overline{x} \in U^*\}$. Comme $d\overline{y} - x^i d\overline{x}_i|_{\Gamma} = 0$, on a donc $0 = d\overline{f} - \xi^i d\overline{x}_i = (\frac{\partial \overline{f}}{\partial \overline{x}_i} - \xi^i) d\overline{x}_i$, donc $\xi^i = \frac{\partial \overline{f}}{\partial \overline{x}_i}$. Finalement $\Gamma = \{(d\overline{f}_{\overline{x}}, \frac{\partial \overline{f}}{\partial \overline{x}_i} \overline{x}_i - \overline{f}(\overline{x}), \overline{x}, \overline{f}(\overline{x})); \overline{x} \in U^*\}$ et l'image de Γ par $\overline{\pi}|_{\mathcal{H}}$ est l'image de f.

(viii) Déduire de ce qui précède une expression pour $d\overline{f}$ et de la transformée de Legendre de \overline{f} . **Réponse** — En comparant les deux paramétrisations de Γ , on trouve que $x=d\overline{f}_{\overline{x}}$ et donc la valeur de la transformée de Legendre de \overline{f} en $x=d\overline{f}_{\overline{x}}$ est $x^i\overline{x}_i-\overline{f}(\overline{x})=x^i\frac{\partial f}{\partial x^i}(x)-[\frac{\partial f}{\partial x^i}(x)x^i-f(x)]=f(x)$. Donc la transformée de Legendre de \overline{f} est f. On peut aussi déduire ce résultat du caractère symétrique de notre construction :



3 Problème : transformations de contact

On étudie des applications Φ de $J^1(\mathbb{R},\mathbb{R})$ (ou d'un ouvert de $J^1(\mathbb{R},\mathbb{R})$) dans lui-même. On notera (x,y,p) les coordonnées sur l'espace de départ de Φ et $(\overline{x},\overline{y},\overline{p})$ les coordonnées sur l'espace d'arrivée de Φ et $\theta:=dy-pdx$ et $\overline{\theta}:=d\overline{y}-\overline{p}d\overline{x}$ les formes de contacts sur ces deux espaces. On décomposera $\Phi(x,y,p)=(\xi(x,y,p),\eta(x,y,p),\psi(x,y,p))$. L'application Φ est appelée une transformation de contact s'il existe une fonction λ de classe \mathcal{C}^{∞} qui ne s'annule pas et telle que $\Phi^*\overline{\theta}=\lambda\theta$.

(i) Déterminer toutes les applications de contact Φ telles que $\frac{\partial \xi}{\partial p} = \frac{\partial \eta}{\partial p} = 0$. On pourra d'abord éliminer λ et exprimer p en fonction des fonctions ξ et η et de leurs dérivées, puis exprimer ψ en fonction des deux autres fonctions. L'application Φ est-elle définie partout?

Réponse — L'hypothèse signifie que ξ et η ne dépendent que des variables (x, y). On écrit la relation $\Phi^* \overline{\theta} - \lambda \theta = 0$. Cela nous donne

$$0 = d\eta - \psi d\xi - \lambda (dy - pdx) = \left(\frac{\partial \eta}{\partial x} - \psi \frac{\partial \xi}{\partial x} + \lambda p\right) dx + \left(\frac{\partial \eta}{\partial y} - \psi \frac{\partial \xi}{\partial y} - \lambda\right) dy.$$

En éliminant λ , on obtient

$$\frac{\partial \eta}{\partial x} - \psi \frac{\partial \xi}{\partial x} + p \frac{\partial \eta}{\partial y} - p \psi \frac{\partial \xi}{\partial y} = 0,$$

d'où l'on déduit que

$$\psi = \frac{\frac{\partial \eta}{\partial x} + p \frac{\partial \eta}{\partial y}}{\frac{\partial \xi}{\partial x} + p \frac{\partial \xi}{\partial y}}.$$

Pourvu que $\frac{\partial \xi}{\partial x} + p \frac{\partial \xi}{\partial y} \neq 0$, cela définit ψ en fonction des fonctions ξ et η . Cette condition sur Ψ est nécessaire et suffisante pour que l'application Φ ainsi obtenue soit une transformation de contact.

On introduit l'espace de contact $J^1(\mathbb{R}^3,\mathbb{R})$ muni des coordonnées $(x^1,x^2,x^3;z;p_1,p_2,p_3)$ et de la forme de contact $\Theta:=dz-p_1dx^1-p_2dx^2-p_3dx^3$. A toute paire (Φ,λ) comme précédemment, on associe l'application $\Psi:J^1(\mathbb{R},\mathbb{R})\longrightarrow J^1(\mathbb{R}^3,\mathbb{R})$ définie par

 $\Psi(x,y,p) = (x,y,\xi;\eta;-p\lambda,\lambda,\psi), \text{ où } \xi,\eta,\psi \text{ et } \lambda \text{ sont des fonctions de } (x,y,p).$

(ii) Calculer $\Psi^*\Theta$. Montrer que toute transformation de contact Φ qui satisfait l'hypothèse $\frac{\partial \xi}{\partial n} \neq 0$ peut être décrite localement à l'aide d'une fonction f de trois variables réelles (x^1, x^2, x^3) . **Réponse** — On a

$$\Psi^*\Theta = d\eta + p\lambda dx - \lambda dy - \psi d\xi = d\eta - \psi d\xi - \lambda (dy - pdx) = \Phi^*\overline{\theta} - \theta.$$

On voit donc que Φ est une transformation de contact ssi $\Psi^*\Theta=0$. Si $\frac{\partial \xi}{\partial p}\neq 0$, alors, par le théorème d'inversion locale, la transformation $(x,y,p)\longmapsto (x,y,\xi(x,y,p))$ est un difféomorphisme local. Si Γ est l'image de Ψ , on a donc $dx^1\wedge dx^2\wedge dx^3|_{\Gamma}\neq 0$ et on peut paramétriser Γ par les coordonnées (x^1, x^2, x^3) . La condition $\Psi^*\Theta = 0$ entraı̂ne que Γ est le 1-graphe d'une application f des variables (x^1, x^2, x^3) au dessus d'un ouvert $\mathcal{O} \in \mathbb{R}^3$, id est

$$\{((x, y, \xi; \eta; -p\lambda, \lambda, \psi); (x, y, p) \in U\} = \{(x^1, x^2, x^3; f(x^1, x^2, x^3); df_{(x^1, x^2, x^3)}); (x^1, x^2, x^3) \in \mathcal{O}\}.$$

En éliminant λ on trouve que $\xi(x,y,p)$, $\eta(x,y,p)$ et $\psi(x,y,p)$ sont définis implicitement par

$$\begin{cases} x &= x^1 \\ y &= x^2 \\ p &= -\frac{\frac{\partial f}{\partial x^1}(x^1, x^2, x^3)}{\frac{\partial f}{\partial x^2}(x^1, x^2, x^3)} \end{cases} \text{ et } \begin{cases} \xi(x, y, p) &= x^3 \\ \eta(x, y, p) &= f(x^1, x^2, x^3) \\ \psi(x, y, p) &= \frac{\partial f}{\partial x^3}(x^1, x^2, x^3) \end{cases}$$

ou encore

$$\eta(x,y,p) = f(x,y,\xi(x,y,p)) \text{ et } \left\{ \begin{array}{rcl} 0 & = & \frac{\partial f}{\partial x^1}(x,y,\xi(x,y,p)) + p\frac{\partial f}{\partial x^2}(x,y,\xi(x,y,p)) \\ \psi(x,y,p) & = & \frac{\partial f}{\partial x^3}(x,y,\xi(x,y,p)) \end{array} \right.$$

(iii) On introduit la fonction H de quatre variables $(x, y, \overline{x}, \overline{y})$ défine par $H(x, y, \overline{x}, \overline{y}) := f(x, y, \overline{x}) - \overline{y}$, où f est la fonction obtenue à la question précédente. Montrer que le graphe de Φ dans $J^1(\mathbb{R},\mathbb{R})$ × $J^1(\mathbb{R},\mathbb{R})$, avec les coordonnées $(x,y,p,\overline{x},\overline{y},\overline{p})$ est défini implicitement par le système d'équations

$$H(x, y, \overline{x}, \overline{y}) = 0 \text{ et } \begin{cases} \frac{\partial H}{\partial x} + p \frac{\partial H}{\partial y} = 0\\ \frac{\partial H}{\partial \overline{x}} + \overline{p} \frac{\partial H}{\partial \overline{y}} = 0 \end{cases}$$

avec $\frac{\partial H}{\partial \overline{y}} \neq 0$ (Sophus Lie). Montrer la réciproque. **Réponse** — La réponse à la première question est immédiate en utilisant le résultat de la question précédente et en remplaçant (x^1, x^2, x^3) par (x, y, \overline{x}) . Montrons la réciproque. Soit H une fonction satisfaisant les propriétés énoncées. Comme $\frac{\partial H}{\partial \overline{y}} \neq 0$, on peut utiliser le théorème des fonctions implicites et trouver une fonction f des variables (x, y, \overline{x}) telle que $H(x, y, \overline{x}, \overline{y}) = 0$ ssi $\overline{y} = f(x, y, \overline{x})$. En dérivant la relation $H(x, y, \overline{x}, f(x, y, \overline{x})) = 0$ par rapport à x, on obtient

$$0 = \frac{\partial}{\partial x} \left[H(x, y, \overline{x}, f(x, y, \overline{x})) \right] = \frac{\partial H}{\partial x} (x, y, \overline{x}, f(x, y, \overline{x})) + \frac{\partial H}{\partial \overline{y}} (x, y, \overline{x}, f(x, y, \overline{x})) \frac{\partial f}{\partial x} (x).$$

On montre de même que $\frac{\partial H}{\partial y} + \frac{\partial H}{\partial \overline{y}} \frac{\partial f}{\partial y} = 0$ et $\frac{\partial H}{\partial \overline{x}} + \frac{\partial H}{\partial \overline{y}} \frac{\partial f}{\partial \overline{x}} = 0$. On en déduit que

$$0 = \frac{\partial H}{\partial x} + p \frac{\partial H}{\partial y} = -\frac{\partial H}{\partial \overline{y}} \frac{\partial f}{\partial x} - p \frac{\partial H}{\partial \overline{y}} \frac{\partial f}{\partial y} = -\frac{\partial H}{\partial \overline{y}} \left(\frac{\partial f}{\partial x} + p \frac{\partial f}{\partial y} \right)$$

et

$$0 = \frac{\partial H}{\partial \overline{x}} + \overline{p} \frac{\partial H}{\partial \overline{y}} = -\frac{\partial H}{\partial \overline{y}} \frac{\partial f}{\partial \overline{x}} + p \frac{\partial H}{\partial \overline{y}} = -\frac{\partial H}{\partial \overline{y}} \left(\frac{\partial f}{\partial \overline{x}} - \overline{p} \right).$$

On obtient ainsi une fonction f des variables (x, y, \overline{x}) à partir de laquelle on peut produire une transformation de contact comme suit (pourvu que $\frac{\partial}{\partial \overline{x}} \left(\frac{\partial f}{\partial x} / \frac{\partial f}{\partial y} \right) \neq 0$)

On définit le sous-ensemble Γ de $J^1(\mathbb{R},\mathbb{R}) \times J^1(\mathbb{R},\mathbb{R})$ des points de coordonnées $(x,y,p,\overline{x},\overline{y},\overline{p})$, dans lesquelles $(p,\overline{y},\overline{p})$ sont des fonctions de (x,y,\overline{x}) définies par $\frac{\partial f}{\partial x}(x,y,\overline{x})+p\frac{\partial f}{\partial y}(x,y,\overline{x})=0$, $\overline{y}=f(x,y,\overline{x})$ et $\overline{p}=\frac{\partial f}{\partial \overline{x}}(x,y,\overline{x})$. Supposons que $dx\wedge dy\wedge dp|_{\Gamma}=-\frac{\partial}{\partial \overline{x}}\left(\frac{\partial f}{\partial x}/\frac{\partial f}{\partial y}\right)dx\wedge dy\wedge d\overline{x}\neq 0$, alors Γ se représente localement comme le graphe d'une fonction $\Phi=(\xi,\eta,\psi)$ des variables (x,y,p). De plus :

$$d\overline{y} - \overline{p}d\overline{x}|_{\Gamma} = df - \frac{\partial f}{\partial \overline{x}}d\overline{x}|_{\Gamma} = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy|_{\Gamma} = -p\frac{\partial f}{\partial y}dx + \frac{\partial f}{\partial y}dy|_{\Gamma} = -\frac{\partial f}{\partial y}\left(dy - pdx\right)|_{\Gamma}.$$

On retrouve bien ainsi que Φ est une transformation de contact.

(iv) Qu'obtient-on pour $H(x, y, \overline{x}, \overline{y}) = y + \overline{y} - \overline{x}x$?

Réponse — Appliquant les relations obtenues à la question précédente avec H on obtient les relations $p = \overline{x}$, $\overline{p} = x$ et $y + \overline{y} - x\overline{x} = 0$. On retrouve les relations qui définissaient la transformée de Legendre de l'exercice précédent. La transformation de Legendre est donc une transformation de contact.

4 Exercice : formes de contact et théorie de Cartan-Kähler

L'espace $J^1(\mathbb{R}^2, \mathbb{R})$ est muni des coordonnées (x^1, x^2, y, p_1, p_2) , de la forme de contact $\theta := dy - p_1 dx^1 - p_2 dx^2$ et de la 2-forme $\omega := dx^1 \wedge dx^2$. On considère le système différentiel extérieur

$$\theta|_{\Gamma} = 0 \quad ; \quad d\theta|_{\Gamma} = 0 \quad ; \quad \omega|_{\Gamma} \neq 0$$
 (2)

- (i) Le système (2) est-il fermé? Quelle est la dimension des solutions Γ de (2)? **Réponse** Ce système est fermé. Les conditions $\theta|_{\Gamma} = 0$ et $d\theta|_{\Gamma} = 0$ entraînent que dim $\Gamma \leq 2$, la condition $\omega|_{\Gamma} \neq 0$ entraîne que dim $\Gamma \geq 2$, donc dim $\Gamma = 2$.
- (ii) Soit $M \in J^1(\mathbb{R}^2, \mathbb{R})$ et $Gr_M(\theta; \omega) := \{E \subset T_M J^1(\mathbb{R}^2, \mathbb{R}); \theta_M|_E = d\theta_M|_E = 0, \omega_M|_E \neq 0\}$. Donner une paramétrisation de $Gr_M(\theta; \omega)$. En déduire sa dimension $r_{(1)}$.

Réponse — La condition $\omega|_{\Gamma} \neq 0$ entraı̂ne que tout élément E dans $Gr_{\text{M}}(\theta;\omega)$ est un graphe au dessus du plan des (x^1,x^2) . On peut donc trouver une base (u_1,u_2) sous la forme

$$u_1 = \frac{\partial}{\partial x^1} + y_1 \frac{\partial}{\partial y} + p_{11} \frac{\partial}{\partial p_1} + p_{12} \frac{\partial}{\partial p_1} \quad \text{ et } \quad u_2 = \frac{\partial}{\partial x^2} + y_2 \frac{\partial}{\partial y} + p_{21} \frac{\partial}{\partial p_1} + p_{22} \frac{\partial}{\partial p_1}.$$

Les conditions $\theta|_{\Gamma} = 0$ et $d\theta|_{\Gamma} = 0$ se traduisent par :

$$\begin{cases} \theta(u_1) &= 0 \\ \theta(u_2) &= 0 \\ d\theta(u_1, u_2) &= 0 \end{cases} \iff \begin{cases} y_1 &= p_1 \\ y_2 &= p_2 \\ p_{12} - p_{21} &= 0 \end{cases}$$

On obtient trois relations indépendantes sur les six paramètres $(y_1, p_{11}, p_{12}, y_2, p_{21}, p_{22})$ donc $r^{(1)} = 6 - 3 = 3$.

(iii) Ecrire le premier système polaire (complet) en un point pour un vecteur u_1 satisfaisant $(dx^1(u_1), dx^2(u_1)) = (1,0)$. Expliciter les solutions de ce système.

Réponse — A nouveau on note $u_1 = \frac{\partial}{\partial x^1} + y_1 \frac{\partial}{\partial y} + p_{11} \frac{\partial}{\partial p_1} + p_{12} \frac{\partial}{\partial p_2}$. La première équation polaire est $dy(u_1) = p_1 dx^1(u_1) + p_2 dx^2(u_1) = p_1$. Les solutions sont donc $u_1 = \frac{\partial}{\partial x^1} + p_1 \frac{\partial}{\partial y} + p_{11} \frac{\partial}{\partial p_1} + p_{12} \frac{\partial}{\partial p_2}$.

- (iv) Ecrire le premier système polaire réduit et déterminer son rang s'_0 . **Réponse** — Le premier système polaire est dy = 0, son rang est 1, donc $s'_0 = 1$.
- (v) Ecrire le deuxième système polaire réduit et déterminer son rang $s'_0 + s'_1$. **Réponse** — On a $u_1 \perp d\theta = dp_1 - p_{12}dx^2$, donc le deuxième système polaire est : dy = 0 et $dp_1 = 0$. Son rang est deux, donc $s'_1 = 1$.

(vi) Dire si le système est involutif, conclure.

Réponse — Nous effectuons le test de Cartan :

X		
×	×	

Il reste trois cases vides, cela coïncide avec $r^{(1)}$. Donc le système étant fermé et le test de Cartan étant positif, le système est involutif.