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Abstract
We introduce the twistor correspondence in 4-dimensions via a classical formula of Whittaker for
harmonic functions in 3-space. Throughout our discussion we compare the Riemannian with the
semi-Riemannian case.

1. Some background

In very general terms, twistor theory consists of the association of a complex space
(twistor space) to a real space in a natural and useful way. By useful, we mean
that some important (second order differential) equations - e.g. the zero-rest-mass
field equations, the harmonic map equation - can be solved in terms of holomorphic
data in the twistor space. This kind of correspondence has its origins in classical
algebraic geometry, with the Plücker-Klein correspondence which represents lines
in a projective 3-space as points on a quadric in projective 5-space. The example of
representing circles in 3-space as points on a complex quadric in complex projective
4-space (see Example (d) below) goes back to Laguerre.

Twistor theory in the context of space-time has been pioneered by Roger Penrose
and others since the 1960s and is based on the association of a complex twistor space
CP 3 (or sometimes an unprojectivised twistor space C4) to the space of light rays in
space-time. The name derives from the Robinson congruence which is the natural
realisation of a (non-null) twistor and is described in Section 7. Some appealing
aspects of the theory are:

• twistor space becomes the basic space so that light rays are the fundamental
objects from which space-time is derived;

• discrete quantities such as spin are reflected in the discrete values obtained by
contour integration;

• elegance and simplicity!
Although from a mathematical point of view the correspondence is purely for-

mal, from a physical point of view the different perspective becomes fundamental,
particularly at the level of quantisation - see [29] for an excellent account of the
motivation and aims of twistor theory.

At the same time as Penrose published his basic paper ‘Twistor algebra’ in 1967,
Calabi described how minimal surfaces in the Euclidean sphere Sn can be described
in terms of holomorphic curves in a complex space. This space is the bundle of
almost Hermitian structures on an even-dimensional manifold and later, to people
working in the areas of minimal surfaces and harmonic maps, became known as the
twistor bundle. In favourable circumstances it is a complex manifold. For example,
in the case of S4, it is CP 3, the same as the twistor space for Minkowski space-
time. We will refer to the latter theory as the theory of Riemannian twistors, since
they are derived from spaces having a Riemannian rather than a semi-Riemannian
structure.

More recently the study of harmonic morphisms has exploited the twistor cor-
respondence. As a special case a harmonic morphism is a mapping from a Rie-
mannian manifold to a surface whose fibres form a conformal foliation by minimal
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submanifolds; they can be considered as the Riemannian analogue of null-solutions
to Maxwell’s equations in space-time.

In these lectures, we aim to give an introduction to twistor theory, sometimes
using the Riemannian perspective to aid in understanding the space-time case,
which will be the fundamental object of study. The author benefitted greatly from
the summer schools on ‘Quantum field theory and integrable systems’ at Peyresq
and would like to thank the organisers, Frédéric Helein and Joseph Kouneiher for
their hospitality.

2. Examples

We give some examples of real spaces and their associated twistor spaces.

real space object defining correspondence twistor space
(a) R3 lines TCP 1

(b) S3 great circles CP 1 ×CP 1

(c) H3 geodesics CP 1 ×CP 1 \ ∆
(d) S3 circles and points Q3 ⊂ CP 4

(e) Minkowski space light rays N 5 ⊂ CP 3

(f) asd Einstein 4-mfld almost Hermitian str. Z+ twistor bundle

In all cases there is an incidence relation which describes ‘incidence’ between a
point in the twistor space and a point of the real space belonging to the geometric
object defining the correspondence.

(a) Each oriented line γ(s) has a unique description:

γ(s) = c + su

where u ∈ S2 is the direction of the line and c is the unique vector perpendicular
to u lying on the line - the displacement vector. Then the pair (u, c) ∈ TS2 =
{(x,y ∈ R3 × R3 : |x| = 1, 〈x,y〉 = 0} ⊂ R3 × R3. To exhibit the complex
properties of the twistor space TS2 more usefully, we introduce a complex chart,
for example by identifying S2 \ {point} with C by stereographic projection. So let
σ : S2 \ {(0, 0,−1)} → C be stereographic projection from the south pole defined
by

σ(x) =
x1 + ix2

1 + x3

Let z = σ(u) and w = dσu(c). Then the line γ is the solution set to the complex
equation (see [22, 7]),

(1) (x1 + ix2) − 2izx3 + z2(x1 − ix2) = 2w .

This equation is the incidence relation. We have the following correspondences:

Real space R3 twistor space TCP 1

line point
change of orientation real structure ρ : TCP 1 → TCP 1 (ρ2 = id)

point x CP 1(x) ⊂ TCP 1 (real section)

(b) The space of oriented great circles can be identified with the Grassmannian
G2(R

4) of oriented 2-planes passing through the origin in R4. The identification
G2(R

4) ∼ CP 1 ×CP 1 is standard.

(c) Take the Poincaré model for hyperbolic 3-space. This is the open unit ball
B3 ⊂ R3 with metric gH = 4dx2/(1 − |x|2) (dx2 = dx1

2 + dx2
2 + dx3

2). Then the
geodesics are arcs of circles which hit the boundary ∂B3 = S2 at right-angles. If
γ is an oriented geodesic then it is determined by its start point and its end point,
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both distinct points of S2, so the space of all oriented geodesics is identified with
S2 × S2 \ ∆ where ∆ is the diagonal. It is natural to take the conjugate complex
structure on the second factor.

In fact (a), (b) and (c) have a unified treatment [22], since the tangent space to
the space of geodesics at a geodesic γ is given by the set of Jacobi fields along γ
which are normal to γ. The complex structure is given by rotation through π/2
in the normal space to γ, that this gives another Jacobi field depends on having
constant curvature.

(d) If we consider R3 as identified with S3 \ {point} via stereographic projection
and H3 as identified with a hemi-sphere of S3, then (a), (b) and (c) are also unified
by considering the space of circles of S3. This can be identified with the complex
quadric H = {[w0, . . . , w4] ∈ CP 4 : w0

2 + · · ·w3
2 − w4

2 = 0} ⊂ CP 4 as follows.
Consider the affine oriented 2-plane P 2,

(2) w0y0 + · · · + w3y3 + w4 = 0

in R
4. Let S3 = {y ∈ R

4 : |y| = 1}, then P 2∩S3 is either a point or an oriented cir-
cle: if all w0, . . . w4 are real, then (2) defines a tangent plane to S3 with intersection
a point, otherwise it is a circle.

In fact if we identify S3 \ {point} → R3 via stereographic projection and write
ξ = (ξ1, ξ2, ξ3) = 1

w0+w4
(w1, w2, w3), then the equation of the circle in R3 is given

explicitly by

ξ2 + 2ξ · x+ |x|2 = 0 (ξ2 = ξ1
2 + ξ2

2 + ξ3
2)

Indeed, ξ = −a+ in where a is the centre of the circle and n is the normal to the
plane containing the circle with |n| = r the radius. The set of circles ξ satisfying a
quadratic relation of the form

Aξ2 + 2ξ · b+ C = 0 (b ∈ R
3, A, C ∈ R)

are geodesics with respect to a space form of constant curvatureK = (AC−|b|2)/C2

[5, 6].

(e) We intend to describe this in more detail below, but for the moment we give
the following brief account.

Consider a space-like slice R3 of Minkowski space. Then a light ray is determined
by its origin ∈ R3 and its direction - a point in the celestial sphere S2, i.e. it
corresponds to a point of the unit tangent bundle T 1R3 ∼= R3 × S2. It is better to
compactify, so that a light ray now corresponds to a point of T 1S3 ∼= S3 ×S2. Now
let π : CP 3 → S4 be the Hopf fibration given by

π([z0, z1, z2, z3]) = [z0 + z1j, z2 + z3j] ∈ HP 1 ∼= S4 .

Here we use quaternion notation x0 +x1i+x2j+x3k ∼= z+wj (z, w ∈ C) and HP 1 is
quaternionic projective space (we will be more explicit in Section 7). Let S3 ⊂ S4

be an equatorial sphere; then π−1(S3) ∼= T 1S3 in a natural way. So we identify the
space of light rays with a real 5-dimensional hypersurface in CP 3 - the latter space
is twistor space.

(f) TakeM4 = S4. Identify S4\{point} with R4 via stereographic projection and
identify R4 with C2: (x0, x1, x2, x3) ↔ (q1 = x0+ix2, q2 = x2+ix2). Then a positive
almost Hermitian structure J at a point x, Jx : TxR4 → TxR4 (Jx

2 = −id, Jx

isometry) is determined by its ±i-eigenspaces in T C
x R4 ∼= C4 (see Section 6 for more

details); these are determined by specifying a number µ ∈ CP 1: explicitly

∂

∂q1
− µ

∂

∂q2
,

∂

∂q2
+ µ

∂

∂q1
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span the −i-eigenspace. So the space of almost Hermitian structures is a CP 1-
bundle over S4 - this is once more CP 3.

Note that an immersed oriented surface ι : M 2 ↪→ S4 determines a section
σ : M2 → CP 3. Indeed, for each x ∈ M2, Jx is given by Jx = (JT

x , J
N
x ) where JT

x

is rotation by π/2 in TxM
2 and JN

x is rotation by π/2 in the orthogonal compliment
(TxM

2)⊥ in TS4. Minimality of M2 is reflected in properties of the complex curve
σ(M2) ⊂ CP 3.

3. Whittaker’s formula

UItimately we are interested in fields on space-time (solutions of some field equation
- for example the wave equation) and their description as objects in the twistor
space. As a first step we consider Laplace’s equation in R3 (a static solution to the
wave equation); now the twistorial description is essentially a classical formula of
Whittaker (1903).

The formula of Whittaker states that, up to a translation in space a (local)
complex valued solution to Laplace’s equation in R3:

∂2ϕ

∂x1
2

+
∂2ϕ

∂x2
2

+
∂2ϕ

∂x3
2

= 0

is given by an integral

(3) ϕ(x) =

∫ 2π

0

f(θ, x3 + ix1 cos θ + ix2 sin θ)dθ

where f(z, w) is a complex analytic function in 2-variables (with singularities away
from the path of integration). Before proving this formula let us give it a different
interpretation.

Set q = x1 + ix2, u = x3 and z(θ) = exp(iθ) to be the unit circle over which we
take a contour integration. Then

q − 2izu+ z2q = −2ieiθ(x3 + ix1 cos θ + ix2 sin θ) ,

so that we may equivalently write the integral (3) (up to a modification of f) as

(4) ϕ(x) =
1

2πi

∮
f(z, q − 2izu+ z2q)dz .

¿From (1), we see that the 2nd argument w = q − 2izu + z2q, up to a factor of
2, is the incidence relation between a twistor (z, w) and the corresponding line in
3-space. It is therefore natural to view f(z, w) as a function defined on a domain
of twistor space TCP 1.

Note that given a point x ∈ R3, the set of twistors incident with x (the set of
lines passing through x) form a copy of CP 1 ⊂ TCP 1 which we write CP 1(x). We
then consider the integration as taking place along a contour contained in CP 1(x).
We therefore very loosely have the correspondence:

harmonic function on a domain of R3 ↔
holomorphic function f(z, w) on a domain of twistor space + choice of contour.

Proof of Whittaker’s formula: We establish the formula (3). Now a solution
ϕ to Laplace’s equation ∆ϕ = 0 is analytic. Let x0 be a regular point for ϕ; by
translation we may suppose that x0 is the origin and we expand ϕ in a power series
about the origin:

ϕ =
∑

I

aIx
I = a0 + a1x

1 + a2x
2 + a3x

3 + a11(x
1)2 + a12x

1x2 + · · ·

If we write this in homogeneous parts:

ϕ = Q0 +Q1 +Q2 + · · ·
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where Qn is homogeneous of degree n, then it is easily seen that each Qn is also
harmonic. Now in 3 variables, there are 2n + 1 linearly independent harmonic
homogeneous polynomials of degree n (see, for example [13]), e.g. n = 1 : x, y, z,
n = 2 : xy, yz, xz, x2 − y2, y2 − z2. These can be generated as follows:

Consider the function of u, x1, x2, x3, homogeneous of degree n in x, given by

(x3 + ix1 cosu+ ix2 sinu)n =

n∑

k=0

gk(x) cos ku+

n∑

k=1

hk(x) sin ku .

Then gk = gk(x1, x2, x3) and hk = hk(x1, x2, x3) form (2n+1) linearly independent
harmonic functions of degree n. By the theory of Fourier series

gk(x) =
1

π

∫ 2π

0

(x3 + ix1 cosu+ ix2 sinu)n cos kudu

hk(x) =
1

π

∫ 2π

0

(x3 + ix1 cosu+ ix2 sinu)n sin kudu

which gives the required form.

Example Set f(z, w) = z/w. This function has simple poles at z = i(u± |x|)/q.
Evaluate the contour integral (4) along a contour surrounding the pole i(u+ |x|)/q,
but not surrounding the other pole. To be more specific, take the contour |z| = 2;
then the above property is satisfied for q 6= 0 and 0 < 9|q|2 − 16u2. Set U = {x ∈
R3 : q 6= 0, 0 < 9|q|2 − 16u2}. Then for x ∈ U , calculating the residue, the integral
(4) gives the harmonic function

ϕ(x) =
u+ |x|
2q|x|

well-defined off the x3-axis q = 0. Note that (4) only determines the harmonic
function for x ∈ U , whereas the function clearly extends to R3 \ {x3 − axis}.

If on the other hand we let x ∈ V = {x ∈ R3 : q 6= 0, 0 > 9|q|2 − 16u2}, the
contour surrounds the other pole and we get a different harmonic function

ψ(x) = −u− |x|)
2q|x| .

In order to describe the harmonic function ϕ in terms of twistor space we have to
work a bit harder! We avoid discussion of twistor cohomology in these lectures, but
to give a flavour of what occurs, we outline the procedure to determine a global
solution. (We follow closely the description in [32] for the space-time case here.)

Take an appropriate open cover {Ui} of twistor space TCP 1. Note that for a
given x ∈ R3, the integration takes place along a contour in the corresponding
Riemann sphere CP 1(x) ⊂ TCP 1 (this is where f(z, w) is defined!) Suppose that
U1 ∩U2 ⊃ CP 1(x) and let V1 = U1 ∩CP 1(x), V2 = U2 ∩CP 1(x). Then we require
the contour to lie in V1 ∩ V2. Furthermore we require the twistor function f to be
defined in a neighbourhood of this contour - in fact in U1 ∩ U2 and we write it as
f12. More generally, with respect to the open cover {Ui}, we have a collection of
twistor functions {fij} defined on the intersections Ui ∩Uj . These must satisfy the
cocycle conditions and define an element of cohomology. In the space-time context
this is the basis of the Penrose transform (an integral transform) relating sheaf
cohomology on twistor space and zero-rest-mass fields on space time (see [?, 37]).
The twistor function is replaced by an element of the cohomology group and the
field now becomes a function of an element of the cohomology group.
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4. Static fields

We will consider a field as a section of a vector bundle E →M over a Riemannian
or semi-Riemannian manifold satisfying some differential equations (the field equa-
tions). Following Penrose [28], we generate solutions of field equations which are
the static analogue of the zero-rest-mass field equations in Minkowski space, from
Whittaker’s formula.

As a special case of (4), set

(5) ϕr(x) =
1

2πi

∮
zrf(z, q − 2izu+ z2q)dz .

Then we have the recurrence relations:

(6)

{
∂ϕr

∂u
= −2i∂ϕr+1

∂q

−2i∂ϕr

∂q
= ∂ϕr+1

∂u

r = 0, 1, 2, . . .

Now let s be a non-negative integer and set

ϕ0 = ϕ00...0, ϕ1 = ϕ10...0, ϕ2 = ϕ11...0, . . . , ϕ2s = ϕ11...1

defining a tensor field ϕAB...L, A,B, . . . , L = 0, 1, which we insist is totally symmet-
ric in the indices A,B, . . . , L. We may naturally consider ϕAB...L(x) as a section of
the ‘spinor’ bundle C

2s×U → U (U ⊂ R
3). The indices A,B, . . . , L will be referred

to as spinor indices.
Define the differential operators: D00 = −

√
2i ∂

∂q
, D01 = D10 = 1√

2
∂
∂u
, D11 =

−
√

2i ∂
∂q

. These are naturally deduced from the analogues for Minkowski space

which we discuss later (see [33]). Raise and lower indices using the skew forms

(εAB) = (εAB) =

(
0 1

−1 0

)
on C2. Thus ξA = εABξB , i.e. ξ0 = ξ1 and ξ1 = −ξ0

etc. Then (6) may be written in the convenient form

(7) DAKϕAB···L = 0 .

Suppose the contour in (5) surrounds a kth-order pole of f . Let ν = ν(x) be
that pole, then, following Penrose once more,

∮
(z − ν)kzrf(z, q − 2izu+ z2q)dz = 0

so that, if 2s ≥ k,

(8) ϕr+k − kϕr+k−1ν +
1

2
k(k − 1)ϕr+k−2ν

2 − · · · + ϕr(−ν)k = 0

for each r = 0, . . . , 2s− k. Setting ξ0 = −ν, ξ1 = 1, we can rewrite this as

ϕAB...Lξ
AξB · · · ξD = 0

where there are 2s−k+1 indices A,B, . . . , D. This is the condition for the spinor ξA

to represent a (2s−k+1)-fold principal direction [30, 31]. Then if 2s−k+1 ≥ 2, the
field ϕAB...L is called algebraically special. In particular, if k = 1 and the contour
surrounds a simple pole, then all 2s principal directions coincide, so that

ϕAB···L = σξ(AξB · · · ξL)

for some function σ. When s = 1, equations (7) are the static analogue of Maxwell’s
equations.



AN INTRODUCTION TO TWISTORS 7

5. Harmonic morphisms

A harmonic morphism on a domain of R3 with values in C can be considered as
an algebraically special time independent solution to Maxwell’s equations (s = 1
in (7)). More generally, the equations determining a harmonic morphism provide
a set of conditions which, in the context of Riemannian manifolds, specialize the
harmonic map equation and in the context of semi-Riemannian manifolds, specialize
the zero-rest-mass field equations. As such, their study may provide insight into
problems such as that of defining twistors in arbitrarily curved spaces.

In the most general terms, a harmonic morphism is a map ϕ : (M, g) → (N, h)
between manifolds M,N endowed with metrics g, h respectively, which preserves
locally defined harmonic functions, i.e. if f : V → R is a harmonic function defined
on an open set V ⊂ N with ϕ−1(V ) non-empty, then the compostition f ◦ ϕ is
harmonic on ϕ−1(V ). Not that we do not impose any condition on the signatures
of the metrics g and h and that ‘harmonic’ is defined with respect to a metric of
any signature by the equation

∆Mf = gij

(
∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk

)
=

1√
| det gij |

∂

∂xi

(√
| det gij |gij ∂f

∂xj

)
.

In fact a harmonic morphism can be defined whenever the notion of harmonic
function makes sense. For example, in a discrete setting, we may define a harmonic
function on a graph as a function defined on the vertices which satisfies the averaging
property (the average of its values on neighbouring vertices equals the value at the
vertex) and so we may define harmonic morphisms between graphs [34, 35, 1]. For
Riemannian manifolds we have the following characterization:

Theorem 5.1. ([20, 23, 14]) Let ϕ : (M, g) → (N, h) be a smooth mapping

between Riemannian manifolds, then ϕ is a harmonic morphism if and only if ϕ is

both harmonic and semi-conformal.

Here, with respect to local coordiantes (xi) on M and (yα) on N , harmonicity
of ϕ is equivalent to the second order elliptic equation

(9) τ(ϕ)γ = gij

(
∂2ϕγ

∂xi∂xj
− Γk

ij

∂ϕγ

∂xk
+ Lγ

αβ

∂ϕα

∂xi

∂ϕβ

∂xj

)
= 0

where Γk
ij , L

γ
αβ are the Christofell symbols on M,N respectively.

Semi-conformality is equivalent to the first order equation

(10) gijϕα
i ϕ

β
j = λ2hαβ

for some continuous function λ : M → R(≥ 0) with λ2 smooth. The regular fibres
of a semi-conformal map form a conformal foliation (see [36]). Conversely, given a
conformal foliation, on suitable open sets we can put a conformal structure on the
leaf space such that the canonical projection onto the leaf space is semi-conformal,
see [8].

With sufficient care, the same theorem holds when M and N have metrics of
arbitrary signatures ([21, 12]) - now λ2 should be replaced by a function Λ : M → R

which may take on negative values.
If z : U ⊂ Rm → C, then (9) and (10) become

(11)
∑ ∂2z

(∂xi)2
= 0

and

(12)
∑ (

∂z

∂xi

)2

= 0
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Consider the case m = 3. Set ϕAB = DABz. Then (12) is equivalent to the
equation detϕAB = 0, which is equivalent to the decomposition of ϕ into an outer
product of the form ϕAB = σξAξB . Then equation (11) is equivalent to DAKϕAB =
0.

Conversely, suppose we are given a spinor field ϕAB . The equationDAKϕAB = 0
implies integrablility: ϕAB = DABz for some function z. Harmonicity of z follows
by summing over B and K and (12) is equivalent to ϕAB = σξAξB . In summary,
(11) and (12) are equivalent to the spinor equations

{
ϕAB = σξAξB

DAKϕAB = 0

i.e., ϕ is an algebraically special solution of the field equations (7). By (8), solutions
have an explicit expression in terms of contour integrals given by (ν =) z = ϕ1/ϕ0.

6. Twistor space of S
4

We describe the twistor bundle of positive almost Hermitian structures on S4. Later
we will relate this to the twistor space associated to Minkowski space.

In general, let M2m be an oriented even dimensional manifold. For x ∈ M 2m,
an almost Hermitian structure at x is an isometry Jx : TxM → TxM such that
J2

x = −id. Let {e1, e2, . . . , e2m} be an orthonormal basis at x. Then the linear
map determined by J(e1) = e2, . . . , J(e2m−1) = e2m defines an almost Hermitian
structure at x. We say that Jx is positive if the basis {e1, . . . , e2m} is positive. We
let Σ+

x = {Jx : Jx positive}. Then SO(2m) acts transitively on Σ+
x with isotropy

subgroup U(m) and we have an isomorphism SO(2m)/U(m) ∼= Σ+
x . If m = 2, the

isomorphism SO(4)/U(2) ∼= CP 1 is realised explicitly by identifying J ∈ Σ+
x with

J(∂/∂x0) ∈ S2 ⊂ R3, where R3 = {(x0, . . . , x3) ∈ R4 : x0 = 0}.
An almost Hermitian structure on U ⊂ M 4 defines a (tautological) section σJ :

U → (Σ+,J Σ). Here J Σ is the canonical almost complex structure on the twistor
bundle (cf. [19]). It can be shown that σJ is holomorphic with respect to J if and
only if J is integrable ([19, 18]).

In the case M4 = S4, Σ+ is identified with CP 3 as follows. Let π : CP 3 →
S4 be the Hopf fibration defined in terms of complex homogeneous coordinates
on the domain and quaternionic homogeneous coordinates on the codomain by
π([f, g, h, k]) = [f + gj, h+ kj] ∈ HP 1 ∼= S4, i.e. identifying the quaternions H with
R4 and identifying S4 \ {∞} with R4 by stereographic projection, we have

(13) S4 = H ∪ {∞} 3 q =
(h− kj)(f + gj)

|h|2 + |k|2

Equivalently, we have the relation

(14) (f + gj) − (h+ kj)(q1 + q2j) = 0

where q = q1 + q2j, q1, q2 ∈ C.
Given a complex surface S ⊂ CP 3 locally parametrized holomorphically by

(z, w) 7→ [f(z, w), . . .], then we can locally solve (14) for (z, w) = (z(q), w(q)).
Then (z, w) give complex coordinates with respect to the (integrable) Hermitian
structure J determined by S via σJ .

Rewrite equation (14) as the pair of complex equations

(h k)

(
q1 q2

−q2 q1

)
= (f g)
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This is a spinor equation; indeed, set q1 = x0 + ix1, q2 = x2 + ix3. We make the
identification

(x0, x1, x2, x3) ↔ (xAB) =

(
x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)

Then (14) can be conveniently written

(15) ξAx
AB = ηB

where (ξA) = (h, k) and (ηB) = (f, g). Note that det(xAB) = |q1|2 + |q2|2 is the
Euclidean norm. Then for (R,S) ∈ SU(2) × SU(2), the mapping

(xAB) 7→ R(xAB)S
Tr

belongs to SO(4) and realizes the double cover SU(2) × SU(2)
2:1→ SO(4).

Solutions z = z(q), w = w(q) to (14) are automatically semi-conformal, being
holomorphic maps into a surface. It is easy to calculate the Laplacian ∆z with
respect to the Euclidean metric and we find that z = z(q) is harmonic (and so a
harmonic morphism) if and only if

hkw − khw = 0 ⇔ h/k = β(z)

for some meromorphic function β(z). Then β(z) ∈ CP 1 is the section of the twistor
bundle Σ+ = R4 ×CP 1 over R4. It is constant along the fibres of z and we have an
alternative proof of a Theorem of Wood [40]: a submersive harmonic morphism

z : U ⊂ R4 → C is equivalent to an integrable Hermitian structure J on U . The

fibres of z are the integrable surfaces of the distribution DJ = {v ∈ TU : ∇vJ = 0}.
This result remains true on an anti-self-dual Einstein 4-manifold [40].

Choose inhomogeneous coordinates by setting k ≡ 1; then (14) becomes

β(z)q1 − q2 = f(z, w)

β(z)q2 + q1 = g(z, w) .

Eliminating w leads to an equation ψ(z, β(z)q1−q2, β(z)q2+q1) = 0. Local solutions
z = z(q) give harmonic morphisms. In a similar way to the R3 case, we consider ψ
as a twistor function defined on a domain of CP 3. Local harmonic (not necessarily
semi-conformal) complex-valued functions are given by contour integrals:

ϕ(q1, q2) =

∮
ψ(z, β(z)q1 − q2, β(z)q2 + q1)dz

It will be useful in what follows to describe how the unit tangent bundle to S3

sits naturally in CP 3.
Consider S3 ⊂ S4 as the equatorial sphere given in our quaternionic coordinates

by the imaginary quaternions:

S3 = {q ∈ H ∪ {∞} : q = −q} .
Let N 5 ⊂ CP 3 be the inverse image under the Hopf fibration π: N 5 = π−1(S3).
Then [f, g, h, k] ∈ N 5 if and only if Re {hf + kg + (hg − kf)j} = 0 if and only if

(16) hf + kg + hf + kg = 0 .

Equation (16) is a real equation defining an inner product Q = hf + kg + hf + kg
of signature (2, 2) on C4. Then CP 3 splits into 3 components PT−,N 5, PT+,
depending on whether Q is positive, zero or negative, respectively.

Identify the hyperbolic plane (upper-half-space model) with the hemisphere
π(PT+) ⊂ S4; explicitly:

H4 = {q = x0 + x1i + x2j + x3k ∈ H : x0 > 0}
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with metric
∑

(dxi)2/(x0)2. Then if Φ : U ⊂ H4 → C is a smooth function, the
hyperbolic Laplacian is given by

∆H4

Φ = (x0)2∆R
4

Φ − x0 ∂Φ

∂x0

Suppose that Φ extends in a C1 fashion to ∂H4 ∼= S3. It is easily checked that

if ∆H4

Φ = 0, then ∂Φ/∂x0 = 0 at x0 = 0. Suppose then that Φ is a harmonic
morphism with respect to the hyperbolic metric and set ϕ = Φ|∂H4 : V ⊂ S3 → C.
Then, since ∂Φ/∂x0 = 0 at x0 = 0, we have

(17)

(
∂ϕ

∂x1

)2

+

(
∂ϕ

∂x2

)2

+

(
∂ϕ

∂x3

)2

= 0

and ϕ is semi-conformal. Conversely, any analytic solution to (17) on an open set
V ⊂ S3 extends uniquely to a complex valued harmonic morphism Φ on a domain
of H4 [10, 11].

7. Twistor space of Minkowski space

Consider (real, uncompactified) Minkowski space M 4 = {(t, x1, x2, x3) ∈ R4} with
metric dt2 − dx1

2 − dx2
2 − dx3

2. We make the identification

(t, x1, x2, x3) ↔ (xAA′

) =

(
−i(t− x1) x2 + ix3

−x2 + ix3 −i(t+ x1)

)

Then (xAA′

) is skew-Hermitian, i.e. (xAA′ )
Tr

= −(xAA′

) with det(xAA′

) = −t2 +
x1

2 + x2
2 + x3

2.

Remark 7.1. Our conventions here differ from the usual, when the matrix on

the right-hand side is replaced by

(
t+ x1 x2 + ix3

x2 − ix3 t− x1

)
which is now Hermitian.

However, in order to facilitate the unification with the Riemannian case described in
Section 8, we prefer to choose the above conventions and in particular to maintain
the expression for the Hopf fibration given by (13).

For an element R ∈ SL2(C), R(xAA′

)R
Tr

is also skew-Hermitian with the same

determinant as (xAA′

) and the map M4 →M4 given by

(xAA′

) 7→ R(xAA′

)R
Tr

belongs to the connected component of the identity O↑
+(1, 3) of the Lorentz group.

This realizes the double cover

SL2(C)
2:1→ O↑

+(1, 3) .

Given a null vector (light ray) (t, x1, x2, x3) ∈ M4, then det(xAA′

) = 0 which

implies that (xAA′

) decomposes as an outer product: xAA′

= iξAηA′

. The fact that

(xAA′

) is also skew-Hermitian implies that ηA′

= ξ
A′

, where ξ
0′

= ξ0 and ξ
1′

= ξ1.
In fact, after appropriately choosing conventions, [ξ0, ξ1] ∈ CP 1 ∼ S2 represents
the direction of the corresponding light ray as a point of the celestial sphere.

Consider the equation

(18) ξAx
AA′

= ηA′

This is the Minkowski analogue of (15) and is the incidence relation between a

point [ηA′

, ξA] ∈ CP 3 in twistor space and a point (xAA′

) in M4. Observe that if

xAA′

= yAA′

is a solution to (18), then so is xAA′

= yAA′

+ λξAξ
A′

, λ ∈ R - this

represents the null-geodesic passing through yAA′

with direction [ξA] ∈ CP 1.
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There is a real solution (i.e. (t, x1, x2, x3) is real) if and only if

η0′ξ0 + η1′

ξ1 + η0′

ξ0 + η1′ξ1 = 0

which is the condition (16), so that a null-geodesic in M 4 corresponds to a point of
N 5 ⊂ CP 3. The converse does not quite hold: we need to compactifyM 4 by adding

in a null cone at infinity to obtain compactified Minkowski space M
4 ∼ S3 × S1.

This becomes clearer when we complexify in Section 8. We will call elements of
CP 3, twistors and elements of N 5, null-twistors. A Robinson congruence and the
name twistor derives from the interpretation of a non-null-twistor.

Let [Zα] ∈ CP 3 be a non-null twistor and consider the linear subspace S it
determines: S = {[Wα] ∈ CP 3 : Z0W0 + Z1W1 + Z2W2 +Z3W3 = 0} (this should
be considered as a subspace of dual twistor space - but we leave this interpretation
until Section 8). Then S intersects N 5 in a 3-dimensional set which therefore

determines a 3-parameter family of null-geodesics which fill out M
4

- this is a
Robinson congruence (cf. [27]). With the appropriate conventions, taking a space-

like slice S3 ⊂M
4
, a choice of Robinson congruence has tangent vector field which

projects to a vector field in S3 which is tangent to the fibres of the Hopf fibration
S3 ∼ R3 ∪ {∞} → S2. The twisting of these fibres gives rise to the name twistor.

Zero-rest-mass fields on M4 can be defined in a similar way to the construction
of harmonic sections of spinor bundles defined in Section 4. This follows Penrose
[28] and Penrose-Ward [32].

Indeed, set u = t+ x1, v = t− x1, ζ = x2 + ix3 and let f be a complex analytic
function of 3 complex variables (the twistor function defined on a domain of twistor
space). Now set

ϕr =
1

2πi

∮
zrf(z, u+ zζ, ζ + zv)dz

Then we have the recurrence relations:{
∂ϕr

∂ζ
= ∂ϕr+1

∂u
∂ϕr

∂v
= ∂ϕr+1

∂ζ
r = 0, 1, 2, . . .

For a non-negative integer n, let ϕAB···K (with 2n spinor indices) be defined by

ϕ0 = ϕ00···0, ϕ1 = ϕ00···1, . . . , ϕAB···K = ϕ(AB···K)

Then the recurrence relations above are equivalent to the spinor field equation

∇AA′

ϕAB···K = 0 ,

where ∇AA′ = ∂/∂xAA′

.

Remark 7.2. It is more usual to define the twistor function as a function f on
a domain of C4 homogeneous of a certain degree. Then f = f(Zα) where Zα =

(ωA′

, πA) = (πAx
AA′

, πA) is an unprojectivised twistor; now the contour integral is
replaced by an integral over a 2 real dimensional surface - the two descriptions are
equivalent.

Massless free fields are now constructed as follows: let ϕAB···L, ψA′B′···L′ be
symmetric spinor fields on space-time. Then we have the following interpretation:

spin
1

2
n~ negative helicity:∇AA′

ϕAB···L = 0(19)

spin
1

2
n~ positive helicity:∇AA′

ϕA′B′···L′ = 0(20)

The first equation represents an anti-self-dual field, the second a self-dual field. For
n = 0 (spin 0) we take the wave equation ∇a∇aψ = 0 as the corresponding field
equation.
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Example: n = 1: We define an anti-symmetric 2-tensor by

Fab ↔ FAA′BB′ = ϕABεA′B′ + εABψA′B′

= F
(−)
ab + F

(+)
ab

which is the decomposition into − self-dual and + self-dual parts, respectively.
The field is real if ϕA′B′ = ψA′B′ . Then equations (19) and (20) correspond to
∇[aFbc] = 0 (i.e. dF = 0) and ∇aFab = 0 (i.e. d∗F = 0) which are Maxwell’s
equations.

Example: n = 2: We set

Kabcd ↔ KAA′BB′CC′DD′ = ϕABCDεA′B′εC′D′ + εABεCDψA′B′C′D′

the right-hand-side being the decomposition into − self-dual and + self-dual parts,
respectively. Now (19) and (20) correspond to the Bianchi identities: ∇[aKbc]pq = 0,
which are the linearized Einstein field equations.

Example (Dirac equation): Let (ηA′

, ξA) be a pair of spinor fields on space-time.
Then the Dirac equation has an elegant expression as the pair of spinor equations:

{
∇AA′

ξA = − im√
2
ηA′

∇AA′ηA′

= − im√
2
ξA

wherem represents mass. The pair of equations imply that ∇BA′∇AA′

ξA = −m2

2 ξB
which shows that in some sense the equations are the ‘square root’ of the Klein-
Gordon equation.

8. Unification

Let F12 be the flag manifold consisting of pairs (S1, S2), where S1, S2 are 1- and
2-dimensional subspaces, respectively, of C4 with S1 ⊂ S2. Then we have two
projections π1 : F12 → CP 3 and π2 : F12 → G2(C

4) given by πi((S1, S2)) = Si (i =
1, 2). The pair (π1, π2) is called a double fibration and the manifold F12 is called
the correspondence space. The large cell, diffeomorphic to C4 in the Shubert cell
decomposition of G2(C

4), can be parametrized by (see [26])

(21)




z1 z2
−z̃2 z̃1

1 0
0 1


 z1, z̃1, z2, z̃2 ∈ C

In fact the two vectors (z1,−z̃2, 1, 0), (z2, z̃1, 0, 1) define a basis for S2 ∈ G2(C
4).

Then S4 sits naturally in G2(C
4) as the space defined by the equations z1 = z̃1

and z2 = z̃2, whereas compactified Minkowski sits naturally as the space z1 = −z1,
z̃2 = −z̃2 and z̃1 = −z2 (see [25] for an amplified treatment as well as a description
of ultra-hyperbolic space). Their intersection is diffeomorphic to S3. With this
picture is it natural to consider G2(C

4) as the complexification of both compactified

Minkowski space M
4

and S4.
Modulo conventions, there are other ways to see these embeddings. For example

(cf. [2]), to embed S4, consider the real structure defined on CP 3 as follows.
Identify H2 with C4 by setting (p, q) ≡ (p1 + p2j, q1 + q2j) (p, q ∈ H). Let σ :
H

2 → H
2 be left multiplication by −j, then this induces a conjugate linear mapping

σ : C4 → C4 given by σ(p1, p2, q1, q2) = (p2,−p1, q2,−q1). This in turn induces
a conjugate linear mapping σ : CP 3 → CP 3. There are no fixed points (real
points), however, there are complex projective lines invariant under σ called real

lines. These lines are precisely the fibres of the Hopf fibration π : CP 3 → S4.
Now G2(C

4) parametrizes all the projective lines in CP 3, so π induces a natural
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embedding S4 → G2(C
4). On the other hand compactified Minkowski space is

naturally parametrized by the ! projective lines lying in N 5.
We have three objects which are determined by a complex surface S in CP 3

and which are therefore essentially equivalent. These are (a) a Hermitian structure
on a domain of S4; (b) a conformal foliation by curves of a domain of S3; (c) a
shear-free ray congruence (SFR) on a domain of Minkowski space. Let us elaborate
a bit further.

(a) Locally, a complex surface determines a section of the twistor bundle Z+ →
S4 and defines an integrable Hermitian structure as described in Section 6.

(b) Suppose the surface S defines an integrable Hermitian structure on an open
set U ⊂ S4. We canonically embed S3 in S4 by, say, setting x0 = 0 and we suppose
that V = U ∩S3 is non-empty. Put the hyperbolic metric on the hemisphere H4 on
one side of S3, say x0 > 0. Then the Hermitian structure determines a harmonic
morphism Φ : U ∩ H4 → CP 1; its extension to the boundary ϕ : V → CP 1 is a
semi-conformal map. The fibres of a semi-conformal map form a conformal foliation
by curves (Section 5).

(c) The complex surface S intersects N 5 generically in a 3-dimensional set -
locally this determines a 3-parameter family of light rays which fill out a domain of
space-time - a shear-free-ray congruence. The term shear-free means the following.
Take a space-like slice R

3 of M4, say t = 0. Then projection along the t-axis of
the tangent vector field to the congruence at t = 0 determines a vector field on a
domain of R3. This vector field is tangent to a conformal foliation by curves. It is
the same foliation given by (b).

We can interpret all of the above in another way. The twistor [ηB , ξA] ∈ CP 3

determines a 2-dimensional surface in G2(C
4) via equation (15) (we use the notation

of Section 6 and so the second index in not a primed one; also the xAB are now
independent complex variables). With respect to the chart given by (21), it is

a plane, called an α-plane. We consider S4 and M
4

embedded in G2(C
4) in the

ways described above. Then the α-plane intersects S4 in a point and gives the
(0, 1)-tangent space of the corresponding complex structure in the complexification

T CS4. The α-plane may or may not intersect M
4
, depending on whether the

twistor is null or not. If it is null, then the intersection is a light ray. The surface
S now corresponds to defining ξA and ηB as holomorphic functions of two complex
variables (z, w) and so locally defines a two (com! plex) parameter holomorphically
varying family of α-planes. This defines the objects (a) and (c) above. In broad
terms, the two meet and are defined by a conformal foliation by curves (b). (For
a conformal foliation by curves to extend to a Hermitian structure on a domain of
H4 we require an analyticity hypothesis, see [10, 11] for details.)

To conclude these lectures, we outline some ideas, first described in [3], Section
VI, on a method to determine a geometric structure on a domain of S4 in terms of
twistor space and its dual.

To define dual twistor space, we first of all define the flag manifold F23 consisting
of all pairs (S2, S3) where S2 and S3 are 2- and 3-dimensional subspaces, respec-
tively, of C4 with S2 ⊂ S3. Set P ∗ to be the projective space of complex 3-planes
in C4; then we can identify P ∗ with the space (CP 3)∗ of 1-dimensional complex
lines in the dual space (C4)∗. We have a similar double fibration F23 → G2(C

4)
and F23 → (CP 3)∗. We call (CP 3)∗ dual projective twistor space. It can also be
interpreted as the negative twistor bundle Z

− → S4 of almost Hermitian structures
incompatible with the orientation.

In order to describe points of dual twistor space, we replace upper indices by
lower ones and lower indices by upper ones, so a dual twistor has the form [µB , ω

A].
We have a dual equation ωA = −µBx

AB which determines a surface in G2(C
4),
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called a β-plane. In fact, G2(C
4) is a doubly ruled complex manifold, ruled by α-

and β-planes. A β-plane also intersects S4 in a point and corresponds to the (0, 1)-
tangent space of an almost Hermitian structure incompatible with the orientation
at that point (see [3]).

Now suppose we have a complex surface S ⊂ CP 3 in twistor space. Then S
determines a Hermitian structure on a domain U ⊂ S4. If we now fix a metric
g that is asd Einstein on U , then by the theorem of Wood (cf. Section 6), it
determines a harmonic morphism ϕ : (U, g) → CP 1. Note that ϕ depends on g.
Furthermore ϕ also determines an almost (not necessarily integrable) Hermitian
structure that is incompatible with the orientation. Indeed, for x ∈ U , let Vx =
ker dϕx and let Hx be the orthogonal compliment with repect to g. With respect
to the canonical orientation on S4, we let JV

x : Vx → Vx be rotation by +π/2;
similarly we let JH

x : Hx → Hx be rotation by +π/2. Then ϕ determines two almost
Hermitian structures J1 = (JH , JV ) and J2 = (−JH , JV ) (for some relations to
other properties of 2-dimensional foliations in a 4-manifold, see [?]). One of these,
say J1, is integrable and corresponds to the section S of the twistor bundle. The
other J2 is not in general integrable, but it defines another section T of dual twistor
space.

We can turn the above situation around: suppose we are given complex surfaces
S ⊂ CP 3 and T ⊂ (CP 3)∗, not necessarily complex analytic. We suppose both de-
termine sections over an open set U ⊂ S4. Then at each x ∈ U , we have determined
J1 and J2. What are the properties of S and T that ensure that (i) we have deter-
mined a vertical and horizontal distribution V and H ; (ii) the vertical distribution
V is integrable; (iii) the resulting foliation determines a harmonic morphism with
respect to a metric g? With such a program we would have the intriguing prospect
of determining a geometric structure g from surfaces S ⊂ CP 3 and T ⊂ (CP 3)∗.
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