Renormalization of Quantum field theory on curved space times, a causal approach.

Nguyen Viet Dang

October 20, 2013
## Contents

0.1 Introduction ........................................ vii

1 The extension of distributions. ........................ 3
  1.1 Introduction ........................................ 3
  1.2 Extension and renormalization ......................... 5
    1.2.1 Notation, definitions ............................ 5
    1.2.2 From bounded families to weakly homogeneous dis-
         tributions ........................................ 10
  1.3 Extension of distributions ........................... 16
    1.3.1 Removable singularity theorems ................. 18
  1.4 Euler vector fields .................................. 19
    1.4.1 Invariances .................................... 23
  1.5 Appendix ............................................ 28

2 A prelude to the microlocal extension .................. 31
  2.0.1 Introduction ...................................... 31
  2.1 Geometry in cotangent space .......................... 33
  2.2 Geometric and metric topological properties of \( \Gamma \) .. 36
  2.3 The counterterms are conormal distributions .......... 42
  2.4 Counterexample .................................... 45
  2.5 Appendix ............................................ 46

3 The microlocal extension ............................... 47
  3.1 Dynamics in cotangent space .......................... 47
    3.1.1 Definitions .................................... 48
  3.2 Main theorem ....................................... 49
    3.2.1 Proof of the main theorem ...................... 49
    3.2.2 The renormalized version of the main theorem ... 53
  3.3 Appendix ............................................ 56
    3.3.1 Estimates for the product of a distribution and a smooth 
         function ......................................... 56

4 Stability of the microlocal extension .................. 59
  4.1 Notation, definitions ............................... 59
CONTENTS

4.2 The product of distributions. ........................................ 61
  4.2.1 Approximation and coverings. ................................. 61
  4.2.2 The product is bounded. ................................. 62
  4.2.3 The soft landing condition is stable by sum. ............. 67
4.3 The pull-back by diffeomorphisms. ................................. 69
  4.3.1 The symplectic geometry of the vector fields tangent
          to I and of the diffeomorphisms leaving I invariant. .... 69
  4.3.2 The pull-back is bounded. ................................. 71
  4.3.3 The action of Fourier integral operators. ............. 71
4.4 Appendix. ......................................................... 80

5 The two point function $\langle 0|\phi(x)\phi(y)|0 \rangle$. 83
  5.1 The flat case. .................................................. 85
    5.1.1 The Poisson kernel, the Wick rotation and the subor-
          dination identity. ..................................... 89
    5.1.2 Oscillatory integral. ..................................... 91
  5.2 The holomorphic family $(x^0 + i0)^2 - \sum_{i=1}^n (x^i)^2 \star$ 92
  5.3 Pull-backs and the exponential map. ......................... 99
    5.3.1 The pull back of the phase function. ................ 102
  5.4 The construction of the parametrix. ............................ 103
    5.4.1 The meaning of the asymptotic expansions. .......... 103
    5.4.2 The invariance properties of the Beltrami operator $\Box^g$
          and of gradient vector fields. .......................... 104
    5.4.3 The function $\Gamma$ and the vectors $\rho_1, \rho_2$. .... 106
    5.4.4 The main theorem. ...................................... 109

6 The recursive construction of the renormalization. 111
  6.0.5 Introduction. ............................................... 111
  6.1 Hopf algebra, $T$ product and $\star$ product. ............ 112
    6.1.1 The polynomial algebra of fields. ..................... 112
    6.1.2 Comparison of our formalism and the classical formal-
          ism from physics textbooks. .......................... 113
    6.1.3 Hopf algebra bundle over $M^n$. ...................... 114
    6.1.4 Deformation of the polynomial algebra of fields. .... 116
    6.1.5 The construction of $\star$. ............................ 118
    6.1.6 The associativity of $\star$. ........................... 120
    6.1.7 Wick’s property. ....................................... 121
    6.1.8 Recovering Feynman graphs. ........................... 122
  6.2 The causality equation. ........................................ 124
    6.2.1 Definition of the time-ordering operator ............ 125
    6.2.2 The Causality theorem. ............................... 126
    6.2.3 Consistency condition ............................... 128
  6.3 The Stora lemma for curved space time. .................... 129
  6.4 The concept of polarization. ................................ 132
## 6.4 Polarized conic sets

### 6.4.1 Polarized conic sets
- Page 132

### 6.4.2 Causality equation and wave front sets
- Page 134

## 6.5 The recursion

### 6.5.1 Localization and enlarging the polarization
- Page 135

### 6.5.2 We have
\[
(WF(e^{\log \lambda \rho_x \ast \Delta +}) \cap T^U)^2 \subset (-C_q^+ \times C_q^+).
\]
- Page 137

### 6.5.3 The scaling properties of translation invariant conic sets
- Page 137

### 6.5.4 Thickening sets
- Page 139

### 6.5.5 The $\mu$local properties of the two point function
- Page 140

### 6.5.6 Pull-back of good conic sets
- Page 140

### 6.5.7 The distributional product makes sense and $WF(t_n)$ is polarized
- Page 141

### 6.5.8 The Wavefrontset of the product $t_n$ is contained in a good cone $\Gamma_n$
- Page 144

### 6.5.9 We define the extension $t_n$ and control $WF(t_n)$
- Page 144

## 6.6 Morse families and Lagrangians
- Page 147

## 7 Anomalies and residues

### 7.1 Introduction
- Page 157

### 7.2 The formalism of currents, Meyer renormalisation and residues
- Page 159

#### 7.2.1 From Taylor polynomials to local counterterms via the notion of moments of a compactly supported distribution $T$
- Page 161

#### 7.2.2 The results of Chapter 1
- Page 162

### 7.3 The Meyer renormalization, local counterterms and geometric residues
- Page 163

#### 7.3.1 The ambiguities of the operator $R_\epsilon$ and the moments of a distribution $T$
- Page 163

#### 7.3.2 The geometric residues
- Page 166

#### 7.3.3 Stability of geometric residues
- Page 172

## 8 The meromorphic regularization

### 8.1 Introduction
- Page 175

### 8.2 Fuchsian symbols

#### 8.2.1 Constant coefficients Fuchsian operators
- Page 178

#### 8.2.2 Fuchsian symbols currents
- Page 180

#### 8.2.3 The projection theorem
- Page 181

#### 8.2.4 The solution of a variable coefficients Fuchsian equation is a Fuchsian symbol
- Page 183

#### 8.2.5 Stability of the concept of approximate Fuchsians
- Page 185

### 8.3 Meromorphic regularization as a Mellin transform
- Page 187

#### 8.3.1 The meromorphic extension
- Page 191

### 8.4 The Riesz regularization

#### 8.4.1 The diagonalisable case
- Page 193
8.5 The appearance of the log

198
0.1 Introduction.

In this thesis, we study and solve the problem of the renormalization of a perturbative quantum field theory of interacting scalar fields on curved space times following the causal approach.

Quantum field theory is one of the greatest and most successful achievements of modern physics, since its numerical predictions are probed by experiments with incredible accuracy. Furthermore, QFT can be applied to many fields ranging from condensed matter theory, solid state physics to particle physics. One of the greatest challenges for modern mathematical physics is to unify quantum field theory and Einstein’s general relativity. This program seems today out of reach, however we can address the more recent question to first try to define and construct quantum field theory on curved Lorentzian space times. This problem was solved in the groundbreaking work of Brunetti and Fredenhagen [10] in 2000.

Their work was motivated by the observation that both the conventional axiomatic approach to quantum field theory following Wightman’s axioms or the usual textbook approach in momentum space failed to be generalized to curved space-times for several obvious reasons:
- there is no Fourier transform on curved space time
- the space time is no longer Lorentz invariant.

Indeed, the starting point of the work [10] was to follow one of the very first approach to QFT due to Stueckelberg, which is based on the concept of causality.

The ideas of Stueckelberg were first understood and developed by Bogoliubov ([5]) and then by Epstein-Glaser ([20], [21]) (on flat space time). In these approaches, one works directly in spacetime and the renormalization is formulated as a problem of extension of distributions. Somehow, this point of view based on the S-matrix formulation of QFT was almost completely forgotten by people working on QFT at the exception of few people as e.g. Stora, Kay, Wald who made important contributions to the topic ([48],[61]). However, in 1996, a student of Wightman, M. Radzikowski revived the subject. In his thesis, he used microlocal analysis for the first time in this context and introduced the concept of microlocal spectrum condition, a condition on the wave front set of the distributional two-point function which represents the quantum states, which characterizes the quantum states of positive energy (named Hadamard states) on curved space times. In 2000, in a breakthrough paper, Brunetti and Fredenhagen were able to generalize the Epstein-Glaser theory on curved space times by relying on the fundamental contribution of Radzikowski. These results were further extended by Fredenhagen, Brunetti, Hollands, Wald, Rejzner, etc. to Yang-Mills fields and the gravitation.

Let us first explain what do we mean by “a quantum field theory”.
The input data of a quantum field theory. Our data are a smooth globally hyperbolic oriented and time oriented manifold \((M, g)\) and an algebra bundle \(H\) (called bundle of local fields) over \(M\). Smooth sections of \(H\) represent polynomials of the scalar fields with coefficients in \(C^\infty(M)\). \(H\) has in fact the structure of a Hopf algebra bundle, i.e. a vector bundle the fibers of which are Hopf algebras. The natural causality structure on \(M\) induces a natural partial order relation for elements of \(M\): \(x \leq y\) if \(y\) lives in the causal future of \(x\). The metric \(g\) gives a natural d’Alembertian operator \(\Box\) and we choose some distribution \(\Delta_+ \in \mathcal{D}'(M^2)\) in such a way that:

- the distribution \(\Delta_+\) is a bisolution of \(\Box\),
- the wave front set and the singularity of \(\Delta_+\) satisfy some specific constraints (actually, \(WF(\Delta_+)\) satisfies the microlocal spectrum condition).

From the input data to modules living on configuration spaces and the \(\star\) product. For each finite subset \(I\) of the integers, we define the configuration space \(M^I\) as the set of maps from \(I\) to \(M\) figuring a cluster of points in \(M\) labelled by indices of \(I\). From the algebra bundle \(H\), we construct a natural infinite collection of \(C^\infty(M^I)\)-modules \((H^I)_I\) (each \(H^I\) containing products of fields at points labelled by \(I\)) and define a collection of subspaces \((V^I)_I\) of distributions on \(M^I\) indexed by finite subsets \(I\) of \(\mathbb{N}\) (each \(V^I\) contains the Feynman amplitudes). The collections \((M^I)_I, (H^I)_I, (V^I)_I\) enjoy the following simple property: for each inclusion of finite sets of integers \(I \subset J\) we have a corresponding projection \(M^J \to M^I\) and inclusions \(H^I \hookrightarrow H^J, V^I \hookrightarrow V^J\). We can define a product \(\star\) ("operator product of fields"), which to a pair of elements \(A, B\) in a subset of \(H^I \otimes C^\infty(M^I) V^I \times (H^J \otimes C^\infty(M^J) V^J)\) where \(I, J\) are disjoint finite subsets of \(\mathbb{N}\), assigns an element in \(H^{I \cup J} \otimes C^\infty(M^{I \cup J}) V^{I \cup J}\). The product \(\star\) is defined by some combinatorial formula (which translates the "Wick theorem" and is equivalent to a Feynman diagrammatic expansion) which involves powers of \(\Delta_+\). The partial order on \(M\) induces a partial order \(\leq\) between elements \(A, B\) in \(H^I \times H^J\) for all \(I, J\).

The definition of a quantum field theory. A quantum field theory is a collection \(T_I\) of morphisms of \(C^\infty(M^I)\)-modules:

\[ T_I : H^I \otimes C^\infty(M^I) V^I \to H^I \otimes C^\infty(M^I) V^I, \]

which satisfies the following axioms

1. \(\forall |I| \leq 1, T_I\) is the identity map,
2. the Wick expansion property which generalizes the Wick theorem,
3. **the causality equation** which reads $\forall A, B \text{ s.t. } B \not\subset A$

$$T(AB) = T(A) \ast T(B).$$  \hspace{1cm} (1)

The maps $T_I$ can be interpreted as the time ordering operation of Dyson. The main problem is to find a solution of the equation (1). This solution turns out to be non unique, actually all solutions of this equation are related by the renormalization group of Bogoliubov ([5],[8]).

**Renormalization as the problem of making sense of the above definition.** We denote by $d_n$ the thin diagonal in $M^n$ corresponding to $n$ points collapsing over one point. From the previous axioms, we prove that $T_n|_{M^n \setminus d_n}$ is a linear combination of products of $T_I, I \subset \{1, \cdots , n\}$ with coefficients in $C^\infty(M^n \setminus d_n)$. So we encounter two problems:

1) Since the elements $T_I$ are $\mathcal{H}$-valued distributions, we must justify that these products of distributions make sense in $M^n \setminus d_n$.

2) Even if the product makes sense $T_n$ is still not defined over $M^n$, thus we must extend $T_n$ on $M^n$.

**Contents of the Thesis.** In Chapter 1, we address the second of the previous questions of defining $T_n$ on $M^n$, which amounts to extend a distribution $t$ defined on $M \setminus I$ where $M$ is a smooth manifold and $I$ is a closed embedded submanifold. We give a geometric definition of scaling transversally to the submanifold $I$ and of a weak homogeneity which are completely intrinsic (i.e. they do not depend on the choice of local charts). Our definition of weak homogeneity follows [46] and [44] and slightly differs from the definition of [10] which uses the Steinman scaling degree. We prove that if a distribution $t$ is in $\mathcal{D}'(M \setminus I)$ and is weakly homogeneous of degree $s$ then it has an extension $\tilde{t} \in \mathcal{D}'(M)$ which is weakly homogeneous of degree $s'$ for all $s' < s$. The extension sometimes requires a renormalization which is a subtraction of distributions supported on $I$ i.e. local counterterms. The main difference with the work [10] is that we only have one definition of weak homogeneity and we use a continuous partition of unity. This chapter does not rely on microlocal analysis.

In Chapter 2, in order to solve the first problem of defining $T_n$, we must explain why the product of the $T_I$’s in the formula which gives $T_n$ makes sense and this is possible under some specific conditions on the wave front sets of the coefficients of the $T_I$’s. So we are led to study the wave front sets of the extended distributions defined in Chapter 1. We find a geometric condition on $WF(t)$ named *soft landing condition* which ensures that the wave front of the extension is controlled. However this geometric condition is not sufficient and we explain this by a counterexample. We also give a geometric definition of local counterterms associated to a distribution $t$, which generalizes the counterterms of QFT textbooks in the context of
curved space times. We show that the soft landing condition is equivalent to the fact that the local counterterms of \( t \) are smooth functions multiplied by distributions localized on the diagonal, i.e. they have a specific structure of finitely generated module over the ring \( C^\infty(I) \). The new features of this Chapter are the soft landing condition which does not exist in the literature (only implicit in [10]), the definition of local counterterms associated to \( t \) and our theorem which proves that under certain conditions local counterterms are conormal distributions. Finally, our counterexample explains why in [10], the authors impose certain microlocal conditions on the unextended distribution \( t \) in order to control the wave front set of the extension.

In chapter 3, we prove that if we add one supplementary boundedness condition on \( t \) i.e. if \( t \) is weakly homogeneous in some topological space of distributions with prescribed wave front set, then the wave front \( WF(t) \) of the extension is contained in the smallest possible set which is the union of the closure of the wave front of the unextended distribution \( WF(t) \) with the conormal \( C \) of \( I \). Chapter 3 differs from [10] by the fact that we estimate \( WF(t) \) also in the case of renormalization with counterterms and our proof is much more detailed.

In chapter 4, we manage to prove that the conditions of Chapter 3 can be made completely geometric and coordinate invariant. We also prove the boundedness of the product and the pull-back operations on distributions in suitable microlocal topologies. Then we conclude Chapter 4 with the following theorem: if \( t \) is microlocally weakly homogeneous of degree \( s \in \mathbb{R} \) then a “microlocal extension” \( \tilde{t} \) exists with minimal wave front set in \( WF(t) \cup C \) and \( \tilde{t} \) is microlocally weakly homogeneous of degree \( s' \) for all \( s' < s \). Chapter 4 improves the results of Hörmander on products and pullback of distributions since we prove that these operators are bounded maps for the suitable microlocal topologies. This seems to be a new result since in the literature only the sequential continuity of products and pull-back are proved.

In Chapter 5, we construct the two point function \( \Delta_+ \) which is a distributional solution of the wave equation on \( M \). We prove that \( WF(\Delta_+) \) satisfies the microlocal spectrum condition of Radzikowski and finally we establish that \( \Delta_+ \) is “microlocally weakly homogeneous” of degree \(-2\). Chapter 5 contains a complete mathematical justification of the Wick rotation for which an explicit reference is missing although the idea of its proof is sketched in [64]. We also explicitly compute the wave front set of the holomorphic family \( Q^s(\cdot + i0\theta) \) which cannot be found in [33], (we only found a computation of the analytic wave front set –in the sense of Sato-Kawai-Kashiwara– of \( Q^s(\cdot + i0\theta) \) in [38] p. 90 example 2.4.3). Finally, our proof that the wave front set of \( \Delta_+ \) (constructed as a perturbative series à la Hadamard) satisfies the microlocal spectrum condition seems to be missing in the literature. The construction appearing in [26] is not sufficient to prove that \( \Delta_+ \) is microlocally weakly homogeneous of degree \(-2\).
0.1. **INTRODUCTION.**

Chapter 6 is the final piece of this building. We quickly give our definition of a quantum field theory using the convenient language of Hopf algebras then we state the problem of defining a quantum field theory as equivalent to the problem of solving the equation (1) in $T$ recursively in $n$ on all configuration space $M^n$. We prove this recursively using all tools developed in the previous chapters, a careful partition of the configuration space generalizing ideas of R. Stora to the case of curved space times and an idea of polarization of wave front sets which translates microlocally the idea of positivity of energy. We conclude this chapter by giving a nice geometric interpretation of the wave front set of any Feynman amplitude:

- it is parametrized by a Morse family,

- it is a union of smooth Lagrangian submanifolds of the cotangent space of configuration space.

In Chapter 7, which can be read independently of the rest except Chapter 1, using the language of currents, we treat the problem of preservation of symmetries by the extension procedure. Indeed, renormalization can break the symmetries of the unrenormalized objects and the fact that renormalization does not commute with the action of vector fields from some Lie algebra of symmetries is called anomaly and is measured by the appearance of local counterterms, which are far reaching generalizations of the notion of residues coming from algebraic geometry, (but generalized here to the current theoretic setting).

Finally, in chapter 8 we revisit the extension problem from the point of view of meromorphic regularization. We prove that under certain conditions on distributions, they can be meromorphically regularized then the extension consists in a subtraction of poles which are also local counterterms. We conclude this last Chapter by defining the notion of scale of a meromorphic renormalization and by presenting a computation of the one-parameter renormalization group flow showing that only local counterterms with log singularities appear when we change the scale of the meromorphic renormalization.
Chapter 1

The extension of distributions.

1.1 Introduction.

In the Stueckelberg ([62]) approach to quantum field theory, renormalization was formulated as a problem of division of distributions. For Epstein–Glaser ([20], [21]), Stora ([48],[61]), and implicitly in Bogoliubov ([5]), it was formulated as a problem of extension of distributions, the latter approach is more general since the ambiguity of the extension is described by the renormalization group. This procedure was implemented on arbitrary manifolds (hence for curved Lorentzian spacetimes) by Brunetti and Fredenhagen in their groundbreaking paper of 2000 [10]. However, in the mathematical literature, the problem of extension of distributions goes back at least to the work of Hadamard and Riesz on hyperbolic equations ([53],[29]). It became a central argument for the proof of a conjecture of Laurent Schwartz ([55] p. 126,[41]): the problem was to find a fundamental solution $E$ for a linear PDE with constant coefficients in $\mathbb{R}^n$, which means solving the equation $PE = \delta$ in the distributional sense. By Fourier transform, this is equivalent to the problem of extending $\hat{P}^{-1}$ which is a honest smooth function on $\mathbb{R}^n \setminus \{\hat{P} = 0\}$ as a distribution on $\mathbb{R}^n$, in such a way that $\hat{P} \hat{P}^{-1} = 1$ which makes the division a particular case of an extension. This problem set by Schwartz was solved positively by Lojasiewicz and Hörmander ([33],[58]). Recently, the more general extension problem was revisited in mathematics by Yves Meyer in his wonderful book [44]. In [44], Yves Meyer also explored some deep relations between the extension problem and Harmonic analysis (Littlewood–Paley and Wavelet decomposition). The extension problem was solved in [44] on $(\mathbb{R}^n \setminus \{0\})$. For the need of quantum field theory, we will extend his method to manifolds. In order to renormalize, one should find some way of measuring the wildness of the singularities of distributions. Indeed, we need to impose some growth condition on distributions because
distributions cannot be extended in general! We estimate the wildness of the singularity by first defining an adequate notion of scaling with respect to a closed embedded submanifold \( I \) of a given manifold \( M \), as done by Brunetti–Fredenhagen [10]. On \( \mathbb{R}^{n+d} \) viewed as the cartesian product \( \mathbb{R}^n \times \mathbb{R}^d \), the scaling is clearly defined by homotheties in the variables corresponding to the second factor \( \mathbb{R}^d \). We adapt the definition of Meyer [44] in these variables and define the space of weakly homogeneous distributions of degree \( s \) which we call \( E_s \).

We are able to represent all elements of \( E_s \) which are defined on \( M \setminus I \) through a decomposition formula by a family \( (u^\lambda)^{\lambda \in (0,1]} \) satisfying some specific hypothesis. The distributions \( (u^\lambda)^{\lambda \in (0,1]} \) are the building blocks of the \( E_s \) and are the key for the renormalization. We establish the following correspondence

\[
(u^\lambda)^{\lambda \in (0,1]} \longmapsto \int_0^1 \frac{d\lambda}{\lambda} \lambda^s (u^\lambda)^{\lambda-1} + \text{nice terms}, \quad (1.1)
\]

\[
t \in E_s \longmapsto (u^\lambda)^{\lambda \in (0,1]} \text{ where } u^\lambda = \lambda^{-s} t^\lambda \psi, \quad (1.2)
\]

the nice terms are distributions supported on the complement of \( I \).

However this scaling is only defined in local charts and a scaling around a submanifold \( I \) in a manifold \( M \) depends on the choice of an Euler vector field. Thus we propose a geometrical definition of a class of Euler vector fields: to any closed embedded submanifold \( I \subset M \), we associate the ideal \( \mathcal{I} \) of smooth functions vanishing on \( I \). A vector field \( \rho \) is called Euler vector field if

\[
\forall f \in \mathcal{I}, \rho f - f \in \mathcal{I}^2. \quad (1.3)
\]

This definition is clearly intrinsic. We prove that all scalings are equivalent hence all spaces of weakly homogeneous distributions are equivalent and that our definitions are in fact independent of the choice of Euler vector fields. Actually, we prove that all Euler vector fields are locally conjugate by a local diffeomorphism which fixes the submanifold \( I \). So it is enough to study both \( E_s \) and the extension problem in a local chart. Meyer and Brunetti–Fredenhagen make use of a dyadic decomposition. We use instead a continuous partition of unity which is a continuous analog of the Littlewood–Paley decomposition. The continuous partition of unity has many advantages over the discrete approaches: 1) it provides a direct connection with the theory of Mellin transform, which allows to easily define meromorphic regularizations; 2) it gives elegant formulas especially for the poles and residues appearing in the meromorphic regularization (see Chapter 7); 3) it is well suited to the study of anomalies (see Chapter 6).

**Relationship with other work.** In Brunetti–Fredenhagen [10], the scaling around manifolds was also defined but they used two different definitions.
of scalings, then they showed that these actually coincide, whereas we only give one definition which is geometric. In mathematics, we also found some interesting work by Kashiwara–Kawai, where the concept of weak homogeneity was also defined ([46] Definition (1.1) p. 22).

1.2 Extension and renormalization.

1.2.1 Notation, definitions.

We work in $\mathbb{R}^{n+d}$ with coordinates $(x, h)$, $I = \mathbb{R}^n \times \{0\}$ is the linear subspace $\{h = 0\}$. For any open set $U \subset \mathbb{R}^{n+d}$, we denote by $\mathcal{D}(U)$ the space of test functions supported on $U$ and for all compact $K \subset U$, we denote by $\mathcal{D}_K(U)$ the subset of all test functions in $\mathcal{D}(U)$ supported on $K$. We also use the seminorms:

$$\forall \varphi \in \mathcal{D}(\mathbb{R}^{n+d}), \pi_k(\varphi) := \sup_{|\alpha| \leq k} \|\partial^\alpha \varphi\|_{L^\infty(\mathbb{R}^{n+d})},$$

$$\forall \varphi \in C^\infty(\mathbb{R}^{n+d}), \forall K \subset \mathbb{R}^d, \pi_k,K(\varphi) := \sup_{|\alpha| \leq k} \sup_{x \in K} |\partial^\alpha \varphi(x)|.$$

We denote by $\mathcal{D}'(U)$ the space of distributions defined on $U$. The duality pairing between a distribution $t$ and a test function $\varphi$ is denoted by $\langle t, \varphi \rangle$.

For a function, we define $\varphi_\lambda(x, h) = \varphi(x, \lambda h)$. For the vector field $\rho = h^j \frac{\partial}{\partial h^j}$, the following formula

$$\varphi_\lambda = e^{\log \lambda \rho} \varphi,$$

shows the relation between $\rho$ and the scaling. Once we defined the scaling for test functions, for any distribution $f$, we define the scaled distribution $f_\lambda$:

$$\forall \varphi \in \mathcal{D}(\mathbb{R}^{n+d}), \langle f_\lambda, \varphi \rangle = \lambda^{-d} \langle f, \varphi_{\lambda^{-1}} \rangle.$$

If $f$ is a function, this definition would coincide with the naive scaling $f_\lambda(x, h) = f(x, \lambda h)$.

We give a definition of weakly homogeneous distributions in flat space following [44]. We call a subset $U \subset \mathbb{R}^{n+d}$ $\rho$-convex if $(x, h) \in U \implies \forall \lambda \in (0, 1], (x, \lambda h) \in U$. We insist on the fact that since we pick $\lambda > 0$, a $\rho$-convex domain may have empty intersection with $I$.

**Definition 1.2.1** Let $U$ be an arbitrary $\rho$-convex open subset of $\mathbb{R}^{n+d}$. $E_\rho(U)$ is defined as the space of distributions $t$ such that $t \in \mathcal{D}'(U)$ and

$$\forall \varphi \in \mathcal{D}(U), \exists C(\varphi), \sup_{\lambda \in (0,1]} |\lambda^{-s}t_\lambda, \varphi| \leq C(\varphi).$$

In the quantum field theory litterature, the wildness of distributions is measured by the Steinman scaling degree. We prefer the definition of Meyer,
which exploits the properties of bounded sets in the space of distributions (this is related to bornological properties of \( \mathcal{D}'(U) \)).

We denote by \( \frac{d\lambda}{\lambda} \) the multiplicative measure on \([0, 1]\). We shall now give a definition of a class of maps \( \lambda \mapsto u^\lambda \) with value in the space of distributions.

**Definition 1.2.2** For all \( 1 \leq p \leq \infty \), we define \( L^p_{d\lambda}(\lambda) \) as the space of families \((u^\lambda)_{\lambda \in (0, 1]} \) of distributions such that
\[
\forall \varphi \in \mathcal{D}(U), \lambda \mapsto \langle u^\lambda, \varphi \rangle \in L^p_{d\lambda}([0, 1], \mathbb{C}).
\] (1.4)

**The Hörmander trick.** We recall here the basic idea of Littlewood–Paley analysis ([44] p. 14). Pick a function \( \chi \) which depends only on \( h \) such that \( \chi = 1 \) when \( |h| \leq 2 \) and \( \chi = 0 \) for \( |h| \geq 3 \). The Littlewood–Paley function \( \psi(\cdot) = \chi(\cdot) - \chi(2\cdot) \) is supported on the annulus \( 1 \leq |h| \leq 3 \). Then the idea is to rewrite the plateau function \( \chi \) using the trick of the telescopic series
\[
\chi = \chi(\cdot) - \chi(2\cdot) + \cdots + \chi(2^j\cdot) - \chi(2^{j+1}\cdot) + \cdots
\]
and deduce a dyadic partition of unity
\[
1 = (1 - \chi) + \sum_{j=0}^{\infty} \psi(2^j \cdot)
\]
Our goal in this paragraph is to derive a continuous analog of the dyadic partition of unity. Let \( \chi \in C^\infty(\mathbb{R}^{n+d}) \) such that \( \chi = 1 \) in a neighborhood \( N_1 \) of \( I \) and \( \chi \) vanishes outside a neighborhood \( N_2 \) of \( N_1 \). This implies \( \chi \) satisfies
1.2. EXTENSION AND RENORMALIZATION.

Figure 1.2: The neighborhoods $N_1$ and $N_2$.

the following constraint: for all compact set $K \subset \mathbb{R}^n$, $\exists (a, b) \in \mathbb{R}^2$ such that $b > a > 0$ and $\chi|_{(K \times \mathbb{R}^d) \cap \{|h| \leq a\}} = 1$, $\chi|_{(K \times \mathbb{R}^d) \cap \{|h| \geq b\}} = 0$. We find a convenient formula (inspired by [34] equation (8.5.1) p. 200 and [44] Formula (5.6) p. 28) for $\chi$ as an integral over a scale space indexed by $\lambda \in (0, 1]$. First notice that $\chi(x, \frac{h}{\lambda}) \to \lambda \to 0$ in $L^1_{\text{loc}}$. We repeat the Littlewood Paley trick in the continuous setting:

$$\chi(x, h) = \chi(x, h) - 0 = \int_0^1 \frac{d\lambda}{\lambda} \frac{d}{d\lambda} \left[ \chi(x, \lambda^{-1}h) \right] = \int_0^1 \frac{d\lambda}{\lambda} (-\rho \chi)(x, \lambda^{-1}h)$$

Set

$$\psi = -\rho \chi.$$  \hfill (1.5)

Notice an important property of $\psi$: on each compact set $K \subset \mathbb{R}^n$, $\exists (a, b) \in \mathbb{R}^2$ such that $\psi|_{(K \times \mathbb{R}^d)}$ is supported on the annulus $(K \times \mathbb{R}^d) \cap \{a \leq |h| \leq b\}$. We obtain the formula

$$1 = (1 - \chi) + \int_0^1 \frac{d\lambda}{\lambda} \psi_{\lambda^{-1}},$$  \hfill (1.6)

which for the moment only has a heuristic meaning. The next proposition gives a precise meaning to the heuristic formula and gives a candidate formula for the extension problem.

**Proposition 1.2.1** Let $\chi \in C^\infty(\mathbb{R}^{n+d})$ such that $\chi = 1$ in a neighborhood $N_1$ of $I$ and $\chi$ vanishes outside a neighborhood $N_2$ of $N_1$ and let $\psi = -\rho \chi$. 

CHAPTER 1. THE EXTENSION OF DISTRIBUTIONS.

Figure 1.3: The function $\chi$, the function $\psi$ and the scaled $\psi_{\lambda^{-1}}$.

Figure 1.4: Partition of unity.
1.2. EXTENSION AND RENORMALIZATION.

Then for all $\varphi \in \mathcal{D}(\mathbb{R}^n + d)$ such that $\varphi = 0$ in a neighborhood of $I = \{ h = 0 \}$, we find

$$\langle t, \varphi \rangle = \int_0^1 \frac{d\lambda}{\lambda} \langle t\psi_{\lambda^{-1}}, \varphi \rangle + \langle t, (1 - \chi)\varphi \rangle.$$  \hfill (1.7)

The formula $t = \int_0^1 \frac{d\lambda}{\lambda} \langle t\psi_{\lambda^{-1}}, \varphi \rangle + \langle t, (1 - \chi)\varphi \rangle$ was inspired by Formula (5.8), (5.9) in [44] p. 28.

**Proof** — Let $\delta > 0$ such that $\varphi = 0$ when $|h| \leq \delta$. We can find $0 < a < b$ such that $|h| > b \implies \chi = 0$ and $|h| > b \implies -\rho\chi = \psi = 0$. Hence $\text{supp } \psi(x, \frac{h}{\lambda}) \subset \{|h| \leq \lambda b\}$ which implies $\forall \lambda \leq \frac{\delta}{b}, \varphi(x, h)\psi(x, \frac{h}{\lambda}) = 0$. We have the relation $\varphi = \varphi(1 - \chi) + \varphi\chi = \int_\varepsilon^1 \frac{d\lambda}{\lambda} \psi_{\lambda^{-1}}\varphi + \varphi(1 - \chi)$ where the integral is well defined, we thus deduce $\forall \varepsilon \in [0, \frac{\delta}{b}]$

$$\varphi\chi = \int_\varepsilon^1 \frac{d\lambda}{\lambda} \psi_{\lambda^{-1}}\varphi = \int_\varepsilon^1 \frac{d\lambda}{\lambda} \psi_{\lambda^{-1}}\varphi$$

where the product makes perfect sense as a product of smooth functions, hence

$$\langle t\chi, \varphi \rangle = \langle t, \varphi \rangle = \left( t, \int_\varepsilon^1 \frac{d\lambda}{\lambda} \psi_{\lambda^{-1}}\varphi \right) = \int_\varepsilon^1 \frac{d\lambda}{\lambda} \left( t\psi(\frac{h}{\lambda}), \varphi \right)$$

$$= \int_\varepsilon^1 \frac{d\lambda}{\lambda} \left( t\psi(\frac{h}{\lambda}), \varphi \right) = \int_0^1 \frac{d\lambda}{\lambda} \left( t\psi(\frac{h}{\lambda}), \varphi \right)$$

where we can safely interchange the integral and the duality bracket.  \[\Box\]

**Another interpretation of the Hörmander formula.** The Hörmander formula gives a convenient way to write $\chi - \chi_{\varepsilon^{-1}}$.

$$\chi - \chi_{\varepsilon^{-1}} = \int_\varepsilon^1 \frac{d\lambda}{\lambda} \psi_{\lambda^{-1}}$$

then noticing that when $\varepsilon > 0$, for all $\lambda \in [\varepsilon, 1]$, $\psi_{\lambda^{-1}}$ is supported on the complement of a neighborhood of $I$, this implies that for all test functions $\varphi \in \mathcal{D}(\mathbb{R}^n + d)$, for all $\varepsilon > 0$, we have the nice identity:

$$\int_\varepsilon^1 \frac{d\lambda}{\lambda} \langle t\psi_{\lambda^{-1}}, \varphi \rangle = \langle t(\chi - \chi_{\varepsilon^{-1}}), \varphi \rangle.$$  \hfill (1.8)
exists. In the next sections, we prove that when the distribution \( t \) is in \( E_s \) for \( s + d > 0 \), the integral formula \( \int_1^1 \frac{d\lambda}{\lambda} \langle t\psi_{\lambda-1}, \varphi \rangle \) converges when \( \varepsilon \to 0 \). Thus the limit (1.8) exists. However, when \( t \in E_s \) when \( s + d < 0 \), we must modify the formula \( \int_1^1 \frac{d\lambda}{\lambda} \langle t\psi_{\lambda-1}, \varphi \rangle \), which is divergent when \( \varepsilon \to 0 \), by subtracting a local counterterm \( \langle c_\varepsilon, \varphi \rangle \) where \( (c_\varepsilon) \) is a family of distribution supported on \( I \) such that the limit

\[
\lim_{\varepsilon \to 0} \left( \langle t(\chi - \chi_{\varepsilon-1}), \varphi \rangle - \langle c_\varepsilon, \varphi \rangle \right),
\]

makes sense. Notice that the renormalization does not affect the original distribution \( t \) on \( M \setminus I \) since \( c_\varepsilon \) is supported on \( I \).

1.2.2 From bounded families to weakly homogeneous distributions.

We construct an algorithm which starts from an arbitrary family of bounded distributions \( (u^\lambda)_{\lambda \in (0,1]} \) supported on some annular domain, and builds a weakly homogeneous distribution of degree \( s \). Actually, any distribution which is weakly homogeneous of degree \( s \) can be reconstructed from our algorithm as we will see in the next section. This is the key remark which allows us to solve the problem of extension of distributions. In this part, we make essential use of the Banach Steinhaus theorem on the dual of a Fréchet space recalled in appendix. We use the notation \( t_\lambda(x, h) = t(x, \lambda h) \) and \( U \) is a \( \rho \)-convex open subset in \( \mathbb{R}^{n+d} \).

**Definition 1.2.3** A family of distributions \( (u^\lambda)_{\lambda \in (0,1]} \) is called uniformly supported on an annulus domain of \( U \) if for all compact set \( K \subset \mathbb{R}^n \), there
exists $0 < a < b$ such that $\forall \lambda, u^\lambda|_{(K \times \mathbb{R}^d) \cap U}$ is supported in a fixed annulus
\{(x, h)|x \in K, a \leq |h| \leq b\} \cap U.

The structure theorem gives us an algorithm to construct distributions in $E_n(U)$ given any family of distributions $(u^\lambda)_{\lambda \in (0, 1]}$ bounded in $\mathcal{D}'(U \setminus I)$ and uniformly supported on an annulus domain of $U$.

**Lemma 1.2.1** Let $(u^\lambda)_{\lambda \in (0, 1]}$ be a bounded family in $\mathcal{D}'(U \setminus I)$ which is uniformly supported on an annulus domain of $U$. Then the family $(\lambda^{-d}u^\lambda)_{\lambda \in (0, 1]}$ is bounded in $\mathcal{D}'(U)$.

**Proof** — If the family $(u^\lambda)_{\lambda \in (0, 1]}$ is uniformly supported on an annulus domain of $U$, then for all compact set $K \subset \mathbb{R}^n$, there exists $0 < a < b$ such that $\forall \lambda, u^\lambda|_{(K \times \mathbb{R}^d) \cap U}$ is supported in a fixed annulus $A = \{a \leq |h| \leq b\} \cap ((K \times \mathbb{R}^d) \cap U)$. If $u^\lambda|_{(K \times \mathbb{R}^d) \cap U}$ is a bounded family of distributions supported on the fixed annulus $A = \{a \leq |h| \leq b\} \cap (K \times \mathbb{R}^d) \cap U$, then the family $u^\lambda$ satisfies the following estimate by Banach Steinhaus:

$$\forall K' \subset \mathbb{R}^{n+d} \text{compact}, \exists (k, C), \forall \varphi \in \mathcal{D}_{K'}(U), \sup_{\lambda \in (0, 1]} |\left<u^\lambda, \varphi\right>| \leq C\pi_k(\varphi),$$

and we notice that the estimate is still valid for test functions in $C^\infty((K \times \mathbb{R}^d) \cap U)$ (by compactness of $A$):

$$\exists (k, C), \forall \varphi \in C^\infty((K \times \mathbb{R}^d) \cap U), \sup_{\lambda \in (0, 1]} |\left<u^\lambda, \varphi\right>| \leq C\pi_{k,A}(\varphi), \quad (1.10)$$

because $u^\lambda$ is compactly supported in the $h$ variables and $\varphi$ is compactly supported in the $x$ variables. For any test function $\varphi \in \mathcal{D}(U)$:

$$\lambda^{-d}|\left<u^\lambda_{\lambda-1}, \varphi\right>| = \lambda^{-d}\lambda^d|\left<u^\lambda, \varphi(\cdot, \lambda)\right>| \leq C\pi_{k,A}(\varphi_{\lambda})$$

thus

$$\lambda^{-d}|\left<u^\lambda_{\lambda-1}, \varphi\right>| \leq C\pi_k(\varphi) \quad (1.11)$$

because of the estimate $(1.10)$ on the family $(u^\lambda)$. This proves that the family $(\lambda^{-d}u^\lambda_{\lambda-1})_{\lambda \in (0, 1]}$ is bounded in $\mathcal{D}'(U \setminus I)$.

**Corollary 1.2.1** Let $(u^\lambda)_{\lambda \in (0, 1]}$ be a bounded family in $\mathcal{D}'(U \setminus I)$ which is uniformly supported on an annulus domain of $U$. If $s + d > 0$, then the integral

$$\int_0^1 \frac{d\lambda}{\lambda^s} u^\lambda_{\lambda-1} \quad (1.12)$$

converges in $\mathcal{D}'(U)$. 

Proof — When $s + d > 0$, $\lambda \mapsto \lambda^s u^\lambda_{-1} = \lambda^{s + d} \mu^{-d} u^\lambda_{-1} \in L^1_{\#}([0, 1], \mathcal{D}'(U \setminus I))$ and the integral $t = \int_0^1 d\lambda \lambda^{s + d} \lambda^{-d} u^\lambda_{-1}$ converges in $L^1_{\#}([0, 1], \mathcal{D}'(U \setminus I))$! By the estimate (1.11) on the bounded family $\lambda^{-d} u^\lambda_{-1}$, we also have the estimate:

$$| \langle t, \varphi \rangle | = \left| \int_0^1 \frac{d\lambda}{\lambda} \lambda^s \langle u^\lambda_{-1}, \varphi \rangle \right| \leq \int_0^1 \frac{d\lambda}{\lambda} \lambda^{s + d} | \lambda^{-d} \langle u^\lambda_{-1}, \varphi \rangle | \leq C_{\pi_k}(\varphi) \int_0^1 \frac{d\lambda}{\lambda} \lambda^{s + d} = \frac{C}{s + d} \pi_k(\varphi).$$

\[ \blacksquare \]

**Proposition 1.2.2** Under the assumptions of Corollary (1.2.1), $\int_0^1 d\lambda \lambda^s u^\lambda_{-1} \in E_s(U)$.

Proof — Recall we proved that the integral $t = \int_0^1 d\lambda \lambda^s u^\lambda_{-1}$ converges in $\mathcal{D}'(U)$ and we would like to prove that $t \in E_s(U)$. We try to bound the quantity $\mu^{-s} t_\mu$:

$$\forall 0 < \mu \leq 1, \mu^{-s} \langle t_\mu, \varphi \rangle = \mu^{-s-d} \langle t, \varphi_{\mu^{-1}} \rangle = \int_0^1 \frac{d\lambda}{\lambda} \mu^{-s-d} \lambda^s \langle u^\lambda_{-1}, \varphi_{\mu^{-1}} \rangle = \int_0^1 \frac{d\lambda}{\lambda} \lambda^{s+d} \langle u^\lambda_{-1}, \varphi \rangle = \int_0^1 \frac{d\lambda}{\lambda} \lambda^{s+d} \langle u^\lambda_{-1}, \varphi \rangle.$$ 

We use the fact that there exists $R > 0$ such that $\varphi \in \mathcal{D}(U)$ is supported inside the domain $\{|h| \leq R\}$. Then $\varphi_{\lambda} = \varphi(., \lambda)$ is supported in $\{|h| \leq \lambda^{-1} R\}$. We denote by $\pi_1$ the projection $\pi_1 : (x, h) \in \mathbb{R}^{n+d} \mapsto (x, 0) \in \mathbb{R}^n \times \{0\}$ and we make the notation abuse $\pi_1(x, h) = (x)$. Then $K = \pi_1(\text{supp } \varphi)$ is compact in $\mathbb{R}^n$ thus, by assumption on the family $u$, $u^\mu_{(K \times \mathbb{R}^d) \cap U}$ is supported in $\{a \leq |h| \leq b\}$ for some $0 < a < b$ and $\langle u^\mu, \varphi \rangle$ must vanish when $\lambda^{-1} R \leq a \Rightarrow \lambda \geq \frac{R}{\mu}$. Finally:

$$\mu^{-s} \langle t_\mu, \varphi \rangle = \int_0^1 \frac{d\lambda}{\lambda} \lambda^{s+d} \langle u^\lambda_{-1}, \varphi \rangle.$$ 

Since $\varphi_{\lambda} \in C^\infty((K \times \mathbb{R}^d) \cap U)$, by estimate (1.10), we have $|\langle u^\mu, \varphi \rangle | \leq C_{\pi_k,A}(\varphi) \leq C_{\pi_k}(\varphi)$ and

$$| \mu^{-s} \langle t_\mu, \varphi \rangle | \leq \left( \frac{R}{a} \right)^{s+d} \frac{C}{s + d} \pi_k(\varphi).$$

\[ \blacksquare \]
1.2. EXTENSION AND RENORMALIZATION.

Proposition 1.2.3 Let \( (u^\lambda)_{\lambda \in [0,1]} \) be a bounded family in \( \mathcal{D}'(U \setminus I) \) which is uniformly supported on an annulus domain of \( U \). If \(-m-1 < s+d \leq -m, m \in \mathbb{N}\), then the integral \( \int_0^1 \frac{d\lambda}{\lambda} \lambda^s u_{\lambda^{-1}} \) needs a renormalization. There is a family \( (\tau^\lambda)_{\lambda \in [0,1]} \) of distributions supported on \( I \) such that the renormalized integral

\[
\int_0^1 \frac{d\lambda}{\lambda} \lambda^s \left( u_{\lambda^{-1}} - \tau^\lambda \right)
\]

(1.13)

converges in \( \mathcal{D}'(U) \).

Proof — If \(-m-1 < s+d \leq -m\), then we repeat the previous proof except we have to subtract to \( \varphi \) its Taylor polynomial \( P_m \) of order \( m \) in \( h \). We call \( I_m \) the Taylor remainder. Then \( \varphi - P_m = I_m \). In coordinates, we get

\[
\varphi(x,h) - \sum_{|i| \leq m} \frac{h^i}{i!} \frac{\partial^i \varphi}{\partial h^i}(x,0) = I_m(x,h) = \sum_{|i|=m+1} h^i H_i(x,h)
\]

where \( (H_i)_i \) are smooth functions. \( R_m(x,h) = R(x,\lambda h) = \lambda^{m+1} \sum_{|i|=m+1} h^i H_i(x,\lambda h) \).

We define a distribution supported on \( I \), which we call “counterterm”:

\[
\langle \tau^\lambda, \varphi \rangle = \left\langle u_{\lambda^{-1}}, \sum_{|i| \leq m} \frac{h^i}{i!} \frac{\partial^i \varphi}{\partial h^i}(\cdot,0) \right\rangle
\]

(1.14)

where we abusively denoted the expression \( \frac{\partial^i \varphi}{\partial h^i} \circ \pi_1 \) by \( \frac{\partial^i \varphi}{\partial h^i}(\cdot,0) \). We take into account the counterterm

\[
\lambda^s \left\langle u_{\lambda^{-1}}^\lambda - \tau^\lambda, \varphi \right\rangle = \lambda^s \left\langle u_{\lambda^{-1}}^\lambda, \varphi(x,h) - \sum_{|i| \leq m} \frac{h^i}{i!} \frac{\partial^i \varphi}{\partial h^i}(\cdot,0) \right\rangle
\]

\[
= \lambda^s \left\langle u_{\lambda^{-1}}^\lambda, \sum_{|i|=m+1} h^i H_i(x,h) \right\rangle = \lambda^{s+d} \left\langle u^\lambda, \lambda^{(m+1)} \sum_{|i|=m+1} h^i H_i(x,\lambda h) \right\rangle
\]

\[
= \lambda^{(d+s+m+1)} \left\langle u^\lambda, \sum_{|i|=m+1} h^i H_i(x,\lambda h) \right\rangle
\]

Hence

\[
\int_0^1 \frac{d\lambda}{\lambda} \lambda^s \left\langle u_{\lambda^{-1}}^\lambda - \tau^\lambda, \varphi \right\rangle = \int_0^1 \frac{d\lambda}{\lambda} \lambda^{(d+s+m+1)} \left\langle u^\lambda, \sum_{|i|=m+1} h^i H_i(x,\lambda h) \right\rangle
\]

integrable

bounded
CHAPTER 1. THE EXTENSION OF DISTRIBUTIONS.

since \( \forall \lambda \in (0, 1], h^i H_i(x, \lambda h) \in C^{\infty}((K \times \mathbb{R}^d) \cap U) \), we can use estimate (1.10)

\[
\left| \int_0^1 \frac{d\lambda}{\lambda} \lambda^s \langle u_{\lambda-1}^\lambda - \tau^\lambda, \varphi \rangle \right| \leq \frac{C}{d + s + m + 1} \sup_{\lambda \in (0, 1]} \pi_{k,A}(\sum_{|i|=m+1} h^i H_i(x, \lambda h))
\]

\[
\int_0^1 \frac{d\lambda}{\lambda} |\lambda^s \langle u_{\lambda-1}^\lambda - \tau^\lambda, \varphi \rangle| \leq \frac{\tilde{C}}{d + s + m + 1} \pi_{k+m+1}(\varphi)
\]

where the constant \( \tilde{C} \) does not depend on \( \varphi \) and can be estimated by the integral remainder formula.

\[
\text{Proposition 1.2.4 Under the assumptions of proposition (1.2.3), if } s \text{ is not an integer then } \int_0^1 \frac{d\lambda}{\lambda} \lambda^s \langle u_{\lambda-1}^\lambda - \tau^\lambda, \varphi \rangle \in E_s(U).
\]

\[
\text{Proposition 1.2.5 Under the assumptions of proposition (1.2.3), if } s + d \text{ is a non positive integer then } \int_0^1 \frac{d\lambda}{\lambda} \lambda^s \langle u_{\lambda-1}^\lambda - \tau^\lambda, \varphi \rangle \in E_s'(U), \forall s' < s, \text{ and } t = \int_0^1 \frac{d\lambda}{\lambda} \lambda^s \langle u_{\lambda-1}^\lambda - \tau^\lambda, \varphi \rangle \text{ satisfies the estimate}
\]

\[
\forall \varphi \in D(U), \exists C, |\mu^{-s} \langle t, \varphi \rangle| \leq C (1 + |\log \mu|).
\]

Proof — To check the homogeneity of the renormalized integral is a little tricky since we have to take the scaling of counterterms into account. When we scale the smooth function then we should scale simultaneously the Taylor polynomial and the remainder

\[
\varphi_\lambda = P_\lambda + R_\lambda
\]

We want to know to which scale space \( E_{s'} \) the distribution \( t \) belongs:

\[
\mu^{-s'} \langle t_\mu, \varphi \rangle = \mu^{-s'} \mu^{-s-d} \langle t, \varphi_{\mu^{-1}} \rangle = \mu^{-s'} \int_0^1 \frac{d\lambda}{\lambda} \lambda^s \left\langle u_{\lambda-1}^\lambda - \tau^\lambda, \mu^{-d-s} \varphi_{\mu^{-1}} \right\rangle
\]

\[
= \mu^{-s'} \int_0^1 \frac{d\lambda}{\lambda} \left( \frac{\lambda}{\mu} \right)^s \mu^{-d} \left( u_{\lambda-1}^\lambda, \varphi(x, \frac{h}{\mu}) - \sum_{|i| \leq m} \frac{h^i}{\mu^{|i|!}} \frac{\partial^i \varphi}{\partial h^i}(x, 0) \right)
\]

\[
= \mu^{-s'} \int_0^1 \frac{d\lambda}{\lambda} \left( \frac{\lambda}{\mu} \right)^s \mu^{s+d} \left( u^\lambda, \varphi(x, \frac{\lambda}{\mu} h) - \sum_{|i| \leq m} \frac{h^i}{\mu^{|i|!}} \frac{\partial^i \varphi}{\partial h^i}(x, 0) \right).
\]

\( \varphi_\frac{\lambda}{\mu} \) is supported on \( |h| \leq \frac{\mu R}{\lambda} \) thus when \( \frac{\mu}{\lambda} \leq a \Leftrightarrow \frac{\mu}{\lambda} \leq \lambda \), the support of \( \varphi_\frac{\lambda}{\mu} \) does not meet the support of \( u^\lambda \) because \( u^\lambda \) is supported on \( a \geq |h| \),
whereas $\sum_{|i| \leq m} (\lambda h)_i \frac{\partial \varphi}{\partial h_i}(x, 0)$ is supported everywhere because it is a Taylor polynomial. Consequently, we must split the integral in two parts
\[
\mu^{-s}(t_\mu, \varphi) = I_1 + I_2
\]
\[
I_1 = \int_0^{\frac{R_\mu}{a}} \frac{d\lambda}{\lambda} \left( \frac{\lambda}{\mu} \right)^{s+d} \left\langle u^\lambda, \sum_{|i|=m+1} h^i H_i(x, \frac{\lambda}{\mu} h) \right\rangle
\]
\[
I_2 = \int_0^{\frac{R_\mu}{a}} \frac{d\lambda}{\lambda} \left( \frac{\lambda}{\mu} \right)^{s+d} \left\langle u^\lambda, \sum_{|i| \leq m} \frac{\partial \varphi}{\partial h_i}(x, 0) \right\rangle
\]
and we apply a variable change for $I_1$:
\[
I_1 = \int_0^{\frac{R_\mu}{a}} \frac{d\lambda}{\lambda} \left( \frac{\lambda}{\mu} \right)^{(d+s+m+1)} \left\langle u^\lambda, \sum_{|i|=m+1} h^i H_i(x, \lambda h) \right\rangle
\]
again by estimate (1.10)
\[
\leq \left( \frac{R}{a} \right)^{-(d+s+m+1)} \frac{C}{s+d+m+1} \sup_{\lambda \in [0,1]} \pi_{k,a} \left( \sum_{|i| = m+1} h^i H_i(x, \lambda h) \right)
\]
and each $H^i$ is a term in the Taylor remainder $I_m$ of $\varphi$,
\[
I_1 \leq C_1 \pi_{k+m+1}(\varphi).
\]
Notice that in the second term only the counterterm contributes
\[
I_2 = \int_0^{\frac{R_\mu}{a}} \frac{d\lambda}{\lambda} \left( \frac{\lambda}{\mu} \right)^{s+d} \left\langle u^\lambda, \sum_{|i| \leq m} \frac{(\lambda h)_i \frac{\partial \varphi}{\partial h_i}(x, 0)}{\mu i!} \right\rangle
\]
\[
= \int_0^{\frac{R_\mu}{a}} \frac{d\lambda}{\lambda} \left\langle u^\lambda, \sum_{|i| \leq m} \left( \frac{\lambda}{\mu} \right)^{s+d+i} \frac{h^i \frac{\partial \varphi}{\partial h_i}(x, 0)}{i!} \right\rangle.
\]
Then notice that by assumption $s + d \leq -m$ and $|i|$ ranges from 0 to $m$ which implies $s + d + |i| \leq 0$. When $s + d + |i| < 0$:
\[
\int_0^{\frac{R_\mu}{a}} \frac{d\lambda}{\lambda} \left\langle u^\lambda, \left( \frac{\lambda}{\mu} \right)^{s+d+i} \frac{h^i \frac{\partial \varphi}{\partial h_i}(x, 0)}{i!} \right\rangle \leq C_2 \left( \frac{1}{\mu} \right)^{s+d+i} - \left( \frac{R}{a} \right)^{s+d+i} \pi_k(\varphi).
\]
no blow up when $\mu \to 0$
CHAPTER 1. THE EXTENSION OF DISTRIBUTIONS.

If \( s + d < -m \) then \( s + d + |i| \) is always strictly negative and there is no blow up when \( \mu \to 0 \), thus \( t \in E_s \). If \( s + d + m = 0 \) and for \( |i| = m \):

\[
\int_{R^d} \frac{d\lambda}{\lambda} \left| \left< \frac{\lambda}{\mu} \right>_{s+d+i} \frac{h^i}{\partial h^i} (x,0) \right| \leq C_2 \log \left( \frac{R \mu}{a} \right) |\pi_k(\varphi)|
\]

and the only term which blows up when \( \mu \to 0 \) is the logarithmic term. If \( s + d = -m \) then \( t \in E_s' \) for all \( s' < s \) and \( |\mu^{-s} \langle t, \varphi \rangle| \) has at most logarithmic blow up:

\[
\exists (C_1, C_2) \ |\mu^{-s'} \langle t, \varphi \rangle| \leq \mu^{s-s'} \left( C_1 \pi_{k+m+1}(\varphi) + C_2 \log \left( \frac{R \mu}{a} \right) |\pi_k(\varphi)| \right)
\]

bounded when \( s' < s \)

1.3 Extension of distributions.

Conversely, if we start from any distribution \( t \in E_s(U \setminus I) \), then we can associate to it a bounded family \((u^\lambda)_{\lambda \in [0,1]}\). Then application of the previous results on the family \((u^\lambda)_{\lambda}\) allows to construct a distribution \( t\chi \) in \( E_s(U) \). But the resulting distribution given by formulas (1.12) (1.13) coincides exactly with the extension formula \( \int_0^1 \frac{d\lambda}{\lambda} t\psi_{\lambda-1} \) on \( U \setminus I \). Hence \( t\chi \) is an extension of \( t\chi \). Moreover, if we started from a distribution \( t \in E_s(U) \) then the reconstruction theorem provides us with a distribution which is equal to \( t\chi \) up to a distribution supported on \( I \), except for the case \( s + d > 0 \) where the extension is unique if we do not want to increase the degree of divergence.

Proposition 1.3.1 Let \( t \in E_s(U \setminus I) \) and let \( \psi = -\rho \chi \) where \( \chi \in C^\infty(\mathbb{R}^{n+d}) \), \( \chi = 1 \) in a neighborhood \( N_1 \) of \( I \) and \( \chi = 0 \) outside \( N_2 \) a neighborhood of \( N_1 \), then

\[
u^\lambda = \lambda^{-s} t\lambda \psi
\]

is a bounded family in \( \mathcal{D}'(U \setminus I) \) which is uniformly supported on an annulus domain of \( U \).

Proof — Consider the function \( \psi = -\rho \chi \) used in our construction of the partition of unity of Hörmander. By construction, it is supported on an annulus domain of \( U \). By definition, \( t \in E_s(U \setminus I) \) implies \( \lambda^{-s} t\lambda \) is a bounded family of distributions in \( \mathcal{D}'(U \setminus I) \), hence \( u^\lambda = \lambda^{-s} t\lambda \psi \) is a bounded family of distributions uniformly supported in \( \text{supp} \ \psi \).
1.3. EXTENSION OF DISTRIBUTIONS.

Once we notice
\[ \int_0^1 \frac{d\lambda}{\lambda} \lambda^s u^\lambda_{\lambda-1} = \int_0^1 \frac{d\lambda}{\lambda} \lambda^s (\lambda^{-s} t \lambda^{\psi})_{\lambda-1} = \int_0^1 \frac{d\lambda}{\lambda} t^{\psi}_{\lambda-1}, \]
the formula of the construction algorithm exactly coincides with the extension formula of Hörmander. Then we can deduce all the results listed below from simple applications of results derived for the family \( u^\lambda \):

**Theorem 1.3.1** Let \( t \in E_s (U \setminus I) \), if \( s + d > 0 \) then
\[ \forall \varphi \in \mathcal{D}(U), \mathfrak{t}(\varphi) = \lim_{\varepsilon \to 0} \langle t(1 - \chi_{\varepsilon^{-1}}), \varphi \rangle \tag{1.17} \]
exists and defines an extension \( \mathfrak{t} \in \mathcal{D}'(U) \) and \( \mathfrak{t} \) is in \( E_s(U) \).

The proof relies on the first identification
\[ \int_0^1 \frac{d\lambda}{\lambda} \lambda^s u^\lambda_{\lambda-1} = \int_0^1 \frac{d\lambda}{\lambda} t^{\psi}(h_{\lambda}) = \lim_{\varepsilon \to 0} \int_\varepsilon^1 \frac{d\lambda}{\lambda} t^{\psi}_{\lambda-1} = \lim_{\varepsilon \to 0} (t(\chi - \chi_{\varepsilon^{-1}}), \varphi), \]
where \( \psi = -\rho \chi \). Then by definition of \( \mathfrak{t} \):
\[ \mathfrak{t} = \int_0^1 \frac{d\lambda}{\lambda} t^{\psi}(h_{\lambda}) + \langle t(1 - \chi), \varphi \rangle \]
\[ = \lim_{\varepsilon \to 0} \langle t(\chi - \chi_{\varepsilon^{-1}}), \varphi \rangle + \langle t(1 - \chi), \varphi \rangle = \lim_{\varepsilon \to 0} \langle t(1 - \chi_{\varepsilon^{-1}}), \varphi \rangle. \]
In the case \( s + d > 0 \), the last formula \( \lim_{\varepsilon \to 0} \langle t(1 - \chi_{\varepsilon^{-1}}), \varphi \rangle \) also appears in the very nice recent work [72] (but with different hypothesis and interpretation) and in fact goes back to Meyer [44] Definition 1.7 p. 15 and formula (3.16) p. 15.

**Theorem 1.3.2** Let \( t \in E_s (U \setminus I) \), if \(-m - 1 < s + d \leq -m \leq 0 \) then
\[ \mathfrak{t} = \lim_{\varepsilon \to 0} \langle (t(\chi - \chi_{\varepsilon^{-1}}), \varphi) - \langle c_{\varepsilon}, \varphi \rangle + \langle t(1 - \chi), \varphi \rangle \tag{1.18} \]
exists and defines an extension \( \mathfrak{t} \in \mathcal{D}'(U) \) where the **local counterterms** \( c_{\varepsilon} \) is defined by
\[ \langle c_{\varepsilon}, \varphi \rangle = \left\langle t(\chi - \chi_{\varepsilon^{-1}}), \sum_{|i| \leq m} \frac{h^i}{i!} \varphi^i(x, 0) \right\rangle. \tag{1.19} \]
If \( s \) is not an integer then the extension \( \mathfrak{t} \) is in \( E_s(U) \), otherwise \( \mathfrak{t} \in E_s'(U), \forall s' < s \).

The last case is treated by [72] and [10] in a slightly different way, they introduce a projection \( P \) from the space of \( C^\infty \) functions to the \( m \)-th power \( I^m \) of the ideal of smooth functions (of course by definition the restriction of this projection to \( I^m \) is the identity), and to construct this projection one has to subtract local counterterms as Meyer does.
A converse result.

Before we move on, let us prove a general converse theorem, namely that given any distribution $t \in \mathcal{D}'(U)$, we can find $s_0 \in \mathbb{R}$ such that for all $s \leq s_0$, $t \in E_s(U)$ (we believe such sort of theorems were first proved by Lojasiewicz and Alberto Calderon, [71]), this means morally that any distribution has “finite scaling degree” along an arbitrary vector subspace. We also have the property that $\forall s_1 \leq s_2$, $t \in E_{s_2} \implies t \in E_{s_1}$. This means that the spaces $E_s$ are filtered. We work in $\mathbb{R}^{n+d}$ where $I = \mathbb{R}^n \times \{0\}$ and $\rho = h^j \frac{\partial}{\partial h^j}$.

**Theorem 1.3.3** Let $U$ be a $p$-convex open set and $t \in \mathcal{D}'(U)$. If $t$ is of order $k$, then $t \in E_s(U)$ for all $s \leq d + k$, where $d$ is the codimension of $I \subset \mathbb{R}^{n+d}$. In particular any compactly supported distribution is in $E_s(\mathbb{R}^{n+d})$ for some $s$.

**Proof** — First notice if a function $\varphi \in \mathcal{D}(U)$, then the family of scaled functions $(\varphi_{\lambda-1})_{\lambda \in (0,1]}$ has support contained in a compact set $K = \{(x, \lambda h)(x, h) \in \text{supp } \varphi, \lambda \in (0, 1]\}$. We recall that for any distribution $t$, there exists $k, C_K$ such that

$$\forall \varphi \in \mathcal{D}_K(U), |\langle t, \varphi \rangle| \leq C_K\pi_{K,k}(\varphi).$$

$$|\langle t, \varphi \rangle| = |\lambda^{-d}\langle t, \varphi_{\lambda-1} \rangle| \leq C_K\lambda^{-d}\pi_{K,k}(\varphi_{\lambda-1}) \leq C_K\lambda^{-d-k}\pi_{K,k}(\varphi).$$

So we find that $\lambda^{d+k}\langle t, \varphi \rangle$ is bounded which yields the conclusion. $\blacksquare$

### 1.3.1 Removable singularity theorems.

Finally, we would like to conclude this section by a simple removable singularity theorem in the spirit of Riemann, (compare with Harvey-Polking [52] theorems (5.2) and (6.1)). In a renormalization procedure there is always an ambiguity which is the ambiguity of the extension of the distribution. Indeed, two extensions always differ by a distribution supported on $I$. The removable singularity theorem states that if $s + d > 0$ and if we demand that $t \in E_s(U \setminus I)$ should extend to $\tilde{t} \in E_s(U)$, then the extension is unique. Otherwise, if $-m - 1 < s + d \leq -m$, then we bound the transversal order of the ambiguity. We fix the coordinate system $(x^i, h^j)$ in $\mathbb{R}^{n+d}$ and $I = \{h = 0\}$. The collection of coordinate functions $(h^j)_{1 \leq j \leq d}$ defines a canonical collection of transverse vector fields $(\partial_{h^j})$. We denote by $\delta_I$ the unique distribution such that $\forall \varphi \in \mathcal{D}(\mathbb{R}^{n+d})$,

$$\langle \delta_I, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x, 0) d^n x.$$

If $t \in \mathcal{D}'(\mathbb{R}^{n+d})$ with supp $t \subset I$, then there exist unique distributions (once the system of transverse vector fields $\partial_{h^j}$ is fixed) $t_\alpha \in \mathcal{D}'(\mathbb{R}^n)$, where each compact intersects supp $t_\alpha$ for a finite number of multiindices $\alpha$, such that $t(x, h) = \sum_\alpha t_\alpha(x) \partial^\alpha_h \delta_I(h)$ (see [55] theorem (36) and (37) p. 101–102 or [33] theorem (2.3.5)) where the $\partial^\alpha_h$ are derivatives in the transverse directions.
1.4. Euler vector fields.

Theorem 1.3.4 Let \( t \in E_s(U \setminus I) \) and \( \tilde{t} \in E_{s'}(U \setminus I) \) its extension given by Theorem (1.3.1) and Theorem (1.3.2) \( s' = s \) when \( -s - d \notin \mathbb{N} \) or \( \forall s' < s \) otherwise. Then \( t \) is an extension in \( E_{s'}(U) \) if and only if

\[
\tilde{t}(x, h) = \tilde{t}(x, h) + \sum_{\alpha \leq m} t_\alpha(x) \partial_\alpha^h \delta_I(h),
\]

where \( m \) is the integer part of \( -s - d \). In particular when \( s + d > 0 \) the extension is unique.

Remark: when \( -s - d \) is a nonnegative integer, the counterterm is in \( E_s \) whereas the extension is in \( E_{s'}, \forall s' < s \).

Proof — We scale an elementary distribution \( \partial_\alpha^h \delta_I \):

\[
((\partial_\alpha^h \delta_I)_\lambda, \varphi) = \lambda^{-d} (\partial_\alpha^h \delta_I, \varphi_{\lambda^{-1}}) = (-1)^{|\alpha|} \lambda^{-d-|\alpha|} (\partial_\alpha^h \delta_I, \varphi)
\]

hence \( \lambda^{-s}(\partial_\alpha^h \delta_I)_\lambda = \lambda^{-d+|\alpha|} \delta_\alpha^h \delta_I \) is bounded iff \( d + s + |\alpha| \leq 0 \implies d + s \leq -|\alpha| \). When \( s + d > 0 \), \( \forall \alpha, \partial_\alpha^h \delta_I \notin E_s \) hence any two extensions in \( E_s(U) \) cannot differ by a local counterterm of the form \( \sum_\alpha t_\alpha \partial_\alpha^h \delta_I \). When \( -m - 1 < d + s \leq -m \) then \( \lambda^{-s}(\partial_\alpha^h \delta_I)_\lambda \) is bounded if \( s + d + |\alpha| \leq 0 \implies -m \leq -|\alpha| \Leftrightarrow |\alpha| \leq m \). We deduce that \( \partial_\alpha^h \delta_I \in E_s \) for all \( \alpha \leq m \) which means that the scaling degree bounds the order \( |\alpha| \) of the derivatives in the transverse directions. Assume there are two extensions in \( E_s \), their difference is of the form \( u = \sum_\alpha u_\alpha \partial_\alpha^h \delta_I \) by the structure theorem (36) p. 101 in [55] and is also in \( E_s \) which means their difference equals \( u = \sum_{|\alpha| \leq m} u_\alpha \partial_\alpha^h \delta_I \).

1.4 Euler vector fields.

We want to solve the extension problem for distributions on manifolds, in order to do so we must give a geometric definition of scaling transversally to a submanifold \( I \) closely embedded in a given manifold \( M \). We will define a class of Euler vector fields which scale transversally to a given fixed submanifold \( I \subset M \). Let \( M \) be a smooth manifold and \( I \subset M \) an embedded submanifold without boundary. For the moment, all discussions are purely local. A classical result in differential geometry associates to each submanifold \( I \subset M \) the sheaf of ideal \( \mathcal{I} \) of functions vanishing on \( I \).

Definition 1.4.1 A vector field \( \rho \) is locally defined on an open set \( U \) is called Euler if

\[
\forall f \in \mathcal{I}(U), \rho f - f \in \mathcal{I}^2(U).
\]

Example 1.4.1 \( h^i \partial_{h^i} \) is Euler by application of Hadamard lemma, if \( f \) in \( \mathcal{I} \) then \( f = h^i H_i \) where the \( H_i \) are smooth functions, which implies \( \rho f = f + h^i \partial_{h^i} H_i \implies \rho f - f = h^i \partial_{h^i} H_i \).
In this definition, \( \rho \) is defined by testing against arbitrary restrictions of smooth functions \( f\big|_U \) vanishing on \( I \). Let \( G \) be the pseudogroup of local diffeomorphisms of \( M \) (i.e. an element \( \Phi \) in \( G \) is defined over an open set \( U \subset M \) and maps it diffeomorphically to an open set \( \Phi(U) \subset M \)) such that \( \forall \rho \in I \cap U, \forall \Phi \in G, \Phi(p) \in I \).

**Proposition 1.4.1** Let \( \rho \) be Euler, then \( \forall \Phi \in G, \Phi_* \rho \) is Euler.

**Proof** — For this part, see [39] p. 92 for the definition and properties of the pushforward of a vector field: if \( Y = \Phi_* X \) then \( L_Y f = L_X (f \circ \Phi) \circ \Phi^{-1} \).

We may write the last expression in terms of pull-back

\[
L_{\Phi_* X} f = L_X (f \circ \Phi) \circ \Phi^{-1} = \Phi^{-1*} (L_X (\Phi^* f)).
\]

Then we apply the identity to \( X = \rho, Y = \Phi_* \rho \), setting \( L_{\Phi_* \rho} f = \Phi_* \rho f \) and \( L_{\rho} f = \rho f \) for shortness:

\[
((\Phi_* \rho) f) = \Phi^{-1*} (\rho (\Phi^* f)).
\]

Now since \( \Phi \in G, \rho \) is Euler and \( f \) an arbitrary function in \( \mathcal{I} \).

\[
\forall \Phi \in G, \forall f \in \mathcal{I}, (\Phi_* \rho) f - f = \Phi^{-1*} (\rho (\Phi^* f)) - \Phi^{-1*} (\Phi^* f) = \Phi^{-1*} (\rho (\Phi^* f) - (\Phi^* f)).
\]

Since \( \Phi(I) \subset I \), we have actually \( \Phi^* f \in \mathcal{I} \) hence \( (\rho (\Phi^* f) - (\Phi^* f)) \in \mathcal{I}^2 \) and we deduce that \( \Phi^{-1*} (\rho (\Phi^* f) - (\Phi^* f)) \in \Phi^{-1*} \mathcal{I}^2 \). We will prove that \( \Phi^* \mathcal{I}(U) = \mathcal{I}(\Phi(U)) \).

\[
f \in \mathcal{I} \iff f|_{\Phi(I)} = 0 \iff f|_{\Phi(I)} = 0 \text{ since } \Phi(I) \subset I \iff (f \circ \Phi)|_{I} = 0 \text{ thus } \Phi^* f \in \mathcal{I}.
\]

Hence \( \rho (\Phi^* f) - (\Phi^* f) \in \mathcal{I}^2 \) by definition of \( \rho \), finally we use the fact

\[
\Phi^* (\mathcal{I}^2) = \{(fg) \circ \Phi; (f, g) \in \mathcal{I}^2\} = \{(f \circ \Phi)(g \circ \Phi); (f, g) \in \mathcal{I}^2\} = (\Phi^* \mathcal{I})^2 = \mathcal{I}^2
\]

since \( \Phi^* \mathcal{I} = \mathcal{I} \) to deduce:

\[
\Phi^{-1*} (\rho (\Phi^* f) - (\Phi^* f)) \in \mathcal{I}^2
\]

which completes the proof. \( \blacksquare \)

**Euler vector fields** form a sheaf (check the definitions p. 289 in [39]) with the following nice additional properties:

- Given \( I \), the set of global Euler vector fields defined on some open neighborhood of \( I \) is nonempty.

- For any local Euler vector field \( \rho|_U \), for any open set \( V \subset U \) there is a Euler vector field \( \rho' \) defined on a global neighborhood of \( I \) such that \( \rho'|_V = \rho|_V \).
1.4. EULER VECTOR FIELDS.

Proof — These two properties result from the fact that one can glue together Euler vector fields by a partition of unity subordinated to some cover of some neighborhood \( N \) of \( I \). By paracompactness of \( M \), we can pick an arbitrary locally finite open cover \( \bigcup_{i \in I} V_i \) of \( I \) by open sets \( V_i \), such that for each \( i \), there is a local chart \((x,h): V_i \to \mathbb{R}^{n+d}\) where the image of \( I \) by the local chart is the subspace \( \{h^j = 0\} \). We can define an Euler vector field \( \rho_{|V_i} \), it suffices to pullback the vector field \( \rho = h^j \partial_{h^j} \) in each local chart for \( V_i \) and by the example 1.4.1 this is an Euler vector field. The vector fields \( \rho_i = \rho_{|V_i} \) do not necessarily coincide on the overlaps \( V_i \cap V_j \). For any partition of unity \((\alpha_i)_i\) subordinated to this subcover, \( \alpha_i \geq 0 \), \( \sum_i \alpha_i = 1 \), consider the vector field \( \rho \) defined by the formula

\[
\rho = \sum \alpha_i \rho_i
\]

then \( \forall f \in \mathcal{I}(U), \rho f - f = \sum \alpha_i \rho_i f - \sum \alpha_i f = \sum \alpha_i (\rho_i f - f) \in \mathcal{I}^2(U). \]

We can find the general form for all possible Euler vector fields \( \rho \) in arbitrary coordinate system \((x,h)\) where \( I = \{h = 0\} \).

Lemma 1.4.1 \( \rho_{|U} \) is Euler if and only if for all \( p \in I \cap U \), in any arbitrary local chart \((x,h)\) centered at \( p \) where \( I = \{h = 0\} \), \( \rho \) has the standard form

\[
\rho = h^j \frac{\partial}{\partial h^j} + h^i A^i_j(x,h) \frac{\partial}{\partial x^j} + h^i h^j B^k_{ij}(x,h) \frac{\partial}{\partial h^k}
\]

(1.23)

where \( A, B \) are smooth functions of \((x,h)\).

Proof — We use the sum over repeated index convention. Let us start with an arbitrary \( f \in \mathcal{I}(U) \). Set \( \rho = B^i(x,h) \partial h^i + L^i(x,h) \partial x^i \), and we use

\[
f \in \mathcal{I} \implies f = h^j \frac{\partial f}{\partial h^j}(0,0) + x^i h^j \frac{\partial^2 f}{\partial x^i \partial h^j}(0,0) + O(|h|^2)
\]

First compute \( \rho f \) up to order two in \( h \):

\[
\rho f = B^i(x,h) \partial h^i f + L^i(x,h) \partial x^i f
\]

\[
= \frac{\partial f}{\partial h^j}(0,0) + B^i(x,h) x^i \frac{\partial^2 f}{\partial h^j \partial x^i}(0,0) + h^j L^i(x,h) \frac{\partial^2 f}{\partial h^j \partial x^i}(0,0) + O(|h|^2)
\]

then the condition \( \rho f - f \in \mathcal{I}^2 \) reads \( \forall f \in \mathcal{I} \),

\[
B^i(x,h) \frac{\partial f}{\partial h^j}(0,0) + (B^i(x,h) x^i + h^j L^i(x,h)) \frac{\partial^2 f}{\partial h^j \partial x^i}(0,0)
\]

\[
= h^j \frac{\partial f}{\partial h^j}(0,0) + x^i h^j \frac{\partial^2 f}{\partial x^i \partial h^j}(0,0) + O(|h|^2)
\]
CHAPTER 1. THE EXTENSION OF DISTRIBUTIONS.

Now we set \( f(x, h) = h^j \) which is an element of \( \mathcal{I} \), and substitute it in the previous equation, by uniqueness of the Taylor expansion

\[
B^j(x, h) = h^j + O(|h|^2)
\]

but this implies

\[
h^j \frac{\partial f}{\partial h^j}(0, 0) + h^j x^i \frac{\partial^2 f}{\partial h^j \partial x^i}(0, 0) + h^j L^j(x, h) \frac{\partial^2 f}{\partial h^j \partial x^i}(0, 0)
\]

\[
= h^j \frac{\partial f}{\partial h^j}(0, 0) + x^i h^j \frac{\partial^2 f}{\partial x^i \partial h^j}(0, 0) + O(|h|^2)
\]

\[
\Rightarrow h^j L^j(x, h) \frac{\partial^2 f}{\partial h^j \partial x^i}(0, 0) = O(|h|^2) \Rightarrow L^j \in \mathcal{I}
\]

finally \( \rho = B^j(x, h) \partial_{h^j} + L^j(x, h) \partial_{x^i} \) where \( B^j(x, h) = h^j + \mathcal{I}^2 \) and \( L^j \in \mathcal{I} \) which gives the final generic form. ■

Fix \( N \) an open neighborhood of \( I \) with smooth boundary \( \partial N \). The boundary \( \partial N \) forms a tube around \( I \). If the Euler \( \rho \) restricted to \( \partial N \) points outward, this means that the Euler \( \rho \) can be exponentiated to generate a one-parameter group of local diffeomorphism: \( t \mapsto e^{-t \rho} : N \mapsto N \), \( N \) is thus \( \rho \)-convex. \( I \) is the fixed point set of this dynamical system. The one parameter family acts on any section of a natural bundle functorially defined over \( M \), hence on smooth compactly supported sections of the tensor bundles over \( M \) particularly on \( \Omega^*_d(M) \).

**Example 1.4.2** Choose a local chart \( (x, h) : U \mapsto \mathbb{R}^{n+d} \) where \( I \) is given by \( \{h = 0\} \), the scaling \( (e^{\log \lambda \rho} f) \) satisfies the differential identity

\[
\lambda \frac{d}{d\lambda} \left( e^{\log \lambda \rho} f \right) = \rho \left( e^{\log \lambda \rho} f \right).
\]

(1.24)

In the case of the canonical Euler \( \rho = h^j \frac{\partial}{\partial h^j} \), we also have identity:

\[
\lambda \frac{d}{d\lambda} f(x, \lambda h) = \left( h^j \frac{df}{dh^j} \right)(x, \lambda h) = (\rho f)(x, \lambda h),
\]

from which we deduce that \( (e^{\log \lambda \rho} f)(x, h) \) is true because both the l.h.s. and r.h.s. satisfy the differential equation \( (\lambda \frac{d}{d\lambda} - \rho) f = 0 \) and coincide at \( \lambda = 1 \).

We generalize the definition of weakly homogeneous distributions to the case of manifolds but this definition is \( \rho \) dependent:

**Definition 1.4.2** Let \( U \) be \( \rho \)-convex open set. The set \( E^s_{\rho}(U) \) is defined as the set of distributions \( t \in \mathcal{D}'(U) \) such that

\[
\forall \phi \in \mathcal{D}(U), \exists C(\phi), \sup_{\lambda \in [0,1]} |\langle \lambda^{-s} t \lambda, \phi \rangle| \leq C(\phi).
\]
1.4. EULER VECTOR FIELDS.

1.4.1 Invariances

We gave a global definition of the space $E_\rho^p$ but this definition depends on the Euler $\rho$. Recall $G$ is the group of local diffeomorphisms preserving $I$. On the one hand, we saw that the class of Euler vector fields is invariant by the action of $G$ on the other hand it is not obvious that for any two Euler vector fields $\rho_1, \rho_2$, there is an element $\Phi \in G$ such that $\Phi_*\rho_1 = \rho_2$.

Denote by $S(\lambda) = e^{\log \lambda \rho}$ the scaling operator defined by the Euler $\rho$. $S(\lambda)$ is a multiplicative group homomorphism, it satisfies the identity $S(\lambda_1)S(\lambda_2) = S(\lambda_1\lambda_2)$.

**Proposition 1.4.2** Let $p$ in $I$, let $U$ be an open set containing $p$ and let $\rho_1, \rho_2$ be two Euler vector fields defined on $U$ and $S_\alpha(\lambda) = e^{\log \lambda \rho_a}$, $a = 1, 2$ the corresponding scalings. Then there exists a neighborhood $V \subset U$ of $p$ and a one-parameter family of diffeomorphisms $\Phi \in C^\infty([0,1] \times V, V)$ such that, if for all $\lambda \in [0,1]$, $\Phi(\lambda) = \Phi(\lambda,.) : V \mapsto V$, then $\Phi(\lambda)$ satisfies the equation:

$$S_2(\lambda) = S_1(\lambda) \circ \Phi(\lambda).$$

**Proof** — We use a local chart $(x, h) : U \mapsto \mathbb{R}^{n+d}$ centered at $p$, where $I = \{h = 0\}$. We set $\rho = h^i \partial_{h^i}$ and $S(\lambda) = e^{\log \lambda \rho}$ and we try to solve the two problems $S(\lambda)^*t = \Phi_\alpha(\lambda)^*(S_\alpha(\lambda)^*t)$ for $a = 1$ or $2$. We must have the following equation

$$\Phi_\alpha(\lambda)^* = S(\lambda)^* S_\alpha^{-1}(\lambda)^* \implies \Phi_\alpha(\lambda) = S_\alpha^{-1}(\lambda) \circ S(\lambda).$$

If so, the map $\Phi_\alpha(\lambda)$ satisfies the differential equation

$$\lambda \frac{\partial}{\partial \lambda} \Phi_\alpha(\lambda)^* = \lambda \frac{\partial}{\partial \lambda} S(\lambda)^* S_\alpha^{-1}(\lambda)^*$$

$$= \rho S(\lambda)^* S_\alpha^{-1}(\lambda)^* + S(\lambda)^*(-\rho_a) S_\alpha^{-1}(\lambda)^*$$

$$= \rho S(\lambda)^* S_\alpha^{-1}(\lambda)^* + S(\lambda)^*(-\rho_a) S^{-1}(\lambda)^* S(\lambda)^* S_\alpha^{-1}(\lambda)^*$$

$$= (\rho - Ad_{S^{-1}(\lambda)\rho_a}) \Phi_\alpha(\lambda)^*$$

$$\implies \lambda \frac{\partial}{\partial \lambda} \Phi_\alpha(\lambda) = (\rho - S^{-1}(\lambda)\rho_a) (\Phi_\alpha(\lambda)) \text{ with } \Phi_\alpha(1) = Id$$

where we used the Lie algebraic formula (1.21): $(\Phi_* \rho)(f) = \Phi^{-1*}(\rho(\Phi_* f)) = (Ad_{\Phi}\rho)(f)$. Let $f$ be a smooth function and $X$ a vector field. We use formula (1.21) to compute the pushforward of $fX$ by a diffeomorphism $\Phi$:

$$L_{\Phi_* (fX)}\varphi = (\Phi^{-1*} f)L_{\Phi_* X}\varphi.$$  \hspace{1cm} (1.25)

We use the general form (1.23) for a Euler vector field:

$$\rho_a = h^j \frac{\partial}{\partial h^j} + h^i A^j_i(x, h) \frac{\partial}{\partial x^j} + h^i h^j B^k_{ij}(x, h) \frac{\partial}{\partial h^k}$$
hence we apply formula 1.25:

\[ S^{-1}(\lambda) \rho_a = S^{-1}(\lambda) \star \left( h^j \frac{\partial}{\partial h^j} \right) + S^{-1}(\lambda) \star \left( h^i A_i^j \frac{\partial}{\partial x^j} \right) + S^{-1}(\lambda) \star \left( h^i h^j B_{ij}^k \frac{\partial}{\partial h^k} \right) \]

\[ = (S(\lambda) h^j) S^{-1}(\lambda) \star \frac{\partial}{\partial h^j} + S(\lambda) \star (h^i A_i^j) S^{-1}(\lambda) \star \frac{\partial}{\partial x^j} + S(\lambda) \star (h^i h^j B_{ij}^k) S^{-1}(\lambda) \star \frac{\partial}{\partial h^k} \]

\[ = \lambda h^j \lambda^{-1} \frac{\partial}{\partial h^j} + \lambda h^i A_i^j (x, \lambda h) \frac{\partial}{\partial x^j} + \lambda^2 h^i h^j B_{ij}^k (x, \lambda h) \lambda^{-1} \frac{\partial}{\partial \lambda} \]

\[ = h^j \frac{\partial}{\partial h^j} + \lambda h^i A_i^j (x, \lambda h) \frac{\partial}{\partial x^j} + \lambda h^i h^j B_{ij}^k (x, \lambda h) \frac{\partial}{\partial \lambda} \]

\[ \implies \rho - S^{-1}(\lambda) \rho_a = -\lambda \left( h^i A_i^j (x, \lambda h) \frac{\partial}{\partial x^j} + h^i h^j B_{ij}^k (x, \lambda h) \frac{\partial}{\partial \lambda} \right). \]

If we define the vector field \( X(\lambda) = -\left( h^i A_i^j (x, \lambda h) \frac{\partial}{\partial x^j} + h^i h^j B_{ij}^k (x, \lambda h) \frac{\partial}{\partial \lambda} \right) \)

then

\[ \frac{\partial \Phi_a^x}{\partial \lambda}(\lambda) = X(\lambda, \Phi_a(\lambda)) \text{ with } \Phi_a(1) = Id. \] (1.26)

\( \Phi_a(\lambda) \) satisfies a non autonomous ODE, the vector field

\[ X(\lambda) = -\left( h^i A_i^j (x, \lambda h) \frac{\partial}{\partial x^j} + h^i h^j B_{ij}^k (x, \lambda h) \frac{\partial}{\partial \lambda} \right) \]

depends smoothly on \((\lambda, x, h)\). We have to prove that by choosing a suitable neighborhood of \( p \in I \), there is always a solution of (1.26) on the interval 

\([0, 1]\) in the sense that there is no blow up at \( \lambda = 0 \). For any compact \( K \subset \{ |h| \leq \varepsilon_1 \} \), we have the estimates \( \forall (x, h) \in K, \forall \lambda \in [0, 1], |h^i h^j B_{ij}^k (x, \lambda h)| \leq b|h|^2 \) and \( |h^i A_i^j (x, \lambda h)| \leq a|h| \). Hence as long as \( |h| \leq \varepsilon_1 \), we have \( \frac{\partial}{\partial \lambda} \leq b|h|^2 \leq b \varepsilon_1 |h| \). Then for any Cauchy data \((x(1), h(1)) \in K\) such that \( |h(1)| \leq \varepsilon_2 \), we compute the maximal interval \( I = (\lambda_0, 1) \) such that for all \( \lambda \in [\lambda_0, 1] \) we have \( |h(\lambda)| \leq \varepsilon_1 \). An application of Gronwall lemma ([63] Theorem 1.17 p. 14) to the differential inequality \( \frac{\partial}{\partial \lambda} \leq b \varepsilon_1 |h| \) yields \( \forall \lambda \in I, |h(\lambda)| \leq e^{(1-\lambda)\varepsilon_1} |h(1)| \). Hence, if we choose \( \lambda \) in such a way that \( e^{(1-\lambda)\varepsilon_1} \varepsilon_2 \leq \varepsilon_1 \), then \( |h(\lambda)| \leq e^{(1-\lambda)\varepsilon_1} |h(1)| \leq e^{(1-\lambda)\varepsilon_1 \varepsilon_2} \leq \varepsilon_1 \) thus \( \lambda \in I \) by definition. Hence, we conclude that if we choose \( \varepsilon_2 \leq \frac{\varepsilon_1}{e^{\varepsilon_1}} \) then

\[ [0, 1] = \left\{ \lambda |e^{(1-\lambda)\varepsilon_1} \leq \varepsilon_1 \right\} \subset \left\{ \lambda |e^{(1-\lambda)\varepsilon_1} \varepsilon_2 \leq \varepsilon_1 \right\} \subset I \]

and by classical ODE theory the equation (1.26) always has a smooth solution \( \lambda \mapsto \Phi_a(\lambda) \) on the interval \([0, 1]\), the open set \( V \) on which this existence result holds is the restriction of the chart \( U \cap \{ |h| \leq \varepsilon_2 \} \). Now, to conclude properly in the case both \( \rho_1, \rho_2 \) are not equal to \( \rho = h^j \frac{\partial}{\partial x^j} \) then we apply the previous result

\[ S(\lambda) = S_1(\lambda) \circ \Phi(\lambda) = S_2(\lambda) \circ \Phi(\lambda) \implies S_2(\lambda) = S_1(\lambda) \circ \Phi(\lambda) \circ \Phi^{-1}(\lambda) \]

hence

\[ S_2(\lambda)^* t = (\Phi(\lambda) \circ \Phi^{-1}(\lambda))^* S_1(\lambda)^* t \]

\( \blacksquare \)
1.4. EULER VECTOR FIELDS.

We keep the notations and assumptions of the above proposition and proof, we give an elementary proof of the conjugation without the use of Sternberg Chen theorem:

**Corollary 1.4.1** Let $\rho_a, a = (1, 2)$ be two Euler vector fields and $S_a(\lambda) = e^{\log \lambda \rho_a}, a = (1, 2)$ the two corresponding scalings. In the chart $(x, h), I = \{h = 0\}$ around $p$, let $\rho = h^j \partial_{h^j}$ be the canonical Euler vector field and $S(\lambda) = e^{\log \lambda}$ the corresponding scaling and $\Phi_a(\lambda)$ be the family of diffeomorphisms $\Phi_a(\lambda) = S_a^{-1}(\lambda) \circ S(\lambda)$ which has a smooth limit $\Psi_a = \Phi_a(0)$ when $\lambda \to 0$. Then $\Psi_a \in G$ locally conjugates the hyperbolic dynamics:

$$\forall \mu, \Psi_a \circ S(\mu) \circ \Psi_a^{-1} = S_a(\mu)$$  \hspace{1cm} (1.27)  
$$\Phi_a(\mu) = \Psi_a \circ S(\mu^{-1}) \circ \Psi_a^{-1} \circ S(\mu)$$ \hspace{1cm} (1.28)  
$$\rho_a = \Psi_{a*}\rho.$$ \hspace{1cm} (1.29)

Hence in any coordinate chart, in a neighborhood of any point $(x, 0) \in I$, all Euler are locally conjugate by an element of $G$ to the standard Euler $\rho = h^j \partial_{h^j}$. **Proof** — The map $\lambda \mapsto S(\lambda)$ is a group homomorphism from $(\mathbb{R}^*, \times) \mapsto (G, \circ)$:

$$\Phi_a(\lambda) \circ S(\mu) = (S_a^{-1}(\lambda) \circ S(\lambda)) \circ S(\mu) = S_a^{-1}(\lambda) \circ S(\lambda \mu)$$  
$$= S_a(\mu) \circ S_a^{-1}(\mu) \circ S(\lambda \mu) = S_a(\mu) \circ S_a^{-1}(\mu) \circ S(\lambda \mu) = S_a(\mu) \circ \Phi_a(\lambda \mu)$$  

finally $\forall (\lambda, \mu)$, we find $\Phi_a(\lambda) \circ S(\mu) = S_a(\mu) \circ \Phi_a(\lambda \mu) \implies \Phi_a(0) \circ S(\mu) = S_a(\mu) \circ \Phi_a(0)$ at the limit when $\lambda \to 0$ where the limit makes sense because $\Phi_a$ is smooth in $\lambda$ at 0. To obtain the pushforward equation $\rho_a = \Psi_{a*}\rho$, just differentiate the last identity w.r.t. $\mu$. 

Beware that the conjugation theorem is only true in a neighborhood $V_p$ of some given point $p \in I$. $\rho_1, \rho_2$ are not necessarily conjugate globally in a neighborhood of $I$. There might be topological obstructions for a global conjugation. The local diffeomorphism $\Psi = \Phi_a(0)$ makes the following diagram

$$\begin{array}{ccc}
V & \xrightarrow{S(\lambda)} & V \\
\Psi \downarrow & & \downarrow \Psi \\
V & \xrightarrow{S_a(\lambda)} & V
\end{array}$$

commute. We keep the notational conventions of the above corollary:

**Lemma 1.4.2** Let $p$ in $I$ and $U$ be an open set containing $p$, let $\rho_1, \rho_2$ be two Euler vector fields defined on $U$ then there exists an open neighborhood $V$ of $p$ on which $\forall s, E^s_{\rho_1}(V) = E^s_{\rho_2}(V)$.

**Proof** — Set $\Phi(\lambda) = S_1^{-1}(\lambda) \circ S_2(\lambda)$, $\Phi$ depends smoothly in $\lambda$ by Proposition 1.4.2 and $V = \bigcap_{\lambda \in [0, 1]} \Phi^{-1}(\lambda)(U)$.

$$\forall \varphi \in \mathcal{D}(V), \lambda^{-s} \langle S_2(\lambda)^* t, \varphi \rangle = \lambda^{-s} \langle \Phi^*(\lambda) (S_1(\lambda)^* t), \varphi \rangle$$
\[
\lambda^{-s} \left( S_1(\lambda)^* t, \left( \Phi(\lambda)^{-1*} \varphi \right) \right) \text{ bounded in } D(U)
\]

which is bounded by the hypothesis \( t \in E^{01}_s \) which means by definition that
\(
\lambda^{-s} S_1(\lambda)^* t \text{ is bounded in } D'(U).
\)

We illustrate the previous method in the following example:

**Example 1.4.3** We work in \( \mathbb{R}^2, n = d = 1 \) with coordinates \((x, h)\), let \( \rho_1 = h \partial_h, \rho_2 = h \partial_h + h \partial_x \). Let \( t(x, h) = f(x)g(h) \) where \( f \) is an arbitrary distribution and \( g \) is homogeneous of degree \( s \):

\[
\lambda^{-s} g(\lambda h) = g(h).
\]

Then \( t \) is homogeneous of degree \( s \) with respect to \( \rho_1 \) thus \( t \in E^{01}_s \). We will study the scaling behaviour when we scale with \( \rho_2 \), \( S_2(\lambda)(x, h) = e^{\log \lambda \rho_2(x, h)} = (x + (\lambda - 1) h, \lambda h) \):

\[
\int_{\mathbb{R}^2} S_2(\lambda)^* (f(x)g(h)) \varphi(x, h) dx dh = \int_{\mathbb{R}^2} f(x + (\lambda - 1) h) g(\lambda h) \varphi(x, h) dx dh
\]

Use Proposition (1.4.2) and first determine \( \Phi(\lambda) \) in such a way that the equation \( \forall \lambda, S_2(\lambda) = S_1(\lambda) \circ \Phi(\lambda) \) is satisfied. We find \( \Phi(\lambda)(x, h) = S_1^{-1}(\lambda) \circ S_2(\lambda) = S_1^{-1}(\lambda)(x + (\lambda - 1) h, \lambda h) = (x + (\lambda - 1) h, h) \). Applying the previous result to our example reduces to a simple change of variables in the integral:

\[
\int_{\mathbb{R}^2} S_2(\lambda)^* (f(x)g(h)) \varphi(x, h) dx dh = \int_{\mathbb{R}^2} f(x)g(\lambda h) \varphi(x + (1 - \lambda) h, h) dx dh
\]

Then the result is straightforward and we can conclude \( t \in E^{02}_s \).

**Local invariance**

**Definition 1.4.3** A distribution \( t \) is said to be locally \( E^p_s \) at \( p \) if there exists an open \( \rho \)-convex set \( U \subset M \) such that \( \overline{U} \) is a neighborhood of \( p \) and such that \( t \in E^p_s(U) \).

Corollary (1.4.1) and lemma (1.4.2) imply the following local statement:

**Theorem 1.4.1** Let \( p \in I \), if \( t \) is locally \( E^p_s \) at \( p \) for some Euler vector field \( \rho \), then it is so for any other Euler vector field.
A comment on the statement of the theorem, first the definition of $\rho$-convexity allows $U$ to have empty intersection with $I$, because the definition of $\rho$-convexity is $\forall p \in U, \forall \lambda \in (0, 1], S(\lambda)[p] \in U$, the fact that $\lambda > 0$ allows the case of empty intersection with $I$. The previous theorem allows to give a definition of the space of distributions $E_s(U)$ that are weakly homogeneous of degree $s$ which makes no mention of the choice of Euler vector field:

**Definition 1.4.4** A distribution $t$ is weakly homogeneous of degree $s$ at $p$ if it is locally $E_\rho$ at $p$ for some $\rho$. $E_s(U)$ is the space of all distributions $t \in D'(U)$ such that $\forall p \in (I \cap U)$, $t$ is weakly homogeneous of degree $s$ at $p$.

If we look at the definition 1.4.4, and we take into account that the space of distributions on open sets of $M$ forms a sheaf, we deduce the following gluing property: if there is a collection $U_i$ and a collection $t_i \in D'(U_i)$ such that $\forall i, t_i \in E_s(U_i)$ and $t_i = t_j$ on every intersection $U_i \cap U_j$, then for $U = \bigcup U_i$ there is a unique $t \in D'(U)$ which lives in $E_s(U)$ and coincides with $t_i$ on $U_i$ for all $i$. From this gluing property, and from since the property of being weakly homogeneous of degree $s$ at $p$ is open, we can deduce that it is sufficient to check the property on a cover $(U_i)_i$ of $U$ by local charts $(x,h)_i: (U_i \setminus I) \rightarrow \Omega_i \subset \mathbb{R}^{n+d}$ where $t|_{U_i}$ is in $E_\rho(U_i)$ for the canonical Euler $\rho_i$ given by the chart.

**Theorem 1.4.2** Let $U$ be an open neighborhood of $I \subset M$, if $t \in E_s(U \setminus I)$ then there exists an extension $\tilde{t}$ in $E_{s'}(U)$ where $s' = s$ if $-s - d \notin \mathbb{N}$ and $s' < s$ otherwise.

Apply the previous proposition, restrict to local charts $(x,h)_i: (U_i \setminus I) \rightarrow (\Omega_i \setminus I)$ where $t|_{U_i \setminus I} = t_i \circ (x,h)_i$ where $t_i \in E_s(\Omega_i \setminus I)$, then extend each $t_i$ on $\Omega_i$, $\tilde{t}_i \in E_s(\Omega_i)$, pullback the extension denoted by $\tilde{t}|_{U_i} \in E_s(U_i)$ on $U_i$, then glue together all $\tilde{t}|_{U_i}$ (they coincide on $(U_i \cap U_j) \setminus I$ but might not coincide on $I$ but this does not matter !) by a partition of unity $(\varphi_i)_i$ subordinated to the cover $(U_i)_i$. The extension reads $\tilde{t} = \sum_i \varphi_i \tilde{t}|_{U_i}$.

The extension depends only on $\rho, \chi$. Instead of using the Taylor expansion in local coordinates, we can use the identity

$$\sum_{|\alpha|=n} \frac{h^\alpha}{\alpha!} \partial^\alpha_h f(x, 0) = \frac{1}{n!} \left( \frac{d}{dt} \right)^n e^{\log t \rho^* f} |_{t=0}(x, h)$$
We can define the counterterms and the renormalized distribution by the equations:

\[
\left\langle \tau^\lambda, \varphi \right\rangle = \lim_{t \to 0} \left( t e^{-\log \lambda \rho^*} (-\rho \chi), \sum_{n=0}^{\infty} \frac{1}{n!} \left( \frac{d}{dt} \right)^n e^{\log \lambda \rho^*} \varphi \right) \tag{1.30}
\]

\[
\left\langle \bar{t}, \varphi \right\rangle = \left( t e^{-\log \lambda \rho^*} (-\rho \chi), I_m (\varphi) \right) + \left( t (1 - \chi), \varphi \right) \tag{1.31}
\]

\[
I_m (\varphi) = \int_0^1 \frac{d\lambda}{\lambda} \frac{1}{m!} \int_0^1 ds (1 - s)^m \left( \frac{\partial}{\partial s} \right)^{m+1} e^{\log s \rho^*} \varphi \tag{1.32}
\]

where we made an effort to convince the reader that the formulas only depend on $\rho$ and $\chi$.

1.5 Appendix.

The Banach–Steinhaus theorem. We will frequently use the Banach–Steinhaus theorem in more general spaces than Banach spaces. We recall here basic results about Fréchet spaces using Gelfand–Shilov [25] as our main reference. Let $E$ be a locally convex topological vector space where the topology is given by a countable family of norms, i.e., $E$ is a Fréchet space in modern terminology and “countably normed space” in Gelfand–Shilov terminology. Hence it is a complete metric space (the topology induced by the metric is exactly the same as the topology induced by the family of norms) (section 3.4 in [25]). Following [25], we assume the family of norms defining the topology are ordered $\| . \|_p \leq \| . \|_{p+1}$, where we denote by $E_p$ the completion of $E$ with respect to the norm $\| . \|_p$ which makes $E_p$ a Banach space. Then we have the sequence of continuous inclusions $E = \ldots \subset E_{p+1} \subset E_p \subset \ldots$ and $E = \bigcap_p E_p$.

A complete metric space satisfies the Baire property: any countable union of closed sets with empty interior has empty interior. A consequence of the Baire property is that if a set $U \subset E$ is closed, convex, centrally symmetric ($U = -U$) and absorbant, then it must contain a neighborhood of the origin for the Fréchet topology of $E$. In section 4.1, starting from the definition of the continuity of a linear map $\ell$ on $E$, it is deduced the existence of $p$ and the corresponding seminorm $\| . \|_p$ such that $\forall x \in E, \ell (x) \leq C \| x \|_p$. Following the interpretation of 4.3, if we denote by $E_p$ the completion of $E$ relative to the norm $\| . \|_p$ then $\ell$ defines by Hahn–Banach a non unique element of $E'_p$, the topological dual of $E_p$. Then the theorem of 5.3 characterizes strongly bounded sets in the topological dual $E'$ of $E$. A set $B \subset E'$ is strongly bounded iff there is $p$ such that $B \subset E'_p$ and elements of $B$ are bounded in the norm of $E'_p$.

\[
\exists C, \forall f \in B, \sup_{\| \varphi \|_p \leq 1} | \left\langle f, \varphi \right\rangle | \leq C.
\]
The weak topology in $E'$ is generated by the collection of open sets
\[
\{ f; |\langle f, \varphi \rangle | < \varepsilon \}
\]
By definition, if $A$ is a weakly bounded set, then:
\[
\forall \varphi, \sup_{f \in A} |\langle f, \varphi \rangle | < \infty.
\]

In 5.5 it is proved that weakly bounded sets of $E'$ are in fact strongly bounded in $E'$. Let $A$ be a weakly bounded set in $E'$. Then the set $B = \{ \varphi; \forall f \in A, |\langle f, \varphi \rangle | < 1 \}$ is closed, convex, centrally symmetric ($U = -U$) and absorbant therefore it must contain a neighborhood of the origin by lemma of section 3.4.

\[
\{ \|\varphi\|_p \leq C \} \subset B
\]
for a certain seminorm $\|\cdot\|_p$ by definition of a neighborhood of the origin in a Fréchet space. By definition elements of $A$ are bounded on this neighborhood of the origin
\[
\forall f \in A, \varphi \in B, |\langle f, \varphi \rangle | < 1
\]
\[
\implies \forall f \in A, \|\varphi\|_p \leq C, |\langle f, \varphi \rangle | < 1
\]
\[
\implies \forall f \in A, |\langle f, \varphi \rangle | \leq C^{-1}\|\varphi\|_p.
\]

Now we will apply these abstract results in the case of bounded families of distributions:

**Theorem 1.5.1** Let $U \subset \mathbb{R}^d$ be an open subset. If $A$ is a weakly bounded family of distributions in $D'(U)$:
\[
\forall \varphi \in D(U), \sup_{t \in A} \langle t, \varphi \rangle < \infty
\]
then for all compact subset $K \subset U$:
\[
\exists p, \exists C_K, \forall t \in A, \forall \varphi \in D_K(U), |\langle t, \varphi \rangle | \leq C_K \pi_p(\varphi).
\]

**Proof** — Set $\|\varphi\|_p = \pi_p(\varphi)$, it is well known this is a norm. The family $A$ is weakly bounded in the dual $D'(K)$ of the Fréchet space $D(K) = \bigcap_k C^k_0(K)$ ie the intersection of all spaces of $C^k$ functions supported in $K$. It is thus strongly bounded in the dual space $D'(K)$ and translating the strong boundedness into estimates yields the result.

**Theorem 1.5.2** Let $K$ be a fixed compact subset of $\mathbb{R}^d$. If $A$ is a family of distributions in $D'_K(U)$ supported on $K \subset U$ and
\[
\forall \varphi \in C^\infty(U), \sup_{t \in A} |\langle t, \varphi \rangle | < \infty,
\]
then $\forall K_2$ which is a compact neighborhood of $K$, $\exists p, \exists C$,
\[
\forall t \in A, \forall \varphi \in C^\infty(U), |\langle t, \varphi \rangle | \leq C \pi_{p,K_2}(\varphi).
\]
Proof — In the second case, first we find a compact set $K_2$ such that $K_2$ is a neighborhood of $K$. We set the Fréchet $E = \bigcap_k C^k_0(K_2)$ which is the intersection of all $C^k$ functions supported in $K_2$. These functions should not necessarily vanish on the complement of $K$. Then we pick any plateau function $\chi$ such that $\chi|_K = 1$ and $\chi = 0$ on the complement of $K_2$. $t \in A$ is supported on $K$ thus $\forall t \in A, \forall \varphi \in C^\infty(U), |\langle t, \varphi \rangle| = |\langle t, \chi \varphi \rangle|$ then we reduce to the previous theorem: $\forall t \in A, \forall \varphi \in C^\infty(U), |\langle t, \varphi \rangle| = |\langle t, \chi \varphi \rangle| \leq C_{K_2} \sup_{|\alpha| \leq p} |\partial^\alpha \chi \varphi|_{L^\infty} \leq C \sup_{|\alpha| \leq p} |\partial^\alpha \varphi|_{L^\infty(K_2)}$. ■

Corollary 1.5.1 Let $U$ be an arbitrary open domain, $t \in E_s(U)$ iff $t \in D'(U)$ is a distribution on $U$
\begin{equation}
\forall \varphi \in D(U), \exists C(\varphi), \sup_{\lambda \in [0,1]} |\lambda^{-s} t_\lambda, \varphi| \leq C(\varphi)
\end{equation}

$\Leftrightarrow \forall K \subset U, \exists (p,C_K), \forall \varphi \in D_K(U), \sup_{\lambda \in [0,1]} |\lambda^{-s} t_\lambda, \varphi| \leq C_K \pi_p(\varphi)$. 
Chapter 2

A prelude to the microlocal extension.

2.0.1 Introduction.

First, let us recall the problem which was solved in Chapter 1. We started from a smooth manifold $M$ and a closed embedded submanifold $I \subset M$. We defined a general setting in which we could scale transversally to $I$ using the flow generated by a class of vector fields called Euler vector fields. Then for each distribution $t \in \mathcal{D}'(M \setminus I)$ which was weakly homogeneous of degree $s$ in some precise sense (we called $E_s(M \setminus I)$ the space of such distributions)
- which was made independent of the choice of Euler $\rho$,
- we proved that $t$ has an extension $\tilde{t} \in E_{s'}(M)$ for some $s'$. We also understood that the problem of extension is essentially a local problem and everything can be reduced to the extension problem in $\mathbb{R}^{n+d}$ with coordinates $(x,h), I = \mathbb{R}^n \times \{0\} = \{h = 0\}$ and where the scaling is defined by $\rho = h^j \frac{\partial}{\partial h^j}$. All the “geometry” is somehow contained in the possibility of choosing another Euler vector field. In fact, the pseudogroup $G$ of local diffeomorphisms of $\mathbb{R}^{n+d}$ preserving $I$ acts on the space of Euler vector fields.

However this gives no a priori information on the wave front set of the extension $\tilde{t}$. But in QFT, we need conditions on $WF(\tilde{t})$ in order to define products of distributions. By the pull-back theorem of Hörmander ([33] thm 8.2.4), there is no reason for $WF(t_\lambda)$ to be equal to $WF(t)$. Hence in order to control the wave front set of $\tilde{t}$, the first step is to build some cone $\Gamma$ which bounds the wave front set of all scaled distributions $t_\lambda$ and a natural candidate for $\Gamma$ is $\Gamma = \bigcup_{\lambda \in (0,1]} WF(t_\lambda)$. We denote by $(x, h; k, \xi)$ the coordinates in $T^*\mathbb{R}^{n+d}, (x; k) \in T^*\mathbb{R}^n, (h; \xi) \in T^*\mathbb{R}^d$. We use the notation $T^*M$ for the cotangent bundle $T^*M$ with the zero section removed. Denote by $C_\rho$ the set $\{(x, h; k, 0) | k \neq 0\} \subset T^*\mathbb{R}^{n+d}$. We call $C = \{(x, 0; 0, \xi) | \xi \neq 0\}$ the intersection of the conormal bundle of $I$ with $T^*\mathbb{R}^{n+d}$. In the first part
of this Chapter, we will explain the geometric interpretation of the set $C_\rho$ and how it depends on the choice of Euler $\rho$. $C_\rho$ plays an important role for the determination of the analytical structure of local counterterms: if $WF(t)$ does not meet $C_\rho = \{(x, h; k, 0)|k \neq 0\}$, then the local counterterms constructed from $t$ (1.30) are distributions with wave front set in the conormal (we meet them again in Chapter 6 under the form of anomaly counterterms). However, the condition $WF(t) \cap C_\rho = \emptyset$ depends on the choice of $\rho$ but the stronger condition $WF(t)|_{\Gamma} \subset C$ does not depend on $\rho$ and implies for any choice of Euler $\rho$, $WF(t) \cap C_\rho = \emptyset$ in some neighborhood of $I$.

The problem of the closure of $\Gamma$ over $I$. So we are led to study under which conditions on $WF(t)$ the cone $\Gamma$ defined by $\Gamma = \bigcup_{\lambda \in (0,1]} WF(t_\lambda)$ satisfies the constraint $\Gamma|_I \subset C$, where $\Gamma$ is the closure of $\Gamma \subset T^\ast (M \setminus I)$ in $T^\ast M$. Then we find a necessary and sufficient condition on $WF(t)$ which we call soft landing condition for having $\Gamma|_I \subset C$. The fact that $WF(t)$ satisfies the soft landing condition guarantees that whatever generalized Euler vector field $\rho$ we choose, the counterterms are conormal distributions supported on $I$. Furthermore, it is a condition which allows to control the wave front set of the extension as we will see in Chapter 3.

The soft landing condition is not sufficient for controlling the wave front set. Assume that $t \in E_s(M \setminus I)$ and $WF(t)$ satisfies the soft landing condition. Under these assumptions, we address the question: in which sense $\lim_{\varepsilon \to 0} \int_{\varepsilon}^1 \frac{dt}{t} t\psi(t)$ converges to $\bar{I}$? More precisely for what topology on $D'(M)$ do we have convergence? We already know from Theorems 1.3.1 and 1.3.2 in Chapter 1 that the integral converges in the weak topology of $D'$ but this is not sufficient since it does not imply the convergence in stronger topologies which control wave front sets as the following examples show: indeed in (2.4.1), we construct a distribution $t$ such that $t(1 - \chi_{\varepsilon^{-1}}) \to t$ in $D'$, whereas $\forall \varepsilon \in (0,1], t(1 - \chi_{\varepsilon^{-1}})$ is smooth in $M \setminus I$ but $WF(t)$ can contain any ray $p \in T^\ast M|_I$ in the cotangent cone over $I$. Our example shows that generically, we cannot control the wave front set of $\lim_{\varepsilon \to 0} (1 - \chi_{\varepsilon^{-1}})$ even if the limit exists in $D'$ and each $t(1 - \chi_{\varepsilon^{-1}}) \in D'_I$ has wave front set in a given cone $\Gamma$. Thus our assumptions that $t \in E_s(M \setminus I)$ and $WF(t)$ satisfies the soft landing condition are not sufficient to control the wave front set of the extension $\bar{I}$. We will later prove in Chapter 3, that the supplementary condition that $\lambda^{-s}t_\lambda$ be bounded in $D'_I(M \setminus I)$ (see Definition 2.0.2) is sufficient to have the estimate $WF(I) \subset WF(t) \cup C$.

Notation and preliminary definitions. In this paragraph, we recall results on distribution spaces that we will use in the proof of our main theorem which controls the wave front set of the extension. Furthermore
2.1 Geometry in cotangent space.

The seminorms that we define here allow to write proper estimates. For any cone \( \Gamma \subset T^*\mathbb{R}^d \), we let \( D'_\Gamma \) be the set of distributions with wave front set in \( \Gamma \). We define the set of seminorms \( \| \cdot \|_{N,V,\chi} \) on \( D'_\Gamma \).

**Definition 2.0.1** For all \( \chi \in D(\mathbb{R}^d) \), for all closed cone \( V \subset (\mathbb{R}^d \setminus \{0\}) \) such that \((\text{supp } \chi \times V) \cap \Gamma = \emptyset\), \( \| t \|_{N,V,\chi} = \sup_{\xi \in V} |(1 + |\xi|)^N \hat{\chi}(\xi)| \).

We recall the definition of the topology \( D'_\Gamma \) (see [1] p. 14 and [68] Chapter 6 p. 333),

**Definition 2.0.2** The topology of \( D'_\Gamma \) is the weakest topology that makes all seminorms \( \| \cdot \|_{N,V,\chi} \) continuous and which is stronger than the weak topology of \( D'(\mathbb{R}^d) \). Or it can be formulated as the topology which makes all seminorms \( \| \cdot \|_{N,V,\chi} \) and the seminorms of the weak topology:

\[
\forall \varphi \in D(\mathbb{R}^d), |(t, \varphi)| = P_\varphi(t) \tag{2.1}
\]

continuous.

We say that \( B \) is bounded in \( D'_\Gamma \) if \( B \) is bounded in \( D' \) and if for all seminorms \( \| \cdot \|_{N,V,\chi} \) defining the topology of \( D'_\Gamma \),

\[
\sup_{t \in B} \| t \|_{N,V,\chi} < \infty.
\]

2.1 Geometry in cotangent space.

We will denote by \( C = (TI)^\perp \cap T^*M \) the intersection of the conormal bundle \( (TI)^\perp \) with the cotangent cone \( T^*M \). For any subset \( \Gamma \) of \( T^*M \) and for any subset \( U \) of \( M \) we denote by \( \Gamma|_U \) the set \( \Gamma \cap T^*U \) where \( T^*U \) is the restriction of the cotangent cone over \( U \).

**Associating a fiber bundle to a generalized Euler \( \rho \).** We work with Euler vector fields \( \rho \) defined on a neighborhood \( \mathcal{V} \) of \( I \) then \( \mathcal{V} \) fibers over \( I \) in such a way that the leaves of these fibrations are the set of all flow lines ending at a given point of \( I \), these leaves are invariant by the flow of \( \rho \).
Definition 2.1.1 Define the map \( \pi^\rho : p \in \mathcal{V} \mapsto \lim_{t \to \infty} e^{-t \rho}(p) \in I \).

Proposition 2.1.1 Let \( \rho \) be a generalized Euler vector field defined on a neighborhood \( \mathcal{V} \) of \( I \), then \( \mathcal{V} \) fibers over \( I \), \( \pi^\rho : \mathcal{V} \mapsto I \).

Proof — It is sufficient to check the fibration is trivial over an open neighborhood of any \( p \in I \) ([39] Definition 6.1 p. 257 ). We proved that for any \( p \in I \), there is a local chart \( (x, h) \) of \( M \) around \( p \) where \( I = \{ h = 0 \} \) and the vector field \( \rho \) writes \( h^j \partial_{h^j} \). In this chart, the fibration takes the trivial form

\[
(x, h) \in \mathbb{R}^{n+d} \mapsto (x) \in \mathbb{R}^n.
\]

□

Definition 2.1.2 We define a subset \( C_\rho \) as the union of the conormals of the leaves of the fibration \( \pi^\rho : \mathcal{V} \mapsto I \). \( C_\rho \) is a coisotropic set of \( T^*M \).

\( C, C_\rho \) in local coordinates. In the sequel, we always work in local charts \( (x, h) \in \mathbb{R}^{n+d} \) where \( I = \{ h = 0 \} \). We denote by \( (x, h; k, \xi) \) the coordinates in cotangent space \( T^*\mathbb{R}^{n+d} \), where \( k \) (resp \( \xi \)) is dual to \( x \) (resp \( h \)). The scaling is defined by the Euler vector field \( \rho = h^j \partial_{h^j} \). There is no loss of generality in reducing to this case because we proved that locally we can always reduce to this canonical situation (cf Chapter 1). In local coordinates \( C = \{(x, 0; 0, \xi)|\xi \neq 0\} \) and \( C_\rho = \{(x, h; k, 0)|k \neq 0\} \).

Lemma 2.1.1 Let \( t \in \mathcal{D}'(M \setminus I) \). If \( \text{WF}(t)|_I \subset C \) then for any Euler \( \rho \), there exists a neighborhood \( \mathcal{V} \) of \( I \) for which \( \text{WF}(t)|_\mathcal{V} \cap C_\rho = \emptyset \).
2.1. GEOMETRY IN COTANGENT SPACE.

Figure 2.3: The representation of $C^\rho$ as a union of conormal bundles of the leaves of the foliation.

Proof — Since the property we want to prove is open, it is sufficient to establish it on some open neighborhood of any $p \in I$. So consider a local chart $(x, h) : \Omega \hookrightarrow \mathbb{R}^{n+d}$ where $p = (0, 0), I = \{h = 0\}, \rho = h^2 \partial_{h_j}$ and $\Omega$ is a compact set. By a simple contradiction argument, if for all $|h| \leq \varepsilon$, $WF(t)|_{\Omega \cap \{0 < |h| \leq \varepsilon\} \cap C_\rho} \neq \emptyset$, we can find a sequence $(x_n, h_n; k_n, 0)$ in $WF(t)$ such that $(x_n, h_n) \in \Omega, h_n \to 0$, then extracting a convergent subsequence yields a contradiction with the assumption $WF(t)|_I \subset C$.

Lifted flows on cotangent space. It will be crucial in the proof of Theorem 3.2.1 controlling the wave front of the extension to understand the dynamics of the lift of the Euler flow on cotangent space. When we scale a distribution $t$ by the one-parameter family $\Phi_\lambda = e^{log_\lambda \rho^*}$, we need to compute the wave front of $\Phi_\lambda^* t$. This is described by the pull-back theorem of Hörmander (see [33] Theorem 8.2.4) as the image of $WF(t)$ by the flow $T^* \Phi_\lambda^{-1}$.

Two interpretations of the lifted flow in cotangent space. We give here two points of view on this lifting. In the first one, the sections of the cotangent bundle are viewed as sections of the bundle of one forms $\Omega^1(M)$. The second interpretation is more in the spirit of symplectic geometry and will be useful for the microlocal interpretation of the flow (see Chapter 5).

1. $\rho$ defines a flow on $M$ and, as any diffeomorphism, this flow can be lifted to the cotangent space $T^* M$. Actually any diffeomorphism $\Phi : M \mapsto M$ lifts by the formula

$$T^* \Phi : (x, \eta) \mapsto (\Phi(x), \eta \circ d\Phi^{-1}|_{\Phi(x)})$$

(2.2)
which in coordinates representation \((x, h) \mapsto (x, \lambda h)\) in \(\mathbb{R}^{n+d}\) reads:

\[(x, h; k, \xi) \in T^*\mathbb{R}^{n+d} \mapsto (x, \lambda h; k, \lambda^{-1} \xi) \in T^*\mathbb{R}^{n+d}.
\]

2. The symbol of the differential operator \(\rho\) is \(\sigma(\rho) = -i\hbar \partial_j \xi_j\). We compute its symplectic gradient \(\sigma(\rho) \in C^\infty(T^*M)\) for the symplectic form

\[i(dk \wedge dx + d\xi \wedge dh)
\]

\[h^j \partial_{h^j} - \xi_j \partial_{\xi_j},
\]

and we take the flow of this vector field (for more on the symbol map see [22] p. 198).

Experts in microlocal analysis use this lifted flow in the “Change-of-variables formula” for pseudodifferential operators, see the formula at the bottom of p. 222 in [22] and Formula 61.20 p. 334 in [22].

2.2 Geometric and metric topological properties of \(\Gamma\).

We work in \(\mathbb{R}^{n+d}\) with coordinates \((x, h)\), \(I = \mathbb{R}^n \times \{0\}\) is the linear subspace \(\{h = 0\}\), the scaling is given by the vector field \(\rho = h^j \partial_{h^j}\) and we use the notation \(f_\lambda(x, h) = f(x, \lambda h)\). We restrict to a compact set \(K\) which is \(\rho\)-convex. The goal of the first part is to find conditions on \(\Gamma\) so that \(\forall \lambda \in (0, 1], WF(t_\lambda) \subset \Gamma\). We first use the pull-back theorem of Hörmander to describe \(WF(t_\lambda)\).

The pull-back theorem of Hörmander. Recall the definition of \(\Phi^*\Gamma\) for \(\Phi : X \mapsto Y\) a smooth diffeomorphism between two smooth manifolds \((X, Y)\) and \(\Gamma \in T^*Y\),

\[\Phi^* \Gamma = \{(x; \xi \circ d\Phi_x)(\Phi(x); \xi) \in \Gamma\}.
\]

In the case \(\Phi\) is a diffeomorphism, \(\Phi\) is invertible and we have the simpler formula:

\[\Phi^* \Gamma = \{\Phi^{-1}(y); \xi \circ D\Phi_{\Phi^{-1}(y)}(y; \xi) \in \Gamma\}.
\]

For \(\Phi(\lambda) : (x, h) \mapsto (x, \lambda h)\), we thus have

\[\Phi(\lambda)^* \Gamma = \{(x, \lambda^{-1} h, k, \lambda \xi)(x, h; k, \xi) \in \Gamma\}
\]

and also \(\Phi(\lambda)^* \Gamma|_K = \{(x, h; k, \xi)(x, h, k, \lambda^{-1} \xi) \in \Gamma, (x, h) \in K\} = \Phi(\lambda)^* \Gamma \cap (K \times (\mathbb{R}^{n+d})^*)\). This is an application of the pull-back theorem of Hörmander (8.2.4 in [33] or [22] theorem 63.1) where Hörmander uses the notation \(t d\Phi_x \xi\) for \(\xi \circ d\Phi_x\).
2.2. GEOMETRIC AND METRIC TOPOLOGICAL PROPERTIES OF $\Gamma$.

The fundamental equation. We wish actually to compute $\bigcup_{\lambda \in [0,1]} WF(t_{\lambda})$. Let $U$ be any $\rho$-convex subset of $M$. We construct a geometric upper bound $\Gamma_M(WF(t))$ such that $\bigcup_{\lambda \in (0,1]} \{WF(t_{\lambda})\}_{|U} \subset \Gamma_M(WF(t))$, where $\Gamma_M(WF(t))$ has a transparent geometrical meaning.

**Definition 2.2.1** Let $\rho$ be a Euler vector field and $U$ a $\rho$-convex subset of $M$. Let $WF(t)$ be given, then the set $\Gamma_M(WF(t))_{|U}$ is defined as the union of all curves of the flow $\lambda \mapsto \mathbf{T}^\ast(e^{\log \lambda \rho})$ which intersect $WF(t)$ and the projection on the base space of which lie in $U$. Let $T$ be the maximal time of existence of the flow $e^{\log \lambda \rho}$

$$\Gamma_M(WF(t))_{|U} = \{\mathbf{T}^\ast(e^{\log \lambda \rho})(p) | p \in WF(t), \lambda \in (0,T)\} \cap \mathbf{T}^\ast U. \quad (2.3)$$

$\Gamma_M(WF(t))_{|U}$ is also defined as the smallest subset of $\mathbf{T}^\ast U_M$ which contains $WF(t) \cap \mathbf{T}^\ast U_M$ and which is stable by $\mathbf{T}^\ast e^{\log \lambda \rho}$ for $\lambda \in (0,1]$, entirely determined by $\rho$ and $WF(t)$.

**Proposition 2.2.1** For all $\lambda \in (0,1]$, $WF(t_{\lambda})_{|U} \subset \Gamma_M(WF(t))_{|U}$.

This is immediate from the definition of $\Gamma_M(WF(t))$ and the pullback theorem. In the sequel, we use a local chart to identify a neighborhood of $p \in I$ with the $(h_j \frac{\partial}{\partial h_j})$-convex set $U = \{0 < |h| \leq \varepsilon, x \in \bar{K}\}$ for some $\varepsilon$ and where $K$ is a compact set of $\mathbb{R}^n$. We want to describe geometrically the set $\Gamma_M(WF(t))$ on a vertical slice $\{|h| = \varepsilon\}$ just by following the integral curves of the flow intersecting $\Gamma_M(WF(t))_{|h=\varepsilon}$. We solve a Cauchy problem for the set $\Gamma_M$, in the sense that we fix some geometric Cauchy data $\Gamma_M_{|h=\varepsilon}$ on the boundary $\{|h| = \varepsilon\}$ of the domain then we use the geometric characterization of $\Gamma_M_{|U}$ given by equation (2.3). It is a geometric version of the method of characteristics in PDE.
Proposition 2.2.2 Let $U = \{(x, h) | 0 < |h| \leq \varepsilon, x \in K\} \subset \mathbb{R}^{n+d}$ where $K$ is a compact subset of $\mathbb{R}^n$ and for some $\varepsilon > 0$. Let $\Gamma_M(\text{WF}(t))|_U$ be defined by Definition (2.2.1). Then $\Gamma_M(\text{WF}(t))|_{U \cap \{|h| = \varepsilon\}}$ entirely determines $\Gamma_M(\text{WF}(t))|_U$ by the equation:

$$\Gamma_M(\text{WF}(t))|_U = \{T^*\Phi_\lambda(p) | p \in \Gamma_M(\text{WF}(t))|_{U \cap \{|h| = \varepsilon\}}, 0 < \lambda \leq 1\}. \quad (2.4)$$

Proof — By definition, $\Gamma_M(\text{WF}(t))|_U$ is fibered by curves $\Gamma_M(\text{WF}(t))|_U = \{\Phi_\lambda(p) | p \in \Gamma_M(\text{WF}(t))|_U, \lambda \in (0, 1]\} \cap T^*\{0 < |h| \leq \varepsilon\}$. Each of this curve must intersect the boundary $|h| = \varepsilon$ in $T^*U$ hence $\Gamma_M(\text{WF}(t))|_U$ is the set of all curves $(T^*\Phi_\lambda(p))_{0 < \lambda \leq 1}$ for $p \in \Gamma_M(\text{WF}(t))|_{U \cap \{|h| = \varepsilon\}}$. \[\square\]

For a given cone $\text{WF}(t)$ and $\Gamma_M(\text{WF}(t))$ defined by the equation (2.3), we believe it is natural to demand that $\Gamma_M|_I$ is contained in the conormal $C$ because this ensures that $\Gamma_M(\text{WF}(t))$ never meets $C_\rho$ for arbitrary choices of generalized Euler vector fields $\rho$. This condition is crucial for QFT because it ensures that counterterms are conormal distributions supported on $I$, we will discuss this in Theorem (2.3.1). We introduce a local condition on $\text{WF}(t)$ named local soft landing condition at $p$ which ensures that for some neighborhood $V_p$ of $p$, $\Gamma_M(\text{WF}(t))|_{I \cap V_p} \subset C$:

**Definition 2.2.2** $\text{WF}(t)$ satisfies the soft landing condition at $p$ if there exists $\rho$ and a local chart $(x, h) \in C^\infty(U, \mathbb{R}^{n+d}), I = \{h = 0\}$ at $p \in U$ for which $\rho = h^j \frac{\partial}{\partial h^j}$ and such that

$$\exists \varepsilon > 0, \exists \delta > 0, \text{WF}(t)|_{U \cap \{|h| \leq \varepsilon\}} \subset \{|k| \leq \delta |h| |\xi|\}. \quad (2.5)$$
2.2. GEOMETRIC AND METRIC TOPOLOGICAL PROPERTIES OF $\Gamma$.

Notice that the scale invariance of estimate $|k| \leq \delta |h||\xi|$ implies the stability of the soft landing condition by scaling with $\rho = h^j \frac{\partial}{\partial h^j}$. The above definition depends on the choice of $\rho$, however since by 1.4.1, two Eulers $\rho_1, \rho_2$ are always locally conjugated by an element $\Psi$ of the pseudogroup $G$, $\Psi$ transforms the Euler by pushforward, $\Psi_* \rho_1 = \rho_2$, and the local chart by pullback. To prove that the local soft landing condition does not depend on the choice of Euler vector field, it suffices to prove $\Gamma$ satisfies the local soft landing condition at $p$ implies $\Psi(\Gamma)$ satisfies the soft landing condition at $\Psi(p)$ for all $\Psi \in G$.

**The soft landing condition is stable by action of $G$.**

We prove in Propositions 2.2.3 that the soft landing condition is locally stable by the action of the pseudogroup $G$ of local diffeomorphisms fixing $I$.

**The geometric reformulation of the soft landing condition.** We are led to reformulate the local soft landing condition in a more geometric flavor which, once established, makes the claim of stability rather trivial.

We denote by $\mathbb{U}^* \mathbb{R}^{n+d}$ the unit cosphere bundle. Let $\pi_1 : (x, h; k, \xi) \in \mathbb{U}^* \mathbb{R}^{n+d} \mapsto (x, h) \in \mathbb{R}^{n+d}$ and $\pi_2 : (x, h; k, \xi) \in \mathbb{U}^* \mathbb{R}^{n+d} \mapsto (k, \xi) \in \mathbb{U}^{n+d-1}$.

We introduce the following distance on the cosphere bundle $d_{\mathbb{U}^* \mathbb{R}^{n+d}}(p, q) = d_{\mathbb{R}^{n+d}}(\pi_1(p), \pi_1(q)) + d_{\mathbb{U}^{n+d-1}}(\pi_2(p), \pi_2(q))$. Let us consider $\mathbb{U}\Gamma$ the trace of $\Gamma$ on $\mathbb{U}^* \mathbb{R}^{n+d}$ and also $\mathbb{U}C$ the trace of the conormal bundle of $I$ in $\mathbb{U}^* \mathbb{R}^{n+d}$.
\section*{Chapter 2. A Prelude to the Microlocal Extension.}

\begin{definition}[Definition 2.2.3] The set $\Gamma$ satisfies the local soft landing condition on $U$ if and only if for any element $p \in \cup \Gamma$ such that $\pi_1(p) \in U$, the distance of $p$ with the conormal trace $\cup C$ is controlled by the distance between $\pi_1(p)$ and $I$:
\begin{align*}
\forall K \subset U, \exists \delta, \forall p \in \Gamma_S, \pi_1(p) \in K, d_{S, \mathbb{R}^{n+d}}(p, C_S) \leq \delta d_{\mathbb{R}^{n+d}}(\pi_1(p), I).
\end{align*}
\end{definition}

We will quickly explain the equivalence of this definition with the definition (2.2.2),
\begin{align*}
l t \ k \ | \delta | \ h \ | \xi | & \iff \binom{|k|}{|\xi|} \leq \delta |h| \\
& \iff |\tan(\theta((k, \xi); (0, \xi)))| \leq \delta |h| \iff |\theta((k, \xi); (0, \xi))| \leq \delta' |h|
\end{align*}

Conversely,
\begin{align*}
d_{S, \mathbb{R}^{n+d}}(p, C_S) \leq \delta d_{\mathbb{R}^{n+d}}(\pi_1(p), I) \\
\implies d_{S, \mathbb{R}^{n+d}}(p, C_S) = d_{S, \mathbb{R}^{n+d-1}}(\pi_2(p), \pi_2(C)) + d_{\mathbb{R}^{n+d}}(\pi_1(p), I) \\
\leq (1 + \delta') d_{\mathbb{R}^{n+d}}(\pi_1(p), I).
\end{align*}

\begin{proposition}[Proposition 2.2.4] Let $\Psi : U \mapsto U$ be a local diffeomorphism in $G$, $\sigma = T^* \Psi$ be the corresponding lift on $T^* U$ and $\Gamma$ be a closed conic set in $T^* M$. Then if $\Gamma$ satisfies the local soft landing condition at $\pi_1 \circ \sigma(p) \in U$, then $\sigma \circ \Gamma$ satisfies the local soft landing condition at $\pi_1 \circ \sigma(p)$.
\end{proposition}

By 1.4.1, this implies:

\begin{proposition}[Proposition 2.2.4] If $WF(t)$ satisfies the soft landing condition locally at $p$ for some $\rho$ and some associated chart, then for any local chart $(x, h) \in C^\infty(U, \mathbb{R}^{n+d})$, $I = \{h = 0\}$ and associated Euler $\rho = h^j \frac{\partial}{\partial x^j}$, $WF(t)$ satisfies the soft landing condition locally at $p$.
\end{proposition}

\begin{definition}[Definition 2.2.4] $WF(t)$ satisfies the soft landing condition if for all $p \in I$, it satisfies the soft landing condition locally at $p$.
\end{definition}
Consequences of the soft landing condition.

Lemma 2.2.1 Let $t \in \mathcal{D}'(M \setminus I)$. If $WF(t)$ satisfies the soft landing condition, then $WF(t)|_I \subset C$. In particular, this implies for all Euler $\rho$, there exists a neighborhood $\mathcal{V}$ of $I$ such that $WF(t) \cap C^\rho = \emptyset$.

Proof — By definition of the soft landing condition, it suffices to work locally at each $p \in I$. $\exists \delta > 0, WF(t)|_{U \cap \{|h| \leq \varepsilon\}} \subset \{|k| \leq \delta |h| |\xi|\}$ implies $WF(t)|_{U \cap \{|k| = 0\}} \subset \{|k| = 0\} \implies WF(t)|_{I \cap U} \subset C$. Actually $WF(t)|_{I \cap U} \subset C \implies WF(t)|_{U \cap \{|h| \leq \varepsilon\}} \cap C^\rho = \emptyset$ for $\varepsilon$ small enough by Lemma 2.1.1.

Theorem 2.2.1 Let $t \in \mathcal{D}'(M \setminus I)$. $WF(t)$ satisfies the soft landing condition if and only if
\[
\Gamma_M(WF(t))|_I \subset C = (TI)^{\perp},
\]
where $\Gamma_M(WF(t))$ is defined by Equation (2.3).

Proof — It suffices to work locally at each $p \in I$. The sense $\Rightarrow$ is simple. The set $\{|k| \leq \delta |h| |\xi|\}$ is clearly invariant by the flow $(x, h; k, \xi) \rightarrow (x, \lambda h; k, \lambda^{-1} \xi)$. If $p \in WF(t)$ then by hypothesis $p \in \{|k| \leq \delta |h| |\xi|\}$, hence the whole curve $\lambda \mapsto \Phi_\lambda(p)$ lies in $\{|k| \leq \delta |h| |\xi|\}$ thus by definition $\Gamma_M = \{\Phi_\lambda(p)|p \in WF(t), \lambda \in (0, \infty), \Phi_\lambda(p) \in T^*|0 < |h| \leq \varepsilon\}\subset \{|k| \leq \delta |h| |\xi|\}$. Since $\{|k| \leq \delta |h| |\xi|\}$ is closed then $\overline{\Gamma_M} \subset \{|k| \leq \delta |h| |\xi|\}$ and on $I = \{h = 0\}$ we must have $k = 0$ thus $\overline{\Gamma_M}|_I \subset C$. Hence $\Gamma_M|_I \subset C$. To establish the converse sense $\Leftarrow$, we use the proposition (2.2.2). If $\Gamma_M(WF(t))|_I \subset C$ then by Lemma 2.1.1, $\Gamma_M(WF(t))|_{\{|h| = \varepsilon\} \cap \{(x, h; k, 0)|k \neq 0\}} = \emptyset$ for $\varepsilon$ small enough. This implies that $\exists \delta > 0$ s.t. $\Gamma|_{\{|h| = \varepsilon\}} \subset \{|k| \leq \delta |\xi|\}$. Indeed let us proceed by contradiction. Assume the contrary, then for any $n \in \mathbb{N}^*$, there exist $(x_n, h_n; k_n \xi_n) \in \Gamma|_{\{|h| = \varepsilon\}}$ s.t. $k_n > n |\xi_n|$ and w.l.g. $|k_n| = 1$. By compactness, we can extract a subsequence which converges to $(x, h; k, 0)$. This hypothesis translates in an estimate $\Gamma_M|_{\{|h| = \varepsilon\}} \subset \{|k| \leq \delta |\xi|\}$ for a certain $\delta > 0$. Now the idea is to scale this estimate in order to have a general estimate for all $h$.

\[
p \in \Gamma_M|_{\{|h| = \varepsilon\}} \implies p = (x, h; k, \xi) \in \{|k| \leq \delta |\xi|\} \subset \{|k| \leq \delta |h| |\xi|\}
\]
by the estimate $\Gamma_M|_{\{|h| = \varepsilon\}} \subset \{|k| \leq \delta |\xi|\}$ and because $|h| = \varepsilon$,
\[
\forall \lambda \in (0, 1], \Phi_\lambda(p) = (x, \lambda h; k, \lambda^{-1} \xi) \in \{|k| \leq \delta \lambda |h| |\lambda^{-1} \xi|\} = \{|k| \leq \delta |h| |\xi|\}
\]
Hence by proposition (2.2.2) we find
\[
\Gamma_M|_{0 < |h| \leq \varepsilon} = \{\Phi_\lambda(p)|p \in \Gamma_M|_{\{|h| = \varepsilon\}, 0 < \lambda \leq 1\} \subset \{|k| \leq \delta |h| |\xi|\} = (2.7)
\]
\[
\Gamma_M|_{0 < |h| \leq \varepsilon} = \{\Phi_\lambda(p)|p \in \Gamma_M|_{\{|h| = \varepsilon\}, \lambda \in [0, 1]\} \subset \{|k| \leq \delta |h| |\xi|\} = (2.8)
\]
and we proved the claim because $WF(t)|_{0 < |h| \leq \varepsilon} \subset \overline{\Gamma_M|_{0 < |h| \leq \varepsilon}}$. ■
A counterexample which shows the optimality of the soft landing condition.

We give a counterexample which proves $WF(t)|_I \subset C$ does not imply $\Gamma_M(WF(t))|_I \subset C$ is in fact optimal. We work in $\mathbb{R}^2$ with coordinates $(x, h)$. The Euler vector field writes $\rho = h \partial_h$. If $WF(t) = \{(x, h; \lambda h^{-\frac{1}{2}}) | \lambda \in \mathbb{R}_+\}$ then it is immediate that $WF(t)|_I \subset C = \{(x, 0; 0, \xi)\}$. However $WF(t)$ does not satisfy the soft landing condition since we find that the sequence of points $(x, \frac{1}{n^2}; 1, n)$ belongs to $WF(t)$. By definition of $\Gamma = \bigcup_{\lambda \in (0, 1]} WF(t(\lambda))$, we find that

$$\Gamma = \{(x, \lambda^{-1} h, k, \lambda \xi)(x, h, k, \xi) \in WF(t), \lambda \in (0, 1]\}$$

thus setting $\lambda_n = \frac{1}{n}$, we find that the sequence $(x, \frac{1}{n^2}; 1, 1)$ belongs to $\Gamma$ thus $\lim_{n \to \infty} (x, \frac{1}{n^2}; 1, 1) = (x, 0; 1, 1) \in \Gamma|_I$ which does not live in the conormal.

### 2.3 The counterterms are conormal distributions.

We fix the coordinate system $(x^i, h^j)$ in $\mathbb{R}^{n+d}$ and $I = \{h = 0\}$. We first recall a deep theorem of Schwartz (see [55] Theorems 36 p. 101) about the structure of distributions supported on $I \subset \mathbb{R}^{n+d}$. We denote by $\delta_I$ the unique distribution such that

$$\langle \delta_I, \varphi \rangle = \int_{\mathbb{R}^n} \varphi(x, 0) d^n x.$$ 

The collection of coordinate functions $(h^j)_{1 \leq j \leq d}$ defines a canonical collection of transverse vector fields $(\partial_{h^j})_j$. If $t \in \mathcal{D}'(\mathbb{R}^{n+d})$ with $\text{supp } t \subset I$, then there exist a unique family of distributions (once the system of transverse vector fields $\partial_{h^j}$ is fixed) $t_\alpha \in \mathcal{D}'(\mathbb{R}^n)$, with $\{\text{supp } t_\alpha\}$ locally finite, such that $t(x, h) = \sum_{\alpha} t_\alpha(x) \partial_{h^\alpha} \delta_I(h)$ (see [55] Theorem 36 p. 101-102 or [33] theorem 2.3.5)) where the $\partial_{h^\alpha}$ are derivatives in the transverse directions.

**What happens in the case of manifolds?** From the point of view of L. Schwartz, the only thing to keep in mind is that a distribution supported on a submanifold $I$ is always well defined locally and the representation of this distribution is unique once we fix a system of coordinate functions $(h^j)_j$ which are transverse to $I$ ([55] Theorem 37 p. 102). For any distribution $t_\alpha \in \mathcal{D}'(I)$, if we denote by $i : I \hookrightarrow M$ the canonical embedding of $I$ in $M$ then $i_* t_\alpha$ is the extension of $t_\alpha$ in $M$:

$$\forall \varphi \in \mathcal{D}(M), \langle i_* t_\alpha, \varphi \rangle = \langle t_\alpha, \varphi \circ i \rangle.$$ 

The next lemma completes Theorem 1.3.4 proved in Chapter 1. Here the idea is that we add a constraint on the local counterterm $t$, namely that
2.3. THE COUNTERTERMS ARE CONORMAL DISTRIBUTIONS.

$WF(t)$ is contained in the conormal of $I$. Then we prove that the coefficients $t_\alpha$ appearing in the Schwartz representation are in fact smooth functions.

**Lemma 2.3.1** Let $t \in \mathcal{D}'(M)$ such that $t$ is supported on $I$, then

1) $t$ has a unique decomposition as locally finite linear combinations of transversal derivatives of push-forward to $M$ of distributions $t_\alpha$ in $\mathcal{D}'(I)$: $t = \sum_\alpha \partial^\nu_h (i_* t_\alpha)$, and

2) $WF(t)$ is contained in the conormal of $I$ if and only if $\forall \alpha$, $t_\alpha$ is smooth.

**Proof** — In local coordinates, let

$t(x,h) = \sum_\alpha \partial^\nu_h (t_\alpha(x) \delta_I(h)) = \sum_\alpha t_\alpha(x) \partial^\nu_h \delta_I(h)$.

Assume $t_\alpha$ is not smooth then $WF(t_\alpha)$ would be non empty. Then $WF(t_\alpha)$ contains an element $(x_0,h_0)$. Pick $\chi \in \mathcal{D}(\mathbb{R}^n)$ such that $\chi(x_0) \neq 0$ then

$\mathcal{F}(t_\alpha \chi \partial^\nu_h \delta_I)(k,\xi) = \hat{t}_\alpha \chi(k)(-i\xi)^\alpha,$

hence we find a codirection $(\lambda k_0, \lambda \xi_0)$, $k_0 \neq 0$ in which the product $\hat{t}_\alpha \chi \partial^\nu_h \delta_I$ is not rapidly decreasing, hence there is a point $(x,0)$ such that $(x,0;k_0,\xi_0) \in WF(t)$ (by lemma 8.2.1 in [33]) which is in contradiction with the fact that $WF(t) \subset C = \{(x,0,0,\xi)|\xi \neq 0\}$. The reader can use Theorem 8.1.5 in [33] for the converse.

Combining with Theorem 1.3.4, we obtain:

**Corollary 2.3.1** Let $t \in \mathcal{D}'(\mathbb{R}^{n+d})$ and supp $t \subset I$. If $WF(t) \subset C$ and $t \in E_s(\mathbb{R}^{n+d}), -m-1 < s + d \leq -m$, then $t(x,h) = \sum_\alpha t_\alpha(x) \partial^\nu_h \delta_I(h)$, where $\forall \alpha, t_\alpha \in C^\infty(\mathbb{R}^n)$ and $|\alpha| \leq m$.

**Corollary 2.3.2** Let $M$ be a smooth manifold and $I$ a closed embedded submanifold. For $-m-1 < s+d \leq -m$, the space of distributions $t \in E_s(\mathbb{R}^{n+d})$ such that supp $t \subset I$ and $WF(t)$ is contained in the conormal of $I$ is a finitely generated module of rank $m$ over the ring $C^\infty(I)$.

**Proof** — In each local chart $(x,h)$ where $I = \{h = 0\}$, $t = \sum_\alpha t_\alpha(x) \partial^\nu_h \delta_I(h)$ where the length $|\alpha|$ is bounded by $m$ by the above corollary and $\forall \alpha, t_\alpha \in C^\infty(I)$. This improves on the result given by the structure theorem of Laurent Schwartz since we now know that the $t_\alpha$ are smooth.

Recall $\pi$ is the fibration which in local coordinates where $\rho = h^j \frac{\partial}{\partial h^j}$ writes $\pi : (x,h) \mapsto x$ and $i$ is the embedding of $I$ in $M$. Recall the formula 1.30 for the counterterms which are used to renormalize the Hörmander extension formula:

$$\langle \tau_\lambda, \varphi \rangle = \left\langle t_\lambda \frac{h}{\lambda}, \sum_{|\alpha| \leq m} \frac{h^\alpha}{\alpha!} \pi^{\ast} i^{\ast} (\partial^\alpha_h \varphi) \right\rangle. \quad (2.9)$$
We give here a general definition of local counterterms of $t$ that covers the counterterms of Chapter 1, the anomaly counterterms of Chapter 6 and the poles of the meromorphic regularization of Chapter 7:

**Definition 2.3.1** Let us fix a system $(h^j)_{1 \leq j \leq d}$ of coordinate functions transverse to $I$. The vector space of local counterterms of $t \in \mathcal{D}'(M \setminus I)$ is defined as the vector space generated by all distribution $\tau$ supported on $I$ which can be represented by the formula:

$$\forall \varphi \in \mathcal{D}(M), \langle \tau, \varphi \rangle = \langle t\psi, \pi^\alpha i^* (\partial^\alpha h \varphi) \rangle,$$  \hspace{1cm} (2.10)

where $\psi$ vanishes in a neighborhood of $I$ and $\pi : \text{supp } \psi \to I$ is a proper mapping.

The next theorem we will prove is very simple yet extremely important conceptually for QFT in curved space times. In classical QFT textbooks, one should subtract polynomials of momenta to renormalize divergent integrals. By inverse Fourier transform these counterterms become sums of derivatives of delta functions supported on vector subspaces of configuration space. In curved space times, there is no concept of polynomials of momenta but the notion of conormal distribution supported on a submanifold still makes sense and replaces the concept of polynomials of momenta. We start by a simple lemma:

**Lemma 2.3.2** Let $t \in \mathcal{D}'(M \setminus I)$ and $\tau$ be a distribution defined by the formula

$$\forall \varphi \in \mathcal{D}(M), \langle \tau, \varphi \rangle = \langle t\psi, (\partial^\alpha h \varphi) \circ i \circ \pi \rangle,$$  \hspace{1cm} (2.11)

where $\psi$ vanishes in a neighborhood of $I$ and $\pi : \text{supp } \psi \to I$ is a proper mapping. If $WF(t\psi) \cap C^\rho = \emptyset$ then $WF(\tau)$ is contained in the conormal $C$.

**Proof** — We can prove our claim in local charts and reduce to the flat case $\mathbb{R}^{n+d}$. $\tau$ can be reformulated as a product of the pushforward of $t\psi$ by the fibration $\pi : (x, h) \in \mathbb{R}^{n+d} \to x \in \mathbb{R}^n$ with a derivative of delta distribution. The idea of the proof is to use the Fubini theorem where integration is performed in a specific order. To clearly understand the strategy, let us write $(t\psi, \partial^\alpha \varphi(x,0))$ in integral form

$$\int_{\mathbb{R}^{n+d}} d^n x d^d h t(x, h) \psi(x, h) \partial^\alpha \varphi(x,0)$$

$$= \int_{\mathbb{R}^n} d^n x \left( \int_{\mathbb{R}^d} d^d h t(x, h) \psi(x, h) \right) \partial^\alpha \varphi(x,0)$$

$$= \int_{\mathbb{R}^n} d^n x \left( \int_{\pi^{-1}(x)} d^d h t(x, h) \psi(x, h) \right) \partial^\alpha \varphi(x,0).$$

integrated along fibers
2.4. COUNTEREXAMPLE.

This formula suggests the coefficient $t_\alpha(x)$ in the Schwartz representation formula is just equal to the integral \( \int_{\mathbb{R}^n} d^d h t(x,h) \psi(x,h) \). Then the distribution $x \mapsto t_\alpha(x) = \int_{\mathbb{R}^n} d^d h t(x,h) \psi(h)$ is the pushforward $\pi_*(t\psi)$ where we integrated $t\psi$ along the fibers of the fibration $\pi$. The wave front set of $\pi_*(t\psi)$ can be computed by proposition (1.3.4) page 20 of [16]. $WF(\pi_*(t\psi)) = \{(x;k)|\exists h,(x,h;k,0) \in WF(t\psi)\}$, since $WF(t\psi) \cap C_p = \emptyset$ then $WF(\pi_*(t\psi))$ is empty hence $\pi_*(t\psi) \in C^\infty(I)$. Finally, if we set $t_\alpha = \pi_*(t\psi)$ then the counterterm $\tau$ writes $\tau(x,h) = t_\alpha(x) \partial^\alpha h(\delta(h)$ where $t_\alpha \in C^\infty(I)$ and is a conormal distribution in the terminology of Hörmander (see [33] 8.1.5).

Combining Lemmas 2.3.2, 2.3.1, 2.1.1 and fixing a system of coordinates functions $(h^j)_j$ transversal to $I$ yields the theorem:

**Theorem 2.3.1** Let $t \in \mathcal{D}'(M \setminus I)$. If $WF(t)|_I \subset C$, then there exists a neighborhood $V$ of $I$ such that for all $\tau$ defined by the formula

$$\forall \varphi \in \mathcal{D}(M), \langle \tau, \varphi \rangle = \langle t\psi, \pi^* \tau^*(\partial^\alpha \varphi) \rangle, \quad (2.12)$$

where $\psi$ vanishes in a neighborhood of $I$ and $\pi : supp \psi \mapsto I$ is a proper mapping and supp $\psi \subset V$, $WF(\tau) \subset C$. In particular, $\tau$ is represented in a unique way by $\tau = \sum_\alpha \partial^\alpha h(i_* \tau_\alpha)$ where $\forall \alpha, \tau_\alpha \in C^\infty(I)$.

2.4 Counterexample.

We work in $T^*\mathbb{R}^{n+d}$ with coordinates $(x,h;k,\xi)$ and $I = \{h = 0\}$. In this section, we prove that for any $p \in T^*\mathbb{R}^{n+d}|_I$, we can construct $t \in C^\infty(\mathbb{R}^{n+d} \setminus \{h = 0\}) \cap L^\infty(\mathbb{R}^{n+d})$ in such a way that $p \in WF(t)$. $t$ is a bounded function hence defines a unique element $t \in \mathcal{D}'(\mathbb{R}^{n+d})$.

**Lemma 2.4.1** For all $p = (x_0,0;k,\xi) \in T^*\mathbb{R}^{n+d}|_I$, there exists $t \in C^\infty(\mathbb{R}^{n+d} \setminus \{h = 0\}) \cap L^\infty(\mathbb{R}^{n+d})$ such that $p \in WF(t)$. In particular, when $p = (0,0;\epsilon,0)$ then we can choose

$$t(x,h) = \int_{\mathbb{R}^{n+d}} d\xi dk e^{i(x,k+h,\xi)} a(k,\xi) (1 + |k| + |\xi|)^{-n-d-1},$$

where $a(k,\xi) = e^{-\frac{|k|^2+|\xi|^2+(k.\xi)^2}{2k.\xi}} (1 - \alpha(k,\xi))$ when $k.\epsilon > 0$ and 0 otherwise, where $\alpha = 1$ in a neighborhood of 0.

The construction of $t$ was inspired by [34] Example 8.2.4 p. 188 and the lecture notes of Louis Boutet de Monvel [14] (8.7) p. 80.

**Proof** — Without loss of generality, we can reduce to the specific case where $\epsilon = (1,0,\ldots,0)$ and $\xi = 0$ by coordinate change. Notice $t \in L^\infty(\mathbb{R}^{n+d})$,

$$|t| \leq \int_{\mathbb{R}^{n+d}} d\xi dk (1 + |k| + |\xi|)^{-n-d-1}$$
The projection on the second factor (thus the extension \( \lim_{t \to 0} \WF \) should be contained in \( \{ \{ k_2 = \cdots = k_n = \xi_1 = \cdots = \xi_d = 0, k_1 > 0 \} \) which implies by Proposition 8.1.3 p. 254 in [33] that \( \WF(t) \) is nonempty. \( \hat{t} \) is a smooth symbol on \( T^*\mathbb{R}^{n+d} \) ([45] p. 98–99) which does not depend on \( (x, h) \) and the Fourier phase \( (x, k + h, \xi) \) has critical points only at \( x = h = 0 \) thus by Theorem 6.11 p. 102–103 in [45], we find that the singular support of \( t \) reduces to \( (0, 0) \) thus \( \WF(t) \subset T_{(0,0)}^*\mathbb{R}^{n+d} \) and \( t \in C^\infty(\mathbb{R}^{n+d} \setminus \{ h = 0 \}) \cap L^\infty(\mathbb{R}^{n+d}) \). But \( \WF(t) \) should be nonempty and the projection on the second factor \( (x, h, \xi) \in T^*\mathbb{R}^{n+d} \mapsto (k, \xi) \in \mathbb{R}^{n+d} \) should be contained in \( \{ k_2 = \cdots = k_n = \xi_1 = \cdots = \xi_d = 0, k_1 > 0 \} \) so \( \WF(t) = (0, 0; \lambda \varepsilon, 0), \lambda > 0 \). 

The distribution \( t \) is bounded hence weakly homogeneous of degree 0, thus the extension \( \lim_{\varepsilon \to 0} \int_{\varepsilon}^1 \frac{dx}{\lambda} t\psi_{\lambda^{-1}} = \lim_{\varepsilon \to 0} t(1 - \chi_{\varepsilon^{-1}}) \) exists in \( \mathcal{D}'(\mathbb{R}^{n+d}) \) by Theorem 1.3.1, is unique in \( E_0(\mathbb{R}^{n+d}) \) by Theorem 1.3.4 and just corresponds to the extension of \( t \) in \( \mathcal{D}' \) by integration against test functions. However, \( \forall \varepsilon, \int_{\varepsilon}^1 \frac{dx}{\lambda} t\psi_{\lambda^{-1}} = t(1 - \chi_{\varepsilon^{-1}}) \in C^\infty(\mathbb{R}^{n+d}) \):

**Theorem 2.4.1** For all \( p = (x_0, 0; k, \xi) \in T^*E_0(\mathbb{R}^{n+d} \setminus I) \), there exists a smooth function \( t \in E_0(\mathbb{R}^{n+d} \setminus I) \) (thus \( \WF(t) = \emptyset \)) which has a unique extension \( \tilde{t} \) in \( E_0(\mathbb{R}^{n+d}) \) such that \( p \in WF(\tilde{t}) \).

### 2.5 Appendix.

**The module structure of distributions supported on \( I \).** The concept of delta distribution \( \delta_I \) of a submanifold \( I \) is not intrinsically defined but a certain sheaf associated to \( I \) is canonically defined: let \( U \) be an open set of \( M \) and \( (h^j)_{j=1, \ldots, d} \in \mathcal{I}(U)^d \) a collection of sections of the sheaf \( \mathcal{I} \) of functions vanishing on \( I \cap U \) such that the differentials \( dh^j, j = 1, \ldots, d \) are linearly independent \( ((h^j)_{i \leq j \leq d} \) are transversal coordinates of a local chart). The map \( h : U \to \mathbb{R}^d \) allows to pullback by \( \delta_0^d \in \mathcal{D}'(\mathbb{R}^d) \) on \( U \), and we denote this pullback \( h^*\delta_0^d \) by \( \delta_{(h=0)} \). If we chose another system of defining functions \( h' \) for \( I \), then \( \delta_{(h'=0)} = \left( \frac{dh}{dh'} \right)^* \delta_{(h=0)} = det(\frac{dh}{dh'})_{ij} \). Thus the left module \( C^\infty(I)\delta_{(h=0)} \) defined over \( U \) has intrinsic meaning (analogous to the space of sections of a vector bundle). Patching by a partition of unity gives a sheaf of modules of rank 1 over \( C^\infty(I) \). Acting on the sections of this sheaf by differential operators of order \( k \) defines a module of rank \( \frac{dh}{dh'} \) over \( C^\infty(I) \).
Chapter 3

The microlocal extension.

**Introduction.** Let $M$ be a smooth manifold and $I \subset M$ be a closed embedded submanifold of $M$. In Chapter 2, we gave a necessary and sufficient condition on $WF(t), t \in \mathcal{D}'(M \setminus I)$ that ensured that the union $\Gamma = \bigcup_{\lambda \in (0,1]} WF(t_\lambda)$ of the wave front sets of all scaled distribution $t_\lambda$ has the property $\Gamma|_I \subset C$ where $C$ is the conormal of $I$. We saw this condition named soft landing condition (Definitions 2.2.2 and 2.2.3) was not sufficient to control the wave front set of the extension $\overline{t}$. Our goal in this chapter is to add a boundedness condition which ensures the control of the wave front set of the extension. Our plan starts with a geometric investigation of the dynamical properties of the scaling flow $e^{\log \lambda \rho}$ in cotangent space and show certain asymptotic behaviour of this flow.

3.1 Dynamics in cotangent space.

In this section, we use the terminology and notation of section 1 of Chapter 2. We investigate the asymptotic behaviour of the lifted flow $T^*\Phi_\lambda$.

**Decomposition in stable and unstable sets.** We interpret $C, C_\rho$ as stable and unstable sets for the lifted flow $T^*e^{\lambda \rho}$ in cotangent space. We work locally, let $p \in I$ and $V_p$ a neighborhood of $p$ in $M$, we fix a chart $(x,h) : V_p \mapsto \mathbb{R}^{n+d}$ in which $\rho = h^j \frac{\partial}{\partial h^j}$.

**Proposition 3.1.1** The flow $T^*e^{\lambda \rho}$ lifted to the cotangent cone $T^*V_p$ has the following property:

\[
\lim_{t \to +\infty} T^*e^{\lambda \rho}(p) \in (C_\rho \cap T^*V_p) \quad (3.1)
\]

\[
\lim_{t \to -\infty} T^*e^{\lambda \rho}(p) \in (C \cap T^*V_p) \quad (3.2)
\]

in an open dense subset $T^*V_p$. 

47
Proof — In coordinates \((x, h)\) in which \(I = \{h = 0\}\) and the flow has simple form \((x, h) \mapsto (x, e^t h)\), the action lifts to \((x, h; k, \xi) \in T^* \mathbb{R}^{n+d} \mapsto (x, e^t h; k, e^{-t} \xi) \in T^* \mathbb{R}^{n+d}\). We study the limit \(t \to -\infty\), two cases arise:

- **generically** \(\xi \neq 0\), then \((x, e^t h; k, e^{-t} \xi) \sim (x, e^t h; e^t k, \xi)\) (because it is a cotangent cone) converges to \((x, 0; 0, \xi)\), it is immediate to deduce \(\{(x, 0; k, \xi) | k \neq 0\} = (TI)^+ = C\) is the stable set of the flow. Notice the conormal bundle is an intrinsic geometric object and does not depend on the choice of vector field \(\rho\).

- Otherwise \(\xi = 0\), \((x, \lambda h; k, 0) \to (x, 0; k, 0)\), the limit must lie in \(\{(x, 0; k, 0) | k \neq 0\} \subset C^\rho\) which we will later see belongs to the unstable set.

Conversely if \(t \to \infty\):

- **generically** \(k \neq 0\), then \((x, e^t h; k, e^{-t} \xi)\) converges to \((x, 0; k, 0)\), it is immediate to deduce \(\{(x, h; k, 0) | k \neq 0\} = C^\rho\) is the unstable cone.

The flow \(\lim_{t \to \infty} T e^{\log \lambda} \rho\) sends all conic sets in the complement of \(C\) to the coisotropic set \(C^\rho\). ■

Beware that the wave front set \(WF(\Phi^* u)\) is the image of \(WF(u)\) by the map \(T^* \Phi^{-1}\). If \(\Phi = e^{\log \lambda} \rho\) then the interesting flow for the pull back will be \(T e^{-\log \lambda} \rho\) when \(\lambda \to 0\). This is why the properties established in the proposition 3.1.1 are crucial in the proof of the main theorem. Especially, we will use the fact that the flow \(T e^{-\log \lambda} \rho\), when \(\lambda \to 0\) sends all conic sets in the complement of \(C\) to the coisotropic set \(C^\rho\).

3.1.1 Definitions.

In this subsection, we recall results on distribution spaces that we will use in our proof of the main theorem which controls the wave front set of the extension. Furthermore the seminorms that we define here allow to write proper estimates. We denote by \(\theta\) the weight function \(\xi \mapsto (1 + |\xi|)\). For any cone \(\Gamma \subset T^* \mathbb{R}^d\), let \(D^\Gamma\) be the set of distributions with wave front set in \(\Gamma\). We define the set of seminorms \(\|\|_{N,V,\chi}\) on \(D^\Gamma\).

**Definition 3.1.1** For all \(\chi \in D(\mathbb{R}^d)\), for all closed cone \(V \subset \mathbb{R}^d \setminus \{0\}\) such that \((\text{supp} \chi \times V) \cap \Gamma = \emptyset\), \(\|t\|_{N,V,\chi} = \sup_{\xi \in V} |(1 + |\xi|)^N \hat{\chi}(\xi)|\).

We recall the definition of the topology \(D^\Gamma\) (see [1] p. 14),

**Definition 3.1.2** The topology of \(D^\Gamma\) is the weakest topology that makes all seminorms \(\|\|_{N,V,\chi}\) continuous and which is stronger than the weak topology of \(D'(\mathbb{R}^d)\). Or it can be formulated as the topology defined by all seminorms \(\|\|_{N,V,\chi}\) and the seminorms of the weak topology:

\[
\forall \varphi \in D(\mathbb{R}^d), \|t, \varphi\| = P_\varphi(t). \quad (3.3)
\]
3.2. MAIN THEOREM.

We say that \( B \) is bounded in \( D_\Gamma' \), if \( B \) is bounded in \( D' \) and if for all seminorms \( \| \cdot \|_{N,V,\chi} \) defining the topology of \( D_\Gamma' \),

\[
\sup_{t \in B} \| t \|_{N,V,\chi} < \infty.
\]

We also use the seminorms:

\[
\forall \varphi \in \mathcal{D}(\mathbb{R}^d), \pi_m(\varphi) = \sup_{|\alpha| \leq m} \| \partial^\alpha \varphi \|_{L^\infty(\mathbb{R}^d)},
\]

\[
\forall \varphi \in \mathcal{E}(\mathbb{R}^d), \forall K \subset \mathbb{R}^d, \pi_{m,K}(\varphi) = \sup_{|\alpha| \leq m} \| \partial^\alpha \varphi \|_{L^\infty(K)}.
\]

3.2 Main theorem.

In this section, we prove the main theorem of this chapter which gives a sufficient condition to control the wave front set of the extension \( \tilde{t} \). The condition is as follows: Let \( t \in E_s(M \setminus I) \) and assume \( WF(t) \) satisfies the soft landing condition, and assume that \( \lambda^{-s}t_\lambda \) is bounded in \( D_\Gamma' \) where \( \Gamma = \bigcup_{\lambda \in (0,1]} WF(t_\lambda) \). Then our theorem claims that \( WF(t) \subset WF(\tilde{t}) \cup C \) for the extension \( \tilde{t} \).

**Theorem 3.2.1** Let \( s \in \mathbb{R} \) such that \( s+d > 0 \), \( \mathcal{V} \) be a \( \rho \)-convex neighborhood of \( I \) and \( t \in D'(\mathcal{V} \setminus I) \). Assume that \( WF(t) \) satisfies the soft landing condition and that \( \lambda^{-s}t_\lambda \) is bounded in \( D_\Gamma' \) where \( \Gamma = \bigcup_{\lambda \in (0,1]} WF(t_\lambda) \subset T^*(M \setminus I) \). Then the wave front set of the extension \( \tilde{t} \) of \( t \) given by Theorem 1.3.1 is such that \( WF(\tilde{t}) \subset WF(t) \cup C \).

We saw in Chapter 2 that the hypothesis that \( WF(t) \) satisfies the soft landing condition is equivalent to the requirement that \( \Gamma|_I \subset C \) and implies that \( \Gamma \cap C_\rho = \emptyset \) in a sufficiently small neighborhood of \( I \).

3.2.1 Proof of the main theorem.

For the proof, it suffices to work in flat space \( \mathbb{R}^{n+d} \) with coordinates \( (x,h) \in \mathbb{R}^n \times \mathbb{R}^d \) where \( I = \{ h = 0 \} \) and \( \rho = h^j \frac{\partial}{\partial h^j} \), since the hypothesis of the theorem and the result are local and open properties.

**Proof** — We denote by \( \Xi \) the set \( WF(\tilde{t}) \cup C \). The weight function \( (1+|k|+|\xi|) \) is denoted by \( \theta \). In order to establish the inclusion \( WF(\tilde{t}) \subset \Xi \), it suffices to prove that for all \( p = (x_0,h_0;k_0,\xi_0) \notin \Xi \), there exists \( \chi \) s.t. \( \chi(x_0,h_0) \neq 0 \), \( V \) a closed conic neighborhood of \( (k_0,\xi_0) \) such that \( \| t \|_{N,V,\chi} < +\infty \) for all \( N \). Let \( p = (x_0,h_0;k_0,\xi_0) \notin \Xi \), then:

Either \( h_0 \neq 0 \), and we choose \( \chi \) in such a way that \( \chi = 0 \) on \( I \) thus \( t\chi = \tilde{t}\chi \) and we are done since \( \| \tilde{t} \|_{N,V,\chi} = \| t \|_{N,V,\chi} < +\infty \).
Either $h_0 = 0$ thus $k_0 \neq 0$ since $p \notin C$. Since $|k_0| > 0$, there exists $\delta' > 0$ s.t.

$|k_0| \geq 2\delta' |\xi_0|.$

We set $V = \{(k, \xi)| |k| \geq \delta' |\xi|\}$. By the soft landing condition,

$\exists \varepsilon_1 > 0, \exists \delta > 0, WF(t)|_{|h| \leq \varepsilon_1} \subset \{|k| \leq \delta |h||\xi|\},$

and $\Gamma_{|h| \leq \varepsilon_1} \subset \{|k| \leq \delta |h||\xi|\}.$

If we choose $\varepsilon > 0$ in such a way that $\delta \varepsilon < \delta'$ and $\varepsilon < \varepsilon_1$, then for any function $\chi$ s.t. supp $\chi \subset \{|h| \leq \varepsilon\}$, by the previous steps, we obtain that (supp $\chi \times V) \cap \Gamma = \emptyset$. From now on, $\chi$ and $V$ are given.

1. Recall $\psi = -\rho \chi'$ is the Littlewood–Paley function on $\mathbb{R}^{n+d}$, and supp $\psi = \{a \leq |h| \leq b\}$, $0 < a < 1$ does not meet $I = \{h = 0\}$. $\psi$ is defined on $\mathbb{R}^{n+d}$ but is not compactly supported in $x$ variable. We start from the definition of scaling given in Meyer ([44]) Definition 2.1 p. 45 Definition 2.2 p. 46:

$$\langle t_\lambda \psi, g \rangle = \lambda^{-d} \langle t_{\lambda^{-1}} \psi, g_{\lambda^{-1}} \rangle.$$ 

We pick the test functions $g$ defined by:

$$g(x, h) = e^{-i(kx + \xi h)} \chi(x, h),$$

then application of the identity which defines the scaling gives:

$$\hat{t_{\lambda^{-1}} \psi} = \lambda^d \hat{\chi} \lambda \hat{\psi}(k, \lambda \xi).$$

The trick is to notice that $\psi \chi_\lambda$ has a compact support which does not meet $I = \{h = 0\}$, because supp $\psi \subset \{a \leq |h| \leq b\}$ and $\chi(x, \lambda h)$ is compactly supported in $x$ uniformly in $\lambda$. Thus we can find a compact subset $K \subset \mathbb{R}^{n+d}$ such that $\forall \lambda$, supp $\chi_\lambda \psi \subset K$ and $K \cap I = \emptyset$ hence the above Fourier transforms are well defined. Set the family of cones $V_{\lambda} = \{(k, \lambda \xi)|(x, \xi) \in V\}$. By definition of the seminorms $\|\cdot\|_{N,V,\lambda}$, we get

$$\|t_{\lambda^{-1}} \psi\|_{N,V,\lambda} = \sup_{(k, \xi) \in V} (1 + |k| + |\xi|)^N |\hat{t_{\lambda^{-1}} \psi} (k, \lambda \xi)|$$

$$= \sup_{(k, \xi) \in V} (1 + |k| + |\xi|)^N \lambda^d |\hat{\chi} \lambda \hat{\psi}(k, \lambda \xi)|,$$

we isolate the interesting term

$$(1 + |k| + |\xi|)^N \lambda^d |\hat{\chi} \lambda \hat{\psi}(k, \lambda \xi)| = \frac{(1 + |k| + |\xi|)^N}{(1 + |k| + \lambda |\xi|)^N} (1 + |k| + \lambda |\xi|)^N \lambda^d |\hat{\chi} \lambda \hat{\psi}(k, \lambda \xi)|.$$ 

We also have

$$\sup_{(k, \xi) \in V} (1 + |k| + \lambda |\xi|)^N \lambda^d |\hat{\chi} \lambda \hat{\psi}(k, \lambda \xi)| \leq \|\lambda^d t_{\lambda} \psi\|_{N,V,\lambda_\chi},$$

by definition of $V_{\lambda} = \{(k, \lambda \xi)|(k, \xi) \in V\}$. 

3.2. MAIN THEOREM.

2. Hence, we are reduced to prove that the quantity \((1+|k|+|\xi|)^N/(1+|k|+\lambda|\xi|)^N\) remains bounded for \((k,\xi) \in V\). If so, we are able to apply estimates in Step 2 to bound \(\|t\psi_{\lambda-1}\|_{N,V,\lambda}\) in function of \(\|\lambda^d t\psi\|_{N,V,\lambda}\). The difficulty comes from the values of \(\lambda\) close to \(\lambda = 0\). But we find the following condition

\[
\sup_{\lambda \in (0,1],(k,\xi) \in V} \frac{(1+|k|+|\xi|)^N}{(1+|k|+\lambda|\xi|)^N} < (1+\delta^t-1)^N, \tag{3.4}
\]

this follows from:

\[
(k,\xi) \in V \implies \delta^t|\xi| \leq |k|
\]

\[
\implies 1 \leq \frac{1+|k|+|\xi|}{1+|k|+\lambda|\xi|} \leq \frac{1+(1+\delta^t-1)|k|}{1+|k|} \leq (1+\delta^t-1),
\]

and implies the estimate

\[
\|t\psi_{\lambda-1}\|_{N,V,\lambda} \leq \lambda^d C \|t\lambda\psi\|_{N,V,\lambda},
\]

where \(C = (1+\delta^t-1)^N\). By rescaling, we also have

\[
\forall \varepsilon > 0, \|t\psi_{\lambda-1}\|_{N,V,\lambda} \leq \left(\frac{\lambda}{\varepsilon}\right)^d C \|t_{\frac{\lambda}{\varepsilon}}\psi_{\varepsilon-1}\|_{N,V,\lambda}. \tag{3.5}
\]

3. We return to \(V \subset \{|k| \geq \delta^t|\xi|\}\) thus

\[
\text{supp } \chi \times V \subset \{|k| \geq \delta^t h||\xi|\}\]

since \(\text{supp } \chi \subset \{|h| \leq \varepsilon\}\) and \(\varepsilon\) can always be chosen \(\leq 1\). For all \(\lambda \leq \varepsilon\), we have the sequence of inclusions:

\[
\text{supp } (\chi_{\frac{\lambda}{\varepsilon}} \psi_{\varepsilon-1}) \times V_{\frac{\lambda}{\varepsilon}} \subset \sup \psi_{\varepsilon-1} \times V \subset \{|k| \geq \delta^t h||\xi|\},
\]

from which we deduce an improvement of the rescaled estimate (3.5):

\[
\forall \lambda \leq \varepsilon, \|t_{\frac{\lambda}{\varepsilon}}\psi_{\varepsilon-1}\|_{N,V,\lambda} \leq \|t_{\frac{\lambda}{\varepsilon}}\psi_{\varepsilon-1}\chi_{\frac{\lambda}{\varepsilon}}\|_{N,V,\varphi'}
\]

for some function \(\varphi' \in \mathcal{D}(\mathbb{R}^{n+d})\) s.t. \(\varphi' = 1\) on \(\text{supp } \psi_{\varepsilon-1}\), \(\varphi' = 0\) in a neighborhood of \(I\) and \((\text{supp } \varphi' \times V) \cap \Gamma = \emptyset\) (such \(\varphi'\) always exists by choosing \(\varepsilon\) small enough in the first step of the proof and by choosing \(\text{supp } \varphi'\) slightly larger than \(\text{supp } \psi_{\varepsilon-1}\)). We have gained the fact that the term \(\|t_{\frac{\lambda}{\varepsilon}}\psi_{\varepsilon-1}\chi_{\frac{\lambda}{\varepsilon}}\|_{N,V,\varphi'}\) on the r.h.s. is expressed in terms of a seminorm \(\|\cdot\|_{N,V,\varphi'}\) where the cone \(V\) does not depend on \(\lambda\). We still have to get rid of the dependence of the function \(\psi_{\varepsilon-1}\chi_{\frac{\lambda}{\varepsilon}}\) in \(\lambda\). We use our estimates for the product of a smooth function and
a distribution (see Estimate 3.9), for any arbitrary cone \( W \) which is a neighborhood of \( V \):

\[
\left\| t_\frac{1}{2} \psi_{\frac{1}{2} - 1} \chi_{\frac{1}{2}} \right\|_{N,V,\varphi'} \leq C_2 \pi (\psi_{\frac{1}{2} - 1} \chi_{\frac{1}{2}}) \left( \left\| t_\frac{1}{2} \right\|_{N,W,\varphi'} + \left\| \theta^{-m} t_\frac{1}{2} \varphi' \right\|_{L^\infty} \right),
\]

(3.6)

where \( \left\| . \right\|_{N,W,\varphi'} \) is a seminorm of \( D'_{\Gamma} \). By using the hypothesis of the theorem that \( \lambda^{-s} t_\lambda \) is bounded in \( D'_{\Gamma} \), we deduce that

\[
\sup_{\lambda \in (0, \varepsilon]} \left( \frac{\lambda}{\varepsilon} \right)^{s} \left\| t_\frac{1}{2} \right\|_{N,W,\varphi'} < +\infty.
\]

The above inequality combined with the estimate (3.6), the estimate 3.5 and Theorem 4.1.2 applied to the bounded family \( (\lambda^{-s} t_\lambda)_{\lambda \in (0,1]} \) gives us:

\[
\forall \lambda \leq \varepsilon, \exists C', \left\| t_\psi \lambda^{-1} \right\|_{N,V,\chi} \leq C' \left( \frac{\lambda}{\varepsilon} \right)^{s+d}.
\]

4. This suggests we should decompose the integral \( \int_0^1 \frac{d\lambda}{\lambda} t_\psi \lambda^{-1} \) in two parts:

\[
\| \mathcal{T} \|_{N,V,\chi} = \| \int_0^1 \frac{d\lambda}{\lambda} t_\psi \lambda^{-1} \|_{N,V,\chi} \\
\leq \| \int_0^\varepsilon \frac{d\lambda}{\lambda} t_\psi \lambda^{-1} \|_{N,V,\chi} + \| \int_\varepsilon^1 \frac{d\lambda}{\lambda} t_\psi \lambda^{-1} \|_{N,V,\chi} \\
\leq \int_0^\varepsilon \frac{d\lambda}{\lambda} \left( \| t_\psi \lambda^{-1} \|_{N,V,\chi} + \| \mathcal{T} (\chi - \chi_{\varepsilon^{-1}}) \|_{N,V,\chi} \right) < +\infty,
\]

because \( t(\chi - \chi_{\varepsilon^{-1}}) \) is supported away from \( \{ \mathcal{H} = 0 \} \). This reduces the study to \( \int_0^\varepsilon \frac{d\lambda}{\lambda} \| t_\psi \lambda^{-1} \|_{N,V,\chi} \) which is bounded by \( C' \int_0^\varepsilon \frac{d\lambda}{\lambda} \left( \frac{\lambda}{\varepsilon} \right)^{s+d} < +\infty. \)

5. We try to give an explicit bound which “summarizes” all our previous arguments:

\[
\leq C^s \sup_{\lambda \in (0, \varepsilon]} \left( \frac{\lambda}{\varepsilon} \right)^{s} \pi (\psi_{\frac{1}{2} - 1} \chi_{\frac{1}{2}}) \left( \left\| t_\frac{1}{2} \right\|_{N,W,\varphi'} + \left\| \theta^{-m} t_\frac{1}{2} \varphi' \right\|_{L^\infty} \right).
\]

(3.7)
3.2. MAIN THEOREM.

What do we need to reproduce the estimate (3.7) for families? We keep the same notation as in the proof and statement of theorem (3.2.1). The previous proof works for a fixed distribution $t$. We would like to reconsider the proof of the main theorem for a family $(\mu)_{\lambda}$ of distributions bounded in $D'_\Gamma$. The validity of the previous theorem relied on the final estimate (3.7):

$$\int_0^\varepsilon \frac{d\lambda}{\lambda} \| t \psi_{\lambda-1} \|_{N,V,\chi} \leq \frac{C_{s,d}}{2^{s+d}} \sup_{\lambda \in (0,\varepsilon]} \left( \frac{\lambda}{\varepsilon} \right)^{-s} \pi_2 N(\psi_{\lambda-1} \chi_{\frac{\lambda}{\varepsilon}}) \left( \| t \psi_{\frac{\lambda}{\varepsilon}} \|_{N,W,\varphi'} + \| \theta_m t \psi_{\frac{\lambda}{\varepsilon}} \varphi' \|_{L^\infty} \right).$$

(3.8)

where the constants of the inequality are independent of $t$. Hence the proof and the final estimate still works for the family of distributions $\lambda^{-s} t \mu$ since the family $\lambda^{-s} (\mu^{-s} t \mu)_{\lambda} = (\lambda \mu)^{-s} \mu_{\lambda}$ is bounded in $D'_\Gamma (V \setminus I)$ uniformly in $(\lambda, \mu)$. Thus we have the proposition:

**Proposition 3.2.1** If $t$ satisfies the assumptions of theorem (3.2.1), then the family $(\mu^{-s} t \mu)_{\mu \in (0,1]}$ is bounded in $D'_\Gamma (V \setminus I)$.

3.2.2 The renormalized version of the main theorem.

What do we need to extend the proof of the main theorem in the case with counterterms? In the course of the proof of 3.2.1, we used that $\lambda^{-s} t \lambda$ is bounded in $D'_\Gamma$. When $-m - 1 < s + d \leq m$, we need to introduce counterterms in the Hörmander formula. We outline the proof of the renormalized case following the main steps of the proof of Theorem 3.2.1. We will sometimes denote by $F[f]$, the Fourier transform $\hat{f}$ of a Schwartz distribution $f$ and we denote by $e_{k,\xi}$ the Fourier character $e_{k,\xi} : (x,h) \mapsto e^{i(kx+\xi h)}$.

- The first step is identical, for $p = (x_0,0; k_0, \xi_0) \notin WF(t) \cup C$, $k_0 \neq 0$ we find a neighborhood $\text{supp } \chi \times V$ of $p$ such that $\text{supp } \chi \times V \cap \Gamma = \emptyset$ where $V \subset \{|k| \geq \delta' |\xi|\}$ and $\text{supp } \chi \subset \{|h| \leq \varepsilon\}$ for some $\varepsilon, \delta' > 0$.

- For the computational step, we must use the Taylor formula with integral remainder to take into account the subtraction of counterterms:

$$F[(t \psi_{\lambda-1} - \tau_s) \chi] (k, \xi) = \left< t \psi_{\lambda-1}, \left( 1 - \sum_{|\alpha| \leq m} \frac{h^\alpha}{\alpha!} (-\partial)^\alpha \delta_{h=0} \right) e_{k,\xi} \chi \right>$$

subtraction of local counterterm

$$= \left< t \psi_{\lambda-1}, \frac{1}{m!} \int_0^1 du (1-u)^m \left( \frac{\partial}{\partial u} \right)^{m+1} e_{k,u} \chi_u \right>$$

Taylor remainder

$$= \frac{1}{m!} \int_0^1 du (1-u)^m \left( \frac{\partial}{\partial u} \right)^{m+1} t \psi_{\lambda-1} \chi_u (k, u \xi)$$
\[ \frac{\lambda^d}{m!} \int_0^1 du (1 - u)^m \left( \frac{\partial}{\partial u} \right)^{m+1} t_\lambda \psi \chi_u(k, u\lambda \xi) \]

\[ = \frac{\lambda^{d+m+1}}{m!} \int_0^\lambda du \frac{(1 - u)^m}{\lambda} \left( \frac{\partial}{\partial u} \right)^{m+1} t_\lambda \psi \chi_u(k, u\xi). \]

by variable change. We also introduce a rescaled version of the previous identity with a variable parameter \( \varepsilon > 0 \) in such a way that the cut-off function \( \psi_{\varepsilon^{-1}} \) on the r.h.s. restrict the expression under the Fourier symbol to the domain \( |h| \leq \varepsilon \):

\[ \forall \varepsilon > 0, \mathcal{F} \left[ (t_\varepsilon \psi_{\varepsilon^{-1}} - \tau_\lambda) \chi \right](k, \xi) \]

\[ = \left( \frac{\lambda}{\varepsilon} \right)^{d+m+1} \frac{1}{m!} \int_0^{\frac{\lambda}{\varepsilon}} du (1 - \frac{\varepsilon u}{\lambda})^m \left( \frac{\partial}{\partial u} \right)^{m+1} \mathcal{F} \left( t_\varepsilon \psi_{\varepsilon^{-1}} \chi_u \right)(k, u\xi). \]

Since \( \psi_{-1} \subset \{ |h| \leq \varepsilon \} \), we have the estimate

\[ \partial_u^{m+1} \mathcal{F} \left( t_\varepsilon \psi_{\varepsilon^{-1}} \chi_u \right)(k, u\xi) \leq (1 + \varepsilon |\xi|)^{m+1} \sup_{0 \leq j \leq m+1} \left| \mathcal{F}(t_\varepsilon \psi_{\varepsilon^{-1}} \partial_u^j \chi_u)(k, u\xi) \right|, \]

by Leibniz rule.

\[ |(1 + |k| + |\xi|)^N \left( \frac{\partial}{\partial u} \right)^{m+1} \mathcal{F} \left( t_\varepsilon \psi_{\varepsilon^{-1}} \chi_u \right)(k, u\xi)| \]

\[ \leq (1 + |k| + |\xi|)^{N+m+1} \sup_{0 \leq j \leq m+1} \left| \mathcal{F}(t_\varepsilon \psi_{\varepsilon^{-1}} \partial_u^j \chi_u)(k, u\xi) \right| \]

\[ \leq \frac{(1 + |k| + |\xi|)^{N+m+1}}{(1 + |k| + u|\xi|)^{N+m+1}} (1 + |k| + u|\xi|)^{N+m+1} \sup_{0 \leq j \leq m+1} \left| \mathcal{F}(t_\varepsilon \psi_{\varepsilon^{-1}} \partial_u^j \chi_u)(k, u\xi) \right|. \]

Following the proof of Theorem 3.2.1, we find that the hypothesis (3.4) \( V \subset \{ \delta' |\xi| \leq |k| \} \) implies the estimate

\[ \sup_{(k, \xi) \in V} \frac{(1 + |k| + |\xi|)^{N+m+1}}{(1 + |k| + u|\xi|)^{N+m+1}} \leq (1 + \delta')^{-N+m+1} \]

from which we deduce:

\[ \forall (k, \xi) \in V, \exists C, |(1 + |k| + |\xi|)^N \left( \frac{\partial}{\partial u} \right)^{m+1} \mathcal{F} \left( t_\varepsilon \psi_{\varepsilon^{-1}} \chi_u \right)(k, u\xi)| \]

\[ \leq C(1 + |k| + u|\xi|)^{N+m+1} \sup_{0 \leq j \leq m+1} \left| \mathcal{F}(t_\varepsilon \psi_{\varepsilon^{-1}} \partial_u^j \chi_u)(k, u\xi) \right|. \]
3.2. MAIN THEOREM.

Thus for $\forall u \leq \frac{\lambda}{\varepsilon}$:

$$
\| \theta^N \left( \frac{\partial}{\partial u} \right)^{m+1} F \left( t_{\frac{\lambda}{\varepsilon}} \psi_{\frac{1}{\varepsilon}} \chi_u \right) (k, u \xi) \|_{L^\infty(V)} 
\leq C \operatorname{sup}_{0 \leq j \leq m+1} \| t_{\frac{\lambda}{\varepsilon}} \psi_{\frac{1}{\varepsilon}} \|_{N+m+1, V, \partial \psi u}
$$

where $V_u = \{(k, u \xi) | (k, \xi) \in V\}$. If we denote by $\chi_u^{(j)} = \partial_u^j \chi_u$, by the same argument as in the proof of Theorem 3.2.1, for all $u \leq \frac{\lambda}{\varepsilon}, \lambda \leq \varepsilon$, we have the inclusion $\operatorname{supp} \left( \psi_{\frac{1}{\varepsilon}} \chi_u^{(j)} \right) \times V_u \subset \operatorname{supp} \left( \psi_{\frac{1}{\varepsilon}} \chi_u^{(j)} \right) \times V_{\frac{1}{\varepsilon}}$

where $\operatorname{supp} \left( \psi_{\frac{1}{\varepsilon}} \chi_u^{(j)} \right) \times V \cap \Gamma = \emptyset$, which implies the estimate

$$
\| t_{\frac{\lambda}{\varepsilon}} \psi_{\frac{1}{\varepsilon}} \|_{N+m+1, V, \chi_u^{(j)}} \leq \| t_{\frac{\lambda}{\varepsilon}} \psi_{\frac{1}{\varepsilon}} \chi_u^{(j)} \|_{N+m+1, V, \varphi'}
$$

where $\varphi'$ is any function in $D(\mathbb{R}^{n+d})$ such that $\varphi' = 1$ on $\operatorname{supp} (\psi_{\frac{1}{\varepsilon}} \chi_u)$ and $\operatorname{supp} \varphi' \times V \cap \Gamma = \emptyset$. Finally, we find that

$$
\| (t \psi_{\lambda-1} - \tau_{\lambda}) \|_{N, V, \chi}
\leq C \left( \frac{\lambda}{\varepsilon} \right)^{d+m} \frac{1}{m!} \int_0^{\frac{1}{\varepsilon}} du (1 - \frac{\varepsilon u}{\lambda})^m \operatorname{sup}_{u \in (0, 1], 0 \leq j \leq m+1} \| t_{\frac{\lambda}{\varepsilon}} \psi_{\frac{1}{\varepsilon}} \chi_u^{(j)} \|_{N+m+1, V, \varphi'}
$$

$$
\leq C \left( \frac{\lambda}{\varepsilon} \right)^{d+m+1} \frac{1}{m+1!} \operatorname{sup}_{u \in (0, 1], 0 \leq j \leq m+1} \| t_{\frac{\lambda}{\varepsilon}} \psi_{\frac{1}{\varepsilon}} \chi_u^{(j)} \|_{N+m+1, V, \varphi'}
$$

where we use the simple identity $\frac{1}{m+1} = \int_0^1 du (1 - u)^m$. Then we use the estimates (3.9) for the product of the bounded family of smooth functions $\psi_{\frac{1}{\varepsilon}} \chi_u^{(j)}$ and the family of distributions $t_{\frac{\lambda}{\varepsilon}}$ and the assumption that $\lambda^{-s} t_{\lambda}$ is bounded in $D'$ to establish the estimate

$$
\sup_{u \leq 1} \| t_{\frac{\lambda}{\varepsilon}} \psi_{\frac{1}{\varepsilon}} \chi_u^{(j)} \|_{N+m+1, V, \varphi'} \leq C' \left( \frac{\lambda}{\varepsilon} \right)^s
$$

for all $0 \leq j \leq m+1$. Then we can conclude in the same way as in the proof of Theorem 3.2.1:

$$
\| \int_0^1 \frac{d\lambda}{\lambda} (t \psi_{\lambda-1} - \tau_{\lambda}) \|_{N, V, \chi}
\leq \| t(\chi - \chi_{\frac{1}{\varepsilon}}) \|_{N, V, \chi} + \int_0^1 \tau_{\lambda} \lambda \|_{N, V, \chi} + \int_0^\varepsilon \frac{d\lambda}{\lambda} \left( \frac{\lambda}{\varepsilon} \right)^{s+d+m+1} \frac{C}{m+1!} C',
$$

where the last term is finite.

Theorem 3.2.2 Theorem 3.2.1 holds under the weaker assumption $s \in \mathbb{R}$. Moreover if $-s - d \in \mathbb{N}$ then $\lambda^{-s} \tau_{\lambda}$ is bounded in $D'_{WF(t)} (V)$ for all $s' < s$, if $-s - d \notin \mathbb{N}$ then $\lambda^{-s} \tau_{\lambda}$ is bounded in $D'_{WF(t)} (V)$.
3.3 Appendix

3.3.1 Estimates for the product of a distribution and a smooth function.

**Theorem 3.3.1** Let \( m \in \mathbb{N} \) and \( \Gamma \subset T^*(\mathbb{R}^d) \). Let \( V \) be a closed cone in \( \mathbb{R}^d \). Then for every \( N \) and every closed conical neighborhood \( W \) of \( V \) such that \( (\text{supp } \chi \times W) \cap \Gamma = \emptyset \), there exists a constant \( C \) such that for all \( \varphi \in \mathcal{D}(\mathbb{R}^d) \) and for all \( t \in \mathcal{D}_r(\mathbb{R}^d) \) such that \( ||\theta^{-m}\hat{t}\varphi||_{L^\infty} < +\infty \):

\[
||t\varphi||_{N,V,W,\chi} \leq C_{2N,K}(\varphi)(||t||_{N,W,\chi} + ||\theta^{-m}\hat{t}\varphi||_{L^\infty}). \tag{3.9}
\]

**Proof** — We denote by \( \theta \) the weight function \( \xi \mapsto (1 + |\xi|) \) and \( e_\xi := x \mapsto e^{-ix\cdot\xi} \) the Fourier character. If the cone \( V \) is given, we can always define a thickening \( W \) of the cone \( V \) such that \( W \) is a closed conic neighborhood of \( V \):

\[
W = \{ \eta \in \mathbb{R}^d \setminus \{0\} | \exists \xi \in V, |\xi| \leq |\eta| \leq \delta \},
\]

intuitively this means that small angular perturbations of covectors in \( V \) will lie in the neighborhood \( W \). If \( (\text{supp } \chi \times V) \cap \Gamma = \emptyset \) then \( \delta \) can be chosen **arbitrarily small** in such a way that \( (\text{supp } \chi \times W) \cap \Gamma = \emptyset \). We reduce the estimate to the Fourier transform of the product:

\[
|\hat{t}\varphi(\xi)| = |(t\varphi, e_\xi)\chi| = |\hat{t}\chi \ast \hat{\varphi}(\xi)|
\]

\[
\leq \int_{\mathbb{R}^d} |\hat{\varphi}(\xi - \eta)\hat{t}\chi(\eta)| d\eta.
\]

We reduce to the estimate:

\[
\int_{\mathbb{R}^d} |\hat{\varphi}(\xi - \eta)\hat{t}\chi(\eta)| d\eta
\]

\[
\leq \int_{|\xi| - |\eta| \leq \delta} |\hat{\varphi}(\xi - \eta)\hat{t}\chi(\eta)| d\eta + \int_{|\xi| - |\eta| > \delta} |\hat{\varphi}(\xi - \eta)\hat{t}\chi(\eta)| d\eta,
\]

we will estimate separately the two terms \( I_1(\xi), I_2(\xi) \). Start with \( I_1(\xi) \), if \( \xi \in V \) then \( |\frac{\xi}{|\xi|} - \frac{\eta}{|\eta|}| \leq \delta \implies \eta \in W \) and by definition of the seminorms, we have the estimate

\[
\forall N, |\hat{t}\chi(\eta)| \leq ||t||_{N,W,\chi}(1 + |\eta|)^{-N}
\]

then we use a trick due to Eskin, since \( \varphi \in \mathcal{D}(\mathbb{R}^d) \), we also have \( |\hat{\varphi}(\xi - \eta)| \leq ||\theta^{2N}\hat{\varphi}||_{L^\infty}(1 + |\xi - \eta|)^{-2N} \leq C_{2N}(\varphi)(1 + |\xi - \eta|)^{-2N} \) where \( C = d^N \text{Vol } (\text{supp } \varphi) \) depends on \( N \) and on the volume of \( \text{supp } \varphi \). Hence

\[
\int_{|\xi| - |\eta| \leq \delta} |\hat{\varphi}(\xi - \eta)\hat{t}\chi(\eta)| d\eta
\]
\[ \leq C_{\pi_2N}(\varphi) \| t \|_{N,W,\chi}(1 + |\xi|)^{-N} \int_{\mathbb{R}^d} \frac{(1 + |\xi|)^N}{(1 + |\eta|)^N (1 + |\xi - \eta|)^2N} d\eta \]

\[ \leq C_{\pi_2N}(\varphi) \| t \|_{N,W,\chi}(1 + |\xi|)^{-N} C_1 \]

where \( C_1 = \sup_{|\xi|} \int_{\mathbb{R}^d} \frac{(1 + |\xi|)^N}{(1 + |\eta|)^N (1 + |\xi - \eta|)^2N} d\eta \) is finite when \( N \geq d + 1 \). To estimate the second term \( I_2(\xi) \), we use the inequality \[ |\frac{\xi}{|\xi|} - \frac{\eta}{|\eta|}| \geq \delta \]

which implies the angle between covectors is bounded below by an angle \( \alpha = 2 \arcsin \frac{\delta}{2} > 0 \). By definition \( \frac{\eta}{|\eta|} \) is in \( \mathbb{R}^d \setminus (W \cup \{0\}) \), and \[ \frac{\xi}{|\xi|}, \frac{\eta}{|\eta|} \] must be larger than \( \alpha = 2 \arcsin \frac{\delta}{2} \). Then the trick is to deduce lower bounds from the identity \[ a^2 + b^2 - 2ab \cos c = (a - b \cos c)^2 + b^2 \sin^2 c = (a - b \cos c)^2 + a^2 \sin^2 c, \text{ thus} \]

\[ \forall (\xi, \eta) \in (V \times W), |(\sin \alpha) \eta| \leq |\xi - \eta|, |(\sin \alpha) \xi| \leq |\xi - \eta|. \]

We start again from the estimate on the Fourier transform of \( \varphi \), \( \forall N \):

\[ |\hat{\varphi}(\xi - \eta)| \leq C_{\pi_2N}(\varphi)(1 + |\xi - \eta|)^{-N} \leq C_{\pi_2N}(\varphi)(1 + |\sin \alpha \eta|)^{-N}(1 + |(\sin \alpha) \xi|)^{-N} \]

\[ \leq C_{\pi_2N}(\varphi) \| \sin \alpha |^{-2N}(1 + |\xi|)^{-N}(1 + |\xi|)^{-N} \int_{\mathbb{R}^d} |\hat{\varphi}(\xi - \eta)\hat{\chi}(\eta)| d\eta \]

\[ \leq C_{\pi_2N}(\varphi) \| \sin \alpha |^{-2N}(1 + |\xi|)^{-N} \int_{\mathbb{R}^d} (1 + |\eta|)^{-N}|\theta^{-m}\hat{\chi}| \|_{L^\infty} (1 + |\eta|)^m d\eta \]

where \( m \) is the order of the distribution, finally

\[ I_2(\xi) \leq C_{\pi_2N}(\varphi)(1 + |\xi|)^{-N} \| \theta^{-m}\hat{\chi} \|_{L^\infty} \]

where \( C_2 = C \| \sin \alpha |^{-2N} \int_{\mathbb{R}^d} (1 + |\eta|)^{-N}(1 + |\eta|)^m d\eta \) is finite when \( N \geq m + d + 1 \). Gathering the two estimates, we have

\[ \int_{\mathbb{R}^d} |\hat{\varphi}(\xi - \eta)\hat{\chi}(\eta)| d\eta \]

\[ \leq C_{\pi_2N}(\varphi)(1 + |\xi|)^{-N} (C_1 \| t \|_{N,W,\chi} + C_2 \| \theta^{-m}\hat{\chi} \|_{L^\infty}) \]

but recall the estimate on the right hand side is relevant provided \( \delta > 0 \) which implies \( \alpha > 0 \), \( \delta \) depends on the choice of the cone \( W \), the estimate is true for any cone \( W \) such that \( \text{dist}(\mathcal{C}W \cap \mathbb{S}^{d-1}, V \cap \mathbb{S}^{d-1}) \geq \delta \). We have a final estimate

\[ \| t\varphi \|_{N,V,\chi} \leq C_{\pi_2N}(\varphi)(\| t \|_{N,W,\chi} + \| \theta^{-m}\hat{\chi} \|_{L^\infty}) \]

where \( C \) is a constant which depends on \( N, V, W \) and the volume of supp \( \varphi \). \( \blacksquare \)
CHAPTER 3. THE MICROLOCAL EXTENSION.
Chapter 4

Stability of the microlocal extension.

Introduction. In Chapter 3, we saw that there is a subspace of distributions of $\mathcal{D}'(M \setminus I)$ for which we could control the wave front set of the extension $\mathcal{E} \in \mathcal{D}'(M)$. In fact, we proved that if $WF(t)$ satisfies the soft landing condition and $\lambda^{-\alpha} t\lambda$ is bounded in $\mathcal{D}'_r$, then $WF(\mathcal{E}) \subset WF(t) \cup C$. Our assumptions obviously depend on the choice of some Euler vector field $\rho$. Actually, our objective in this technical part is to investigate the dependence of these conditions on the choice of $\rho$, their stability when we pull-back by diffeomorphisms and when we multiply distributions both satisfying these hypothesis. This is absolutely necessary in order to prove by recursion that all vacuum expectation values $\langle 0 | T(a_1(x_1) ... a_n(x_n)) | 0 \rangle$ are well defined in the distributional sense.

4.1 Notation, definitions.

We denote by $\theta$ the weight function $\xi \mapsto (1 + |\xi|)$. We recall a theorem of Laurent Schwartz (see [55] p. 86 Theorem (22)) which gives a concrete representation of bounded families of distributions.

**Theorem 4.1.1** For a subset $B \subset \mathcal{D}'(\mathbb{R}^d)$ to be bounded it is necessary and sufficient that for any domain $\Omega$ with compact closure, there is a multi-index $\alpha$ such that $\forall t \in B, \exists f_t \in C^0(\Omega)$ where $t|_\Omega = \partial^\alpha f_t$ and $\sup_{t \in B} \| f_t \|_{L^\infty(\Omega)} < \infty$.

We give an equivalent formulation of the theorem of Laurent Schwartz in terms of Fourier transforms:

**Theorem 4.1.2** Let $B \subset \mathcal{D}'(\mathbb{R}^d)$.

\[ \forall \chi \in \mathcal{D}(\mathbb{R}^d), \exists m \in \mathbb{N}, \sup_{t \in B} \| \theta^{-m} \hat{t}\chi \|_{L^\infty} < +\infty \]


\( \Leftrightarrow B \) weakly bounded in \( \mathcal{D}'(\mathbb{R}^d) \) \( \Leftrightarrow B \) strongly bounded in \( \mathcal{D}'(\mathbb{R}^d) \).

We refer the reader to the appendix of this chapter for a proof of the above theorem. For any cone \( \Gamma \subset T^*\mathbb{R}^d \), let \( \mathcal{D}'_{\Gamma} \) be the set of distributions with wave front set in \( \Gamma \). We define the set of seminorms \( \| \cdot \|_{N,V,\chi} \) on \( \mathcal{D}'_{\Gamma} \).

**Definition 4.1.1** For all \( \chi \in \mathcal{D}(\mathbb{R}^d) \), for all closed cone \( V \subset (\mathbb{R}^d \setminus \{0\}) \) such that \( \text{supp} \ \chi \times V \cap \Gamma = \emptyset \), \( \| t \|_{N,V,\chi} = \sup_{\xi \in V} |(1 + |\xi|)^N \hat{t}(\xi)|. \)

We recall the definition of the topology \( \mathcal{D}'_{\Gamma} \) (see [1] p14),

**Definition 4.1.2** The topology of \( \mathcal{D}'_{\Gamma} \) is the weakest topology that makes all seminorms \( \| \cdot \|_{N,V,\chi} \) continuous and which is stronger than the weak topology of \( \mathcal{D}'(\mathbb{R}^d) \). Or it can be formulated as the topology which makes all seminorms \( \| \cdot \|_{N,V,\chi} \) and the seminorms of the weak topology:

\[
\forall \varphi \in \mathcal{D}(\mathbb{R}^d), |\langle t, \varphi \rangle| = P_\varphi(t) \quad (4.1)
\]

continuous.

We say that \( B \) is bounded in \( \mathcal{D}'_{\Gamma} \), if \( B \) is bounded in \( \mathcal{D}' \) and if for all seminorms \( \| \cdot \|_{N,V,\chi} \) defining the topology of \( \mathcal{D}'_{\Gamma} \),

\[
\sup_{t \in B} \| t \|_{N,V,\chi} < \infty.
\]

We also use the seminorms:

\[
\forall \varphi \in \mathcal{D}(\mathbb{R}^d), \pi_m(\varphi) = \sup_{|\alpha| \leq m} \| \partial^\alpha \varphi \|_{L^\infty(\mathbb{R}^d)},
\]

\[
\forall \varphi \in \mathcal{E}(\mathbb{R}^d), \forall K \subset \mathbb{R}^d, \pi_{m,K}(\varphi) = \sup_{|\alpha| \leq m} \| \partial^\alpha \varphi \|_{L^\infty(K)}.
\]

**Warning!** In this chapter, we will prove that if \( \Gamma_1, \Gamma_2 \) are two closed conic sets in \( T^*\mathbb{R}^d \) such that \( \Gamma_1 \cap -\Gamma_2 = \emptyset \), if we set \( \Gamma = \Gamma_1 \cup \Gamma_2 \cup (\Gamma_1 + \Gamma_2) \), then the product \( (t_1,t_2) \in \mathcal{D}'_{\Gamma_1} \times \mathcal{D}'_{\Gamma_2} \mapsto t_1t_2 \in \mathcal{D}'_{\Gamma} \) is jointly and separately sequentially continuous and bounded for the topology of \( \mathcal{D}'_{\Gamma_1} \times \mathcal{D}'_{\Gamma_2} \). In fact, Professor Alesker informed us that he found a counterexample which proves that the product is not topologically bilinear continuous. This comes from the fact that the space \( \mathcal{D}'_{\Gamma} \) is not bornological (see [9]), for instance a bounded linear map from \( \mathcal{D}'_{\Gamma} \) to \( \mathbb{C} \) may not be continuous.

We also prove that the pull-back by a smooth diffeomorphism \( t \in \mathcal{D}'_{\Gamma} \mapsto t \circ \Phi \in \mathcal{D}'_{\Phi^*\Gamma} \) is sequentially continuous and bounded from \( \mathcal{D}'_{\Gamma} \) to \( \mathcal{D}'_{\Phi^*\Gamma} \).
4.2 The product of distributions.

4.2.1 Approximation and coverings.

In order to prove various theorems on the product of distributions and to discuss the action of Fourier integral operators on distributions, we should be able to approximate any conic set of $T^s \mathbb{R}^d$ by some union of simple cartesian products of the form $K \times V \subset T^s \mathbb{R}^d$ where $K$ is a compact set in space and $V$ is a closed cone in $\mathbb{R}^{d*}$. We denote by $\mathbb{R}^d \overset{\pi_1}{\leftarrow} T^s \mathbb{R}^d \overset{\pi_2}{\rightarrow} \mathbb{R}^{d*}$ the two projections on the base space $\mathbb{R}^d$ and the momentum space $\mathbb{R}^{d*}$ respectively.

Lemma 4.2.1 Let $\Gamma_1, \Gamma_2$ be two non intersecting closed conic sets in $T^s \mathbb{R}^d$. Then there is a family of closed cones $(V_{j1}, V_{j2})_{j \in \mathcal{J}}$ and a cover $(U_j)_{j \in \mathcal{J}}$ of $\mathbb{R}^d$ such that

$$ \Gamma_k \subset \bigcup_{j \in \mathcal{J}} U_j \times V_{jk} $$

and $\forall j \in \mathcal{J}, V_{j1} \cap V_{j2} = \emptyset$.

Proof — For all $x \in \mathbb{R}^d$, let $U_x(\varepsilon)$ be an open ball of radius $\varepsilon$ around $x$ and $\Gamma_k|_x = \Gamma_k \cap T^s \mathbb{R}^d$. Let $V_k(x)(\varepsilon) = \pi_2(\Gamma_k|_{U_x(\varepsilon)})$ be a closed cone which contains $\Gamma_k|_x$. We first establish that since $\Gamma_1|_x \cap \Gamma_2|_x = \emptyset$ and $\varepsilon > 0$, $\pi_2(\Gamma_k|_{U_x(\varepsilon)}) = \Gamma_k|_x$ we may assume that we can choose $\varepsilon$ small enough in such a way that $V_{1x} \cap V_{2x} = \emptyset$: assume that there exists a decreasing sequence $\varepsilon_n \to 0$ such that

$$ \forall n, V_{1x}(\varepsilon_n) \cap V_{2x}(\varepsilon_n) = \emptyset, $$

then let $\eta_n \in V_{1x}(\varepsilon_n) \cap V_{2x}(\varepsilon_n)$ for all $n$ where we may assume that $|\eta_n| = 1$. Using the definition of $V_k(x)(\varepsilon_n)$, there is a sequence $x_kn$ s.t. $(x_kn; \eta_n) \in \Gamma_k|_{U_x(\varepsilon_n)}$, $(x_kn; \eta_n) \in \Gamma_k|_{U_x(\varepsilon_n)}$ lives in the compact set $\overline{U_x(\varepsilon_0)} \times S^{d-1}$ and we can therefore extract a convergent subsequence which converges to $(x_k; \eta_k) \in \Gamma_k$ since $\Gamma_k$ is closed. Furthermore $\eta_1 = \eta_2 = \eta$ and $x_kn \in \overline{U_x(\varepsilon_0)}$ implies

$$ \lim_{n \to \infty} x_kn = x $$

thus $(x; \eta) \in \Gamma_1 \cap \Gamma_2$, contradiction ! For all $x$, we thus have $\Gamma_k|_x \subset U_x \times V_{kx}$. Since $(U_x)_{x \in \mathbb{R}^d}$ forms an open cover of $\mathbb{R}^d$, we can extract a locally finite subcover $(U_j)_{j \in \mathcal{J}}$ and $\Gamma_k \subset \bigcup_{j \in \mathcal{J}} U_j \times V_{jk}$. 

Lemma 4.2.2 Let $\Gamma$ be a closed conic set in $T^s \mathbb{R}^d$. For every partition of unity $(\varphi_j^2)_{j \in \mathcal{J}}$ of $\mathbb{R}^d$ and family of functions $(\alpha_j)_{j \in \mathcal{J}}$ in $C^\infty(\mathbb{R}^d \setminus 0)$, homogeneous of degree 0, $0 \leq \alpha_j \leq 1$ such that $\Gamma \cap \left( \bigcup_{j \in \mathcal{J}} \text{supp } \varphi_j \times \text{supp } (1 - \alpha_j) \right) = \emptyset$, we have

$$ \forall t \in \mathcal{D}_h^t, t = \sum_{j \in \mathcal{J}} \underbrace{\varphi_j T^{-1} \left( \alpha_j \tilde{\varphi}_j \right)}_{\text{singular part}} + \underbrace{\varphi_j T^{-1} \left( (1 - \alpha_j) \tilde{\varphi}_j \right)}_{\text{smooth part}}. $$
Proof — Let \( \mathcal{D}'_\Gamma \) denote the set of all distributions with wave front set in \( \Gamma \). We use the highly non trivial lemma 8.2.1 of [33]: Let \( t \in \mathcal{D}'_\Gamma \), for any \( \varphi \in \mathcal{D}(\mathbb{R}^d) \), for any \( V \) such that \( (\text{supp } \varphi \times V) \cap \Gamma = \emptyset \), we have \( \forall N, \|t\|_{N,V,\varphi} < \infty \). Set the family of functions \( V_j = \text{supp} (1 - \alpha_j) \) then \( (\text{supp } \varphi_j \times \text{supp } (1 - \alpha_j)) \cap \Gamma = \emptyset \) hence \( (1 - \alpha_j)t\varphi_j \) has fast decrease at infinity and its inverse Fourier transform is a smooth function which yields the result.

4.2.2 The product is bounded.

A relevant example of products of distributions first appeared in the work of Alberto Calderon in 1965. A nice exposition of this work can be found in the article [43] by Yves Meyer. Actually, Meyer defines \( \Gamma \)-holomorphic distributions as Schwartz distributions in \( \mathcal{S}'(\mathbb{R}^d) \) the Fourier transform of which is supported on a cone \( \Gamma \subset \mathbb{R}^d \) where \( \Gamma \subset \mathbb{R}^d \setminus 0 \) is defined by the inequality \( 0 < |\xi| \leq \delta \xi_d \) where \( \delta > 1 \). Notice that \( \xi_d \) must be positive and that \( 0 \notin \Gamma + \Gamma \). Then Meyer defines the functional spaces \( L^p_\alpha \) which are analogs of the classical Sobolev spaces \( W^{\alpha,p} \) for positive \( \alpha \), and proves that for any pair \( (t_1, t_2) \in L^p_\alpha \times L^q_\beta \) the product \( t_1t_2 \) makes sense, \( t_1t_2 \) is \( \Gamma \)-holomorphic and belongs to the functional space \( L^r_{\alpha+\beta} \) where \( r^{-1} = p^{-1} + q^{-1} \). Most importantly, Meyer proves there is a bilinear continuous mapping \( P_\Gamma \) which satisfies a Hölder like estimate and coincides with the product when \( t_1, t_2 \) are \( \Gamma \)-holomorphic.

In the same spirit, we will prove bilinear estimates for the product of distributions. The bilinear estimates are formulated in terms of the seminorms \( \|\cdot\|_{N,V,\chi} \) defining the topology of \( \mathcal{D}'_\Gamma \) and the seminorms:

\[
\|\theta^{-m} \hat{f}_\chi\|_{L^\infty}.
\]

which control boundedness in \( \mathcal{D}' \) (but they do not define the weak topology of \( \mathcal{D}' \)). We closely follow the exposition of [22] thm (14.3).

\textbf{Lemma 4.2.3} Let \( \Gamma_1, \Gamma_2 \) be two conic sets in \( T^*\mathbb{R}^d \). If \( \Gamma_1 \cap -\Gamma_2 = \emptyset \), then there exists a partition of unity \( (\varphi_j^2)_{j \in J} \) and a family of closed cones \( (W_{j1},W_{j2})_{j \in J} \subset \mathbb{R}^d \setminus 0 \) such that \( \forall j \in J, W_{j1} \cap -W_{j2} = \emptyset \) and \( \Gamma_k \subset \left( \bigcup_{j \in J} \text{supp}(\varphi_j) \times W_{jk} \right), (k = 1, 2) \).

\textbf{Proof} — We use our approximation lemma for \( \Gamma_1 \) and \( -\Gamma_2 \). The approximation lemma gives us a pair of covers

\[
\Gamma_k \subset \bigcup_{j \in J} U_j \times W_{jk}, k \in \{1, 2\},
\]

then pick a partition of unity \( (\varphi_j^2)_{j \in J} \) subordinated to the cover \( \bigcup_{j \in J} U_j \) and we are done.
4.2. THE PRODUCT OF DISTRIBUTIONS.

**Lemma 4.2.4** Let $\Gamma_1, \Gamma_2$ be two cones in $T^*\mathbb{R}^d$ and let $m_1, m_2$ be given non negative integers. Assume $\Gamma_1 \cap -\Gamma_2 = \emptyset$ then for all $\chi \in \mathcal{D}(\mathbb{R}^d)$, for all $N_2 \geq N_1 + d + 1$ there exists $C$ such that for all $(t_1, t_2) \in \mathcal{D}'_{\Gamma_1}(\mathbb{R}^d) \times \mathcal{D}'_{\Gamma_2}(\mathbb{R}^d)$ satisfying $\|\theta^{-m_1}t_1\chi\varphi_j\|_\infty < +\infty$ and $\|\theta^{-m_2}t_2\chi\varphi_j\|_\infty < +\infty$, we have the bilinear estimate:

$$\|\theta^{-(m_1+m_2+d)}t_1t_2\chi^2(\xi)\|_\infty \leq C \sum_{j \in J} \left( \|\theta^{-m_1}t_1\chi\varphi_j\|_\infty + \|t_1\chi\|_{N_1, V_{j_1, \varphi_j}} \right) \left( \|\theta^{-m_2}t_2\chi\varphi_j\|_\infty + \|t_2\chi\|_{N_2, V_{j_2, \varphi_j}} \right)$$

for some seminorms $\|\cdot\|_{N_k, V_{j_k, \varphi_j}}$ of $\mathcal{D}'_{\Gamma_k}$, $k = 1, 2$.

Before we prove the lemma, let us explain the crucial consequence of this lemma for the product of distributions. Let $B_k, k \in \{1, 2\}$ be bounded subsets of $\mathcal{D}'_{\Gamma_k}(\mathbb{R}^d), k \in \{1, 2\}$. Then for each fixed $\chi \in \mathcal{D}(\mathbb{R}^d)$, there exists a pair $m_1, m_2$ such that the r.h.s. of the bilinear estimate is bounded for all $t_1, t_2$ describing $B_1 \times B_2$ by theorem (4.4.2). Thus for each fixed $\chi^2 \in \mathcal{D}(\mathbb{R}^d)$, there exists an integer $m_1 + m_2 + d$ such that $\|\theta^{-(m_1+m_2+d)}t_1t_2\chi^2(\xi)\|_\infty$ is bounded for all $t_1, t_2$ describing $B_1 \times B_2$. Then this implies again by (4.4.2) that $t_1t_2$ is bounded in $\mathcal{D}'(\mathbb{R}^d)$. So the consequence of this lemma can be summarized as follows

**Corollary 4.2.1** Let $\Gamma_1, \Gamma_2$ be two cones in $T^*\mathbb{R}^d$. Assume $\Gamma_1 \cap -\Gamma_2 = \emptyset$. Then the product $(t_1, t_2) \in \mathcal{D}'_{\Gamma_1}(\mathbb{R}^d) \times \mathcal{D}'_{\Gamma_2}(\mathbb{R}^d) \mapsto t_1t_2 \in \mathcal{D}'(\mathbb{R}^d)$ is well defined and bounded.

Now let us return to the proof of lemma (4.2.4).

**Proof** — By Lemma 4.2.3 $\Gamma_k \subset \bigcup_{j \in J} \text{supp} \varphi_j \times W_{j_k}, k \in \{1, 2\}$ for a partition of unity $(\varphi^2_j)_{j \in J}$ and for a family of closed cones $(W_{j_1}, W_{j_2})_{j \in J}$ in $\mathbb{R}^d \setminus 0$ such that $\forall j \in J, W_{j_1} \cap -W_{j_2} = \emptyset$. In a similar way to the construction of the approximation lemma, we have

$$t_1t_2\chi^2 = \sum_{j \in J}(\varphi_j t_1)(\varphi_j t_2) = \sum_{j \in J} t_{j_1}t_{j_2}$$

where we set $t_{jk} = (\varphi_j t_k)$. Set $\alpha_{jk}, k \in \{1, 2\}$ a smooth function on $\mathbb{R}^d \setminus \{0\}$, $\alpha_{jk} = 1$ on $W_{jk}$, homogeneous of degree 0 such that $\text{supp} (\alpha_{j_1}) \cap -\text{supp} (\alpha_{j_2}) = \emptyset$. We decompose the convolution product $I(\xi) = \int_{\mathbb{R}^d} d\eta t_{j_1}(\xi - \eta) t_{j_2}(\eta)$ into four parts:

$$I_1 = \int_{\mathbb{R}^d} d\eta \alpha_{j_1} \tilde{t}_{j_1}(\xi - \eta) \alpha_{j_2} \tilde{t}_{j_2}(\eta)$$

$$I_2 = \int_{\mathbb{R}^d} d\eta (1 - \alpha_{j_1}) \tilde{t}_{j_1}(\xi - \eta) \alpha_{j_2} \tilde{t}_{j_2}(\eta)$$

$$I_3 = \int_{\mathbb{R}^d} d\eta \alpha_{j_1} \tilde{t}_{j_1}(\xi - \eta) (1 - \alpha_{j_2}) \tilde{t}_{j_2}(\eta)$$

$$I_4 = \int_{\mathbb{R}^d} d\eta (1 - \alpha_{j_1}) \tilde{t}_{j_1}(\xi - \eta) (1 - \alpha_{j_2}) \tilde{t}_{j_2}(\eta)$$
We would like to estimate $I(\xi)$ for arbitrary $\xi$. Let us first discuss the more singular term $I_1$. The key point is that its integrand vanishes outside the domain $|\eta| \leq |\xi|/\sin \delta$ for some $\delta$. Indeed, we observe that $\supp \alpha_{j1} \cap -\supp \alpha_{j2} = \emptyset$ means that for any $(\zeta_1, \zeta_2) \in \supp \alpha_{j1} \times \supp \alpha_{j2}$, the angle $\theta$ between $\zeta_1$ and $\zeta_2$ is less than $\pi - \delta$ for a given $\delta > 0$.

Hence if $\zeta_1 = \xi - \eta \in \supp \alpha_{j1}$ and $\zeta_2 = \eta \in \supp \alpha_{j2}$ the angle between $\zeta_1$ and $\zeta_2$ is bounded from below:

\[
|\zeta_1 + \zeta_2|^2 = (|\zeta_1| + |\zeta_2|)^2 = |\zeta_1|^2 + |\zeta_2|^2 + 2 \cos \theta |\zeta_1| |\zeta_2| \\
= (|\zeta_1| + \cos \theta |\zeta_2|)^2 + \sin^2 \theta |\zeta_2|^2 \geq \sin^2 \theta |\zeta_2|^2 \geq \sin^2 \delta |\zeta_2|^2,
\]

hence $|\sin \delta| |\eta| \leq |\xi|$ and $|\sin \delta| |\xi - \eta| \leq |\xi|$ by symmetry between $\zeta_1, \zeta_2$.

Thus

\[
|I_1| \leq \int_{|\xi|/\sin \delta} |\eta| \|\theta^{-m_1} \hat{t}_{j1}\|_{L^\infty} \|\theta^{-m_2} \hat{t}_{j2}\|_{L^\infty} (1 + |\xi - \eta|)^{m_1} (1 + |\eta|)^{m_2} \frac{d\eta}{r^{d-1}}
\]

if $|\xi|$ is fixed we integrate a rational function over a ball

\[
|I_1| \leq |\sin \delta|^{-m_1 - m_2} \|\theta^{-m_1} \hat{t}_{j1}\|_{L^\infty} \|\theta^{-m_2} \hat{t}_{j2}\|_{L^\infty} (1 + |\xi|)^{m_1 + m_2} \int_{0}^{\frac{|\xi|}{\sin \delta}} r^{d-1} dr
\]

where $C_1 = \frac{2 \pi^d}{\Gamma(\frac{d}{2})} (|\sin \delta|)^{-d - m_1 - m_2}$ does not depend on $t_1, t_2$. We have estimated the more singular term, set $\supp (1 - \alpha_{jk}) = V_{jk}$, we choose $\alpha_{jk}$ in such a way that $V_{jk} = \mathcal{W}_{jk}$. The estimation of others terms is simple and relies on the key inequalities $(1 + |\eta|/(1 + |\xi|)) \leq 1$ and $(1 + |\xi - \eta|/(1 + |\xi|)) \leq 1$. We gather all results:

\[
I_1 \leq \frac{2 \pi^d}{\Gamma(\frac{d}{2})} \|\theta^{-m_1} \hat{t}_{j1}\|_{L^\infty} \|\theta^{-m_2} \hat{t}_{j2}\|_{L^\infty} (1 + |\xi|)^{m_1 + m_2 + d}
\]

\[
I_2 \leq \|t_1 \chi\|_{m_2 + d + 1, V_{j1, \varphi}} \|\theta^{-m_2} \hat{t}_{j2}\|_{L^\infty} \int_{\mathbb{R}^d} d\eta (1 + |\xi - \eta|)^{-(m_2 + d + 1)} (1 + |\eta|)^{m_2} \\
\leq \|t_1 \chi\|_{m_2 + d + 1, V_{j1, \varphi}} \|\theta^{-m_2} \hat{t}_{j2}\|_{L^\infty} (1 + |\xi|)^{m_2} \int_{\mathbb{R}^d} d\eta (1 + |\xi|)^{m_2} (1 + |\xi - \eta|)^{(m_2 + d + 1)} \\
I_3 \leq \|\theta^{-m_1} \hat{t}_{j1}\|_{L^\infty} \|t_2 \chi\|_{m_1 + d + 1, V_{j2, \varphi}} \int_{\mathbb{R}^d} d\eta (1 + |\xi - \eta|)^{m_1} (1 + |\eta|)^{-(m_1 + d + 1)} \\
\leq \|\theta^{-m_1} \hat{t}_{j1}\|_{L^\infty} \|t_2 \chi\|_{m_1 + d + 1, V_{j2, \varphi}} (1 + |\xi|)^{m_1} \int_{\mathbb{R}^d} d\eta (1 + |\xi|)^{m_1} (1 + |\xi - \eta|)^{(m_1 + d + 1)} \\
I_4 \leq \|t_1 \chi\|_{N_1, V_{j1, \varphi}} \|t_2 \chi\|_{N_2, V_{j2, \varphi}} (1 + |\xi|)^{-N_1} \int_{\mathbb{R}^d} d\eta (1 + |\xi|)^{N_1} (1 + |\xi - \eta|)^{N_2}.
\]
4.2. THE PRODUCT OF DISTRIBUTIONS.

We write the estimates in a more compact form where we replaced the integrals by constants $(C_1)_{1 \leq i \leq 4}$:

\begin{align*}
I_1 & \leq C_1 \|\theta^{-m_1} \widehat{t}_{j_1}\|_{L^\infty} \|\theta^{-m_2} \widehat{t}_{j_2}\|_{L^\infty} (1 + |\xi|)^{m_1 + m_2 + d} \quad (4.7) \\
I_2 & \leq C_2 \|t_{1}\|_{m_2 + d + 1, V_{j_1, \varphi_j}} \|\theta^{-m_2} \widehat{t}_{j_2}\|_{L^\infty} (1 + |\xi|)^{m_2} \quad (4.8) \\
I_3 & \leq C_3 \|\theta^{-m_2} \widehat{t}_{j_1}\|_{L^\infty} \|t_{2}\|_{m_1 + d + 1, V_{j_2, \varphi_j}} (1 + |\xi|)^{m_1} \quad (4.9) \\
I_4 & \leq C_4 \|t_{1}\|_{N, V_{j_1, \varphi_j}} \|t_{2}\|_{N, V_{j_2, \varphi_j}} (1 + |\xi|)^{-N_1} \quad (4.10)
\end{align*}

then we summarize the whole estimate, if $N_2 \geq N_1 + d + 1$:

\[
(1 + |\xi|)^{-m_1 - m_2 - d} |I| 
\leq C \left( \|\theta^{-m_1} \widehat{t}_{j_1}\|_{L^\infty} + \|t_{1}\|_{N, V_{j_1, \varphi_j}} \right) \left( \|\theta^{-m_2} \widehat{t}_{j_2}\|_{L^\infty} + \|t_{2}\|_{N, V_{j_2, \varphi_j}} \right).
\]

Lemma 4.2.5 Let $\Gamma_1, \Gamma_2$ be two cones in $T^*\mathbb{R}^d$ and $m_1, m_2$ some non-negative integers. Assume $\Gamma_1 \cap -\Gamma_2 = \emptyset$. Set $\Gamma = \Gamma_1 \cup \Gamma_2 \cup \Gamma_1 + \Gamma_2$. Then for all seminorm $\|\|_{N, V, \chi^2}$ of $\mathcal{D}'_\Gamma$ where $N \geq \sup_{k=1,2} m_k + d + 1$, there exists $C$ such that for all $(t_1, t_2) \in \mathcal{D}'_{\Gamma_1} (\mathbb{R}^d) \times \mathcal{D}'_{\Gamma_2} (\mathbb{R}^d)$ satisfying $\|\theta^{-m_1} \widehat{t}_1 \chi\|_{L^\infty} < \infty, \|\theta^{-m_2} \widehat{t}_2 \chi\|_{L^\infty} < \infty$, we have the bilinear estimate:

\[
\|t_1 t_2\|_{N, V, \chi^2} \leq C \sum_{j \in J} \|t_2 \chi\|_{2N, V_{j_2, \varphi_j}} \|\theta^{-m_1} \widehat{t}_{j_1} \varphi_j \chi\|_{L^\infty} \\
+ \|t_1 \chi\|_{2N, V_{j_1, \varphi_j}} \|\theta^{-m_2} \widehat{t}_{j_2} \varphi_j \chi\|_{L^\infty} + \|t_1\|_{2N, V_{j_1, \varphi_j}} \|t_2\|_{N, V_{j_2, \varphi_j}}
\]

for some seminorms $\|\|_{N, V, \chi^2}$ of $\mathcal{D}'_{\Gamma_k}$, $k = 1, 2$.

Proof — Let $V$ be a closed cone of $\mathbb{R}^d$ such that supp $\chi \times V$ does not meet $\Gamma_1 \cup \Gamma_2 \cup \Gamma_1 + \Gamma_2$. Now, it is always possible to use the cover given by the approximation lemma fine enough so that for all $j \in J$, $V$ will not meet $W_{j_1} \cup W_{j_2} \cup (W_{j_1} + W_{j_2})$. We would like to estimate $I(\xi)$ for $\xi \notin W_{j_1} \cup W_{j_2} \cup (W_{j_1} + W_{j_2})$. But $\alpha_{j_2}(\eta) \alpha_{j_1}(\xi - \eta) \neq 0 \Rightarrow (\eta, \xi - \eta) \in W_{j_2} \times W_{j_1} \Rightarrow \xi = (\xi - \eta) + \eta \in W_{j_1} + W_{j_2}$. Thus if $\xi \notin W_{j_1} + W_{j_2}$ then $\alpha_{j_2}(\eta) \alpha_{j_1}(\xi - \eta) = 0$ for all $\eta$, hence $I(\xi) = 0$ when $\xi \in V$. We set supp $(1 - \alpha_{jk}) = V_{jk}$ which is a cone in which $t_{jk}$ decreases faster than any inverse of polynomial function. By definition:

\[
\|(1 - \alpha_{jk}) \widehat{t}_{jk}\| (\xi) \leq \|t_k \chi\|_{N, V_{jk, \varphi_j}} (1 + |\xi|)^{-N}
\]

also for $\alpha_{jk} \widehat{t}_{jk}$ where $t_{jk} = (t_k \chi) \varphi_j$, we have:

\[
|\alpha_{jk} \widehat{t}_{jk}| (\xi) \leq \|(1 + |\xi|)^{-m_k} \widehat{t}_{jk}\|_{L^\infty} (1 + |\xi|)^{m_k}
\]
where $m_k$ is the order of the compactly supported distribution $t_k \chi$. We can estimate $I_4$ in a simple way:

$$|I_4|(|\xi| \leq \|t_1 \chi\|_{L^2(N \cup V)} \|t_2 \chi\|_{L^2(N \cup V)} \|1 + \|\xi\|-N \int_{\mathbb{R}^d} \frac{(1 + |\xi|)^N}{\|1 - \eta\|^{2N}(1 + |\eta|)^N}$$

$$|I_4|(|\xi| \leq \|t_1 \chi\|_{L^2(N \cup V)} \|t_2 \chi\|_{L^2(N \cup V)} \|1 + |\xi|\|-N,$$

where $C_N = \int_{\mathbb{R}^d} \frac{(1 + |\xi|)^N}{\|1 - \eta\|^{2N}(1 + |\eta|)^N} \leq \int_{\mathbb{R}^d} (1 + |\eta|)^{-N}.$

To estimate $I_2$, let us first notice that if $\alpha_{jk}$ were smooth at 0 then we could identify the “good function” $(1 - \alpha_{j1})\hat{t}_j(\eta)$ with the Fourier transform of a Schwartz function and “the bad function” $\alpha_{j2}\hat{t}_j(\eta)$ with the Fourier transform of a distribution. Denoting by $\theta(\xi, \eta)$ the angle between $\xi$ and $\eta$, we cut $I_2$ into two parts:

$$I_2(\xi) = \int_{\theta(\xi, \eta) \leq \delta} (1 - \alpha_{j1})\hat{t}_j(\xi - \eta) \alpha_{j2}\hat{t}_j(\eta) + \int_{\theta(\xi, \eta) \geq \delta} (1 - \alpha_{j1})\hat{t}_j(\xi - \eta) \alpha_{j2}\hat{t}_j(\eta)$$

We set the cone $W'_{kj} = \{\xi | dist(\frac{\xi}{|\xi|}, W_{kj}) \leq \delta\}$ for some $\delta > 0$ in such a way that the following sequence of inclusions holds:

$$W_{kj} \subset \text{supp} \ \alpha_{jk} \subset W'_{kj}.$$

The restrictions $\xi \in V, \eta \in \text{supp} \ \alpha_{j2}$ impose the angle $\theta(\xi, \eta)$ between them satisfies the bound $\theta \geq dist(V \cap S^{d-1}, \text{supp} \ \alpha_{j2} \cap S^{d-1}) > 0$, hence if $\delta < dist(V \cap S^{d-1}, W_{kj} \cap S^{d-1})$ then

$$\forall \xi \in V, I_2(\xi) = \int_{\theta(\xi, \eta) \geq \delta} (1 - \alpha_{j1})\hat{t}_j(\xi - \eta) \alpha_{j2}\hat{t}_j(\eta),$$

but the estimate $\theta(\xi, \eta) \geq \delta$ exactly means that the angle between $\xi, \eta$ is bounded from below hence we use the bounds

$$|\xi - \eta| \geq \sin \delta |\xi|, |\xi - \eta| \geq \sin \delta |\eta|$$

which implies

$$(1 + |\xi - \eta|)^{-2N} \leq (1 + \sin \delta |\xi|)^{-N}(1 + \sin \delta |\eta|)^{-N} \leq (\sin \delta)^{-2N}(1 + |\xi|)^{-N}(1 + |\eta|)^{-N}$$

which implies the following bounds for $I_2$:

$$\forall \xi \in V, |I_2|(|\xi| \leq \int_{\theta(\xi, \eta) \geq \delta} d\eta(1 + |\xi|)^{-N} \sin \delta |\xi|^{-2N} \int_{\mathbb{R}^d} d\eta(1 + |\eta|)^{-N}(1 + |\eta|)^{m_2}.$$
4.2. THE PRODUCT OF DISTRIBUTIONS.

Provided that \( \text{dist}(V \cap S^{d-1}, W_j \cap S^{d-1}) > \delta > 0 \) and \( N \geq m_2 + d + 1 \), the integral on the right hand side absolutely converges. Setting \( C_2 = |\sin \delta|^{-2N} \int_{\mathbb{R}^d} d\eta (1 + |\eta|)^{-N}(1 + |\eta|)^{m_2} \) yields the estimate

\[
\forall \xi \in V, |I_2|((\xi) \leq C_2 \|t_1 \chi\|_{2N,V_{j_1},\varphi_j}\|\theta^{-m_2}t_{j_2}\|_{L^\infty}(1 + |\xi|)^{-N}.
\]

Now for \( I_3(\xi) \), after the variable change

\[
\int_{\mathbb{R}^d} d\eta |\alpha_{j_1}t_{j_1}(\xi - \eta)(1 - \alpha_{j_2})t_{j_2}(\eta)| = \int_{\mathbb{R}^d} d\eta |\alpha_{j_1}t_{j_1}(\eta)(1 - \alpha_{j_2})t_{j_2}(\xi - \eta)|,
\]
we repeat the exact same proof as above with the roles of the indices 1, 2 exchanged.

\[
\forall \xi \in V, |I_3|((\xi) \leq C_3 \|t_2 \chi\|_{2N,V_{j_1},\varphi_j}\|\theta^{-m_1}t_{j_1}\|_{L^\infty}(1 + |\xi|)^{-N}
\]
where \( C_3 = |\sin \delta|^{-2N} \int_{\mathbb{R}^d} d\eta (1 + |\eta|)^{-N}(1 + |\eta|)^{m_1} \). Gathering the three terms, we obtain:

\[
\forall \xi \in V, |I|((\xi) \leq C (\|t_2 \chi\|_{2N,V_{j_1},\varphi_j}\|\theta^{-m_1}t_{j_1}\|_{L^\infty} + \|t_1 \chi\|_{2N,V_{j_1},\varphi_j}\|\theta^{-m_2}t_{j_2}\|_{L^\infty} + \|t_1 \chi\|_{2N,V_{j_1},\varphi_j}\|t_2 \chi\|_{N,V_{j_2},\varphi_j})(1 + |\xi|)^{-N}.
\]

Let us explain the boundedness properties of the product. Let \( B_k, k \in \{1, 2\} \) be bounded subsets of \( \mathcal{D}'_x(\mathbb{R}^d) \), \( k \in \{1, 2\} \). Then for each \( V \) satisfying the hypothesis of the lemma for each \( \chi \), there exists a pair \((m_1, m_2)\) such that the r.h.s. of the bilinear estimate is bounded for all \( t_1, t_2 \) describing \( B_1 \times B_2 \) by theorem (4.4.2). Thus the seminorm \( \|t_1 t_2\|_{N,V,\chi} \) is bounded for all \( t_1, t_2 \in B_1 \times B_2 \). The joint and partial sequential continuity of the product simply follows from the above arguments. As a corollary of the previous lemmas, we deduce the following important

**Theorem 4.2.1** Let \( \Gamma_1, \Gamma_2 \) be two cones in \( T^*\mathbb{R}^d \). Assume \( \Gamma_1 \cap -\Gamma_2 = \emptyset \). Set \( \Gamma = (\Gamma_1 \cup \Gamma_2 \cup (\Gamma_1 + \Gamma_2)) \), where \( x, \xi \in \Gamma_1 + \Gamma_2 \) means that \( \xi = \xi_1 + \xi_2 \) for some \( x, \xi_1 \in \Gamma_1, (x, \xi_2) \in \Gamma_2 \). Then the product

\[
(t_1, t_2) \in \mathcal{D}'_{\Gamma_1} \times \mathcal{D}'_{\Gamma_2} \mapsto t_1 t_2 \in \mathcal{D}'_{\Gamma}
\]
is well defined and bounded.

4.2.3 The soft landing condition is stable by sum.

We have studied the boundedness properties of the product. The main theorem of Chapter 3 singled out an essential property of the wave front set of distributions which was the **soft landing condition.** Our goal in this subsection will be to check that this condition on wave front sets is stable by products. If \( WF(t_i) \in \{1, 2\} \) satisfies the soft landing condition and \( WF(t_1) \cap (-WF(t_2)) = \emptyset \) on \( M \setminus I \), then what happens to \( WF(t_1 t_2) \) ?
Proposition 4.2.1 Let $\Gamma_1, \Gamma_2$ be two closed conic sets which both satisfy the soft landing condition and $\Gamma_1, \Gamma_2$ are such that $\Gamma_1 \cap (-\Gamma_2) = \emptyset$. Then the cone $\Gamma_1 \cup \Gamma_2 \cup \Gamma_1 + \Gamma_2$ satisfies the soft landing condition.

Proof — We just have to prove that $\Gamma_1 + \Gamma_2$ satisfies the soft landing condition because taken individually, $\Gamma_i, i \in \{1, 2\}$ already satisfy the soft landing condition. We denote $(x_i, h_i; k_i, \xi_i)$ a point in $\Gamma_i, i \in \{1, 2\}$. We also denote $\eta_i = (k_i, \xi_i)$. In the course of the proof, we use the norm $|\eta| = |k| + |\xi|$ and the result does not depend on the choice of this norm since all norms are equivalent.

1. We start from the hypothesis that $\Gamma_i, i \in \{1, 2\}$ both satisfy the soft landing condition

   $$\forall i \in \{1, 2\}, \exists \varepsilon_i > 0, \exists \delta_i > 0, \Gamma_i|_{|h| \leq \varepsilon} \subset \{|k| \leq \delta|h||\xi|\}$$

   but this implies that for the points of the form $(x, h; \eta_1) + (x, h; \eta_2) = (x, h; \eta_1 + \eta_2) \in (\Gamma_1 + \Gamma_2)_|(x, h)$, we have the inequality

   $$|k_1 + k_2| \leq \sup_{i \in \{1, 2\}} \delta_i |h| (|\xi_1| + |\xi_2|),$$

   from now on, we set $\sup_{i \in \{1, 2\}} \delta_i = \delta$.

2. In order to estimate the sum $(|\xi_1| + |\xi_2|)$, we will use the fact that $\Gamma_1 \cap -\Gamma_2 = \emptyset$. This can be translated in the estimate

   $$\forall (x, h; \eta_i) \in \Gamma_i|_{|K|}, \exists \delta' > 0, \delta' (|\eta_1| + |\eta_2|) \leq |\eta_1 + \eta_2|$$

   $$\implies \delta' (|k_1 + k_2| + |\xi_1| + |\xi_2|) \leq |k_1 + k_2| + |\xi_1 + \xi_2|$$

   $$\implies |\xi_1| + |\xi_2| \leq \frac{1 - \delta'}{\delta'} |k_1 + k_2| + \frac{1}{\delta'} |\xi_1 + \xi_2|,$$

   where we can always assume we chose $\delta' < 1$.

3. Combining the two previous estimates, we obtain

   $$|k_1| + |k_2| \leq \delta |h| (|\xi_1| + |\xi_2|) \leq \delta |h| \left( \frac{1 - \delta'}{\delta'} |k_1 + k_2| + \frac{1}{\delta'} |\xi_1 + \xi_2| \right).$$

   Now we choose $\varepsilon'$ small enough in such a way that $\forall |h| \leq \varepsilon' 0 < \delta \varepsilon' \frac{1 - \delta'}{\delta'} < 1$. Then this implies the final estimate

   $$\forall |h| \leq \varepsilon', |k_1 + k_2| \leq \frac{\delta |h|}{\delta'} (1 - \delta \varepsilon' \frac{1 - \delta'}{\delta'})^{-1} |\xi_1 + \xi_2|$$

   which means $\Gamma_1 + \Gamma_2$ satisfies the soft landing condition. ■
4.3 The pull-back by diffeomorphisms.

Our goal in this part consists in studying the lift to $T^*M$ of diffeomorphisms of $M$ fixing $I$ since the symplectomorphisms of $T^*M$ will determine the action on wave front sets. In this section, we will work in a local chart of $M$ in $\mathbb{R}^{n+d}$ with coordinates $(x,h)$ where $I$ is given by the equation $\{ h = 0 \}$.

4.3.1 The symplectic geometry of the vector fields tangent to $I$ and of the diffeomorphisms leaving $I$ invariant.

We will work at the infinitesimal level within the class $g$ of vector fields tangent to $I$ defined by Hörmander ([33] vol 3 Lemma (18.2.5)). First recall their definition in coordinates $(x,h)$ where $I = \{ h = 0 \}$: the vector fields $X$ tangent to $I$ are of the form

$$h^j a^i_j(x,h) \partial_{h^i} + b^i(x,h) \partial_{x^i},$$

and they form an infinite dimensional Lie algebra denoted by $g$ which is a Lie subalgebra of $\text{Vect}(M)$. Actually, these vector fields form a module over the ring $C^\infty(M)$ finitely generated by the vector fields $h^i \partial_{h^i}, \partial_{x^i}$. This module was defined by Melrose and is associated to a vector bundle called the Tangent Lie algebroid of $I$. This module is naturally filtered by the vanishing order of the vector field on $I$.

**Definition 4.3.1** Let $I$ be the ideal of functions vanishing on $I$. For $k \in \mathbb{N}$, let $F_k$ be the submodule of vector fields tangent to $I$ defined as follows, $X \in F_k$ if $XI \subset I^{k+1}$.

This definition of the filtration is completely coordinate invariant. We also immediately have $F_{k+1} \subset F_k$. Note that $F_0 = g$.

**Cotangent lift of vector fields.**

We recall the following fact, any vector field $X \in \text{Vect}(M)$ lifts functorially to a Hamiltonian vector field $X^* \in \text{Vect}(T^*M)$ (for more on Hamiltonian vector fields, see [2] 3.5 page 14) by the following procedure

$$X = X^i \frac{\partial}{\partial z^i} \in \text{Vect}(M) \mapsto \sigma(X) = X^i \xi_i \in C^\infty(T^*M)$$

$$\mapsto X^* = \{ \sigma(X), \cdot \} = X^i \frac{\partial}{\partial z^i} - \xi_i \frac{\partial X^j}{\partial z^i} \frac{\partial}{\partial \xi_j},$$

where $\{ \cdot, \cdot \}$ is the Poisson bracket of $T^*M$. Notice the projection on $M$ of $X^*$ is $X$ and $X^*$ is linear in the cotangent fibers. This means the action of vector fields is lifted to an action by Hamiltonian symplectomorphisms of $T^*M$. The map $X \in g \mapsto \sigma(X) \in C^\infty(T^*M)$ from the Lie algebra $g$ to
the Poisson ideal \( \mathcal{I}_{(TI)} \subset C^\infty(T^*M) \) can be interpreted as a “universal” moment map in Poisson geometry since to each element \( X \) of the Lie algebra \( \mathfrak{g} \) which acts symplectically as a vector field \( X^* \in \text{Vect}(T^*M) \), we associate a function which is the Hamiltonian of \( X^* \) (as explained to us by Mathieu Stiénon).

**Lemma 4.3.1** Let \( X \) be a vector field in \( \mathfrak{g} \). Then \( X^* \) is tangent to the conormal \((TI)^\perp \) of \( I \) and the symplectomorphism \( e^{X^*} \) leaves the conormal globally invariant. In particular, if \( X \in F_2 \), then \( X^* \) vanishes on the conormal \((TI)^\perp \) of \( I \) and \((TI)^\perp \) is contained in the set of fixed points of the symplectomorphism \( e^{X^*} \).

**Proof** — Any vector in \( \mathfrak{g} \) admits the decomposition \( \hbar^i a_i^j(x, h)\partial_{h^i} + b^j(x, h)\partial_{x^j} \). Thus the symbol map \( \sigma(X) \in C^\infty(T^*M) \) equals \( \hbar^i a_i^j(x, h)\xi_i + b^j(x, h)\xi_j \). This function vanishes on the conormal bundle \((TI)^\perp \) which is a Lagrangian submanifold. Now we are reduced to the following problem: given a function \( f \) in a symplectic manifold which vanishes along a Lagrangian submanifold \( C \), what can be said about the symplectic gradient \( \nabla_{\omega} f \) along \( C \) ? Since \( f|_L = 0 \), for all \( v \in TL \), \( df(v) = 0 \). But \( \forall v \in TL, 0 = df(v) = \omega(\nabla_{\omega} f, v) \) which means that \( \nabla_{\omega} f \) is in the orthogonal of \( TL \) for the symplectic form \( \omega \). Since \( L \) is a Lagrangian submanifold of \( T^*M \), this orthogonal is equal to \( TL \), finally \( \nabla_{\omega} f \in TL \). If \( X \in F_1 \), then \( \sigma(X) = h^i a_i^j(x, h)\xi_i + h^i b_i^j(x, h)\xi_j \) by the Hadamard lemma. The symplectic gradient \( X^* \) is given by the formula

\[
X^* = \frac{\partial \sigma(X)}{\partial \xi_i} \partial_{x^i} - \frac{\partial \sigma(X)}{\partial x^i} \partial_{\xi_i} + \frac{\partial \sigma(X)}{\partial h^i} \partial_{h^i} - \frac{\partial \sigma(X)}{\partial h^j} \partial_{h^j},
\]

thus \( X^* = 0 \) when \( k = 0, h = 0 \) which means \( X^* = 0 \) on the conormal \((TI)^\perp \) of \( I \).

**Proposition 4.3.1** Let \( \rho_1, \rho_2 \) be two Euler vector fields and \( \Phi(\lambda) = e^{-\log \lambda \rho_1} \circ e^{\log \lambda \rho_2} \). Then the cotangent lift \( T^*\Phi(\lambda) \) restricted to \((TI)^\perp \) is the identity map:

\[ T^*\Phi(\lambda)|_{(TI)^\perp} = \text{Id}|_{(TI)^\perp}. \]

In particular, the diffeomorphism \( \Psi = \Phi(0) \) (Corollary 1.4.1) which conjugates \( \rho_1 \) with \( \rho_2 \) satisfies the same property.

**Proof** — Let us set

\[ \Phi(\lambda) = e^{-\log \lambda \rho_1} \circ e^{\log \lambda \rho_2} \quad (4.11) \]

which is a family of diffeomorphisms which depends smoothly in \( \lambda \in [0, 1] \) according to 1.4.2, then \( \Phi(0) \) is the diffeomorphism which locally conjugates \( \rho_1 \) and \( \rho_2 \) (Corollary 1.4.1). The proof is similar to the proof of proposition 1.4.2, \( \Phi(\lambda) \) satisfies the differential equation:

\[ \lambda \frac{d\Phi(\lambda)}{d\lambda} = e^{-\log \lambda \rho_1} (\rho_2 - \rho_1) e^{\log \lambda \rho_1} \Phi(\lambda) \quad \text{where} \quad \Phi(1) = \text{Id} \]

(4.12)
we reformulated this differential equation as
\[ \frac{d\Phi(\lambda)}{d\lambda} = X(\lambda)\Phi(\lambda), \Phi(1) = Id \] (4.13)
where the vector field \( X(\lambda) = \frac{1}{\lambda} e^{-\log \lambda \rho_1} (\rho_2 - \rho_1) e^{\log \lambda \rho_1} \) depends smoothly in \( \lambda \in [0, 1] \). The cotangent lift \( T^*\Phi_\lambda \) satisfies the differential equation
\[ \frac{dT^*\Phi(\lambda)}{d\lambda} = X^*(\lambda)T^*\Phi(\lambda), T^*\Phi(1) = Id \] (4.14)
Notice that \( \forall \lambda \in [0, 1], X(\lambda) \in F_1 \) which implies that for all \( \lambda \) the lifted Hamiltonian vector field \( X^*(\lambda) \) will vanish on \( (T^*\Gamma)^\perp \) by the lemma (4.3.1). Since \( T^*\Phi(1) = Id \) obviously fixes the conormal, this immediately implies that \( \forall \lambda, T^*\Phi(\lambda)|_{(T^*\Gamma)^\perp} = Id|_{(T^*\Gamma)^\perp} \).

### 4.3.2 The pull-back is bounded.

**The problem we solve.** We start from a distribution \( t \in D'(M \setminus I) \) such that \( WF(t) \) satisfies the soft landing condition. We assumed that there exists a generalized Euler \( \rho_1 \) and a small neighborhood \( V \) of \( I \) such that \( \lambda^{-s} e^{-\log \lambda \rho_1} t \) is bounded in \( D'(\Gamma \setminus \{0\}) \) where \( \Gamma = \bigcup_{\lambda \in (0, 1)} WF(e^{\log \lambda \rho_1} t) \).

Under these conditions, by the main theorem of Chapter 3, we know that the extension \( \tilde{t} \) is well defined, \( WF(\tilde{t}) \subset WF(t) \cup C \) and for every \( s' < s \), \( \lambda^{-s'} e^{\log \lambda \rho_1} \tilde{t} \) is bounded in \( D'(\bigcup_{\lambda \in \Gamma} (V \setminus \{0\})) \). We proved (Proposition 1.4.2 Chapter 1) that when we change the Euler vector field from \( \rho_1 \) to \( \rho_2 \), we have:
\[ \lambda^{-s} e^{\log \lambda \rho_2} t = \Phi(\lambda)^* \left( \lambda^{-s} e^{\log \lambda \rho_1} t \right) \]
bounded in \( D'_{\Phi, \Gamma} \).

The above equation motivates us to study a more general question, is the image of a bounded set in \( D'_\Gamma \) by a diffeomorphism \( \Phi \) still a bounded family in \( D'_{\Phi, \Gamma} \)?

### 4.3.3 The action of Fourier integral operators.

Fourier integral operators are abbreviated FIO. In this section, we will work exclusively in \( \mathbb{R}^d \) since our problem is local. To solve our problem, we will have to revisit a deep theorem of Hörmander (see [33] theorem 8.2.4) which describes the wave front set of distributions under pull back. However, we will reprove a variant of this theorem which is tailored for applications in QFT. First, we prove the theorem for a specific subclass of FIO (as discussed in [22]) which contains the space of diffeomorphisms and we also give explicit bounds for the seminorms of \( D'_{\Gamma} \). We deliberately choose to discuss everything in the language of canonical relations and symplectomorphisms since these are at the core of the geometric ideas involved in the proof.
A quick remainder about the formalism of FIO.

We recall the definition of a specific class of FIO following [22]. And we will frequently use several notions that can be found in [22].

The definition of Eskin’s FIO. We adapt the definition of [22] to our context, we consider operators of the form:

\[ U : \mathcal{D}(\mathbb{R}^d) \times \mathcal{D}'(\mathbb{R}^d) \rightarrow \mathcal{D}'(\mathbb{R}^d) \]

\[ (\varphi, t) \mapsto U\varphi t = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} d\eta e^{iS(x,\eta)}a(x,\eta)\hat{t}\varphi(\eta) \] (4.15)

where \( S \) is smooth, homogeneous of degree 1 in \( \eta \) and \( \frac{\partial^2 S}{\partial x \partial \eta} \neq 0 \), we do not assume \( a = 0 \) if \( |\eta| < 1 \) since for diffeomorphisms \( a = 1 \), and this does only change the FIO modulo smoothing operator (see [22] p. 330). The Schwartz kernel of \( U\varphi \) is the Fourier distribution which by a slight abuse of notation reads:

\[ U\varphi(x, y) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} d\eta e^{iS(x,\eta)-iy.\eta}a(x,\eta)\varphi(y). \]


Lemma 4.3.2 Let \( \Phi \) be a diffeomorphism of \( \mathbb{R}^d \) and \( \varphi \in \mathcal{D}(\mathbb{R}^d) \). Then \( \exists U\varphi \) as in 4.15 such that \( \forall t \in \mathcal{D}'(\mathbb{R}^d) \), the operator \( U\varphi(t) = \Phi^* (t\varphi) \).

We will later choose \( \varphi \) as an element of an ad hoc partition of unity defined by the approximation lemmas (4.2.1,4.2.2). Proof — Our proof follows the strategy outlined in [16] proposition (1.3.3). The idea is to write down \( t\varphi \) as the inverse Fourier transform of \( \hat{t}\varphi \).

\[ t\varphi = \mathcal{F}^{-1} \left( \hat{t}\varphi \right) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} d\eta e^{i\Phi(x,\eta) \cdot \xi} a(x,\eta) \varphi(y). \]

Now, we pull-back \( t\varphi \) by the diffeomorphism \( \Phi : \)

\[ \Phi^* (t\varphi) (x) = \Phi^* \mathcal{F}^{-1} \left( \hat{t}\varphi \right) (x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} d\eta e^{i\Phi(x,\eta) \cdot \xi} a(x,\eta) \varphi(y). \]

Now setting \( S(x; \eta) = \Phi(x) \cdot \eta \), we recognize the phase function \( S \) appearing in (4.15).

In the following, given a generating function \( S \), we denote by \( \sigma \) the canonical transformation defined by:

\[ \sigma : (y; \eta) \mapsto (x; \xi), \xi = \frac{\partial S}{\partial x} (x, \eta), y = \frac{\partial S}{\partial \eta} (x, \eta), \]

(4.16)

see Equation (61.2) p. 330 in [22].
4.3. The Pull-Back by Diffeomorphisms.

Theorem 4.3.1 Let \((t_\mu)_\mu\) be bounded in \(\mathcal{D}'(\Omega), \Omega \subset \mathbb{R}^d\). Let \(U\) be a proper operator as defined in (4.15) with amplitude \(a = 1\) and generating function \(S\) and \(\sigma\) the corresponding canonical relation. Then \((Ut_\mu)_\mu\) is bounded in \(\mathcal{D}'(\sigma \circ \Gamma(\Omega))\).

We will decompose the proof of the theorem in many different lemmas. Our strategy goes as follows, we have some bounds on \(\hat{t}\varphi\) where \(\varphi \in \mathcal{D}(\mathbb{R}^d)\) because we know that \(t \in \mathcal{D}'(\Omega)\) by the hypothesis of the theorem and we want to deduce from these bounds some estimates on the Fourier transform \(\mathcal{F}(\chi U(t\varphi))\). We first prove a lemma which gives an estimate of \(WF(U(t\varphi))\).

Lemma 4.3.3 Let \(U\) be a proper operator as defined in (4.15) with amplitude \(a = 1\) and generating function \(S\), \(\sigma\) the corresponding canonical transformation and \(\varphi \in \mathcal{D}(\mathbb{R}^d)\). Then for all \(t \in \mathcal{D}'(\Omega)\), \(WF(U\varphi t) \subset \sigma \circ WF(t\varphi)\).

Proof — We denote by \((y;\eta)\) and \((x;\xi)\) the coordinates in \(T^*\mathbb{R}^d\). Let \(t\) be a distribution and \(U\) a FIO of the form (4.15) with phase function \(S(x;\eta) - \langle y,\eta \rangle\). Then Theorem 63.1 in Eskin (see [22] p. 340) expresses \(WF(U\varphi t)\) in terms of the image \(\sigma \circ WF(t\varphi)\) by the canonical relation \(S\) generated by \(S\). To apply the theorem of Eskin, we use the fact that \(t\varphi\) compactly supported \(\Rightarrow \|\hat{\theta} - m\hat{t}\varphi\|_{L^\infty} < \infty \Rightarrow \theta^{-\frac{d+1}{2}}\hat{t}\varphi \in L^2(\mathbb{R}^d) \Leftrightarrow \hat{t}\varphi \in H^{-\frac{d+1}{2}}\).

\[
U_\varphi t(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^{2d}} dyd\eta e^{i[S(x;\eta)-y,\eta]} t\varphi(y) \quad (4.17)
\]

\[
\sigma : (y;\eta) \mapsto (x;\xi), \xi = \frac{\partial S}{\partial x}(x,\eta), y = \frac{\partial S}{\partial \eta}(x,\eta). \quad (4.18)
\]

The canonical transformation is the same as equation 61.2 p. 330 in [22]. For convenience, we will write in local coordinates \(\sigma(y,\eta) = (x(y,\eta), \xi(y,\eta))\). In the particular case of a diffeomorphism \(x \mapsto \Phi(x)\),

\[
\frac{\partial S}{\partial \eta}(x,\eta) = \Phi(x), \frac{\partial S}{\partial x}(x,\eta) = \eta \circ d\Phi
\]

and the corresponding family of canonical relations is

\[
\sigma : (y,\eta) \mapsto (\Phi^{-1}(y), \eta \circ d\Phi). \quad (4.19)
\]

Motivated by this result, we will test \(\Phi^*(t\varphi)\) on seminorms \(\|\cdot\|_{N,V,\chi}\), for a cone \(V\) and test function \(\chi\) such that \(supp \chi \times V\) does not meet \(\sigma \circ \Gamma\).

Lemma 4.3.4 Let \(U\) be given by (4.15), \(\sigma\) the corresponding canonical relation, \(m\) a nonnegative integer, \(\alpha \in C^\infty(\mathbb{R}^d \setminus 0),\) homogeneous of degree 0,
CHAPTER 4. STABILITY OF THE MICROLOCAL EXTENSION.

\( \varphi \in \mathcal{D}(\mathbb{R}^d), \chi \in \mathcal{D}(\mathbb{R}^d) \) and \( V \subset (\mathbb{R}^d \setminus 0) \) a closed cone. If \((\text{supp } \chi \times V) \cap \sigma = \emptyset \) and \((\text{supp } \varphi \times \text{supp } \alpha) \cap \Gamma = \emptyset \) then for all \( N \), there exists \( C_N \) s.t. for all \( t \in \mathcal{D}'(\Gamma) \) satisfying \( \|\theta - m^\varphi \|_{L^\infty} < +\infty \):

\[
\| U(t\varphi) \|_{N,V,\chi} \leq C_N (1 + |\xi|)^{-N} \left( \|\theta - m^\varphi \|_{L^\infty} + \| t \|_{N+d+1,W,\varphi} \right) \tag{4.20}
\]

where \( W = \text{supp}(1 - \alpha) \).

**Proof** — Our method of proof is based on the method of stationary phase and a geometric interpretation. In the course of our proof, we will explain why constants appearing in all our estimates do not depend on \( t \) but only on \( U \) and \( \Gamma \). This is the only way to obtain an estimate which is valid for families \((t_\mu)_\mu\) bounded in \( \mathcal{D}'(\Gamma) \). In order to bound \( \| U(t\varphi) \|_{N,V,\chi} \), we must first compute the Fourier transform of \( \chi U(t\varphi) \):

\[
\mathcal{F} (\chi U(t\varphi))(\xi) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^{2d}} d\eta d\chi(x) e^{i\psi(x,\xi,\eta)} \chi(x) \tag{4.21}
\]

We then extract the oscillatory integral on which we will apply the method of stationary phase:

\[
I(\xi,\eta) = \int_{\mathbb{R}^d} dx e^{i[S(x;\eta) - x.\xi]} \chi(x) = \int_{\mathbb{R}^d} dx e^{i\psi(x,\xi,\eta)} \chi(x),
\]

where the phase \( \psi(x,\xi,\eta) = [S(x;\eta) - x.\xi] \). We reformulate the expression giving \( \mathcal{F} (\chi U(t\varphi))(\xi) \) in terms of the oscillatory integral \( I(\xi,\eta) \):

\[
\mathcal{F} (\chi U(t\varphi))(\xi) = \int_{\mathbb{R}^d} d\eta I(\xi,\eta) \hat{t}\varphi(\eta).
\]

Then the idea is to split the integral in two parts, in one part the oscillatory integral \( I(\xi,\eta) \) behaves nicely and decreases fastly at infinity, i.e. \( \forall N, (1 + |\xi|)^N I(\xi,\eta) \) is bounded. In the second part, the oscillatory integral is bounded but this domain corresponds to the codirections in which \( \hat{t}\varphi \) has fast decrease at infinity. The method of stationary phase states (see [60] p. 330,341) that the integral \( I \) is rapidly decreasing in the codirections \( (\xi,\eta) \) for which \( \psi \) is noncritical, i.e. \( d\xi \psi(x;\xi,\eta) \neq 0 \). We compute the critical set of the phase

\[
d\xi \psi(x;\xi,\eta) = d\xi S(x,\eta) - \xi.
\]

Hence the critical set \( d\xi \psi = 0 \) is given by the equations

\[
\{(\eta,\xi)|d\xi S(x,\eta) - \xi = 0, x \in \text{supp } \chi\}, \tag{4.22}
\]

we thus naively set

\[
\forall \xi, \Sigma(\xi) := \{(\eta,\xi)|\exists x \in \text{supp } \chi, d\xi S(x,\eta) - \xi = 0, y = \frac{\partial S}{\partial \eta}(x,\eta)\}. \tag{4.23}
\]
Motivated by the geometric relation between the generating function $S$ and the canonical relation $\sigma$ (by Equation (4.16)), we interpret $\Sigma(\xi)$ in terms of the canonical transformation $\sigma$:

$$\Sigma(\xi) = \{(y, \eta) | \exists x \in \text{supp } \chi, \sigma(y, \eta) = (x, \xi)\} \quad (4.24)$$

or

$$\Sigma(\xi) = \sigma^{-1} \circ (\text{supp } \chi \times \{\xi\}). \quad (4.25)$$

Hence $\Sigma(\xi)$ is the inverse image of $\text{supp } \chi \times \{\xi\}$ by the canonical relation $\sigma$. Let us recall that $\pi_2$ projects $T^*\mathbb{R}^d$ on the second factor $\mathbb{R}^d$. We define

$$R(\xi) = \pi_2(\Sigma(\xi)) = \{\eta | \exists x \in \text{supp } \chi, d_x S(x, \eta) - \xi = 0\}$$

which has the following analytic interpretation, for fixed $\xi$, $R(\xi)$ contains the critical set (“bad $\eta$’s”) of $I(\xi, \eta)$. We admit temporarily that

$$\sigma \circ (\text{supp } \varphi \times \text{supp } \alpha) \bigcap (\text{supp } \chi \times V) = \emptyset$$

implies $\text{supp } \alpha$ does not meet $\bigcup_{\xi \in V} R(\xi)$ (we will prove this claim in Lemma (4.3.5)). We are led to define a neighborhood $R_\varepsilon(\xi)$ of $R(\xi)$ for which

$$R_\varepsilon(\xi) = \{\eta | \exists x \in \text{supp } \chi, |d_x S(x, \eta) - \xi| \leq \varepsilon\}. \quad (4.26)$$

Denote by $R_\varepsilon^c(\xi)$ the complement of $R_\varepsilon(\xi)$.

$$R_\varepsilon^c(\xi) = \{\eta | \forall (x, \xi) \in \text{supp } \chi \times V, |d_x S(x; \eta) - \xi| > \varepsilon\}$$

$$R_\varepsilon^c(\xi) = \{\eta | \forall (x, \xi) \in \text{supp } \chi \times V, |d_x \psi(\xi, \eta)| > \varepsilon\}.$$  

We use the following result in Duistermaat, $\forall N, \exists C_N$ s.t.

$$\forall (\xi, \eta) \in V \times R_\varepsilon^c(\xi), |I(\xi, \eta)| \leq C_N (1 + |\eta| + |\xi|)^{-N}. \quad (4.26)$$

The proof of this result is based on the fact that we are away from the critical set $R(\xi)$ and from application of the stationary phase ([16] Proposition 2.1.1 p. 11). The constant $C_N$ depends only on $N, \chi, S, \varepsilon$.

Recall we made the assumption there is a function $\alpha \in C^\infty(\mathbb{R}^n \setminus 0)$, homogeneous of degree 0 such that $\forall \xi \in V, R_\varepsilon(\xi)$ does not meet $\text{supp } \alpha$, and $\text{supp } \varphi \times \text{supp } (1 - \alpha)$ does not meet $\Gamma$. We cut the Fourier transform in two pieces:

$$I(\xi) = \mathcal{F}(\chi U (t^\nu \varphi_j))(\xi) = I_1 + I_2$$

where

$$I_1(\xi) = \int_{R_\varepsilon(\xi)} d\eta I(\xi, \eta) \hat{\varphi}(\eta) \quad (4.27)$$

$$I_2(\xi) = \int_{R_\varepsilon^c(\xi)} d\eta I(\xi, \eta) \hat{\varphi}(\eta). \quad (4.28)$$
Observe \( I_1(\xi) = \int_{R_\epsilon(\xi)} d\eta I(\xi,\eta)\alpha \hat{\varphi}(\eta) + \int_{R_\epsilon(\xi)} d\eta I(\xi,\eta) (1-\alpha) \hat{t}\varphi(\eta) = \int_{R_\epsilon(\xi)} d\eta I(\xi,\eta) (1-\alpha) \hat{t}\varphi(\eta) \) since we assumed \( \forall \xi \in V, \sup \alpha \cap R_\epsilon(\xi) = \emptyset \). By Paley–Wiener theorem, we know that \( \exists m_i \| \theta^{-m_i} \hat{t}\varphi \|_{L^\infty} < \infty \). We use this inequality and stationary phase estimate (4.26)

\[
|I_2(\xi)| = \left| \int_{R_\epsilon(\xi)} d\eta I(\xi,\eta) \hat{t}\varphi(\eta) \right| \leq C_{N+m+d+1} \int_{R_\epsilon(\xi)} d\eta (1+|\eta|+|\xi|)^{-N-m-d-1} \| \hat{t}\varphi(\eta) \|_{L^\infty}
\]

\[
\leq C_{N+m+d+1} \int_{R_\epsilon(\xi)} d\eta (1+|\eta|+|\xi|)^{-N-m-d-1} (1+|\eta|)^{m} \| \theta^{-m} \hat{t}\varphi \|_{L^\infty}
\]

hence \( I_2(\xi) \leq C'_{N+m+d+1} (1+|\xi|)^{-N} \| \theta^{-m} \hat{t}\varphi \|_{L^\infty} \) where \( C'_{N+m+d+1} \) is a constant which depends only on \( N, \chi, S, \varepsilon \). Now to estimate \( I_1 \), set \( W := \text{supp} (1-\alpha) \):

\[
I_1(\xi) = \int_{R_\epsilon(\xi)} d\eta I(\xi,\eta) (1-\alpha) \hat{t}\varphi(\eta)
\]

by a change of variable in (4.27) so that \( \eta \) does appear on the right hand side,

\[
|I_1(\xi)| \leq \int_{\mathbb{R}^d} dx |\chi(x)| \int_{R_\epsilon(\xi)} d\eta (1-\alpha) \hat{t}\varphi(\eta)
\]

because \( |I(\xi,\eta)| \leq \int_{\mathbb{R}^d} dx |\chi(x)| \int_{R_\epsilon(\xi)} d\eta \|t\|_{N,W,\varphi} (1+|\eta|)^{-N} \).

Recall the definition of \( R_\epsilon(\xi) = \{ \eta \exists x \in \text{supp} \chi, |d_x S(x,\eta) - \xi| \leq \varepsilon \} \). The defining inequality \( |d_x S(x,\eta) - \xi| \leq \varepsilon \) implies that on \( R_\epsilon(\xi) \):

\[
|d_x S(x;\eta) - \xi| \leq \varepsilon \implies |\xi| - \varepsilon \leq |d_x S(x;\eta)| \leq |\xi| + \varepsilon.
\]

This estimate is relevant if \( |\xi| > \varepsilon \). Then we use the fact that \( \eta \mapsto d_x S(x,\eta) \) does not meet the zero section when \( \eta \neq 0 \) and depends smoothly on \( x \in \text{supp} \chi \) (in the case of a diffeomorphism, we find \( d_x S(x,\eta) = \eta \circ d\Phi(x) \)), so there is a constant \( c > 0 \) such that

\[
\forall (x,\eta) \in \text{supp} \chi \times \mathbb{R}^d, c^{-1} |\eta| \leq |d_x S(x,\eta)| \leq c|\eta|.
\]

Combining with the previous estimate gives \( \forall \xi \in V, \forall \eta \in R_\epsilon(\xi), |\xi| - \varepsilon \leq c|\eta| \) which can be translated as the inclusion of sets

\[
R_\epsilon(\xi) \subset \{ c^{-1} (|\xi| - \varepsilon) \leq |\eta| \} = \mathbb{R}^d \setminus B \left( 0, \frac{|\xi| - \varepsilon}{c} \right)
\]
4.3. **THE PULL-BACK BY DIFFEOMORPHISMS.**

\[
I_1(\xi) \leq \int_{\mathbb{R}^d} dx |\chi(x)| \int_{e^{-1}(|\xi| - \varepsilon) \leq |\eta|} dn \| t \|_{N+d+1, W, \varphi} (1 + |\eta|)^{-N - d - 1}
\]
\[
= \frac{2\pi^{d/2}}{\Gamma(d/2)} \left( \int_{\mathbb{R}^d} dx |\chi(x)| \right) \| t \|_{N+d+1, W, \varphi} \int_{e^{-1}(|\xi| - \varepsilon)}^{\infty} (1 + r)^{-N - d - 1} r^{d-1} dr
\]
\[
\leq \frac{2\pi^{d/2}}{\Gamma(d/2)} \left( \int_{\mathbb{R}^d} dx |\chi(x)| \right) \| t \|_{N+d+1, W, \varphi} \int_{e^{-1}(|\xi| - \varepsilon)}^{\infty} r^{-N - 2} dr
\]
\[
= \frac{2\pi^{d/2}}{\Gamma(d/2)} \left( \int_{\mathbb{R}^d} dx |\chi(x)| \right) \| t \|_{N+d+1, W, \varphi} \frac{c^{-1} (|\xi| - \varepsilon)^{-N-1}}{N+1}
\]
\[
\leq C_N \| t \|_{N+d+1, W, \varphi} (1 + |\xi|)^{-N - 1}.
\]

where \( C_{N+1} \) does not depend on \( t \) but only on \( \Gamma \). \( \blacksquare \)

In the previous lemma, we made two assumptions that we are going to prove, we recall some useful definitions:

\[ \forall \xi \in V, \Sigma(\xi) = \sigma^{-1} \circ (\text{supp } \chi \times \{\xi\}) \text{, } R(\xi) = \pi_2(\Sigma(\xi)) \]

and \( R_\varepsilon(\xi) \) is a family of neighborhoods of \( R(\xi) \) which tends to \( R(\xi) \) as \( \varepsilon \to 0 \).

**Lemma 4.3.5** For any closed conic set \( V \) and \( \chi \in \mathcal{D}(\mathbb{R}^d) \) such that \( (\text{supp } \chi \times V) \cap (\sigma \circ \Gamma) = \emptyset \), there exists a pseudodifferential partition of unity \((\alpha_j, \varphi_j)_j\) such that

\[ \forall \xi \in V, R_\varepsilon(\xi) \cap \text{supp } \alpha_j = \emptyset \]

\[ \Gamma \subset \bigcup_{j \in J} \text{supp } \varphi_j \times \text{supp } \alpha_j. \]

**Proof** — \( \chi \) and \( V \) are given in such a way that

\[ (\text{supp } \chi \times V) \cap (\sigma \circ \Gamma) = \emptyset \iff \sigma^{-1} (\text{supp } \chi \times V) \cap \Gamma = \emptyset. \]

We then use Lemma 4.2.1, 4.2.2 to cover \( \Gamma \) by \( \left( \bigcup_{j} \text{supp } \varphi_j \times \text{supp } \alpha_j \right) \)

where \( \alpha_j \in C^\infty(\mathbb{R}^d \setminus \{0\}) \) is homogeneous of degree 0 and we choose the cover fine enough in such a way that

\[ (\sigma^{-1} \circ (\text{supp } \chi \times V)) \cap \left( \bigcup_{j} \text{supp } \varphi_j \times \text{supp } \alpha_j \right) = \emptyset. \]

But this implies

\[ \forall j, \left( \bigcup_{\xi \in V} \sigma^{-1} (\text{supp } \chi \times \{\xi\}) \right) \cap (\text{supp } \varphi_j \times \text{supp } \alpha_j) = \emptyset. \]
This means the sequence \((x, \omega)\) is w.l.g. assume \(\Pi \) the last line follows by projecting with \(\pi_2\). Finally by choosing \(\varepsilon\) small enough, we can always assume \(\forall \xi \in V, R_{\varepsilon}(\xi) \cap \text{supp } \alpha_j = \emptyset\): assume the converse holds, i.e. \(\forall n, \exists \xi_n \in V, \exists x_n \in \text{supp } \chi, \exists \eta_n \in R_{\varepsilon}(\xi_n) \cap \text{supp } \alpha_j\) w.l.g. assume \(|\eta_n| = 1\) then by definition of \(R_{\varepsilon}(\xi_n)\), we find that

\[
|\xi_n - \frac{\partial S}{\partial x}(x_n, \eta_n)| < \frac{1}{n}
\]

and estimate (4.29) \(\Rightarrow |d_z S(x_n, \eta_n)| \leq c|\eta_n| = c \Rightarrow |\xi_n| < c + \frac{1}{n}\).

This means the sequence \((x_n, \xi_n, \eta_n)\) lives in a compact set, thus we can extract a subsequence which converges to \((x, \xi, \eta)\) in \(\text{supp } \chi \times V \times \text{supp } \alpha_j\) and \(\eta \in \overline{R(\xi) \cap \text{supp } \alpha_j}\), contradiction!

Then we give the final lemma which concludes the proof of theorem (4.3.1).

**Lemma 4.3.6** Let \(U\) be an operator given in (4.15) with symbol \(a = 1\) and \(\sigma\) the corresponding canonical transformation. For any closed conic set \(V\) and \(\chi \in \mathcal{D}(\mathbb{R}^d)\) such that \((\text{supp } \chi \times V) \cap (\sigma \circ \Gamma) = \emptyset\), there exists a finite family of seminorms \(\|\cdot\|_{N, W_j, \varphi_j}\) for \(\mathcal{D}_1^r\) such that \(\forall N, \exists C_N, \forall t \in \mathcal{D}_1^r\), s.t. \(\forall j \in J, \|\theta^{-m} t\varphi_j\|_{L^\infty} < +\infty\):

\[
\|Ut\|_{N, V, \chi} \leq \sum_{j \in J'} C_N \left( \|\theta^{-m} t\varphi_j\|_{L^\infty} + \|t\|_{N+2d+1, W_j, \varphi_j} \right).
\]

**Proof** — There is still a problem due to the noncompactness of the support of \(t\), there is no reason the sum \(\sum_{j \in J} t\varphi_j((\varphi_j)_{j \in J})\) is a partition of unity of \(\mathbb{R}^d\) given by Lemma 4.3.5) should be finite thus we do not necessarily have one fixed \(m\) for which \(\forall j \in J, \|\theta^{-m} t\varphi_j\|_{L^\infty} < +\infty\). However, \(\chi Ut = \sum_{j \in J'} \chi Ut\varphi_j\) where \(J'\) is any subset of \(J\) such that \(\sum_{j \in J'} \varphi_j = 1\) on the **compact** set \(\pi_1(\sigma^{-1}(\text{supp } \chi \times V))\), thus \(J'\) can be chosen finite.

Now we use the pseudodifferential partition of unity indexed by \(J'\) to patch everything together:

\[
\forall \xi \in V, |\mathcal{F} (\chi Ut)(\xi)| \leq \sum_{j \in J'} \int_{\mathbb{R}^{2d}} dx dh e^{iS(x;\eta) - x, \xi} \chi(x) t\varphi_j(\eta)\]

\[
\leq \sum_{j \in J'} C_N (1 + |\xi|)^{-N} \left( \|\theta^{-m} t\varphi_j\|_{L^\infty} + \|t\|_{N+2d+1, W_j, \varphi_j} \right)
\]

by estimate (4.20) where \(W_j = \text{supp } (1 - \alpha_j)\). And this final estimate generalizes directly to families of distributions \((t_{\mu})_\mu:\n
\[
\|Ut_{\mu}\|_{N, V, \chi} \leq \sum_{j \in J'} C_N \left( \|\theta^{-m} t_{\mu} \varphi_j\|_{L^\infty} + \|t_{\mu}\|_{N+2d+1, W_j, \varphi_j} \right).
\]

\[
\blacksquare
\]
4.3. THE PULL-BACK BY Diffeomorphisms.

For $t_\mu$ in a bounded family of distributions, there is a finite integer $m$ (which depends on the finite partition of unity $\varphi_j$) such that the r.h.s. of the above inequality is bounded thus all seminorms $\|\cdot\|_{N,V,\chi}$ for $\mathcal{D}'_{\sigma_0 \Gamma}$ are bounded. Finally, it remains to check that the pull-back by a diffeomorphism of a weakly bounded family of distributions is weakly bounded, the proof is a simple application of the variable change formula for distributions ([22] formula (3.7) p. 10).

Consequences for the scaling with different Eulers.

**Definition 4.3.2** $t$ is microlocally weakly homogeneous of degree $s$ at $p \in I$ for $\rho$ if $WF(t)$ satisfies the local soft landing condition at $p$, there exists a $\rho$-convex open set $V_p$ such that $(\lambda^{-s} e^{\log \lambda \rho_1} t)_{\lambda \in (0,1]}$ is bounded in $\mathcal{D}'_1(V_p \setminus I)$ where $\Gamma = \bigcup_{\lambda \in (0,1]} WF(t_\lambda)$.

**Theorem 4.3.2** Let $t \in \mathcal{D}'(M \setminus I)$. If $t$ is microlocally weakly homogeneous of degree $s$ at $p \in I$ for some $\rho$ then it is so for any $\rho$.

**Proof** — Let $\rho_1, \rho_2$ be two Euler vector fields and $t$ is microlocally weakly homogeneous of degree $s$ at $p \in I$ for $\rho_1$. We use Proposition 1.4.2 which states that locally there exists a smooth family of diffeomorphisms $\Phi(\lambda) : V_p \mapsto V_p$ such that $\forall \lambda \in [0,1], \Phi(\lambda)(p) = p$ and $\Phi(\lambda)$ relates the two scalings: $\lambda^s e^{\log \lambda \rho_2} = \Phi(\lambda)^* e^{\log \lambda \rho_1}$.

Then $\Phi(\lambda)^*$ is a Fourier integral operator which depends smoothly on a parameter $\lambda \in [0,1]$. $\lambda^{-s} e^{\log \lambda \rho_1} t$ is bounded in $\mathcal{D}'_1(V_p \setminus I)$, then we apply Theorem (4.3.1) to deduce that the family

$\Phi(\lambda)^* \left(\lambda^{-s} e^{\log \lambda \rho_1} t\right)_\lambda = \left(\lambda^{-s} e^{\log \lambda \rho_2} t\right)_\lambda$

is in fact bounded in $\mathcal{D}'_{\Gamma_2}(V_p)$, with $\Gamma_2$ given by the equation

$\Gamma_2 = \bigcup_{\lambda \in [0,1]} \sigma_\lambda \circ \Gamma_1$

where $\sigma_\lambda = T^* \Phi^{-1}(\lambda)$.

The previous theorem allows us to define a space of distributions $E_s(U)$ that are microlocally weakly homogeneous of degree $s$, the definition being independent of the choice of Euler vector field $\rho$:

**Definition 4.3.3** $t$ is microlocally weakly homogeneous of degree $s$ at $p$ if $t$ is microlocally weakly homogeneous of degree $s$ at $p$ for some $\rho$. $E^s(U)$ is the space of all distributions $t \in \mathcal{D}'(U)$ such that $\forall p \in (I \cap \overline{U})$, $t$ is microlocally weakly homogeneous of degree $s$ at $p$. 

We now state a general theorem which summarizes all our investigations in the first four chapters of this thesis and is a microlocal analog of Theorem 1.4.2.

**Theorem 4.3.3** Let $U$ be an open neighborhood of $I \subset M$, if $t \in E^d_\mu(U \setminus I)$ then there exists an extension $\tilde{t}$ in $E^d_\mu(U)$ where $s' = s$ if $-s - d \notin \mathbb{N}$ and $s' < s$ otherwise.

### 4.4 Appendix.

We recall a deep theorem of Laurent Schwartz (see [55] p. 86 theorem (22)) which gives a concrete representation of bounded families of distributions.

**Theorem 4.4.1** For a subset $B \subset D'(\mathbb{R}^d)$ to be bounded it is necessary and sufficient that for any domain $\Omega$ with compact closure, there is an multiindex $\alpha$ such that $\forall t \in B, \exists f_t \in C^0(\Omega)$ where $t|_\Omega = \partial^\alpha f_t$ and $\sup_{t \in B} \|f_t\|_{L^\infty(\Omega)} < \infty$.

We give an equivalent formulation of the theorem of Laurent Schwartz in terms of Fourier transforms:

**Theorem 4.4.2** Let $B \subset D'(\mathbb{R}^d)$.

$$\forall \chi \in D(\mathbb{R}^d), \exists m \in \mathbb{N}, \sup_{t \in B} \|(1 + |\xi|)^{-m} \hat{f}_\chi\|_{L^\infty} < +\infty$$

$$\iff B \text{ weakly bounded in } D'(\mathbb{R}^d) \iff B \text{ strongly bounded in } D'(\mathbb{R}^d).$$

**Proof** — We will not recall here the proof that $B$ is weakly bounded is equivalent to $B$ is strongly bounded (by Banach Steinhaus see the appendix of Chapter 1). Assume $\forall \chi \in D'(\mathbb{R}^d), \exists m \in \mathbb{N}, \sup_{t \in B} \|(1 + |\xi|)^{-m} \hat{f}_\chi\|_{L^\infty} < +\infty$. We fix an arbitrary test function $\varphi$. There is a function $\chi \in D(\mathbb{R}^d)$ such that $\chi = 1$ on the support of $\varphi$. Then

$$|\langle t, \varphi \rangle| = |\langle t\chi, \varphi \rangle| = |\langle \hat{f}_\chi, \hat{\varphi} \rangle|$$

$$= \left| \int_{\mathbb{R}^d} d^d\xi (1 + |\xi|)^{-d-1}(1 + |\xi|)^{-m} \hat{f}_\chi(\xi)(1 + |\xi|)^{m+d+1}\hat{\varphi}(\xi) \right|$$

$$\leq \int_{\mathbb{R}^d} d^d\xi (1 + |\xi|)^{-d-1}|(1 + |\xi|)^{-m} \hat{f}_\chi(\xi)| \|(1 + |\xi|)^{m+d+1}\hat{\varphi}(\xi) \|_1$$

$$\leq \int_{\mathbb{R}^d} d^d\xi (1 + |\xi|)^{-d-1}|(1 + |\xi|)^{-m} \hat{f}_\chi(\xi)| \|(1 + |\xi|)^{m+d+1}\hat{\varphi}(\xi) \|_1$$

integrable

$$\leq C\|\hat{\chi}||_{L^\infty} \pi_{m+d+1}(\varphi),$$

finally

$$\sup_{t \in B} |\langle t, \varphi \rangle| \leq C\pi_{m+d+1}(\varphi) \sup_{t \in B} \|(1 + |\xi|)^{-m} \hat{f}_\chi\|_{L^\infty} < +\infty.$$
Conversely, we can always assume $B$ to be strongly bounded, then for all $\chi \in D_K(\mathbb{R}^d)$, the family $(\chi e^x)_{x \in \mathbb{R}^d}$ where $e^x(x) = e^{-ix} \xi$ has fixed compact support $K$. Then there exists $m$ and a universal constant $C$ such that

$$\forall t \in B, \forall \varphi \in D(K), |\langle t, \varphi \rangle| \leq C \pi_m(\varphi)$$

thus

$$\forall t \in B, |\hat{t}\chi|(|x) = |\langle t, \chi e^x \rangle| \leq C \pi_m(\chi e^x),$$

now notice that $\pi_m(\chi e^x)$ is polynomial in $x$ of degree $m$ thus $\sup_x |(1 + |x|)^{-m} \pi_m(\chi e^x)|$ is bounded. But then $(1 + |x|)^{-m} |\hat{t}\chi(x)| \leq C |(1 + |x|)^{-m} \pi_m(\chi e^x)|$

and thus $\sup_{t \in B} \| \theta^{-m} \hat{t}\chi \|_{L^\infty} < +\infty$. ■
Chapter 5

The two point function
\[ \langle 0 | \phi(x) \phi(y) | 0 \rangle. \]

Introduction. Hadamard states are nowadays widely accepted as possible physical states of the free quantum field theory on a curved space-time. The Hadamard condition plays an essential role in the perturbative construction of interacting quantum field theory [10]. Since the work of Radzikowski [50], the “Hadamard condition” (renamed microlocal spectrum condition) is formulated as a requirement for the wave front set of the associated two-point function \( \Delta_+ \) which is necessarily a bisolution of the wave equation in the globally hyperbolic space time. The construction of solutions of the wave equation in a globally hyperbolic space-time by the parametrix method, following Hadamard [29] and Riesz [53], is by now classical in the mathematical literature. For spacetimes of the form \( \mathbb{R} \times M \) where \( M \) is a compact Riemannian manifold, it is well known that \( \Delta_+ = e^{it\sqrt{-\Delta}} \) where \( e^{it\sqrt{-\Delta}} \) is a Fourier integral operator constructed in [18] theorem (1.1) p. 43 with the wave front set satisfying the Hadamard condition (see also [67] théorème 1 p. 2). However, to our knowledge, only the recent work of C. Gérard and M. Wrochna [26] treats the non static spacetimes case. Furthermore, for the purpose of renormalizing interacting quantum field theory, we need to establish that \( \Delta_+ \) has finite “microlocal scaling degree” (following the terminology of [10]), which is a stronger assumption than establishing that \( WF(\Delta_+) \) satisfies the Hadamard condition.

The goal of this chapter is to prove that \( \Gamma = WF(\Delta_+) \) satisfies the microlocal spectrum condition and that \( \Delta_+ \) is microlocally weakly homogeneous of degree \(-2\) in the sense of Chapter 4 (this is denoted by \( \Delta_+ \in E_{-2}^{\mu} \)). Although our goal is not to construct \( \Delta_+ \) on flat space, as preliminary, we made an effort to present various different mathematical interpretations of the Wightman function \( \Delta_+ \) in the flat case and give many formulas that are scattered in the mathematical literature. We include rigorous proofs (or give precise references whenever we do not give all the details) even in

83
the flat case of "well known facts", for instance we give a rigorous proof of the Wick rotation which cannot be easily found in the math literature. Of course, our work done in the flat case will be useful when we pass to the curved case.

Our plan and some historical comments. The first section deals with the Wightman function $\Delta_+$ in $\mathbb{R}^{n+1}$. We start with the expression of the Wightman function obtained by Reed and Simon [45]: $\Delta_+$ is the inverse Fourier transform $F^{-1}(\mu)$ of a Lorentz invariant measure $\mu$ supported by the positive mass hyperboloid in momentum space. This beautiful interpretation also appears in the book of Laurent Schwartz [54]. This gives a first proof that $\Delta_+$ is a tempered distribution. The formalism of functional calculus immediately allows us to relate $F^{-1}(\mu)$ with the function $e^{it\sqrt{-\Delta}}\sqrt{-\Delta}$ of the Laplace operator $\sqrt{-\Delta}$, $e^{it\sqrt{-\Delta}}\sqrt{-\Delta}$ is a solution of the Wave equation. From the inverse Fourier transform formula, $\Delta_+$ is interpreted as an oscillatory integral ([45]), then by a theorem of Hörmander, we are able to compute $WF(\Delta_+)$ which gives a first possible way to compute the WF of $\Delta_+$.

Then we give a second approach to the Wightman function: we notice the striking similarity of the formula $e^{it\sqrt{-\Delta}}\sqrt{-\Delta}$ with the formula of the Poisson kernel $e^{-\tau\sqrt{-\Delta}}\sqrt{-\Delta}$, these should be the same formula when the time variable $t$ is treated as a complex variable. To carry out this program, we first compute the inverse Fourier transform w.r.t. to the variables $\xi$ of the Poisson kernel $e^{-\tau|\xi|\sqrt{-\Delta}}\sqrt{-\Delta}$, which can be viewed as the Schwartz kernel of the operator $e^{-(\zeta+it)^2+\sum_{i=1}^nx_i^2}$. This computation relies on the beautiful subordination identity connecting the Poisson operator and the Heat kernel. Then we show how to make sense of the analytic continuation in time of the Poisson kernel $\frac{C}{\tau^2+\sum_{i=1}^nx_i^2}$, this kernel is called the Wave Poisson kernel and corresponds to the operator $e^{it(\tau+\zeta)\sqrt{-\Delta}}\sqrt{-\Delta^{-1}}$. This allows to recover $\Delta_+$ when the complexified time $(\tau - it)$ becomes purely imaginary, this makes sense of the famous Wick rotation and gives a third proof that $\Delta_+$ is a distribution. In fact, to generalize this idea to static spacetimes of the form $\mathbb{R} \times M$ where $M$ is a noncompact Riemannian manifolds, we can use the machinery of functional calculus defined in the monograph [64] (see also [65]), from the relation

$$f(|\sqrt{-\Delta_g}|) = \frac{1}{(2\pi)^\frac{n}{2}} \int_{-\infty}^{+\infty} \hat{f}(t)e^{it\sqrt{-\Delta_g}},$$

one can easily define the analytic continuation in time of the Poisson kernel $e^{-\tau\sqrt{-\Delta_g}}\sqrt{-\Delta_g^{-1}}$, hence define the Wick rotation of $e^{-\tau\sqrt{-\Delta_g}}\sqrt{-\Delta_g^{-1}}$ where $\Delta_g$ denotes the Laplace Beltrami operator on the noncompact Riemannian manifold. Finally, we arrive at the formula which expresses the kernel of
5.1. THE FLAT CASE.

the Wightman function as a distribution defined as the boundary value of a holomorphic function

\[ \lim_{\varepsilon \to 0^+} \frac{C}{(t \pm i\varepsilon)^2 - \sum_{i=1}^{n}(x^i)^2}. \]

Applying general theorems of Hörmander, this gives a fourth proof of the fact that \( \Delta_+ \) is a distribution and a second way to estimate the wave front set of \( \Delta_+ \). Along the way, we prove that \( \log \left((x^0 + i0)^2 - \sum_{i=1}^{n}(x^i)^2\right) \) and the family \((x^0 + i0)^2 - \sum_{i=1}^{n}(x^i)^2)^s\) are distributions with the same wave front set as \( \Delta_+ \).

**Going to the curved case.** There are two conceptual difficulties when we pass to the curved case, the first is to intrinsically define objects on \( M^2 \) which generalize the singularity \( Q^{-1}(\cdot + i\theta) \) of \( \Delta_+ \) and the powers of \( Q \) in general. The idea is to pull back distributions and functions defined on \( \mathbb{R}^{n+1} \) by a map \( F : V \subset M^2 \mapsto \mathbb{R}^{n+1} \) constructed from the inverse of the exponential geodesic map, this well-known technique was already used in [29] and [53] and is exposed in many recent works ([4], [70]), however none of these works present a computation of the wave front set of the pulled back singular term \( F^*Q^{-1}(\cdot + i\theta) \). We are thus able to deduce that the wave front set of the singular term \( F^*Q^{-1}(\cdot + i\theta) \) satisfies the Hadamard condition as stated in [50].

The second difficulty is to be able to pull-back functions defined on \( M^2 \) on \( \mathbb{R}^{n+1} \) in order to establish and solve the system of transport equations. For all \( p \in M \), we define a map \( E_p : \mathbb{R}^{n+1} \mapsto M \) which allows to pull-back functions, the differential operators and the metric defined on \( M \) on \( \mathbb{R}^{n+1} \) which is identified with the exponential chart centered at \( p \).

Once these two difficulties are solved, and all proper geometric objects are defined, it is simple to follow the classical construction of Hadamard [29] to construct a parametrix with adequate wave front set.

5.1 The flat case.

Fix the Lorentz invariant quadratic form \( Q(x^0, x^1, \ldots, x^n) = (x^0)^2 - \sum_{i=1}^{n}(x^i)^2 \) in \( \mathbb{R}^{n+1} \). In the book of Laurent Schwartz [54], the study of particles is related to the problem of finding Lorentz invariant tempered distributions of positive type on \( \mathbb{R}^{n+1} \). By Fourier transform and application of the Bochner theorem (p. 60,66 in [54]), it is equivalent to the problem of finding positive Lorentz invariant measures \( \mu \in \left(C^0(\mathbb{R}^{n+1})\right)' \) in momentum space. \( \mu \) is called a scalar particle. If the particle is elementary, it is required that \( \mu \) is extremal i.e a measure \( \mu \) is called extremal iff \( \mu = \sum \alpha_i \mu_i \) implies all \( \mu_i \) are proportional to \( \mu \). This notion of extremal measure is the analogue in functional analysis of the notion of irreducible representations of a group.
CHAPTER 5. THE TWO POINT FUNCTION \langle 0 | \phi(X) \phi(Y) | 0 \rangle.

in representation theory. We also require that the measure \( \mu \) has positive energy i.e. \( \mu \) is supported on \( \{ x^0 \geq 0 \} \). Before we discuss Lorentz invariant measures, we would like to give a simple formula which is a reinterpretation of the usual Lebesgue integration in \( \mathbb{R}^{n+1} \) in terms of slicing by the orbits of the Lorentz group:

\[
\int_{\mathbb{R}^{n+1}} f \wedge_{\mu=0}^n \, dx^\mu = \int_{-\infty}^{\infty} dm \int_{Q=m} f \wedge_{\mu=0}^n \frac{dx^\mu}{dQ}
\]

(5.1)

this is the Fubini theorem of Gelfand Leray ([36], [76]). Notice that we can produce natural Lorentz invariant measures by modifying this integral, instead of integrating over the Lebesgue measure \( dm \) over the real line, we integrate against an arbitrary measure \( \rho(m) \):

**Proposition 5.1.1** Any Lorentz invariant measure of positive energy \( \mu \) can be represented by the formula

\[
\mu(f) = \int_{-\infty}^{\infty} \rho(m) \int_{Q=m} f \wedge_{\nu=0}^n \frac{dx^\nu}{dQ} + cf(0)
\]

(5.2)

where the measure \( \rho \) is in fact the push-forward of \( \mu \):

\[
\rho = Q_*(\mu).
\]

In particular, by Bochner theorem, any tempered positive distribution \( \mu \) invariant by \( O(n, 1)^+ \) can be represented by

\[
\mu(f) = \int_{-\infty}^{\infty} \rho(m) \int_{Q=m} \hat{f} \wedge_{\nu=0}^n \frac{dx^\nu}{dQ} + c \int_{\mathbb{R}^{n+1}} d^{n+1} x f(x).
\]

(5.3)

**Proof** — The proof is given in full detail in [45] Theorem 9.33 p. 75 and also the classification of all Lorentz invariant distributions was given by Méthée.

From now on, we assume \( \mu \) has positive energy. Inspired by the previous proposition, we claim

**Proposition 5.1.2** Any extremal measure of positive energy \( \mu \) in \( \mathbb{R}^{n+1} \) which is invariant by the group \( O(n, 1)^+ \) of time and orientation preserving Lorentz transformations is supported on one orbit of \( O(n, 1)^+ \).

**Proof** — It was proved in a very general setting in [54] p. 72. The orbits of \( O(n, 1)^+ \) in the positive energy region \( \{ x^0 \geq 0 \} \) are connected components of constant mass hyperboloids for \( m > 0 \), the half null cone \( (x^0)^2 - |x|^2 = 0, x^0 > 0 \) and the fixed point \( \{ 0 \} \) of the group action:

\[
\bigcup_{m>0} \{ (x^0)^2 - |x|^2 = m, x^0 > 0 \} \bigcup \{ (x^0)^2 - |x|^2 = 0, x^0 > 0 \} \bigcup \{ 0 \}.
\]
5.1. THE FLAT CASE.

Let $\mu$ be an $O(n,1)_{\mathbb{L}}$ invariant measure on $\mathbb{R}^{n+1}$. Let $Q$ be our $O(n,1)$ invariant quadratic form. Then the push-forward $Q_*\mu$ is a well defined measure on $\mathbb{R}^+$ (since $\mu$ has positive energy) because $Q$ is smooth and the support of $Q_*\mu$ contains the masses of the particles. Assume the support of $\mu$ contains two points which are in disjoint orbits of $O(n,1)_{\mathbb{L}}$, then the push-forward $Q_*\mu$ is supported at two different points $m_1,m_2$. Then pick a smooth function $0 \leq \chi \leq 1$ such that $\chi(m_1) = 1$ and $\chi(m_2) = 0$ and consider the pair of push pull measures

$$Q^* (\chi Q_* \mu), Q^* ((1 - \chi) Q_* \mu).$$

These are measures with different supports, hence linearly independent, and

$$\mu = H(x^0) Q^* (\chi Q_* \mu) + H(x^0) Q^* ((1 - \chi) Q_* \mu)$$

which contradicts the extremality of $\mu$. ■

Now, let $\mu$ be an extremal measure of positive energy. We already saw the support of $\mu$ is one orbit of $O(n,1)_{\mathbb{L}}$, a hyperboloid of mass $m > 0$. Here we give an interpretation of the $O(n,1)_{\mathbb{L}}$ invariant measure $\mu$ supported by the mass shell $m$ of positive energy (which is unique by theorem 9.37 in [45]) in terms of the Gelfand Leray distributions (see [36]).

**Proposition 5.1.3** Let $\Omega = d\xi^0 \wedge d^n \xi$ be the canonical measure in $\mathbb{R}^{n+1}$ and $Q = (\xi^0)^2 - \sum_{i=1}^n (\xi^i)^2$. Then we can construct an $O(n,1)_{\mathbb{L}}$ invariant measure $\mu$ ported by the component of positive energy of $Q = m$ given by the formulas:

$$\mu(f) = \left\langle \delta_m, \left( \int_{Q = m} f \frac{\Omega}{dQ} \right) \right\rangle = \int_{\mathbb{R}^n} \frac{d^n \xi}{2\sqrt{m^2 + |\xi|^2}} f((m^2 + |\xi|^2)^{\frac{1}{2}}, \xi^i).$$

(5.4)

**Proof** Let us remark that the Lebesgue measure in momentum space $\Omega = d\xi^0 \wedge d^n \xi$ is $O(n,1)$ invariant because the determinant of any element in $O(n,1)$ equals 1. Let us compute the $\delta$ function $\delta_{\{\xi^0 = |\xi|^2 = m, \xi^0 > 0\}} (\Omega)$ as defined in Gelfand–Shilov [36] :

$$\delta_{\{\xi^0 = |\xi|^2 = m, \xi^0 > 0\}} (d\xi^0 \wedge d^n \xi) = \int_{|\xi^0 = \sqrt{m^2 + |\xi|^2} \rangle} \frac{d\xi^0 \wedge d^n \xi}{d(\xi^0^2 - (m^2 + |\xi|^2))}$$

The Gelfand-Leray form $\frac{d\xi^0 \wedge d^n \xi}{d((\xi^0)^2 - (m^2 + |\xi|^2))}$ is the ratio of two Lorentz invariant forms. More explicitly, we compute this ratio in the parametrization $\xi^i \in \mathbb{R}^n \rightarrow ((m^2 + |\xi|^2)^{\frac{1}{2}}, \xi^i) \in \mathbb{R}^{n+1}$ of the mass hyperboloid:

$$\frac{d\xi^0 \wedge d^n \xi}{d((\xi^0)^2 - (m^2 + |\xi|^2))^{\frac{1}{2}}} = \frac{d\xi^0 \wedge d^n \xi}{2(\xi^0 d\xi^0 - \xi^i d\xi^i)}$$

$$\frac{d\xi^0 \wedge d^n \xi}{d((\xi^0)^2 - (m^2 + |\xi|^2))^{\frac{1}{2}}} = \frac{d\xi^0 \wedge d^n \xi}{2\xi^0 |\xi^0 - \sqrt{m^2 + |\xi|^2}|^2}$$
because \( \frac{d^2 \xi}{2\xi^0} \wedge 2(\xi^0 d\xi^0 - \xi^\nu d\xi^\nu) = d\xi^0 \wedge d^n \xi \)

\[
= \frac{d^n \xi}{2\sqrt{m^2 + |\xi|^2}},
\]

we thus connect with the formula found in [45] p70, 74.

Once we have this measure \( \mu \) in momentum space, we would like to recover the distribution it defines by computing the inverse Fourier transform \( F^{-1}(\mu) \) in \( \mathbb{R}^{n+1} \).

**Proposition 5.1.4** Assume \( \Delta_+ = F^{-1}(\mu) \) where \( \mu \) is an extremal measure of mass \( m \), \( O(n,1)^+ \) invariant and of positive energy, then \( \Delta_+ \) is given by the formula

\[
\Delta_+(x;m) = \frac{1}{2(2\pi)^{n+1}} \int_{\mathbb{R}^n} e^{-ix^0(m^2 + |\xi|^2)^{1/2} + ix\cdot \xi} (m^2 + |\xi|^2)^{1/2} d^n \xi. \tag{5.5}
\]

**Proof** — To prove the claim, we use the Gelfand Leray notation and the beautiful identity \( e^{i\tau f} \omega = e^{i\tau t} dt \int_{t=f} \omega \frac{df}{df} \) ([76] page 124 lemma (5.12)), which allows to rewrite the Reed Simon formula:

\[
\delta(\xi^2 - |\xi|^2 = m^2, \xi^0 \geq 0)(e^{i(x^0 \xi^0 + x\cdot \xi)} \Omega)
\]

\[
= \int e^{i(x^0 \xi^0 + x\cdot \xi)} d\xi^0 \int_{\xi^0 = \sqrt{m^2 + |\xi|^2}} d\xi^\nu \left( \frac{d\xi^0 \wedge d^n \xi}{(m^2 + |\xi|^2)^{1/2}} \right)
\]

\[
= \int_{\mathbb{R}^n} e^{i(x^0 \sqrt{m^2 + |\xi|^2} + x\cdot \xi)} 2\sqrt{m^2 + |\xi|^2} d^n \xi
\]

we recognize the inverse Fourier transform of a distribution ported by the positive hyperboloid.

If we provisionally call \( t \) the variable \( x^0 \) then the above proposition allows to interpret \( \Delta_+ \) as the Schwartz kernel of the operator \( \frac{e^{it\sqrt{-\Delta + m^2}}}{\sqrt{-\Delta + m^2}} \) where \( \Delta \) is the Laplace operator acting on \( \mathbb{R}^n \). Also notice that the evolution operator \( t \mapsto U(t) = \frac{e^{it\sqrt{-\Delta + m^2}}}{\sqrt{-\Delta + m^2}} \) satisfies the half Klein Gordon equation: \( \partial_t - i\sqrt{-\Delta + m^2}U = 0 \), thus \( \Delta_+(x;m) \) is a solution of the Klein Gordon equation and for any \( u \in H^s(\mathbb{R}^n) \), \( u_+ = \Delta_+(t;m) * u \) is a solution of the Klein Gordon equation which has **positive energy** i.e the Fourier transform is supported in the positive hyperboloid.
5.1. THE FLAT CASE.

5.1.1 The Poisson kernel, the Wick rotation and the subordination identity.

To define $\Delta_+$ as the inverse Fourier transform of the measure $\mu$ is not very satisfactory since it does not give an explicit formula for $\Delta_+$ in space variables. We will prove that $\Delta_+ = C((x^0 + it)^2 - |x|^2)^{-1}$ where we explain how to make sense of the term on the right hand side as a tempered distribution by the process of Wick rotation.

**Lemma 5.1.1** The family of Schwartz distributions

\[
\frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix \cdot \xi - y|\xi|} d^n \xi = e^{-y\sqrt{-\Delta}} \delta(x) = \frac{\pi^{n+1}}{\Gamma(n+1)} \frac{1}{(y^2 + |x|^2)^{n+1}} \tag{5.6}
\]

is holomorphic in $y \in \{ y | Re(y) > 0 \}$ and continuous in $y \in \{ y | Re(y) \geq 0 \}$ with values in $S'(\mathbb{R}^n)$.

Similar computations of Poisson integrals are presented in [59] p. 60, p. 130, [22] and [64] (3.5).

**Proof** — Our proof follows [64] (3.5). Everything relies on the following identity (see the identity $\beta$ in [59] p. 61)

\[
e^{-Ay} = \frac{1}{\pi^{1/2}} \int_0^\infty e^{-\frac{y^2}{4t}} e^{-A^2t} t^{-\frac{1}{2}} dt \tag{5.7}
\]

which is derived from the subordination identity (5.22) in [64]

\[
e^{-Ay} = \frac{y}{2\pi^{1/2}} \int_0^\infty e^{-\frac{x^2}{4t}} e^{-A^2t} t^{-\frac{3}{2}} dt \tag{5.8}
\]

by integrating w.r.t. $y$ and by noticing that when $y = 0$ our formula 5.7 coincides with the Hadamard-Fock-Schwinger formula:

\[
\int_0^\infty t^{-\frac{1}{2}} e^{-tA^2} dt = \int_0^\infty t^{\frac{1}{2}} e^{-tA^2} \frac{dt}{t}
\]

\[
= A^{-1} \int_0^\infty t^{\frac{1}{2}} e^{-t} dt = A^{-1} \Gamma\left(\frac{1}{2}\right) = A^{-1} \pi^{\frac{1}{2}}
\]

since $\Gamma\left(\frac{1}{2}\right) = \pi^{\frac{1}{2}}$. We use functional calculus in our proof since we must set $A = \sqrt{-\Delta}$, the subordination identity becomes an identity for functions of the operator $\sqrt{-\Delta}$. We apply these operators to the delta function supported at 0:

\[
\frac{e^{-\sqrt{-\Delta}y}}{\sqrt{-\Delta}} \delta_0 = \left( \frac{1}{\pi^{1/2}} \int_0^\infty e^{-\frac{x^2}{4t}} e^{tA^2} t^{-\frac{1}{2}} dt \right) \delta_0
\]
we recognize on the left hand side a distributional solution of the Poisson operator \( \partial_y^2 + \Delta_x \) and on the right hand side, we recognize the Heat kernel
\[
e^{t\Delta} \delta_0 = \frac{1}{(4\pi)^{d/2}} e^{-\frac{|x|^2}{4t}}. \]
Substitute in the previous formula,
\[
e^{-\sqrt{-\Delta}y} \delta_0 = \frac{1}{\pi^{1/2}} \int_0^\infty e^{-\frac{y^2}{4t}} \frac{1}{(4\pi)^{d/2}} e^{-\frac{|x|^2}{4t}} t^{-\frac{1}{2}} dt = \frac{1}{(4\pi)^{d/2} \pi^{1/2}} \int_0^\infty dt e^{-\frac{y^2 + |x|^2}{4t}} 1_{t > 0}
\]
set \( t = \frac{1}{x^2} \) and we get
\[
\frac{1}{(4\pi)^{d/2} \pi^{1/2}} \int_0^\infty \frac{dse^{-gy^2 + |x|^2}}{4s^2} = \frac{1}{2\pi \pi^{1/2}} \int_0^\infty ds e^{-y^2 + |x|^2} s^\frac{n-2}{2}
\]
finally by a variable change in the formula of the Gamma function
\[
\frac{e^{-\sqrt{-\Delta}y}}{\sqrt{-\Delta}} \delta_0 = \frac{\Gamma(n-1)}{2\pi \pi^{1/2}} \frac{1}{(y^2 + |x|^2)^\frac{n-2}{d}}
\]
\[\Box\]

**Theorem 5.1.1** The limit \( \lim_{\epsilon \to 0^+} (|t \pm i\epsilon|^2 - \epsilon^2)^{-\frac{n-1}{2}} \) makes sense in \( S'(\mathbb{R}^n) \) and satisfies the identity:
\[
(t \pm i0)^2 - \epsilon^2)^{-\frac{n-1}{2}} = \frac{\Gamma(n-1)}{\Gamma(\frac{n+1}{2})(4\pi)^{n-1}} \int_{\mathbb{R}^n} d^nx \frac{1}{|x|^n} e^{\pm i|x|} e^{i\epsilon|x|} \tag{5.9}
\]

**Proof** — The key argument of the proof is to justify the analytic continuation of the Poisson kernel, this is called Wick rotation in physics textbooks. Notice that \( e^{\frac{-\sqrt{-\Delta}y}{\sqrt{-\Delta}}} \delta_0 \) is the Schwartz kernel of a well defined operator \( e^{\frac{-\sqrt{-\Delta}y}{\sqrt{-\Delta}}} \).

The partial Fourier transform of \( e^{\frac{-y|\xi|}{\sqrt{-\Delta}}} \) w.r.t. the variable \( x \) is the multiplication by \( e^{-y|\xi|} \). Consider now the function \( \frac{1}{|\xi|} e^{-y|\xi|} \), when \( n \geq 2 \) this function is analytic in \( \{y, \text{Re}(y) > 0\} \) with value Schwartz distribution in \( \xi \) because
\[
\forall y \in \{\text{Re}(y) > 0\}, |\frac{1}{|\xi|} e^{-y|\xi|}| \leq \frac{1}{|\xi|} \in L^1_{loc}(\mathbb{R}^n),
\]
notice the above estimate is still true when \( \text{Re}(y) \to 0^+ \) hence \( \frac{1}{|\xi|} e^{-y|\xi|} \) is a well defined Schwartz distribution in \( \xi \) for \( \text{Re}(y) \geq 0 \) (it is continuous in \( y \) with value tempered distribution). Finally, we can continue this operator in the \( y \) variable in the domain \( \text{Re}(y) \geq 0 \), set \( y = \tau + it \) and let \( \tau \) tends to zero in \( \mathbb{R}^+ \). Set \( e^{\frac{-\sqrt{-\Delta}(\tau \pm it)}{\sqrt{-\Delta}}} \delta_0 = \frac{\Gamma(n-1)}{2\pi \pi^{1/2}} \frac{1}{(|\tau \pm it|^2 + |x|^2)^\frac{n-1}{2}} \) then at the limit we find
\[
\int_{\mathbb{R}^n} \frac{e^{\pm i|\xi|\tau}}{|\xi|} d^nx = \frac{\Gamma(n-1)}{2\pi \pi^{1/2}} \frac{1}{(|\tau \pm it|^2 + |x|^2)^\frac{n-1}{2}}
\]
\[
\int_{\mathbb{R}^n} \frac{e^{\pm i|\xi|\tau}}{|\xi|} d^nx = \frac{\Gamma(n-1)}{2\pi \pi^{1/2}} \frac{1}{(|\tau \pm it|^2 + |x|^2)^\frac{n-1}{2}}
\]
5.1. THE FLAT CASE.

5.1.2 Oscillatory integral.

For QFT, we are interested in the formula (5.9) for \( n = 3 \).

\[ ((t \pm i0)^2 - r^2)^{-1} = C_n \int_{\mathbb{R}^n} d^n \xi \frac{1}{|\xi|} e^{it|\xi|} e^{-ix \cdot \xi}, \]

\[ C_n = \frac{(-1)^{n+1}}{\Gamma(n-1/2)(4\pi)^{n/2}} \] (5.10)

It provides a definition of \(((t \pm i0)^2 - r^2)^{-1}\) as an oscillatory integral or Lagrangian distribution in \( \mathbb{R}^{n+1} \),

\[ C_n \int_{\mathbb{R}^n} d^n \xi e^{i\phi_{\pm}(t,x,\xi)} \frac{1}{|\xi|} \] (5.11)

with phase function \( \phi_{\pm}(t, x; \xi) = \sum_{\mu=1}^n -x^\mu \xi_\mu \pm t \sqrt{\sum_{\mu=1}^n \xi_\mu^2} = -x \cdot \xi \pm t|\xi| \).

The idea is to use the interpretation of \(((t \pm i0)^2 - r^2)^{-1}\) as an oscillatory integral to compute \( WF((t \pm i0)^2 - r^2)^{-1} \).

**Proposition 5.1.5** We claim

\[ WF\left( C_n \int_{\mathbb{R}^n} d^n \xi e^{i\phi_{\pm}(t,x,\xi)} \frac{1}{|\xi|} \right) = \{(0, 0; \pm|\xi|, -\xi^i) \cup \{(|x|, x; \pm \lambda, -\frac{\lambda x_i}{|x|})| \lambda > 0, |x| \neq 0 \} \} \]

**Proof** — This computation can be found in [45] example 7 p. 101, set \( \phi = t|\xi| - x \cdot \xi \). \( \phi \) satisfies the axioms of a phase function because it is homogeneous of degree 1 in \( \xi \), smooth outside \( \xi = 0 \) and \( d_{x,t} \phi \) never vanishes as soon as \( |\xi| \neq 0 \) which implies that it defines a phase function in the sense of Hörmander. We first compute the critical set of \( \phi \) denoted by \( \Sigma_\phi \) and defined by the equation \( \{d_{\xi} \phi = 0\} \):

\[ d_{\xi}(t|\xi| - x \cdot \xi) = t \sum_{\mu=1}^n \frac{\xi_\mu}{|\xi|} d\xi_\mu - x^\mu d\xi_\mu = 0 \Leftrightarrow t = |x|, x^\mu = \frac{\xi_\mu}{|\xi|} |x| \]

We will later see in Chapter 6 that we defined a Morse family

\[ \left((\mathbb{R}^n \setminus \{0\}) \times \mathbb{R}^{n+1} \mapsto \mathbb{R}^{n+1}, \phi \right) \]

and the wave front set is parametrized by the Lagrange immersion \( \lambda_\phi \Sigma_\phi \) of the critical set defined by the Morse family:

\[ \lambda_\phi \Sigma_\phi = \{(t, x; \partial_t \phi, \partial_x \phi)| \partial_{t} \phi = 0\} \]

\[ = \{(x = 0, t = 0; |\xi|, -\xi) \cup \{(t, x; |\xi|, -\xi)| t = |x|, x^\mu = \frac{\xi_\mu}{|\xi|} |x|, \xi \neq 0 \} \]

\[ = \{(0, 0; |\xi|, -\xi) \cup \{|x|, x^\mu; \lambda, -\frac{\lambda x^\mu}{|x|})| \lambda > 0, |x| \neq 0 \} \}

To conclude, we see that the sign in front of \( t \) in the phase \( \phi_{\pm}(t, x; \xi) = \pm t|\xi| - x \cdot \xi \) will decide of the positivity or negativity of the energy of \( WF(\Delta_+). \)
5.2 The holomorphic family \( (x^0 + i0)^2 - \sum_{i=1}^{n}(x^i)^2)^s \).

We give a detailed derivation of the main steps needed for the computation of the wave front set of the family \( (x^0 + i0)^2 - \sum_{i=1}^{n}(x^i)^2)^s \) and \( \log ((x^0 + i0)^2 - \sum_{i=1}^{n}(x^i)^2)^s \) using the general theory of boundary values of holomorphic functions along convex sets developed by Hörmander [33]. The result is given in [33] p. 322 without any detail, also a similar treatment in the literature can be found in [69]. We carefully follow the exposition of [33] (8.7) but we specialize to the simpler case of the quadratic form \( Q = (x^0)^2 - \sum_{i=1}^{n}(x^i)^2 \) which makes the explanations much clearer and allows us to give direct arguments.

Let \( C^+ \) denote the set \( \{x | Q(x) > 0, x^0 > 0\} \), \( C^+ \) is an open cone called the future cone. We denote by \( q \) the unique bilinear map associated to the quadratic form \( Q \).

**Microhyperbolicity.** We recall that \( Q \) is said to be microhyperbolic (see definition 8.7.1 in [33]) w.r.t. \( \theta \) in an open set \( \Omega \subset \mathbb{R}^n \) if \( \forall t, 0 < t < t(x), Q(x + it\theta) \neq 0 \).

**Proposition 5.2.1** The quadratic form \( Q(x) = (x^0)^2 - \sum_{i=1}^{n}(x^i)^2 \) is microhyperbolic with respect to any vector \( \theta \in C^+ \).

**Proof** — We are supposed first to fix a vector \( \theta \in C^+ \), and we must check \( Q \) is microhyperbolic with respect to \( \theta \). In fact, we prove a stronger result: \( \forall x, \forall \varepsilon > 0, Q(x + i\varepsilon\theta) \neq 0 \). If \( Q(x + i\varepsilon\theta) = Q(x) - \varepsilon^2 Q(\theta) + 2i\varepsilon q(x, \theta) = 0 \) then the imaginary part \( \text{Im} Q(x + i\varepsilon\theta) = 0 \) must vanish hence \( q(x, \theta) = 0 \). But then we would have \( Q(x) \leq 0 \) since \( \theta \in C^+ \) and finally \( Q(x + i\varepsilon\theta) = Q(x) - \varepsilon^2 Q(\theta) < 0 \). Contradiction! ■

The domain \( T^C = \mathbb{R}^{n+1} + iC^+ \) is called a tube cone. We want to define the limits in the sense of distributions \( \lim_{y \to 0, y \in C^+} Q^s(x + iy) \) of the holomorphic function \( Q^s \).

**The Vladimirov approach.**

In the Vladimirov approach which is similar to Hörmander’s, we have to prove \( Q^s \) is slowly increasing in the algebra \( \mathcal{O}(T^C) \) of functions holomorphic in the tube cone \( T^C \) (see [69]). In fact, in our case, we would have to prove an estimate of the form

\[
|Q^s(z)| \leq \left( 1 + d(y, \partial C^+) - 2Re(s) \right)
\]

(5.12)

where \( d(y, \partial C^+) \) is defined as the distance between \( y \in C^+ \) and the boundary \( \partial C^+ \) of the future cone. Then we know (see Theorem 4 p. 204 in [69]) that the Fourier Laplace transform \( \mathcal{F} \) is an algebra isomorphism from...
(O(T^C), ×) to the algebra (S'(C^o), *) of tempered distribution supported in the dual cone C^o ⊂ C^4 endowed with the convolution product. However, both the Hörmander and Vladimirov approaches rely on an estimate which roughly says the holomorphic function Q^s(z) has moderate growth when the imaginary part y of z tends to zero in the Tube cone T^C.

**Stratification of the space of zeros.** For a fixed point x_0 ∈ R^{n+1}, we study the Jets of the map x ↦ Q(x) at the point x_0. The Minkowski space R^{n+1} is partitioned by the lowest order of homogeneity of the Taylor expansion of Q. Lojasiewicz describes this construction as the stratification of the space R^{n+1} by the orders of the zeros of Q. We study the Taylor expansion of Q at x_0 by looking at the map y ↦ Q(x_0 + y). We find three distinct situations:

- Q(x_0) ≠ 0 thus Q(x_0 + y) = q(x_0, x_0) + O(|y|), the term of lowest homogeneity is q(x_0, x_0) and is homogeneous of degree 0 in y
- Q(x_0) = 0, x_0 ≠ 0 thus Q(x_0 + y) = 2q(x_0, y) + O(|y|^2), the term of lowest homogeneity is 2q(x_0, y) and is homogeneous of degree 1 in y
- x_0 = 0 thus Q(0+y) = q(y, y) + O(|y|^3), the term of lowest homogeneity is q(y, y) and is quadratic hence homogeneous of degree 2 in y.

Following Hörmander, we denote by Q_{x_0}(y) the term of lowest homogeneity in y. The term of lowest homogeneity allows to construct a geometric structure over R^{n+1} called the tuboid.

**Construction of the tuboid.** For every x_0 ∈ R^{n+1}, we associate the cone Γ_{x_0} ([33] Lemma 8.7.3 ) defined as the connected component of

\[ \{ y | Q_{x_0}(y) ≠ 0 \} \cap C^+ \]  

(5.13)

which contains the vector θ = (1, 0, 0, 0).

**Lemma 5.2.1** Let Q = (x_0)^2 − \sum_{i=1}^{n} (x_i)^2 and θ = (1, 0, 0, 0). For every x_0 ∈ R^{n+1}, let Γ_{x_0} be the cone defined as above.

- If Q(x_0) ≠ 0 then Γ_{x_0} = \{ y | Q_{x_0}(y) ≠ 0 \} = R^{n+1} since the term of lowest homogeneity Q(x_0) does not depend on y.
- If Q(x_0) = 0, x_0 ≠ 0 then \{ y | Q_{x_0}(y) ≠ 0 \} = \{ y | q(x_0, y) ≠ 0 \} = \{ y | q(x_0, y) > 0 \} \cup \{ y | q(x_0, y) < 0 \} contains two connected components the upper and lower half spaces associated to Q(x_0, .), Γ_{x_0} = \{ y | q(x_0, θ)q(x_0, y) > 0 \}.
- If x_0 = 0 then Γ_{x_0} = \{ y | q(y, y) > 0, y_0 > 0 \}, it is the space of all future oriented timelike vectors.

The domain Λ = \{ x_0 + iΓ_{x_0} | x_0 ∈ R^{n+1} \} ⊂ C^4 is called a tuboid in the terminology of Vladimirov.
CHAPTER 5. THE TWO POINT FUNCTION \langle 0|\phi(X)\phi(Y)|0 \rangle.

Choice of the branch of the log function. In order to define the complex powers $Q^s(x + iy) = e^{s \log Q(x + iy)}$ and $\log Q(x + iy)$, we must specify the branch of the log function that we use. We choose the branch of the log in the domain $0 < \arg(z) < 2\pi$, for $Q = (x^0)^2 - \sum_{i=1}^n (x^i)^2$. For this determination of the log (see [40] Proposition 4.1), by the proof of Proposition 5.2.1, we see that $Q(x + i\varepsilon \theta)$ avoids the positive reals.

**Proposition 5.2.2** $\lim_{\varepsilon \to 0} \log Q(. + i\varepsilon \theta)$ converges to a smooth function in the nonconnected open set $Q \neq 0$.

**Proof** — We are going to prove that $\lim \log Q(. + i\varepsilon \theta) \in C^\infty(\{Q \neq 0\})$. We notice that the set $\{Q(x_0) \neq 0\}$ contains three open connected domains, and we classify the convergence of $\log Q(. + i\varepsilon \theta)$ on each of these connected domains:

- $Q(x_0) < 0 \implies \forall x \in U_{x_0}, \log Q(x + i\varepsilon \theta) \to \log |Q(x)| + i\pi$ (5.14)
- $Q(x_0) > 0, x_0^0 > 0 \implies \forall x \in U_{x_0}, \log Q(x + i\varepsilon \theta) \to \log |Q(x)|$ (5.15)
- $Q(x_0) > 0, x_0^0 < 0 \implies \forall x \in U_{x_0}, \log Q(x + i\varepsilon \theta) \to \log |Q(x)| + 2i\pi$ (5.16)

Thus for every $x_0$ such that $Q(x_0) \neq 0$, there is a small neighborhood of $x_0$ in which the family of analytic functions $\log Q(. + i\varepsilon \theta)$ converges uniformly to a smooth function. ■

We only have to study the case $Q(x_0) = 0$.

The moderate growth estimate along $T^C$.

Then Hörmander proves an important estimate in [33] lemma 8.7.4 which is a specific case of the celebrated Lojasiewicz inequality. We have to slightly modify his result, actually we prove the estimate of lemma 8.7.4, plus the property that $Q(x + iy)$ never meets the positive half line $\mathbb{R}_+$ for $x, y$ in appropriate domains. Let $\theta = (1, 0, 0, 0)$. For every $x_0 \in \mathbb{R}^{n+1}$ such that $Q(x_0) = 0$, let $\Gamma_{x_0}$ be the cone defined as the connected component of

$$\{y|Q_{x_0}(y) \neq 0\} \quad (5.17)$$

which contains the vector $\theta$.

**Proposition 5.2.3** For any closed conic subset $V_{x_0} \subset \Gamma_{x_0}$, there exists $\delta, \delta' > 0$ and $U_{x_0}$ is a neighborhood of $x_0$ such that for all $(x, y) \in U_{x_0} \times V_{x_0}, |y| \leq \delta$ the following estimate is satisfied:

$$\delta'|y|m \leq |Q(x + iy)| \quad (5.18)$$

and $Q(x + iy)$ does not meet $\mathbb{R}_+$. 


5.2. THE HOLOMORPHIC FAMILY \( \left( (X^0 + i0)^2 - \sum_{i=1}^{N} (X^i)^2 \right)^S \). 95

Proof — We fix \( x_0 \). We also prove that we can choose \( U_{x_0} \) in such a way that \( U_{x_0} \times V_{x_0} \) tends to \( \{ x_0 \} \times \Gamma_{x_0} \) for any net of cones \( V_{x_0} \) which converges to \( \Gamma_{x_0} \). We study the two usual cases:

- if \( Q(x_0) = 0, x_0 \neq 0 \), any closed cone \( V_{x_0} \) contained in
  \[
  \Gamma_{x_0} = \{ y | q(x_0, \theta)q(x_0, y) > 0 \}
  \]
  should be contained in
  \[
  \{ y | q(x_0, \theta)q(x_0, y) \geq 2\delta|y| \}
  \]
  for some \( \delta > 0 \) small enough (when \( \delta \to 0 \) we recover \( \Gamma_{x_0} \)). Let us consider the continuous map \( f := x \rightarrow \inf_{y \in V_{x_0}, |y| = 1} q(x_0, \theta)q(x, y) \).

By definition of \( V_{x_0} \), \( f(x_0) \geq 2\delta \) therefore the set \( f^{-1}[\delta, +\infty) \) contains a neighborhood of \( x_0 \). We set \( U_{x_0} = f^{-1}[\delta, +\infty) = \{ x | \forall y \in V_{x_0}, q(x_0, \theta)q(x, y) \geq \delta|y| \} \), then \( U_{x_0} \) is a neighborhood of \( x_0 \). It is immediate by definition of \( U_{x_0} \) that for all \( (x, y) \in U_{x_0} \times V_{x_0} \), we have \( |q(x, y)| \geq |q(x_0, \theta)|^{-1}\delta|y| \) which is the moderate growth estimate and we also find that \( \text{Im} \ Q(x + iy) = 2q(x, y) \) never vanishes. Thus \( Q(x + iy) \) avoids \( \mathbb{R}_+ \).

- if \( x_0 = 0 \) then \( \Gamma_0 = \{ y | q(y, y) > 0, y_0 > 0 \} \) is the space of all future oriented timelike vectors. If we set \( y = t\theta, \theta = (1, 0, 0, 0) \), we find that
  \[
  \forall x, |Q(x + iy)| \geq |Q(y)| \quad (5.19)
  \]
  in fact the unique critical point of the map \( (x, t) \rightarrow Q(x + it\theta) \) is the point \( x = 0 \). But then this inequality is invariant by the group \( O^+(n, 1) \) of time and orientation preserving Lorentz transformations. Thus the previous estimate is always true for any \( y \in \Gamma_0 \):
  \[
  \forall x, \forall y \in \Gamma_0, |Q(x + iy)| \geq |Q(y)|. \quad (5.20)
  \]

To properly conclude, we use the fact that \( y \) is contained in a closed subcone \( V_0 \) of the interior future cone \( q(y, y) > 0 \), thus there is a constant \( \delta < 1 \) such that

\[
(x, y) \in K \implies \sum_{i=1}^{n} (y_i)^2 \leq \delta(y^0)^2
\]

this implies the estimates

\[
\sum_{\mu=0}^{n} (y^\mu)^2 = (y^0)^2 + \sum_{i=1}^{n} (y_i)^2 \leq (1 + \delta)(y^0)^2 \implies (y^0)^2 \geq \frac{\sum_{\mu=0}^{n} (y^\mu)^2}{1 + \delta}
\]
and also the estimate \( \forall (x, y) \in U_0 \times V_0 \), where \( U_0 = |x| < \delta \):

\[
q(y, y) = (y^0)^2 - \sum_{i=1}^{n} (y^i)^2 \geq (y^0)^2 - \delta (y^0)^2 \implies q(y, y) \geq (1 - \delta)(y^0)^2
\]

finally, combining the two previous estimates gives

\[
\frac{(1 - \delta) \sum_{\mu=0}^{n} (y^\mu)^2}{1 + \delta} \leq q(y, y),
\]

which yields the inequalities, \( \forall (x, y) \in U_0 \times V_0 \):

\[
\frac{(1 - \delta) \sum_{\mu=0}^{n} (y^\mu)^2}{1 + \delta} \leq q(y, y) \leq |Q(x + iy)|, \tag{5.21}
\]

setting \( \delta' = \frac{1 - \delta}{1 + \delta} \) proves the claim.

\[\square\]

**Corollary 5.2.1** Thus for all \( y \in \Gamma_x \), \( \log Q(x + iy) \) and \( Q^s(x + iy) \) are well defined analytic functions of the variable \( z = x + iy \) for the branch of the \( \log \): \( 0 < \arg(z) < 2\pi \).

The tube cone \( T^C \) is \( O(n, 1)^+_\perp \) invariant thus our arguments would be still valid for any vector \( \theta \) in the orbit of \( (1, 0, 0, 0) \) by \( O(n, 1)^+_\perp \). Thus all results of proposition 5.2.3 are independent of the choice of \( \theta \) in the open cone \( Q(\theta) > 0, \theta^0 > 0 \). The key inequality (5.21) also appears in a less precise form in the proof of Proposition 4.1 p. 352 in [40].

**Partial results by the Vladimirov approach.** In the course of the proof of proposition (5.2.3), we rediscovered the Lorentz invariant inequality \( \forall z = x + iy \in T^C, |Q(z)| \geq |Q(y)| \). We notice that \( \forall y \in C, Q(y) = 2\Delta^2(y) \) where \( \Delta(y) = \left( \frac{y^2 - |y|^2}{2} \right)^{\frac{1}{2}} \) is the Euclidean distance between \( y \) and the boundary of \( C \). Immediately, we deduce that for Re\( (s) \leq 0 \):

\[
|Q(z)^s| \leq (2\Delta^2(y))^{\text{Re}(s)} \leq M(s)(1 + \Delta^{2\text{Re}(s)}(y)),
\]

this means \( Q^s \) is in the algebra \( H(C) \) of slowly increasing functions in \( O(T^C) \) (where \( O(T^C) \) is the algebra of holomorphic functions in \( T^C \)). Application of theorems of Vladimirov proves the existence of a boundary value

\[
\lim_{y \to 0, z = x + iy \in T^C} Q^s(z) \text{ in the space of tempered distributions when } y \to 0 \text{ in } C.
\]

The limit is understood as a tempered distribution and also the Fourier transform of \( Q^s \) is a tempered distribution in \( \mathcal{S}'(C^0) \) which is the algebra for the convolution product of Schwartz distributions supported on the dual cone \( C^0 \) of \( C \). In the terminology of Yves Meyer, the boundary value \( Q^s(\cdot + i0\theta) \) is \( C^0 \) holomorphic.
5.2. THE HOLOMORPHIC FAMILY \((X^0 + i0)^2 - \sum_{i=1}^{N} (X^i)^2)^S\). 97

Existence of the boundary value as a distribution. The previous estimates allow us to prove a moderate growth property which is the requirement to apply Theorems 3.1.15 and 8.4.8 in [33] giving existence of Boundary values and control of the wave front set:

**Proposition 5.2.4** For any closed conic subset \(V_{x_0} \subset \Gamma_{x_0}\), there exists a sufficiently small neighborhood \(U_{x_0} = |x - x_0| \leq \delta\) of \(x_0\) such that for all \(z \in U_{x_0} + iV_{x_0}, |y| \leq \delta\),

\[
|\log(Q(z))| \leq \frac{C}{|Im(z)|} \tag{5.22}
\]

\[
|Q^s(z)| \leq C|Im(z)|^{2Re(s)} \tag{5.23}
\]

Thus the hypothesis of theorem 3.1.15 of [33] are satisfied for \(\log(Q(z)), Q^s(z)\).

**Proof** — Since \(\forall (x, y) \in U_{x_0} \times V_{x_0}, 0 < |y| \leq \delta\), we have \(Q(x + iy) \notin \mathbb{R}_+\), then we must have \(\log Q(x + iy) = \log |Q(x + iy)| + i\arg(Q(x + iy))\) where \(0 < \arg(Q) < 2\pi\) which implies \(\log |Q(x + iy)| < \log |Q(x + iy)| + 2\pi\). Recall that we have estimates of the form

\[
\forall (x, y) \in U_{x_0} \times V_{x_0}, 0 < |y| \leq \delta, \delta|y|^m \leq |Q(x + iy)|
\]

We can assume without loss of generality that \(0 < C|y|^m < 1\) and \(|Q(x + iy)| \leq 1\). Then we have

\[
\forall (x, y) \in U_{x_0} \times V_{x_0}, 0 < |y| \leq \delta, \delta|y|^m \leq |Q(x + iy)| \implies |Q^s(x + iy)| \leq (\delta|y|^m)^{Re(s)}
\]

for \(Re(s) \leq 0\). And also \(\forall (x, y) \in U_{x_0} \times V_{x_0}, 0 < |y| \leq \delta, \delta|y|^m \leq |Q(x + iy)| \implies \log \delta|y|^m \leq \log |Q(x + iy)| \implies |\log |Q(x + iy)|| \leq |\log (\delta|y|^m)|.

Thus we find

\[
|\log Q(x + iy)| \leq 2\pi + |\log \delta| + m|\log(|y|)|.
\]

**Corollary 5.2.2** Application of Theorem 3.1.15 in [33] implies \(Q^s(. + i0y)\) and \(\log Q(. + i0y)\) for \(y \in \Gamma\) are both well defined on \(\mathbb{R}^{n+1}\) as boundary values of holomorphic functions.

The proof that \(Q^s(. + i0y)\) defines a tempered distribution is only sketched in [40] Proposition 4.1 and it is proved in [38] in example 2.4.3 p. 90 that these are hyperfunctions in the sense of Sato but this is not enough to prove these are genuine distributions. Notice that the existence and definition of the boundary values \(Q^s(. + i0y)\) and \(\log Q(. + i0y)\) does not depend on the choice of \(y\) provided \(y\) lives in the open cone \(C^+\), but since this cone is \(O(n, 1)^+_e\) invariant, the distributions \(Q^s(. + i0y)\) and \(\log Q(. + i0y)\) are \(O(n, 1)^+_e\) invariant.
The wave front set of the boundary value.

**Theorem 5.2.1** The wave front set of $Q^s(\cdot + i0\theta)$ and $\log Q(\cdot + i0\theta)$ is contained in the set:

$$\{(x; \tau dQ)|\tau x^0 > 0, Q(x) = 0\} \bigcup \{(0; \xi)|Q(\xi, \xi) \geq 0, \xi_0 > 0\}.$$  \hspace{1cm} (5.24)

**Proof** — We want to apply Theorem 8.7.5 in [33] in order to obtain the result in remark p. 322. More precisely, we want to apply Theorem 8.4.8 of [33] which gives the wave front set of boundary values of holomorphic functions. Application of Theorem 8.4.8 of [33] claims that for each point $x_0$ such that $Q(x_0) = 0$,

$$WF(\log Q(U_{x_0} + i0V_{x_0})) \subset U_{x_0} \times V_{x_0}^\circ$$

where $V_{x_0}^\circ = \{\eta|\forall y \in V_{x_0}, \eta(y) \geq 0\}$ is the dual cone of $V_{x_0}$. But since this upper bound is true for any closed subcone $V_{x_0} \subset \Gamma_{x_0}$ and corresponding neighborhood $U_{x_0}$ containing $x_0$, by picking an increasing family $V_{x_0,\delta} = \{y|q(x_0, y) \geq 2\delta|y|\}$ and the corresponding decreasing family of neighborhoods $U_{x_0,\delta} = \{x|\forall y \in V_{x_0,\delta}, |q(x, y)| \geq \delta|y|, |x - x_0| \leq \delta\}$, when $\delta \to 0$, we find that the wave front set of the boundary value over each point $x_0$ should be contained in the **dual cone** $\Gamma_{x_0}^\circ = \{\eta|\forall y \in \Gamma_{x_0}, \eta(y) \geq 0\}$ of $\Gamma_{x_0}$. Our job consists in determining this **dual cone** $\Gamma_{x_0}^\circ$ for all $x_0$ such that $Q(x_0) = 0$ ie in the singular support of $Q^s(\cdot + i0\theta)$. As usual there are two cases: $Q(x_0) = 0, x_0 \neq 0$ and $x_0 = 0$.

For $Q(x_0) = 0, x_0 \neq 0$, consider the cone

$$\{y|q(x_0, y) \neq 0\}$$

this cone contains two connected components separated by the hyperplane $H = \{y|q(x_0, y) = 0\}$, we should set $\Gamma_{x_0}$ equal to the connected component which contains $\theta$,

$$\Gamma_{x_0} = \{y|q(x_0, y)q(x_0, \theta) > 0\}.$$ 

However, since $q(x_0, \theta) = x_0^0$ and $dQ_{x_0}(y) = q(x_0, y)$, it is much more convenient to reformulate $\Gamma_{x_0}$ as the half space

$$\Gamma_{x_0} = \{y|\eta(y) > 0\}, \eta = x_0^0dQ_{x_0} \hspace{1cm} (5.26)$$

for the linear form $y \mapsto \eta = x_0^0dQ_{x_0}(y)$. By definition, this half space is the convex envelope of the linear form $\eta$ thus the dual cone $\Gamma_{x_0}^\circ$ of the half space $\Gamma_{x_0}$ consists in the positive scalar multiples of the linear form $\eta$ generating this half space, finally $\Gamma_{x_0}^\circ = \{\tau dQ_{x_0}|\tau x_0^0 > 0\}$.

When $x_0 = 0$, consider the cone

$$\{y|q(y, y) \neq 0\}$$

this cone contains two connected components separated by the hyperplane $H = \{y|q(y, y) = 0\}$, we should set $\Gamma_{x_0}$ equal to the connected component which contains $\theta$,

$$\Gamma_{x_0} = \{y|q(y, y)q(x_0, \theta) > 0\}.$$ 

However, since $q(x_0, \theta) = x_0^0$ and $dQ_{x_0}(y) = q(x_0, y)$, it is much more convenient to reformulate $\Gamma_{x_0}$ as the half space

$$\Gamma_{x_0} = \{y|\eta(y) > 0\}, \eta = x_0^0dQ_{x_0} \hspace{1cm} (5.26)$$

for the linear form $y \mapsto \eta = x_0^0dQ_{x_0}(y)$. By definition, this half space is the convex envelope of the linear form $\eta$ thus the dual cone $\Gamma_{x_0}^\circ$ of the half space $\Gamma_{x_0}$ consists in the positive scalar multiples of the linear form $\eta$ generating this half space, finally $\Gamma_{x_0}^\circ = \{\tau dQ_{x_0}|\tau x_0^0 > 0\}$. 

When $x_0 = 0$, consider the cone

$$\{y|q(y, y) \neq 0\}$$

this cone contains two connected components separated by the hyperplane $H = \{y|q(y, y) = 0\}$, we should set $\Gamma_{x_0}$ equal to the connected component which contains $\theta$,

$$\Gamma_{x_0} = \{y|q(y, y)q(x_0, \theta) > 0\}.$$ 

However, since $q(x_0, \theta) = x_0^0$ and $dQ_{x_0}(y) = q(x_0, y)$, it is much more convenient to reformulate $\Gamma_{x_0}$ as the half space

$$\Gamma_{x_0} = \{y|\eta(y) > 0\}, \eta = x_0^0dQ_{x_0} \hspace{1cm} (5.26)$$

for the linear form $y \mapsto \eta = x_0^0dQ_{x_0}(y)$. By definition, this half space is the convex envelope of the linear form $\eta$ thus the dual cone $\Gamma_{x_0}^\circ$ of the half space $\Gamma_{x_0}$ consists in the positive scalar multiples of the linear form $\eta$ generating this half space, finally $\Gamma_{x_0}^\circ = \{\tau dQ_{x_0}|\tau x_0^0 > 0\}$. 

When $x_0 = 0$, consider the cone

$$\{y|q(y, y) \neq 0\}$$

this cone contains two connected components separated by the hyperplane $H = \{y|q(y, y) = 0\}$, we should set $\Gamma_{x_0}$ equal to the connected component which contains $\theta$,

$$\Gamma_{x_0} = \{y|q(y, y)q(x_0, \theta) > 0\}.$$ 

However, since $q(x_0, \theta) = x_0^0$ and $dQ_{x_0}(y) = q(x_0, y)$, it is much more convenient to reformulate $\Gamma_{x_0}$ as the half space

$$\Gamma_{x_0} = \{y|\eta(y) > 0\}, \eta = x_0^0dQ_{x_0} \hspace{1cm} (5.26)$$

for the linear form $y \mapsto \eta = x_0^0dQ_{x_0}(y)$. By definition, this half space is the convex envelope of the linear form $\eta$ thus the dual cone $\Gamma_{x_0}^\circ$ of the half space $\Gamma_{x_0}$ consists in the positive scalar multiples of the linear form $\eta$ generating this half space, finally $\Gamma_{x_0}^\circ = \{\tau dQ_{x_0}|\tau x_0^0 > 0\}$. 

When $x_0 = 0$, consider the cone

$$\{y|q(y, y) \neq 0\}$$

this cone contains two connected components separated by the hyperplane $H = \{y|q(y, y) = 0\}$, we should set $\Gamma_{x_0}$ equal to the connected component which contains $\theta$,
this cone contains three connected components depending on the sign of \( Q \) and \( y^0 \), we should set \( \Gamma_0 \) equals to the connected component which contains \( \theta \):

\[
\Gamma_0 = \{ y | q(y, y) > 0, y^0 > 0 \}.
\]  
(5.28)

By a straightforward calculation

\[
\Gamma_0^o = \{ \eta | \forall y \in \Gamma_0, \eta(y) \geq 0 \} = \{ \eta | Q(\eta) \geq 0, \eta^0 \geq 0 \},
\]

which is the future cone in dual space. Finally,

\[
WF \log Q(. + i0\theta) \subset \bigcup_{x_0 \neq 0, Q(x_0) = 0} \Gamma_{x_0}^o \bigcup \Gamma_0^o
\]

and we have the same upper bound for \( WFQ^s(\cdot, + i0\theta) \).

The proof of this theorem cannot be found in physics textbooks and is not even sketched in [33] (he only states this as an example of direct application of theorem 8.7.5 in [33]). A nice consequence of theorems proved in this section is that it makes sense of complex powers of the Wightman function \( \Delta_+ \). Our work differs from the work of Marcel Riesz because the Riesz family \( \Box^s \) does not have the right wave front set, actually \( \Box^{-1} \) is a fundamental solution of the wave equation whereas the Wightman function \( \Delta_+ \) is an actual solution of the wave equation.

### 5.3 Pull-backs and the exponential map.

#### The moving frame.

Let \((M, g)\) be a pseudo-Riemannian manifold and \(TM\) its tangent bundle. We denote by \((p; v)\) an element of \(TM\), where \(p \in M\) and \(v \in T_p M\). Let \(N\) be a neighborhood of the zero section \(0\) in \(TM\) for which the map \((p; v) \in N \mapsto (p, \exp_p(v)) \in M^2\) is a local diffeomorphism (\(\exp_p : T_p M \mapsto M\) is the exponential geodesic map). Thus the subset \(V = \exp N \subset M^2\) is a neighborhood of \(d_2\) and the inverse map \((p_1, p_2) \in V \mapsto (p_1; \exp^{-1}_p(p_2)) \in N\) is a well defined diffeomorphism. Let \((\epsilon_0, ..., \epsilon_n)\) be an orthonormal moving frame \(\forall p \in \Omega, g_p(\epsilon_\mu(p), \epsilon_\nu(p)) = \eta_{\mu\nu}\), and \((\epsilon^\mu)_{\mu}\) the corresponding orthonormal moving coframe.

#### The pull-back.

We denote by \(\epsilon_\mu\) the canonical basis of \(\mathbb{R}^{n+1}\), then the data of the orthonormal moving coframe \((\epsilon^\mu)_{\mu}\) allows to define the submersion

\[
F := (p_1, p_2) \in V \mapsto F^\mu(p_1, p_2)\epsilon_\mu = \epsilon_\mu \left( \exp^{-1}_{p_1}(p_2) \right) \in \mathbb{R}^{n+1}.
\]  
(5.29)
For any distribution \( f \) in \( \mathcal{D}'(\mathbb{R}^{n+1}) \), the composition
\[
(p_1, p_2) \in \mathcal{V} \mapsto f \circ F(p_1, p_2) = f \circ (e^\mu_{p_1}(\exp^{-1}(p_2)) e_{p_1})
\]
defines the pull-back of \( f \) on \( \mathcal{V} \subset M^2 \). If \( f \) is \( O(n, 1)_+^\top \) invariant, then the pull-back defined as above does not depend on the choice of orthonormal moving frame \((e_\mu)_\mu\) and is thus intrinsic (since all orthonormal moving frames are related by gauge transformations in \( C^\infty(M, O(n, 1)_+^\top) \)). We apply this construction to the family \( Q^s(h + i\theta) \in \mathcal{D}'(\mathbb{R}^{n+1}) \) constructed in Corollary (5.2.2) as boundary value of holomorphic functions, and we obtain the distribution \((p_1, p_2) \in \mathcal{V} \mapsto Q^s \circ (e^\mu_{p_1}(\exp^{-1}(p_2)) e_{p_1})\). This allows to canonically lift \( O(n, 1)_+^\top \) invariant distributions to distributions defined on a neighborhood of \( d_2 \).

**Example 5.3.1** The quadratic function \( Q(h) = h^\mu \eta_{\mu\nu} h^\nu \) is \( O(n, 1)_+^\top \) invariant in \( \mathbb{R}^{n+1} \). The pull back of \( Q \) by \( F \) on \( \mathcal{V} \) gives
\[
Q \circ F(p_1, p_2) = e^\mu_{p_1}(\exp^{-1}(p_2)) \eta_{\mu\nu} e^\nu_{p_1}(\exp^{-1}(p_2))
\]
which is the “square of the pseudodistance” between the two points \((p_1, p_2)\) called Synge’s world function in the physics literature. Following [29], we will denote this function by \( \Gamma(p_1, p_2) \).

**The wave front set of the pull-back.**

We compute the wave front set of \( Q^s \circ F \).

**The expression of** \( WF(Q^s(+i\theta)) \) **with** \( \eta_{\mu\nu} \). Notice that \( WF Q^s(+i\theta) \) can be written in the form:
\[
WF Q^s(+i\theta) = \{(h^\mu; \lambda \eta_{\mu\nu} h^\nu)|Q(h) = 0, h^0 \lambda > 0\} \cup \{(0; |\theta|, \theta)|\theta \in \mathbb{R}^n \setminus 0\},
\]
(5.30)
where the condition \( h^0 \lambda > 0 \) plays an important role in ensuring that the momentum \( \lambda \eta_{\mu\nu} h^\nu \) has positive energy.

**The pull-back theorem of Hörmander in our case.** Denote by \( t \) the distribution \( Q^s(+i\theta) \). An application of the pull-back theorem ([33] Theorem 8.2.4) in our situation gives
\[
WF(F^*t) \subset \{(p_1, p_2; k \circ d_{p_1} F, k \circ d_{p_2} F)(F(p_1, p_2), k) \in WF(t)\}
\]
(5.31)
We denote by \((p_1, p_2; \eta_1, \eta_2)\) an element of \( T^* \mathcal{V} \subset T^* M^2 \) and \((h^\mu; k_\mu)\) the coordinates in \( T^* \mathbb{R}^{n+1} \). The pull-back with full indices reads:
\[
(p_1, p_2; k \circ d_{p_1} F, k \circ d_{p_2} F) = (p_1, p_2; k_\mu d_{p_1} F^\mu, k_\nu d_{p_2} F^\nu)
\]
5.3. PULL-BACKS AND THE EXPONENTIAL MAP.

Since we are interested in computing the pulled back wave front set, we must have $(F(p_1, p_2), k) \in WF(t)$ by (5.31), then by formula (5.30) this should give $(F^\nu(p_1, p_2); \lambda \eta \mu \nu F^\nu(p_1, p_2)) \in WF(t)$. We obtain

$$(p_1, p_2; \lambda k \circ d_{p_1} F, \lambda k \circ d_{p_2} F) = (p_1, p_2; \lambda d_{p_1} F^\nu \eta \mu \nu F^\nu, \lambda d_{p_2} F^\mu \eta \mu \nu F^\nu)$$

where $(F^\nu(p_1, p_2); \eta \mu \nu (p_1, p_2)) \in WF(t)$ implies $F^\nu(p_1, p_2) \eta \mu \nu(p_1, p_2) = 0$. Now if we set $\Gamma(p_1, p_2) = F^\nu(p_1, p_2) \eta \mu \nu F^\nu(p_1, p_2)$, we find

$$WF(F^* t) \subset \{(p_1, p_2; \lambda d_{p_1} \Gamma, \lambda d_{p_2} \Gamma) | \Gamma(p_1, p_2) = 0, \lambda F^\nu(p_1, p_2) > 0\}$$

$$\cup\{(p_1, p_2; k \circ d_{p_1} F, k \circ d_{p_2} F) | p_1 = p_2, k = (|\theta|, \theta), \theta \in \mathbb{R}^n\}.$$

The geometric interpretation of the last formula. The function $\Gamma$ is the pseudoriemannian analog of the square geodesic distance and will be introduced in paragraph (5.4.3). We first interpret the term

$$(p_1, p_2; \lambda d_{p_1} \Gamma, \lambda d_{p_2} \Gamma) | \Gamma(p_1, p_2) = 0, \lambda F^\nu(p_1, p_2) > 0\}$$

appearing in the last formula as the subset of all elements in $T^* \mathcal{V}$ of the conormal bundle of the conoid $\{\Gamma = 0\}$ such that $\eta^0$ has constant sign: this is exactly the Hadamard condition. If we use the metric to lift the indices, $e_{\nu}(p_1)(d_{p_1} \Gamma) \eta^{\mu \nu} e_{\nu}(p_1)$ and $e_{\nu}(p_2)(d_{p_2} \Gamma) \eta^{\mu \nu} e_{\nu}(p_2)$ are the Euler vector fields $\nabla_1 \Gamma, \nabla_2 \Gamma$ defined by Hadamard. We will later prove in proposition (5.4.3) that the vectors $\nabla_1 \Gamma, \nabla_2 \Gamma$ are parallel along the null geodesic connecting $p_1$ and $p_2$, proving $(d_{p_1} \Gamma, -d_{p_2} \Gamma)$ are in fact coparallel along this null geodesic.

Finally, let us notice that $\forall p, F(p, p) = 0$ thus $\forall p, d_{p_1} F(p, p) + d_{p_2} F(p, p) = 0$ where $d_{p_1} F(p, p) \in T^*_p M, d_{p_2} F(p, p) \in T^*_p M$. Since

$$d_{p_2} F^\mu(p, p) = d_{p_2} e^\nu_{p_1} (\exp_p^{-1}(p_2)) |_{p_1 = p_2 = p} = e^\nu_{p_1}(d_{p_2} \exp_p^{-1}(p_2)) |_{p_1 = p_2 = p} = e^\nu(p),$$

because $d_{p_2} \exp_p^{-1}(p_2) |_{p_1 = p_2 = p} = Id_{T^*_p M}$. Thus $\{p_1, p_2; k \circ d_{p_1} F, k \circ d_{p_2} F | p_1 = p_2, k = (|\theta|, \theta), \theta \in \mathbb{R}^n\} = \{(p, p; -k_{\mu} e^\nu(p), k_{\mu} e^\nu(p)) | p, k = (|\theta|, \theta), \theta \in \mathbb{R}^n\}$. Let us denote by $\Lambda$ the conormal bundle of the set $\{\Gamma = 0\}$.

**Theorem 5.3.1** The wave front set of the distributions $Q^s(\cdot + i\theta) \circ F, \log Q(\cdot + i\theta) \circ F$ is contained in

$$\left(\Lambda \bigcup \{(p, p; -k_{\mu} e^\nu(p), k_{\mu} e^\nu(p)) | k_{\mu} \eta^{\mu \nu} k_{\nu} = 0\}\right) \cap \{(p_1, p_2; \eta_1, \eta_2) | \eta^0_2 > 0\}.$$

(5.32)

**Corollary 5.3.1** The families $Q^s(\cdot + i\theta) \circ F$ and $\log Q(\cdot + i\theta) \circ F$ satisfy the Hadamard condition.
Discussion of the sign convention for the energy. We want to discuss some sign conventions. Recall that if \((h; k) \in WF(Q(. + i\theta)^s)\) (resp \(WF(Q(. - i\theta)^s)\)) then \(k\) has positive (resp negative) energy. Denote \((p_1, p_2; \eta_1, \eta_2)\) an element of the wave front set of \(F^*Q^s(\cdot \pm i\theta)\). If we want \(\eta\) to be a covector of positive energy (resp negative energy), then we must consider the distribution \(F^*Q^s(\cdot + i\theta)\) (resp \(F^*Q^s(\cdot - i\theta)\)).

Notice that in the physics literature, the boundary value is determined using a Cauchy hypersurface determined by a function \(T: M \mapsto \mathbb{R}\):

\[
(\Gamma(p_1, p_2) + i\varepsilon(T(p_1) - T(p_2)) + \varepsilon^2)^s.
\]

The proof that it defines a well defined distribution is never given and the wave front set of this boundary value was never computed. Furthermore, the formula is not obviously covariant since it relies on the existence of a foliation of space times by Cauchy hypersurfaces.

5.3.1 The pull back of the phase function.

In order to connect with the interpretation of the wave front set in terms of Lagrangian manifold, we recall the following interpretation of the phase function established in proposition (5.1.5). We defined the following oscillating integral:

\[
C_n \int_{\mathbb{R}^n} d^n \xi e^{i\phi_{\pm}(x; \xi)} \frac{1}{|\xi|} (5.33)
\]

with phase function \(\phi_{\pm}(x; \xi) = \sum_{\mu=1}^{n} -x^{\mu}\xi_{\mu} \pm x^{0} \sqrt{\sum_{1}^{n} \xi_{\mu}^2}\) and we proved that the oscillatory integral satisfies the identity

\[
C_n \int_{\mathbb{R}^n} d^n \xi e^{i\phi_{\pm}(x; \xi)} \frac{1}{|\xi|} = ((x^0 \pm i0)^2 - \sum_{i=1}^{n} (x^i)^2)^{-1}.
\]

We use the moving frame technique and the notations explained at the beginning of this section. Imitating what we did for \(((x^0 \pm i0)^2 - \sum_{i=1}^{n} (x^i)^2)^{-1}\), we pull-back the oscillatory integral representation on \(\mathcal{V} \subset M^2\) by the smooth map \(F\).

**Theorem 5.3.2** The distribution \(F^* (Q(\cdot + i\theta))^s)^{-1}\) is the Lagrangian distribution given by the formula

\[
C_n \int_{\mathbb{R}^n} d^n \xi e^{i(\phi_{\pm} \circ F)(p_1, p_2; \xi)} \frac{1}{|\xi|}.
\]

this Lagrangian distribution with phase function \(\phi_{\pm} \circ F\) has a wave front set which satisfies the Hadamard condition.
5.4. THE CONSTRUCTION OF THE PARAMETRIX.

Proof — Let us only sketch the proof. First we use Proposition (5.1.5) to
determine the wave front set of the oscillatory integral $C \int_{\mathbb{R}^n} d^n \xi e^{i\phi(h,\xi)} \frac{1}{|\xi|^2}$.
It is the same wave front set as for $((h^0 \pm i0)^2 - \sum_1^n (h^i)^2)^{-1}$, then we apply
the pull-back theorem of Hörmander in order to define the wave front set on
the curved space and it exactly follows the same proof as for the pull back
theorem (5.3.1).

5.4 The construction of the parametrix.

Our parametrix construction is based on the work of Hadamard [29] (see
also [17]). The construction is done in the neighborhood $V$ of $d_2$. Recall by
5.29 that $F(p_1, p_2) = e_{p_1}^{\mu} \left( \exp_{p_1}^{-1}(p_2) \right) \epsilon_{\mu}$.

The Hadamard expansion. We construct the parametrix locally in $V$
by successive approximations. Inspired by the flat case, we look for an
expansion of the form

$$\Delta = U(p_1, p_2) \left( Q^{-1} \circ F \right) (p_1, p_2)$$

$$+ \sum_{k=0}^{\infty} V_k(p_1, p_2) \Gamma_k(p_1, p_2) \left( \log Q \circ F \right) (p_1, p_2)$$

where $\Gamma(p_1, p_2) = Q \circ F$ is the square of the pseudodistance and each term
of the asymptotic expansion has an intrinsic meaning.

5.4.1 The meaning of the asymptotic expansions.

Our goal is to construct $U, V_k$ in $C^\infty(V)$. First, we would like to make an
important remark. The series $\sum_k V_k \Gamma_k$ does not usually converge. However,
we can still make sense of the asymptotic expansion $\sum_k V_k \Gamma_k$ as the asympto-
tic expansion of the composite function $V(\cdot, \cdot; \Gamma)$ in $C^\infty(V \times \mathbb{R})$ where
only the germs of map $r \mapsto V(\cdot, \cdot; r)$ at $r = 0$ are defined ($V$ is not uniquely
defined).

The Borel lemma.

Proposition 5.4.1 For any sequence of smooth functions $(V_k)_k$ in $(C^\infty(V))^N$,
there exists a smooth function $r \mapsto V(\cdot, \cdot; r)$ in $C^\infty(V \times \mathbb{R})$ such that the co-
efficients of the Taylor series in the variable $r$ of $V$ is equal to the sequence $V_k$:

$$V_k(p_1, p_2) = \frac{1}{k!} \frac{\partial^k V}{\partial r^k} (p_1, p_2; 0).$$  (5.34)
CHAPTER 5. THE TWO POINT FUNCTION \langle|0\rangle\phi(X)\phi(Y)|0\rangle.

Proof — The proof is an application of the idea of the proof of the Borel lemma which states that any sequence \((a_k)_k\) can be realized as the Taylor series of a smooth function at 0. The proof we give is due to Malgrange [42]. Let \(\Omega \subset M^2\) be an open subset with compact closure, then \(\sup_{\Omega} |V_k| = a_k < \infty\). Let \(\chi(r)\) be a cut-off function near \(r = 0\), \(\chi = 1\) in a neighborhood of zero and vanishes when \(r \geq 1\). We just find a sequence \(b_k\) growing sufficiently fast such that \(\forall k, \sup_{\mathbb{R}^+} |\partial^\alpha a_k \chi(r b_k) r^k| \leq \frac{1}{2^k}\).

Then \(\sum V_k \chi(\frac{r}{b_k}) r^k\) is a smooth function which Taylor coefficients are the \(V_k\).

The series \(\sum V_k \chi(\frac{r}{b_k}) r^k\) is bounded and defines a smooth function only on the set \(\Omega\). Let \((\varphi_j)_{j \in J}\) be a collection of compactly supported functions in \(M^2\) such that \(\sum_{j \in J} \varphi_j = 1\) in a neighborhood of \(d_2\) and vanishes outside \(\mathcal{V}\). For each \(j \in J\), since \(\text{supp} \varphi_j\) is compact the previous construction gives us a sequence \((b_{kj})_{kj}\). This gives us a final series \(U = \sum_{j \in J, k \in \mathbb{N}} \varphi_j V_k \chi(\frac{r}{b_{kj}}) r^k\) which is a smooth function supported in \(\mathcal{V}\) such that

\[
V(\cdot, \cdot, \Gamma) = \sum_{j \in J, k \in \mathbb{N}} \varphi_j V_k \chi(\frac{\Gamma}{b_{kj}}) \Gamma^k \sim \sum_{k \in \mathbb{N}} V_k \Gamma^k.
\]

This remark cannot be found in any physics textbook. It is given in Friedlander lemma (4.3.2). Finally, if we know the sequence of coefficients \(V_k\), we find a function \(V\) such that \(V(p_1, p_2; r) = \sum V_k(p_1, p_2)r^k\), thus \(V(p_1, p_2; \Gamma)\) is a well defined smooth function.

5.4.2 The invariance properties of the Beltrami operator \(\Box^g\) and of gradient vector fields.

Let \((M, g)\) be a pseudo Riemannian manifold and let us define the Dirichlet energy \(\mathcal{E}(u; g)\) by the equation:

\[
\mathcal{E}(u; g) = \int_M \frac{1}{2} \langle \nabla u, \nabla u \rangle_g \, d\text{vol}_g. \tag{5.35}
\]

We will follow the exposition of Hélein (see [31]) and define the Beltrami operator \(\Box^g\) for a general metric \(g\) by the first variation of the Dirichlet energy:

\[
\delta \mathcal{E}(u, g)(\varphi) = \int_M \langle \nabla u, \nabla \varphi \rangle_g \, d\text{vol}_g = - \int_M \langle \Box_g u \rangle \varphi \, d\text{vol}_g, \tag{5.36}
\]

(see [31] equation (1.5) p3).

The operator \(\Box^g\). Let \(\Phi\) be a diffeomorphism of \(M\), and

\[
\Phi : (M, \Phi^* g) \mapsto (M, g)
\]
5.4. The Construction of the Parametrix.

the associated isometry, then the Dirichlet energy satisfies the invariance equation by the action of diffeomorphisms: \( \forall \Phi \in Diff(M), E(u; g) = E(u \circ \Phi; \Phi^* g) \) (see [31] p18–19 for the proof). Thus the Beltrami operator \( \Box^g \) obeys the equation

\[
\forall \Phi \in Diff(M), (\Box^g u) \circ \Phi = \Box^{\Phi^* g} (u \circ \Phi) \tag{5.37}
\]

The gradient operator \( \nabla^g \). We want to prove that gradient vector fields w.r.t. the metric \( g \) also behave in a natural way. Let \( f \in C^\infty(M) \) then

\[
\forall \Phi \in Diff(M), \forall f \in C^\infty(M), \nabla^{\Phi^* g} (f \circ \Phi) = \Phi^* (\nabla^g f) \tag{5.38}
\]

\[
\langle \nabla^g f, \nabla^g f \rangle_g = \langle \nabla^{\Phi^* g} (f \circ \Phi), \nabla^{\Phi^* g} (f \circ \Phi) \rangle_{\Phi^* g} \tag{5.39}
\]

The first equation is equivalent to the equation \( \Phi_* \left( \nabla^{\Phi^* g} (f \circ \Phi) \right) = \nabla^g f \) ([39] p. 92–93). We use the coordinate convention:

\( \Phi : x^\alpha \in (M, \Phi^* g) \mapsto \phi^\gamma (x) \in (M, g) \)

We start from the definition:

\[
\nabla^{\Phi^* g} (f \circ \Phi) = \left( g^{\gamma \delta} \frac{\partial x^\alpha}{\partial \phi^\gamma} \frac{\partial}{\partial x^\beta} \right) \circ \Phi \frac{\partial (f \circ \Phi)}{\partial x^\alpha} \frac{\partial}{\partial x^\beta}
\]

\[
= \left( g^{\gamma \delta} \frac{\partial x^\alpha}{\partial \phi^\gamma} \frac{\partial f}{\partial \phi^\delta} \frac{\partial}{\partial \phi^\mu} \right) \circ \Phi \frac{\partial \phi^\mu}{\partial x^\alpha} \frac{\partial x^\beta}{\partial \phi^\delta} = \left( g^{\gamma \delta} \frac{\partial x^\beta}{\partial \phi^\delta} \frac{\partial f}{\partial \phi^\gamma} \right) \circ \Phi \frac{\partial}{\partial x^\beta}
\]

then we push-forward this vector field

\[
\Phi_* \left( \nabla^{\Phi^* g} (f \circ \Phi) \right) = \left( g^{\gamma \delta} \frac{\partial x^\beta}{\partial \phi^\gamma} \frac{\partial f}{\partial \phi^\delta} \right) \circ \Phi^{-1} \frac{\partial \phi^\mu}{\partial x^\alpha} \frac{\partial}{\partial \phi^\mu}
\]

\[
= g^{\gamma \delta} \frac{\partial f}{\partial \phi^\gamma} \frac{\partial}{\partial \phi^\delta} = \nabla^g f
\]

The proof of the second identity can be simply deduced from the first one and one can also look at [31] p. 19 for a similar proof. In the sequel, we write \( \nabla \) instead of \( \nabla^g \) where it will be obvious we take the gradient w.r.t. the intrinsic metric \( g \) which does not depend on the chart chosen. Recall that we denote by \( e_\mu \) the orthonormal moving frame on \( M \). We define two gradient operators \( \nabla_1, \nabla_2 \) on \( M^2 \) as follows:

\[
\forall f \in C^\infty(M^2), \nabla_1 f(p_1, p_2) = e_{\mu p_1} (d_{p_1} f) \eta^{\mu \nu} e_{\nu p_1} \tag{5.40}
\]

\[
\forall f \in C^\infty(M^2), \nabla_2 f(p_1, p_2) = e_{\mu p_2} (d_{p_2} f) \eta^{\mu \nu} e_{\nu p_2}. \tag{5.41}
\]
The exponential map and lifting on tangent spaces. Let us justify microlocally the philosophy of the Hadamard construction which consists in treating $Q^{-1} \circ F$ and $\log Q \circ F$ as distributions of $p_2$ where $p_1$ is viewed as a parameter: let $f \in D(V)$ be any distribution in $V \subset M^2$. We fix $p_1 \in M$, then the partial map $f(p_1,.) : p_2 \in M \mapsto f(p_1,p_2)$ is just the restriction of the distribution $f$ on $\{p_1\} \times M$ and it is well defined as an element of $D'(M)$ if

$$\text{Conormal} \left( \{p_1\} \times M \right) \cap WF(f) = \emptyset.$$ 

Let $\pi_2$ be the projection $\pi_2 := (p_1,p_2) \in M^2 \mapsto p_1 \in M$, if we have

$$\forall p_1 \in M, \text{Conormal} \left( \{p_1\} \times M \right) \cap WF(f) = \emptyset$$

then $WF(\pi_2 \star f) = \emptyset$. Thus for any test density $\omega \in D^{n+1}(M)$, the map

$$p_1 \mapsto \int_M \omega(p_2)f(p_1,p_2) = \pi_2 \star (\omega f)$$

is smooth. These conditions are satisfied in our case since the wave front set of $Q^{-1} \circ F$ and $\log Q \circ F$ are transverse to the conormal of $(\{p_1\} \times M)$ by Theorem 5.31. We pull back $f(p_1,.)$ on $\mathbb{R}^{n+1}$ by the map $E_{p_1}$ defined as follows:

$$E_{p_1} : (h^\mu)_\mu \in \mathbb{R}^{n+1} \mapsto E_{p_1}(h) = \exp_{p_1}(h^\mu e_\mu(p_1)) \in M.$$ 

The orthonormal frame $(e_\mu(p_1))_\mu$ fixes the isomorphism between $T_{p_1}M$ and $\mathbb{R}^{n+1}$.

5.4.3 The function $\Gamma$ and the vectors $\rho_1, \rho_2$.

In the Hadamard construction, everything is expanded in powers of the function $\Gamma$ which is the “square of the pseudoriemannian distance”. $\Gamma$ is a solution of the nonlinear equation (5.42). In the physics literature, the function $\Gamma$ is called Synge world’s function but the definition and the key equation (5.42) satisfied by $\Gamma$ can already be found in Hadamard (see in ([29]) the equation (32) and the Lamé Beltrami differential parameters for $\Gamma$).

The function $\Gamma$.

We already defined the function $\Gamma(p_1,p_2) = e_{p_1}^\mu (\exp_{p_1}^{-1}(p_2)) \eta_{\mu\nu} e_{p_1}^\nu (\exp_{p_1}^{-1}(p_2))$ in example (5.3.1). In the following proposition, we explain what differential equation this function satisfies.
Proposition 5.4.2 Let us define the function
\[ \Gamma(p_1, p_2) = \langle \exp^{-1}_{p_1}(p_2), \exp^{-1}_{p_2}(p_2) \rangle_{g_{p_1}} \]
in \( V \subset M^2 \). Then \( \Gamma \) satisfies the equation
\[ \forall p_1, \langle \nabla_2 \Gamma, \nabla_2 \Gamma \rangle_{g(p_2)}(p_2) = 4 \Gamma \] (5.42)

Proof — Denote by \( E^*_{p_1}g \) the metric in the geodesic exponential chart centered at \( p_1 \). We give a purely pseudo Riemannian geometry proof of the claim. Since \( \Gamma(p_1, p_2) = \langle \exp^{-1}_{p_1}(p_2), \exp^{-1}_{p_2}(p_2) \rangle_{g_{p_1}} \), we know that
\[ \forall p_1 \in M, \forall h \in \mathbb{R}^{n+1}, E^*_{p_1}(p_1, \cdot)(h) = h^\mu \eta_{\mu \nu} h^\nu. \]

Then by equation (5.37):
\[ \forall p_1 \in M, \langle \nabla \Gamma(p_1, \cdot), \nabla \Gamma(p_1, \cdot) \rangle_{g} = \langle \nabla_2 E^*_{p_1}g \left( E^*_p \Gamma \right), \nabla_2 E^*_{p_1}g \left( E^*_p \Gamma \right) \rangle_{E^*_{p_1}g} \]
\[ = (E^*_{p_1}g)^{\mu \nu} (h) \partial_{h^\mu} (h^\mu \eta_{\mu \alpha} h^\alpha) \partial_{h^\nu} (h^\nu \eta_{\nu \beta} h^\beta) \]
\[ = (E^*_{p_1}g)^{\mu \nu} (h) 2 \delta_{\mu \alpha} \eta_{\nu \beta} h^\alpha h^\beta \]
\[ = 4(E^*_{p_1}g)^{\mu \nu} (h) (E^*_{p_1}g)_{\mu \nu 2} (h) h^\alpha (E^*_{p_1}g)_{\alpha \nu 2} (h) h^\beta \]
\[ = 4(E^*_{p_1}g)_{\mu \nu 2} (h) h^\alpha h^\beta = 4 \eta_{\alpha \beta} h^\alpha h^\beta, \]
by repeated application of the Gauss lemma.

The Euler fields defined by Hadamard. Once we defined the geometric function \( \Gamma \), we can define a pair of scaling vector fields:

Definition 5.4.1 Let \( (p_1, p_2) \in V \subset M^2 \), we define the pair of vector fields
\[ \rho_2 = \frac{1}{2} \nabla_1 \Gamma = \epsilon_{\mu \rho_2} (d_{\rho_2} \Gamma) \eta^{\mu \nu} e_{\nu \rho_2} \] (5.43)
\[ \rho_1 = \frac{1}{2} \nabla_2 \Gamma = \epsilon_{\mu \rho_1} (d_{\rho_1} \Gamma) \eta^{\mu \nu} e_{\nu \rho_1} \] (5.44)
\( \rho_1, \rho_2 \) are Euler vector fields in the sense of Chapter 1 for the diagonal \( d_2 \subset V \).

The situation is reminiscent of Morse theory. If we freeze the variable \( p_1 \), the vector field \( \rho_2 = \frac{1}{2} \nabla_2 \Gamma \) is the gradient (w.r.t. \( p_2 \) and metric \( g \)) of the Morse function \( p_2 \mapsto \Gamma(p_1, p_2) \) which has a critical point at \( p_1 = p_2 \). The Hadamard equation (5.42) takes the simple form
\[ \rho_2 \Gamma(p_1, p_2) = \rho_1 \Gamma(p_1, p_2) = 2 \Gamma(p_1, p_2) \] (5.45)
thus \( \Gamma \) is homogeneous of degree 2 with respect to the geometric scaling defined by these Euler vector fields.
Useful relations between $\Gamma, \rho_2$ and $Q^* \circ F$. The manifold $M$ is locally parametrized by the map $E_{p_1} : h \in \mathbb{R}^{n+1} \mapsto \exp_{p_1}(h^\mu e_\mu(p_1))$. $\rho_2 = \nabla_2 \Gamma$ is an Euler vector field in $M$ and we want to study its pull-back $E_{p_1}^* \rho_2$ by $E_{p_1}$.

**Proposition 5.4.3** We have the identity $\forall p_1 \in M, E_{p_1}^* \rho_2 = 2h^j \partial_{h^j}$ and this identity is independent of the choice of orthonormal moving frame.

**Proof** — Denote by $E_{p_1}^* g$ the metric in the geodesic exponential chart centered at $p_1$. By naturality (5.38), we have

$$E_{p_1}^* \rho_2 = E_{p_1}^* (\nabla_2 \Gamma) = \nabla \left( E_{p_1}^* \Gamma \right)$$

$$= \left( E_{p_1}^* g \right)^{\mu\nu}(h) \partial_{h^\nu} \left( \eta_{kl} h^k h^l \right) \partial_{h^\nu} = \left( E_{p_1}^* g \right)^{\mu\nu}(h) \left( \eta_{kl} \delta^k_l h^l + \eta_{kl} \delta^l_k \right) \partial_{h^\nu}$$

$$= 2 \left( E_{p_1}^* g \right)^{\mu\nu}(h) \eta_{\mu l} h^l \partial_{h^\nu} = 2 \left( E_{p_1}^* g \right)^{\mu\nu}(h) \eta_{\nu \mu} \partial_{h^\nu} = 2 h^\nu \partial_{h^\nu}$$

by application of the Gauss lemma. 

This proposition allows us to interpret $\frac{1}{2} \nabla_2 \Gamma$ as the vector $\dot{\gamma}(1)$ where $s \mapsto \gamma(s)$ is the unique geodesic with boundary condition $\gamma(0) = p_1, \gamma(1) = p_2$: in exponential chart, this geodesic is given by the simple equation $t \mapsto \gamma(t) = th^j$ and the vector $h^j \frac{\partial}{\partial h^j} = \dot{\gamma}(t), \forall t$ is parallel along this geodesic. By symmetry of the whole construction, we can interchange the roles of $p_1$ and $p_2$ and we deduce that $\rho_1 \in T_{p_1}M, -\rho_2 \in T_{p_2}M$ are parallel vectors along $\gamma$ (see the same remark in [75] p. 18). A similar proof can be found in [17] Lemma 8.4.

We denote by $\Gamma^s$ the distribution $F^s ((Q(. + i\theta))^s) nig$.

**Proposition 5.4.4** The equation

$$\forall n \in \mathbb{N}, \Gamma^n \Gamma^s = \Gamma^{n+s}$$

(5.46)

is well defined in the distributional sense.

**Proof** — $E_{p_1}^* \Gamma^s(h) = (Q(h + i\theta))^s$.

$$\left( Q(h + i\theta) \right)^n (Q(h + i\theta))^s$$

$$= \left( Q(h + i\theta) \right)^{n+s} + ((Q^n(h) - (Q(h + i\theta))^n) Q^s(h + i\theta))$$

where $((Q^n(h) - Q^n(h + i\theta)) Q^s(h + i\theta))$ is an error term which converges weakly to zero when $\varepsilon \to 0$. Thus we should have $Q^n(h) (Q(h + i\theta))^s = (Q(h + i\theta))^{s+n}$ in the distributional sense. 

\[\square\]
5.4.4 The main theorem.

The lemma we are going to prove implies that $WF(\Delta_+)$ satisfies the soft landing condition.

**Lemma 5.4.1** Let $\Xi$ be the wave front set of $F^* ((Q(\cdot + i\theta))^\circ)$ then $\Xi$ satisfies the soft landing condition.

**Proof** — By Theorem (5.3.1), we must prove that the conormal $\Lambda$ of the conoid $\{ \Gamma = 0 \}$ satisfies the soft landing condition. Let $p : x \in \Omega \to p(x) \in M$ be a local parametrization of $M$, using the local diffeomorphism $(x, h) \in \Omega \times \mathbb{R}^{n+1} \to (p(x), \exp_{p(x)}(h^\mu e_\mu(p(x)))) \in \mathcal{V}$, the orthonormal moving frame, we can parametrize the neighborhood $\mathcal{V}$ of $d_2$ with some neighborhood of $\Omega \times \{0\}$ in $\Omega \times \mathbb{R}^{n+1}$. In coordinates $(x, h)$, the conoid is parametrized by the simple equation $\eta_{\mu\nu} h^\mu h^\nu = 0$, thus it is immediate that its conormal $\{ (x, h ; 0, \xi) | \eta_{\mu\nu} h^\mu h^\nu = 0, \xi_\mu = \lambda \eta_{\mu\nu} h^\nu, \lambda \in \mathbb{R} \}$ satisfies the soft landing condition.

From the previous proposition, we deduce the main theorem of this chapter. We denote by $\Gamma^{-1}$, $\log \Gamma$ the distributions $F^* Q^{-1}(\cdot + i\theta)$, $F^* \log Q(\cdot + i\theta)$. Recall for any open set $U$, $E^\mu(U)$ defined in 4.3.3 was the space of distributions microlocally weakly homogeneous of degree $s$.

**Theorem 5.4.1** For any pair $U, V$ of smooth functions in $C^\infty(\mathcal{V})$, the distribution

$$U \Gamma^{-1} + V \log \Gamma$$

is in $E^{-2}_{-2}(\mathcal{V})$.

**Proof** — Let $\rho$ be one of the Euler vector fields defined in (5.4.1). For any pair $U, V$ of smooth functions in $C^\infty(\mathcal{V})$, by Theorem 4.3.2, it suffices to prove that the family

$$\lambda^2 e^{\log \lambda^2 \rho_2} (U \Gamma^{-1} + V \log \Gamma)$$

is bounded in $D^\prime_2$. First $\Gamma^{-1}$ is homogeneous of degree $-2$ w.r.t. scaling: $\lambda^2 e^{\log \lambda^2 \rho_2} \Gamma^{-1} = \lambda^2 \lambda^{-2} \Gamma^{-1} = \Gamma^{-1}$ and $\lambda e^{\log \lambda^2 \rho_2 \log \Gamma} = \lambda \log \lambda^{-2} \Gamma = -2 \lambda \log \lambda + \lambda \log \Gamma$. Then from these equations, we deduce $\lambda^2 e^{\log \lambda^2 \rho_2 \log \Gamma} \Gamma^{-1}$, $\lambda^2 e^{\log \lambda^2 \rho_2 \log \Gamma} \Gamma^{-1}$ are bounded in $D^\prime_2$. Finally, we use that $U, V$ being smooth, the families $(U_\lambda), (V_\lambda)$ are bounded in the $C^\infty$ topology in the sense that on any compact set $K$, the sup norms of the derivatives of arbitrary orders of $(U_\lambda), (V_\lambda)$ are bounded. We can conclude using the estimates of corollary 3.9 to deduce $(\lambda^2 U_\lambda \Gamma^{-1})_\lambda = (U_\lambda \Gamma)$ and $(\lambda^2 V_\lambda \log \Gamma)_\lambda = (\lambda^2 V_\lambda \log \Gamma + 2 \lambda^2 V'_\lambda \log \lambda)$ are bounded in $D^\prime_2$.

**Corollary 5.4.1** Consequently, if $\Delta_+ - (U \Gamma^{-1} + V \log \Gamma) \in C^\infty(\mathcal{V})$ for some $U, V$ in $C^\infty(\mathcal{V})$ then $\Delta_+ \in E^\mu_{-2}(\mathcal{V})$. 
CHAPTER 5. THE TWO POINT FUNCTION $\langle 0|\phi(X)\phi(Y)|0 \rangle$.

The appendix of our thesis will be devoted to the construction of the Hadamard Riesz coefficients from which we can deduce suitable $U,V$ (see the above discussion on the Borel lemma), however this construction is really classical and one can look at [75] and [24] Chapter 5.2 for the construction of these coefficients.
Chapter 6

The recursive construction of the renormalization.

6.0.5 Introduction.

This chapter deals with the construction of a perturbative quantum field theory using the algebraic formalism developed in ([8],[7]) and proves their renormalisability using all the analytical tools developed in the previous chapters. In the first part, we describe the Hopf algebraic formalism for QFT relying heavily on a paper by Christian Brouder [8] and a paper by R. Borcherds [7]. The end goal of this first part is the construction of the operator product of quantum fields denoted \( \star \) (the formula of the \( \star \) product recovers the usual Feynman diagram expansion in QFT). Then in the second part, we introduce the important concept of causality which allows to axiomatically define the time ordered product denoted by \( T \). The most important axioms are causality and the Wick expansion property of \( T \) which is a Hopf algebraic formulation of the Wick theorem. Once we have a \( T \)-product, we can define quantities such as \( t_n = \langle 0 | T \phi^{n_1}(x_1) \ldots \phi^{n_k}(x_k) | 0 \rangle \) where \( t_n \) is a distribution defined on configuration space \( M^n \). We prove that if \( T \) satisfies our predefined axioms, then the collection of distributions \( \{ t_I \} \) indexed by finite subsets \( I \) of \( \mathbb{N} \) satisfies an equation which intuitively says that on the whole configuration space minus the thin diagonal \( M^n \setminus d_n \), the distribution \( t_n \in \mathcal{D}'(M^n \setminus d_n) \) can be expressed in terms of distributions \( \{ t_I \} \) for \( I \subsetneq \{1, \ldots, n\} \). However, this expression involves products of distributions, thus we prove a recursion theorem which states that these products of distributions are well defined and \( t_n \in \mathcal{D}'(M^n \setminus d_n) \) can be extended in \( \mathcal{D}'(M^n) \). This allows us to recursively construct all the distributions \( t_n \) for all configuration spaces \( (M^n)_{n \in \mathbb{N}} \).
6.1 Hopf algebra, $T$ product and $\star$ product.

In this part, we use the formalism of [8].

6.1.1 The polynomial algebra of fields.

The Hopf algebra bundle over $M$.

Let $M$ be a smooth manifold which represents space time. We will denote by $H = \mathbb{R}[\phi]$ the polynomial algebra in the indeterminate $\phi$ and we use the notation $\tilde{H}$ for the trivial bundle $\tilde{H} = M \times \mathbb{R}[\phi]$. The space of sections

$$\Gamma(M, \tilde{H})$$

of this vector bundle will be denoted by the letter $\mathcal{H}$. $\phi$ is a formal indeterminate and we denote by $\phi^n$ the section of $\tilde{H}$ which is the constant section equal to $\phi^n$. Any section of $\tilde{H}$ (ie any element of $\mathcal{H}$) will be a finite combination $\sum_{n=0}^{d} a_n \phi^n$ where $a_n \in C^\infty(M)$. The space of section $\mathcal{H}$ is a Hopf module over the algebra $C^\infty(M)$. Actually, most of the theory of Hopf algebras is still valid on rings and does not require fields. In order to match with the physical convention, $(x, \phi^n) = \phi^n(x)$ denotes the section $\phi^n = (x \mapsto \phi^n(x))$ evaluated at the point $x \in M$. $\mathbb{1}$ is the unit section of this module $\mathcal{H}$.

The product and coproduct of $\mathcal{H}$ are induced from the product and coproduct of $H$, for instance the product $\phi^k \phi^l$ of two sections is just the product computed fiber by fiber in $H$, and the coproduct $\Delta$ in $\mathcal{H}$ is just the fiberwise coproduct.

The product. The rule for the product is simple

$$\phi^k \phi^l = \phi^{k+l}$$

which means that the sections $\phi^k$ and $\phi^l$ multiply pointwise

$$\phi^k(x)\phi^l(x) = \phi^{k+l}(x)$$

The coproduct. The coproduct on the primitive element $\phi$ is given by:

$$\Delta\phi = \mathbb{1} \otimes C^\infty(M) \phi + \phi \otimes C^\infty(M) \mathbb{1}$$

and it can be extended to powers of the field $\phi^n$ by the binomial formula:

$$\Delta\phi^n = \sum_{k=0}^{n} \binom{n}{k} \phi^k \otimes C^\infty(M) \phi^{n-k}$$
6.1. HOPF ALGEBRA, T PRODUCT AND \(\star\) PRODUCT.

Some comments and the Sweedler notation. In Sweedler’s notation, coassociativity writes \(\Delta^{k-1} a = \sum a_{(1)} \otimes \ldots \otimes a_{(k)}\). A special case of coassociativity will be:

\[
\sum a_{(11)} \otimes a_{(12)} \otimes a_{(2)} = \sum a_{(1)} \otimes a_{(21)} \otimes a_{(22)} = \sum a_{(1)} \otimes a_{(2)} \otimes a_{(3)} \tag{6.1}
\]

The counit  The counit is the Hopf algebra analog of the vacuum expectation value in QFT:

\[
\varepsilon((x, \phi^n)) = \langle 0 | \phi^n(x) | 0 \rangle = \delta^n_0.
\]

Definition 6.1.1 The counit is a linear map \(\varepsilon : H \rightarrow \mathbb{C}\) which satisfies the following properties:

- \(\varepsilon\) is an algebra morphism: \(\varepsilon(ab) = \varepsilon(a)\varepsilon(b)\)
- \(\varepsilon(\phi^n(x)) = \delta_{n0}\)

\[
\sum \varepsilon(a_1)a_2 = \sum a_1\varepsilon(a_2) = a \tag{6.2}
\]

Example 6.1.1 We want to give an example of the defining equation

\[
\sum a_1\varepsilon(a_2) = a
\]

for \(a = \phi^n\): \(\sum_{k=0}^n \binom{n}{k} \phi^{n-k} \varepsilon(\phi^k) = \phi^n\varepsilon(1) = \phi^n\).

6.1.2 Comparison of our formalism and the classical formalism from physics textbooks.

In QFT textbooks, the fields \(\phi\) are thought of as operator valued distributions. In our formalism, the field \(\phi\) is merely an indeterminate. In QFT textbooks, people first define the operator product which is noncommutative and the operator product of two fields \(\phi(x)\) and \(\phi(y)\) is written \(\phi(x)\phi(y)\). Then using the decomposition of \(\phi\) as annihilation and creation operators, physicists define the normal ordered product denoted by :\(\phi(x)\phi(y)\): which corresponds to the commutative product of the Hopf module \(H\). Whereas in our formalism, we start from the commutative product and then use a procedure called twisting to define the operator product \(\star\).

<table>
<thead>
<tr>
<th>Standard QFT</th>
<th>Our approach</th>
<th>Borcherds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutative product</td>
<td>:(\phi(x)\phi(y)):</td>
<td>(\phi(x)\phi(y))</td>
</tr>
<tr>
<td>“Operator product”</td>
<td>(\phi(x)\phi(y))</td>
<td>(\phi(x) \star \phi(y))</td>
</tr>
<tr>
<td>VEV</td>
<td>\langle 0</td>
<td>0 \rangle</td>
</tr>
<tr>
<td>Correlation functions</td>
<td>\langle 0</td>
<td>T \ldots</td>
</tr>
<tr>
<td></td>
<td>Laplace coupling ((.,.))</td>
<td>Bicharacter (\Delta)</td>
</tr>
</tbody>
</table>
6.1.3 Hopf algebra bundle over $M^n$.

A further step in the construction is to pass from the manifold $M$ to the configuration space $M^n$ of $n$ points. In order to define products of quantum fields over $n$ points, it is natural to construct an algebraic setting on configuration space $M^n$. We start again from $H = \mathbb{R}[\phi]$ and consider the $n$-fold tensor product $H^\otimes n = \mathbb{R}[\phi] \otimes \cdots \otimes \mathbb{R}[\phi]$. Then $H^\otimes n$ can be generated as a polynomial algebra by the $n$ elements:

\[
\phi \otimes 1 \otimes \cdots \otimes 1 = \phi_1 \\
1 \otimes \phi \otimes 1 \otimes \cdots = \phi_2 \\
\vdots
\]

thus we deduce that $H^\otimes n \cong \mathbb{R}^{[\phi_1, \ldots, \phi_n]}$. Then we denote $H^\otimes n$ the bundle $M^n \times \mathbb{R}^{[\phi_1, \ldots, \phi_n]}$ living over configuration space $M^n$. As we did in the previous part, we must consider a module over $C^\infty(M^n)$ which contains products of fields of the form $\phi_1 \cdots \phi_n$, hence we will consider the left $C^\infty(M^n)$ module of sections $\Gamma(M^n, H^\otimes n)$. This module over the ring $C^\infty(M^n)$ will be denoted $\mathcal{H}^n$. To consider $\mathcal{H}^n$ over the ring $C^\infty(M^n)$ is not sufficient since in QFT textbooks, the operator product of fields denoted by $\star$ generates distributions as we can see in the following example:

Example 6.1.2 $\phi(x) \star \phi(y) = \Delta_+ (x, y) + \phi(x)\phi(y)$.

We will have to extend the ring $C^\infty(M^n)$ of smooth functions living on configuration space $M^n$ to a ring which contains distributions. In order to include sections of $H$ with distributional coefficients, we use a tensor product technique. This idea already appeared in the previous work of Borchers [6], in which he constructs a vertex algebra with value in some sort of ring with singular coefficients. If we have an algebra $A$ of polynomials over a ring $R$ and $V$ a $R$-module, it is always possible to define the tensor product $A \otimes_R V$ over the ring $R$. Here we apply this construction: let $V$ be a left $C^\infty(M^n)$-module of distributions, then the tensor product $\mathcal{H}^n \otimes_{C^\infty(M^n)} V$ makes sense. Warning: even if $\mathcal{H}^n$ is an algebra, it is no longer true that $\mathcal{H}^n \otimes_{C^\infty(M^n)} V$ is still an algebra since we cannot always multiply distributions.

The Rota Feynman convention. Following Rota and Feynman, we write $\phi_{i_1} \cdots \phi_{i_n}$ instead of $\phi(x) \otimes \phi(y)$. We drop the tensor product symbol $\otimes$, and the elements of $\mathcal{H}^n$ are linear combinations of products of powers of fields $\phi_{i_1} \cdots \phi_{i_n}$. Hence elements on the $j$-th factor of the tensor product is written $\phi_j$ where the label $j$ denotes the $j$-th factor of the tensor product. Sometimes, to make our proofs look even simpler, we write $a_1 \cdots a_n$ instead of $\phi_{i_1} \cdots \phi_{i_n}$.
6.1. HOPF ALGEBRA, T PRODUCT AND ⋆ PRODUCT.

Extending the product and coproduct. To extend the product and coproduct to $H^n$, we just compute products and coproducts "point by point".

Definition 6.1.2 We give the formula for the product for the generators of $H^n$ 
\[
\left(\tilde{\phi}_1^{n_1} \cdots \tilde{\phi}_k^{n_k}\right) \left(\tilde{\phi}_1^{l_1} \cdots \tilde{\phi}_k^{l_k}\right) = \left(\tilde{\phi}_1^{n_1+l_1} \cdots \tilde{\phi}_k^{n_k+l_k}\right)
\]

and the formula for the coproduct:
\[
\Delta \left(\tilde{\phi}_1^{n_1} \cdots \tilde{\phi}_k^{n_k}\right) = \Delta \tilde{\phi}_1^{n_1} \cdots \Delta \tilde{\phi}_k^{n_k}
\]

Although the definition is given in terms of sections $\tilde{\phi}_i^{n_i}$, we will sometimes follow the physics folklore and write $\phi^{n_i}(x_i)$.

Fundamental example If we compute explicitly the coproduct for the generators, we obtain the formula:
\[
\Delta \left(\tilde{\phi}_1^{n_1} \cdots \tilde{\phi}_k^{n_k}\right) = \sum \left(\frac{n_1}{i_1}\right) \cdots \left(\frac{n_k}{i_k}\right) \tilde{\phi}_1^{n_1-i_1} \cdots \tilde{\phi}_k^{n_k-i_k} \otimes \tilde{\phi}_1^{i_1} \cdots \tilde{\phi}_k^{i_k}
\]

The counit and VEV. The counit is defined on $H^n$ by extending the counit 
\[
\varepsilon : H \to \mathbb{C}
\]
to $H^n$ by coalgebra morphism:
\[
\varepsilon(uv) = \varepsilon(u)\varepsilon(v).
\]

Example 6.1.3
\[
\varepsilon(1) = 1
\]
\[
\varepsilon(\phi_{\downarrow i_1} \phi_{\uparrow j_1} \phi_{\downarrow i_2} \phi_{\uparrow j_2} \phi_{\downarrow i_3}) = \varepsilon(\phi_{\downarrow i_1})\varepsilon(\phi_{\uparrow j_2})\varepsilon(\phi_{\downarrow i_3}) = 0 \times 0 \times 1 = 0
\]
\[
\varepsilon(\phi_{\uparrow i_1} \phi_{\downarrow i_2} \phi_{\downarrow i_3}) = 1 \times 1 \times 1 = 1
\]

It is the Hopf algebraic version of the vacuum expectation value and is essential to go from product of fields to "correlation functions".
6.1.4 Deformation of the polynomial algebra of fields.

The non commutative product of QFT.

Explanation on the notation of physicists. In this part, we will make the same notational abuse as physicists. Instead of writing products of section as \( \phi_1 \phi_2 \), or the star product of sections as \( \phi_1 \ast \phi_2 \), we prefer to adopt the conventional physicist notation \( \phi(x_1)\phi(x_2) \) for the commutative product and \( \phi(x_1) \ast \phi(x_2) \) for the star product. The meaning of the formulas is changed, since in the physicist’s notation, we multiply sections then evaluate them at points \((x_1, x_2)\) of the configuration space \( M^2 \) whereas in the mathematical notation, we just multiply two sections \( \hat{\phi}_1 \) and \( \hat{\phi}_2 \).

General formula and examples of star products. We give the general QFT formula for the star product in the notations of physicists

\[
\phi_1^{n_1}(x_1) \ast \cdots \ast \phi_k^{n_k}(x_k)
\]

= \( \sum \left( \begin{array}{c} n_1 \\ 1 \end{array} \right) \cdots \left( \begin{array}{c} n_k \\ k \end{array} \right) \langle \right| T \left( \phi_1^{(i_1)}(x_1) \cdots \phi_k^{(i_k)}(x_k) \right) \left| 0 \rangle \phi_1^{i_1}(x_1) \cdots \phi_k^{i_k}(x_k) \rangle.
\]

In Physics, the product of fields inside the time ordering symbol \( T \) is computed using Wick’s theorem. Wick’s theorem for time ordered product just means:

\[ T(\phi_1 \cdots \phi_n) =: \text{all possible contractions} : \text{when we contract two fields, it just means we choose some pairs of fields in all possible ways and replace them by a propagator which is a distributional two point function} \Delta_+ \]

We will represent a Wick contraction of two fields with the symbol \( \phi(x_1) \phi(x_2) \) and by definition \( \phi(x_1) \phi(x_2) = \Delta_+(x_1, x_2) \).

We then give some simple examples of \( \ast \) products in order to illustrate the mechanism at work.

Example 6.1.4

\[
\phi(x_1) \ast \phi(x_2) = \phi(x_1) \phi(x_2) + \phi(x_1) \phi(x_2) \\
= \phi(x_1) \phi(x_2) + \Delta_+(x_1, x_2)
\]

\[
\phi(x_1) \ast \phi(x_2) \ast \phi(x_3) = \phi(x_1) \phi(x_2) \phi(x_3) + \left( \phi(x_1) \phi(x_2) \phi(x_3) + \text{permutations} \right) \\
= \phi(x_1) \phi(x_2) \phi(x_3) + (\Delta_+(x_1, x_2) \phi(x_3) + \text{permutations})
\]

\[
\phi^2(x_1) \ast \phi^2(x_2) = \phi^2(x_1) \phi^2(x_2) + 4 \phi(x_1) \phi(x_2) \phi(x_1) \phi(x_2) + 2 \phi(x_1) \phi(x_2) \phi(x_1) \phi(x_2) \\
= \phi^2(x_1) \phi^2(x_2) + 4 \Delta_+(x_1, x_2) \phi(x_1) \phi(x_2) + 2 \Delta_+(x_1, x_2)
\]
Function pull-back operation.

Let $I$ be a finite subset of $\mathbb{N}$. Then denote by $M^I$ the configuration space of points labelled by $I$. In order to define the $\ast$ product of fields, we need to define some operations which allows us to pullback some products of fields living in configuration space $M^I, I \subset \{1, \ldots, n\}$, to the larger configuration space $M^n$.

**Example 6.1.5** Consider $\phi(x_1) \ast \phi(x_2) \in \mathcal{H}^2$, we will illustrate the embedding of the element $\phi(x_1) \ast \phi(x_2)$ in $\mathcal{H}^4$.

$$p^*_I(\{1234\} \rightarrow \{12\}, \phi(x_1) \ast \phi(x_2)) = (\phi(x_1) \ast \phi(x_2))1(x_3)1(x_4)$$

If $J$ is another finite subset of $\mathbb{N}$ such that $I \subset J$, then there is a canonical projection $p_{j \rightarrow I} : M^I \rightarrow M^J$ which induces by pullback a morphism

$$p^*_{j \rightarrow I} : \mathcal{H}^J \rightarrow \mathcal{H}^I \quad \text{with} \quad \mathcal{H}^I = \bigotimes_{i \in I} \mathcal{H}^i$$

To each configuration space $M^I$, we first define the bundle $\mathcal{H}^I = M^I \times \mathbb{R}[\phi_i]_{i \in I}$, and taking the sections of this bundle, we obtain the $C^\infty(M^I)$ module $\mathcal{H}^I = \Gamma(M^I, \mathcal{H}^I)$. The idea is that the morphism $p^*_{j \rightarrow I}$ extends to Hopf modules. If $J \subset I$, the pullback operator $p^*_{j \rightarrow I}$ lifts functorially to a map $\mathcal{H}^I \rightarrow \mathcal{H}^J$ given by the formula:

$$p^*_{j \rightarrow I} : \mathcal{H}^I \rightarrow \mathcal{H}^J \quad \text{with} \quad \mathcal{H}^I = \bigotimes_{i \in I} \mathcal{H}^i \rightarrow \mathcal{H}^J = \bigotimes_{i \in J} \mathcal{H}^i \bigotimes_{i \in I \setminus J} \mathcal{H}^i$$

where $1_j$ is the unit section of the bundle $\mathcal{H}^J$ over the $j$-th factor manifold $M^J$.

Then we will illustrate the functoriality of the pullback operation. For any morphism $T$ of $C^\infty(M^I)$-module $T : \mathcal{H}^I \rightarrow \mathcal{H}^I$, the following diagram commutes

$$p^*_{j \rightarrow I} : \mathcal{H}^I \rightarrow \mathcal{H}^J \quad T \downarrow \quad T \downarrow$$

**Domain of definition of the $\ast$ product.** For each $I \subset \mathbb{N}$, we need to twist $\mathcal{H}^I$ with a left $C^\infty(M^I)$ module $V^I \subset \mathcal{D}'(M^I)$ of distributional coefficients and we consider instead $\mathcal{H}^I \otimes_{C^\infty(M^I)} V^I$. For any finite subsets $I, J$ of $\mathbb{N}$, such that $I \cap J = \emptyset$, our star product will be well defined as a bilinear map

$$\ast : \mathcal{H}^I \otimes_{C^\infty(M^I)} V^I \times \mathcal{H}^J \otimes_{C^\infty(M^J)} V^J \rightarrow \mathcal{H}^{I \cup J} \otimes_{C^\infty(M^{I \cup J})} V^{I \cup J}$$

where $V^I, V^J, V^{I \cup J}$ are respectively the left $C^\infty(M^I), C^\infty(M^J), C^\infty(M^{I \cup J})$-module which contains the distributional coefficients.
The star product is supposed to satisfy the following rule
\[
\forall (u, v) \in V^I \times V^J, \forall (P, Q) \in \mathcal{H}^I \times \mathcal{H}^J,
\]
\[
(uP) \star (vQ) = (p^*_J \cup I \mapsto I u) \circ (p^*_J \cup I \mapsto J v) \circ (P \star Q)
\]

6.1.5 The construction of $\star$.

We will describe a general procedure called twisting, which allows to construct non commutative associative products from the usual commutative product of fields and an object called Laplace coupling $(\cdot | \cdot)$. The Laplace coupling is the Hopf algebraic machine which produces "the contractions of pairs of fields" as we need to reproduce the Wick theorem.

In the sequel, we will use capital letters to denote strings of operators

Example 6.1.6 $A = a_1 \ldots a_n$ where $A \in \mathcal{H}^n$ and each $a_i \in \mathcal{H}^{|i|}$.

And for $A = a_1 \ldots a_n, B = b_1 \ldots b_n$, the concatenation $AB$ means the commutative product over each point $AB = (a_1b_1) \ldots (a_nb_n)$

The Laplace coupling. For our Hopf algebras, the contraction operation of the Wick theorem in QFT is realised by the Laplace coupling:

Definition 6.1.3 Let $I, J$ be finite disjoint subsets of $\mathbb{N}$. The Laplace coupling is defined as a bilinear map $(\cdot | \cdot) : \mathcal{H}^I \otimes \mathcal{H}^J \mapsto V^{I \cup J}$ which satisfies the relations
\[
(\phi(x_1) | \phi(x_2)) = \Delta_+(x_1, x_2) \quad (6.4)
\]
\[
(AB | C) = \sum (A | C(1)) (B | C(2)) \quad (6.5)
\]
\[
(1 | A) = (A | 1) = \varepsilon(A) \quad (6.6)
\]

more generally we have the coassociative version $(A^1 \ldots A^n | B) = \sum_{k=1}^n (A^k | B(k))$.

We notice that the Laplace coupling of two fields $\phi(x_1), \phi(x_2)$ is exactly the Wick contraction between these two fields: $(\phi(x_1) | \phi(x_2)) = \phi(x_1)\phi(x_2) = \Delta_+(x_1, x_2)$.

Example 6.1.7
\[
(\phi(x_1) | \phi(x_2)) = \Delta_+(x_1, x_2).
\]
\[
(\phi^2(x_1) | \phi^2(x_2)) = 2\Delta_+(x_1, x_2)
\]
\[
(\phi^2(x_1) | \phi(x_2)\phi(x_3)) = 2\Delta_+(x_1, x_2)\Delta_+(x_1, x_3).
\]
6.1. HOPF ALGEBRA, T PRODUCT AND ⋆ PRODUCT.

Proposition 6.1.1 Let (\cdot, \cdot) be a Laplace coupling as in the definition (6.1.3). Then (\cdot, \cdot) is entirely determined by the two point function (\phi(x_1)|\phi(x_2)) = \Delta_+(x_1, x_2).

Furthermore, we have the relation: (\phi^k(x_1)|\phi^l(x_2)) = \delta_{kl}k!\Delta_+^k(x_1, x_2).

Proof — See [8].

The function \Delta_+(x_1, x_2) appearing in the definition of the Laplace coupling should be a propagator for the Wave operator.

In QFT, we define the Laplace coupling (\cdot, \cdot) for the Wightman propagator \Delta_+ defined in chapter 5.

Definition 6.1.4 The star product ⋆ is defined as follows, for all finite disjoint subsets I, J, (A, B) ∈ H^I × H^J:

\[ A \star B = \sum (A_{(1)}|B_{(1)}) A_{(2)} B_{(2)} \] (6.7)

where (\cdot, \cdot) denotes the Laplace coupling and \(A_{(2)} B_{(2)}\) denotes the usual commutative product of fields.

Example 6.1.8

\[ \phi^3(x_1) \star \phi^3(x_2) = 6\Delta_+^3(x_1, x_2) + 6\Delta^2_+(x_1, x_2)\phi(x_1)\phi(x_2) + 3\Delta_+^2(x_1, x_2)\phi(x_1, x_2) + \phi^3(x_1)\phi^3(x_2). \]

\[ = \phi^2(x_1) \phi(x_2)\phi(x_3) + \phi(x_1)\phi(x_2)\Delta_+(x_1, x_3) + \phi(x_1)\phi(x_3)\Delta_+(x_1, x_2) + \Delta_+(x_1, x_2)\Delta_+(x_1, x_3) \]

From the last example, we notice the important fact that the star product A ⋆ B is not necessarily always well defined because the computation of the star product involves products of distributions and we have yet to prove that these products are well defined.

The counit \(\varepsilon\).

As we already said, the counit plays the role of the vacuum expectation value in QFT.

We first recall the most important result about the counit \(\varepsilon\), it is the coassociativity equation:

\[ A = \sum \varepsilon(A_{(1)})A_{(2)} \]

Example 6.1.9

\[ \sum \varepsilon(\phi^2_{(1)})\phi^2_{(2)} = \varepsilon(\phi^2)1 + 2\phi\varepsilon(\phi) + \phi^2\varepsilon(1) = 0 + 0 + \phi^21 = \phi^2 \]
We give an example of the same quantity expressed in the language of Hopf algebras and the conventional QFT language so that the reader can compare:

Example 6.1.10

$$
\varepsilon(\phi^2_1 \ast \phi^2_2) = \varepsilon \left( \langle 1|1 \rangle \phi^2_1 \phi^2_2 + 2 \left( \phi^2_1 | \phi_2 \rangle \phi_1 \phi_2 + \langle \phi_1^2 | \phi^2_2 \rangle \right) \right) \\
= \varepsilon(\phi^2_1 \phi^2_2 + 2\Delta \phi_1 \phi_2 + 2\Delta^2) = 0 + 0 + 2\Delta^2 \\
(\langle 0| \phi^2(x_1) \phi^2(x_2) |0 \rangle = 2\Delta^2(x_1, x_2)
$$

6.1.6 The associativity of $\ast$.

For the moment, the $\ast$ product we constructed is just bilinear. We have to prove it is associative.

First, let us prove some lemmas.

Lemma 6.1.1 The $\ast$ product satisfies the identities:

$$
\Delta(a \ast b) = \left( a^{(1)} \ast b^{(1)} \right) \otimes a^{(2)} b^{(2)}  \quad (6.8) \\
(a \ast b | c) = (a | b \ast c)  \quad (6.9) \\
\varepsilon(a \ast b) = (a | b)  \quad (6.10)
$$

Proof —

$$
\Delta(a \ast b) = \sum (a^{(1)} | b^{(1)}) \Delta(a^{(2)} b^{(2)}) = \sum (a^{(1)} | b^{(1)}) a^{(2)} b^{(2)} \otimes a^{(3)} b^{(3)} \\
= \sum (a^{(1)} | b^{(1)}) a^{(12)} b^{(12)} \otimes a^{(2)} b^{(2)} = \sum (a^{(1)} \ast b^{(1)}) \otimes a^{(2)} b^{(2)}. \\

(a \ast b | c) = \sum (a^{(1)} | b^{(1)}) (a^{(22)} | b^{(2)} | c) = \sum (a^{(1)} | b^{(1)}) (a^{(2)} | c^{(1)}) (b^{(2)} | c^{(2)}) \\
= \sum (a^{(1)} | b^{(2)}) (a^{(2)} | c^{(2)}) (b^{(1)} | c^{(1)})
$$

because by cocommutativity of the field coproduct, we can permute $b^{(1)}$, $b^{(2)}$ and $c^{(1)}$, $c^{(2)}$.

$$
\varepsilon(a \ast b) = \sum \varepsilon((a^{(1)} | b^{(1)}) a^{(2)} b^{(2)}) = \sum (a^{(1)} \varepsilon(a^{(2)}) | b^{(1)} \varepsilon(b^{(2)})) = \sum (a | b) 
$$

More generally, we have a distributed version of (6.8):

Proposition 6.1.2 $\ast$ satisfies the identity:

$$
\Delta(a_1 \ast \cdots \ast a_n) = \sum (a_{1(1)} \ast \cdots \ast a_{n(1)}) \otimes a_{1(2)} \cdots a_{n(2)}  \quad (6.11)
$$

Theorem 6.1.1 The $\ast$ be the product we constructed is associative.


\textbf{Proof} —

\[(a \ast b) \ast c = \sum ((a \ast b)(1) | c(1)) (a \ast b)(2) c(2) = \sum (a(1) \ast b(1) | c(1)) a(2)b(2)c(2)\]

by (6.8)

\[= \sum (a(1) | b(1) \ast c(1)) a(2)b(2)c(2)\]

by (6.9)

\[= \sum (a(1) | b \ast c)(1)) a(2)(b \ast c)(2)\]

by (6.8)

\[= a \ast (b \ast c)\]

\[\blacksquare\]

\textbf{Corollary 6.1.1} \ a_1 \ast \ldots \ast a_n \ is \ well \ defined \ by \ associativity.

\textbf{6.1.7 Wick’s property.}

We give a general QFT formula for the star product in the notations of physicists.

\[\phi_i^{n_i}(x_1) \ast \ldots \ast \phi_k^{n_k}(x_k) = \sum \binom{n_1}{i_1} \ldots \binom{n_k}{i_k} |0\langle T(\phi_1^{n_1-i_1}(x_1) \ldots \phi_k^{n_k-i_k}(x_k)) |0\rangle |\phi_1^{i_1}(x_1) \ldots \phi_k^{i_k}(x_k)\]

Distribution on \(M^n\)

And we write the Hopf counterpart of this formula

\[a_1 \ast \ldots \ast a_n = \sum \varepsilon(a_1(1) \ast \ldots \ast a_n(1)) a_1(2) \ldots a_n(2)\]

We introduce a crucial definition which is the Hopf algebra counterpart of the Wick theorem of QFT. We call this property Wick’s expansion. For any finite subsets \(I, J\) of \(\mathbb{N}\), such that \(I \cap J = \emptyset\), let \(\ast\) be any bilinear map

\[\ast : \mathcal{H}^I \otimes_{C^\infty(M^I)} V^I \times \mathcal{H}^J \otimes_{C^\infty(M^J)} V^J \mapsto \mathcal{H}^{I \cup J} \otimes_{C^\infty(M^{I \cup J})} V^{I \cup J}\]

\textbf{Definition 6.1.5} Then we say that \(\ast\) satisfies the Wick expansion property if

\[\forall A = \left( \prod_{i \in I} a_i \right) \in \mathcal{H}^I \otimes_{C^\infty(M^I)} V^I, \forall B = \left( \prod_{j \in J} b_j \right) \in \mathcal{H}^J \otimes_{C^\infty(M^J)} V^J\]

\[A \ast B = \sum \varepsilon(A(1) \ast B(1)) A(2) B(2)\]  

(6.12)
this property encodes in the Hopf algebraic language all the algebro combinatorial properties of the Wick theorem. We prove that our star product defined from the Laplace coupling does indeed satisfy the Wick property.

**Theorem 6.1.2** Let \( \star \) be defined by

\[
A \star B = \sum (A(1)|B(1)) A(2) B(2)
\]

where \((.|.)\) denotes the Laplace coupling, then \( \star \) satisfies Wick’s expansion:

\[
\forall A = \prod_{i \in I} (a_i) \in \mathcal{H}^I \otimes_{C^\infty(M^I)} V^I, \forall B = \prod_{j \in J} (b_j) \in \mathcal{H}^J \otimes_{C^\infty(M^J)} V^J
\]

\[
A \star B = \sum \varepsilon(A(1) \star B(1)) A(2) B(2)
\]

**Proof** — By the identity (6.8), notice that \( \varepsilon(A(1) \star B(1)) = (A|B) \) which proves the claim.

The meaning of this theorem is that any associative product \( \star \) constructed by the twisting procedure from the Laplace coupling \((.|.)\) should satisfy the Wick expansion property.

**6.1.8 Recovering Feynman graphs.**

**Proposition 6.1.3** For any \((p_1, ..., p_n)\), \( \varepsilon(\phi^{p_1}(x_1) \star ... \star \phi^{p_n}(x_n)) = \)

\[
p_1!...p_n! \sum_{\sum_{i=1}^n m_{ij} = p_i} \Pi_{1 \leq i < j \leq n} \frac{\Delta^{m_{ij}}(x_i, x_j)}{m_{ij}!},
\]

where \((m_{ij})_{ij}\) runs over the set of all symmetric matrices with integer entries with vanishing diagonal and such that for all \(i\), the sum of the coefficients on the \(i\)-th row is equal to \(p_i\).

\((m_{ij})_{ij}\) should be interpreted as the adjacency matrix of a Feynman graph.

**Proof** — The sum is indexed by symmetric matrices with integer coefficients vanishing diagonals. We will prove the theorem by recursion. We start by checking the formula at degree 2.

\(\varepsilon(\phi^{p_1}(x_1) \star \phi^{p_2}(x_2)) = (\phi^{p_1}(x_1)|\phi^{p_2}(x_2)) = p_1! \delta_{p_1 p_2} g^{p_1}(x_1, x_2) = p_1! p_2! \sum_{p_{12} = p_1 = p_2} \frac{\Delta^{p_{12}}(x_1, x_2)}{p_{12}!}.\)

Assume we know that \(\varepsilon(\phi^{p_1}(x_1) \ast ... \ast \phi^{p_n}(x_n)) = \sum \Pi_{1 \leq i < j \leq k} m_{ij} = p_i \frac{\Delta^{m_{ij}}(x_i, x_j)}{m_{ij}!}\) is true for any \(k \leq n\).

Set \(A = (a^1 \ast ... \ast a^n)\) and \(B = a^{n+1}\). We use the identity \(\varepsilon(A \ast B) = (A|B) = \sum \varepsilon(A(1)) (A(2)|B)\).
6.1. HOPF ALGEBRA, T PRODUCT AND ⋆ PRODUCT.

We use the explicit formula for the coproduct of quantum fields

\[ \Delta \phi^p(x_j) = \sum_{0 \leq i_j \leq p_j} \binom{p_j}{i_j} \phi^{i_j}(x_j) \otimes \phi^{p_j-i_j}(x_j) \]

and

\[ \Delta^n \phi^{p_{n+1}}(x_{n+1}) = \sum_{i_1 + \ldots + i_n = p_{n+1}} \left( \binom{p_{n+1}}{i_1, \ldots, i_n} \right) \phi^{i_1}(x_{n+1}) \otimes \cdots \otimes \phi^{i_n}(x_{n+1}) \]

to deduce

\[ \varepsilon(A_{(1)}) = \left( \begin{array}{c} p_1 \\ i_1 \\ \vdots \\ p_n \\ i_n \end{array} \right) \varepsilon(\phi^{p_1-i_1}(x_1) \ast \cdots \ast \phi^{p_n-i_n}(x_n)) \]

\[ = \left( \begin{array}{c} p_{n+1} \\ i_1 \\ \vdots \\ i_n \end{array} \right) \frac{\Delta^{i_1}_{i_1}(x_1, x_{n+1})}{i_1!} \cdots \frac{\Delta^{i_n}_{i_n}(x_n, x_{n+1})}{i_n!} = p_{n+1}! \Delta^{i_1}_{i_1}(x_1, x_{n+1}) \cdots \Delta^{i_n}_{i_n}(x_n, x_{n+1}) \]

\[ = p_1! \cdots p_{n+1}! \frac{\varepsilon(\phi^{p_1-i_1}(x_1) \ast \cdots \ast \phi^{p_n-i_n}(x_n)) \Delta^{i_1}_{i_1}(x_1, x_{n+1})}{p_1-i_1! \cdots p_n-i_n!} \cdots \frac{\Delta^{i_n}_{i_n}(x_n, x_{n+1})}{i_n!} \]

which ends our proof because the product \( p_1-i_1! \cdots p_n-i_n! \) in the denominator kill the unwanted factors. The space of \( n+1 \times n+1 \) symmetric matrices with fixed last row with coefficients \( i_1, \ldots, i_k \) and such that the sum of terms on the \( k \)-th line is equal to \( p_k \) is in bijection with the space of \( n \times n \) symmetric matrices with sum of \( k-th \) line equals \( p_k - i_k \).

A word of caution and an introduction to the next section. From now on, the star product is fixed and is defined as above from the “twisting procedure” with the Laplace coupling using the Wightman propagator \( \Delta_+ \). However, we have not yet defined rigorously the product \( \ast \) for elements

\[ (A, B) \in \left( \mathcal{H}^I \otimes_{C^\infty(M^I)} V^I \right) \times \left( \mathcal{H}^I \otimes_{C^\infty(M^I)} V^I \right) \]

with distributional coefficients. This is illustrated by one of our previous example:

**Example 6.1.11**

\[ \phi^2(x_1) \ast (\phi(x_2) \phi(x_3)) = \phi^2(x_1) \phi(x_2) \phi(x_3) + 2 \phi(x_1) \Delta(x_1, x_2) \phi(x_3) + 2 \phi(x_1) \Delta(x_1, x_3) \phi(x_2) + 2 \Delta(x_1, x_2) \Delta(x_1, x_3) \phi(x_2) \]

product of distributions
In the next section, we are going to use \(\ast\) to define the time ordered product \(T\) which will only satisfy the Wick expansion property \(T(A) = \sum t(A_{(1)})A_{(2)}\) and another property relation called the causality relation.

### 6.2 The causality equation.

#### The geometrical lemma

The original geometrical lemma was proved for a Lorentzian spacetime, but Bergbauer showed that it holds more generally for any set \(P\) equipped with a partial order relation \(\geq\). It essentially states that we can partition the configuration space minus the thin diagonal \(M^n \setminus d_n\), with open sets having nice properties from the point of view of causality.

**Theorem 6.2.1** Let \((M, \geq)\) be a Lorentzian manifold endowed with the canonical poset structure (i.e. a set equipped with a partial order) induced by the Lorentzian metric. Define the relation \(\not\geq\) by: \(x \not\geq y\) if and only if \(x \geq y\) does not hold (i.e. \(x \geq y\) if \(y\) lies in the future cone of \(x\)). Let \([n] = \{1, \ldots, n\}\) and \(I = \{i_1, \ldots, i_k\}\), a proper subset of \([n]\) (i.e. \(0 < k < n\)). If \(I^c = \{j_1, \ldots, j_{n-k}\}\) is the complement of \(I\) in \([n]\) (i.e. \(I \cup I^c = [n]\)), we define the subset \(C_I\) of \(M^n\) by

\[
C_I = \{(x_1, \ldots, x_n) \in M^n | x_{j_q} \not\geq x_{i_p} \text{ for all } i_p \in I \text{ and } j_q \in I^c\}.
\]

Then,

\[
\bigcup_I C_I = M^n \setminus d_n, \quad (6.15)
\]

where \(d_n = \{x_1 = \cdots = x_n\}\) is the thin diagonal of \(M^n\) and \(I\) runs over the proper subsets of \([n]\).

**Proof** — It is clear that, for all proper subsets \(I\) of \([n]\), we have \(C_I \subset M^n \setminus d_n\), because if \((x_1, \ldots, x_n) \in d_n\), then \(x_i \geq x_j\) for all \(i\) and \(j\) in \([n]\). It remains to show that any \(X = (x_1, \ldots, x_n) \in M^n \setminus d_n\) belongs to some \(C_I\). In fact we shall determine all the \(C_I\) to which a given \(X\) belongs. We write \(x \in X\) if there is a \(x_i\) in the list \((x_1, \ldots, x_n)\) such that \(x = x_i\). To each \(X \in M^n\) we associate a directed graph known as the Hasse diagram of \(X\) as follows [? p. 98]. To each distinct \(x \in X\) we associate a vertex and we draw a directed line from vertex \(x\) to vertex \(y\) if \(x \geq y\), \(x \neq y\) and no other \(z \in X\), distinct from \(x\) and \(y\), is such that \(x \geq z\) and \(z \geq y\). If a point \(y \in X\) is equal to another point \(x \in X\), then it is associated to the same vertex as \(x\). The Hasse diagram of \(X\) has a single vertex if and only if \(X \in d_n\). Take \(X \in M^n \setminus d_n\), its Hasse diagram has at least two vertices. If we pick up any vertex of the Hasse diagram, then any point \(x_j\) greater than a point \(i\) of this vertex is such that \(x_j \geq x_i\). Thus, \(j \in I\) if \(i \in I\) and, to build a \(C_I\), we can select a non-zero number of vertices of the diagram and add all the
6.2. THE CAUSALITY EQUATION.

Figure 6.1: A configuration of three points in $C_{(12)} \subset M^3$ and the corresponding Hasse diagram.

vertices that are greater than the selected ones. The points corresponding to all these vertices determine a subset $I$ of $[n]$. If $I \neq [n]$, then $X \in C_I$ and it is always possible to find such a $I$ by picking up a single maximal vertex in one connected component of the Hasse diagram. Conversely, any $C_I$ is made of the points that are greater than their minima. To see this, consider a point $x_i \in C_I$ such that $i \in I$. Then, the set $S_i = \{x_j \in X | x_i \geq x_j\}$. This set is not empty because $x_i$ belongs to it. Then, $x_i$ is larger than a minimum of $S_i$, which is also a minimum of the Hasse diagram of $X$. ■

We write $x \sim y$ iff $x \not\geq y$ and $y \not\geq x$.

6.2.1 Definition of the time-ordering operator

In quantum field theory, the poset is the Lorentzian manifold $M$ and the fields are, for example, $\phi^i(x)$. For any finite subset $I$ of $\mathbb{N}$, recall we defined the configuration space $M^I$ as the set of maps from $I$ to $M$ and a module $\mathcal{H}^I \otimes_{C^\infty(M^I)} V^I$ associated to $I$. For all $A \in \mathcal{H}^I$, we will denote $t_I(A)$ the element $\varepsilon T_I(A)$.

Axioms for the time ordering operator. We are going to define the time-ordering operator as a collection $(T_I)_I$ of $C^\infty(M^I)$-module morphisms, for all finite subset $I$ of $\mathbb{N}$, $T_I : \mathcal{H}^I \otimes_{C^\infty(M^I)} V^I \to \mathcal{H}^I \otimes_{C^\infty(M^I)} V^I$ with the following properties:

1. $\forall |I| \leq 1$, the restriction of $T$ to $\mathcal{H}^I$ is the identity map,

2. $T \in Hom(\mathcal{H}^n, \mathcal{H}^n)$ satisfies the Wick expansion property:

$$T(A) = \sum t(A(1))A(2) \quad (6.16)$$
3. The causality equation. Let $A = a_1(x_1) \ldots a_n(x_n) \in \mathcal{H}^n$. If there is a proper subset $I \subset \{1, \ldots, n\}$ such that $x_i \neq x_j$ for $i \in I$ and $j \notin I$, denote $A_I = \prod_{i \in I} a_i(x_i)$ and $A_{I^c} = \prod_{j \notin I} a_j(x_j)$ then

$$T(A) = T(A_{I^c}) \ast T(A_I).$$

(6.17)

What are we trying to construct? We have a given star product which is the operator product of quantum fields. The idea is to construct all time ordered products satisfying the previous set of axioms, the most important being causality and the Wick expansion property. The $T$ product is not unique, actually there are infinitely many $T$-products and there is an infinite dimensional group which acts freely and transitively on the space of all $T$-products. This group is the Bogoliubov renormalization group. The problem of construction of a QFT in our sense is reduced to the problem of constructing a $T$-product satisfying the axioms and to make sense analytically of this $T$-product. We will prove the existence of at least one $T$-product and we will show it is analytically well defined. A crucial ingredient in the existence proof is to establish a recursion equation which expresses the $T$ product $T_n \in \text{Hom}(\mathcal{H}^n, \mathcal{H}^n)$ in terms of the elements $T_I \in \text{Hom}(\mathcal{H}^I, \mathcal{H}^I)$ for $I \subset \{1, \ldots, n\}$. We will later see that the problem of defining the $T$-product reduces to a problem of making sense of products of distributions and a problem of extension of distributions. Our approach is related to the one of [7] but we use causality in a more explicit way following Epstein–Glaser. However, the strategy we will adopt make essential use of ideas of Raymond Stora which appeared in unpublished form ([48]).

6.2.2 The Causality theorem.

We give the main structure theorem for the amplitudes coming from perturbative QFT. This theorem relates $T_n$ and all $(T_I)_I$ for $I \subset \{1, \ldots, n\}$ on the configuration space minus the thin diagonal $M^n \setminus d_n$. We call this equation the Hopf algebraic version of causality.

**Theorem 6.2.2** Let $T$ be a collection $(T_I)_I$ of $C^\infty(M^I)$-module morphisms $T_I : \mathcal{H}^I \otimes V^I \rightarrow \mathcal{H}^I \otimes V^I$ which satisfy the collection of axioms (6.2.1). Then for all $I \subset \{1, \ldots, n\}$, $t$ satisfies the equation

$$t(A) = \sum t(A_{I(1)}) t(A_{I^c(1)}) t(A_{I(2)}) t(A_{I^c(2)})$$

(6.18)

on $C_I$. We call this equation the Hopf algebraic version of causality.

**Proof** — By definition $t = \varepsilon T$,

$$t(A) = \varepsilon(T(A)) = \varepsilon(T(A_I(x_i)_{i \in I} A_{I^c}(x_j)_{j \in I^c}))$$

$$= \varepsilon(T(A_I) \ast T(A_{I^c}))$$
because of the causality equation (6.17)

\[ = (T(A_I)|T(A_{I^c})) = \sum (t(A_{I(1)})A_{I(2)}|t(A_{I^c(1)})A_{I^c(2)}) \]

because by Wick expansion property (6.16) \( T(A_I) = \sum t(A_{I(1)})A_{I(2)} \) and \( T(A_{I^c}) = t(A_{I^c(1)})A_{I^c(2)} \)

\[ = \sum t(A_{I(1)})t(A_{I^c(1)}) (A_{I(2)}|A_{I^c(2)}) \]

■

We notice two important facts: First, beware that the product

\[ \sum t(A_{I(1)})t(A_{I^c(1)}) (A_{I(2)}|A_{I^c(2)}) \]

is not a priori well defined since it is a product of distributions. Secondly, this theorem says that the \( T \)-product satisfying the axioms is not even defined on \( d_n \). It is only well defined on each \( C_I \) thus on \( M^n \setminus d_n \) because of a Lemma of Stora. To explain the meaning of the causality equation, we shall quote Borcherds where we adapt his notations to our case (we inserted some comments). “We explain what is going on in this definition. We would like to define the value of the Feynman measure \( t \) to be a sum over Feynman diagrams, formed by joining up pairs of fields in all possible ways by lines, and then assigning a propagator to each line and taking the product of all propagators of a diagram. This does not work because of ultraviolet divergences: products of propagators need not be defined when points coincide. If these products were defined then they would satisfy the Gaussian condition, which then says roughly that if the set of vertices \( \{1, \ldots, n\} \) are divided into two disjoint subsets \( I \) and \( I^c \), then a Feynman diagram can be divided into a subdiagram with vertices \( I \), a subdiagram with vertices \( I^c \), and some lines between \( I \) and \( I^c \). The value \( t(A_I A_{I^c}) \) of the Feynman diagram would then be the product of its value \( t_I(A_{I(1)}) \) on \( I \), the product \( (A_{I(2)}|A_{I^c(2)}) \) of all the propagators of lines joining \( I \) and \( I^c \), and its value \( t_{I^c}(A_{I^c(1)}) \) on \( I^c \). The Gaussian condition need not make sense if some point of \( I \) is equal to some point of \( I^c \) because if these points are joined by a line then the corresponding propagator may have a bad singularity (however this never happens in the domain \( C_I \) defined in the Stora lemma), but does make sense whenever all points of \( I \) are not \( \leq \) to all points of \( I^c \) (this is exactly the definition of the domain \( C_I \)). The definition above says that a Feynman measure should at least satisfy the Gaussian condition in this case, when the product is well defined.” The explanations of Borcherds show the Lemma of Stora gives a very convenient way of covering \( M^n \setminus d_n \) by the sets \( C_I \).
6.2.3 Consistency condition

The $(C_I)_I$ forms an open cover of $M^n \setminus d_n$, thus there are open domains in which a given $C_I$ will overlap with a given $C_J$ and we must prove the causality equations give the same result on overlapping domains, which justify an eventual gluing by partitions of unity. We must check a sheaf consistency condition: if $I_1$ and $I_2$ are proper subsets of $\{1, \ldots, n\}$ such that $C = C_{I_1} \cap C_{I_2}$ is not empty, then $T_{I_1}|_C = T_{I_2}|_C$. Let $u = v_1 w_1$ be the factorization of $u$ corresponding to $I_1$ and $u = v_2 w_2$ the one corresponding to $I_2$. We define on $C$

$$a_{12} = \prod_{k \in I_1 \cap I_2} a^k(x_k),$$
$$a_{c2} = \prod_{k \in I_1^c \cap I_2} a^k(x_k),$$
$$a_{1c} = \prod_{k \in I_1 \cap I_2^c} a^k(x_k),$$
$$a_{cc} = \prod_{k \in I_1^c \cap I_2^c} a^k(x_k).$$

Therefore, $v_1 = a_{12} a_{1c}$, $v_2 = a_{12} a_{c2}$, $w_1 = a_{c2} a_{cc}$ and $w_2 = a_{1c} a_{cc}$. We have

$$T_{I_1}|_C(u) = T(v_1) \cdot T(w_1) = T(a_{12} a_{1c}) \cdot T(a_{c2} a_{cc}).$$

By definition of $C_{I_2}$ we have $a_{1c} \not\approx a_{12}$ and $a_{cc} \not\approx a_{c2}$, so that

$$T_{I_1}|_C(u) = T(v_1) \cdot T(w_1) = T(a_{12}) \cdot T(a_{1c}) \cdot T(a_{c2}) \cdot T(a_{cc}).$$

The indices $k$ of $a_{c2}$ are in $I_1^c$ and those of $a_{1c}$ are in $I_1$, thus $a_{c2} \not\approx a_{1c}$. On the other hand, the indices $k$ of $a_{c2}$ are in $I_2$ and those of $a_{1c}$ are in $I_2^c$, thus $a_{1c} \not\approx a_{c2}$. In other words $a_{c2} \sim a_{1c}$ so that $T(a_{1c})$ and $T(a_{c2})$ commute. Therefore,

$$T_{I_1}|_C(u) = T(a_{12}) \cdot T(a_{1c}) \cdot T(a_{c2}) \cdot T(a_{cc}) = T(a_{12}) \cdot T(a_{c2}) \cdot T(a_{1c}) \cdot T(a_{cc})$$

$$= T(a_{12} a_{c2}) \cdot T(a_{1c} a_{cc}) = T(v_2) \cdot T(w_2) = T_{I_2}|_C(u).$$

So we have defined distributions $T_I(u)$ on each $C_I$ in a consistent way. We must now show that these $T_I(u)$ extend to a distribution $T$ on $M^n \setminus D_n$. If the test function $f$ has its support in $C_I$, we can define $T(u(f)) = T_I(u(f))$. However, for a test function with a support not included in a single $C_I$, we need to patch different $T_I$. To do this we shall use a smooth partition of unity subordinate to $C_I$. 


6.3 The Stora lemma for curved space time.

In this part, we improve the lemma of Stora. We first notice that the partition of unity \((\chi_I)_I\) which are subordinated to the partition \((C_I)_I\) used in the Stora formula are \textbf{smooth} in \(M^n \setminus d_n\) but are \textbf{not smooth} in \(M^n\). However, we explicitly prove that for each point \( (x,...,x) \in d_n \), there is a neighborhood \( U^n \) of \( (x,...,x) \) in \( M^n \) where we can construct \( \chi_I \in C^\infty(U^n) \) homogeneous of degree 0 with respect to some specific Euler vector field \( \rho \). \( \chi_I \) is thus scale invariant which implies \( \forall \lambda \in (0,1], \chi_{I,\lambda} = \chi_I \) which means that the family \((\chi_{I,\lambda})_\lambda\) is bounded in \( C^\infty(U^n \setminus d_n) \simeq D'_0(U^n \setminus d_n) \).

**Lemma 6.3.1** Let \( (C_I)_I \) be the open cover of \( M^n \setminus d_n \) given by the Stora lemma. Then there exists a refinement \( (\tilde{C}_I)_I \) of this cover and a subordinate partition of unity \((\tilde{\chi}_I)_I\) where for each \( I, \tilde{\chi}_I \in C^\infty(M^n \setminus d_n) \bigcap L^1_{loc}(M^n) \) and for any Euler vector field \( \rho \), \( e^{\rho \log \lambda} (\chi_I)_{\lambda \in (0,1]} \) is a bounded family in \( D'_0(M^n \setminus d_n) \).

**Proof**

1. We localize in a neighborhood \( U^n \) of \((x_0,...,x_0) \in d_n \). Let \((x_0,...,x_0) \in d_n \) then we work in a local chart \( U \subset \mathbb{R}^d \) of the manifold \( M \) such that \( x_0 \in U \). On this local chart \( U \subset \mathbb{R}^d \), the metric reads \( g \). We pick a coordinate frame \((\partial x^\mu)_{\mu}\) on \( U \) such that \( g_{\mu\nu}(x_0) = \eta_{\mu\nu} \) (\( \eta \) is of signature +,−,−,−).

2. Constructing another poset structure: in \( U^2 \), we consider the closed subset \( \{x_i \leq x_j\} \) contained in \( U \times U \). This set geometrically fibers over the first factor \( x_i \in U \) with fiber the solid future conoid \( C_x \), with vertex \( x_i \)

\[
\{x_i \leq x_j\} = \left( \bigcup_{x_i \in U} x_i \times C_x \right) \subset U \times U
\]

Then in this local chart \( U \subset \mathbb{R}^d \), set the quadratic form \( Q = \eta_{\mu\nu} dx^\mu dx^\nu + c^2 d(x^0)^2 \) where the aperture of the future cone of \( Q \) depends on the parameter \( c \). The metric \( g \) depends smoothly on \( x \) and thus satisfies the estimate \( |g_{\mu\nu}(x) - \eta_{\mu\nu}| \leq C|x - x_0| \) on \( U \). For any strictly positive \( c > 0 \), we have the following estimate at \( x_0 \):

\[
\xi^0 > 0, g_{\mu\nu}(x_0)\xi^\mu \xi^\nu = \eta_{\mu\nu}\xi^\mu \xi^\nu \geq 0 \implies \eta_{\mu\nu}\xi^\mu \xi^\nu + c^2(\xi^0)^2 \geq 0
\]

by the continuity method, we find that if \( U \) is small enough we can always find \( c \) large enough such that

\[
\xi^0 > 0, \sup_{x \in U} g_{\mu\nu}(x)\xi^\mu \xi^\nu \geq 0 \implies \eta_{\mu\nu}\xi^\mu \xi^\nu + c^2(\xi^0)^2 \geq 0 \quad (6.19)
\]
Figure 6.2: $C_{123}$ for the partial order $\leq$ and for $\approx$

(Intuitively, if $c \to \infty$, the future cone $\tilde{C}$ for the constant metric $Q$ has solid angle which tends to $2\pi$. Hence for $c$ sufficiently large we can make sure the future cone $\tilde{C}_y$ contains all future conoids $C_y$ for all $y \in U$.) Set $\tilde{C}$ the future solid cone defined by the constant metric $Q$, $\tilde{C}$ is given by the equations:

$$
\begin{align*}
    x^0 &\geq 0 \\
    Q(x) &\geq 0
\end{align*}
\tag{6.20}
$$

$$
\begin{align*}
    |x_j^0 - x_i^0| &\geq 0 \\
    Q(x_j - x_i) &\geq 0
\end{align*}
\tag{6.21}
$$

The equation (6.19) means that in $U$ we have $\forall x \in U, C_x \subset \tilde{C}$. Then we can construct a set with the same fiber structure which contains $\{i \leq j\}$

$$
\{i \leq j\} \subset \bigcup_{x_i \in U} \tilde{C} \subset U \times U
$$

3. Step 3 exploiting the translation and dilation invariance of the new poset structure. $\tilde{C}$ defines a new partial order relation $\tilde{\geq}$, hence a new poset structure in $U$.

$$
\tilde{x}_j \geq \tilde{x}_i \iff |x_j^0 - x_i^0| \geq 0 \text{ and } Q(x_j - x_i) \geq 0
\tag{6.22}
$$

where both the cones $\tilde{C}$ and the corresponding partial order relation are invariant (in the $\mathbb{R}^{nd}$) under the action of the group $\mathbb{R}^* \times \mathbb{R}^d$:

$$
(\lambda, a) \in \mathbb{R}^* \times \mathbb{R}^d : x \in \mathbb{R}^d \mapsto \lambda x + a \in \mathbb{R}^d
$$
6.3. THE STORA LEMMA FOR CURVED SPACE TIME.

Define for this new order relation $\hat{C}_I = \{ \forall (i, j) \in I \times I^c, x_i \not\leq x_j \}$. Notice that if $x_i \leq x_j$ for the old order relation, then $x_i \not\leq x_j$ for the new order relation. Consequently, the sets $C_I$ defined for the order relation $\leq$ are larger than than the sets $\hat{C}_I$ defined for $\not\leq$. We apply the Stora lemma and we find

$$U^n \setminus d_n \subset \bigcup_{I \subseteq \{1, \ldots, n\}} \hat{C}_I$$

The group $\mathbb{R}^* \ltimes \mathbb{R}^d$ acts on the configuration space $\mathbb{R}^{d^n}$

$$(\lambda, a) \in \mathbb{R}^* \ltimes \mathbb{R}^d : (x_1, \ldots, x_n) \in \mathbb{R}^{d^n} \mapsto (\lambda x_1 + a, \ldots, \lambda x_n + a) \in \mathbb{R}^{d^n}$$

4. We describe this construction following a suggestion of F Hélein in terms of fibrations of $\mathbb{R}^{d^n} \setminus d_n$ by the orbits of the group of translations over a first quotient space $\mathbb{R}^{d(n-1)} \setminus (0, \ldots, 0)$. Then we do another quotient by a second fibration of the first quotient space $\mathbb{R}^{d(n-1)} \setminus (0, \ldots, 0)$ by the orbits of the group of dilations.

$$\mathbb{R}^{d^n} \setminus d_n \longrightarrow \mathbb{R}^{d(n-1)} \setminus (0, \ldots, 0) \longrightarrow S^{(n-1)d-1}$$

The first quotient is by the group of translation. The image of $d_n$ under the first projection is the origin $(0, \ldots, 0) \in \mathbb{R}^{d(n-1)}$. The second projection is by the action of homotheties. The open cover $(\hat{C}_I)_I$ are inverse images of some open cover $(\tilde{C}_I)_I$ of the sphere $S^{(n-1)d-1}$. Let $(\chi_I)_I$ be a partition of unity subordinated to this open cover $(\tilde{C}_I)_I$.

Then we pull back the functions $(\chi_I)_I$ on $\mathbb{R}^{d^n} \setminus d_n$:

$$\chi_I\left(\frac{x_2 - x_1}{\sqrt{\sum_{j=2}^n (x_j - x_1)^2}}, \ldots, \frac{x_n - x_1}{\sqrt{\sum_{j=1}^n (x_j - x_1)^2}}\right).$$

5. The collection of functions $(\chi_I)_I$ are both scale and translation invariant by the Euler vector field $\rho = \sum_{j=2}^n (x_j - x_1) (\partial x_j - \partial x_1)$. In the relative coordinate system $(x_1, h_2 = x_2 - x_1, \ldots, h_n = x_n - x_1)$, we notice that the collection $(\chi_I)_I$ only depends on the $(h_i)_{i \geq 2}$. $\chi_I$ is smooth in $\mathbb{R}^{d^n} \setminus d_n$ hence $\chi_I \in D'_\emptyset(U^n \setminus d_n)$. If we scale linearly, we notice $(\chi_I)_\lambda(x, h) = \chi_I(x, \lambda h) = \chi_I(x, h)$ thus the family $(\chi_I)_\lambda$ is bounded in $D'_\emptyset(U^n \setminus d_n)$. However, we know the boundedness of this family in $D'_\emptyset(U^n \setminus d_n)$ does not depend on the choice of Euler vector fields.

6. Let $(U_a)_{a \in A}$ be a locally finite cover of $M$ then the collection of open sets $(U_a)^n_a$ forms an open cover of a neighborhood of $d_n$. Let $\varphi_i$ be a partition of unity subordinated to the cover $(U_a)^n_a$. Then we can patch
together the various functions $\chi_{I,i}$ constructed from the cover by the formula

$$\tilde{\chi}_I = \sum_i \sum_j \sum_l \chi_{I,i} \phi_{2i} \phi_i$$

where the sum in the denominator is locally finite. $\tilde{\chi}_I$ forms a partition of unity of $\bigcup_i B^n_{\varepsilon_i}(\varepsilon_i) \setminus d_n$ subordinated to $\bigcup_i B^n_{\varepsilon_i}(\varepsilon_i)$. ■

Remark. The fact that $\chi_I \in C^\infty(U^n \setminus d_n)$ does not immediately imply that the family $(\chi_I)_{\lambda, \lambda \in [0,1]}$ is bounded in $D'_0(U^n \setminus d_n)$. A counterexample is to consider the function $\sin(\frac{1}{x}) \in C^\infty(\mathbb{R} \setminus \{0\})$. For any interval $[a, b] \subset \mathbb{R} \setminus \{0\}$, we can construct a sequence $\lambda_n$ which tends to 0 such that $\frac{d}{dx} \sin(\frac{1}{\lambda_n x}) = \frac{1}{\lambda_n x^2} \cos(\frac{1}{\lambda_n x}) \to \infty$ hence the family $\sin(\frac{1}{\lambda x})$ is not bounded in $C^1[a, b]$ thus it is not bounded in $D'_0(\mathbb{R} \setminus \{0\})$.

6.4 The concept of polarization.

6.4.1 Polarized conic sets.

The idea of polarization is inspired by the exposition of Yves Meyer of Alberto Calderon’s result about the product of $\Gamma$-holomorphic distributions (multiplication of distributions page 604 definition 1).

In $\mathbb{R}^n$ with coordinates $(x_1, \ldots, x_n)$, the $\Gamma$-holomorphic distributions studied by Meyer are tempered distributions having their Fourier transform supported on a closed convex cone $\Gamma$ in the Fourier domain which is contained in the upper half plane $\xi_n > 0$. The beautiful remark of Meyer is that $\Gamma$-holomorphic distributions can always be multiplied (the product extends to $\Gamma$-holomorphic distributions) and form an algebra for the extended product (because of the convexity of $\Gamma$ the convolution product in the Fourier domain preserves is still supported on $\Gamma$)! For QFT, we need a similar idea of a closed conic convex set living in cotangent space $T^*M$ for all $n$. We will have to construct the analog of $\Gamma$ over each domain $C_I$ defined by Stora lemma, and patch them together.

The plan of this section is simple. We first start from the data of a closed conic convex set $C^+_g \subset T^*M$ and this cone has the property that $C^+_g \cap -C^+_g = \emptyset$. We will denote $C^+_{g,x}$ the component of $C^+_g$ living in the fiber $T^*_x M$ over $x$.

Definition 6.4.1 In QFT, $C^+_g = \{(x, \eta) | ||\eta||_{g(x)} \geq 0, \eta^0 > 0 \} \subset T^*M$.

$C^+_g$ is the set of all elements in cotangent space having positive energy, the concept of positivity of energy being defined relative to the choice of
6.4. THE CONCEPT OF POLARIZATION.

Figure 6.3: A polarized set, the trace $\lambda$ and the projection $p(\lambda)$.

Lorentzian metric $g$. Our goal is to generalize this condition of positivity of energy for the Wavefrontset of $n$-point functions. For this we need to find a concept of positivity of energy which is well suited to conic sets of $T^*M^n$.

**Definition 6.4.2** We define a reduced polarised part (resp reduced strictly polarized part) as a conical subset $\lambda \subset T^*M$ such that, if $p : T^*M \to M$ is the natural projection, then $p(\lambda)$ is a finite subset $A = \{a_1, \ldots, a_r\} \subset M$ and, if $a \in A$ is maximal (in the sense no elements in $A$ different from $a$ comes after $a$), then $\lambda \cap T^*_a M \subset C^+_g \cup \{0\}$ (resp $\lambda \cap T^*_a M \subset C^+_g$), if $a \in A$ is minimal, then $\lambda \cap T^*_a M \subset -C^+_g \cup \{0\}$ (resp $\lambda \cap T^*_a M \subset -C^+_g$). Then, for all elements $((x_1, \xi_1), \ldots, (x_k, \xi_k)) \in T^*M^k$, we define its trace as being the part $\lambda \subset T^*M$ defined by : $(a, \eta) \in \lambda$ iff $\exists i \in [1, k]$ such that $x_i = a$ and $\xi_i \neq 0$ and if $\eta = \sum_{i, x_i = a} \xi_i$. A conical subset $\Lambda \subset T^*M^k$ is polarised (resp strictly polarized) if the trace of each of its elements is a reduced polarised part (resp reduced strictly polarised part) of $T^*M$.

A second interpretation of the concept of polarization in terms of dipoles. The beautiful idea of this paragraph is due to F Hélein. For each element $((x_1; \xi_1), \ldots, (x_n, \xi_n))$, we associate the linear operator

$$\sum_{i=1}^n \xi^\mu_i \partial_{x^\mu_i} \delta_{x_i}$$
which should be interpreted as a sum of \( n \)-dipoles, each dipole is supported at the point \( x_i \) and is associated with the direction \( \xi_i \). The sum of the dipoles is what we call the trace \( \lambda \) of the element, and the projection \( p(\lambda) \) is nothing but the support of this sum of dipoles.

### 6.4.2 Causality equation and wave front sets.

The fact that for all \( n \) the function \( t_n \in Hom(H^n, \mathcal{D}'(M^n)) \) satisfies the causality equation imposes some constraints on the wavefront set of \( t_n \). In \( M^n \) with coordinates \( (x_i)_{i\in\{1,\ldots,n\}} \), we will denote by \((\chi_I)_I\), the partition of unity subordinated to the cover \((C_I)_I\) of \( M^n \setminus d_n \) given by the Stora lemma. For all \( n \), \( t_n \in Hom(H^n, \mathcal{D}'(M^n)) \) satisfies the equation

\[
t_n(A) = \sum_{I} \sum \chi_{I}t_{I}(A_{I(1)})t_{Ic}(A_{I(2)})(A_{I(2)}|A_{I(1)})_+ \quad (6.23)
\]

For the sake of simplicity, we shall write the product in a **schematic form**:

\[
t_n = \sum_{I} \sum C_{I,m} \chi_{I}t_{I}
\left( \prod_{ij \in I \times I^c} \Delta_{m}^{+}(x_i, x_j) \right) t_{Ic} \quad (6.24)
\]
6.5. The recursion.

We now face the problem of defining \( t_n \) recursively by using the formula (6.24), the difficulty is to make sense of the rhs of formula (6.24) on \( M^n \setminus d_n \) which is a problem of multiplication of distributions and the second difficulty is to extend the distribution \( t_n \) in \( D'(M^n \setminus d_n) \) (while retaining nice analytical properties) which is only defined on \( M^n \setminus d_n \) to a distribution defined on \( M^n \). We prove that renormalisability is local in \( M \), for all \( p \in M \) there exists an open neighborhood \( U \) of \( p \) in which all \( t_n \) are well defined as elements of \( D'(U^n) \). In the sequel, using a local chart around \( p \), we will identify \( U \) with an open set denoted by \( U' \) of \( \mathbb{R}^d \). In \( U' \), the metric reads \( g \).

The main theorem we wish to prove is the following

**Theorem 6.5.1** If forall \( n \), \( t_n \) is defined by the causality equation (6.23) then forall \( n \), \( t_n \) is a well defined distribution in \( M^n \setminus d_n \) and \( t_n \) admits an extension \( \tilde{t}_n \in D'(M^n) \).

### 6.5.1 Localization and enlarging the polarization.

Recall \( C^+_g \subset T^*M \) be the subset of elements in cotangent space of positive energy. The first step consists in proving a lemma which says we can localize in a domain \( U \subset \mathbb{R}^n \) of a given point \( x_0 \) in which we can control the Wavefront set of the family \( (\Delta_+ \lambda) \).

\[
\forall \lambda \in (0, 1], WF(\Delta_+ \lambda) \subset (-C_q^+) \times (C_q^+)
\]

by a scale and translation invariant set \( C_q^+ \) living in cotangent space \( T^*U \).

On \( U^I \), we denote the coordinates by \( (x_i)_{i \in I} \), then we define the collection \( \rho_{x_i}, i \in I \) of linear Euler fields \( \rho_{x_i} = \sum_{j \neq i, j \in I} \frac{\partial}{\partial x_j} (x_j - x_i) \). \( \rho_{x_i} \) scales relative to the element \( x_i \) in configuration space \( U^I \).

**Lemma 6.5.1** For each \( x_0 \in M \), there exists a sufficiently small neighborhood of \( x_0 \) and an open chart \( U \subset \mathbb{R}^d \) of this neighborhood in which we are able to construct a **closed conic convex** set \( C_q^+ \subset T^*U \) such that \( C_q^+ \subset C_q^+ \), \( C_q^+ \) does not depend on \( x \in U \) and such that \( C_q^+ \cap -C_q^+ = \emptyset \).

**Proof** — In the local chart \( U \subset \mathbb{R}^d \), the metric reads \( g \). Then we soften the poset relation in a similar way to the step 2 and 3 in the proof of the improved Stora lemma (6.3.1). We use a constant metric \( Q \) to define a new partial order denoted \( \preceq \). In the same way, we enlarge the cone of positive energy \( C_q^+ \subset T^*U \) and soften the polarization. Recall we defined
Figure 6.5: Picture of the new poset structure together with the new polarization.

$C_g^+ = \{(x, \xi)|\xi \mid_g \geq 0, \xi^0 > 0\} \subset T^*M$. But the drawback of this definition lies in the fact that the fibers $C_g^+ x$ of the set $C_g^+$ depend on the base point $x$ since the cometric $g$ is variable. We localize the construction in a sufficiently small open ball $U$ in $\mathbb{R}^d$ and pick a constant metric $q$ on this ball $U$ in such a way that

$$\forall x \in U, |\xi|_g \geq 0, \xi^0 > 0 \implies |\xi|_q > 0. \quad (6.25)$$

Such metric is easy to construct, following the arguments of the proof of the generalized Stora lemma, we assume $g_{\mu\nu}^0 = \eta^{\mu\nu}$ and by setting $q = \eta^{\mu\nu} + \lambda^2 \delta^{00}$, we can always choose $\lambda$ large enough so that the inequality (6.25) is satisfied.

**Definition 6.5.1** We set $C_q^+ = \{(x, \xi)|\xi \mid_q \geq 0, \xi^0 > 0\}$.

It is immediate by construction that our new closed, conic, convex set $C_q^+ \subset T^*M$ contains the old set $C_g^+$. It is also obvious by construction that $C_q^+$ is both scale and translation invariant in the local chart $U$, since the metric $q$ is constant in $\mathbb{R}^d$. ■

Once we have this new set $C_q^+$ and the partial order $\preceq$, we have a new definition of polarization just by repeating definition (6.4.2) but with the
new conic set $C^+_q$ and the new partial order $\preceq$ ( $\preceq$ affects the choices of maximal points). In the words of F Hélein, the metric $Q$ controls the order relation $\preceq$ and exploits the finite propagation speed of light, whereas the metric $q$ controls the cone of positive energy.

The soft landing condition on configuration space. We saw in Chapter 2 and 3 (??) that the soft landing condition was an essential condition on the Wavefront set of a distribution which allows to control the Wavefront set of extensions. In configuration space $T^*U^I$ with coordinates $(x_i;\xi_i)_{i\in I}$, the soft landing condition takes the following form: a conic set $\Gamma \subset T^*U^I$ satisfies the soft landing condition wrt to $d_I$ if for all compact set $K \subset U$,

$$\exists \varepsilon > 0, \exists \delta > 0, \left( \Gamma \cap T^* \left( (K^I) \cap \left\{ \sum_{i\in I, i \neq j} |x_j - x_i| \leq \varepsilon \right\} \right) \right) \subset \left\{ \left\| \sum_{i\in I} \xi_i \right\| \leq \delta \left( \sum_{i\in I, i \neq j} |x_j - x_i| \right) \left( \sum_{i\in I} |\xi_i| \right) \right\}$$

(6.26)

6.5.2 We have $(WF\left( e^{\log \lambda_{\rho_{x_1};} \Delta_+} \right) \cap T^*U^2) \subset (-C^+_q) \times C^+_q$.

The next lemma aims to use our cone $C^+_q \subset T^*U$ to control the Wavefront set of the family $(e^{\log \lambda_{\rho_{x_i};} \Delta_+})_{\lambda \in (0,1], i = (1,2)}$.

Lemma 6.5.2 We can choose $q$ and $U$ in such a way that

$$\forall \lambda \in (0,1], \left( WF\left( e^{\log \lambda_{\rho_{x_1};} \Delta_+} \right) \cap T^*U^2 \right) \subset (-C^+_q) \times C^+_q. $$

Proof — By construction of $C^+_q$, $(WF\left( \Delta_+ \right) \cap T^*U^2) \subset (-C^+_q) \times C^+_q$. Then if $(x_1;\xi_1), (x_2;\xi_2) \in -C^+_q \times C^+_q$ then $\forall \lambda \in (0,1], (x_1;\xi_1), (\lambda(x_2 - x_1) + x_1;\lambda^{-1}\xi_2) \in -C^+_q \times C^+_q$ which immediately yields the result.

6.5.3 The scaling properties of translation invariant conic sets.

The next lemma we wish to prove also has geometric flavor. Let $\Gamma_I \subset T^*M^I$ be a translation invariant conic set with the property that for some index $i \in I$, the set $\Gamma_i$ is stable by the action of $e^{\rho_{x_i} \log \lambda}$ then we prove that $\Gamma_I$ is stable by the flow generated by any linear Euler $\rho_{x_j}, j \in I$.

Lemma 6.5.3 Let $\Gamma_I \subset T^*M^I$ be a translation invariant conic set.

$$\exists i \in I, \forall \lambda \in (0,1], e^{\rho_{x_i} \log \lambda^*} \Gamma_I \subset \Gamma_I \implies \forall j \in I, \forall \lambda \in (0,1], e^{\rho_{x_j} \log \lambda^*} \Gamma_I \subset \Gamma_I$$

Proof — Let us start by noticing that the scaling relative to $a$ can be decomposed as a composition of translations and dilations:

$$(x;\xi) \mapsto (x - a;\xi) \mapsto (\lambda(x - a);\lambda^{-1}\xi) \mapsto (\lambda(x - a) + a;\lambda^{-1}\xi).$$
Following the approach of Chapter 1, we try to find a flow $\Phi(\lambda)$ relating the two linear scalings by $\rho_{x_i}$ and $\rho_{x_j}$. This flow is given by the formula $\Phi(\lambda) = e^{-\log\lambda \rho_{x_i}} \circ e^{\log\lambda \rho_{x_j}}$ and the lifted flow $T^* \Phi(\lambda)$ on cotangent space is given by the formula $T^* \Phi(\lambda) = T^* e^{-\log\lambda \rho_{x_i}} \circ T^* e^{\log\lambda \rho_{x_j}}$. In our specific case, a nice phenomenon occurs since for each $\lambda$, $\Phi(\lambda)$ is a flow by linear translations. The map $\Phi(\lambda)$ results from the composition of two scalings relative to two elements $(x_i, x_j)$ with ratio $(\lambda, \lambda^{-1})$ respectively. It can be computed explicitly

$$
\Phi_\lambda : x \mapsto \lambda(x-x_i) + x_i \mapsto \lambda^{-1} \left( (\lambda(x-x_i) + x_i) - (\lambda(x_j-x_i) + x_i) \right) + (\lambda(x_j-x_i) + x_i) = (x-x_j) + (\lambda(x_j-x_i) + x_i) = x + (\lambda-1)(x_j-x_i),
$$

which proves $\Phi(\lambda) = e^{-\log\lambda \rho_{x_i}} \circ e^{\log\lambda \rho_{x_j}}$ is a translation of vector $(\lambda-1)(x_j-x_i)$. We also have $T^* \Phi(\lambda) : (x, \xi) \mapsto (x + (\lambda-1)(x_j-x_i); \xi)$. ■

This computation proves the following fundamental fact: if a translation invariant set $\Gamma_I$ is stable by the cotangent lift of scaling relative to one given $a \in \mathbb{R}^d$ then $\Gamma_I$ is invariant by the cotangent lift of linear scalings relative to any element $a \in \mathbb{R}^d$ which implies the claimed result. This lemma motivates the following definition, a translation invariant conic set $\Gamma_I \subset T^*M^I$ is said scale invariant if it is stable by scaling wrt any vector $\rho_{x_i}, i \in I$. 

Figure 6.6: Wavefront set of $\Delta^m_+$. 

[Diagram of wavefront set]
6.5. THE RECURSION.

Figure 6.7: Action on configuration space \((\mathbb{R}^d)^4\) of the map \(\Phi(\lambda) = e^{-\log \lambda \rho_4} \circ e^{\log \lambda \rho_1}\) for \(\lambda = \frac{1}{2}\) as a translation.

6.5.4 Thickening sets.

**Lemma 6.5.4** If \(\Gamma_I\) satisfies the soft landing condition and is (strictly) polarized, then there exists a translation and scale invariant \(\tilde{\Gamma}_I\) such that \(\Gamma_I \subset \tilde{\Gamma}_I\), \(\tilde{\Gamma}_I\) is still (strictly) polarized and satisfies the soft landing condition.

Conic sets that are translation invariant, scale invariant, polarized and satisfy the soft landing condition are called **good**.

**Proof** — We proved in Chapter 2 (see the proof of the theorem 2.2) the result that if a conic set \(\Gamma_I\) satisfies the soft landing condition wrt the conormal bundle \((Td_I)^{\perp}\), then the enveloppe \(\Gamma_{IM}\) which consists of all curves \(t \mapsto e^{t\rho^*(p)}\) which intersect \(\Gamma_I\) also satisfies the soft landing condition. Also notice that if we formulate the soft landing condition on configuration space by the equation

\[
\exists \varepsilon > 0, \exists \delta > 0, \Gamma|_{\sum_{i \in I, i \neq j} \|x_j - x_i\| \leq \varepsilon} \subset \left\{ \left| \sum_{i \in I} \xi_i \right| \leq \delta \left( \sum_{i \in I, i \neq j} \|x_j - x_i\| \right) \left( \sum_{i \in I} \|\xi_i\| \right) \right\}
\]

(6.27)

then this equation is clearly translation invariant. The equations defining the soft landing condition are thus translation and scale invariant. But \(C_q^+\) and \(\tilde{\xi}\) are also translation and scale invariant thus the concept of polarization is translation and scale invariant. So if a set \(\Gamma_I \subset T^* U^I\) is polarized and satisfies the soft landing condition, then the union of all orbits of the group of translations and dilations which intersect \(\Gamma_I\) satisfies the same properties. ■
6.5.5 The microlocal properties of the two point function.

Let us consider the configuration space $U^2$ with coordinates $(x_1, x_2)$. We recall the following results:

The microlocal boundedness of $\Delta_+$, chapter 5. Let $\Xi$ be the wavefrontset of $\Delta_+$ then $\Xi \subset (\Lambda \cup \{(x, x; -k_e \epsilon\mu(p), k_e \epsilon\mu(p))|k_e \eta^{\mu\nu} k_{\nu} = 0\}) \cap \{(x_1, x_2; \eta_1, \eta_2)|\eta_2^0 > 0\}$ where $\Lambda$ is the conormal bundle of the conoid $\Gamma = 0$ (by Theorems 5.3.1 and 5.4.1) and we proved that $\Delta_+$ is microlocally weakly homogeneous of degree $-2$, $\Delta_+ \in E_{-2,1}(U^2)$ (Theorem 5.4.1). Then we state a theorem which allows to initialize the recursion for $t_2 = \epsilon T(\phi^m(x_1)\phi^m(x_2))$, we prove $\lambda^{2m} t_2, \lambda$ is bounded in $D'_{\Gamma_2}(U^2 \setminus d_2)$ where $\Gamma_2$ is a good cone (recall good means polarized, satisfies the soft landing condition, translation and scaling invariant).

Recall we denoted by $(\chi_I) I$ the partition of unity subordinated to the cover given by the improved Stora lemma.

Theorem 6.5.2 Let $t_2(\phi^m(x_1)\phi^m(x_2)) = \chi_2^{\Delta_+^m}(x_1, x_2) + \chi_1^{\Delta_+^m}(x_2, x_1)$. Then $t_2 \in E_{-2m}(U^2)$ and there exists a good cone $\Gamma_2 \subset T^* U^2$ such that for each $\rho_{e_i}, i = 1, 2$, the family $(\lambda^{2m} e^{e_i} \log \lambda t_2)_{\lambda \in (0, 1]}$ is bounded in $D'_{\Gamma_2}$.

Proof — Without loss of generality, we assume in this proof that we scale wrt $x_1$. By Theorem 5.3.1 and causality: $WF(t_2(\phi(x_1)\phi(x_2))) = WF(\Delta_+^m(x_1, x_2))$ where $\Lambda$ is the conormal bundle of the conoid $\Gamma = 0$. Thus $WF(t_2(\phi^m(x_1)\phi^m(x_2))) \subset \Lambda \cap \{(x_1, x_2; \eta_1, \eta_2)|\eta_2^0 > 0\}$ strictly polarized

Both wave front sets satisfy the soft landing condition by Lemma 5.4.1. Then applying 6.5.4, the envelope $\Gamma_2$ of $WF(t_2)$ is a good cone.

6.5.6 Pull-back of good conic sets.

Since we always pull back distribution living on configuration spaces $M^I$ to higher configuration spaces $M^n$, we want the pullback operation to preserve all the nice properties of the Wavefrontset. If we start from a good conic set $\Gamma_I \subset T^* M^I$, we pull back $\Gamma_I$ on $T^* M^n$ by the canonical projection $p_{[n] \rightarrow I} : M^n \rightarrow M^I$, then the pull back $p_{[n] \rightarrow I}^* \Gamma_I \subset T^* M^n$ is still a good conic set.

Lemma 6.5.5 If $\Gamma_I$ is a good conic set then $p_{[n] \rightarrow I}^* \Gamma_I$ is also a good conic set.

Proof — By definition $p_{[n] \rightarrow I}^* \Gamma_I$ is polarized in $T^* U$ since the trace $\lambda \in T^* U$ of an element $(x_i: \xi_i)_{i \in I} \in \Gamma_I$ and of its pulled back element $((x_i: \xi_i), (x_j: 0))_{i \in I, j \notin I}$ is $p_{[n] \rightarrow I}^* \Gamma_I$ are the same. $p_{[n] \rightarrow I}^* \Gamma_I$ is also translation, scale invariant by invariance of $\Gamma_I$ and the projector $p_{[n] \rightarrow I}$. The only subtle point is to prove that
6.5. THE RECURSION.

\[ p_{[n] \rightarrow I}^* \Gamma_I \] satisfies the soft landing condition. Start from the hypothesis that \( \Gamma_I \) satisfies soft landing condition:

\[ \exists \varepsilon > 0, \exists \delta > 0, \Gamma |_{\sum_{i \in I, i \neq j} |x_j - x_i| \leq \varepsilon} \subset \{(\sum_{i \in I} \xi_i) \leq \delta \left( \sum_{i \in I, i \neq j} |x_i - x_j| \right) \left( \sum_{i \in I} |\xi_i| \right) \} \]

then notice

\[ (x_i; \xi_i)_{i \in [n]} \in p_{[n] \rightarrow I}^* \Gamma_I \implies (x_i; \xi_i)_{i \in I} \in \Gamma_I \]

\[ \implies |\sum_{i=1}^n \xi_i| = |\sum_{i \in I} \xi_i| \leq \delta \left( \sum_{i \in I, i \neq j} |x_j - x_i| \right) \left( \sum_{i \in I} |\xi_i| \right) \leq \delta \left( \sum_{i \in [n], i \neq j} |x_j - x_i| \right) \left( \sum_{i \in [n]} |\xi_i| \right) \]

which implies \( p_{[n] \rightarrow I}^* \Gamma_I \subset \{(|\sum_{i=1}^n \xi_i| \leq \delta \left( \sum_{i \in [n], i \neq j} |x_j - x_i| \right) \left( \sum_{i \in [n]} |\xi_i| \right) \} \]

which is exactly the soft landing condition. ■

In the sequel, we denote by \( \Gamma_I \) the set \( p_{[n] \rightarrow I}^* \Gamma_I \) making a slight notational abuse.

6.5.7 The distributional product makes sense and \( WF(t_n) \) is polarized.

The soft landing condition is stable by sum,4.2.1. Let \( \Gamma_1, \Gamma_2 \) be two closed conic sets which both satisfy the soft landing condition and assume \( \Gamma_1 \cap -\Gamma_2 = \emptyset \). Then the cone \( \Gamma_1 \cup \Gamma_2 \cup \Gamma_1 + \Gamma_2 \) satisfies the soft landing condition.

Let \( \Lambda_I \subset T^* M^I \) be the closed conic convex set of all elements in \( T^* U^I \) polarized by \( C_G^I \), for all subsets \( I \subset \{1, \ldots, n\} \). In the definition 6.4.2 the subsets \( \lambda \subset T^* U^I \) that are reduced polarized are translation and dilation invariants since both \( C_G^I \) and \( \leq \) are translation and dilation invariants. The trace operation is also translation and dilation invariant, thus the subset \( \Lambda_I \) of all elements in \( T^* U^I \) such that their trace \( \lambda \) is a reduced polarized part of \( T^* U^I \) are translation and dilation invariant. Thus the set \( \Lambda_n \) is invariant under the action of the group \( \mathbb{R}^* \times \mathbb{R}^d \) lifted to cotangent space:

\[ (\lambda, a) \in \mathbb{R}^* \times \mathbb{R}^d : (x; \xi) \in \mathbb{R}^d \times \mathbb{R}^{ds} \mapsto (\lambda x + a; \lambda^{-1} \xi) \in \mathbb{R}^d \times \mathbb{R}^{ds} \]

For any manifold \( M \), for any closed cone \( \Gamma \subset T^* M \) in the cotangent cone \( T^* M \), we denote \( \Gamma^0 = \Gamma \cup 0 \subset T^* M \) where \( 0 \) denotes the zero section of \( T^* M \). For all subsets \( I \subset \{1, \ldots, n\} \), let us be given a conic set \( \Gamma_I \subset T^* M^I \).

We will denote by \( J \) the subset \( I^c \) and we denote by \( (\chi_J)_J \) the partition of unity subordinated to the cover \( (\check{C}_J)_J \) of the lemma (6.3.1).
Theorem 6.5.3 If each \( t_I \) appearing in the following equation for \( t_n \)

\[
t_n = \sum_{J=I',I} t_I \chi_J \left( \prod_{ij \in I \times J} \Delta^{m_{ij}}(x_i, x_j) \right) t_J
\]

(6.28)

belongs to \( \mathcal{D}_I \), where \( \Gamma_I \) is \textbf{polarized} then \( t_n \) is well defined as an element of \( \mathcal{D}_I(U^n \setminus d_n) \) where \( \Gamma_n = \sum_{J=I',I} (\Gamma_I^0 + \Gamma_I^0 + \sum_{ij} \Gamma_{ij}^0) \cap T^*M^n \) is polarized.

Notice the equation for \( t_n \) is exactly the causality equation (6.24) where we changed the notations, the set \( I' \) is denoted by \( J \), in order to simplify the proofs. \textit{Proof — }

- We study the wave front set of Laplace couplings since it is one of the factors in the causality formula. We will prove that on the open set \( \tilde{\mathcal{C}}_J \), the Wavefront set of the Laplace coupling \( (A_I|A_J) \) appearing in the equation (6.23) is \textbf{strictly polarized}. Let us fix one of the open set \( \tilde{\mathcal{C}}_J \) given by the Stora lemma for the order relation \( \tilde{\xi} \). We recall \( WF(\Delta^m_+) = \{(x_1, x_2; \xi_1, \xi_2) | (x_1, -\xi_1) \sim (x_2; \xi_2), |\xi_2|_{g(x_2)} = 0, \xi_2 > 0, (x_1, -\xi_1) \sim (x_2; \xi_2), |\xi_2|_{g(x_2)} \geq 0, \xi_2 \geq 0 \} \). We first prove that for any \( (i, j) \in I \times J \), \( WF(\Delta^{m_{ij}}_+) \big| \tilde{\mathcal{C}}_J \) is strictly polarized by \( C^+ \). Let \( (x_i; \xi_i), (x_j; \xi_j) \in WF(\Delta^{m_{ij}}_+) \big| \tilde{\mathcal{C}}_J \). We must have \( x_i \neq x_j \) in \( \tilde{\mathcal{C}}_J \). If the trace \( \lambda((x, i; \xi), (x_j; \xi_j)) \) is non empty then \( x_i \leq x_j \) (otherwise \( x_i, x_j \) would be incomparable since \( x_i \neq x_j \) and we would have \( \xi_1 = \xi_2 = 0 \) which means empty trace \( \lambda \)). But by the property of \( WF(\Delta^{m_{ij}}_+(x_i, x_j)) \), the moment \( \xi \) has positive energy: \( |\xi|_{g(x_i)} = 0, \xi_i > 0 \) which means \( \xi_j \in C^+_{q, x_i} \) and since \( a = x_j \) is maximal we deduce \( WF(\Delta^{m_{ij}}_+(x_i, x_j)) \big| \tilde{\mathcal{C}}_J \) is strictly polarized by \( C^+_{q, x_i} \). Then the conclusion comes simply from the fact that for any element \( ((x_1, \xi_1), \ldots, (x_n, \xi_n)) \) in \( WF \left( \prod_{ij \in I \times J} \Delta^{m_{ij}}_+(x_i, x_j) \right) \big| \tilde{\mathcal{C}}_J \), its trace \( \lambda \) is such that for any \( a \) maximal in \( p(\lambda) \), the intersection \( \lambda \cap T^*_a M \) is a sum of elements in \( C^+_{q, a} \) thus it is an element of \( C^+_{q, a} \) by convexity of \( C^+_{q, a} \) (see figure 6.8). Then for any family \( (m_{ij})_{(ij) \in I \times J} \in \mathbb{N}^{I \times J} \),

\[
WF \left( \prod_{ij \in I \times J} \Delta^{m_{ij}}_+(x_i, x_j) \right)
\]

is \textbf{strictly polarized} on \( \tilde{\mathcal{C}}_J \).

- We will denote \( (x_I; \xi_I), (x_J; \xi_J), (x_i, x_j; \xi_i, \xi_j) \) the elements in \( \Gamma_I^0, \Gamma_J^0, \Gamma_{ij}^0 \) respectively. This is a short notation for \( x_I = (x_i)_{i \in I}, x_J = (x_j)_{j \in J} \) and \( \xi_I = (\xi_i)_{i \in I}, \xi_J = (\xi_j)_{j \in J} \). The exponent \( I \) means that this is a
contribution from $\Gamma_I$. Notice $t_I \in D'_{\Gamma_I}(U^I)$ and $t_J \in D'_{\Gamma_J}(U^J)$ thus the distributions $t_I, t_J$ depend on different group of variables $x_I, x_J$ where $(x_I, x_J) = (x_1, \ldots, x_n)$. Thus their distributional product always makes sense and

$$WF(t_I t_J) \subset \Gamma_I \times \emptyset \cup \emptyset \times \Gamma_J + \Gamma_I + \Gamma_J = \left( \Gamma_I^0 + \Gamma_J^0 \right) \cap T^*U^n$$

It is straightforward to check from the definition of polarization that the element $(x_I, x_J; \xi_I, \xi_J)$ is polarized because the trace $\lambda$ of the element $(x_I, x_J; \xi_I, \xi_J)$ is the union $\lambda_I \cup \lambda_J$ of two traces $\lambda_I = \lambda(x_I; \xi_I)$ and $\lambda_J = \lambda(x_J; \xi_J)$. Each trace is a reduced polarized part by assumption thus it is immediate to check the union of two reduced polarized part is a reduced polarized part. Now the key idea of the proof relies in the fact that $WF(t_I t_J)$ is polarized whereas the wavefrontset of the Laplace coupling $WF(\prod_{(i,j) \in I \times J} \Delta_{m_{ij}}^{s_{ij}}(x_i, x_j))$ is strictly polarized hence the sum of the two wavefrontsets will not meet the zero section and will be polarized. Elements in $\left( \Gamma_I^0 + \Gamma_J^0 + \sum_{(i,j) \in I \times J} \Gamma_{ij}^0 \right) \setminus \{0\}$ are of the form

$$(x_1, \ldots, x_n; \xi_1, \ldots, \xi_n) = \left( (x_i)_{i \in I}, (x_j)_{j \in J}; (\xi_i^I + \sum_{j \in J} \xi_{ij}^I)_{i \in I}, (\xi_j^J + \sum_{i \in I} \xi_{ij}^J)_{j \in J} \right)$$

where $(x_I; \xi_I^I), (x_J; \xi_J^J), (x_i, x_j; \xi_{ij}^I, \xi_{ij}^J)$ in $\Gamma_I^0, \Gamma_J^0, \Gamma_{ij}^0$ respectively and the moments $(\xi_I^I, \xi_J^J, \xi_{ij}^I)$ do not all vanish. Now let us give a graphical proof in figure (6.9) that $\Gamma_n$ does not meet the zero section and
is polarized. The idea is to study the momentum $\sum_{x_i = a} \xi_i$ associated to all maximal (resp minimal) elements $a$ in $\lambda((x_1, \ldots, x_n; \xi_1, \ldots, \xi_n))$ for $(x_1, \ldots, x_n; \xi_1, \ldots, \xi_n) \in \Gamma_n$ and show that $\sum_{x_i = a} \xi_i \in C^q_{q,a}$.

- Since the products of distributions $t_I t_J \prod_{(i,j) \in I \times J} \Delta^{m_{ij}}(x_i, x_j)$ makes sense on $\tilde{C}_J$ then for any partition of unity $(\chi_J)_J$ subordinated to the open cover $(\tilde{C}_J)_J$, the expression

$$t_n = \sum_{I,J = I^c} t_I t_J \prod_{(i,j) \in I \times J} \Delta^{m_{ij}}(x_i, x_j) \chi_J$$

makes sense as a distribution on $U^n \setminus d_n$.

6.5.8 The Wavefrontset of the product $t_n$ is contained in a good cone $\Gamma_n$.

Theorem 6.5.4 We assume the hypothesis of the previous theorem is valid and keep the same notations. If furthermore we assume all elements $\Gamma_I, I \not\subset \{1, \ldots, n\}$ are good conic sets then $\Gamma_n$ is a good conic set.

Proof — It is immediate that $\Gamma_n$ is translation, scale invariant the polarization was already proved and the soft landing condition is stable by sums thus $\Gamma_n$ satisfies the soft landing condition.

6.5.9 We define the extension $\tilde{t}_n$ and control $WF(\tilde{t}_n)$.

We saw in Chapter 4 that the product of distributions satisfying the Hörmander condition was bounded: let $\Gamma_1, \Gamma_2$ be two cones, assume $\Gamma_1 \cap -\Gamma_2 = \emptyset$. Set $\Gamma = (\Gamma_1 \cup \Gamma_2 \cup (\Gamma_1 + \Gamma_2))$, then the product

$$(t_1, t_2) \in D'_{\Gamma_1} \times D'_{\Gamma_2} \mapsto t_1 t_2 \in D'_\Gamma$$

is well defined and bounded. We also concluded Chapter 4 with a general extension theorem: if $t \in E^p_p(U^n \setminus d_n)$ then an extension $\tilde{t}$ exists in $E^p_p(U^n)$ for some $s'$. Then we prove a theorem that gives conditions for which the extension $\tilde{t}_n$ exists, has finite scaling degree and has good Wavefrontset.

Theorem 6.5.5 Assume the hypotheses of the theorems (6.5.3) and (6.5.4) are fulfilled and that the family $\lambda^{-s_I e^{\rho x_i} \log \lambda \xi_i}$ is bounded in $D'_\Gamma$ for a given $s_I$ and linear Euler $\rho x_i$ for $i \in I$. Then there is a good conic set $\Gamma_n$ such that for any $l \in \{1, \ldots, n\}$, the family $\left(\lambda^{-s_n e^{\rho x_i} \log \lambda \xi_i} t_n\right)_l$ is bounded in $D'_{\Gamma_n \cup (T d_n) \setminus (U^n)}$ for $s_n = s_I + s_J + \sum_{ij} 2m_{ij}$ and $t_n$ has a well defined extension $\tilde{t}_n$ in $D'_\Gamma$.
Case 1: $\{i \mid \mu_i = 0, \text{minimal in } p(\lambda)\} \subseteq I \cap I^c, \forall j \in I^c, x_j \neq x_i$

Case 2: $\{i \mid x_i = 0, \text{minimal in } p(\lambda)\} \subseteq I \cap I^c, \exists \alpha \in I^c, x_j \sim x_i, \alpha \neq 0$

Case 3: $\{e \mid x_i = 0, \text{minimal in } p(\lambda)\} \subseteq I \cap I^c, \forall i \in I, (x_i \neq x_j)$

Figure 6.9: The graphical proof.
Proof — For any \( t \in \{1, \ldots, n\} \), the family

\[
\lambda^{-s_t} e^{\log \lambda_{\rho_{s_t}} t_I}
\]

is bounded in \( D'_{\Gamma_I} \) where \( \Gamma_I \) is a good cone. Let us set

\[
\Gamma_n = \bigcup_J (\Gamma_J^0 + \Gamma_J^0 + \Gamma_J^0) |_{\tilde{C}_J}
\]  
(6.29)

This last step is a mere repetition of the previous step but instead of considering a "static" product \( t_I t_J \prod_{(i,j) \in I \times J} \Delta^{m_{i+j}} (x_i, x_j) \chi_J \) on a given \( \tilde{C}_J \), we will instead scale the whole product wrt to the linear Euler \( \rho_{s_t} \):

\[
\left( \lambda^{-s_t} e^{\log \lambda_{\rho_{s_t}} t_I} \right) \left( \lambda^{-s_J} e^{\log \lambda_{\rho_{s_J}} t_J} \right) \prod_{(i,j) \in I \times J} \left( \lambda^{-2m_{i+j}} e^{\log \lambda_{\rho_{s_t}} \Delta^{m_{i+j}} (x_i, x_j)} \right) \chi_J
\]

bounded in \( D'_{\Gamma_I} (U^n \setminus d_n) \)

bounded in \( D'_{\Gamma_J} (U^n \setminus d_n) \)

bounded in \( D'_{\Gamma_J} (U^n \setminus d_n) \)

bounded in \( D'_{\Gamma_J} (U^n \setminus d_n) \)

Then we use the theorem (6.5) to repeat the arguments of the proof of the previous theorem in family. Notice that it is very convenient for us that the functions \( \chi_J \) constructed in the improved Stora lemma are smooth scale invariant functions since they are going to be bounded in \( D'_{\tilde{G}}(U^n \setminus d_n) \). The product

\[
\lambda^{-s_t - s_J - 2 \sum_{(i,j) \in I \times J} m_{i+j}} e^{\log \lambda_{\rho_{s_t}}} \left( t_I t_J \prod_{(i,j) \in I \times J} \Delta^{m_{i+j}} (x_i, x_j) \right) \chi_{\lambda \in (0,1]}
\]

is well defined in family and bounded in \( D'_{\Gamma_n} (U^n \setminus d_n) \) where

\[
\Gamma_n = \bigcup_J (\Gamma_J^0 + \Gamma_J^0 + \Gamma_J^0) \setminus \{0\} |_{\tilde{C}_J}
\]

is good by the previous theorem. Then the distribution \( t_n = \left( t_I t_J \prod_{(i,j) \in I \times J} \Delta^{m_{i+j}} (x_i, x_j) \right) \in E_s(U^n \setminus d_n), s_n = s_t + s_J + 2 \sum_{(i,j) \in I \times J} m_{i+j} \). We can conclude by the extension theorem (3.2.1), which provides an extension \( \tilde{t}_n \) in \( E_s(U^n), s_n = s_t + s_J + 2 \sum_{(i,j) \in I \times J} m_{i+j} \) with the constraint \( WF(\tilde{t}_n) \subset WF(t_n) \cup (T d_n) \perp \) on the Wavefrontset of the extension. And the family \( \lambda^{-s_n} \tilde{t}_n \) should be bounded in \( D'_{\Gamma_n} (U^n \setminus d_n) \) where \( \Gamma_n \cup (T d_n) \perp \) is a good conic set.

The last theorem allows to conclude the recursion since we were able to initialize the recursion at the step \( n = 2 \): \( WF(t_2) \) is contained in a good cone \( \Gamma_2 \) and \( t_2 \) has always finite scaling degree. Actually \( \lambda^{2m} e^{\rho \log \lambda^2 t_2 (\delta^m \delta^m)} \) is always bounded in \( D'_{\Gamma_2} (U^2 \setminus d_2) \) hence repeated applications of theorem (6.5.5) allows to define all extensions \( \tilde{t}_n \in D'_{\tilde{G}}(U^n) \) for all \( n \).
6.6 Morse families and Lagrangians.

Let us start by recalling some simple definitions. We introduce the concept (due to Weinstein see\[56\] definition 4.17) of a Morse family (with some modifications of our own):

**Definition 6.6.1** A Morse family is a triple $S = (\pi : B \rightarrow M, S)$ where $(\pi : B \rightarrow M)$ is a smooth (non necessarily surjective) submersion such that $\forall x \in M$, any connected component of $\pi^{-1}(x)$ has the form $\mathbb{R}^k \setminus \{0\}$ for some $k$, this endows $B$ with the structure of a smooth cone. $S \in C^\infty(B)$ is homogeneous of degree 1, and $dS \neq 0$.

Daniel Bennequin told us that this definition is actually very general since $B$ is not necessarily connected thus we could have several connected components of $B$ living over some given point in $M$, like branches of a cover.

The second nice point of the definition of Alan Weinstein is that the map $\pi$ is not necessarily surjective. Denote by $x$ the coordinates in $M$ and by $(x; \theta)$ the coordinates in $B$ where $\theta$ is the vertical variable. Denote by $\Sigma_S = \{ \frac{\partial S}{\partial \theta} = 0 \} \subset B$ the critical set of $S$. The smooth projection $\pi$ defines a set $\pi(\Sigma_S)$ which is the projection of the critical set.

**Definition 6.6.2** We denote by $T\pi(\Sigma_S)$ the tangent cone of $\pi(\Sigma_S)$ which is defined as follows, for $x \in \pi(\Sigma_S)$,

$$T_x\pi(\Sigma_S) = \{ d\pi|_{(x,\theta)}(X)| \text{there exists a } C^1\text{-map } \gamma : [0,1] \rightarrow \Sigma_S \text{ such that } \gamma(0) = (x,\theta), \dot{\gamma}(0) = X \}$$

then $T\pi(\Sigma_S) = \bigcup_{x \in \pi(\Sigma_S)} T_x\pi(\Sigma_S)$.

**Definition 6.6.3** We denote by $N_{\pi(\Sigma_S)}$ the normal to $\pi(\Sigma_S)$ which is defined as the subset $\{ (x,\xi) | x \in \pi(\Sigma_S), \xi(T_x\pi(\Sigma_S)) \geq 0 \} \subset T^*M$.

Throughout this section, for any cone $C$ in a vector space $E$, we denote by $C^\circ$ the cone in dual space $E^*$ defined as $\{ \xi \in C^\circ \}$. Geometrically, $N_{\pi(\Sigma_S)}$ is the dual cone $T\pi(\Sigma_S)^\circ$ of the tangent cone $T\pi(\Sigma_S)$. If $\pi$ is a smooth embedding, $N_{\pi}$ is just the conormal bundle of $\pi(\Sigma)$.

**Definition 6.6.4** We denote by $\lambda_S$ the map $\lambda_S : (x; \theta) \in B \mapsto (x; d_xS)(x, \theta) \in T^*M$.

In nice situations, $\lambda_S\Sigma_S$ is a smooth Lagrange immersion and coincides with $N_{\pi(\Sigma_S)}$. However in our general situation, we always have the following upperbound:

**Proposition 6.6.1** $\lambda_S\Sigma_S \subset N_{\pi(\Sigma_S)}$.

**Proof** — Let us denote by $X = X_h + X_v = f^\mu \partial_{\phi^\mu} + f^i \partial_{\phi^i}$ a general vector field in $B$, $X_h$ denotes the horizontal part and $X_v$ the vertical part. If
The supplementary requirements that \( \Sigma \) coincide with the usual notion of Lagrange immersion (see [33] vol 3 p.291)

Example 6.6.1 Let \( I \subset M \) be a submanifold. We shall work in local chart where the manifold is given by a system of \( d \) equations \( f_1 = \cdots = f_d = 0 \). Then the Morse triple \( (\mathbb{R}^d \times M \mapsto M, \sum_{i=1}^d \theta^i f_i) \) parametrizes the conormal bundle \((TI)\)⊥.
6.6. MORSE FAMILIES AND LAGRANGIANS.

**An analytic interpretation of** $λSΣS$. We interpret $λSΣS$ in terms of the Wavefrontset of an oscillatory integral $t$. We can understand it as the problem of parametrizing $WF(t)$ by the Morse family $S$.

**Proposition 6.6.3** Let $S = (π : B → M, S)$ be a Morse family over the manifold $M$, in local coordinates $(x; θ)$, for any symbol $a(x; θ)$:

$$λSΣS = WF \left( ∫ dθa(x; θ)e^{iS(x, θ)} \right).$$

**Proof** — In local coordinates $(x, θ)$ for $B$, it is just a consequence of the theorem (9.47), p102 in [45].

**Functorial behaviour of Morse families.** In microlocal geometry, we need the following fundamental operations on distributions:

- the pullback $t → f^*t$ by a smooth map $f : M → N$ which is not always well defined for distributions
- the exterior tensor product $(t_1, t_2) → t_1 ⊠ t_2$ which is always well defined
- for our purpose, it will be important to add the product of distributions when it is well defined.

Assume that the Wavefront set $WF(t)$ of a given distribution $t$ is parametrized by a Morse family, we already know how the Wavefrontset transforms under these functorial operations on distributions, the question is to know whether we can find new Morse families to parametrize the new Wavefrontsets? The functorial behaviour of Lagrangians under geometric transformations is already studied in [68] in chapter , however it is not described in terms of generating functions and our point of view is more explicit and more oriented towards applications.

**Formal operations on Morse families.**

We introduce some operations $f^* , +$ on Morse families. Before, we need to recall the following operation, let $B → M$ be a vector bundle, or a local vector bundle (restriction of a vector bundle on $M$), for any smooth map $f : N → M$, $f^*B → f^*M$ is a smooth vector bundle (Appendix 2 of [68]) with fibers defined as follows $f^*B|_y = B|_{f(y)}$ such that the following diagram commutes:

$$
\begin{array}{ccc}
  f^* & : & f^*B \\
  \downarrow & & \downarrow \\
  f & : & N → M
\end{array}
$$

Furthermore, the lifted bundle map $f^*B → B$ is the identity in the fibers.
We introduce one last operation with bundles, recall the fiber product of $\pi_1 : B_1 \to M$ and $\pi_2 : B_2 \to M$ denoted by $B_1 \times_M B_2$ is defined by $\{(p_1, p_2) \in B_1 \times B_2 | \pi_1(p_1) = \pi_2(p_2)\}$.

**Definition 6.6.5** Let $B_1, B_2$ be two smooth cones over a given base manifold $M$. Then we define the product $B_1 \times_M B_2$ as the cone $B_1 \cup B_2 \cup (B_1 \times_M B_2)$.

**The QFT case.** In our recursion, we only need to pullback by smooth projections. For instance, by the canonical projection maps $M^n \to M^I$ for $I \subset [n]$. In this case, if we still denote $f$ the submersion $f : N \to M$, the Morse family can be chosen extremely simple.

**Definition 6.6.6** Let $S = (\pi : B \to M, S)$ be a Morse family over the manifold $M$. For any smooth projection $f : N \to M$, we define the pull back Morse family as the triple

$$f^*S = (f^*\pi : f^*B \to M, f^*S).$$

(6.30)

It is obvious that $df^*S \neq 0$ since $dS \neq 0$ and $df$ is surjective. When $f$ is a smooth map, we prove that the pullback by $f$ of $\lambda_S \Sigma_S$ is parametrized by the Morse family $f^*S$.

**Proposition 6.6.4** Under the conditions of the definition 6.6.6, we have the equation

$$f^*\lambda_S \Sigma_S = \lambda_{f^*S} \Sigma_{f^*S}$$

(6.31)

**Proof** — We denote by $(y, \eta)$ the coordinates in $T^*N$ and $(x; \xi)$ the coordinates in $T^*M$. We have

$$f^* (\lambda_S \Sigma_S) = \{(y; \eta) | \eta \in \lambda_S \Sigma_S | f(y) \circ df_y \}$$

by the definition of a pull back by [33], [68]

$$= \{(y; \eta) | \eta = d_y S(f(y); \theta) \circ df_y, d_y S(f(y); \theta) = 0\}$$

$$= \{(y; \eta) | \eta = d_y (S \circ f)(y; \theta), d_y S \circ f(y; \theta) = 0\} = \{(y; \eta) | \eta = d_y (f^*S)(y; \theta), \partial_y f^*S(y; \theta) = 0\}$$

$$= \lambda_{f^*S} \Sigma_{f^*S}$$

by definition of $\lambda_{f^*S} \Sigma_{f^*S}$.  

**Proposition 6.6.5** Under the assumptions of proposition (6.6.4), if $\lambda_S \Sigma_S$ is Lagrangian then $\lambda_{f^*S} \Sigma_{f^*S}$ is Lagrangian.

**Proof** — We just proved $\lambda_{f^*S} \Sigma_{f^*S} = f^*\lambda_S \Sigma_S = f^*N_{\pi(S)} = N_{\pi(f(S))} \circ df = N_{\pi(f(S))}$, since $\tau \pi_S(S) = Df \tau \pi_{f^*S}(\Sigma_{f^*S})$ we have $\tau \pi_{f^*S}(\Sigma_{f^*S})^\circ \circ df = \tau \pi_{f^*S}(\Sigma_{f^*S})^\circ$.
Proposition 6.6.6 Under the assumptions of proposition (6.6.4), if \( \Sigma_S \) is a smooth submanifold in \( B \) then \( \Sigma_{f^*S} \) is also a smooth submanifold in \( f^*B \).

Proof — This is immediate since \( d_{x,\theta}(d_\theta(S \circ f)) \) has the same rank as \( d_{x,\theta}S \).

Let \( \Sigma_i = (\pi_i : B_i \to M, S_i), i = (1, 2) \) be a pair of Morse families over the manifold \( M \), then we define the “sum of the Morse families” \( \Sigma_1 + \Sigma_2 \) as the triple

\[
\Sigma_1 + \Sigma_2 = (\pi_1 \bar{\nabla}_M \pi_2 : B_1 \bar{\nabla}_M B_2 \to M, S_1 + S_2)
\]

We put quotation marks “” to stress the fact that this operation still defines a triple (cone, base manifold, function) but this triple is not necessarily a Morse family since we do not know if \( d(S_1 + S_2) \neq 0 \), we will see that a necessary and sufficient condition for \( \Sigma_1 + \Sigma_2 \) to be a Morse family is that \( \lambda_{S_1} S_1 \cap -\lambda_{S_2} S_2 = \emptyset \) which is the Hormander condition.

Remark on sums of Morse families. Notice by definition that if the cone \( B_i, i = (1, 2) \) corresponding to the Morse family \( \Sigma_i \) has \( n_i \) connected components, then \( B_1 \bar{\nabla}_M B_2 \) has \( n_1 + 1)(n_2 + 1) - 1 \) connected components.

An immediate recursion yields that the cone corresponding to the sum \( \Sigma_1 + \cdots + \Sigma_k \) has \((n_1 + 1)\ldots(n_k + 1) - 1 \) connected components.

Transversality lemmas.

We recall the classical notion of transversality in differential geometry in our context. Let \( \Sigma_i, i = (1, 2) \) be a pair of smooth manifolds and \( \pi_i : \Sigma_i \to M, i = (1, 2) \) be a pair of smooth maps. In this case, for every \( x \in \pi_i(\Sigma_i) \), the tangent cones \( T_x \pi_i(\Sigma_i), i = (1, 2) \) are vector spaces of \( T_x M \) (which is less general than cones).

Definition 6.6.7 \( \pi_1 \) and \( \pi_2 \) are called transverse if for all \( x \in \pi_1(\Sigma_1) \cap \pi_2(\Sigma_2), T_x \pi_1(\Sigma_1) + T_x \pi_2(\Sigma_2) = T_x M \).

Lemma 6.6.1 Let \( \Sigma_i, i = (1, 2) \) be a pair of smooth submanifolds in \( B_i \) and \( \pi_i : B_i \to M, i = (1, 2) \) be a pair of smooth maps. If \( \pi_1 \) and \( \pi_2 \) are transverse then \( \Sigma_1 \times_M \Sigma_2 \) is a smooth submanifold in \( B_1 \times_M B_2 \).

Proof — Denote by \( \Delta \) the diagonal in \( M \times M \). Then \( B_1 \times_M B_2 \) can be identified with the inverse image \( (\pi_1 \times \pi_2)^{-1}(\Delta) = B_1 \times_\Delta B_2 \subset B_1 \times B_2 \) which is always a submanifold of \( B_1 \times B_2 \) and the fiber product \( \Sigma_1 \times_M \Sigma_2 \) is just the intersection \( (\Sigma_1 \times M) \cap (B_1 \times_\Delta B_2) \) in \( B_1 \times B_2 \). So we view both \( \Sigma_1 \times \Sigma_2 \) and \( B_1 \times_\Delta B_2 \) as submanifolds sitting inside \( B_1 \times B_2 \), a sufficient condition for \( (\Sigma_1 \times M) \cap (B_1 \times_\Delta B_2) \) to be a submanifold of \( B_1 \times B_2 \) is that the intersection is transverse (it is a classical result of transversality theory that the transversal intersection of two submanifolds is a submanifold of
152 CHAPTER 6. THE RECURSIVE CONSTRUCTION OF THE RENORMALIZATION.

Figure 6.10: Transverse intersection of curves and their conormals.

the two initial submanifolds, see theorem (3.3) p22 in [32]). It is immediate to check that at every point \((p_1, p_2)\) of the intersection \(T_{p_1,p_2}(\Sigma_1 \times \Sigma_2) + T_{p_1,p_2}(B_1 \times \Delta B_2) = T_{p_1,p_2}(B_1 \times B_2)\) since \(D(\pi_1 \times \pi_2)(\Sigma_1 \times \Sigma_2) = T_x \Delta\) by transversality of \(\pi_1(\Sigma_1), \pi_2(\Sigma_2)\) and \(T_{p_1,p_2}(B_1 \times \Delta B_2)\) spans the vertical tangent space of the bundle \(B_1 \times B_2\).

For each smooth map \(\pi : \Sigma \hookrightarrow M\), we recall we defined the normal to \(\pi(\Sigma)\):

\[ N_{\pi(\Sigma)} \subset T_M \]

as the subset \(\bigcup_{x \in \pi(\Sigma)} T_x \pi(\Sigma)^{\circ} \) in \(T_x^* M\) which is the dual cone to the tangent cone \(T \pi(\Sigma)\). We set \(N_{\pi(\Sigma)}^{\ast} = N_{\pi(\Sigma)} \cap T^\ast M\).

Lemma 6.6.2 Assume \(\Sigma_i, i = (1, 2)\) are smooth manifolds and \(\pi_i : \Sigma_i \hookrightarrow M\) are smooth maps, then \(\pi_1, \pi_2\) are transverse if and only if \(N_{\pi_1}^{\ast} \cap -N_{\pi_2}^{\ast} = \emptyset\).

Proof — To prove the lemma, we just work infinitesimally. We fix a pair \((p_1, p_2) \in \Sigma_1 \times \Sigma_2\) such that \(\pi_1(p_1) = \pi_2(p_2) = x\). \(\pi_1\) and \(\pi_2\) are transverse at \(x \in M\) implies by definition that \(T_x \pi_1(\Sigma_1) + T_x \pi_2(\Sigma_2) = T_x M\). Then it is a classical result in the duality theory of cones

\[ (T_x \pi_1(\Sigma_1) + T_x \pi_2(\Sigma_2))^\circ = T_x \pi_1(\Sigma_1)^\circ \cap T_x \pi_2(\Sigma_2)^\circ = T_x M^\circ = \{0\}. \]

We illustrate the last lemma in the figure (6.10) for the case of two curves intersecting transversally in the plane and we represent the corresponding spaces \(N_{\pi_i}\). The meaning of this lemma is that the condition \(N_{\pi_1}^{\ast} \cap -N_{\pi_2}^{\ast} = \emptyset\) of Hormander generalizes the classical differential geometric transversality when \(\Sigma_i\) are not necessarily smooth submanifolds in \(B_i\).

Proposition 6.6.7 Let \(S_i = (\pi_i : B_i \hookrightarrow M, S_i), i = (1, 2)\) be a pair Morse families over the manifold \(M\). \(\lambda_{S_1} \Sigma_{S_1} + \lambda_{S_2} \Sigma_{S_2} \cup \lambda_{S_1} \Sigma_{S_1} \cup \lambda_{S_2} \Sigma_{S_2}\) is parametrized by the family \(S_1 + S_2 = (\pi_1 \times_M \pi_2 : B_1 \times_M B_2 \hookrightarrow M, S_1 + S_2)\). \(S_1 + S_2\) is a Morse family if and only if \(\lambda_{S_1} \Sigma_{S_1} \cap -\lambda_{S_2} \Sigma_{S_2} = \emptyset\).
6.6. MORSE FAMILIES AND LAGRANGIANS.

Proof — It is sufficient to find the Morse family parametrizing \( \lambda S_1 \Sigma S_1 + \lambda S_2 \Sigma S_2 \). We will make some local computation in coordinates where we assume \( B_i \) is equal to the cartesian product \( M \times \Theta_i \) with coordinates \((x, \theta)\) where \( \Theta_i \) is a vector space minus the origin. Let us consider the Morse family \((\pi_1 \times M \pi_2 : B_1 \times_M B_2 \mapsto M, S_1 + S_2)\), where we use the local coordinates \((x; \theta_1, \theta_2)\) for \( B_1 \times_M B_2 \). Then the critical set of this Morse family is by definition \( \{ d_{\theta_1, \theta_2}(S_1 + S_2) = 0 \} = \{ d_{\theta_1}S_1 = 0 \} \cap \{ d_{\theta_2}S_2 = 0 \} = \Sigma S_1 \times_M \Sigma S_2 \), and the parametrization is given by

\[
\{(x; dx(S_1 + S_2)) (x; \theta) d_{\theta_1}S_1 = 0, d_{\theta_2}S_2 = 0 \} = \lambda S_1 \Sigma S_1 + \lambda S_2 \Sigma S_2 |_{\Sigma S_1 \times_M \Sigma S_2},
\]

which proves \((\pi_1 \times_M \pi_2 : B_1 \times_M B_2 \mapsto M, S_1 + S_2)\) parametrizes \( \lambda S_1 \Sigma S_1 + \lambda S_2 \Sigma S_2 \), thus if we add all other components \( \lambda S_1 \Sigma S_1 + \lambda S_2 \Sigma S_2 \cup \lambda S_1 \Sigma S_1 \) \( \lambda S_2 \Sigma S_2 \) is parametrized by the family \( S_1 + S_2 = (\pi_1 \times_M \pi_2 : B_1 \times_M B_2 \mapsto M, S_1 + S_2) \).

It remains to prove that \( d(S_1 + S_2) \neq 0 \) in \( B_1 \times_M B_2 \). If both \( d_{\theta_1}S_1(x, \theta_1) = 0 \) and \( d_{\theta_2}S_2(x, \theta_2) = 0 \) then \( dx(S_1 + S_2)(x, \theta_1, \theta_2) \neq 0 \) is equivalent to the condition \( \lambda S_1 \Sigma S_1 \cap -\lambda S_2 \Sigma S_2 = \emptyset \).

For the moment our results and statements are for general Morse families and we did not assume \( \lambda S \Sigma S \) was Lagrangian (recall Lagrangian means \( \lambda S \Sigma S = N_\pi(\Sigma S) \) for us) nor that the critical set \( \Sigma S \) was a submanifold. This is what we will add to the picture:

**Proposition 6.6.8** Under the assumptions of the proposition (6.6.7), if \((\lambda S_i, \Sigma S_i)_{i=(1,2)}\) are Lagrangians which means \( \lambda S_i \Sigma S_i = N_\pi(\Sigma S_i) \) then \( \lambda S_1 \Sigma S_1 + \lambda S_2 \Sigma S_2 \) is Lagrangian.

Proof — One can check from the definitions that \( T((\pi_1 \times_M \pi_2)(\Sigma_1 \times_M \Sigma_2)) = T(\pi_1 \Sigma_1) \cap T(\pi_2 \Sigma_2) \).

Hence by linear algebra,

\[
N((\pi_1 \times_M \pi_2)(\Sigma_1 \times_M \Sigma_2)) = T((\pi_1 \times_M \pi_2)(\Sigma_1 \times_M \Sigma_2))^\circ = (T(\pi_1 \Sigma_1) \cap T(\pi_2 \Sigma_2))^\circ
\]

\[
= (T(\pi_1 \Sigma_1))^\circ + (T(\pi_2 \Sigma_2))^\circ = N_{\pi_1(\Sigma_1)} + N_{\pi_2(\Sigma_2)} = \lambda S_1 \Sigma S_1 + \lambda S_2 \Sigma S_2,
\]

but this means \( \lambda S_1 \Sigma S_1 + \lambda S_2 \Sigma S_2 \) is Lagrangian.

**Proposition 6.6.9** If under the assumptions of the proposition (6.6.8), each \( \Sigma S_i \) is a smooth submanifold in \( B_i \) then \( \Sigma S_1 \times_M \Sigma S_2 \) is a smooth submanifold of \( B_1 \times_M B_2 \).

Proof — It suffices to recognize that the assumption \( \lambda S_1 \Sigma S_1 \cap -\lambda S_2 \Sigma S_2 = \emptyset \) is equivalent to \( N^\bullet_{\pi_1(\Sigma S_1)} \cap -N^\bullet_{\pi_2(\Sigma S_2)} = \emptyset \) (by our definition of being Lagrangian) which implies the transversality of the two maps \( \pi_1 : \Sigma S_1 \mapsto M \), \( \pi_2 : \Sigma S_2 \mapsto M \) by lemma (6.6.2), which means by application of lemma (6.6.1) that the fiber product \( \Sigma S_1 \times_M \Sigma S_2 \) is a smooth submanifold of \( B_1 \times_M B_2 \).
To summarize all the results we proved if \( t_1 \) and \( t_2 \) are distributions with Wavefrontset \( WF(t_i) \) parametrized by the Morse family \( S_i \) and \( (\lambda S, \Sigma S_i)_{i=(1,2)} \) satisfy the Hormander condition \( \lambda S_1 \Sigma S_1 \cap -\lambda S_2 \Sigma S_2 = \emptyset \) then the distributional product \( t_1 t_2 \) makes sense and has Wavefrontset contained in the set \( \lambda S_1 + S_2 \Sigma S_1 + S_2 \) parametrized by the Morse family \( S_1 + S_2 \). Furthermore, we proved that if \( (\lambda S, \Sigma S_i)_{i=(1,2)} \) are Lagrangians and \( (\Sigma S_i)_{i=(1,2)} \) are smooth submanifolds then the same properties hold true for the Morse family \( S_1 + S_2 \).

If \( f : N \to M \) is a smooth submersion and \( t \in D'(M) \) with Wavefrontset \( WF(t) \) parametrized by the Morse family \( S \) then the pullback \( f^* t \) makes sense and has Wavefrontset contained in the set \( \lambda f^* S \Sigma f^* S \) parametrized by the Morse family \( f^* S \). Furthermore, we proved that if \( \lambda S \Sigma S \) is Lagrangian and \( \Sigma S \) is a smooth submanifolds then the same properties hold true for the Morse family \( f^* S \).

**Theorem 6.6.1** Let \( \tilde{t}_n \) be the distributions defined by the recursion theorem. Then \( WF(\tilde{t}_n) \) is parametrized by a Morse family and is a union of smooth Lagrangian manifolds.

**Proof** — We use the notations and formalism of the section 3 in Chapter 5. To inject this condition in our recursion theorem, it will be sufficient to check that \( WF(\Delta_i) \mid_{C_i} \), \( i \in \{1, 2\} \) or equivalently \( WF t_2(\phi(x)\phi(y)) \mid_{U^2 \setminus d_2} \) and all conormal bundles \((Td_f)^\perp\) are parametrized by Morse families. For \( t_2(\phi(x)\phi(y)) \), by Theorem 5.3.1 of Chapter 5 and causality, we can write the Morse family in a local chart \( U^2 \setminus d_2 \):

\[
S = (\mathbb{R}_{>0} \times (U^2 \setminus d_2) \to (U^2 \setminus d_2), \theta \Gamma(x, y))
\]

and the fact that it parametrizes \( t_2 \) results immediately from Theorem 5.3.1. Furthermore the critical set

\[
\Sigma_S = \{(x, y) \in U^2 \setminus d_2 | \Gamma(x, y) = 0\}
\]

is a smooth submanifold and \( \lambda S \Sigma S \subset T^\ast(U^2 \setminus d_2) \) is Lagrangian. Also for the conormal of the diagonals, it was already treated in our examples, they can always be generated by Morse families. Then we inject these hypotheses in the recursion and we easily get the result.

**Example 6.6.2** In order to illustrate the mechanism at work, we choose to study the example of the Wavefront set of the product \( \delta_{x_1=0}\delta_{x_2=0}\delta_{x_3}=0(x_1, x_2, x_3) \) of three delta functions \( \delta_{x_i=0}, i = 1, 2, 3 \) in \( \mathbb{R}^3 \). Each \( \delta_{x_i=0} \) is associated to the hyperplane \( x_i = 0 \). One should imagine we study the boundary of a cube in a small neighborhood of one vertex! Each \( \delta_{x_i=0} \) has Wavefrontset equal to the conormal bundle of the corresponding face \( x_i = 0 \) of a cube, this is parametrized by the Morse family \( S_i = ((\theta \varepsilon_i); x_i) \mapsto (x_i), S_i = (x, \theta \varepsilon_i) \). We represented in the figure some vectors \( \nabla_x S_i \) which represent the momentum.
component of the conormal of the face \( x_i = 0 \). When two faces \( F_i, F_j \) are adjacent to an edge \( F_i \cap F_j \), the convex sum of the Wavefrontsets supported over the edge is the conormal of the edge (represented in the figure as a tube) which is parametrized by the Morse family \(((\theta_i; x_i)_i \mapsto (x_i)_i, S_i + S_j)\). Finally the origin is a vertex adjacent to all faces and the Wavefrontset over \((0,0,0)\) is parametrised by \(((\theta_i; x_i)_i \mapsto (x_i)_i, S_1 + S_2 + S_3)\) and represents the conormal at the origin (in the figure as the sphere). In total, the Wavefrontset has seven smooth components indexed by the stratas of the cube boundary: (3 faces, 3 edges, 1 vertex). The reader can check that the Wavefrontset of \( \delta_{x_1=0}\delta_{x_2=0}\delta_{x_3=0}(x_1, x_2, x_3) \) is parametrized by the Morse family \( S_1 + S_2 + S_3 \) (all seven cases are covered since by definition the sum of Morse families “contains zero sections”). The morality of this example is that the conormal of a union of manifolds is not the union of the conormals! One should take into account the informations contained in the “stratas” and our formalism does it for the most elementary example.
Figure 6.11: The Wavefront set of $\delta_{x_1=0}\delta_{x_2=0}\delta_{x_3=0}$ as a union of 7 Lagrange immersions.
Chapter 7

Anomalies and residues.

7.1 Introduction.

The plan of the chapter. First, we will generalize the notion of weak homogeneity of Yves Meyer [44] to the setting of currents. Then we will show that the results of Chapter 1 will transfer to this new setting of currents with minor modification. However, we need to discuss the notion of Taylor expansion for test forms to give an adequate meaning to the notions of Taylor polynomial and Taylor remainder of a test form. We take time to discuss the notion of current supported on a submanifold $I$ and their representation in this new current theoretic setting. Following physics terminology, we will call local counterterms the currents supported on $I$ and everything revolves around this notion. Actually in QFT, all ambiguities of the renormalization schemes can be described by local counterterms, more precisely the difference between two renormalizations is a current supported on $I$.

One first natural example of ambiguity originates from the work of Yves Meyer [44]. We call $R$ the composite operation of restriction of a distribution defined on $M$ to $M \setminus I$ followed by any extension operation. We explain why this operation differs from the identity because of the non uniqueness of the extension procedure. We describe explicitely the ambiguity of this operation $R$ by giving an explicit formula for $T - RT$ and we show that this difference is a local counterterm. We give an interpretation of this ambiguity in terms of the notion of “generalized moment” for currents.

Then we will describe explicitely the dependance of the regularization operator $R$ defined in Chapter 1 that might be called the Hadamard regularization scheme, on the choice of bump function $\chi$ which is equal to 1 in a neighborhood of $I$ and the choice of Euler vector field $\rho$. Without surprise, we will prove that a change in the function $\chi$ or the vector field $\rho$ will result in a change of $R$ by a local counterterm, these are explicit ambiguities. In QFT, we can ask if the symmetries or the exactness of currents can be preserved by the renormalization scheme, however since many symmetries
of QFT are expressed in terms of Lie algebras of vector fields it is natural to wonder if they commute with the renormalization. The symmetry is not always preserved and the quantity which measures this defect will be called residue of $T$. In practice, $Res$ is defined following Griffiths–Harris ([30] p368) by the chain homotopy equation

$$\partial RT - R\partial T = Res[T]$$

and is a local counterterm. However $Res$ is a special type of counterterm since $Res$ is always closed in $D'(M)$ and is exact when $T$ is closed. We show the regularization scheme of Meyer produces and extends the notion of residues in the sense of Griffiths–Harris (see the section 3 in [30]) and our definition has nothing to do with complex analysis. The residue in [30] is only well defined for functions $T \in L^q_{\text{loc}}(\mathbb{R}^n)$ ([30] p369) smooth outside a given singular set $S$, whereas our notion of residue works for distributions in $E_s$ which are weakly homogeneous of degree $s$ for arbitrary $s$. Somehow, we give minimal regularity hypothesis on the current $T$ which guarantees the existence of the Residues because any current defined globally on $M$ will live in some scale space $E_s$ for some $s$. The residue theory provides a very flexible and general framework to study anomalies. We repeat the construction of geometric residues for infinite dimensional Lie algebras of symmetries, for $X$ a vector field which commutes with $\rho$, we study the Residue equation

$$L_X RT - RL_X T = Res_X[T]$$

and we interpret $Res_X[T]$ as an obstruction to the fact that quantization (in our sense quantization consists in an operation of extension of distributions) conserves classical symmetries. More precisely, if we assume we have an infinite dimensional Lie algebra of vector fields $\mathfrak{g}$, and that $\forall X \in \mathfrak{g}, L_X T = 0$ ($\mathfrak{g}$ is the Lie algebra of classical symmetries) then $X \mapsto Res_X[T]$ is a coboundary for the infinite dimensional Lie algebra of vector fields. It can be thought in terms of a quantum version of the Noether theorem.

<table>
<thead>
<tr>
<th>Physics terminology</th>
<th>Our interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>renormalization scheme</td>
<td>Extension operator $R : D'(M \setminus I) \mapsto D'(M)$</td>
</tr>
<tr>
<td>local counterterm</td>
<td>currents supported on $I$</td>
</tr>
<tr>
<td>ambiguity</td>
<td>$R_1 T - R_2 T$</td>
</tr>
<tr>
<td>Symmetry</td>
<td>Lie algebra of vector fields $\mathfrak{g}$</td>
</tr>
<tr>
<td>anomaly</td>
<td>Residue $L_X R - RL_X$</td>
</tr>
</tbody>
</table>

**Relationship to other work.** During the writing of this Chapter and Chapter 7 appeared a very interesting preprint of Todorov,Nikolov and Stora [66] close to the spirit of the present work. The difference is that they work on flat space time and they deal with associate homogeneous distributions.
They found the same notion of residues as poles of the meromorphic regular-
ization and as anomaly of the scaling equations. However their anomaly
residue is not as general as ours since it only applies to associate homo-
ogeneous distributions whereas ours applies to all weakly homogeneous
distributions and our formulation has more homological language with the
Schwartz, De Rham technology of currents. For instance, we have anomalies
for all vector fields no just one Euler anomaly and we are able to prove
that some anomalies are periods. Our work complements nicely the work of
Dorothea Bahns and Michal Wrochna [72] which gives very explicit formulas
in the Minkowsky space. We also learned recently that the problem of exten-
sion of currents was also studied in Complex analytic geometry ([57],[15]).

7.2 The formalism of currents, Meyer renormali-
sation and residues.

Regularizing the integration of currents against test forms.

Let us denote by $D'_k(M)$ the topological dual of the space $D^k(M)$ of com-
pactly supported test forms of degree $k$. If $\alpha \in \Omega^{n-k}(M)$ is a smooth
form of degree $n-k$, then integration on $M$ gives a linear map $\omega \mapsto
\langle \alpha, \omega \rangle = \int_M \alpha \wedge \omega$ which allows to interpret $\alpha$ as an element of $D'_k$. Thus
$\Omega^{n-k}(M) \hookrightarrow D'_k(M)$ and the symbol $\langle \alpha, \omega \rangle$ extends integration on $M$ to
arbitrary $\alpha \in D'_k(M)$. Finally, a deep structure theorem states that the
topological dual of the sections of smooth compactly supported sections of a
vector bundle $E$ are just distributional sections of the dual bundle $E'$, in our
specific case $D'_k(M) = D'(M) \otimes_{\mathcal{C}^\infty(M)} \Omega^{n-k}(M)$. The formalism of currents
allows to benefit from the full power of exterior differential calculus.

From $t$ to vector valued currents. We define scaling of currents by the
following formula, for all current $T \in D'_k(M)$ for all test forms $\omega \in D^k(M)$:

$$T_\lambda(\omega) = T(\omega_{\lambda^{-1}})$$

this definition is the most natural.

**Definition 7.2.1** A current $T \in D'_k(M)$ is in $E_s(D'_k(M))$ iff for all test
forms $\omega \in D^k(M)$

$$\sup_{\lambda \in [0,1]} |\lambda^{-s}T_\lambda(\omega)| < \infty$$

fortunately, this definition coincides with the definition of [44] because in
the work of Meyer (Meyer takes into account the Euclidean volume form):

$$\lambda^{-d} \int_{\mathbb{R}^d} T_\lambda \varphi_{\lambda^{-1}} d^d x = \int_{\mathbb{R}^d} T_\varphi d^d x \lambda^{-1} = \int_{\mathbb{R}^d} T_\lambda \varphi d^d x$$

and the theory of Chapter 1 applies identically to this case.
CHAPTER 7. ANOMALIES AND RESIDUES.

The Taylor formula for test forms. It is important to understand the formalism of Taylor expansion for currents because we need to subtract Taylor polynomials to regularize certain extensions in the algorithm of Meyer.

Let \( \omega \) be a smooth test form in \( D^k(M) \), then for a given \( \rho \) using the normal form theorem of chapter 1, we find that there exists a local coordinate chart around each point of \( I \) in which \( \rho = h^j \partial_{h^j} \) and \( \omega = \sum_{|I|+|J|=k} \omega_{IJ}(x, h) dx^I \wedge dh^J \) where \( I, J \) are multiindices. We immediately see that \( \omega_{IJ} \) have various homogeneities wrt \( \rho \) depending on the length \( |J| \). Thus, it is wiser to decompose \( \omega \) by homogeneity in scaling by the vector field \( \rho \), this decomposition always exists because \( \omega \) depends smoothly on \( x, h \) and is viewed as a polynomial function of the Grassmann variables \( dx^i, dh^j \):

\[
\omega = \sum_{0 \leq n \leq m} \omega_n + I_m(\omega) = P_m(\omega) + I_m(\omega)
\]

in the sense of the Taylor expansion of Chapter 1:

\[
\omega_n = \frac{1}{n!} \left( \left( \frac{d}{dt} \right)^n e^{\log t \rho^*} \omega \right) \bigg|_{t=0}
\]

where \( \omega_n \) is homogeneous of degree \( n \). And we also have a formula for the Taylor remainder:

\[
I_m(\omega) = \frac{1}{m!} \int_0^1 dt (1-t)^m \left( \frac{d}{dt} \right)^{m+1} \left( e^{\log t \rho^*} \omega \right)
\]

Example 7.2.1 In this formalism \( dh \) is homogeneous of degree 1, \( \left( \left( \frac{d}{dt} \right) e^{\log t \rho^*} dh \right) \big|_{t=0} = \frac{d}{dt} t h \big|_{t=0} = dh \).

Conceptual meaning of the Taylor expansion. We give an equivalent formula for \( \omega_n \) due to F Hélein:

\[
\omega_n = \lim_{t \to 0} \frac{1}{n!} t^n P_n(\rho) \ldots (\rho - n + 1) e^{\log t \rho^*} \omega = \lim_{t \to 0} t^{-n} \left( \frac{n}{\rho} \right) e^{\log t \rho^*} \omega
\]

which allows to give the following conceptual remark, notice \( \frac{1}{n!} t^n (\rho) \ldots (\rho - n + 1) e^{\log t \rho^*} \omega = \lim_{t \to 0} t^{-n} \left( \frac{n}{\rho} \right) e^{\log t \rho^*} \omega(p) \) depends linearly on the \( n \)-jet of \( \omega \) at the point \( e^{\rho \log t} p \). But it also depends polynomially on the \((n-1)\)-jet of the smooth Euler vector field \( \rho \) at the point \( e^{\rho \log t} p \). Finally, \( \omega_n \) depends linearly on the \( n \)-jet of \( \omega \), and depends polynomially on the \((n-1)\)-jet of \( \rho \) at the point \( \lim_{t \to 0} e^{\rho \log t} p \in I \). Since the \( n \)-jet of \( \omega \) at the point \( \lim_{t \to 0} e^{\rho \log t} p \in I \) is independent of \( \rho \), we deduce the Taylor polynomial \( P_m(\omega) = \sum_{n \leq m} \omega_n \) depends linearly on the \( m \)-jet of \( \omega \) along \( I \), but it depends polynomially in the \((m-1)\)-jets of \( \rho \) along \( I \). In an arbitrary local chart, \( P_m(\omega) \) is in general not a polynomial so following Helein the term Taylor polynomial is
somewhat abusive, however in the coordinates in which \( \rho \) takes the normal form \( \rho = h^j \partial h^j \), \( P_m(\omega) \) is a genuine polynomial in the variables \( h^j, dh^j \). Let us discuss the expression of the Taylor polynomial \( P \) in coordinates. Let \( \omega \) be a \( k \) test form which writes \( \omega = \sum |I|+|J| = k \omega_{IJ} dx^I \wedge dh^J \) then

\[
P_m(\omega) = \sum_{|I|+|J| = k, |\gamma|+|J| \leq m} h^\gamma \frac{\partial^\gamma h}{\gamma!} \omega_{IJ}(x,0) dx^I \wedge dh^J \]

7.2.1 From Taylor polynomials to local counterterms via the notion of moments of a compactly supported distribution \( T \).

The representation theorem. Before we discuss the results of Chapter 1 in the current theoretic setting, we would like to discuss the issue of local counterterms. But even before we discuss the problem of local counterterms, we must recall the representation theorem for currents supported on \( I \) (see [49]). On \( \mathbb{R}^{n+d} \) with coordinates \((x,h)\) where \( I = \{h = 0\} \simeq \mathbb{R}^n \), we recall the definition of the distribution \( \partial^\alpha h \delta_I \) defined as follows: \( \forall \omega \in D, \langle \partial^\alpha h \delta_I, \omega \rangle = (-1)^{|\alpha|} \int_{\mathbb{R}^n} \partial^\alpha h \omega(x,0) d^n x \).

**Theorem 7.2.1** Let \( I \subset M \) be a closed embedded submanifold of \( M \). Let us consider a current \( t \in D'_k(M) \) supported on \( I \). For any local chart \((x,h)\in \mathbb{R}^{n+d} \) of \( M \) where \( I = \mathbb{R}^n_x \times \{0\}_h \), \( t \) has a unique representation as

\[
t = \sum_{\alpha,J} t_{\alpha,J}(x) \wedge dh^J \left( \partial^\alpha h \delta_I \right)(h) \quad (7.3)
\]

where the \( t_{\alpha,I} \) are currents on \( \mathbb{R}^n \simeq I \) and the \( \left( \partial^\alpha h \delta_I \right) \) are derivatives of the Dirac delta distribution. The sum is “locally finite” which means that on each compact subset \( K \subset \mathbb{R}^{n+d} \), the length \( |\alpha| \) of the multiindex \( \alpha \) is bounded by the order of \( t \) on \( K \).

**Proof** — We first use the decomposition of a current \( t \in D'_k(M) \) as a sum \( t_{I,J} dx^I \wedge dh^J \) where \( t_{I,J} \in D'_0(M) \) are 0-currents (see [27] 2.3 p123 and [51] Chapter 3 p36).

Then the 0-currents \( t_{I,J} \) are in fact distributions supported on \( I \), then we apply the structure theorem 37 p102 [55] which describes distributions supported on a submanifold, which gives the desired result.

Conceptually, the idea of moments depends on the coordinate system chosen and are geometrically defined by a **pushforward** operation. Recall that the coordinate system \((x,h)\) defines a transverse structure to \( I \) where \( I \) is the transverse structure of the family of foliations \( \pi : (x,h) \mapsto x \). Let us explain the ideas of the concept of moments, first we fix a coordinate
system which gives a basis $dx^i, dh^j$. Define the moments $c_{\alpha I} \in D'_s(I)$ of $T \in E'_s(M)$ by the formula:

$$c_{\alpha I}(T) = \int h \left( T \wedge \frac{h^\alpha}{\alpha!} \left( \frac{\partial}{\partial h^I} dh^d \right) \right)$$

(7.4)

these moments are indexed by the multiindices $(\alpha, I)$ and satisfy the identity

$$\langle T, P_m(\omega) \rangle = \sum_{|\alpha| + d - |I| \leq m} \langle c_{\alpha I} \wedge dh^I D^\alpha \delta_I, \omega \rangle$$

(7.5)

In the case $n = 0$, and $I = \{0\}$ is the origin in $\mathbb{R}^d$ and $T = f(h) \in D'_n$ is an integrable function $f \in L^1(\mathbb{R}^d)$, this definition coincides with the moment of the function $f \in L^1(\mathbb{R}^d)$ (see Duistermaat Kolk Distributions proposition 6.3 p52). Now, we notice that when $t \in D'_s(M)$ is supported on $I$, the moments $c_{\alpha, I}(t)$ of $t$ exactly coincide with the coefficients $t_{\alpha, I}$ in the representation (7.2.1). The concepts of moments are crucial when we wish to represent currents supported on $I$ or residues.

7.2.2 The results of Chapter 1.

Now that we have the adequate language for local counterterms, we can recall the results of Chapter 1 in this new current theoretic setting:

**Proposition 7.2.1** Let $T \in E_{sk}(M \setminus I)$

if $s + k - n > 0$ then

$$\lim_{\varepsilon \to 0} \langle T \left( \chi - e^{-\log \varepsilon \rho^*} \chi \right), \omega \rangle$$

exists.

If $s + k - n \leq 0$ then for $-m - 1 < s \leq -m$

$$\lim_{\varepsilon \to 0} \langle T \left( \chi - e^{-\log \varepsilon \rho^*} \chi \right), I_m(\omega) \rangle$$

exists where $I_m(\omega)$ is the generalized Taylor remainder

$$I_m(\omega) = \frac{1}{m!} \int_0^1 dt (1 - t)^m \left( \frac{d}{dt} \right)^{m+1} \left( e^{\log t \rho^*} \omega \right)$$

(7.8)

**Proof** — We decompose the test forms $\omega$ in local coordinates $(x, h, dx, dh)$ then we reduce the proof exactly to the same proofs as in Chapter 1. We only indicate the subtlety involved because we are dealing with forms. In normal coordinates $(x, h)$ for $\rho$ If $\omega$ is a $k$ form, in the decomposition $\omega = \sum_{|J| = k} \omega_{IJ} dx^I dh^J$ the length $|J|$ of the polyindex $J$ is at least equal to $k - n$ because there are $n$ coordinate functions $x$. Thus $\omega$ is in fact weakly homogeneous of degree $k - n$ this explains the criteria $s + k - n > 0$. Now the second case is simple since $I_m(\omega)$ is weakly homogeneous of degree $m + 1$. ■
We would like to introduce a new notation for the operation of regularization, we call it $R_\varepsilon$, and we define it as follows:

**Definition 7.2.2** $R_\varepsilon$ is defined as a continuous linear on $E_{s+k}(M \setminus I)$ (thus it is also defined on $E_{s+k}(M)$ because we have the immediate continuous injection $E_{s+k}(M) \hookrightarrow E_{s+k}(M \setminus I)$)

if $s + k - n > 0$ then

$$\langle R_\varepsilon T, \omega \rangle = \langle T \left( 1 - e^{-\log \varepsilon \rho^*} \chi \right), \omega \rangle$$ (7.9)

If $-(m+1) < s + k - n$ then

$$\langle R_\varepsilon T, \omega \rangle = \langle T \left( \chi - e^{-\log \varepsilon \rho^*} \chi \right), I_m(\omega) \rangle + \langle T (1 - \chi), \omega \rangle$$ (7.10)

### 7.3 The Meyer renormalization, local counterterms and geometric residues.

#### 7.3.1 The ambiguities of the operator $R_\varepsilon$ and the moments of a distribution $T$.

Actually, first notice that any current $T$ in $D'_k(M)$ is also an element of $D'_k(M \setminus I)$ by the pull-back $i^*T$ by the restriction map $i : M \setminus I \hookrightarrow M$. Thus we ask ourselves a very natural question, does the restriction followed by the extension operation allows to reconstruct the element $T$, in other words do we have $\lim_{\varepsilon \to 0} R_\varepsilon i^*T = T$ ? The answer is no ! A distribution supported on $I$ is automatically killed by $R_\varepsilon$, $\forall \varepsilon > 0$ thus if $T$ is supported on $I$ $\lim_{\varepsilon \to 0} R_\varepsilon i^*T = 0$. This idea is strongly related to the discussion in Meyer Chapter 1, let $t \in S'$ be a tempered distribution. Does the Littlewood Paley series $\sum_{j=-N}^{\infty} \Delta_j(t)$ converges weakly to $t$ when $N \to +\infty$ ? The answer is no! There is convergence modulo floating polynomials in Fourier space (see Meyer proposition 1.5 page 15). The floating polynomials in Fourier space are in fact corrections that we have to introduce in order to make the Littlewood Paley series convergent and should be related to vanishing moments conditions (see Meyer chapter 2 p 45). We introduce a linear operator $A$ which describes the ambiguities of the restriction-extension operation on the distribution $T$.

**Definition 7.3.1** Let $T \in D'_k(M)$, then we define the ambiguity as

$$AT = \lim_{\varepsilon \to 0} (T - R_\varepsilon T)$$

$A$ depends on $\chi$.

the ambiguity always exists because of the convergence of $R_\varepsilon T$ and is a current supported on $I$. As usual, we motivate our theorem with the simplest fundamental example.
Example 7.3.1 $\delta \in D'(\mathbb{R})$ is a well defined distribution. But $\forall \varepsilon > 0, R_{\varepsilon}\delta = 0$ because $0$ never meets the support of the cut-off hence

$$\lim_{\varepsilon \to 0} (\delta - R_{\varepsilon}\delta) = \delta$$

We state a simple theorem which expresses the ambiguity $A$ in terms of the moments of $T\chi$.

**Theorem 7.3.1** Let $T \in E_{sk}(M)$ where $-(m+1) < s \leq m$, then we have the following formula expressing the ambiguity $A_T$ in terms of the moments of $T\chi$

$$A_T = \langle T\chi, P_m(\omega) \rangle$$  \hspace{1cm} (7.11)

**Proof** —

Yves Meyer defines the ambiguity by the Bernstein theorem. We will give a more direct in space proof which does not use the Fourier transform. The first idea is the concept of moments of a current $T\chi \in D'_k(M)$.

First write the duality coupling in simple form:

$$\langle T, \omega \rangle = \langle T(1 - \chi), \omega \rangle + \langle T\chi, \omega \rangle = \langle T(1 - \chi), \omega \rangle + \langle T\chi, P_m(\omega) \rangle + \langle T\chi, I_m(\omega) \rangle$$

where $P$ is the Taylor polynomial $\sum_{k \leq m} \omega_k$.

We remind the definition of $R_{\varepsilon}T$

$$\langle R_{\varepsilon}T, \omega \rangle = \langle T(\chi - e^{-\log \varepsilon}r^*\chi), I_m(\omega) \rangle + \langle T(1 - \chi), \omega \rangle$$

Then we immediately find:

$$\langle T, \omega \rangle - \langle R_{\varepsilon}T, \omega \rangle = \langle T\chi, P_m(\omega) \rangle + \langle T e^{-\log \varepsilon}r^*\chi, I_m(\omega) \rangle$$

now notice that

$$\langle T e^{-\log \varepsilon}r^*\chi, I_m(\omega) \rangle = \langle e^{\log \varepsilon}r^*T\chi, e^{\log \varepsilon}r^*I_m(\omega) \rangle = \langle T\chi, (I_m(\omega))_{\varepsilon} \rangle$$

where

$$| \langle T\chi, (I_m(\omega))_{\varepsilon} \rangle | \leq \varepsilon^{s+m+1} \to 0$$

thus

$$A_T(\varphi) = \langle T\chi, P_m(\omega) \rangle$$

where $\omega = P_m(\omega) + I_m(\omega)$ and the final result follows from the definition of the notion of moment of the distribution $T\chi$.  \hspace{1cm} ■
The dependance of $R$ in the choice of $\chi, \rho$.

We would also like to describe the dependance of the operator $R$ in the choice of $\chi, \rho$ in terms of the ambiguity. As usual, the result will be expressed in terms of local counterterms.

Changing $\chi$. Let $\chi_1, \chi_2$ be two functions such that $\chi_i = 1, i = 1, 2$ on a neighborhood of $I$. Let $R_\varepsilon^i, i = 1, 2$ the corresponding regularization operators on $E_{\varepsilon k} (M \setminus I)$. If $-(m + 1) < s + d - k$ then the corresponding regularization operator for each $\chi_i, i = (1, 2)$ is given by the formula

$$\langle R_\varepsilon^i T, \omega \rangle = \langle T \left( \chi_i e^{-\varepsilon \log \rho} \chi_i \right), I_m (\omega) \rangle + \langle T (1 - \chi_i), \omega \rangle$$  \hfill (7.12)

**Theorem 7.3.2** Let $T \in E_{\varepsilon k} (M \setminus I)$. If $s + d - k > 0$ then $\langle R_\varepsilon^i T, \omega \rangle = \langle T (1 - e^{-\varepsilon \log \rho} \chi_i), \omega \rangle$ and does not depend on $\chi$. If $-(m + 1) < s + d - k$ then

$$\langle (R_\varepsilon^1 - R_\varepsilon^2) T, \omega \rangle = \langle T (\chi_2 - \chi_1), P_m (\omega) \rangle$$  \hfill (7.13)

**Proof** — By definition, we have:

$$\langle R_\varepsilon T, \omega \rangle = \langle T (\chi_i - \chi_{i-1}), I_m (\omega) \rangle + \langle T (1 - \chi_i), \omega \rangle$$

The only thing we have to do is to compute the difference, then notice the trick

$$\langle T (1 - \chi_1), \omega \rangle = \langle T (1 - \chi_2), \omega \rangle + \langle T (\chi_2 - \chi_1), \omega \rangle$$

$$= \langle T (1 - \chi_2), \omega \rangle + \langle T (\chi_2 - \chi_1), P_m (\omega) \rangle + \langle T (\chi_2 - \chi_1), I_m (\omega) \rangle$$

thus

$$\langle T (1 - \chi_1), \omega \rangle + \langle T (\chi_1 - \chi_{1e-1}), I_m (\omega) \rangle$$

$$= \langle T (1 - \chi_2), \omega \rangle + \langle T (\chi_2 - \chi_1), P_m (\omega) \rangle + \langle T (\chi_2 - \chi_1), I_m (\omega) \rangle + \langle T (\chi_1 - \chi_{1e-1}), I_m (\omega) \rangle$$

$$= \langle T (1 - \chi_2), \omega \rangle + \langle T (\chi_2 - \chi_1), P_m (\omega) \rangle + \langle T (\chi_2 - \chi_{1e-1}), I_m (\omega) \rangle$$

then computing the difference

$$\langle (R_\varepsilon^1 - R_\varepsilon^2) T, \omega \rangle$$

$$= \langle T (1 - \chi_2), \omega \rangle + \langle T (\chi_2 - \chi_1), P_m (\omega) \rangle$$

$$+ \langle T (\chi_2 - \chi_{1e-1}), I_m (\omega) \rangle - \langle T (\chi_2 - \chi_{2e-1}), I_m (\omega) \rangle - \langle T (1 - \chi_2), \omega \rangle$$

$$= \langle T (\chi_2 - \chi_1), P_m (\omega) \rangle + \langle T (\chi_2 - \chi_{1e-1}), I_m (\omega) \rangle$$

As in the proof of theorem (7.3.1), we can take the limit $\varepsilon \to 0$ and we find that the term $\langle T (\chi_2 - \chi_1)_{\varepsilon-1}, I_m (\omega) \rangle$ will vanish when $\varepsilon \to 0$.  \hfill ■
Changing $\rho$. Let $\rho_1, \rho_2$ be two generalized Euler vector fields and $\chi$ which is compatible (in the sense of chapter 1) with $\rho_1, \rho_2$. Let $\omega = P_i + I_i, i = 1, 2$ where $P_i = P_m(\omega)$ for the Euler vector field $\rho_i$, the associated Taylor expansions and $\langle R^s T, \omega \rangle = \langle T (\chi - e^{-\log \varepsilon \rho_1 \chi}), I_1 \rangle + \langle T (1 - \chi), \omega \rangle$ the associated regularizations.

**Theorem 7.3.3** Let $T \in E_{sk}(M \setminus I)$. If $-(m + 1) < s + d - k$, then for any Euler vector field $\rho$ such that $\chi$ is compatible with $\rho$

$$\langle (R^1 - R^2) T, \omega \rangle = \lim_{\varepsilon \to 0} \langle T (\chi - \chi_{\varepsilon - 1}), P_2 - P_1 \rangle$$

(7.14)

Notice that in the statement of this theorem the vector field $\rho$ is chosen independently of $\rho_1, \rho_2$.

**Proof** — Before we prove our claim, we would like to give some important remarks. First, no matter what Euler vector field $\rho_i$ we choose, the Taylor remainder $I_m(\omega)$ always vanishes at order $m$ on the submanifold $I$. So the renormalization of Meyer does not care what Euler vector field is used to define it. If we denote by $P_1(\omega), P_2(\omega)$ (resp $I_1(\omega), I_2(\omega)$) their respective Taylor polynomials (resp Taylor remainder), then $P_1(\omega) - P_2(\omega) = I_2(\omega) - I_1(\omega)$ depends only on some finite jet of $\omega, \rho_1, \rho_2$ and in general **not a polynomial in arbitrary local charts**. With these remarks in mind, it is not surprising that we can scale the function $\chi$ by a third Euler vector field $\rho$ and still have

$$\forall i, \lim_{\varepsilon \to 0} \langle T(\chi - e^{-\log \varepsilon \rho_i \chi}), I_m(\omega) \rangle = \lim_{\varepsilon \to 0} \langle T(\chi - e^{-\log \varepsilon \rho_1 \chi}), I_m(\omega) \rangle$$

We compute $(R^1 - R^2) T$ for a fixed cut-off function $\chi$ then

$$\langle (R^1 - R^2) T, \omega \rangle = \lim_{\varepsilon \to 0} \langle T(\chi - \chi_{\varepsilon - 1}), I_1 - I_2 \rangle$$

Then use the trick, $\omega - \omega = (P_1 + I_1) - (P_2 + I_2) \implies I_1 - I_2 = P_2 - P_1$,

finally we find

$$\langle (R^1 - R^2) T, \omega \rangle = \lim_{\varepsilon \to 0} \langle T(\chi - \chi_{\varepsilon - 1}), P_2 - P_1 \rangle$$

and $P_2 - P_1$ vanish at order $m$ on the submanifold $I$.

\[
\begin{align*}
\end{align*}
\]

7.3.2 The geometric residues.

The residues and the coboundary $\partial$ of currents.

We must be able to describe the ambiguities of the restriction-extension operation on closed currents $T \in H_*(D'_s(M \setminus I), d)$ defined on $M \setminus I$ and on exact currents $dT \in B_*(D'_s(M \setminus I), d)$ defined on $M \setminus I$. We ask to
ourselves how does the extension operation behaves on closed currents? Is the extension still closed? The next notion we will define answers this question, following [30] and Eells–Allendoerfer [19], $\text{Res}[T]$ is defined as the solution of the chain homotopy equation

$$\partial RT - R \partial T = \text{Res}[T]$$  \hspace{1cm} (7.15)$$


**Example 7.3.2** Let $H$ be the Heaviside function on $\mathbb{R}$. $H$ is a smooth closed 0-form on $\mathbb{R} \setminus \{0\}$. The local integrability around 0 guarantees it extends in a unique way as a current denoted $RT \in D'_1(\mathbb{R})$. By integration by parts and by the fact that $\partial T|_{\mathbb{R} \setminus \{0\}} = 0$ since $T$ is closed, it is immediate that

$$\partial RT - R \partial T \underbrace{=}_{=0} = \partial RT = \delta_0(x)dx$$

So the current $\delta_0(x)dx \in D'_0(\mathbb{R})$ is the residue of the Heaviside function $H$ which is closed on $\mathbb{R} \setminus \{0\}$.

In the Heaviside case, the residue measures the jump at 0. Let $E_{sk}(M \setminus I)$ be the space of $k$-currents in $D'_k(M \setminus I)$ which are weakly homogeneous of degree $s$.

**Theorem 7.3.4** Let $T \in E_{sk}(M \setminus I)$, if $s + d - k > 0$ then $\text{Res}[T]$ is a current supported on $I$ given by the formula

$$\forall \omega \in D^k(M), \text{Res}[T](\omega) = -\lim_{\varepsilon \to 0} \langle d\chi, T \varepsilon \wedge \omega \varepsilon \rangle$$ \hspace{1cm} (7.16)$$

**Proof** — The existence of $\text{Res}$ is immediate since we are in the convergent case and there are no counterterms to subtract. We write the definition of residues

$$\langle d(RT) - R(dT), \omega \rangle = \lim_{\varepsilon \to 0} \langle d((1 - \chi_{\varepsilon^{-1}})T) - (1 - \chi_{\varepsilon^{-1}})(dT), \omega \rangle$$

$$= -\lim_{\varepsilon \to 0} \langle d\chi_{\varepsilon^{-1}}, T \wedge \omega \rangle = -\lim_{\varepsilon \to 0} \langle d\chi, T \varepsilon \wedge \omega \varepsilon \rangle.$$  

The locality of $\text{Res}$ is simple to establish, since if we assume we work in local coordinates $(x, h)$ and $\text{supp} \ d\chi \subset \{a \leq h \leq b\}$, then $\langle d\chi, T \varepsilon \wedge \omega \varepsilon \rangle$ depends only on finite jets of $\omega$ on $\{\varepsilon a \leq h \leq \varepsilon b\}$. 

The previous theorem applies to the Heaviside case, however in the case of renormalization theory our residues must generalize the “classical” notion of residue to take into account more singular distributions (see [30] p369, 371).
Theorem 7.3.5 Let \( T \in E_{sk}(M \setminus I) \), if \(-m-1 < s + d - k \leq -m\) then Res is a current supported on \( I \) given by the formula

\[
\forall \omega \in D^k(M), \text{Res}[T](\omega) = - \langle T, d\chi \wedge P_m(\omega) \rangle \quad (7.17)
\]

Proof — Let \( T \) be a current in \( D'_k \) and \( \omega \in D^{k-1}(M) \) a \( k-1 \) test form. We want to compute the difference \( \langle \partial (R_{\varepsilon}T), \omega \rangle - \langle (R_{\varepsilon}\partial T), \omega \rangle \). By duality, we will think of the operator \( R_{\varepsilon} \) as acting on the test form \( \omega \) as

\[
R_{\varepsilon}\omega = (1 - \chi)\omega + \left( \chi - e^{-\log \varepsilon \rho_{\chi}} \right) \frac{1}{m!} \int_{\varepsilon}^1 dt (1-t)^m \left( \frac{d}{dt} \right)^{m+1} \left( e^{\log t \rho_{\chi}} \omega \right)
\]

Thus we find by definition of the coboundary of a current ([55], [27])

\[
\langle \partial (R_{\varepsilon}T), \omega \rangle - \langle (R_{\varepsilon}\partial T), \omega \rangle = (-1)^{\deg(T)} \left( \langle T, R_{\varepsilon}d\omega \rangle - \langle T, d(R_{\varepsilon}\omega) \rangle \right)
\]

First write the duality coupling in simple form:

\[
\langle T, R_{\varepsilon}d\omega \rangle = \langle T, (1 - \chi)d\omega \rangle + \left( T \chi - e^{-\log \varepsilon \rho_{\chi}} \right) dI_m(\omega)
\]

\[
= \langle T, (1 - \chi)d\omega \rangle + \left( T \chi - e^{-\log \varepsilon \rho_{\chi}} \right) dI_m(\omega)
\]

since \( \frac{1}{m!} \int_{\varepsilon}^1 dt (1-t)^m \left( \frac{d}{dt} \right)^{m+1} \left( e^{\log t \rho_{\chi}} \omega \right) = d \frac{1}{m!} \int_{\varepsilon}^1 dt (1-t)^m \left( \frac{d}{dt} \right)^{m+1} \left( e^{\log t \rho_{\chi}} \omega \right) \) because \( d \) commutes with the pull-back operator \( e^{\log t \rho_{\chi}} \).

\[
\langle T, R_{\varepsilon}d\omega \rangle = \langle T, (1 - \chi)d\omega \rangle + \left( T \chi - e^{-\log \varepsilon \rho_{\chi}} \right) dI_m(\omega)
\]

where \( I_m(\omega) = \frac{1}{m!} \int_{\varepsilon}^1 dt (1-t)^m \left( \frac{d}{dt} \right)^{m+1} \left( e^{\log t \rho_{\chi}} \omega \right) \). Notice the important fact that if we view \( I_m(\omega) \) and \( P \) as operators of projection, then they commute with \( d \). On the other hand:

\[
\langle T, d(R_{\varepsilon}\omega) \rangle = \langle T, d \left( \left( \chi - e^{-\log \varepsilon \rho_{\chi}} \right) I_m(\omega) \right) \rangle + \langle T, d ((1 - \chi) \omega) \rangle
\]

\[
= \langle T, d \left( \left( \chi - e^{-\log \varepsilon \rho_{\chi}} \right) I_m(\omega) \right) \rangle + \langle T, d ((1 - \chi) \omega) \rangle
\]

\[
= \langle T, (1 - \chi) d\omega \rangle - \langle T, (d\chi) \wedge \omega \rangle + \langle T, (d\chi) \wedge I_m(\omega) \rangle
\]

\[
+ \langle T, (d\chi)_{s-1} \wedge I_m(\omega) \rangle + \langle T, (d\chi)_{s-1} \wedge I_m(\omega) \rangle
\]

\[
= \langle T, (1 - \chi) d\omega \rangle + \left( T \chi - e^{-\log \varepsilon \rho_{\chi}} \right) dI_m(\omega)
\]

\[
+ \langle T, (d\chi) \wedge P_m(\omega) \rangle + \langle T, (d\chi)_{s-1} \wedge I_m(\omega) \rangle
\]

where \( \omega = P_m(\omega) + I_m(\omega) \) by the Taylor formula. Then we immediately find:

\[
\langle T, R_{\varepsilon}d\omega \rangle - \langle T, d(R_{\varepsilon}\omega) \rangle = - \langle T, (d\chi) \wedge P_m(\omega) \rangle - \langle T, (d\chi)_{s-1} \wedge I_m(\omega) \rangle
\]
Now notice that
\[ \langle T, (d\chi)_{\varepsilon}^{-1} \wedge I_m(\omega) \rangle = \langle T, e^{-\log \varepsilon \rho_{\ast}} d\chi \wedge I_m(\omega) \rangle = \langle e^{\log \varepsilon \rho_{\ast}} T, (d\chi) \wedge e^{\log \varepsilon \rho_{\ast}} I_m(\omega) \rangle \]
where
\[ |\langle T_{\varepsilon}, d\chi \wedge (I_m(\omega))_{\varepsilon} \rangle| \leq \varepsilon^{s+m+1} \to 0 \]
because
\[ -m - 1 < s \leq m \]
thus
\[ \lim_{\varepsilon \to 0} \langle T, R_{\varepsilon} d\omega \rangle - \langle T, d (R_{\varepsilon} \omega) \rangle = \langle \partial \circ RT - R \circ \partial T, \omega \rangle = -\langle T, (d\chi) \wedge P_m(\omega) \rangle \]
Finally, we find
\[ \text{Res}[T] = (-1)^{\deg + 1} \langle T, d\chi \wedge P_m(\omega) \rangle \]
where \( \omega = P_m(\omega) + I_m(\omega) \).

We give the most fundamental example illustrative of our approach

**Example 7.3.3** We set \( T = \frac{1}{|x|} \) and we will show how to compute the residue for this simple example. \( RT \) is defined by the formula
\[ \langle RT, \phi dx \rangle = \int_{-\infty}^{\infty} \frac{1}{|x|} \chi(x)(\varphi(x) - \varphi(0)) dx + \int_{-\infty}^{\infty} \frac{1}{|x|}(1 - \chi(x)) \varphi(x) dx. \]
The residue is given by the simple formula
\[ \text{Res}[\frac{1}{|x|}] = - \left( \int_{-\infty}^{\infty} \frac{1}{|x|} \chi'(x) dx \right) \delta_0. \]

For \( T \) a closed current in \( D'_s(M \setminus I) \cap E_{s,k}(M \setminus I) \), we associated a current \( \text{Res}[T] \in D'_s(M) \) supported on \( I \). It is tempting to ask ourselves the question, if \( T \) is closed, what can be said about \( \text{Res}[T] \)?

**Proposition 7.3.1** If \( T \in H_s(E_{sk}(M \setminus I), d) \) is a cycle in the complex of currents then \( \text{Res}[T] \in B_s(D'(M)) \).

**Proof** — We first notice that if \( T \) is closed then \( dRT - R dT \) implies \( \text{Res}[T] = \text{Res}[T] \) is an exact current. 

Can we relate \( \text{Res}[T] \in D'_s(M) \) with a current in \( D'_s(I) \) in the spirit of the representation theorem (7.2.1). The naive idea would be to try to “restrict” \( \text{Res}[T] \) to the submanifold \( I \), but this does not make sense. We explain our idea with the simplest example
CHAPTER 7. ANOMALIES AND RESIDUES.

Example 7.3.4 Let $\delta(h)d^dh$ be the current supported by the point 0. In this case, $I = \{0\} \subset \mathbb{R}^d$. Then the corresponding current of $D'(I)$ is just the function 1, and it can be recovered by integrating over the “fiber” $\mathbb{R}^d$, $1 = \int_h \delta d^dh$.

Let $N(I \subset M)$ be the normal bundle of $I$ in $M$. We can identify the closed smooth forms $H^\ast(V, d)$ which are supported in some neighborhood $V$ of $I$ in $M$, where $V$ is homotopy retract to $I$, with the cohomology $H^\ast_v(N(I \subset M), d)$ of smooth forms which have compact vertical support (see Bott-Tu for more on these forms). The proof is a straightforward application of the tubular neighborhood theorem and the fact that the diffeomorphism of tubular neighborhood induces an isomorphism in cohomology.

Theorem 7.3.6 If $T \in H^\ast(E_{\ast sk}(M \setminus I), d)$, then

$$
\pi_\ast(Res[T] \wedge H^\ast_v(N(I \subset M), d)) \subset H^\ast(D'(I), d)
$$

Proof — The previous proposition gave us the exactness of $Res[T]$. Thus by pull back on the normal bundle, $Res[T]$ is exact and supported on the zero section of the normal bundle, and $Res[T] \wedge H^\ast_v(N(I \subset M)$ is a cycle. Then we pushforward $Res[T] \wedge H^\ast_v(N(I \subset M)$ along the fibers of $\pi : N(I \subset M) \to I$. Then we recall pushforward $\pi_\ast$ commutes with the boundary operator $d$, $d\pi_\ast = \pi_\ast d$, which immediately yields the result.

This means the residue map induces a map on the level of cohomology.

The residues and symmetries.

The previous theorem gave us a formula which measured the noncommutativity of the operator $R$ with the coboundary operator $\partial$. Now we study the loss of commutativity of $R$ with the operator of Lie derivation $L_X$ for any vector field $X$ such that $[X, \rho] = 0$ and $X$ is tangent to $I$ in the sense of Hormander (definition of Hormander volume 3 lemma 18.2.5) see the next section. We first notice that the vector space $g$ of all vector fields which commute with $\rho$ forms an infinite dimensional Lie algebra. However, despite the infinite dimensionality of this Lie algebra $g$, we have the following structure proposition:

Proposition 7.3.2 Let $A \subset C^\infty(M)$ be the subalgebra of the algebra of smooth functions which are killed by $\rho$. Let us fix a local chart where $I = \{h = 0\} \subset \mathbb{R}^{n+d}$ in which the Euler vector field has the form $\rho = h^i \partial_h^i$. $g$ is a finitely generated left $A$-module with generators $h^i \partial_h^i, \partial_x^i$.

All our symmetries will be Lie subalgebras of $g$. As usual, we discuss here the most fundamental example which comes from our understanding of an article of Hollands Wald.
Example 7.3.5 Let $\pi : (M, h) \mapsto I$ be a metric vector bundle of rank $d$ with metric $\gamma$ on the fibers. We construct a trivialisation of $M$ by the moving frame technique. Let $U \subset I$ be an open set. Let $(e_0, \ldots, e_n)$ be an orthonormal moving frame $(\forall x \in I, h_x(e_i, e_j) = \delta_{ij})$

$$(x, h) : \pi^{-1}(U) \to U \times \mathbb{R}^d$$

$$(p, v) \mapsto (x(p), h(p, v))$$

such that $v = \sum_1^d h^j(p, v)e_j(p)$, where $p \in U$ and $v \in \pi_p^{-1}(U)$. We use the coordinate system $(x, h)$ on $M$. All orthonormal moving frames are related by gauge transformations which are maps in $C^\infty(I, O_d(\mathbb{R}))$ where $O_d(\mathbb{R})$ is the orthogonal group of $\gamma$. The gauge group $C^\infty(I, O_d(\mathbb{R}))$ is a subgroup of the group of diffeomorphism of the total space $M$ preserving the zero section $0$ (the zero section $0$ being isomorphic to $I$). The Euler vector field $\rho$ which scales linearly in the fibers wrt the zero section $0$ is canonically given and the gauge Lie algebra consists of vector fields of the form $\sum a_{ij}(x) \left( h^i \partial_j \right)$, where $\partial_i h = \gamma^{ij} \partial_h j$ commuting with $\rho$ and vanishing at $0$.

The situation we just described in detail arises when we study the neighborhood of the thin diagonal $d_n$ of a configuration space $P^n$ where $(P, g)$ is a pseudoriemannian manifold. By the tubular neighborhood theorem, it is always possible to identify this neighborhood with a neighborhood of the zero section of the normal bundle $N(d_n \subset P^n)$. If $P$ is geodesically convex, another trick consists in using the exponential map (see Chapter 5 section 3) to identify this normal bundle with the vector bundle $T P \times P \cdots \times P T P$ which has a canonical metric $h$ of arbitrary signature, then the Gauge Lie algebra of this metric vector bundle is the adequate Lie algebra of symmetries.

Before we state and prove the Residue theorem for vector fields with symmetries, let us pick again our simplest fundamental example (which is again due to Laurent Schwartz) to illustrate the anomaly phenomenon

Example 7.3.6 The Heaviside current $T = H(x)dx$ is smooth in $\mathbb{R} \setminus \{0\}$ and satisfies the symmetry equation $L_{\partial_x} T = 0$ ie it is translation invariant outside the singularity. Again, let $R$ denote the extension operator recall the extension $RT$ is unique and again by integration by parts we obtain the residue equation

$$L_{\partial_x} RT - RL_{\partial_x} T = L_{\partial_x} RT = \delta_0 dx$$

Let $E_{sk}(M \setminus I)$ be the space of $k$-currents in $D'_{k}(M \setminus I)$ which are weakly homogeneous of degree $k$. 
CHAPTER 7. ANOMALIES AND RESIDUES.

**Theorem 7.3.7** Let \( T \in E_{sk}(M \setminus I) \), \( \forall X \in \mathfrak{g} \), we denote by \( L_X \) the operator of Lie derivation. If \( -m-1 < s + d - k \leq -m \) then we have the residue equation:

\[
[L_X RT - RL_X T](\omega) = -\langle i_X \lrcorner (T \wedge P_m(\omega)), d\chi \rangle
\]

where \( Res_X[T](\omega) = -\langle i_X \lrcorner (T \wedge P_m(\omega)), d\chi \rangle \) is local in the sense it is a current supported on \( I \).

The proof is exactly the same as in the previous theorem, just replace the boundary operator \( d \) by \( L_X \) and we obtain

\[
Res_X[T] = \langle T(L_X \chi), P_m(\omega) \rangle
\]

where \( \chi \) is a current supported on \( I \).

7.3.3 Stability of geometric residues.

Now the natural question we should ask ourselves is what are the conditions for which the Residue vanishes, is the Residue independent of \( \chi \) ? In general, we would like to know what are the stability properties of residues. In the case of symmetries, what should replace the closed or exact currents in the De Rham complex of currents ?

There is a cohomological analogue of the De Rham complex in the case of symmetries generated by infinite dimensional Lie algebras of vector fields on \( M \) denoted by \( \mathfrak{g} \). This is the theory of continuous cohomology of infinite dimensional Lie algebras developed by I M Gelfand and D Fuchs. Fortunately for us, we only need basic definitions of this theory following [23]. For any left \( \mathfrak{g} \)-module \( \mathcal{M} \), we define the complex ([23] Chapter 1, “The standard chain complex of a Lie algebra”, p137-138)

\[
C^k(\mathfrak{g}, \mathcal{M})_k = \text{Hom}\left( \bigwedge^k \mathfrak{g}, \mathcal{M} \right)
\]

with the differential \( \delta : C^1(\mathfrak{g}, \mathcal{M}) \to C^2(\mathfrak{g}, \mathcal{M}) \)

\[
\delta \Theta(X_1, X_2) = X_1 \Theta(X_2) - X_2 \Theta(X_1) - \Theta([X_1, X_2]),
\]

\( \delta \) is called the standard cochain complex of the Lie algebra \( \mathfrak{g} \) with coefficient in the module \( \mathcal{M} \). Now, the choice of topological module \( \mathcal{M} \) dictated by our problem is the space of currents \( D'(M) \) with the natural weak topology defined on it and the left action of \( \mathfrak{g} \) on \( D'(M) \) is the action by Lie derivatives. Then without surprise the formula for \( \delta \) is the classical Cartan formula in differential geometry. The Lie algebra of smooth vector fields on \( M \) has a natural \( C^\infty \) topology, this topology induces on \( \mathfrak{g} \) a \( C^\infty \) topology. Then we require our cochains \( T \in C^*(\mathfrak{g}, \mathcal{M}) = \text{Hom}(\bigwedge^*, \mathfrak{g}, \mathcal{M}) \) to depend continuously wrt to the \( C^\infty \) topology on \( \mathfrak{g} \). Let \( T \in D'(M \setminus I) \). Let \( \mathcal{M}_I \) denote the left \( \mathfrak{g} \)-module of currents supported on \( I \).
7.3. THE MEYER RENORMALIZATION, LOCAL COUNTERTERMS AND GEOMETRIC RESIDUES

**Theorem 7.3.8** If \( \exists X \in g \) such that \( L_X (T \wedge P_m(\omega)) = 0 \), then for all \([C] \in H^1 \left( (D^* (M \setminus I), d) \right)\) such that the cycles \((C, [-d\chi])\) are cohomologous, we have the identity

\[
\text{Res}_X[T](\omega) = -\langle i_X \iota (T \wedge P_m(\omega)), d\chi \rangle = \langle i_X \iota (T \wedge P_m(\omega)), [C] \rangle \quad (7.19)
\]

which means \( \text{Res} \) is a period and \( \text{Res}_X[T] \) is local in the sense it is a current supported on \( I \) and it depends only on the restriction on the submanifold \( I \) of finite jets of the vector field \( X \).

**Proof** — If \( T \) is a current in \( D'_k(M \setminus I) \) and \( \omega \in D^k(M) \) is a test \( k \)-form, then the Taylor polynomial \( P \in E^k(M) \simeq E_{n-k}(M) \) is also a smooth \( k \)-form but is no longer compactly supported. Then the exterior product \( T \wedge P \) is well defined as a current in \( D'_0(M \setminus I) \) ([55] p 341), it is thus closed for the coboundary operator acting on the space of currents because supp \( d\chi \) has no boundary in \( M \setminus I \). But from the Lie Cartan formula for currents, \( 0 = L_X (T \wedge P_m(\omega)) = (i_X d + d i_X)(T \wedge P_m(\omega)) = di_X (T \wedge P_m(\omega)) \) because \( T \wedge P \) is closed. We find that \( di_X (T \wedge P_m(\omega)) = 0 \) which means \( i_X (T \wedge P_m(\omega)) \) is a closed form and \( \text{Res} \) is a period in the sense it is the evaluation of a closed current against a smooth closed form.

To prove the locality in the vector field \( X \), we notice \( L_X \chi \) is supported in \( M \setminus I \). Since \( T \wedge P_m(\omega) \) is a distribution in \( D'_0(M \setminus I) \) we can assume it is a distribution of order \( m_i \) on each open ball \( U_i \) of a given cover \((U_i)_i\) of \( M \). Let \((\varphi_i)_i\) be a partition of unity subordinated to the cover \((U_i)_i\). Then we decompose the duality coupling:

\[
\langle T \wedge P_m(\omega), L_X \chi \rangle = \sum_i \langle T \wedge P_m(\omega), \varphi_i L_X \chi \rangle
\]

On each ball \( U_i \), the distribution \( T \wedge P_m(\omega) \) can be represented as a continuous linear form acting on the \( m_i \)-jet of \( \varphi_i L_X \chi \) (this is the structure theorem of Laurent Schwartz for distributions)

\[
\langle T \wedge P_m(\omega), L_X \chi \rangle = \sum_i \ell_i (j^{m_i}(\varphi_i L_X \chi))
\]

Then we deduce from this result that \( \text{Res}_X[T] \) depends locally on finite jets of \( X \). We can conclude by taking the limit

\[
\langle T \wedge P_m(\omega), L_X \chi \rangle = \lim_{\varepsilon \to 0} \langle T \wedge P_m(\omega), L_X \chi_{\varepsilon^{-1}} \rangle = \lim_{\varepsilon \to 0} \sum_i \ell_i (j^{m_i}(\varphi_i L_X \chi_{\varepsilon^{-1}}))
\]

which localizes the dependance on the jets of \( X \) restricted on \( I \). \( \blacksquare \)
Corollary 7.3.1 \(\text{Res}_X[T]\) does not depend on the choice of \(\chi\) and:
\[
\text{Res}_X[T](\omega) = \lim_{\varepsilon \to 0} - \langle i_X \chi(T \wedge P_m(\omega)), (d\chi)_{\varepsilon^{-1}} \rangle \quad (7.20)
\]

Proof — \(\text{Res}\) does not depend on the choice of \(\chi\) because if \(\chi_1, \chi_2\) are two smooth functions such that \(\chi_i = 1\) in a neighborhood of \(I\), then \(\chi_1 - \chi_2 = 0\) in a neighborhood of \(I\), thus \([d\chi_1] - [d\chi_2] = [d(\chi_1 - \chi_2)] = 0\).

We know that \(\text{Res}_X[T]\) is a local coboundary supported on \(I\), but we don’t know if \(\text{Res}_X[T]\) is the coboundary of a cochain supported on \(I\).

Theorem 7.3.9 If \(\forall X \in g, L_X T = 0\) then \(\Theta : X \in g \mapsto L_X RT\) is a 1-coboundary. Furthermore, \(\text{Res}_X[T]\) is the 1-coboundary of a current supported on \(I\) if and only if there exists an extension \(\overline{T}\) of \(T\) which is \(g\)-invariant.

Proof — We just follow the definitions. We view the map \(X \mapsto RT\) as an element \(C^0(g, M)\). Then \(\Theta = \delta RT\) is the coboundary of \(RT\). Let \(\mathcal{T}\) be a \(g\) invariant extension of \(T\). Then \(c = \overline{T} - RT\) is a current supported by \(I\).

\[
\forall X \in g, L_X (\overline{T} - RT) = L_X c = -L_X RT
\]
because \(L_X \mathcal{T} = 0\). But this means we were able to write \(\Theta\) as the coboundary of the cochain \(c\) supported on \(I\). Conversely, if \(\Theta\) is the coboundary of a local cochain \(c\) supported on \(I\), then setting \(\overline{T} = RT - c\) gives a \(g\)-invariant extension of \(T\).

Anomalies in QFT and relation with the work of Costello. The author wants to stress that the adequate language to speak about anomalies in QFT is to write them as cocycles for the Lie algebra \(g\) of symmetries with value in a certain module \(M\) which depends on the formalism in which we work. Usually, the Lie algebra \(g\) is infinite dimensional.

In recent works of Kevin Costello, anomalies appear under the form of a character \(\chi\) and constitute a central extension of the Lie algebra \(g\) of symmetries, this is the content of the “Noether theorem” for factorization algebras discovered by Costello Gwilliam. They also require that this cocycle be local ie the cocycle \(\chi\) is bilinear in \(g\) with value in the module \(M\) and is represented by integration against a Schwartz kernel.

\[
\chi(X_1, X_2) = \int_{M^2} \langle \chi(x_1, x_2), X_1(x_1) \otimes X_2(x_2) \rangle
\]
where \(\chi(x_1, x_2)\) is supported on the diagonal \(d_2 \subset M^2\). In our work, we exhibit a purely analytic way to produce such local cocycles as residues. The residue \(\text{Res}_X[T]\) is local in the sense it is a current supported on \(I\) and it depends only on the restriction on the submanifold \(I\) of finite jets of the vector field \(X\).
Chapter 8

The meromorphic regularization.

8.1 Introduction.

The plan of the chapter. In this part, we would like to revisit the theory of meromorphic regularization using the techniques of chapter 1. The first step is to define some adequate space of distributions on which we can apply the meromorphic regularization procedure. It was suggested to the author by L Boutet de Monvel that the adequate spaces on which it is possible to define a meromorphic regularization procedure are the spaces of distributions having asymptotic expansions with moderate growth in the transversal directions to $I$. We explain how to formalize this idea by constructing the adequate functional space.

Given the canonical Euler vector field $\rho$, we define a simple notion of constant coefficient Fuchsian differential equation and first order Fuchsian system $P$, the solutions $t$ of the constant coefficient Fuchsian systems are vectors with distributional entries. For instance a Fuchsian operator $P$ in the vector case is of the form $P = \rho - \Omega$ where $\Omega$ is a constant square matrix. These Fuchs operators are adaptation of the concept of Fuchsian systems appearing in complex analysis. Let us motivate the reason why we have to introduce asymptotic expansions in the space of distributions and the relationship with Fuchsian systems.

QFT example of $\Delta_+$ and motivations.

In curved space times, the Hadamard states $\Delta_+(x,y)$ viewed as a two point distribution in $D'(M^2)$ is not an exact solution of any constant coefficient Fuchsian equation that would come to our mind. Actually, we would like to study $\Delta_+$ and its powers $\Delta_+^k$.

For the Euler vector field $\rho = \frac{1}{2}\nabla_x \Gamma$ we have the following asymptotic
expansion of $\Delta_+$:

$$\Delta_+ = \sum_{n=0}^{\infty} U_n \Gamma^{-1} + V_n \log \Gamma + W_n$$  \hspace{1cm} (8.1)

where $U_i, V_i, W_i$ are homogeneous of degree $n$ wrt $\rho$. We have the equation

$$(\rho - 2)(\rho - 1)\rho^2 \Delta_+ \in E_0$$  \hspace{1cm} (8.2)

Proof —

$$(\rho - 2)(\rho - 1)\rho \left( \sum_{n=0}^{\infty} U_n \Gamma^{-1} + V_n \log \Gamma + W_n \right)$$

use the identity

$$\rho^2 (\rho - 1) (\rho - 2) \left( \sum_{n=0}^{\infty} U_n \Gamma^{-1} \right) = \rho^2 (\rho - 1) (\rho - 2) \left( \sum_{n=1}^{\infty} U_n \Gamma^{-1} \right)$$

notice the shift of indices and also

$$(\rho - 2)(\rho - 1)\rho^2 \sum_{n=0}^{\infty} V_n \log \Gamma = (\rho - 2)(\rho - 1)\rho^2 V_0 + (\rho - 2)(\rho - 1)\rho^2 \sum_{n=1}^{\infty} V_n \log \Gamma$$

$$= (\rho - 2)(\rho - 1)\rho^2 \sum_{n=1}^{\infty} V_n \log \Gamma \in E_0$$

because since the sum starts at $n = 1$ the vanishing of $\sum_{n=1}^{\infty} V_n$ kills the singularity of $\log \Gamma$. All our computations are entirely justified by the machinery developed in Chapter 5.

The conclusion we must draw from this typical Quantum Field theoretic example is that it is not possible to find constant coefficients Fuchsian operators that would kill exactly the Feynman amplitudes. However, we can kill them with constant coefficients Fuchsian operators modulo an error term which lives in nicer space and go on successively. We give a fairly general definition of a space $F_{\Omega}$ of Fuchsian symbols which consists of vector elements $t$ which admits asymptotic expansions of the form

$$t = \sum_{k=0}^{\infty} t_k$$  \hspace{1cm} (8.3)

$$\exists s \in \mathbb{R}, \forall N, t - \sum_{k=0}^{N} t_k \in E_{s+N}$$  \hspace{1cm} (8.4)

where we used in an essential way the property that the scale spaces $E_s$ are filtered. Intuitively, we would say that these are spaces of distributions which are killed by constant coefficients Fuchsian operators modulo an error term which can be made “arbitrarily nice”, the price to pay for a nice error term is that we must use constant coefficients Fuchsian operators of very high order.
8.1. INTRODUCTION.

The meromorphic regularization and the Mellin transform. We modify the extension formula of Hormander \( \int_0^1 d\lambda \lambda^{-1} t \psi_{\lambda^{-1}} + (1 - \chi) t \) and define a regularization of the extension \( t^\mu = \int_0^1 d\lambda \lambda^{-1} t \psi_{\lambda^{-1}} \) depending on a parameter \( \mu \). We relate the new regularization formula to the Mellin transform. The idea actually goes back to Gelfand who considered Mellin transform of functions averaged on hypersurfaces (see [36] (4.5) Chapter 3 p326 and [3] (7.2.1) p218). When \( t \in E_s \), we prove both extendibility and holomorphicity in the relevant parameter \( \mu \) for \( \Re(\mu) \) large enough, this is intuitively true since when \( \Re(\mu) \) is large enough the integral \( \int_0^1 d\lambda \lambda^{-1} t \psi_{\lambda^{-1}} \) has better chances to converge. We also prove a removable singularity theorem for the extension. Moreover, we can already prove that if there is any meromorphic extension \( \mu \mapsto t^\mu \), then the poles must be local counterterms.

Now if we know that \( t \in F_\Omega \) which is a much stronger assumption than \( t \in E_s \), we then establish a beautiful identity satisfied by the regularized extension

\[
\forall N, \langle T^\mu, \varphi \rangle = \sum_{j \leq N} (\mu + j + \Omega)^{-1} \langle (T \varphi)_j, \psi \rangle + \langle I_N^\mu(T \varphi), \psi \rangle \quad (8.5)
\]

where \( I_N(T \varphi) \) is the remainder of the expansion \( (T \varphi)_s = \sum_{j \leq N} s^{j+\Omega_0} (T \wedge \omega)_j + I_N(T \varphi)_s \), and we prove the regularization \( \mu \mapsto t^\mu \) can be extended meromorphically in \( \mu \) with poles located at the arithmetic progressions eigenvalues of \( \Omega \). We write explicit formulas for the poles of \( t^\mu \). To go back to the interesting case, we have to consider the meromorphic extension when \( \mu = 0 \). However, if \( \mu = 0 \) is a pole of \( t^\mu \), then we must remove the poles which is harmless since these are local counterterms they are only supported on \( I \).

The construction of the residue by three point of views. The poles which appeared in the process of meromorphic regularization will be related to the residues of Chapter 6. In general, we propose three different point of views on the theory of residues, the current theoretic point of view of [55] and [30], a more geometric point of view due to Leray and finally a more complex analytic point of view a la Gelfand–Shilov [36] as certain poles appearing in the meromorphic regularization.

Relationship to other works. In this Chapter, we give general definitions of Fuchsian symbols which are more adapted to QFT in curved space times as we illustrated in our example. To our knowledge, these definitions were first given by Kashiwara Kawai [46]. They also appear in the work of Richard Melrose as asymptotic expansions of functions along boundaries and
we were quite inspired by his definition \( ? \). We undertake the task of meromorphic regularizing Fuchsian symbols which are asymptotic expansions of a more general nature than associate homogeneous distributions.

### 8.2 Fuchsian symbols.

In QFT, scalings of distributions is not homogeneous, there are log terms. Distributions encountered in QFT are not solutions of equations of the form \((\rho - d)t = 0\) but they are solutions of equations of the form \((\rho - d)^nt = 0\).

We work in flat space \( \mathbb{R}^{n+d} \) with coordinates \((x, h) \in \mathbb{R}^n \times \mathbb{R}^d \) and where \( I = \{ h = 0 \} \). The scaling is defined by the Euler vector field \( \rho = h^j \partial_{h^j} \).

#### 8.2.1 Constant coefficients Fuchsian operators.

Given the canonical Euler vector field \( \rho \), we then give a simple definition of a constant coefficient Fuchsian differential operator of order \( n \):

**Definition 8.2.1** A constant coefficient Fuchsian operator of degree \( n \) is an operator of the form \( b(\rho) \) where \( b \in \mathbb{C}[X] \) is a polynomial of degree \( n \).

**Example 8.2.1** We work in the one variable case where \( \rho = h \frac{dh}{dh} \). \( h^d \) is solution of the equation \((\rho - d)h^d = 0\), hence \( b = (X - d) \). \( \log h \) is solution of the equation \( \rho^2 \log h = 0 \) hence \( b = X^2 \). \( h^d \log h \) is solution of the equation \((\rho - d)^2h^d \log h = \).

A first order constant coefficient Fuchsian operator of rank \( n \):

**Definition 8.2.2** A first order Fuchsian system of rank \( n \) is a differential operator of the form \( P = \rho - \Omega \) where \( \Omega = (\omega_{ij})_{1 \leq i,j \leq n} \in M_n(\mathbb{C}) \) is a constant \( n \times n \) matrix.

**Example 8.2.2** The column \( \begin{pmatrix} \log h \\ 1 \end{pmatrix} \) is solution of the system

\[
\rho \begin{pmatrix} \log h \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \log h \\ 1 \end{pmatrix}
\]

Let \( U \) be an arbitrary open domain which is \( \rho \)-convex. For \( b \) a \( n \)-th order operator (resp \( P = \rho - \Omega \) a system), we give a fairly general definition of some new subspaces \( F_b(U) \) (resp \( F_{Pb}(U) \)) which are associated to the differential operators \( b \) (resp \( P \)) and which are different from the space \( E_{\rho}(U) \) defined by Yves Meyer. However their definition uses the spaces \( E_s(U) \) defined by Meyer. We call \( F_b(U) \) the space of Fuchsian symbols associated to \( b \) a Fuchsian operator:
8.2. FUCHSIAN SYMBOLS.

Definition 8.2.3 Let $b$ be a constant coefficients Fuchsian differential operator $P = b$ of order $n$. Then the space $F_b(U)$ of Fuchsian symbols is defined as follows. $t \in F_b(U)$ if there exists a sequence $(t_k)_k$ of distributions such that in a certain neighborhood $V$ of $I \cap U$

$$\forall N, t = \sum_{k=0}^{N} t_k + R_N$$  \hspace{1cm} (8.6)

$$\forall k, b(\rho - k) t_k|_V = 0$$  \hspace{1cm} (8.7)

where $\forall N, R_N \in E_{s+N+1}(U), s = \inf \text{Spec}(b)$.

Example 8.2.3 Let us consider the series $\sum_{k=0}^{\infty} a_k h^{d+k}$, then each term $a_k h^{d+k}$ is killed by the operator $(\rho - d - k)$.

Definition 8.2.4 Let $\Omega = (\omega_{ij})_{1 \leq i,j \leq n} \in M_n(\mathbb{C})$ be a $n \times n$ matrix. $F_{\Omega}(U)$ is the space of vector valued distribution $t = (t_i)_{1 \leq i \leq n}$ such that for the linear Fuchsian operator $P = \rho - \Omega$ of first order and rank $n$, there exists a sequence $(t_k)_k$ of distributions such that in a certain neighborhood $V$ of $I \cap U$

$$\forall N, t = \sum_{k=0}^{N} t_k + R_N$$  \hspace{1cm} (8.8)

$$\forall k, (\rho - (\Omega + k)) t_k|_V = 0$$  \hspace{1cm} (8.9)

where $\forall N, R_N \in E_{s+N+1}(U), s = \inf \text{Spec}(\Omega)$.

Some remarks on scalings. Assume $t \in F_\Omega$. Notice that for all test functions $\varphi$, the function $\lambda \mapsto \lambda^{-\Omega} \langle t_\lambda, \varphi \rangle$ is smooth in $(0,1]$ since $\langle t_\lambda, \varphi \rangle = \langle t, \varphi_{\lambda^{-1}} \rangle$ and has a **unique asymptotic expansion** at $\lambda = 0$,

$$\lambda^{-\Omega} \langle t_\lambda, \varphi \rangle \sim \sum_{k=0}^{\infty} \lambda^k \langle t_k, \varphi \rangle.$$

But this does not mean that $\lambda \mapsto \lambda^{-\Omega} \langle t_\lambda, \varphi \rangle$ is smooth at $\lambda = 0$!

**Lemma 8.2.1** Let $\lambda \mapsto f(\lambda)$ be a function which is smooth on $(0,1]$ and which has an asymptotic expansion at $\lambda = 0$. Then if $\forall n$, $f^{(n)}$ has asymptotic expansion at $0$ which is obtained by formally differentiating $n$ times the expansion of $f$ then $f$ extends smoothly at $\lambda = 0$.

The proof can be found in [28] lemme 1 p120.

**Example 8.2.4** The function $f(\lambda) = e^{\frac{1}{\lambda^2}} \sin(e^{\frac{1}{\lambda^2}})$ has asymptotic expansion $e^{\frac{1}{\lambda^2}} \sin(e^{\frac{1}{\lambda^2}}) \sim 0$ and is smooth in $(0,1]$, however it is not smooth in $[0,1]$ since the first derivative of this function does not converge to zero when $\lambda \to 0$. 
We want to remind the reader there is a classical technique to go from Fuchsian differential operators of order \(n\) to 1st order Fuchsian systems of rank \(n\), this is called the companion system (see [35] 19B p332, 19E p342 for this classical construction).

**Asymptotic expansions.** We explain the connection with asymptotic expansions of distributions.

**Definition 8.2.5** \(t\) admits an asymptotic expansion if \(t \in E_s(U)\) and there exists a sequence of real numbers \((s_i)_i \in C^\infty(I)^\mathbb{N}\) which is ordered as follows \(s \leq s_0 < s_1 < s_2 < \ldots\), such that

\[
\exists (t_i)_i, t_i \in E_{s_i}(U) \tag{8.10}
\]

\[
\forall N, \left(t - \sum_{i=1}^{N} t_i\right) \in E_{s_{N+1}}(U) \tag{8.11}
\]

In concrete applications, the family \(s_i\) is always a sequence of real numbers, this family is always a finite union of arithmetic progressions:

\[
\{s_i | i \in \mathbb{N}\} = \bigcup_{i \leq k} (d_i + \mathbb{N})
\]

and the multiplicities \(m_i\) are constant for all elements in a given arithmetic progression. So we see that our space of Fuchsian symbols is just a subspace of the space of distributions having asymptotic expansions. However, these spaces are less general than the spaces \(E_s\) defined by Yves Meyer as we shall illustrate in this example

**Example 8.2.5** \(\sin\left(\frac{1}{x}\right)\) is weakly homogeneous of degree 0 on \(\mathbb{R}\), thus it lives in \(E_0(\mathbb{R})\). However, it admits no asymptotic expansion!

We want to insist on the fact that our spaces \(F_\Omega\) are defined in the smooth category and does not require any analyticity hypothesis.

**8.2.2 Fuchsian symbols currents.**

\(F_\Omega(U)\) is the space of vector valued currents \(T\) such that for the linear Fuchsian operator \(P = \rho - \Omega\) of first order and rank \(n\), there exists a sequence \((T_k)_k\) of distributions such that in a certain neighborhood \(V\) of \(I \cap U\)

\[
\forall N, T = \sum_{k=0}^{N} T_k + R_N \tag{8.12}
\]

\[
\forall k, (\rho - (\Omega + k)) T_k = 0 \tag{8.13}
\]
8.2. FUCHSIAN SYMBOLS.

where \( \forall N, R_N \in E_{s+N+1}(U) \), \( s = \inf \text{Spec}(\Omega) \). Then we recall we are able to decompose test forms \( \omega \) as a sum

\[
\omega = \sum_{n=0}^{m} \omega_n + I_m(\omega)
\]

where the \( \omega_n \) are homogeneous of degree \( n \).

Notice that for any compactly supported test form \( \omega \), the exterior product \( T \wedge \omega \) is a Fuchsian symbol and \( T_k \wedge \omega_n \) satisfies the following exact equation:

\[
\rho(T_k\omega_n) = (n + k + \Omega) T_k\omega_n.
\] (8.14)

On the relationship with the old notion of Fuchsian differential equations. The theory of Fuchsian differential equation has an old story and goes back to great names such as Poincaré, Riemann and Fuchs. More recently, there was a resurgence of activities around these equations with famous works in analysis by Malgrange, Kashiwara, Leray, Pham. Some very nice surveys and textbooks now exist on the subjects, and our work is particularly inspired by ([47],[76],[3],[35],[73]) which are our favorite books on the topic. Distributions solution to Fuchsian differential operators have several names. They were called associate homogeneous distributions by [36].

These distributions are also called “hyperfunctions of the Nilsson Class” by Pham [47], for instance a similar proof of Proposition (3.2) p18 in [66] can be found in [47] p153, 154.

8.2.3 The projection theorem.

We will always write asymptotic expansions as \( t = \sum_{k=0}^{\infty} t_k \) in the sense that

\[
\exists s, \forall N, t - \sum_{0}^{N} t_k \in E_{s+N}
\]

and \( \forall k, (\rho - (\Omega + k)) t_k = 0 \). We prove a lemma which allows to reconstruct the sequence \((t_k)_k\) for each element \( t \in F_{1\Omega} \). The sequence \( t_k \) should be thought of as the Taylor coefficients of \( t \).

Lemma 8.2.2 Let \( t \in F_{1\Omega} \). Then there exists a sequence of projectors \((H_k)_k\), such that \( t = \sum_{k=0}^{\infty} H_k t \).

Proof — We first explain in detail how to construct \( H_0 \) and recover \( t_0 \) from the data of \( t \). The idea is that if \( t \in F_{1\Omega} \), \( t \) has the expansion \( t = t_0 + R_1 \) where the remainder \( R_1 \) is ”nicer” then \( \lambda^{-\Omega} t_{\lambda} = t_0 + \lambda^{-\Omega}(R_1)_{\lambda} \) where \( R_1 \in \ldots \)
Then for $P = \rho - \Omega$, we have

$$
\lambda \frac{d}{d\lambda} \lambda^{-\Omega} t_\lambda = -\Omega \lambda^{-\Omega} t_\lambda + \lambda^{-\Omega} \rho t_\lambda = \lambda^{-\Omega} (\rho - \Omega) t_\lambda
$$

then for $P = \rho - \Omega$

$$
\lambda \frac{d}{d\lambda} h_\lambda = \lambda^{-\Omega} P t_\lambda
$$

(8.15)

We notice that we have the string of identities

$$(Pt)_\lambda = (\rho t)_\lambda - \Omega t_\lambda = S_{\lambda}^{-1} \rho t_\lambda - \Omega t_\lambda = (\rho - \Omega) t_\lambda = P t_\lambda
$$

(8.16)

Notice that for all $\tau > 0$:

$$
\tau^{-\Omega} t_\tau = \tau^{-\Omega} t_\tau - 1^{-\Omega} t_1 + 1^{-\Omega} t_1 = \int_1^\tau \frac{d}{d\lambda} \lambda^{-\Omega} t_\lambda + t = \int_1^\tau \frac{d}{d\lambda} \left( \frac{\lambda}{\tau} \right) \lambda^{-\Omega} t_\lambda + t
$$

$$
= \int_1^\tau \frac{d}{d\lambda} \lambda^{-\Omega} P t_\lambda + t = \int_1^\tau \frac{d}{d\lambda} \lambda^{-\Omega} (Pt)_\lambda + t = \int_1^\tau \frac{d}{d\lambda} \lambda^{-\Omega + s} (Pt)_\lambda + t
$$

$Pt = P(t_0 + R_1) = P R_1 \in E_{s+1}$ since $P$ is scale invariant hence $E_{s+1}$ is stable by left action of $P$. This implies $\lambda^{-s}(Pt)_\lambda$ is a bounded family of distributions hence $\lambda^{-\Omega}(Pt)_\lambda$ is integrable in $\lambda$ with value distribution. The weak limit

$$
t_0 = \lim_{\tau \to 0} \tau^{-\Omega} t_\tau = \lim_{\tau \to 0} \int_1^\tau \frac{d}{d\lambda} \lambda^{-\Omega} (Pt)_\lambda + t
$$

(8.17)

is thus well defined.

We would like to check that the distribution $t_0$ defined as above scales correctly:

$$
\mu^{-\Omega} t_{0 \mu} = \int_1^0 \frac{d\mu}{\lambda} (\mu \lambda)^{-\Omega} (Pt)_\lambda + \mu^{-\Omega} t_\mu = \int_1^0 \frac{d\mu}{\lambda} (\mu)^{-\Omega} (Pt)_\lambda + \mu^{-\Omega} t_\mu
$$

$$
= \int_1^0 \frac{d\mu}{\lambda} (Pt)_\lambda + \int_1^0 \frac{d\mu}{\lambda} (\mu)^{-\Omega} (Pt)_\lambda + \mu^{-\Omega} t_\mu = \int_1^0 \frac{d\lambda}{\lambda} (\lambda)^{-\Omega} (Pt)_\lambda + \int_1^0 \frac{d\lambda}{\lambda} \lambda^{-\Omega} t_\lambda + \mu^{-\Omega} t_\mu
$$

by equation (8.15)

$$
= \int_1^0 \frac{d\lambda}{\lambda} (\lambda)^{-\Omega} (Pt)_\lambda + t - \mu^{-\Omega} t_\mu + \mu^{-\Omega} t_\mu = \int_1^0 \frac{d\lambda}{\lambda} (\lambda)^{-\Omega} (Pt)_\lambda + t = t_0
$$

finally $\mu^{-\Omega} t_{0 \mu} = t_0$ thus $t_0$ is a solution of the equation $\rho t_0 - \Omega t_0 = 0$ and we are done. And we conclude by an easy recursion by repeating the previous construction for $t - t_0$. ■
8.2. FUCHSIAN SYMBOLS.

8.2.4 The solution of a variable coefficients Fuchsian equation is a Fuchsian symbol.

The idea is that we want to deal with perturbations of the Euler equation \((\rho - \Omega_0)t = 0\) where \(\Omega_0\) is a constant matrix. Let \(I \subset C^\infty(M)\) denote the ideal of smooth functions vanishing on \(I\). These perturbations are obtained by perturbing \(\Omega_0\) by an element of \(M_n(I)\), \(\Omega - \Omega_0 \in M_n(I)\), and we are able to prove that solutions of the Fuchsian operator with variable coefficients \(P = \rho - \Omega\) are Fuchsian symbols. The space of Fuchsian symbols is thus the natural space of solutions of perturbed Euler equation.

Let us work in a local chart in \(\mathbb{R}^{n+d}\) with coordinates \((x, h)\) where \(I = \{h = 0\}\) and \(\rho = h^2 \frac{\partial}{\partial h}\). Let \(P = \rho - \Omega\) where \(\Omega \in \Omega_0 + M_n(I)\) and \(P = \rho - \Omega\) is a first order Fuchsian system of rank \(n\).

Example 8.2.6 Before we state and prove the theorem, let us give an illustrative example in the holomorphic case on \(\mathbb{C}\). Assume \(t(z)\) is holomorphic in \(\mathbb{C} \setminus \{0\}\) and solves the equation \(z \frac{d}{dz} t - (\Omega_0 - zh(z))t = 0\) where \(h\) is holomorphic in a neighborhood of \(\{0\}\). Then \(f(z) = z^{\Omega_0} t(z)\) solves the equation \(z \frac{d}{dz} f - zh(z)f = 0 \implies \frac{d}{dz} f - h(z)f = 0\). But this means \(f(z) = e^{\int_0^1 h(t) dt} f(z_0)\) is holomorphic in a neighborhood of zero then by the principle of analytic continuation, we can extend the function \(f\) holomorphically at 0! Finally \(t(z) = \sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(0) z^{k+\Omega_0}\) has the asymptotic expansion of Fuchsian symbols.

However, in contrast with the previous example our theorem does not assume any hypothesis of analyticity since our perturbed operator \(\rho - \Omega\) is an operator with smooth coefficients.

Theorem 8.2.1 If \(t \in D'(U \setminus I)\) is a solution of the equation \(Pt = 0\) then \(t\) is a Fuchsian symbol in the space \(F_{\Omega_0}(U \setminus I)\) and \(t = \sum_0^\infty t_k\).

**Proof** — The idea consists in proving that \(\lambda^{-\Omega_0} t_\lambda\) is smooth in \(\lambda\), then the Taylor expansion about \(\lambda = 0\) of \(\lambda^{-\Omega_0} t_\lambda\) will give us the expansion as Fuchsian symbol. We restrict to a set \(K' = \{(x, h)||h|| \leq R\}\) which is stable by scaling. We can pick a Whitney function \(\chi\) which vanishes outside a compact neighborhood \(K\) of \(K'\), \(\chi|_{K'} = 1\), then the distribution \(t_\chi\) equals \(t\) on \(K'\) and is an element of the dual space \((C^m(K))'\) of the Banach space \(C^m(K)\) where \(m\) is the order of the distribution \(t\) (see Eskin theorem 6.4 page 22). The topological dual \((C^m(K))'\) of the Banach space \(C^m(K)\) is also a Banach space for the operator norm. We want to prove \(\|\lambda^{-\Omega_0} t_\lambda\|_{(C^m(K))'}\) is bounded for the Banach space norm \(\|\|_{(C^m(K))'}\) of \((C^m(K))'\) and we also want to prove that the map \(\lambda \mapsto \lambda^{-\Omega_0} t_\lambda\) is a smooth map for \(\lambda \in [0, 1]\) with value in the Banach space \((C^m(K))'\). We must precise the regularity of \(\lambda^{-\Omega_0} t_\lambda\) in \(\lambda \in (0, 1]\). From the identity \(\langle t_{\lambda \chi}, \varphi \rangle = \langle t, \chi_{\lambda^{-1}} \varphi_{\lambda^{-1}} \rangle\) we can easily prove the \(C^0\) regularity on \(\lambda \in (0, 1]\) with value
distribution of order \( m \). Then the derivative in \( \lambda \) is given by the formula
\[
\partial_\lambda \left( \lambda^{-\Omega_0} t_{\lambda} \chi \right) = \lambda^{-1} \left( -\Omega_0 \right) \lambda^{-\Omega_0} (\rho t_{\lambda}) \chi \quad \text{where} \quad (\rho t_{\lambda}) \chi \quad \text{is of order} \quad m+1.
\]
This implies \( \lambda \in (0, 1] \mapsto \lambda^{-\Omega_0} t_{\lambda} \chi \in C^k \left( (0, 1], (C^{m+1}(K))' \right) \) then by recursion \( \lambda \in (0, 1] \mapsto \lambda^{-\Omega_0} t_{\lambda} \chi \in C^k \left( (0, 1], (C^{m+k}(K))' \right) \) where \( t \) is a distribution of order \( m \). We see that at each time we increase the order of regularity in \( \lambda \) of one unit, we lose regularity of \( \lambda^{-\Omega_0} t_{\lambda} \chi \) as a compactly supported distribution. For the moment, we know \( \lambda^{-\Omega_0} t_{\lambda} \chi \) is smooth in \( \lambda \in [0, 1] \) with value distribution but the difficulty is to prove that there is no blow up at \( \lambda = 0 \) and that it has a \( C^\infty \) extension for \( \lambda \in [0, 1] \). The idea is to exploit the fact it satisfies a differential equation and use a version of the Gronwall lemma for Banach space valued ODE. \( f_\lambda = \lambda^{-\Omega_0} t_{\lambda} \chi \) is a solution of the linear ODE
\[
\frac{d}{d\lambda} f_\lambda = \frac{\left( \Omega - \Omega_0 \right)}{\lambda} f_\lambda, \quad f_1 = t\chi
\]
where \( \frac{\left( \Omega - \Omega_0 \right)}{\lambda} \) is smooth in \( (\lambda, x, h) \in [0, 1] \times \mathbb{R}^{n+d} \) since \( \Omega - \Omega_0 \in M_n(I) \). We want to prove there is no blow up at \( \lambda = 0 \) which would give a unique extension of \( \lambda^{-\Omega_0} t_{\lambda} \chi \) to \( \lambda \in [0, 1] \) by ODE uniqueness. We notice that there exists a constant \( C \) such that
\[
\forall \lambda \in [0, 1], \quad \left\| \frac{\left( \Omega - \Omega_0 \right)}{\lambda} \lambda^{-\Omega_0} t_{\lambda} \chi \right\|_{(C^m(K))'} \leq C \left\| \lambda^{-\Omega_0} t_{\lambda} \chi \right\|_{(C^m(K))'}
\]
since \( \Omega - \Omega_0 \in M_n(I) \) which means \( \frac{\left( \Omega - \Omega_0 \right)}{\lambda} = O(\lambda) \) and \( \frac{\left( \Omega - \Omega_0 \right)}{\lambda} \) is bounded in \( \lambda \) in the space of smooth functions for usual \( C^\infty \) topology. Actually, we only need the simple estimate \( \forall \lambda \in [0, 1], \quad \sup_{\lambda \in [0, 1]} \left\| \frac{\left( \Omega - \Omega_0 \right)}{\lambda} \right\|_{C^m(K)} < \infty \), thus
\[
f_\tau = f_1 + \int_1^\tau d\lambda \frac{\left( \Omega - \Omega_0 \right)}{\lambda} \lambda^{-\Omega_0} f_\lambda
\]
and
\[
\left\| f_\tau \right\|_{(C^m(K))'} \leq \left\| f_1 \right\|_{(C^m(K))'} + \left\| \int_1^\tau d\lambda \frac{\left( \Omega - \Omega_0 \right)}{\lambda} f_\lambda \right\|_{(C^m(K))'}
\]
by the triangle inequality
\[
\left\| f_\tau \right\|_{(C^m(K))'} \leq \left\| f_1 \right\|_{(C^m(K))'} + \int_1^\tau d\lambda \left\| \frac{\left( \Omega - \Omega_0 \right)}{\lambda} f_\lambda \right\|_{(C^m(K))'}
\]
by Minkowski inequality
\[
\left\| f_\tau \right\|_{(C^m(K))'} \leq \left\| f_1 \right\|_{(C^m(K))'} + C \int_1^\tau d\lambda \left\| f_\lambda \right\|_{(C^m(K))'}
\]
and we can conclude by an application of the Gronwall lemma. We deduce that \( \forall \lambda \in [0, 1], \quad \left\| f_\lambda \right\|_{(C^m(K))'} \leq e^{C(1-\lambda)} \left\| f_1 \right\|_{(C^m(K))'} \). Hence \( f_\lambda \) exists on \([0, 1]\) (for more on Gronwall see \cite{63} Theorem 1.17 p. 14) otherwise there would
be blow up at \( \lambda = 0 \) but the Gronwall lemma prevents \( f_\lambda \) from blowing up at \( \lambda = 0 \). Since the ODE (8.18) has smooth coefficients the value of its solution is smooth in \( \lambda \). To conclude, we Taylor expand \( \lambda^{-\Omega_0} t_\lambda \chi \) in \( \lambda \)

\[
\lambda^{-\Omega_0} t_\lambda \chi = \sum_{k=0}^{\infty} \frac{\chi_k}{k!} u_k
\]

hence using \( \chi|_K = 1 \):

\[
t_\lambda|_K = \sum_{k=0}^{\infty} \frac{\chi_k+\Omega_0}{k!} u_k|_K
\]

then we just constructed \( t_k|_K = \frac{u_k}{k!} \).

\[\Box\]

**Theorem 8.2.2** Under the hypothesis of the previous theorem, we have for each \( k \geq 1 \) that \( t_k \) depends on \( t_0 \) and some finite jets of \( \Omega \) along \( I \). \( t_0 \) depends only on the "germ of \( t \)" along \( I \).

**Proof** — To find the adequate recursion relating the Taylor expansion of \( \Omega = \sum \Omega_n \) as an infinite sum and the asymptotic expansion \( t = \sum t_k \), we just apply the differential equation to the Taylor expansion of \( \lambda^{-\Omega_0} t_\lambda \chi \) using the uniqueness of Taylor expansions:

\[
\lambda \frac{d}{d\lambda} \sum \lambda^k \chi_k + \sum_{k,l} \lambda^k \Omega_k \chi_l = 0 \implies \forall n \geq 0, ((n+1) - \Omega_0) t_{n+1} = \sum_{k \leq n} t_k \Omega_{n+1-k}
\]

Now since \( t_0 = \lim_{\tau \to 0} \tau^{-\Omega_0} t_\tau \), we see that the restriction of \( \tau^{-\Omega_0} t_\tau \) on the domain \( |h| \leq R \) depends only on the restriction of \( t \) on the domain \( |h| \leq \tau R \) hence we see that the value of \( t_0 \) is not affected if we modify the distribution on any closed set in \( M \setminus I \).

\[\Box\]

8.2.5 **Stability of the concept of approximate Fuchsians.**

First, the space \( F_\Omega \) is stable by left product with elements in \( C^\infty(M) \), the proof is simple by Taylor expanding the smooth function. Let \( G \) be the space of diffeomorphism of \( M \) fixing \( I \). Before we leave this section, let us prove a theorem which shows the behaviour of the space \( F_\Omega(U) \) of Fuchsian symbols is stable by action of \( G \) and does not depend on the choice of Euler \( \rho \).

**Theorem 8.2.3** Let \( t = \sum t_l \in F_\Omega^0 \) for a choice of \( \rho \), for any \( \Phi = e^X \in G \), we have \( \Phi^* t = \tilde{t} \in F_\Omega^0 \). Moreover \( t = \sum_{n=0}^{\infty} \tilde{t}_n \) where \( \tilde{t}_n = \sum_{k+l=n} \frac{1}{k!} D_k \Phi_0^\dagger t_l \) where \( \Phi_0 \in G \) commutes with \( \rho \), \( (\Phi - \Phi(0))^* I \subset I^2 \) and \( D_k \) is a differential operator in \( M \) which depends linearly on finite jets of \( X \) at \( I \) and depends polynomially on finite jets of \( \rho \) at \( I \).
Proof — We shall prove the theorem in several steps. Let \( t \in F_2 \) and we assume \( \Phi = e^X \in G \) where \( X \in g \) is a vector field tangent to \( I \).

- The trick is to start from \( \lambda^{-\Omega_0} (\Phi^*t)_\lambda = \Phi_\lambda^{-\Omega_0} t_\lambda \) where \( \Phi_\lambda = S^{-1}_\lambda \circ \Phi \circ S_\lambda \).
- If we combine with the explicit expression \( \Phi = e^X \) then \( \Phi_\lambda = S^{-1}_\lambda \circ \Phi \circ S_\lambda = e^{S^{-1}_\lambda \circ X \circ S_\lambda} = e^X(\lambda) \) where \( X(\lambda) = S^{-1}_\lambda \circ X \circ S_\lambda \). This is reminiscent of the proofs of chapter 1.
- We notice that \( \lim_{\lambda \to 0} X(\lambda) = X(0) \) exists since \( X = h^i a^j_i (x, h) \partial_{h^j} + h^i b^j_i (x, h) \partial_x \) hence \( X(\lambda) = h^i a^j_i (x, \lambda h) \partial_{h^j} + \lambda h^i b^j_i (x, \lambda h) \partial_x \) and \( X(0) = h^i a^j_i (0, 0) \partial_{h^j} \). We record the following important fact, \( X(0) \) is in fact scale invariant ie it commutes with \( \rho \) and a trivial computation

\[
(X - X(0)) h^i H_i(x, h) = \left( h^i (a^j_i (x, h) - a^j_i (0, 0)) \partial_{h^j} + h^i b^j_i (x, h) \partial_x \right) h^i H_i(x, h) = O(|h|^2)
\]

proves that \( (X - X(0)) \mathcal{I} \subset \mathcal{I}^2 \).
- Since \( \Phi = e^X \), this justifies the statement "\( \Phi(0) \) commutes with \( \rho \) and \((\Phi - \Phi(0)) \mathcal{I} \subset \mathcal{I}^{2n} \). We start from the identity \( \lambda^{d \mathcal{I}^1} X(\lambda) = \lambda^{d \mathcal{I}^2} Ad_S(\lambda) X = [\rho, X] = ad_\rho X \). This implies

\[
\partial^i_\lambda X(\lambda) = \frac{1}{X^i} \lambda^j \partial^j_\lambda X(\lambda) = \frac{1}{X^i} \lambda^{d \mathcal{I}^1} \lambda \partial^j_\lambda \left( \lambda \frac{d}{d\lambda} - i + 1 \right) X(\lambda)
\]

\[
= \lim_{\lambda \to 0} \frac{1}{X^i} \lambda^{d \mathcal{I}^1} \lambda \partial^j_\lambda (ad_\rho - i + 1) X(\lambda)
\]

Hence the derivatives \( \partial^i_\lambda X(0) \) only depend on finite jets of \( X \) at \( (x, 0) \) and it depends polynomially on finite jets of \( \rho \).
- Then we Taylor expand the map \( \Phi_\lambda \) at \( \lambda = 0 \),

\[
\Phi_\lambda = \sum_{k \leq N} \frac{\lambda^k}{k!} D_k \Phi_0^* + I_N(\Phi, \lambda)
\]

the first terms \( \lambda^k \Phi_k, k \leq N \) are of the form \( D_k \Phi_0^* \) where each \( D_k \) is a differential operator in \( \mathbb{C} \langle \partial^i_\lambda X(0) \rangle \).

\[
D_1 = \partial_\lambda X(0), D_2 = \partial^2_\lambda X(0) + (\partial_\lambda X)^2
\]

- Since \( \Phi_\lambda \) depends smoothly in \( \lambda \) and \( \lambda^{-\Omega_0} t_\lambda \) admits an asymptotic expansion at \( \lambda = 0 \), the pulled back family \( \Phi_\lambda^*(\lambda^{-\Omega_0} t_\lambda) = \lambda^{-\Omega_0}(\Phi^*t)_\lambda \) admits an asymptotic expansion at \( \lambda = 0 \). In order to conclude, we
8.3. MEROMORPHIC REGULARIZATION AS A MELLIN TRANSFORM

Expand $\lambda^{-\Omega_0} t_\lambda = \sum_{l=0}^{\infty} \lambda^{-\Omega_0} t_l$ and $\Phi_\lambda = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} D_k \Phi_0^*$ and we obtain the general expansion

$$\Phi_\lambda^* (\lambda^{-\Omega_0} t_\lambda) = \sum_{n=0}^{\infty} \lambda^{-\Omega_0+n} \sum_{k+l=n} \frac{1}{k!} D_k \Phi_0^* t_l$$

We keep the notations and hypothesis of the previous theorem

**Corollary 8.2.1** Let $\Gamma$ be a cone in $T^*(M \setminus I)$. If $\forall k$, $t_k \in D_1^* (M \setminus I)$ then $\forall n, W F(t_n) \subset \Phi_0^\Gamma$.

We deduce from the previous theorem an important corollary which is that the class of Fuchsian symbols $F_\Omega$ is **independent** of the choice of Euler vector field.

**Corollary 8.2.2** Let $t \in F^\rho_\Omega$ for a choice of $\rho$, then for any other generalized Euler $\tilde{\rho}$, we have $t \in F^\tilde{\rho}_\Omega$.

**Proof** — By the result of chapter 1, for any other vector $\tilde{\rho}$, we have $\Phi^{-1*} \tilde{\rho} = \rho$ for a diffeomorphism $\Phi$ fixing $I$.

$$0 = \rho t - \Omega t = \Phi^{-1*} \tilde{\rho} \Phi^* t - \Phi^{-1*} \Omega \Phi^* t \implies \tilde{\rho} \Phi^* t - \Omega \Phi^* t = 0$$

this means $\Phi^* t$ is killed by the Fuchsian operator $\tilde{\rho} - \Omega$ thus $\Phi^* t \in F^\tilde{\rho}_\Omega$. The second claim then follows from the first claim.

8.3 Meromorphic regularization as a Mellin transform.

In this section, for pedagogical reasons, we work in local charts in order to make as explicit as possible the relationship with the Mellin transform. More precisely, we work in a given fixed compact subset $K = K_1 \times K_2 \subset \mathbb{R}^{n+d}$, the compact set is geodesically convex for $\rho = h^2 \partial_{b^2}$. All test functions are supported in $K$. Let $\chi \in C^\infty_0 (\mathbb{R}^{n+d})$, $\chi \geq 0$ and $\chi|_{K \cap \{|h| \leq a\}} = 1$, $\chi|_{K \cap \{|h| \geq b\}} = 0$ where $b > a > 0$.

$$\langle T, \omega \rangle = \int_0^1 \frac{dA}{A} \langle T \psi_{\chi^{-1}}, \omega \rangle + \langle T (1 - \chi), \omega \rangle$$  (8.19)
**The meromorphic regularization formula.** We modify the extension formula of Hormander by introducing a weight $\lambda^\mu$ in the integral over the scale $\lambda$:

$$\langle T^\mu, \omega \rangle = \int_0^1 \frac{d\lambda}{\lambda} \lambda^\mu \langle T\psi_{\lambda^{-1}}, \omega \rangle,$$

(8.20)

this defines a regularization of the extension depending on a parameter $\mu$.

We would like to call the attention of the reader on the fact that if the test form $\omega$ was not supported on $I$, we would have a well defined extension at the limit $\mu \to 0$.

**The philosophy of meromorphic regularization.** The goal is to prove that $T^\mu$ can be extended to a family of current in $D'_k(U)$ depending holomorphically in $\mu$ for $\text{Re}(\mu)$ large enough. Then under the hypothesis that $T$ is a Fuchsian symbol, $T^\mu$ should extend meromorphically in $\mu$ with poles at $\mu = 0$ which are currents supported on $I$ (ie local counterterms). Then the meromorphic regularization will be given by the formula

$$\lim_{\mu \to 0} (T^\mu + T(1 - \chi) - \text{poles at } \mu = 0 \text{ with value current supported on } I)$$

(8.21)

**Definition 8.3.1** A family $(T^\mu)_\mu$ of currents in $D'_k(U)$ is said to be holomorphic (resp meromorphic) in $\mu$ iff for all test forms $\omega \in D^k(U)$, $\mu \mapsto \langle T^\mu, \omega \rangle \in \mathbb{C}$ is holomorphic (resp meromorphic).

If $\mu \mapsto T^\mu$ is holomorphic in a domain $B_r(\mu_0) \setminus \{\mu_0\}$, for all test functions $\varphi$, the map $\mu \mapsto \langle T^\mu, \varphi \rangle$ has an expansion in Laurent series in $\mu$ around $\mu_0$,

$$\langle T^\mu, \varphi \rangle = \sum_{k=-\infty}^{+\infty} (\mu - \mu_0)^k \langle T^{\mu_0(k)}, \varphi \rangle$$

where each coefficient of the Laurent series is a distribution tested against $\varphi$ (there is a similar discussion in [36] Chapter 1 appendix 2). Thus we can write the Laurent series expansion of $\mu \mapsto T^\mu$ around $\mu_0$ as a series in powers of $(\mu - \mu_0)$ with distributional coefficients:

$$T^\mu = \sum_{k=-\infty}^{+\infty} (\mu - \mu_0)^k T^{\mu_0(k)}.$$

**Definition 8.3.2** We say that $\mu \mapsto T^\mu$ is meromorphic with poles of order $N$ at $\mu_0$ when $\mu \mapsto T^\mu$ is holomorphic in a domain $B_r(\mu_0) \setminus \{\mu_0\}$ and

$$T^\mu = \sum_{k=-N}^{+\infty} (\mu - \mu_0)^k T^{\mu_0(k)}.$$

Using this definition, it makes sense to speak about the support of the poles, it just means the support of the distributions $T^{\mu_0(k)}$ for $k < 0$.

**The holomorphicity theorem.**

Recall $T^\mu$ is defined by the formula $\langle T^\mu, \omega \rangle = \int_0^1 \frac{d\lambda}{\lambda} \lambda^\mu \langle T\psi_{\lambda^{-1}}, \omega \rangle$. 
8.3. MEROMORPHIC REGULARIZATION AS A MELLIN TRANSFORM

**Lemma 8.3.1** If \( T \in E_{d,k}(U \setminus I) \), then \( T^\mu \) has a well defined extension in \( D_k(U) \) for \( \text{Re}(\mu) + s + k - n > 0 \) and \( T^\mu \in E_{s+\text{Re}(\mu),k}(U) \).

*Proof* — We keep the notation of the proof of theorem (1.2) and we recall the main facts. In the proof of theorem (1.2), we proved that if \((c_\lambda)_\lambda\) is a bounded family of distributions supported on a fixed annulus \( a \leq |h| \leq b \), then \( \lambda^{-d}c_\lambda(.,\lambda) \) is a bounded family of distributions. Hence from the boundedness of the family \((c_\lambda = \lambda^{-s}t_\lambda \psi)_\lambda\), we deduced the boundedness of the family \((\lambda^{-d}c_\lambda(.,\lambda)) = \lambda^{-s-d}t_\lambda \psi_\lambda)_\lambda\). By analogy with the proof of theorem (1.2) in Chapter 1, the function \( \lambda \mapsto f(\lambda) = \lambda^{-s-(k-n)} \langle T\psi_\lambda^{-1}, \omega \rangle \) is a bounded function supported on the interval \([0,1]\). Thus we find

\[
\langle T^\mu, \omega \rangle = \int_0^1 \frac{d\lambda}{\lambda} \lambda^\mu \langle T\psi_\lambda^{-1}, \omega \rangle
\]

\[
= \int_0^1 \frac{d\lambda}{\lambda} \lambda^{\mu+s+k-n} \lambda^{-s-(k-n)} \langle T\psi_\lambda^{-1}, \omega \rangle = \int_0^{+\infty} \frac{d\lambda}{\lambda} \lambda^{\mu+s+k-n} f(\lambda)
\]

The last integral converges when \( \text{Re}(\mu) + s + k - n > 0 \) because \( f \) is bounded on \([0,1]\). This already tells us that the family of currents \((T^\mu)_\mu\) is well defined in \( D_k(U) \) when \( \text{Re}(\mu) + s + k - n > 0 \). To prove that \( T^\mu \in E_{s+\text{Re}(\mu)} \), we use the theorem (2.1) proved in Chapter 1 for the bounded family of currents \((c_\lambda = \lambda^{-s}T_\lambda \psi)_\lambda\) supported on a fixed annulus. □

We establish a neat result namely that the function \( \lambda \mapsto \langle T\psi_\lambda^{-1}, \omega \rangle \) is in fact always smooth in \( \lambda \in (0,1] \). But of course that does not mean it should be \( L^1_{\text{loc}} \) at \( \lambda = 0 \).

**Lemma 8.3.2** \( \lambda \mapsto \lambda^\mu \langle T\psi_\lambda^{-1}, \omega \rangle \) is smooth in \( 0 < \lambda \leq 1 \).

*Proof* — There is a compact set \( K = \text{supp} \ \omega \) such that if \( x \notin X \), \( \psi_\lambda^{-1} \omega(x) = 0 \), \( \forall \lambda \neq 0 \). Also \( \lambda \mapsto \psi_\lambda^{-1} \omega \) is smooth in \( \lambda \). Then the result follows from application of theorem 2.1.3 in [33]. □

**Theorem 8.3.1** We keep the notations and hypothesis of the lemma (8.3.1), then \( \forall \omega \in D^k(U) \) (resp \( \omega \in D^k(U \setminus I) \)), the map \( \mu \mapsto \langle T^\mu, \omega \rangle \) is holomorphic in the half-plane \( \text{Re}(\mu) + s + k - n > 0 \) (resp holomorphic in \( \mathbb{C} \)).

*Proof* — We relate the regularization formulas to the Mellin transform. By definition, the Mellin transform of a distribution \( f \in D'(\mathbb{R}^+) \) is given by the formula (see “The Mellin Transformation and Other Useful Analytic Techniques” by Don Zagier in [74] p305 and [37])

\[
\tilde{f}(\mu) = \int_0^{\infty} \frac{d\lambda}{\lambda} \lambda^\mu f(\lambda)
\] (8.22)
actually, in the notations of Zagier, we study the half-Mellin transform:

$$\tilde{f}_{\leq 1}(\mu) = \int_0^1 \frac{d\lambda}{\lambda} \lambda^\mu f(\lambda)$$ (8.23)

The regularization formula (8.20) is the Mellin transform of the function $\lambda \mapsto \langle T\psi_{\lambda-1}, \omega \rangle \chi_{[0,1]}$, where $\chi$ is the characteristic function of the interval $[0,1]$. The function $\lambda \mapsto f(\lambda) = \lambda^{-s-(k-n)} \langle T\psi_{\lambda-1}, \omega \rangle \chi_{[0,1]}$ is a function in $C^\infty(0,1] \cap L^\infty[0,1]$ (however, it is not smooth at 0), $\langle T^\mu, \omega \rangle$ is thus reinterpreted as the Mellin transform $\Gamma_f(\mu + s + k - n)$ of $f \in C^\infty(0,1] \cap L^\infty[0,1] \implies f \in L^1[0,1]$. Then we use the classical holomorphic properties of the Mellin transform as explained in [64] appendix A p308, 309. To understand the holomorphicity properties of the Mellin transform, we relate the Mellin transform with the Fourier Laplace transform in the complex plane by the variable change $e^t = \lambda$ (see [64] appendix A formula A.18 p308)

$$\int_0^1 \frac{d\lambda}{\lambda} \lambda^s f(\lambda) = \int_0^0 dte^{ts} f(e^t) = \int_{-\infty}^\infty dte^{-ts} f(e^{-t}) H(t)$$

where $H$ is the Heaviside function and where $t \mapsto f(e^{-t}) H(t)$ is bounded.

For any $\varepsilon > 0$, $t \mapsto e^{-\varepsilon t} H(t) f(e^{-t})$ is in $L^p(\mathbb{R})$, $\forall p \in [1, \infty]$, especially in $L^2(\mathbb{R})$ hence

$$s \mapsto \int_{-\infty}^\infty dte^{-t(s+\varepsilon)} f(e^{-t}) H(t)$$

is holomorphic in $s$ for $\text{Re}(s) > 0$ by the properties of the holomorphic Fourier transform. As this is true for any $\varepsilon > 0$, the Mellin transform is holomorphic on $\text{Re}(s) > 0$.

Let us keep the notations of the previous theorem and consider the family $\mu \mapsto T^\mu$ holomorphic for $\text{Re}(\mu) + s + k - n > 0$. We prove a lemma which states that if there was a meromorphic extension of the holomorphic family $\mu \mapsto T^\mu$, then this meromorphic extension must have poles supported on $I$ (ie locality of counterterms).

**Lemma 8.3.3** If $\mu \mapsto T^\mu$ is a meromorphic extension of the holomorphic family $\mu \mapsto T^\mu$, then the poles of $T^\mu$ are distributions in $D'(U)$ supported on $U \cap I$.

**Proof** — $\forall \omega \in D^k(U), \mu \mapsto \langle T^\mu, \omega \rangle$ is holomorphic in the half-plane $\text{Re}(\mu) + s + k - n > 0$. Let us notice that if $\omega \in D^k(U \setminus I)$, the function $\lambda \mapsto \lambda^\mu \langle T\psi_{\lambda-1}, \omega \rangle$ is smooth in $\lambda$ and vanishes in a neighborhood of $\lambda = 0$, hence the formula (8.20) makes sense for all $\mu \in \mathbb{C}$ and is holomorphic in $\mu$. Thus if $T^\mu$ had a meromorphic expansion, then we write the Laurent series expansion of $\mu \mapsto T^\mu$ around $\mu^0$:

$$T^\mu = \sum_{k=-\infty}^{k=+\infty} (\mu - \mu_0)^k T^{\mu_0(k)}$$
8.3. Meromorphic Regularization as a Mellin Transform.

but for all \( \omega \) supported on \( U \setminus I \), \( \langle T^{\mu_0(k)}, \omega \rangle \) is holomorphic at \( \mu_0 \) thus all the poles \( \langle T^{\mu_0(k)}, \omega \rangle \) must vanish! \( \forall \omega \in D^k(U \setminus I), \forall k < 0, \langle T^{\mu_0(k)}, \omega \rangle = 0 \) which means \( \forall k < 0, \text{supp } T^{\mu_0(k)} \) does not meet \( U \setminus I \) which yields the conclusion. ■

8.3.1 The meromorphic extension.

We set the stage for our next theorem which states that if \( T \) is a Fuchsian symbol, then the holomorphic regularization formula of Hormander \( \mu \mapsto T^\mu \) has a meromorphic extension in the complex parameter \( \mu \). Let \( T \in D'_k(U \setminus I) \) and if \( T \in F_{\Omega}(U \setminus I) \) then we have by definition \( T = \sum_0^N T_k + R_N \) where the error term \( R_N \in E_{s+N+1} \) where \( s = \inf \text{Spec}(\Omega) \). Notice that for any compactly supported test form \( \omega \), the current \( T \wedge \omega \) is also a Fuchsian symbol, and we have the expansion \( \forall N, \langle T \wedge \omega \rangle = \sum_{j \leq N} \langle T \wedge \omega \rangle_j^N + I_N(T \wedge \omega) \) \( j \) is \( s^j + \Omega \langle T \wedge \omega \rangle_j \) and the remainder \( I_N(T \wedge \omega) \in E_{s+N+1} \). Following the notations of Chapter 1, we denote by \( \psi \) the function \( \psi = -\rho \chi \).

Theorem 8.3.2 If \( T \in F_{\Omega}(U \setminus I) \) then \( \mu \mapsto T^\mu \) has an extension as a distribution in \( D'(U) \) and depends meromorphically in \( \mu \) with poles in \( \text{Spec}(\Omega) + N \).

\[ \forall p, \exists N, \langle T^\mu, \omega \rangle = \sum_{j \leq N} (\mu + j + \Omega)^{-1} \langle (T \wedge \omega)_j, \psi \rangle + \langle I_N^\mu(T \wedge \omega), \psi \rangle \] (8.24)

where the identity is meromorphic in the domain \{Re(\mu) + p > 0\}.

Proof —

Before we start proving anything, let us make a small comment on the principle used here. The key idea is analytic continuation, when two holomorphic functions \( f_1, f_2 \) defined on respective domains \( U_1, U_2 \) coincide on an open set, then there is a unique function \( f \) (unique in the sense that any analytic continuation of \( f_i, i = 1, 2 \) must coincide with \( f \) on their common domain of definition) defined on \( U_1 \cup U_2 \) which extends \( f_1, f_2 \).

- \( (T \wedge \omega) \) is a Fuchsian symbol.
- since \( T \in F_{\Omega_0} \) and \( \omega \) is a smooth test form, \( \lambda^{-\Omega_0}(T \wedge \omega) \lambda \) has an asymptotic expansion in \( \lambda \).
- We expand \( (T \wedge \omega) \) in order to extract the relevant first terms and the remainder of the asymptotic expansion.

\[ T \wedge \omega = \sum_{k=0}^N (T \wedge \omega)_k + I_N(T \wedge \omega) \]

where the identity is meromorphic in the domain \{Re(\mu) + p > 0\}. ■
• we replace this decomposition in the integral formula \( \int_0^1 \frac{d\lambda}{\lambda} \lambda^\mu \langle T \psi_{\lambda-1}, \omega \rangle \)
and compute

\[
\forall N, \int_0^1 \frac{d\lambda}{\lambda} \lambda^\mu \langle T \psi_{\lambda-1}, \omega \rangle = \int_0^1 \frac{d\lambda}{\lambda} \lambda^\mu \langle (T \wedge \omega), \psi_{\lambda-1} \rangle
\]

\[
= \int_0^1 \frac{d\lambda}{\lambda} \lambda^\mu \langle (T \wedge \omega) \lambda, \psi \rangle = \int_0^1 \frac{d\lambda}{\lambda} \lambda^\mu \left( \sum_{j < N} \langle (T \wedge \omega) j, \psi \rangle + \langle (I_N(T \wedge \omega)) \lambda, \psi \rangle \right)
\]

\[
= \sum_{j < N} \int_0^1 \frac{d\lambda}{\lambda} \lambda^{\mu+\Omega_0+j} \langle (T \wedge \omega) j, \psi \rangle + \int_0^1 \frac{d\lambda}{\lambda} \lambda^{\mu} \langle (I_N(T \wedge \omega)) \lambda, \psi \rangle
\]

for \( \Re(\mu) \) large enough, we can compute the first \( N + 1 \) integrals

\[
= \sum_{j < N} \frac{1}{(\mu + \Omega_0 + j)^{-1}} \langle (T \wedge \omega) j, \psi \rangle + \int_0^1 \frac{d\lambda}{\lambda} \lambda^{\mu} \langle (I_N(T \wedge \omega)) \lambda, \psi \rangle
\]

and the remainder is integrable and holomorphic in \( \mu \) in the half plane \( \Re(\mu) + N + 1 + \Omega > 0 \) by theorem (8.3.1).

• \( \forall N, \langle T^\mu, \omega \rangle \) has meromorphic continuation on \( \Re(\mu) + N + 1 + \Omega > 0 \) hence it has meromorphic continuation everywhere on \( \mathbb{C} \).

\[\blacksquare\]

**Proposition 8.3.1** The extension \( T^\mu \) defined in the previous theorem satisfies the property \( T^\mu \in F_{\Omega+\mu} \).

**Proof** — To prove that \( T^\mu \in F_{\Omega+\mu} \), it is enough to prove that if \( T \) is a solution of \( (\rho - \Omega) T = 0 \), then the meromorphic extension \( T^\mu \) is a solution of the equation \( (\rho - \Omega - \mu) T^\mu = 0 \) on the domain \( \chi = 1 \). We try to scale \( T^\mu \) and we compute \( \tau^{-\Omega - \mu} T^\mu(\cdot, \tau) \) where \( T \in D^\prime(U \setminus I) \) is exact Fuchsian \( T_\lambda = \lambda^\Omega T \). First, it is not true that \( T^\mu \) will scale exactly like \( T^\mu = \tau^{\Omega + \mu} T^\mu \) everywhere in \( U \setminus I \). However, in any \( \rho \)-stable domain \( U \) for \( \rho = h^j \partial_{h^j} \) in which \( \chi |_U = 1 \), we will be able to find that \( \forall \tau \in (0,1], T^\mu |_U = \tau^{\Omega + \mu} T^\mu |_U \).

This can be understood in terms of section \( T^\mu |_U \) of the sheaf of currents over the open set \( U \). A typical example of such nice domains would be \( K \times \{|h| \leq a\} \subset \mathbb{R}^n \times \mathbb{R}^d \) in the local chart \( \mathbb{R}^{n+d} \) where the plateau function \( \chi \) satisfies the support condition:

\[
\chi_{K \times \{|h| \leq a\}} = 1, \chi_{K \times \{|h| \geq b\}} = 0 \tag{8.25}
\]

for \( 0 < a < b \). We pick a test form \( \omega \in D^\prime(U) \).

\[
\forall 0 < \tau \leq 1, \tau^{-\Omega - \mu} \langle T^\mu, \omega \rangle = \tau^{-\Omega - \mu} \langle T^\mu, \omega_{\tau-1} \rangle = \int_0^1 \frac{d\lambda}{\lambda} \lambda^{\mu} \tau^{-\Omega - \mu} \langle T \psi_{\lambda-1}, \omega_{\tau-1} \rangle
\]
8.4. THE RIESZ REGULARIZATION.

Preliminary discussion.

Up to now, the meromorphic regularization operation seems not very interesting since it does not define an extension of the original current \( T \in F_{\Omega}(U \setminus I) \) from which we started. In order to recover a genuine extension, we must somehow make \( \mu \) tend to 0 in the meromorphic regularization of Hormander. In order to do this, we will have to subtract poles but fortunately these poles are local counterterms hence the subtraction operation does not affect the extension outside the submanifold \( I \). The procedure we are going to describe will be called Riesz regularization. Let us consider a given \( T \in F_{\Omega}(U \setminus I) \). If \( -m - 1 < s \leq -m \), the extension procedure defined in Chapter 1 which could be called the Hadamard finite part procedure is given by

\[
\langle T_{\text{Hadamard}}, \omega \rangle = \lim_{\varepsilon \to 0} \langle T(\chi - \chi_{\varepsilon^{-1}}), I_m(\omega) \rangle + \langle T(1 - \chi), \omega \rangle
\]

(8.26)

whereas in the Riesz regularization, we first extend meromorphically in \( \mu \), then reduce in the Jordan normal form finally we subtract the poles at \( \mu = 0 \), then take the limit \( \mu \to 0 \).
Fundamental example.

**Example 8.4.1** To illustrate this section, we give our favorite example: we are going to Riesz regularize \( \frac{1}{\lambda^n} \) following the classical approach of [36]. First we change the divergent function \( \frac{d\lambda}{\lambda^k} \) in \( \frac{d\lambda}{\lambda^{n+\varepsilon}} \), \( \varepsilon \in \mathbb{C} \). Then for \( \text{Re}(\varepsilon) \) large enough, we decompose \( \int_{0}^{\infty} \frac{d\lambda}{\lambda^{n+\varepsilon}} \varphi(\lambda) \) in three parts

\[
\int_{0}^{\infty} \frac{d\lambda}{\lambda^{n+\varepsilon}} \varphi(\lambda) = \sum_{k=0}^{N} \frac{\tau^{n-k+\varepsilon}}{n-k+\varepsilon} \varphi^{(k)}(0) + \int_{\tau}^{\infty} \frac{d\lambda}{\lambda^{n+\varepsilon}} I_N(\varphi)(\lambda) + \int_{0}^{\tau} \frac{d\lambda}{\lambda^{n+\varepsilon}} \varphi(\lambda),
\]

when \( \varepsilon \to 0 \), we subtract the pole \( \frac{\tau^k}{\varepsilon} \frac{\omega^{(n-1)}(0)}{n-1!} \), we get

\[
R_{\text{Riesz}}[\frac{1}{\lambda^n}](\varphi) = \sum_{k=0, k \neq n-1}^{N} \frac{\tau^{n-k}}{n-k} \frac{\varphi^{(k)}(0)}{k!} + \int_{0}^{\tau} \frac{d\lambda}{\lambda^n} I_N(\varphi)(\lambda) + \int_{\tau}^{\infty} \frac{d\lambda}{\lambda^n} \varphi(\lambda)
\]

The reduction in Jordan normal form. We are going to assume that \( T \in F_{10} \). By theorem (8.2.2), for any \( N > 0 \), \( T \) can be decomposed as a finite sum \( T = \sum_{j \in \mathbb{N}} T_j + R_N \) where \( R_N \in E_{n+N+1} \) behaves nicely and each \( T_j \) satisfies the Fuchs equation \( \rho T_j = (\Omega + j) T_j \). By a matrix conjugation, we can always reduce \( \Omega \) to its Jordan normal form \( \Omega = G^{-1}(D+N)G \). We set \((-d_i, n_i)_{i \in I}\) the eigenvalues with respective multiplicities of \( \Omega \), hence \( D \) is a diagonal matrix with eigenvalues \((-d_i)_i\). The differential equation \( \rho T = \Omega T \) becomes \(\rho GT = (D+N)GT \). Without loss of generality, we now assume \( \Omega \) is in the Jordan normal form. By the nice properties of Jordan normal forms, we can decompose each \( T_j \) in the asymptotic expansion \( \sum_j T_j \) in generalized eigenvectors \( T_{ji} = \sum_{d_\epsilon \in \text{Spec} \Omega_{ij}} T_{ji} \) where \( T_{ji} \) is the projection of \( T_j \) on the generalized eigenspace \( E_i \) of the matrix \( \Omega + j \) associated to the eigenvalue \(-d_i + j \) and \( \Omega |E_i = -d_i + N_i \) where \( N_i \) is nilpotent matrix of fixed order \( n_i \).

Combining Riesz regularization and Jordan reduction. We introduce a variant of the Riesz regularization for currents \( T \in F_{10}(U \setminus I) \). We decompose each vector \( T \) as a sum of \( T_i \). Then each \( T_i \wedge \omega \) is a Fuchsian symbol hence has an asymptotic expansion \( T_i \wedge \omega = \sum_{j} (T_i \wedge \omega)_j \) and for convenience, we will denote this asymptotic expansion by \( T_i \wedge \omega = \sum_{j} (T \wedge \omega)_{ij} \) where \( \rho (T \wedge \omega)_{ij} = (-d_i + N_i + j)(T \wedge \omega)_{ij} \). Then we established the following formula:

\[
\forall N, \langle T_i^k, \omega \rangle = \sum_{|j| \leq N} (\mu + N_i + j - d_i)^{-1} \langle (T \wedge \omega)_{ij}, \psi \rangle + \langle I_N^\mu (T \wedge \omega)_i, \psi \rangle \tag{8.27}
\]

All poles of the meromorphic extension (8.3.2) should originate from terms such as:

\[(\mu + N_i + j - d_i)^{-1} \langle (T \wedge \omega)_{ij}, \psi \rangle\]
which appear in the formula 8.27. In fact, the only singular terms arise when $j = d_i$, so that $(\mu + N_i + j - d_i) = (\mu + N_i)$ becomes non invertible. Actually, if we expand separately $T_i$ and $\omega$, $(T_i \wedge \omega)_k = \sum_{j-d_i+l=k} T_{ij} \omega_l$ then the "bad term" will be $(T_i \wedge \omega)_0 = \sum_{j-d_i+l=0} T_{ij} \omega_l$ where all the crossed terms $T_{ij} \omega_l$ have vanishing scaling degree $k = -d_i + j + l \deg \omega_l = 0$. Notice that since $N_i$ is a nilpotent matrix, it is not possible to think of $(\mu + N_i)^{-1}$ as a simple pole at $\mu = 0$, but we should think of $(\mu + N_i)^{-1}$ as a multiple pole of order $n_i$ as we can easily recognize:

$$(\mu + N_i)^{-1} = \mu^{-1} \sum_{0 \leq j \leq n_i-1} (-\mu)^{-j} N_i^j$$

Notice we also have

$$(\mu + N_i)^{-1} \langle (T_i \wedge \omega)_0, \psi \rangle = \sum_{j+l=d_i} (\mu + N_i)^{-1}(-1)^{n+d-1} \langle i\mu \langle T_{ij} \wedge \omega_l \rangle, -d\chi \rangle$$

It looks like the poles share the same geometric structure as the residue formulas! We will discuss this in more detail in the next section.

Then, we define the Riesz regularization of the generalized eigenvector $T_i$ as $\langle R_{\text{Riesz}} T_i, \omega \rangle = \lim_{\mu \to 0} \left( \langle T_i^\mu, \omega \rangle - \sum_{j+l=d_i} (\mu + N_i)^{-1} \langle T_{ij} \wedge \omega_l, \psi \rangle \right) + \langle T_i(1 - \chi), \omega \rangle$. Finally, since the meromorphic regularization $T^\mu$ is a sum $\langle T^\mu, \omega \rangle = \sum_{-d_i \in \text{Spec} (\Omega)} \langle T_i^\mu, \omega \rangle$ we define $R_{\text{Riesz}} T$ as the sum $\sum_{-d_i \in \text{Spec} (\Omega)} R_{\text{Riesz}} T_i$ of the Riesz regularizations $R_{\text{Riesz}} T_i$ of the generalized eigenvectors $T_i$.

**Definition 8.4.1** Let $T \in D_k(U \setminus I)$ and $T \in F_\Omega(U \setminus I)$ where $\Omega$ is assumed to be in the Jordan normal form. Let $T_i$ be the projection of $T$ on the generalized eigenspace $E_i$ of the matrix $\Omega$. Let $\Omega|_{E_i} = -d_i + N_i$ where $N_i$ is nilpotent matrix of fixed order $n_i$. Then the Riesz regularization is defined as

$$\langle R_{\text{Riesz}} T, \omega \rangle = \lim_{\mu \to 0} \left( \langle T^\mu, \omega \rangle - \sum_{-d_i \in \text{Spec} (\Omega), j+l=d_i} (\mu + N_i)^{-1} \langle T_{ij} \wedge \omega_l, \psi \rangle \right) + \langle T(1 - \chi), \omega \rangle$$

(8.28)

**Defining the residue.** A small comment before we state anything. A quick glance at the formula expressing the poles of the meromorphic expansion of $T^\mu$ reminds of the formula for the residues obtained in the first part. The role of the poles seems to disappear since we subtract them in order to define the Riesz regularization, however they come back with a vengeance when we compute the residue or anomaly of the Riesz regularization. Following the philosophy of the first part, we define the residues of $R_{\text{Riesz}}$ for the vector field $\rho$ by the simple equation: $\text{Res}[T] = \rho (R_{\text{Riesz}} T) - R_{\text{Riesz}} (\rho T)$. 
Theorem 8.4.1 If $T \in F_\Omega$ then $R_{Riesz}$ satisfies the residue equation

$$\langle \rho R_{Riesz} T - R_{Riesz} \rho T, \omega \rangle = \sum_{-d_i \in \text{Spec}(\Omega)} (\mu + N_i)^{-1} \langle T_{ij} \wedge \omega_l, \psi \rangle$$  \hspace{1cm} (8.29)

Proof — Our strategy is to compute these residues for each eigenvector $T_i$. We know in advance by the decomposition $T_i = \sum T_{ij}$, indeed $T_{ij}$ plays no role in the residue calculation for $j$ large enough, more precisely when $j - d_i > 0$ because in this case there are no counterterms to subtract hence no poles. So we keep only the terms $T_{ij}, j - d_i \leq 0$ and we already know in advance that the residue of $R_{Riesz} T_i$ will be equal to the residue of $\sum_{-d_i + j \leq 0} R_{Riesz} T_{ij}$. Now, we compute the residue using meromorphic techniques. We note that by theorem 8.3.2, $\mu \mapsto T_{ij}^\mu$ is meromorphic in $\mu$ with poles at $\mu = 0$ and the Laurent series expansion of $T_{ij}^\mu$ around $\mu = 0$ is of the form

$$\langle T_{ij}^\mu, \omega \rangle = (\mu + N_i)^{-1} \sum_{j + l = d_i} \langle T_{ij} \wedge \omega_l, \psi \rangle + R_{Riesz} T_{ij} + O(\mu)$$

Then we use the result that $(\rho - \Omega)T = 0 \implies (\rho - \mu - \Omega)T^\mu = 0$ on $U$ provided $U$ is stable by scaling and $\chi|_U = 1$. We work in the particular case where $T = T_{ij}$ and we find that $T_{ij}^\mu$ satisfies the equation $\rho T_{ij}^\mu = (\mu - d_i + N_i + j)T_{ij}^\mu$. Then we use the trick to extract the term $N_i + \mu$ and replace $T_{ij}^\mu$ by its Laurent series expansion:

$$\langle \rho T_{ij}^\mu, \omega \rangle = (\mu + N_i) \left[ (\mu + N_i)^{-1} \sum_{j + l = d_i} \langle T_{ij} \wedge \omega_l, \psi \rangle + \langle R_{Riesz} T_{ij}, \omega \rangle + O(\mu) \right] + (j - d_i) \langle T_{ij}^\mu, \omega \rangle$$

$$\langle \rho T_{ij}^\mu + (d_i - j)T_{ij}^\mu, \omega \rangle = \sum_{j + l = d_i} \langle T_{ij} \wedge \omega_l, \psi \rangle + (\mu + N_i) \langle R_{Riesz} T_{ij}, \omega \rangle + (\mu + N_i)O(\mu)$$

By uniqueness of the Laurent series expansion, we can identify the terms of negative order and of order 0 in $\mu$ of the Laurent series expansion of the lhs and rhs of equation (8.30). Hence we find an equation (in fact, there are two equations of an infinite hierarchy of equations which can be obtained by identifying all powers of $\mu$ in the equation (8.30)):

$$\langle (\rho + d_i - N_i) R_{Riesz} T_{ij}, \omega \rangle = \sum_{j + l = d_i} \langle T_{ij} \wedge \omega_l, \psi \rangle$$  \hspace{1cm} (8.31)

$$j + l = d_i$$  \hspace{1cm} (8.32)

The second equation was expected somehow, since it gives a constraint on the scaling degree of the counterterm. We can sum over the eigenvalues...
8.4. THE RIESZ REGULARIZATION.

of $\Omega$:

$$(\rho - \Omega - j) R_{\text{Riesz}} T_j = \sum_{-d_i \in \text{Spec}(\Omega)} (\rho + d_i - N_i + j) R_{\text{Riesz}} T_{ij}$$

For every $j$ where $j - d_i \leq 0$, we end up with an anomaly equation:

$$\langle (\rho - \Omega) R_{\text{Riesz}} T, \omega \rangle = \sum_{-d_i \in \text{Spec}(\Omega), j + l = d_i} \langle T_{ij} \wedge \omega_l, \psi \rangle$$  (8.33)

which can be explained as follows: each individual current $T_j$ satisfied the Fuchsian equation $(\rho - \Omega - j) T_j = 0$ on $U \setminus I$ however, the extension $R_{\text{Riesz}} T_j$ does not satisfy the Fuchsian equation on $U$ and the local counterterm $\sum_{-d_i \in \text{Spec}(\Omega), j + l = d_i} \langle T_{ij} \wedge \omega_l, \psi \rangle$ measures this failure. Now in order to conclude, we must notice that for all $j$, $(\rho - \Omega - j) R_{\text{Riesz}} T_j = - R_{\text{Riesz}} T_j$. Then summing over all $j$ such that $j - d_i \leq 0$ Thus equation (8.33) is reformulated as the new equation

$$\rho R_{\text{Riesz}} T - R_{\text{Riesz}} \rho T = \sum_{-d_i \in \text{Spec}(\Omega), j + l = d_i} \langle T_{ij} \wedge \omega_l, \psi \rangle$$  (8.34)

Motivated by the geometric structure revealed by the previous theorem, we discover that we can completely forget about the origins of the poles only to focus on the intrinsic geometry of the integral formula of these poles.

**Definition 8.4.2** Let $\omega \in D^k (D^* (M \setminus I), d)$ be a test form. Let us consider the space of all currents $T \in F_{\Omega}(M \setminus I)$. We assume $\Omega = D + N$ is in the Jordan normal form where the eigenvalues $(-d_i)_{i \in I}$ of $\Omega$ are negative integers. Denote $T_i$ the projection of $T$ on the generalized eigenspace $E_i$ corresponding to the eigenvalue $-d_i$. Then we define the residual integral of $T \wedge \omega$:

$$\int_{px}^{\text{res}} T \wedge \omega = (-1)^{n+d} \sum_{-d_i \in \text{Spec}(\Omega), j + l = d_i} \langle i_{\rho \cdot} (T_{ij} \wedge \omega_l), d\chi \rangle$$  (8.35)

**8.4.1 The diagonalisable case.**

Let $T \in D_k (D_s (M \setminus I), d)$ be a current and $\omega \in D^k (D^* (M \setminus I), d)$ a test form. Let $\Omega = D$ be a diagonal matrix with the eigenvalues $(-d_i)_{i \in I}$ which are negative integers. Denote by $T_i$ the projection of $T$ on the generalized eigenspace $E_i$ corresponding to the eigenvalue $-d_i$.

**Theorem 8.4.2** If $T \in F_{\Omega}(M \setminus I)$ then $\int_{px}^{\text{res}} T \wedge \omega$ is a period and only depends on the homology class $[d\chi]$. 
Proof — Notice \( L_\rho (T_{ij} \wedge \omega_l) = (-d_i + j + l) (T_{ij} \wedge \omega_l) = 0 \) by the Leibniz rule for the exterior product of currents. The proof is a restriction of theorem (7.3.8) to the specific case where the vector field \( X = \rho \) plays the role of the symmetry vector field which makes sense since \( \rho \) commutes with itself. \( \blacksquare \)

A consequence of this theorem is that the poles of the meromorphic extension \( T^\mu \) at \( \mu = 0 \) are periods and does not depend on \( \chi \in C^\infty(M) \) provided \( \chi = 1 \) in a neighborhood of \( I \) and vanishes outside a tubular neighborhood of \( I \).

8.5 The appearance of the log.

In the general case where \( \Omega \) is not necessarily diagonalizable, we cannot hope that the poles are going to be \( \chi \) independent. However, this is not a curse! The nilpotent part \( N_i \) will bring in log terms which are responsible for the one parameter renormalization group (according to B Delamotte). Let us fix \( \rho \) and a current \( T \in D'_k(U \setminus I) \cap T \in F_\Omega(U \setminus I) \). Once we fix the function \( \chi \) and the Euler vector field \( \rho \), we can renormalize following the Hadamard of Riesz extension both being well defined since \( T \in F_\Omega(U \setminus I) \), this is called choosing a renormalization scheme. But in contrary to the flat case, if we change the Euler field \( \rho \) and the function \( \chi \), we change the renormalization scheme, and the extensions will differ by a local counterterm which is a distribution supported on \( I \). We thus have some infinite dimensional space of choices. But if \( \chi, \rho \) and the extension \( R \) are fixed, then we still have a one dimensional degree of freedom left when we scale the cut-off function \( \chi \) by the flow \( \chi \mapsto e^{\nu \log \tau} \chi, \tau \in \mathbb{R}_+ \) which changes the length scale of our renormalization. The idea of scaling the function \( \chi \) by the one parameter group \( e^{\nu \log \tau} \rho \) was inspired by the reading of unpublished lecture notes of John Cardy [11] and [12] Chapter 5 section (5.2). The mechanism we are going to explain allows to relate the Bogoliubov, Epstein-Glaser technique with the one parameter renormalization group of Bogoliubov Shirkov.

Example 8.5.1 Let us give some important comment on the physical meaning of the variable \( \tau \) in the case where the manifold \( M \) is a configuration space \( P^2 \) and \( I = d_2 \) is the diagonal of \( P^2 \). When \( \tau \to \infty \), the function \( \chi_\tau \) will have a support shrinking to the diagonal \( d_2 \). This means \( \tau^{-1} \) in terms of characteristic length between pair of points \( (x, y) \in M \) (think of them in terms of particles in the hard ball model, see [12] p88). Then according to this interpretation \( \tau \to \infty \) should be called UV flow whereas \( \tau \to 0 \) is the IR flow. We describe the simple example of the amplitude \( \langle \phi^2(x) \phi^2(y) \rangle \) in the flat Euclidean case:

<table>
<thead>
<tr>
<th>Cardy poor man’s renorm</th>
<th>Our approach</th>
<th>Costello Heat kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \int_{M^2} \Delta^2(x,y) g(x)g(y)d^4xd^4y )</td>
<td>( \langle R^* \Delta^2, g \otimes g \rangle )</td>
<td>( \frac{1}{\tau} \int_{\tau}^{\infty} \frac{dt}{t^2} \langle K_t, g \otimes g \rangle )</td>
</tr>
</tbody>
</table>
8.5. THE APPEARANCE OF THE LOG.

In Costello’s approach ([13]) (4.2 p43), \( K_t \) is the Heat kernel and the UV regularized two point function in the massless case is given by the formula \( \int_\tau^\infty dt K_t \).

Let \( T \) be a given current \( T \in D'_k(U \setminus I) \). For each function \( \chi \) such that \( \chi = 1 \) in a neighborhood of \( I \) and vanishes outside a tubular neighborhood of \( I \), we denote by \( R^\tau_{\text{Riesz}} \) (resp \( R^\tau_{\text{Hadamard}} \)) the corresponding Riesz regularization operator (resp Hadamard regularization operator) constructed with \( \chi^\tau \):

\[
\langle R^\tau_{\text{Riesz}} T, \omega \rangle = \lim_{\mu \to 0} \left( \int_0^1 \frac{d\lambda}{\lambda} \lambda^\mu \langle T, \psi_\lambda \omega \rangle - \sum_{-d_i \in \text{Spec}(\Omega), j + l = d_i} \langle (\mu + N_i)^{-1} T_{ij} \psi_\lambda, \omega_l \rangle \right) + \langle T(1 - \chi^\tau), \omega \rangle
\]

\[
\langle R^\tau_{\text{Hadamard}} T, \omega \rangle = \lim_{\varepsilon \to 0} \left( \langle T(\chi^\tau - \chi^\tau_\varepsilon^{-1}), I_m(\omega) \rangle \right) + \langle T(1 - \chi^\tau), \omega \rangle.
\]

We shall state the renormalization group flow theorem for the Riesz regularization. The residual integral \( \int \rho^\text{res} \) appears when we scale the bump function \( \chi \).

**Theorem 8.5.1** If \( T \in F_{1\Omega}(U \setminus I) \) and \( N = 0 \) then \( \forall \omega \in D^k(M) \) we have

\[
\langle (R^\tau_{\text{Riesz}} T - R^1_{\text{Riesz}}), \omega \rangle = \log \tau \left( \int_{\rho^\text{res}} T \land \omega \right) \tag{8.36}
\]

If \( T \in F_{1\Omega}(U \setminus I) \) and \( N \neq 0 \) then \( \forall \omega \in D^k(M) \)

\[
\langle R^\tau_{\text{Riesz}} T, \omega \rangle - \langle R^1_{\text{Riesz}} T, \omega \rangle = (\tau^{-N} - 1) \int_{\rho^\text{res}} T \land \omega \tag{8.37}
\]

**Proof** —

Let us start the proof for the Riesz extension, we shall scale \( \chi \) in the formula

\[
\left( \int_0^1 \frac{d\lambda}{\lambda} \lambda^\mu \langle T, \psi_\lambda \omega \rangle - \sum_{-d_i \in \text{Spec}(\Omega), j + l = d_i} \langle (\mu + N_i)^{-1} T_{ij} \psi_\lambda, \omega_l \rangle \right) + \langle T(1 - \chi^\tau), \omega \rangle
\]

by the one parameter family \( e^{\rho \log \tau} \). This gives

\[
\left( \int_0^1 \frac{d\lambda}{\lambda} \lambda^\mu \langle T, \psi_\lambda \omega \rangle - \sum_{-d_i \in \text{Spec}(\Omega), j + l = d_i} \langle (\mu + N_i)^{-1} T_{ij} \psi_\lambda, \omega_l \rangle \right) + \langle T(1 - \chi^\tau), \omega \rangle
\]

\[
= \left( \int_0^1 \frac{d\lambda}{\lambda} \lambda^\mu \langle T, \psi_\lambda \omega \rangle - \sum_{-d_i \in \text{Spec}(\Omega), j + l = d_i} \int_0^1 \frac{d\lambda}{\lambda} \lambda^\mu \langle T_{ij} \psi_\lambda, \omega_l \rangle \right) + \langle T(1 - \chi^\tau), \omega \rangle
\]
If we subtract the previous formula to the same expression for $\tau = 1$ and make a variable change, we obtain:

$$\left( \int_1^\tau \frac{d\lambda}{\lambda} (\lambda^{\tau-1})^\mu \langle T, \psi_{\lambda-1}\omega \rangle - \sum_{-d_i \in \text{Spec}(\Omega), j+l=d_i} \int_1^\tau \frac{d\lambda}{\lambda} (\lambda^{\tau-1})^\mu \langle T_{ij}\psi_{\lambda-1}, \omega_l \rangle \right) + \langle T(\chi - \chi_\tau), \omega \rangle$$

$$\rightarrow_{\mu \to 0} \left( \langle T(\chi_\tau - \chi), \omega \rangle - \sum_{-d_i \in \text{Spec}(\Omega), j+l=d_i} \langle T_{ij}(\chi_\tau - \chi), \omega_l \rangle \right) + \langle T(\chi - \chi_\tau), \omega \rangle$$

Thus we have

$$\left( R^\tau_{\text{Riesz}} T - R^1_{\text{Riesz}} = - \sum_{-d_i \in \text{Spec}(\Omega), j+l=d_i} \langle T_{ij}(\chi_\tau - \chi), \omega_l \rangle \right).$$

Then

$$\langle \tau \frac{d}{d\tau} R^\tau_{\text{Riesz}} T, \omega \rangle = \langle \tau \frac{d}{d\tau} (R^\tau_{\text{Riesz}} T - R^1_{\text{Riesz}}), \omega \rangle = -\tau \frac{d}{d\tau} \sum_{-d_i \in \text{Spec}(\Omega), j+l=d_i} \langle T_{ij}(\chi_\tau - \chi), \omega_l \rangle$$

$$= \sum_{-d_i \in \text{Spec}(\Omega), j+l=d_i} \langle T_{ij}\psi_{\tau}, \omega_l \rangle = \sum_{-d_i \in \text{Spec}(\Omega), j+l=d_i} \langle T_{ij}\psi_{\tau}, \omega_l \rangle = \tau^{-N} \sum_{-d_i \in \text{Spec}(\Omega), j+l=d_i} \langle T_{ij}\psi_{\tau}, \omega_l \rangle = \tau^{-N} \int_{\rho_\chi}^{\text{res}} T \wedge \omega$$

because of the Jordan decomposition. Notice that since $N$ is nilpotent, $\tau^N$ only scales as a polynomial of $\log \tau$, $\tau^{-N} = \sum_k \frac{(-\log \tau)^k}{k!} N^k$. Finally

$$\langle (R^\tau_{\text{Riesz}} T - R^1_{\text{Riesz}}), \omega \rangle = \left( \int_1^\tau \frac{d\tau}{\tau} \tau^{-N} \right) \int_{\rho_\chi}^{\text{res}} T \wedge \omega$$

$$= \sum_{k=0}^{n_i} \frac{(-1)^k}{k+1!} \left( \log \tau \right)^{k+1} N^k \left( \int_{\rho_\chi}^{\text{res}} T \wedge \omega \right) = \left( \int_{\rho_\chi}^{\text{res}} T \wedge \omega \right).$$

In the diagonalizable case, $N = 0$ and we find that

$$\langle (R^\tau_{\text{Riesz}} T - R^1_{\text{Riesz}}), \omega \rangle = \left( \int_1^\tau \frac{d\tau}{\tau} \right) \left( \int_{\rho_\chi}^{\text{res}} T \wedge \omega \right) = \log \tau \left( \int_{\rho_\chi}^{\text{res}} T \wedge \omega \right) .$$

\[\blacksquare\]

**Example 8.5.2** We will exhibit the RG flow on the simple example of the Riesz regularization of $\frac{1}{n!}$. It suffices to go back to the example (8.4.1) and subtract two regularizations corresponding to two distinct ways of cutting the integral at 1 and $\tau$. We then obtain the local counterterm:

$$\int_1^\tau \frac{d\lambda}{\lambda} \phi^{(n-1)}(0) = \log \tau \phi^{(n-1)} \frac{d}{d\tau} \frac{n-1}{n!}.$$
Theorem 8.5.2 If $T \in F_{\Omega}(U \setminus I)$ then $\exists N, \forall \omega \in D^k(M)$,

$$\langle R'_{\text{Hadamard}}T - R^1_{\text{Hadamard}}T, \omega \rangle = \sum_{|l| \leq m, j \leq N} \left( \tau^{-(\Omega+j+l)} - 1 \right) \langle T_j\psi, \omega_l \rangle + O(1)$$

(8.38)

Proof — For the Hadamard scheme, we will use the theorem (7.3.2) in chapter 6 which describes the counterterm which appears when we change $\chi$ in the Hadamard regularization:

$$\left\langle \tau \frac{d}{d\tau} R'_{\text{Hadamard}}T, \omega \right\rangle = \sum_{|l| \leq m, j \leq N} \langle T_j\psi, P_m(\omega) \rangle = \sum_{|l| \leq m, j \leq N} \tau^{-(\Omega+j+l)} \langle T_j\psi, \omega_l \rangle + O(1)$$

since $\forall \omega, |\langle I_N\tau\psi, \omega \rangle| = O(\tau^{-(\Omega+N+1)})$ by the property of the term $I_N$.

Finally, for $N$ large enough we find that:

$$\langle R'_{\text{Hadamard}}T - R^1_{\text{Hadamard}}T, \omega \rangle = \int_1^\tau \frac{d\tau}{\tau} \sum_{|l| \leq m, j \leq N} \tau^{-(\Omega+j+l)} \langle T_j\psi, \omega_l \rangle + O(1)$$

Example 8.5.3 To illustrate the theorem, we give our favorite example: the Hadamard partie finie of $\frac{d\lambda}{\lambda}$ is given by the formula $\lim_{\varepsilon \to 0} \int_\varepsilon^1 \frac{d\lambda}{\lambda}(\varphi(\lambda) - \varphi(0)) + \int_1^\infty \frac{d\lambda}{\lambda}\varphi(\lambda)$. Now, instead of cutting the integration domain at 1, we choose to cut the integration domain at $\tau$: $\lim_{\varepsilon \to 0} \int_{\varepsilon}^\tau \frac{d\lambda}{\lambda}(\varphi(\lambda) - \varphi(0)) + \int_1^\infty \frac{d\lambda}{\lambda}\varphi(\lambda)$. Then the difference between the two finite parts is $-\int_1^\tau \frac{d\lambda}{\lambda}\varphi(0)$ which can also be written as the local counterterm $\log \tau \delta_0(\varphi)$.
Bibliography


[54] Laurent Schwartz. *Application of distributions to the elementary particles in Quantum mechanics*.


[70] Stefan Waldmann. Geometric wave equations.


