Licence 3 - Mathématiques

LM360 « TOPOLOGIE ET CALCUL DIFFÉRENTIEL » Épreuve du 30/01/2012

Ni les documents, ni les calculatrices ne sont autorisés. Toutes les réponses devront être dûment justifiées.

Questions de cours

- 1. Montrer que l'image d'un connexe par une fonction continue est connexe.
- 2. Soient $\Omega \subset \mathbb{R}^d$, $a \in \Omega$ et $f: \Omega \to \mathbb{R}$ différentiable. Énoncer et démontrer une condition nécessaire pour que f ait un maximum local au point a.
- 3. Donner trois définitions équivalentes d'une hypersurface de \mathbb{R}^d (les démonstrations ne sont pas demandées).

Exercices:

Exercice 1. Si (X, d) est un espace métrique non vide, on note

$$\operatorname{diam}(X) = \sup_{(x,y) \in X^2} d(x,y) \in \mathbb{R}_+ \cup \{\infty\}.$$

- 1. Montrer que, si X est compact, alors $\operatorname{diam}(X) \in \mathbb{R}_+$ et il existe $(x,y) \in X^2$ tels que $\operatorname{diam}(X) = d(x,y)$.
- 2. Montrer que, si $(K_n)_{n\in\mathbb{N}}$ est une suite décroissante de compacts non vides de X, alors $K := \bigcap_n K_n$ est un compact non vide de X et $\operatorname{diam}(K) = \lim_{n \to \infty} \operatorname{diam}(K_n)$.

Exercice 2. Soit E l'espace vectoriel $C^0([0,1])$ des fonctions continues sur [0,1].

1. On le munit de la norme $\|\cdot\|_{\infty}$ définie par

$$||f||_{\infty} := \sup_{x \in [0,1]} |f(x)|.$$

Montrer que chacune des formes linéaires suivantes est continue et calculer sa norme.

$$\delta_0(f) = f(0); \quad I(f) = \int_0^1 f(x) dx.$$

2. Même question si l'on munit E de la norme $\|\cdot\|_1$ définie par

$$||f||_1 := \int_0^1 |f(x)| dx.$$

3. Soient à présent $F = C^1([0,1])$ l'espace vectoriel des fonctions continûment différentiables sur [0,1], et N la norme définie par $N(f) = \|f\|_{\infty} + \|f'\|_{\infty}$. La forme linéaire $\delta'_0: f \in F \mapsto f'(0)$ est-elle continue lorsqu'on munit F de la norme $\|\cdot\|_{\infty}$? Même question pour la norme N.

- 4. On munit de nouveau E de la norme $\|\cdot\|_1$. Pour $g \in E$, soit $T_g : f \mapsto \int_0^1 f(t)g(t)dt$. Montrer que T_g est une forme linéaire continue et calculer sa norme d'opérateur (on pourra commencer par le cas où la fonction g est constante).
- 5. Est-ce que pour tout $g \in E$ il existe une fonction $f \in E$ non identiquement nulle telle que $|T_g(f)| = ||T_g|| \cdot ||f||_1$?

Exercice 3. On considère l'ensemble

$$S = \{(x, y, z) \in \mathbb{R}^3; \ xy + xz + 2yz = 1\}.$$

- 1. Montrer que S est une hypersurface.
- 2. Soit $M \in S$. Donner une équation du plan tangent à S en M.
- 3. Montrer que $f: \mathbb{R}^3 \to \mathbb{R}$ définie par $f(x,y,z) = x^2 + y^2 + z^2$ admet exactement deux minima sur S et les calculer.

Exercice 4. (Hors barème)

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une application C^{∞} et soit $n \geq 1$. Établir l'équivalence des deux propriétés suivantes :
 - (a) $f(0) = f'(0) = \dots = f^{(n-1)}(0) = 0.$
 - (b) $f(x) = x^n g(x)$ avec $g \in C^{\infty}$.
- 2. Soit $\Omega = B_{\mathbb{R}^n}(0,R)$ et $f \in \mathcal{C}^{\infty}(\Omega,\mathbb{R})$. On suppose f(0) = 0 et Df(0) = 0. Montrer qu'il existe $(g_{i,j})_{1 < i,j \le n} \in [\mathcal{C}^{\infty}(\Omega,\mathbb{R})]^{n^2}$ telles que

$$f(x) = \sum_{i,j=1}^{n} x_i x_j g_{i,j}(x).$$