Lemma 3.1.7. Let Ω be an open subset of $\mathbb{R}^{n}, f \in L_{\text {loc }}^{1}(\Omega)$ such that, for all $\varphi \in$ $\mathscr{D}(\Omega), \int f(x) \varphi(x) d x=0$. Then we have $f=0$.

Proof. Let K be a compact subset of Ω and $\chi \in \mathscr{D}(\Omega)$ equal to 1 on a neighborhood of K as in the lemma 3.1.3. With ϕ as in the proposition 3.1.1, we get that $\lim _{\epsilon \rightarrow 0_{+}} \phi_{\epsilon} *(\chi f)=\chi f$ in $L^{1}\left(\mathbb{R}^{n}\right)$. We have

$$
\left(\phi_{\epsilon} *(\chi f)\right)(x)=\int f(y) \underbrace{\chi(y) \phi\left((x-y) \epsilon^{-1}\right) \epsilon^{-n}}_{=\varphi_{x}(y)} d y, \quad \operatorname{supp} \varphi_{x} \subset K, \varphi_{x} \in \mathscr{D}(\Omega)
$$

and from the assumption of the lemma, we obtain $\left(\phi_{\epsilon} *(\chi f)\right)(x)=0$ for all x, implying $\chi f=0$ from the convergence result; the conclusion follows.

We note that it makes sense to restrict a distribution $T \in \mathscr{D}^{\prime}(\Omega)$ to an open subset $U \subset \Omega$: just define

$$
\begin{equation*}
\left\langle T_{U U}, \varphi\right\rangle_{\mathscr{D}^{\prime}(U), \mathscr{D}(U)}=\langle T, \varphi\rangle_{\mathscr{D}^{\prime}(\Omega), \mathscr{D}(\Omega)}, \tag{3.1.7}
\end{equation*}
$$

and $T_{\mid U}$ is obviously a distribution on U. With this in mind, we can define the support of a distribution exactly as in (3.1.8).

Definition 3.1.8. Let Ω be an open subset of \mathbb{R}^{n} and $T \in \mathscr{D}^{\prime}(\Omega)$. We define the support of T as

$$
\begin{equation*}
\operatorname{supp} T=\left\{x \in \Omega, \forall U \text { open } \in \mathscr{V}_{x}, T_{\mid U} \neq 0\right\} . \tag{3.1.8}
\end{equation*}
$$

We define the C^{∞} singular support of T as

$$
\begin{equation*}
\text { singsupp } T=\left\{x \in \Omega, \forall U \text { open } \in \mathscr{V}_{x}, T_{\mid U} \notin C^{\infty}(U)\right\} \tag{3.1.9}
\end{equation*}
$$

Note that the support and the singular support are closed subset of Ω since their complements in Ω are open: we have

$$
\begin{align*}
(\operatorname{supp} T)^{c} & =\left\{x \in \Omega, \exists U \text { open } \in \mathscr{V}_{x}, T_{\mid U}=0\right\} \tag{3.1.10}\\
(\operatorname{singsupp} T)^{c} & =\left\{x \in \Omega, \exists U \text { open } \in \mathscr{V}_{x}, T_{\mid U} \in C^{\infty}(U)\right\} . \tag{3.1.11}
\end{align*}
$$

A simple consequence of that definition is that, for $T \in \mathscr{D}^{\prime}(\Omega), \varphi \in \mathscr{D}(\Omega)$,

$$
\begin{equation*}
\operatorname{supp} \varphi \subset(\operatorname{supp} T)^{c} \Longrightarrow\langle T, \varphi\rangle=0 \tag{3.1.12}
\end{equation*}
$$

3.1.3 First examples of distributions

The Dirac mass

We define for $\varphi \in C_{c}^{0}\left(\mathbb{R}^{n}\right),\left\langle\delta_{0}, \varphi\right\rangle=\varphi(0)$; the property (3.1.5) is satisfied with $C_{K}=1, N_{K}=0$. We have supp $\delta_{0}=\{0\}$. From this, the Dirac mass cannot be an $L_{\text {loc }}^{1}$ function, otherwise, since it is 0 a.e., it would be 0 . Let ϕ, ϵ as in the proposition 3.1.1: then we have from that proposition

$$
\lim _{\epsilon \rightarrow 0_{+}} \int \phi_{\epsilon}(x) \varphi(x) d x=\varphi(0)
$$

so that the Dirac mass appears as the weak limit of $\epsilon^{-n} \phi\left(x \epsilon^{-1}\right)$.

The simple layer

We consider in \mathbb{R}^{n} the hypersurface $\Sigma=\left\{\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n-1} \times \mathbb{R}, x_{n}=f\left(x^{\prime}\right)\right\}$, where $f \in C^{1}\left(\mathbb{R}^{n-1}\right)$. We define for $\varphi \in C_{c}^{0}\left(\mathbb{R}^{n}\right)$,

$$
\left\langle\delta_{\Sigma}, \varphi\right\rangle=\int_{\mathbb{R}^{n-1}} \varphi\left(x^{\prime}, f\left(x^{\prime}\right)\right)\left(1+\left|\nabla f\left(x^{\prime}\right)\right|^{2}\right)^{1 / 2} d x^{\prime}
$$

The property (3.1.5) is satisfied with $C_{K}=\operatorname{area}(\Sigma \cap K), N_{K}=0, \operatorname{supp} \delta_{\Sigma}=\Sigma$, and since Σ has Lebesgue measure 0 in \mathbb{R}^{n}, the simple layer potential cannot be an $L_{\text {loc }}^{1}$ function.

The principal value of $1 / x$

We define for $\varphi \in C_{c}^{1}(\mathbb{R})$,

$$
\begin{equation*}
\left\langle\operatorname{pv} \frac{1}{x}, \varphi\right\rangle=\lim _{\epsilon \rightarrow 0_{+}} \int_{|x| \geq \epsilon} \frac{\varphi(x)}{x} d x . \tag{3.1.13}
\end{equation*}
$$

Let us check that this limit exists. We have for parity reasons,

$$
\begin{aligned}
\int_{|x| \geq \epsilon} \frac{\varphi(x)}{x} d x= & \int_{\epsilon}^{+\infty}(\varphi(x)-\varphi(-x)) \frac{d x}{x} \\
& =[\ln x(\varphi(x)-\varphi(-x))]_{x=\epsilon}^{x=+\infty}-\int_{\epsilon}^{+\infty}\left(\varphi^{\prime}(x)+\varphi^{\prime}(-x)\right) \ln x d x
\end{aligned}
$$

and thus, using that $\lim _{\epsilon \rightarrow 0_{+}} \epsilon \ln \epsilon=0, \ln |x| \in L_{\text {loc }}^{1}(\mathbb{R})$, we get

$$
\left\langle\operatorname{pv} \frac{1}{x}, \varphi\right\rangle=-\int_{0}^{+\infty}\left(\varphi^{\prime}(x)+\varphi^{\prime}(-x)\right) \ln x d x=-\int_{\mathbb{R}} \varphi^{\prime}(x)(\ln |x|) d x
$$

yielding $\left|\left\langle\mathrm{pv} \frac{1}{x}, \varphi\right\rangle\right| \leq \int_{\operatorname{supp} \varphi^{\prime}}|\ln | x| | d x\left\|\varphi^{\prime}\right\|_{L^{\infty}}$.

3.1.4 Continuity properties

Definition 3.1.9. Let Ω be an open subset of \mathbb{R}^{n} and let $\left(\varphi_{j}\right)_{j \geq 1}$ be a sequence of functions in $C_{c}^{\infty}(\Omega)$. We shall say that $\lim _{j} \varphi_{j}=0$ in $C_{c}^{\infty}(\Omega)$ when the two following conditions are satisfied:
(1) there exists a compact set $K \subset \Omega$, such that $\forall j \geq 1$, $\operatorname{supp} \varphi_{j} \subset K$,
(2) $\lim _{j} \varphi_{j}=0$ in the Fréchet space $C_{K}^{\infty}(\Omega)$, i.e. $\forall \alpha \in \mathbb{N}^{n}, \lim _{j}\left(\sup _{x \in K}\left|\left(\partial_{x}^{\alpha} \varphi_{j}\right)(x)\right|\right)=0$.

Proposition 3.1.10. Let Ω be an open subset of \mathbb{R}^{n} and T be a linear form defined on $C_{c}^{\infty}(\Omega)$. The linear form T is a distribution on Ω if and only if it is sequentially continuous.

Proof. Assuming $|\langle T, \varphi\rangle| \leq C_{K} \max _{|\alpha| \leq N_{K}}\left\|\partial_{x}^{\alpha} \varphi\right\|_{L^{\infty}}$ for all $\varphi \in C_{K}^{\infty}(\Omega)$ and all K compact $\subset \Omega$ implies readily the sequential continuity. Conversely, if T does not satisfy (3.1.5), we have
$\exists K_{0}$ compact $\subset \Omega, \forall k \geq 1, \forall N \in \mathbb{N}, \exists \varphi_{k, N} \in C_{K_{0}}^{\infty}(\Omega),\left|\left\langle T, \varphi_{k, N}\right\rangle\right|>k \max _{|\alpha| \leq N}\left\|\partial_{x}^{\alpha} \varphi_{k, N}\right\|_{L^{\infty}}$.

From the strict inequality, we infer that the function $\varphi_{k, N}$ is not identically 0 , and we may define

$$
\psi_{k}=\frac{\varphi_{k, k}}{k \max _{|\alpha| \leq k}\left\|\partial_{x}^{\alpha} \varphi_{k, k}\right\|_{L^{\infty}}}, \quad \text { so that }\left|\left\langle T, \psi_{k}\right\rangle\right|>1
$$

But the sequence $\left(\psi_{k}\right)_{k \geq 1}$ converges to $0 \operatorname{since} \operatorname{supp} \psi_{k} \subset K_{0}$ and for $|\beta| \leq k$, $\left\|\partial_{x}^{\beta} \psi_{k}\right\|_{L^{\infty}} \leq 1 / k$, implying for each multi-index β that $\lim _{k}\left\|\partial_{x}^{\beta} \psi_{k}\right\|_{L^{\infty}}=0$. The sequential continuity is violated since $\left|\left\langle T, \psi_{k}\right\rangle\right|>1$ and the converse is proven.
Definition 3.1.11. Let Ω be an open subset of $\mathbb{R}^{n}, T \in \mathscr{D}^{\prime}(\Omega)$ and $N \in \mathbb{N}$. The distribution T will be said of finite order N if

$$
\begin{equation*}
\exists N \in \mathbb{N}, \forall K \text { compact } \subset \Omega, \exists C_{K}>0, \forall \varphi \in C_{K}^{\infty}(\Omega),|\langle T, \varphi\rangle| \leq C_{K} \sup _{\substack{|\alpha| N_{N}^{N} \\ x \in \mathbb{R}^{n}}}\left|\left(\partial_{x}^{\alpha} \varphi\right)(x)\right| . \tag{3.1.14}
\end{equation*}
$$

The vector space of distributions of order N on Ω will be denoted by $\mathscr{D}^{N}(\Omega)$. The vector space $\mathscr{D}^{\prime 0}(\Omega)$ is called the space of Radon measures on Ω.

Proposition 3.1.12. Let Ω be an open subset of \mathbb{R}^{n} and $m \in \mathbb{N}$. The vector space $\mathscr{D}^{\prime m}(\Omega)$ is equal to the sequentially continuous ${ }^{1}$ linear forms on $C_{c}^{m}(\Omega)$: if $T \in \mathscr{D}^{\prime m}(\Omega)$, it can be extended to a sequentially continuous linear form on $C_{c}^{m}(\Omega)$. If T is a sequentially continuous linear form on $C_{c}^{m}(\Omega)$, then $T \in \mathscr{D}^{\prime m}(\Omega)$.

Proof. Let us first consider $T \in \mathscr{D}^{\prime m}(\Omega), \varphi \in C_{c}^{m}(\Omega)$. Applying the proposition 3.1.1, we find a sequence $\left(\varphi_{k}\right)_{k \geq 1}$ in $C_{c}^{\infty}(\Omega)$, converging in $C_{c}^{m}(\Omega)$ with limit φ. Since we may assume that all the functions φ_{k} and φ are supported in a fixed compact subset K of Ω, we have, according to the estimate (3.1.14),

$$
\left|\left\langle T, \varphi_{k}-\varphi_{l}\right\rangle\right| \leq C \max _{|\alpha| \leq m}\left\|\partial_{x}^{\alpha}\left(\varphi_{k}-\varphi_{l}\right)\right\|_{L^{\infty}}=C p\left(\varphi_{k}-\varphi_{l}\right),
$$

where p is the norm in the Banach space $C_{K}^{m}(\Omega)$. Since the sequence $\left(\varphi_{k}\right)_{k \geq 1}$ converges in $C_{K}^{m}(\Omega)$, we get that the sequence $\left(\left\langle T, \varphi_{k}\right\rangle\right)_{k \geq 1}$ is a Cauchy sequence in \mathbb{C}, thus converges; moreover, if for some compact subset L of $\Omega,\left(\psi_{k}\right)_{k \geq 1}$ is another sequence of $C_{L}^{m}(\Omega)$ converging to φ, we have
$\left|\left\langle T, \psi_{k}-\varphi_{k}\right\rangle\right| \leq C^{\prime} \max _{|\alpha| \leq m}\left\|\partial_{x}^{\alpha}\left(\varphi_{k}-\psi_{k}\right)\right\|_{L^{\infty}}=C^{\prime} p\left(\varphi_{k}-\psi_{k}\right) \leq C^{\prime} p\left(\varphi_{k}-\varphi\right)+C^{\prime} p\left(\varphi-\psi_{k}\right)$
and $\lim _{k}\left\langle T, \psi_{k}-\varphi_{k}\right\rangle=0$ so that, we can extend the linear form to $C_{c}^{m}(\Omega)$ by defining $\langle T, \varphi\rangle=\lim _{k}\left\langle T, \varphi_{k}\right\rangle$. We get also immediately that (3.1.14) holds with $N=m$ and $C_{K}^{\infty}(\Omega)$ replaced by $C_{K}^{m}(\Omega)$, so that T is obviously sequentially continuous.

Let us now consider a sequentially continuous linear form T on $C_{c}^{m}(\Omega)$; reproducing the proof of the proposition 3.1.10, we get that the estimate (3.1.14) holds with $N=m$, proving that $T \in \mathscr{D}^{\prime m}(\Omega)$. The proof of the proposition is complete.
Remark 3.1.13. We have already proven directly that functions in $L_{\mathrm{loc}}^{1}(\Omega)$ (see (3.1.6)), the Dirac mass and a simple layer (see the section 3.1.3) are distributions of order 0 . It is an exercise left to the reader to prove that the distribution $\mathrm{pv} \frac{1}{x}$ defined in (3.1.13) is of order 1 and not of order 0 .

[^0]
3.1.5 Partitions of unity and localization

Theorem 3.1.14 (Partition of unity). Let Ω be an open subset of \mathbb{R}^{n}, K a compact subset of Ω and $\Omega_{1}, \ldots, \Omega_{m}$ open subsets of Ω such that $K \subset \Omega_{1} \cup \cdots \cup \Omega_{m}$. Then for $1 \leq j \leq m$, there exists $\psi_{j} \in C_{c}^{\infty}\left(\Omega_{j} ;[0,1]\right)$ and V open such that

$$
\Omega \supset V \supset K, \forall x \in V, \sum_{1 \leq j \leq m} \psi_{j}(x)=1,
$$

and for all $x \in \Omega, \sum_{1 \leq j \leq m} \psi_{j}(x) \in[0,1]$.
Proof. The case $m=1$ of the theorem is proven in the lemma 3.1.3. We consider now $m>1$ and we note that, since $x \in K$ implies $x \in$ one of the Ω_{j},

$$
K \subset \cup_{x \in K} B\left(x, r_{x}\right), \quad \bar{B}\left(x, r_{x}\right) \subset \text { one of the } \Omega_{j}, \quad r_{x}>0 .
$$

From the compactness of K, we get that $K \subset \cup_{1 \leq l \leq N} B\left(x_{l}, r_{x_{l}}\right)$ and we may assume that

$$
\begin{array}{ll}
\bar{B}\left(x_{l}, r_{x_{l}}\right) \subset \Omega_{1}, & \text { for } 1 \leq l \leq N_{1}, \\
\bar{B}\left(x_{l}, r_{x_{l}}\right) \subset \Omega_{2}, & \text { for } N_{1}<l \leq N_{2}, \\
\ldots \ldots \ldots \ldots & \\
\bar{B}\left(x_{l}, r_{x_{l}}\right) \subset \Omega_{m}, & \text { for } N_{m-1}<l \leq N_{m}=N .
\end{array}
$$

We define then the compact sets

$$
K_{1}=\cup_{1 \leq l \leq N_{1}} \bar{B}\left(x_{l}, r_{x_{l}}\right), \quad \ldots \quad, K_{m}=\cup_{N_{m-1}<l \leq N_{m}} \bar{B}\left(x_{l}, r_{x_{l}}\right),
$$

and we have $K \subset \cup_{1 \leq j \leq m} K_{j}$, and for each $j, K_{j} \subset \Omega_{j}$. Using the lemma 3.1.3, we find $\varphi_{j} \in C_{c}^{\infty}\left(\Omega_{j} ;[0,1]\right)$ such that $\varphi_{j}=1$ on a neighborhood $V_{j}\left(\subset \Omega_{j}\right)$ of K_{j}. We define then

$$
\begin{aligned}
& \psi_{1}=\varphi_{1} \\
& \psi_{2}=\varphi_{2}\left(1-\varphi_{1}\right) \\
& \ldots \ldots \\
& \psi_{j}=\varphi_{j}\left(1-\varphi_{1}\right) \ldots\left(1-\varphi_{j-1}\right),
\end{aligned}
$$

so that $\psi_{j} \in C_{c}^{\infty}\left(\Omega_{j} ;[0,1]\right)$ and we have

$$
\begin{equation*}
\sum_{1 \leq j \leq m} \psi_{j}=\sum_{1 \leq j \leq m} \varphi_{j}\left(\prod_{1 \leq k<j}\left(1-\varphi_{k}\right)\right)=1-\prod_{1 \leq k \leq m}\left(1-\varphi_{k}\right), \tag{3.1.15}
\end{equation*}
$$

since the formula (second equality above) is true for $m=1$ and inductively,

$$
\begin{aligned}
\sum_{1 \leq j \leq m+1} \varphi_{j}\left(\prod_{1 \leq k<j}\left(1-\varphi_{k}\right)\right) & =1-\prod_{1 \leq k \leq m}\left(1-\varphi_{k}\right)+\varphi_{m+1} \prod_{1 \leq k \leq m}\left(1-\varphi_{k}\right) \\
= & 1-\left(1-\varphi_{m+1}\right) \prod_{1 \leq k \leq m}\left(1-\varphi_{k}\right)=1-\prod_{1 \leq k \leq m+1}\left(1-\varphi_{k}\right) .
\end{aligned}
$$

We have thus for $x \in \cup_{1 \leq j \leq m} V_{j}$ (which is a neighborhood of K in Ω), using (3.1.15) and $\varphi_{j}=1$ on $V_{j}, \sum_{1 \leq j \leq m} \psi_{j}(x)=1$. On the other hand, (3.1.15) and φ_{j} valued in $[0,1]$ show that $\sum_{1 \leq j \leq m} \psi_{j}(x) \in[0,1]$ for all x. The proof is complete.

Theorem 3.1.15. Let Ω be an open set of \mathbb{R}^{n} and $\left(\Omega_{j}\right)_{j \in J}$ be an open covering of Ω : each Ω_{j} is open and $\cup_{j \in J} \Omega_{j}=\Omega$. Let us assume that for each $j \in J$, we are given $T_{j} \in \mathscr{D}^{\prime}\left(\Omega_{j}\right)$ in such a way that

$$
\begin{equation*}
T_{j \mid \Omega_{j} \cap \Omega_{k}}=T_{k \mid \Omega_{j} \cap \Omega_{k}} . \tag{3.1.16}
\end{equation*}
$$

Then there exists a unique $T \in \mathscr{D}^{\prime}(\Omega)$ such that for all $j \in J, T_{\Omega_{j}}=T_{j}$.
Proof. Uniqueness: if T, S are such distributions, we get that $(T-S)_{\mid \Omega_{j}}=0$, so that for all $j \in J, \Omega_{j} \subset(\operatorname{supp}(T-S))^{c}$ and thus $\Omega=\cup_{j \in J} \Omega_{j} \subset(\operatorname{supp}(T-S))^{c}$, i.e. $T-S=0$.

Existence: let $\varphi \in \mathscr{D}(\Omega)$ and let us consider the compact set $K=\operatorname{supp} \varphi$. We have $K \subset \cup_{j \in M} \Omega_{j}$ with M a finite subset of J. Using the theorem on partitions of unity, we find some function $\psi_{j} \in C_{c}^{\infty}\left(\Omega_{j}\right)$ for $j \in M$ such that $\sum_{j \in M} \psi_{j}=$ 1 on a neighborhood of K. As a consequence, we have $\varphi=\sum_{j \in M} \psi_{j} \varphi$ and we define

$$
\langle T, \varphi\rangle=\sum_{j \in M}\left\langle T_{j}, \psi_{j} \varphi\right\rangle .
$$

The required estimates (3.1.5) are easily checked, but the linearity and the independence with respect to the decomposition deserve some attention. Assume that we have $\varphi=\sum_{k \in N} \phi_{k} \varphi$, where N is a finite subset of J and $\phi_{k} \in C_{c}^{\infty}\left(\Omega_{k}\right)$: we have

$$
\sum_{k \in N}\left\langle T_{k}, \phi_{k} \varphi\right\rangle=\sum_{j \in M, k \in N}\left\langle T_{k}, \phi_{k} \psi_{j} \varphi\right\rangle \underbrace{=}_{\text {from (3.1.16) }} \sum_{j \in M, k \in N}\left\langle T_{j}, \phi_{k} \psi_{j} \varphi\right\rangle=\sum_{j \in M}\left\langle T_{j}, \psi_{j} \varphi\right\rangle,
$$

proving that T is defined independently of the decomposition. The linearity follows at once. The proof is complete.

3.1.6 Weak convergence of distributions

We have not defined a topology on the space of test functions $\mathscr{D}(\Omega)$, although we gave the definition of convergence of a sequence (see the definition 3.1.9); we shall need also a simple notion of weak-dual convergence of a sequence of distributions, which is the $\sigma\left(\mathscr{D}^{\prime}, \mathscr{D}\right)$ convergence.

Definition 3.1.16. Let Ω be an open set of $\mathbb{R}^{n},\left(T_{j}\right)_{j \geq 1}$ be a sequence of $\mathscr{D}^{\prime}(\Omega)$ and $T \in \mathscr{D}^{\prime}(\Omega)$. We shall say that $\lim _{j} T_{j}=T$ in the weak-dual topology if

$$
\begin{equation*}
\forall \varphi \in \mathscr{D}(\Omega), \quad \lim _{j}\left\langle T_{j}, \varphi\right\rangle=\langle T, \varphi\rangle . \tag{3.1.17}
\end{equation*}
$$

Remark 3.1.17. We have already seen (see the section 3.1.3) that for $\rho \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, $\epsilon>0, \rho_{\epsilon}(x)=\epsilon^{-n} \rho\left(x \epsilon^{-1}\right), \lim _{\epsilon \rightarrow 0_{+}} \rho_{\epsilon}=\delta_{0} \int \rho(t) d t$. Moreover, on $\mathscr{D}^{\prime}(\mathbb{R})$, we have with $T_{\lambda}(x)=e^{i \lambda x}, \lim _{\lambda \rightarrow+\infty} T_{\lambda}=0$ since for $\varphi \in \mathscr{D}(\mathbb{R})$,

$$
\int_{\mathbb{R}} e^{i \lambda x} \varphi(x) d x=(i \lambda)^{-1} \int_{\mathbb{R}} \frac{d}{d x}\left(e^{i \lambda x)} \varphi(x) d x=-(i \lambda)^{-1} \int_{\mathbb{R}} e^{i \lambda x} \varphi^{\prime}(x) d x .\right.
$$

Theorem 3.1.18. Let Ω be an open set of $\mathbb{R}^{n},\left(T_{j}\right)_{j \geq 1}$ be a sequence of $\mathscr{D}^{\prime}(\Omega)$ such that, for all $\varphi \in \mathscr{D}(\Omega)$, the (numerical) sequence $\left(\left\langle T_{j}, \varphi\right\rangle\right)_{j \geq 1}$ converges. Defining the linear form T on $\mathscr{D}(\Omega)$, by $\langle T, \varphi\rangle=\lim _{j}\left\langle T_{j}, \varphi\right\rangle$, we obtain that T belongs to $\mathscr{D}^{\prime}(\Omega)$.

Proof. This is an important consequence of the Banach-Steinhaus theorem 2.1.8; let us consider a compact subset K of Ω. Then defining $T_{j, K}$ as the restriction of T_{j} to the Fréchet space $\mathscr{D}_{K}(\Omega)$, we see that the assumptions of the corollary 2.1.8 are satisfied since $T_{j, K}$ belongs to the topological dual of $\mathscr{D}_{K}(\Omega)$, according to the remark 3.1.6. As a consequence the restriction of T to $\mathscr{D}_{K}(\Omega)$ belongs to the topological dual of $\mathscr{D}_{K}(\Omega)$ and from the same remark 3.1.6, it gives that $T \in \mathscr{D}^{\prime}(\Omega)$.
N.B. The reader may note that we have used $E=\mathscr{D}(\Omega)=\cup_{j \in \mathbb{N}} \mathscr{D}_{K_{j}}(\Omega)=\cup_{j} E_{j}$, and that our definition of the topological dual of E as linear forms T on E such that, for all $j, T_{\mid E_{j}} \in$ the topological dual of the Fréchet space E_{j}. This structure allows us to use the Banach-Steinhaus theorem, although we have not defined a topology on E; this observation is a good introduction to the more abstract setting of $L F$ spaces, the so-called inductive limits of Fréchet spaces.

3.2 Differentiation of distributions, multiplication by C^{∞} functions

3.2.1 Differentiation

Definition 3.2.1. Let Ω be an open set of \mathbb{R}^{n} and $T \in \mathscr{D}^{\prime}(\Omega)$. We define the distributions $\partial_{x_{j}} T$ and for a multi-index $\alpha \in \mathbb{N}^{n}$ (see (2.3.6)), $\partial_{x}^{\alpha} T$ by

$$
\begin{equation*}
\left\langle\partial_{x_{j}} T, \varphi\right\rangle=-\left\langle T, \partial_{x_{j}} \varphi\right\rangle, \quad\left\langle\partial_{x}^{\alpha} T, \varphi\right\rangle=(-1)^{|\alpha|}\left\langle T, \partial_{x}^{\alpha} \varphi\right\rangle . \tag{3.2.1}
\end{equation*}
$$

We note that $\partial_{x}^{\alpha} T$ is indeed a distribution on Ω, since the mappings $\varphi \mapsto \partial_{x}^{\alpha} \varphi$ are continuous on each Fréchet space $\mathscr{D}_{K}(\Omega)$.

Remark 3.2.2. If $\lim _{j} T_{j}=T$ in the weak-dual topology of $\mathscr{D}^{\prime}(\Omega)$, then, for all multi-indices $\alpha, \lim _{j} \partial_{x}^{\alpha} T_{j}=\partial_{x}^{\alpha} T$ (in the weak-dual topology): we have, for each $\varphi \in \mathscr{D}(\Omega)$,

$$
\left\langle\partial_{x}^{\alpha} T_{j}, \varphi\right\rangle=(-1)^{|\alpha|}\left\langle T_{j}, \partial_{x}^{\alpha} \varphi\right\rangle \underset{j \rightarrow+\infty}{\longrightarrow}(-1)^{|\alpha|}\left\langle T, \partial_{x}^{\alpha} \varphi\right\rangle=\left\langle\partial_{x}^{\alpha} T, \varphi\right\rangle .
$$

Remark 3.2.3. If $u \in C^{1}(\Omega)$, its derivative $\partial_{x_{j}} u$ as a distribution coincides with the distribution defined by the continuous function $\partial u / \partial x_{j}$: for $\varphi \in \mathscr{D}(\Omega)$,

$$
\left\langle\partial_{x_{j}} u, \varphi\right\rangle=-\left\langle u, \partial_{x_{j}} \varphi\right\rangle=-\int u(x) \frac{\partial \varphi}{\partial x_{j}}(x) d x=\int \frac{\partial u}{\partial x_{j}}(x) \varphi(x) d x=\left\langle\frac{\partial u}{\partial x_{j}}, \varphi\right\rangle .
$$

Also, if $u, v \in C^{0}(\Omega)$ are such that $\partial_{x_{1}} u=v$ in $\mathscr{D}^{\prime}(\Omega)$, then the function u admits v as a partial derivative with respect to x_{1}. To prove this, we may assume that u, v are both compactly supported in Ω : in fact it is enough to prove that for $\chi \in C_{c}^{\infty}(\Omega)$
identically equal to 1 near a point x_{0}, the function χu (compactly supported) has a partial derivative with respect to x_{1} which is $\chi v+u \partial_{x_{1}} \chi$ (compactly supported) and we know that in $\mathscr{D}^{\prime}(\Omega)$ we have

$$
\left\langle\partial_{x_{1}}(\chi u), \varphi\right\rangle=-\left\langle u, \chi \partial_{x_{1}} \varphi\right\rangle=-\left\langle u, \partial_{x_{1}}(\chi \varphi)\right\rangle+\left\langle u, \varphi \partial_{x_{1}} \chi\right\rangle=\left\langle\partial_{x_{1}} u, \chi \varphi\right\rangle+\left\langle u \partial_{x_{1}} \chi, \varphi\right\rangle
$$

which implies a particular case of Leibniz' formula $\partial_{x_{1}}(\chi u)=\chi \partial_{x_{1}} u+u \partial_{x_{1}} \chi=$ $\chi v+u \partial_{x_{1}} \chi$. Assuming then that u, v are compactly supported, we have from the proposition 3.1.1, $u=\lim _{\epsilon}\left(u * \phi_{\epsilon}\right)$ in $C_{c}^{0}(\Omega)$ and the functions $u * \phi_{\epsilon} \in C_{c}^{\infty}(\Omega)$. Also we have, with the ordinary differentiation,
$\left(\partial_{x_{1}}\left(u * \phi_{\epsilon}\right)\right)(x)=\int u(y)\left(\partial_{x_{1}} \phi_{\epsilon}\right)(x-y) d y=\left\langle u(\cdot),-\partial_{y_{1}}\left(\phi_{\epsilon}(x-\cdot)\right)\right\rangle=\int v(y) \phi_{\epsilon}(x-y) d y$,
and $\lim _{\epsilon}\left(v * \phi_{\epsilon}\right)=v$ in $C_{c}^{0}(\Omega)$. As a result the sequences $\left(u * \phi_{\epsilon}\right),\left(\partial_{x_{1}}\left(u * \phi_{\epsilon}\right)\right)$ are both uniformly converging sequences of (compactly supported) continuous functions with respective limits u, v, and this implies that the continuous function u has v as a partial derivative with respect to x_{1}.

3.2.2 Examples

Defining the Heaviside function H as $\mathbf{1}_{\mathbb{R}_{+}}$, we get

$$
\begin{equation*}
H^{\prime}=\delta_{0} \tag{3.2.2}
\end{equation*}
$$

since for $\varphi \in \mathscr{D}(\mathbb{R})$, we have $\left\langle H^{\prime}, \varphi\right\rangle=-\left\langle H, \varphi^{\prime}\right\rangle=-\int_{0}^{+\infty} \varphi^{\prime}(t) d t=\varphi(0)$. Still in one dimension, we have

$$
\begin{equation*}
\left\langle\delta_{0}^{(k)}, \varphi\right\rangle=(-1)^{k} \varphi^{(k)}(0), \tag{3.2.3}
\end{equation*}
$$

since it is true for $k=0$ and inductively $\left\langle\delta_{0}^{(k+1)}, \varphi\right\rangle=-\left\langle\delta_{0}^{(k)}, \varphi^{\prime}\right\rangle=-(-1)^{k} \varphi^{\prime(k)}(0)=$ $(-1)^{k+1} \varphi^{(k+1)}(0)$. Looking at the definition (3.1.13), we see that we have proven

$$
\begin{equation*}
\operatorname{pv}\left(\frac{1}{x}\right)=\frac{d}{d x}(\ln |x|), \quad \text { (distribution derivative). } \tag{3.2.4}
\end{equation*}
$$

Let f be a finitely-piecewise C^{1} function defined on \mathbb{R} : it means that there is an increasing finite sequence of real numbers $\left(a_{n}\right)_{1 \leq n \leq N}$, so that f is C^{1} on all closed intervals $\left[a_{n}, a_{n+1}\right]$ for $1 \leq n<N$ and on $\left.]-\infty, a_{1}\right]$ and $\left[a_{N},+\infty[\right.$. In particular, the function f has a left-limit $f\left(a_{n}^{-}\right)$and a right-limit $f\left(a_{n}^{+}\right)$which may be different. Let us compute the distribution derivative of f; for $\varphi \in \mathscr{D}(\mathbb{R})$, since f is locally integrable, we have, setting $a_{0}=-\infty, a_{N+1}=+\infty$,

$$
\begin{aligned}
\left\langle f^{\prime}, \varphi\right\rangle & =-\left\langle f, \varphi^{\prime}\right\rangle=-\int_{\mathbb{R}} f(x) \varphi^{\prime}(x) d x=-\sum_{0 \leq n \leq N} \int_{a_{n}}^{a_{n+1}} f(x) \varphi^{\prime}(x) d x \\
& =\sum_{0 \leq n \leq N} \int_{a_{n}}^{a_{n+1}} \frac{d f}{d x}(x) \varphi(x) d x+\sum_{0 \leq n \leq N}\left(f\left(a_{n}^{+}\right) \varphi\left(a_{n}\right)-f\left(a_{n+1}^{-}\right) \varphi\left(a_{n+1}\right)\right) \\
& =\int \varphi(x)\left(\sum_{0 \leq n \leq N} \frac{d f}{d x}(x) \mathbf{1}_{\left[a_{n}, a_{n+1}\right]}(x)\right)+\sum_{1 \leq n \leq N} f\left(a_{n}^{+}\right) \varphi\left(a_{n}\right)-\sum_{1 \leq n \leq N} f\left(a_{n}^{-}\right) \varphi\left(a_{n}\right),
\end{aligned}
$$

so that we have obtained the so-called formula of jumps

$$
\begin{equation*}
f^{\prime}=\sum_{0 \leq n \leq N} \frac{d f}{d x} \mathbf{1}_{\left[a_{n}, a_{n+1}\right]}+\sum_{1 \leq n \leq N}\left(f\left(a_{n}^{+}\right)-f\left(a_{n}^{-}\right)\right) \delta_{a_{n}}, \tag{3.2.5}
\end{equation*}
$$

where $\delta_{a_{n}}$ is the Dirac mass at a_{n}, defined by $\left\langle\delta_{a_{n}}, \varphi\right\rangle=\varphi\left(a_{n}\right)$.
We consider now the following determination of the logarithm given for $z \in \mathbb{C} \backslash \mathbb{R}_{-}$ by

$$
\begin{equation*}
\log z=\oint_{[1, z]} \frac{d \xi}{\xi}, \tag{3.2.6}
\end{equation*}
$$

which makes sense since $\mathbb{C} \backslash \mathbb{R}_{-}$is star-shaped with respect to 1 , i.e. the segment $[1, z] \subset \mathbb{C} \backslash \mathbb{R}_{-}$for $z \in \mathbb{C} \backslash \mathbb{R}_{-}$. Since the function \log coincides with \ln on \mathbb{R}_{+}^{*} and is holomorphic on $\mathbb{C} \backslash \mathbb{R}_{-}$, we get by analytic continuation that

$$
\begin{equation*}
e^{\log z}=z, \quad \text { for } z \in \mathbb{C} \backslash \mathbb{R}_{-} \tag{3.2.7}
\end{equation*}
$$

Also by analytic continuation, we have for $|\operatorname{Im} z|<\pi, \quad \log \left(e^{z}\right)=z$. We want now to study the distributions on \mathbb{R},

$$
u_{y}(x)=\log (x+i y), \quad \text { where } y \neq 0 \text { is a real parameter. }
$$

We leave as an exercise for the reader to prove that

$$
\begin{equation*}
\lim _{y \rightarrow 0_{ \pm}} \log (x+i y)=\ln |x| \pm i \pi(1-H(x)) \tag{3.2.8}
\end{equation*}
$$

where the limits are taken in the sense of the definition 3.1.16; also the reader can check

$$
\begin{equation*}
\frac{1}{x \pm i 0}=\operatorname{pv}\left(\frac{1}{x}\right) \mp i \pi \delta_{0} \tag{3.2.9}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
\left\langle\frac{1}{x \pm i 0}, \varphi\right\rangle=\lim _{\epsilon \rightarrow 0_{+}} \int \frac{\varphi(x)}{x \pm i \epsilon} d x \tag{3.2.10}
\end{equation*}
$$

(part of the exercise is to prove that these limits exist for $\varphi \in \mathscr{D}(\mathbb{R})$). We conclude that section of examples with a more general lemma on a simple ODE.

Lemma 3.2.4. Let I be an open interval of \mathbb{R}. The solutions in $\mathscr{D}^{\prime}(I)$ of $u^{\prime}=0$ are the constants. The solutions in $\mathscr{D}^{\prime}(I)$ of $u^{\prime}=f$ make a one-dimensional affine subspace of $\mathscr{D}^{\prime}(I)$.

Proof. We assume first that $f=0$; if u is a constant, then it is of course a solution. Conversely, let us assume that $u \in \mathscr{D}^{\prime}(I)$ satisfies $u^{\prime}=0$. Let $\chi_{0} \in C_{c}^{\infty}(I)$ such that $\int_{\mathbb{R}} \chi_{0}(x) d x=1$; then we have for any $\varphi \in C_{c}^{\infty}(I)$, with $J(\varphi)=\int_{\mathbb{R}} \varphi(x) d x$, $\psi(x)=\int_{-\infty}^{x}\left(\varphi(t)-J(\varphi) \chi_{0}(t)\right) d t$, noting that ψ belongs 2 to $C_{c}^{\infty}(I)$,

$$
\left\langle u, \varphi-J(\varphi) \chi_{0}\right\rangle=\left\langle u, \psi^{\prime}\right\rangle=-\left\langle u^{\prime}, \psi\right\rangle=0,
$$

[^1]which gives $\langle u, \varphi\rangle=J(\varphi)\left\langle u, \chi_{0}\right\rangle$, i.e. $u=\left\langle u, \chi_{0}\right\rangle$ proving that u is indeed a constant. We have proven that the solutions $u \in \mathscr{D}^{\prime}(I)$ of $u^{\prime}=0$ are simply the constants. If $f \in \mathscr{D}^{\prime}(I)$, we need only to construct a solution v_{0} of $v_{0}^{\prime}=f$ and then use the previous result to obtain that the set of solutions of $u^{\prime}=f$ is $v_{0}+\mathbb{R}$. Let us construct such a solution v_{0}. For $\varphi \in \mathscr{D}(I)$, we define with the same ψ as above,
\[

$$
\begin{equation*}
\left\langle v_{0}, \varphi\right\rangle=-\langle f, \psi\rangle . \tag{3.2.11}
\end{equation*}
$$

\]

It is a distribution since for $\operatorname{supp} \varphi$ compact $\subset I$, we define (the compact set) $K_{1}=$ $\operatorname{supp} \varphi \cup \operatorname{supp} \chi_{0}$, and we have

$$
\left|\left\langle v_{0}, \varphi\right\rangle\right|=|\langle f, \psi\rangle| \leq C_{K_{1}} \max _{0 \leq j \leq N_{K_{1}}}\left\|\psi^{(j)}\right\|_{L^{\infty}} \leq C_{0 \leq j \leq\left(N_{K_{1}}-1\right)_{+}}\left\|\varphi^{(j)}\right\|_{L^{\infty}} .
$$

Moreover the formula (3.2.11) implies the sought result

$$
\left\langle v_{0}^{\prime}, \varphi\right\rangle=-\left\langle v_{0}, \varphi^{\prime}\right\rangle=\left\langle f, \psi_{\varphi^{\prime}}\right\rangle=\langle f, \varphi\rangle,
$$

since $\psi_{\varphi^{\prime}}(x)=\int_{-\infty}^{x}\left(\varphi^{\prime}(t)-J\left(\varphi^{\prime}\right) \chi_{0}(t)\right) d t=\varphi(x)$ because $J\left(\varphi^{\prime}\right)=0$. The proof of the lemma is complete.

3.2.3 Product by smooth functions

We define now the product of a $C^{\infty}\left(\right.$ resp. $\left.C^{N}\right)$ function by a distribution (resp. of order N).

Definition 3.2.5. Let Ω be an open subset of \mathbb{R}^{n} and $u \in \mathscr{D}^{\prime}(\Omega)$. For $f \in C^{\infty}(\Omega)$, we define the product $f \cdot u$ as the distribution defined by

$$
\begin{equation*}
\langle f \cdot u, \varphi\rangle_{\mathscr{D}^{\prime}(\Omega), \mathscr{D}(\Omega)}=\langle u, f \varphi\rangle_{\mathscr{D}^{\prime}(\Omega), \mathscr{D}(\Omega)} . \tag{3.2.12}
\end{equation*}
$$

If u is of order N and $f \in C^{N}(\Omega)$, we define the product $f \cdot u$ as the distribution of order N defined by

$$
\begin{equation*}
\langle f \cdot u, \varphi\rangle_{\mathscr{D}^{\prime N}(\Omega), C_{c}^{N}(\Omega)}=\langle u, f \varphi\rangle_{\mathscr{O}^{\prime N}(\Omega), C_{c}^{N}(\Omega)} . \tag{3.2.13}
\end{equation*}
$$

Remark 3.2.6. Since the multiplication by a $C^{\infty}(\Omega)$ (resp. $\left.C^{N}(\Omega)\right)$ function is a continuous linear operator from $C_{c}^{\infty}(\Omega)$ (resp. $C_{c}^{N}(\Omega)$) into itself, we get that the above formulas actually define the products as distributions on Ω with the right order (see the proposition 3.1.12). Also the product defined in the second part coincides with the first definition whenever $f \in C_{c}^{\infty}(\Omega)$ and if $u \in L_{\mathrm{loc}}^{1}(\Omega), f \in C^{0}(\Omega)$, the usual product $f u$ coincides with the $f \cdot u$ defined here, thanks to the lemma 3.1.7.

The next theorem is providing an extension to the classical Leibniz' formula for the derivatives of a product.

Theorem 3.2.7. Let Ω be an open set of $\mathbb{R}^{n}, u \in \mathscr{D}^{\prime}(\Omega), f \in C^{\infty}(\Omega)$ and $\alpha \in \mathbb{N}^{n}$ be a multi-index (see (2.3.6)). Then we have

$$
\begin{equation*}
\frac{\partial_{x}^{\alpha}(f u)}{\alpha!}=\sum_{\substack{\beta, \gamma \in \mathbb{N}^{n} \\ \beta+\gamma=\alpha}} \frac{\partial_{x}^{\beta}(f)}{\beta!} \frac{\partial_{x}^{\gamma}(u)}{\gamma!} . \tag{3.2.14}
\end{equation*}
$$

Proof. We get immediately by induction on $|\alpha|$ the formula

$$
\frac{\partial_{x}^{\alpha}(f u)}{\alpha!}=\sum_{\substack{\beta, \gamma \in \mathbb{N} n \\ \beta+\gamma=\alpha}} \sigma_{\beta, \gamma} \frac{\partial_{x}^{\beta}(f)}{\beta!} \frac{\partial_{x}^{\gamma}(u)}{\gamma!}, \quad \text { with } \sigma_{\beta, \gamma} \in \mathbb{R}_{+} .
$$

To find the $\sigma_{\beta, \gamma}$, we choose $f(x)=e^{x \cdot \xi}, u(x)=e^{x \cdot \eta}$, with $\xi, \eta \in \mathbb{R}^{n}$. We find then for all $\xi, \eta \in \mathbb{R}^{n}$, the identity

$$
\frac{(\xi+\eta)^{\alpha}}{\alpha!}=\frac{\partial_{x}^{\alpha}\left(e^{x \cdot(\xi+\eta)}\right)}{\alpha!}{ }_{\mid x=0}=\sum_{\substack{\beta, \gamma \in \mathbb{N}^{n} \\ \beta+\gamma=\alpha}} \sigma_{\beta, \gamma} \frac{\partial_{x}^{\beta}\left(e^{x \cdot \xi}\right)}{\beta!} \frac{\partial_{x}^{\gamma}\left(e^{x \cdot \eta}\right)}{\gamma!}=\sum_{\substack{\beta, \gamma \in \mathbb{N}^{n} \\ \beta+\gamma=\alpha}} \sigma_{\beta, \gamma} \frac{\xi^{\beta}}{\beta!} \frac{\eta^{\gamma}}{\gamma!},
$$

and the formula (2.3.7) shows that for β, γ such that $\beta+\gamma=\alpha$

$$
\sigma_{\beta, \gamma}=\partial_{\xi}^{\beta} \partial_{\eta}^{\gamma}\left(\frac{(\xi+\eta)^{\alpha}}{\alpha!}\right)_{\mid \xi=\eta=0}=1
$$

completing the proof of the theorem.
Examples. Let f be a continuous function on \mathbb{R} and δ_{0} be the Dirac mass at 0 . The product $f \cdot \delta_{0}$ is equal to $f(0) \delta_{0}$: since δ_{0} is a distribution of order 0 , we can multiply it by a continuous function and if $\varphi \in C_{c}^{0}(\mathbb{R})$, we have

$$
\begin{equation*}
\left\langle f \cdot \delta_{0}, \varphi\right\rangle=\left\langle\delta_{0}, f \varphi\right\rangle=f(0) \varphi(0)=\left\langle f(0) \delta_{0}, \varphi\right\rangle \Longrightarrow f \cdot \delta_{0}=f(0) \delta_{0} . \tag{3.2.15}
\end{equation*}
$$

On the other hand if $f \in C^{1}(\mathbb{R})$ we have

$$
\begin{equation*}
f \cdot \delta_{0}^{\prime}=f(0) \delta_{0}^{\prime}-f^{\prime}(0) \delta_{0} \tag{3.2.16}
\end{equation*}
$$

since the Leibniz' formula (3.2.14) gives $f(0) \delta_{0}^{\prime}=\left(f \cdot \delta_{0}\right)^{\prime}=f^{\prime} \cdot \delta_{0}+f \cdot \delta_{0}^{\prime}=$ $f^{\prime}(0) \delta_{0}+f \cdot \delta_{0}^{\prime}$. In particular $x \delta_{0}^{\prime}=-\delta_{0}$.

3.2.4 Division of distribution on \mathbb{R} by x^{m}

We want now to address the question of division of a function (or a distribution) by a polynomial; a typical example is the division of 1 by the linear function x expressed by the identity

$$
\begin{equation*}
x \operatorname{pv}(1 / x)=1 \tag{3.2.17}
\end{equation*}
$$

which is an immediate consequence of (3.1.13). We note also from the previous examples that, for any constant c, we have $x\left(\operatorname{pv}(1 / x)+c \delta_{0}\right)=1$. The next theorem shows that $T=\operatorname{pv}(1 / x)+c \delta_{0}$ are the only distributions solutions of the equation $x T=1$.

Theorem 3.2.8. Let $m \geq 1$ be an integer.
(1) If $u \in \mathscr{D}^{\prime}(\mathbb{R})$ is such that $x^{m} u=0$, then $u=\sum_{0 \leq j<m} c_{j} \delta_{0}^{(j)}$.
(2) Let $v \in \mathscr{D}^{\prime}(\mathbb{R})$; there exists $u \in \mathscr{D}^{\prime}(\mathbb{R})$ such that $v=x^{m} u$.

Proof. Let us first prove (1). For $\varphi, \chi_{0} \in C_{c}^{\infty}(\mathbb{R})$ with $\chi_{0}=1$ near 0 , we have

$$
\varphi(x)=\underbrace{\sum_{0 \leq j<m} \frac{\varphi^{(j)}(0)}{j!} x^{j}}_{p_{\varphi, m}(x)}+\underbrace{\int_{0}^{1} \frac{(1-t)^{m-1}}{(m-1)!} \varphi^{(m)}(t x) d t}_{\psi_{m, \varphi}(x)} x^{m}, \quad \psi_{m, \varphi} \in C^{\infty}(\mathbb{R}),
$$

and thus, since $x^{m} u=0$,

$$
\begin{aligned}
\langle u, \varphi\rangle=\overbrace{\left\langle x^{m} u, x^{-m}\left(1-\chi_{0}\right) \varphi\right\rangle}^{=0}+\left\langle u, \chi_{0} \varphi\right\rangle & =\left\langle u, \chi_{0} p_{m, \varphi}\right\rangle+\overbrace{\left\langle x^{m} u, \chi_{0} \psi_{\varphi, m}\right\rangle}^{=0} \\
& =\sum_{0 \leq j<m} \frac{\varphi^{(j)}(0)}{j!}\left\langle u, \chi_{0}\right\rangle=\sum_{0 \leq j<m}\left\langle c_{j} \delta_{0}^{(j)}, \varphi\right\rangle,
\end{aligned}
$$

which the sought result. To obtain (2), for $\varphi \in C_{c}^{\infty}(\mathbb{R})$, and a given $v_{0} \in \mathscr{D}^{\prime}(\mathbb{R})$, we define, using the above notations,

$$
\langle u, \varphi\rangle=\left\langle v_{0}, \chi_{0} \psi_{m, \varphi}\right\rangle+\left\langle v_{0}, x^{-m}\left(1-\chi_{0}\right) \varphi\right\rangle .
$$

This defines obviously a distribution on \mathbb{R} and $\left\langle x^{m} u, \varphi\right\rangle=\left\langle u, x^{m} \varphi\right\rangle$; for the function $\phi(x)=x^{m} \varphi(x)$, we have $p_{\phi, m}=0, x^{m} \psi_{m, \phi}(x)=x^{m} \varphi(x)$, so that the smooth functions $\psi_{m, \phi}=\varphi$,

$$
\left\langle x^{m} u, \varphi\right\rangle=\left\langle v_{0}, \chi_{0} \varphi\right\rangle+\left\langle v_{0}, x^{-m}\left(1-\chi_{0}\right) x^{m} \varphi\right\rangle=\left\langle v_{0}, \varphi\right\rangle .
$$

3.3 Distributions with compact support

3.3.1 Identification with \mathscr{E}^{\prime}

Let Ω be an open subset of \mathbb{R}^{n}. We have already seen that the space $C^{\infty}(\Omega)$ (also denoted by $\mathscr{E}(\Omega))$ is a Fréchet space. Denoting by $\mathscr{E}^{\prime}(\Omega)$ the topological dual of $\mathscr{E}(\Omega)$, we can consider $T \in \mathscr{E}^{\prime}(\Omega)$ as a distribution \tilde{T} on Ω by defining

$$
\left.\langle\tilde{T}, \varphi\rangle_{\mathscr{D}^{\prime}(\Omega), \mathscr{D}(\Omega)}=\langle T, \varphi\rangle_{\mathscr{E}^{\prime}(\Omega), \mathscr{E}(\Omega)} \quad \text { (this makes sense since } \mathscr{D}(\Omega) \subset \mathscr{E}(\Omega)\right) .
$$

The linearity is obvious and the continuity of T as a linear form on the Fréchet space $\mathscr{E}(\Omega)$ implies that there exists $C>0, N \in \mathbb{N}, K$ compact subset of Ω such that

$$
\forall \varphi \in \mathscr{E}(\Omega), \quad\left|\langle T, \varphi\rangle_{\mathscr{E}^{\prime}(\Omega), \mathscr{E}(\Omega)}\right| \leq C \sup _{|\alpha| \leq N, x \in K}\left|\left(\partial_{x}^{\alpha} \varphi\right)(x)\right| .
$$

This estimates also proves that \tilde{T} belongs to $\mathscr{D}^{\prime}(\Omega)$; moreover, it has compact support in the sense of the definition (3.1.8): we have $\langle\tilde{T}, \varphi\rangle=0$ for $\varphi \in C_{c}^{\infty}(\Omega)$, $\operatorname{supp} \varphi \subset K^{c}$, so that $\tilde{T}_{\mid K^{c}}=0$ and thus supp $\tilde{T} \subset K$. The next theorem proves that we can identify the space $\mathscr{E}^{\prime}(\Omega)$ with the distributions on Ω with compact support, denoted by $\mathscr{D}_{\text {comp }}^{\prime}(\Omega)$.

Theorem 3.3.1. Let Ω be an open subset of \mathbb{R}^{n}. The mapping $\iota: \mathscr{E}^{\prime}(\Omega) \rightarrow$ $\mathscr{D}_{\text {comp }}^{\prime}(\Omega)$, defined as above by $\iota(T)=\tilde{T}$ is bijective.

Proof. The mapping ι is linear and if $\iota(T)=0$, we know that T vanishes on all functions of $\mathscr{D}(\Omega)$.

Lemma 3.3.2. Let Ω be an open subset of \mathbb{R}^{n}. The space $\mathscr{D}(\Omega)$ is dense in $\mathscr{E}(\Omega)$.
Proof of the lemma. We consider a sequence $\left(K_{j}\right)_{j \geq 1}$ of compact subsets of Ω such that the lemma 2.3.1 is satisfied. For each $j \geq 1$, we may use the lemma 3.1.3 to construct a function $\chi_{j} \in \mathscr{D}(\Omega)$ with $\chi_{j}=1$ near K_{j}. For a given $\varphi \in \mathscr{E}(\Omega)$, the sequence $\left(\varphi \chi_{j}\right)_{j \geq 1}$ of functions in $\mathscr{D}(\Omega)$ converges in $\mathscr{E}(\Omega)$ to φ, thanks to the last property of the lemma 2.3.1, proving the lemma.

Since T is continuous on $\mathscr{E}(\Omega),\langle T, \varphi\rangle_{\mathscr{E}^{\prime}(\Omega), \mathscr{E}(\Omega)}=\lim _{j}\left\langle T, \varphi \chi_{j}\right\rangle_{\mathscr{E}^{\prime}(\Omega), \mathscr{E}(\Omega)}=0$ since T vanishes on $\mathscr{D}(\Omega)$. Let us consider now $T \in \mathscr{D}_{\text {comp }}^{\prime}(\Omega)$ with supp $T=L$ (compact subset of Ω). Using the lemma 3.1.3, we consider $\chi_{0} \in \mathscr{D}(\Omega)$ such that $\chi_{0}=1$ on a neighborhood of L. For $\varphi \in \mathscr{E}(\Omega)$, we define $S \in \mathscr{E}^{\prime}(\Omega)$ by

$$
\langle S, \varphi\rangle_{\mathscr{E}^{\prime}(\Omega), \mathscr{E}(\Omega)}=\left\langle T, \chi_{0} \varphi\right\rangle_{\mathscr{D}^{\prime}(\Omega), \mathscr{\mathscr { O }}(\Omega)} \quad\left(\text { note that }|\langle S, \varphi\rangle| \leq C \sup _{|\alpha| \leq N, x \in \operatorname{supp} \chi_{0}}\left|\partial_{x}^{\alpha} \varphi\right|\right),
$$

We have $\iota(S)=T$ because

$$
\langle\iota(S), \varphi\rangle_{\mathscr{D}^{\prime}(\Omega), \mathscr{D}(\Omega)}=\langle S, \varphi\rangle_{\mathscr{E}^{\prime}(\Omega), \mathscr{E}(\Omega)}=\left\langle T, \chi_{0} \varphi\right\rangle_{\mathscr{D}^{\prime}(\Omega), \mathscr{D}(\Omega)}=\left\langle\chi_{0} T, \varphi\right\rangle_{\mathscr{D}^{\prime}(\Omega), \mathscr{D}(\Omega)},
$$

and since for $\varphi \in \mathscr{D}(\Omega)$, the function $\left(1-\chi_{0}\right) \varphi$ vanishes on an open neighborhood V of L implying

$$
\operatorname{supp}\left(\left(1-\chi_{0}\right) \varphi\right) \subset V^{c} \subset L^{c} \Longrightarrow\left\langle T,\left(1-\chi_{0}\right) \varphi\right\rangle=0
$$

so that $\iota(S)=\chi_{0} T=\chi_{0} T+\underbrace{\left(1-\chi_{0}\right) T}_{=0}=T$. The proof of the theorem is complete.

Remark 3.3.3. We can then identify $\mathscr{D}_{\text {comp }}^{\prime}(\Omega)$ with $\mathscr{E}^{\prime}(\Omega)$, and we may note that for $T \in \mathscr{D}_{\text {comp }}^{\prime}(\Omega)$ with $\operatorname{supp} T=L, T$ is of finite order N, and for all neighborhoods K of L, there exists $C>0$ such that, for all $\varphi \in \mathscr{E}(\Omega)$,

$$
\begin{equation*}
|\langle T, \varphi\rangle| \leq C \sup _{|\alpha| \leq N, x \in K}\left|\left(\partial_{x}^{\alpha} \varphi\right)(x)\right| . \tag{3.3.1}
\end{equation*}
$$

In general, it is not possible to take $K=L$ in the above estimate.

3.3.2 Distributions with support at a point

The next theorem characterizes the distributions supported in $\{0\}$.
Theorem 3.3.4. Let Ω be an open subset of $\mathbb{R}^{n}, x_{0} \in \Omega$ and let $u \in \mathscr{D}^{\prime}(\Omega)$ such that $\operatorname{supp} u=\left\{x_{0}\right\}$. Then $u=\sum_{|\alpha| \leq N} c_{\alpha} \delta_{x_{0}}^{(\alpha)}$, where the c_{α} are some constants.

Proof. Let $\varphi \in C^{\infty}(\Omega)$; we have for $x \in V_{0} \subset$ open neighborhood of x_{0} (included in $\Omega), N_{0}$ the order of u,

$$
\varphi(x)=\sum_{|\alpha| \leq N_{0}} \frac{\left(\partial_{x}^{\alpha} \varphi\right)\left(x_{0}\right)}{\alpha!}\left(x-x_{0}\right)^{\alpha}+\underbrace{\int_{0}^{1} \frac{(1-\theta)^{N_{0}}}{N_{0}!} \varphi^{\left(N_{0}+1\right)}\left(x_{0}+\theta\left(x-x_{0}\right)\right) d \theta}_{\psi(x), \quad \psi \in C^{\infty}\left(V_{0}\right)}\left(x-x_{0}\right)^{N_{0}+1},
$$

and thus for $\chi_{0} \in C_{c}^{\infty}\left(V_{0}\right), \chi_{0}=1$ near x_{0},

$$
\begin{equation*}
\langle u, \varphi\rangle=\left\langle u, \chi_{0} \varphi\right\rangle=\sum_{|\alpha| \leq N_{0}} \frac{\left(\partial_{x}^{\alpha} \varphi\right)\left(x_{0}\right)}{\alpha!}\left\langle u, \chi_{0}(x)\left(x-x_{0}\right)^{\alpha}\right\rangle+\left\langle u, \chi_{0}(x) \psi(x)\left(x-x_{0}\right)^{N_{0}+1}\right\rangle . \tag{3.3.2}
\end{equation*}
$$

We have also

$$
\begin{equation*}
\left|\left\langle u, \chi_{0}(x) \psi(x)\left(x-x_{0}\right)^{N_{0}+1}\right\rangle\right| \leq C_{0} \sup _{|\alpha| \leq N_{0}}\left|\partial_{x}^{\alpha}\left(\chi_{0}(x) \psi(x)\left(x-x_{0}\right)^{N_{0}+1}\right)\right| . \tag{3.3.3}
\end{equation*}
$$

We can take $\chi_{0}(x)=\rho\left(\frac{x-x_{0}}{\epsilon}\right)$, where $\rho \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is supported in the unit ball B_{1}, $\rho=1$ in $\frac{1}{2} B_{1}$ and $\epsilon>0$. We have then

$$
\begin{aligned}
& \chi_{0}(x) \psi(x)\left(x-x_{0}\right)^{N_{0}+1}=\epsilon^{N_{0}+1} \rho\left(\frac{x-x_{0}}{\epsilon}\right) \psi\left(x_{0}+\epsilon \frac{\left(x-x_{0}\right)}{\epsilon}\right) \frac{\left(x-x_{0}\right)^{N_{0}+1}}{\epsilon^{N_{0}+1}} \\
&=\epsilon^{N_{0}+1} \rho_{1}\left(\frac{x-x_{0}}{\epsilon}\right)
\end{aligned}
$$

with $\rho_{1}(t)=\rho(t) \psi\left(x_{0}+\epsilon t\right) t^{N_{0}+1}$, so that $\rho_{1} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is supported in the unit ball B_{1} has all its derivatives bounded independently of ϵ. From (3.3.3), we get for all $\epsilon>0$,

$$
\left|\left\langle u, \chi_{0}(x) \psi(x)\left(x-x_{0}\right)^{N_{0}+1}\right\rangle\right| \leq C_{0} \sup _{|\alpha| \leq N_{0}} \epsilon^{N_{0}+1-|\alpha|}\left|\left(\partial_{t}^{\alpha} \rho_{1}\right)\left(\frac{x-x_{0}}{\epsilon}\right)\right| \leq C_{1} \epsilon,
$$

which implies that the left-hand-side of (3.3.3) is zero. On the other hand, for $\chi_{1} \in C_{c}^{\infty}\left(V_{0}\right), \chi_{1}=1$ near the support of χ_{0}, we have

$$
\begin{array}{r}
\left\langle u, \chi_{1}(x)\left(x-x_{0}\right)^{\alpha}\right\rangle=\langle u, \underbrace{\chi_{1}(x) \chi_{0}(x)}_{=\chi_{0}(x)}\left(x-x_{0}\right)^{\alpha}\rangle+\langle u, \underbrace{\chi_{1}(x)\left(1-\chi_{0}(x)\right)}_{\text {supported in }(\operatorname{supp} u)^{c}}\left(x-x_{0}\right)^{\alpha}\rangle \\
=\left\langle u, \chi_{0}(x)\left(x-x_{0}\right)^{\alpha}\right\rangle
\end{array}
$$

so that the latter does not depend on ε for ε small enough. The result of the theorem follows from (3.3.2).

3.4 Tensor products

Let X be an open subset of \mathbb{R}^{m}, Y be an open subset of \mathbb{R}^{n} and $f \in C_{c}^{\infty}(X), g \in$ $C_{c}^{\infty}(Y)$. The tensor product $f \otimes g$ is defined by $(f \otimes g)(x, y)=f(x) g(y)$ and belongs

[^0]: ${ }^{1}$ The convergence of a sequence in $C_{c}^{m}(\Omega)$ is analogous to the convergence given in the definition 3.1.9, except that (2) is required in the Banach space $C_{K}^{m}(\Omega)$, i.e. $|\alpha| \leq m$.

[^1]: ${ }^{2}$ The function ψ is obviously smooth and if φ, χ_{0} are both supported in $\{a \leq x \leq b\}, a, b \in I$, so is ψ, thanks to the condition $\int \chi_{0}=1$.

