Lemma 3.1.7. Let Ω be an open subset of \mathbb{R}^n , $f \in L^1_{loc}(\Omega)$ such that, for all $\varphi \in \mathscr{D}(\Omega)$, $\int f(x)\varphi(x)dx = 0$. Then we have f = 0.

Proof. Let K be a compact subset of Ω and $\chi \in \mathscr{D}(\Omega)$ equal to 1 on a neighborhood of K as in the lemma 3.1.3. With ϕ as in the proposition 3.1.1, we get that $\lim_{\epsilon \to 0_+} \phi_{\epsilon} * (\chi f) = \chi f$ in $L^1(\mathbb{R}^n)$. We have

$$\left(\phi_{\epsilon} * (\chi f)\right)(x) = \int f(y) \underbrace{\chi(y)\phi((x-y)\epsilon^{-1})\epsilon^{-n}}_{=\varphi_{x}(y)} dy, \quad \operatorname{supp} \varphi_{x} \subset K, \varphi_{x} \in \mathscr{D}(\Omega),$$

and from the assumption of the lemma, we obtain $(\phi_{\epsilon} * (\chi f))(x) = 0$ for all x, implying $\chi f = 0$ from the convergence result; the conclusion follows.

We note that it makes sense to restrict a distribution $T \in \mathscr{D}'(\Omega)$ to an open subset $U \subset \Omega$: just define

$$\langle T_{|U}, \varphi \rangle_{\mathscr{D}'(U), \mathscr{D}(U)} = \langle T, \varphi \rangle_{\mathscr{D}'(\Omega), \mathscr{D}(\Omega)},$$
 (3.1.7)

and $T_{|U|}$ is obviously a distribution on U. With this in mind, we can define the support of a distribution exactly as in (3.1.8).

Definition 3.1.8. Let Ω be an open subset of \mathbb{R}^n and $T \in \mathscr{D}'(\Omega)$. We define the support of T as

$$\operatorname{supp} T = \{ x \in \Omega, \forall U open \in \mathscr{V}_x, \ T_{|U} \neq 0 \}.$$

$$(3.1.8)$$

We define the C^{∞} singular support of T as

singsupp
$$T = \{x \in \Omega, \forall U open \in \mathscr{V}_x, \ T_{|U} \notin C^{\infty}(U)\}.$$
 (3.1.9)

Note that the support and the singular support are closed subset of Ω since their complements in Ω are open: we have

$$(\operatorname{supp} T)^c = \{ x \in \Omega, \exists U \operatorname{open} \in \mathscr{V}_x, \ T_{|U} = 0 \},$$
(3.1.10)

$$(\operatorname{singsupp} T)^c = \{ x \in \Omega, \exists U \operatorname{open} \in \mathscr{V}_x, \ T_{|U} \in C^{\infty}(U) \}.$$
(3.1.11)

A simple consequence of that definition is that, for $T \in \mathscr{D}'(\Omega), \varphi \in \mathscr{D}(\Omega)$,

$$\operatorname{supp} \varphi \subset (\operatorname{supp} T)^c \Longrightarrow \langle T, \varphi \rangle = 0. \tag{3.1.12}$$

3.1.3 First examples of distributions

The Dirac mass

We define for $\varphi \in C_c^0(\mathbb{R}^n)$, $\langle \delta_0, \varphi \rangle = \varphi(0)$; the property (3.1.5) is satisfied with $C_K = 1, N_K = 0$. We have $\sup \delta_0 = \{0\}$. From this, the Dirac mass cannot be an L_{loc}^1 function, otherwise, since it is 0 a.e., it would be 0. Let ϕ, ϵ as in the proposition 3.1.1: then we have from that proposition

$$\lim_{\epsilon \to 0_+} \int \phi_{\epsilon}(x)\varphi(x)dx = \varphi(0),$$

so that the Dirac mass appears as the weak limit of $\epsilon^{-n}\phi(x\epsilon^{-1})$.

The simple layer

We consider in \mathbb{R}^n the hypersurface $\Sigma = \{(x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}, x_n = f(x')\}$, where $f \in C^1(\mathbb{R}^{n-1})$. We define for $\varphi \in C^0_c(\mathbb{R}^n)$,

$$\langle \delta_{\Sigma}, \varphi \rangle = \int_{\mathbb{R}^{n-1}} \varphi \big(x', f(x') \big) \big(1 + |\nabla f(x')|^2 \big)^{1/2} dx'.$$

The property (3.1.5) is satisfied with $C_K = area(\Sigma \cap K), N_K = 0$, supp $\delta_{\Sigma} = \Sigma$, and since Σ has Lebesgue measure 0 in \mathbb{R}^n , the simple layer potential cannot be an L^1_{loc} function.

The principal value of 1/x

We define for $\varphi \in C_c^1(\mathbb{R})$,

$$\langle \operatorname{pv} \frac{1}{x}, \varphi \rangle = \lim_{\epsilon \to 0_+} \int_{|x| \ge \epsilon} \frac{\varphi(x)}{x} dx.$$
 (3.1.13)

Let us check that this limit exists. We have for parity reasons,

$$\int_{|x|\geq\epsilon} \frac{\varphi(x)}{x} dx = \int_{\epsilon}^{+\infty} (\varphi(x) - \varphi(-x)) \frac{dx}{x}$$
$$= \left[\ln x (\varphi(x) - \varphi(-x)) \right]_{x=\epsilon}^{x=+\infty} - \int_{\epsilon}^{+\infty} (\varphi'(x) + \varphi'(-x)) \ln x dx$$

and thus, using that $\lim_{\epsilon \to 0_+} \epsilon \ln \epsilon = 0$, $\ln |x| \in L^1_{\text{loc}}(\mathbb{R})$, we get

$$\langle \operatorname{pv} \frac{1}{x}, \varphi \rangle = -\int_0^{+\infty} (\varphi'(x) + \varphi'(-x)) \ln x dx = -\int_{\mathbb{R}} \varphi'(x) (\ln |x|) dx,$$

yielding $|\langle \operatorname{pv} \frac{1}{x}, \varphi \rangle| \leq \int_{\operatorname{supp} \varphi'} |\ln |x| |dx| |\varphi'||_{L^{\infty}}.$

3.1.4 Continuity properties

Definition 3.1.9. Let Ω be an open subset of \mathbb{R}^n and let $(\varphi_j)_{j\geq 1}$ be a sequence of functions in $C_c^{\infty}(\Omega)$. We shall say that $\lim_j \varphi_j = 0$ in $C_c^{\infty}(\Omega)$ when the two following conditions are satisfied:

(1) there exists a compact set $K \subset \Omega$, such that $\forall j \geq 1$, supp $\varphi_j \subset K$,

(2) $\lim_{j} \varphi_{j} = 0$ in the Fréchet space $C_{K}^{\infty}(\Omega)$, i.e. $\forall \alpha \in \mathbb{N}^{n}$, $\lim_{j} \left(\sup_{x \in K} |(\partial_{x}^{\alpha} \varphi_{j})(x)| \right) = 0$.

Proposition 3.1.10. Let Ω be an open subset of \mathbb{R}^n and T be a linear form defined on $C_c^{\infty}(\Omega)$. The linear form T is a distribution on Ω if and only if it is sequentially continuous.

Proof. Assuming $|\langle T, \varphi \rangle| \leq C_K \max_{|\alpha| \leq N_K} \|\partial_x^{\alpha} \varphi\|_{L^{\infty}}$ for all $\varphi \in C_K^{\infty}(\Omega)$ and all K compact $\subset \Omega$ implies readily the sequential continuity. Conversely, if T does not satisfy (3.1.5), we have

$$\exists K_0 \text{compact} \subset \Omega, \forall k \ge 1, \forall N \in \mathbb{N}, \exists \varphi_{k,N} \in C^{\infty}_{K_0}(\Omega), |\langle T, \varphi_{k,N} \rangle| > k \max_{|\alpha| \le N} \|\partial_x^{\alpha} \varphi_{k,N}\|_{L^{\infty}}.$$

From the strict inequality, we infer that the function $\varphi_{k,N}$ is not identically 0, and we may define

$$\psi_k = \frac{\varphi_{k,k}}{k \max_{|\alpha| \le k} \|\partial_x^{\alpha} \varphi_{k,k}\|_{L^{\infty}}}, \text{ so that } |\langle T, \psi_k \rangle| > 1.$$

But the sequence $(\psi_k)_{k\geq 1}$ converges to 0 since $\operatorname{supp} \psi_k \subset K_0$ and for $|\beta| \leq k$, $\|\partial_x^\beta \psi_k\|_{L^{\infty}} \leq 1/k$, implying for each multi-index β that $\lim_k \|\partial_x^\beta \psi_k\|_{L^{\infty}} = 0$. The sequential continuity is violated since $|\langle T, \psi_k \rangle| > 1$ and the converse is proven. \Box

Definition 3.1.11. Let Ω be an open subset of \mathbb{R}^n , $T \in \mathscr{D}'(\Omega)$ and $N \in \mathbb{N}$. The distribution T will be said of finite order N if

$$\exists N \in \mathbb{N}, \forall K \, compact \subset \Omega, \exists C_K > 0, \forall \varphi \in C_K^\infty(\Omega), |\langle T, \varphi \rangle| \le C_K \sup_{\substack{|\alpha| \le N \\ x \in \mathbb{R}^n}} |(\partial_x^\alpha \varphi)(x)|.$$

$$(3.1.14)$$

The vector space of distributions of order N on Ω will be denoted by $\mathscr{D}'^{N}(\Omega)$. The vector space $\mathscr{D}'^{0}(\Omega)$ is called the space of Radon measures on Ω .

Proposition 3.1.12. Let Ω be an open subset of \mathbb{R}^n and $m \in \mathbb{N}$. The vector space $\mathscr{D}'^m(\Omega)$ is equal to the sequentially continuous¹ linear forms on $C_c^m(\Omega)$: if $T \in \mathscr{D}'^m(\Omega)$, it can be extended to a sequentially continuous linear form on $C_c^m(\Omega)$. If T is a sequentially continuous linear form on $C_c^m(\Omega)$, then $T \in \mathscr{D}'^m(\Omega)$.

Proof. Let us first consider $T \in \mathscr{D}^{m}(\Omega), \varphi \in C_{c}^{m}(\Omega)$. Applying the proposition 3.1.1, we find a sequence $(\varphi_{k})_{k\geq 1}$ in $C_{c}^{\infty}(\Omega)$, converging in $C_{c}^{m}(\Omega)$ with limit φ . Since we may assume that all the functions φ_{k} and φ are supported in a fixed compact subset K of Ω , we have, according to the estimate (3.1.14),

$$|\langle T, \varphi_k - \varphi_l \rangle| \le C \max_{|\alpha| \le m} \|\partial_x^{\alpha}(\varphi_k - \varphi_l)\|_{L^{\infty}} = Cp(\varphi_k - \varphi_l)$$

where p is the norm in the Banach space $C_K^m(\Omega)$. Since the sequence $(\varphi_k)_{k\geq 1}$ converges in $C_K^m(\Omega)$, we get that the sequence $(\langle T, \varphi_k \rangle)_{k\geq 1}$ is a Cauchy sequence in \mathbb{C} , thus converges; moreover, if for some compact subset L of Ω , $(\psi_k)_{k\geq 1}$ is another sequence of $C_L^m(\Omega)$ converging to φ , we have

$$|\langle T, \psi_k - \varphi_k \rangle| \le C' \max_{|\alpha| \le m} \|\partial_x^{\alpha}(\varphi_k - \psi_k)\|_{L^{\infty}} = C' p(\varphi_k - \psi_k) \le C' p(\varphi_k - \varphi) + C' p(\varphi - \psi_k)$$

and $\lim_k \langle T, \psi_k - \varphi_k \rangle = 0$ so that, we can extend the linear form to $C_c^m(\Omega)$ by defining $\langle T, \varphi \rangle = \lim_k \langle T, \varphi_k \rangle$. We get also immediately that (3.1.14) holds with N = m and $C_K^{\infty}(\Omega)$ replaced by $C_K^m(\Omega)$, so that T is obviously sequentially continuous.

Let us now consider a sequentially continuous linear form T on $C_c^m(\Omega)$; reproducing the proof of the proposition 3.1.10, we get that the estimate (3.1.14) holds with N = m, proving that $T \in \mathscr{D}'^m(\Omega)$. The proof of the proposition is complete. \Box

Remark 3.1.13. We have already proven directly that functions in $L^1_{loc}(\Omega)$ (see (3.1.6)), the Dirac mass and a simple layer (see the section 3.1.3) are distributions of order 0. It is an exercise left to the reader to prove that the distribution pv $\frac{1}{x}$ defined in (3.1.13) is of order 1 and not of order 0.

¹The convergence of a sequence in $C_c^m(\Omega)$ is analogous to the convergence given in the definition 3.1.9, except that (2) is required in the Banach space $C_K^m(\Omega)$, i.e. $|\alpha| \leq m$.

3.1.5 Partitions of unity and localization

Theorem 3.1.14 (Partition of unity). Let Ω be an open subset of \mathbb{R}^n , K a compact subset of Ω and $\Omega_1, \ldots, \Omega_m$ open subsets of Ω such that $K \subset \Omega_1 \cup \cdots \cup \Omega_m$. Then for $1 \leq j \leq m$, there exists $\psi_j \in C_c^{\infty}(\Omega_j; [0, 1])$ and V open such that

$$\Omega \supset V \supset K, \ \forall x \in V, \sum_{1 \le j \le m} \psi_j(x) = 1,$$

and for all $x \in \Omega$, $\sum_{1 \le j \le m} \psi_j(x) \in [0, 1]$.

Proof. The case m = 1 of the theorem is proven in the lemma 3.1.3. We consider now m > 1 and we note that, since $x \in K$ implies $x \in$ one of the Ω_j ,

$$K \subset \bigcup_{x \in K} B(x, r_x), \quad B(x, r_x) \subset \text{ one of the } \Omega_j, \quad r_x > 0.$$

From the compactness of K, we get that $K \subset \bigcup_{1 \leq l \leq N} B(x_l, r_{x_l})$ and we may assume that

$$B(x_l, r_{x_l}) \subset \Omega_1, \quad \text{for } 1 \leq l \leq N_1,$$

$$\bar{B}(x_l, r_{x_l}) \subset \Omega_2, \quad \text{for } N_1 < l \leq N_2,$$

$$\dots \dots \dots$$

$$\bar{B}(x_l, r_{x_l}) \subset \Omega_m, \quad \text{for } N_{m-1} < l \leq N_m = N.$$

We define then the compact sets

$$K_1 = \bigcup_{1 \le l \le N_1} \bar{B}(x_l, r_{x_l}), \quad \dots \quad , K_m = \bigcup_{N_{m-1} < l \le N_m} \bar{B}(x_l, r_{x_l})$$

and we have $K \subset \bigcup_{1 \leq j \leq m} K_j$, and for each $j, K_j \subset \Omega_j$. Using the lemma 3.1.3, we find $\varphi_j \in C_c^{\infty}(\Omega_j; [0, 1])$ such that $\varphi_j = 1$ on a neighborhood $V_j(\subset \Omega_j)$ of K_j . We define then

$$\psi_1 = \varphi_1,$$

$$\psi_2 = \varphi_2(1 - \varphi_1),$$

.....

$$\psi_j = \varphi_j(1 - \varphi_1) \dots (1 - \varphi_{j-1}),$$

so that $\psi_j \in C_c^{\infty}(\Omega_j; [0, 1])$ and we have

$$\sum_{1 \le j \le m} \psi_j = \sum_{1 \le j \le m} \varphi_j \left(\prod_{1 \le k < j} (1 - \varphi_k) \right) = 1 - \prod_{1 \le k \le m} (1 - \varphi_k), \tag{3.1.15}$$

since the formula (second equality above) is true for m = 1 and inductively,

$$\sum_{1 \le j \le m+1} \varphi_j \left(\prod_{1 \le k < j} (1 - \varphi_k) \right) = 1 - \prod_{1 \le k \le m} (1 - \varphi_k) + \varphi_{m+1} \prod_{1 \le k \le m} (1 - \varphi_k)$$
$$= 1 - (1 - \varphi_{m+1}) \prod_{1 \le k \le m} (1 - \varphi_k) = 1 - \prod_{1 \le k \le m+1} (1 - \varphi_k).$$

We have thus for $x \in \bigcup_{1 \leq j \leq m} V_j$ (which is a neighborhood of K in Ω), using (3.1.15) and $\varphi_j = 1$ on V_j , $\sum_{1 \leq j \leq m} \psi_j(x) = 1$. On the other hand, (3.1.15) and φ_j valued in [0, 1] show that $\sum_{1 \leq j \leq m} \psi_j(x) \in [0, 1]$ for all x. The proof is complete.

Theorem 3.1.15. Let Ω be an open set of \mathbb{R}^n and $(\Omega_j)_{j\in J}$ be an open covering of Ω : each Ω_j is open and $\bigcup_{j\in J}\Omega_j = \Omega$. Let us assume that for each $j \in J$, we are given $T_j \in \mathscr{D}'(\Omega_j)$ in such a way that

$$T_{j|\Omega_j \cap \Omega_k} = T_{k|\Omega_j \cap \Omega_k}.$$
(3.1.16)

Then there exists a unique $T \in \mathscr{D}'(\Omega)$ such that for all $j \in J$, $T_{|\Omega_j} = T_j$.

Proof. Uniqueness: if T, S are such distributions, we get that $(T - S)_{|\Omega_j|} = 0$, so that for all $j \in J$, $\Omega_j \subset (\text{supp } (T - S))^c$ and thus $\Omega = \bigcup_{j \in J} \Omega_j \subset (\text{supp } (T - S))^c$, i.e. T - S = 0.

Existence: let $\varphi \in \mathscr{D}(\Omega)$ and let us consider the compact set $K = \operatorname{supp} \varphi$. We have $K \subset \bigcup_{j \in M} \Omega_j$ with M a finite subset of J. Using the theorem on partitions of unity, we find some function $\psi_j \in C_c^{\infty}(\Omega_j)$ for $j \in M$ such that $\sum_{j \in M} \psi_j = 1$ on a neighborhood of K. As a consequence, we have $\varphi = \sum_{j \in M} \psi_j \varphi$ and we define

$$\langle T, \varphi \rangle = \sum_{j \in M} \langle T_j, \psi_j \varphi \rangle$$

The required estimates (3.1.5) are easily checked, but the linearity and the independence with respect to the decomposition deserve some attention. Assume that we have $\varphi = \sum_{k \in N} \phi_k \varphi$, where N is a finite subset of J and $\phi_k \in C_c^{\infty}(\Omega_k)$: we have

$$\sum_{k \in N} \langle T_k, \phi_k \varphi \rangle = \sum_{j \in M, k \in N} \langle T_k, \phi_k \psi_j \varphi \rangle \underbrace{=}_{\text{from (3.1.16)}} \sum_{j \in M, k \in N} \langle T_j, \phi_k \psi_j \varphi \rangle = \sum_{j \in M} \langle T_j, \psi_j \varphi \rangle,$$

proving that T is defined independently of the decomposition. The linearity follows at once. The proof is complete.

3.1.6 Weak convergence of distributions

We have not defined a topology on the space of test functions $\mathscr{D}(\Omega)$, although we gave the definition of convergence of a sequence (see the definition 3.1.9); we shall need also a simple notion of weak-dual convergence of a sequence of distributions, which is the $\sigma(\mathscr{D}', \mathscr{D})$ convergence.

Definition 3.1.16. Let Ω be an open set of \mathbb{R}^n , $(T_j)_{j\geq 1}$ be a sequence of $\mathscr{D}'(\Omega)$ and $T \in \mathscr{D}'(\Omega)$. We shall say that $\lim_j T_j = T$ in the weak-dual topology if

$$\forall \varphi \in \mathscr{D}(\Omega), \quad \lim_{j} \langle T_j, \varphi \rangle = \langle T, \varphi \rangle. \tag{3.1.17}$$

Remark 3.1.17. We have already seen (see the section 3.1.3) that for $\rho \in C_c^{\infty}(\mathbb{R}^n)$, $\epsilon > 0$, $\rho_{\epsilon}(x) = \epsilon^{-n}\rho(x\epsilon^{-1})$, $\lim_{\epsilon \to 0_+} \rho_{\epsilon} = \delta_0 \int \rho(t)dt$. Moreover, on $\mathscr{D}'(\mathbb{R})$, we have with $T_{\lambda}(x) = e^{i\lambda x}$, $\lim_{\lambda \to +\infty} T_{\lambda} = 0$ since for $\varphi \in \mathscr{D}(\mathbb{R})$,

$$\int_{\mathbb{R}} e^{i\lambda x} \varphi(x) dx = (i\lambda)^{-1} \int_{\mathbb{R}} \frac{d}{dx} (e^{i\lambda x)} \varphi(x) dx = -(i\lambda)^{-1} \int_{\mathbb{R}} e^{i\lambda x} \varphi'(x) dx.$$

Theorem 3.1.18. Let Ω be an open set of \mathbb{R}^n , $(T_j)_{j\geq 1}$ be a sequence of $\mathscr{D}'(\Omega)$ such that, for all $\varphi \in \mathscr{D}(\Omega)$, the (numerical) sequence $(\langle T_j, \varphi \rangle)_{j\geq 1}$ converges. Defining the linear form T on $\mathscr{D}(\Omega)$, by $\langle T, \varphi \rangle = \lim_{j \in T_j} \langle T_j, \varphi \rangle$, we obtain that T belongs to $\mathscr{D}'(\Omega)$.

Proof. This is an important consequence of the Banach-Steinhaus theorem 2.1.8; let us consider a compact subset K of Ω . Then defining $T_{j,K}$ as the restriction of T_j to the Fréchet space $\mathscr{D}_K(\Omega)$, we see that the assumptions of the corollary 2.1.8 are satisfied since $T_{j,K}$ belongs to the topological dual of $\mathscr{D}_K(\Omega)$, according to the remark 3.1.6. As a consequence the restriction of T to $\mathscr{D}_K(\Omega)$ belongs to the topological dual of $\mathscr{D}_K(\Omega)$ and from the same remark 3.1.6, it gives that $T \in \mathscr{D}'(\Omega)$. \Box

N.B. The reader may note that we have used $E = \mathscr{D}(\Omega) = \bigcup_{j \in \mathbb{N}} \mathscr{D}_{K_j}(\Omega) = \bigcup_j E_j$, and that our definition of the topological dual of E as linear forms T on E such that, for all $j, T|_{E_j} \in$ the topological dual of the Fréchet space E_j . This structure allows us to use the Banach-Steinhaus theorem, although we have not defined a topology on E; this observation is a good introduction to the more abstract setting of LFspaces, the so-called inductive limits of Fréchet spaces.

3.2 Differentiation of distributions, multiplication by C^{∞} functions

3.2.1 Differentiation

Definition 3.2.1. Let Ω be an open set of \mathbb{R}^n and $T \in \mathscr{D}'(\Omega)$. We define the distributions $\partial_{x_i}T$ and for a multi-index $\alpha \in \mathbb{N}^n$ (see (2.3.6)), $\partial_x^{\alpha}T$ by

$$\langle \partial_{x_j} T, \varphi \rangle = -\langle T, \partial_{x_j} \varphi \rangle, \quad \langle \partial_x^{\alpha} T, \varphi \rangle = (-1)^{|\alpha|} \langle T, \partial_x^{\alpha} \varphi \rangle.$$
 (3.2.1)

We note that $\partial_x^{\alpha} T$ is indeed a distribution on Ω , since the mappings $\varphi \mapsto \partial_x^{\alpha} \varphi$ are continuous on each Fréchet space $\mathscr{D}_K(\Omega)$.

Remark 3.2.2. If $\lim_j T_j = T$ in the weak-dual topology of $\mathscr{D}'(\Omega)$, then, for all multi-indices α , $\lim_j \partial_x^{\alpha} T_j = \partial_x^{\alpha} T$ (in the weak-dual topology): we have, for each $\varphi \in \mathscr{D}(\Omega)$,

$$\langle \partial_x^{\alpha} T_j, \varphi \rangle = (-1)^{|\alpha|} \langle T_j, \partial_x^{\alpha} \varphi \rangle \longrightarrow (-1)^{|\alpha|} \langle T, \partial_x^{\alpha} \varphi \rangle = \langle \partial_x^{\alpha} T, \varphi \rangle.$$

Remark 3.2.3. If $u \in C^1(\Omega)$, its derivative $\partial_{x_j} u$ as a distribution coincides with the distribution defined by the continuous function $\partial u / \partial x_j$: for $\varphi \in \mathscr{D}(\Omega)$,

$$\langle \partial_{x_j} u, \varphi \rangle = -\langle u, \partial_{x_j} \varphi \rangle = -\int u(x) \frac{\partial \varphi}{\partial x_j}(x) dx = \int \frac{\partial u}{\partial x_j}(x) \varphi(x) dx = \langle \frac{\partial u}{\partial x_j}, \varphi \rangle.$$

Also, if $u, v \in C^0(\Omega)$ are such that $\partial_{x_1} u = v$ in $\mathscr{D}'(\Omega)$, then the function u admits v as a partial derivative with respect to x_1 . To prove this, we may assume that u, v are both compactly supported in Ω : in fact it is enough to prove that for $\chi \in C_c^{\infty}(\Omega)$

identically equal to 1 near a point x_0 , the function χu (compactly supported) has a partial derivative with respect to x_1 which is $\chi v + u \partial_{x_1} \chi$ (compactly supported) and we know that in $\mathscr{D}'(\Omega)$ we have

$$\langle \partial_{x_1}(\chi u), \varphi \rangle = -\langle u, \chi \partial_{x_1} \varphi \rangle = -\langle u, \partial_{x_1}(\chi \varphi) \rangle + \langle u, \varphi \partial_{x_1} \chi \rangle = \langle \partial_{x_1} u, \chi \varphi \rangle + \langle u \partial_{x_1} \chi, \varphi \rangle$$

which implies a particular case of Leibniz' formula $\partial_{x_1}(\chi u) = \chi \partial_{x_1} u + u \partial_{x_1} \chi = \chi v + u \partial_{x_1} \chi$. Assuming then that u, v are compactly supported, we have from the proposition 3.1.1, $u = \lim_{\epsilon} (u * \phi_{\epsilon})$ in $C_c^0(\Omega)$ and the functions $u * \phi_{\epsilon} \in C_c^\infty(\Omega)$. Also we have, with the ordinary differentiation,

$$(\partial_{x_1}(u*\phi_{\epsilon}))(x) = \int u(y)(\partial_{x_1}\phi_{\epsilon})(x-y)dy = \langle u(\cdot), -\partial_{y_1}(\phi_{\epsilon}(x-\cdot)) \rangle = \int v(y)\phi_{\epsilon}(x-y)dy,$$

and $\lim_{\epsilon} (v * \phi_{\epsilon}) = v$ in $C_c^0(\Omega)$. As a result the sequences $(u * \phi_{\epsilon}), (\partial_{x_1}(u * \phi_{\epsilon}))$ are both uniformly converging sequences of (compactly supported) continuous functions with respective limits u, v, and this implies that the continuous function u has v as a partial derivative with respect to x_1 .

3.2.2 Examples

Defining the Heaviside function H as $\mathbf{1}_{\mathbb{R}_+}$, we get

$$H' = \delta_0 \tag{3.2.2}$$

since for $\varphi \in \mathscr{D}(\mathbb{R})$, we have $\langle H', \varphi \rangle = -\langle H, \varphi' \rangle = -\int_0^{+\infty} \varphi'(t) dt = \varphi(0)$. Still in one dimension, we have

$$\langle \delta_0^{(k)}, \varphi \rangle = (-1)^k \varphi^{(k)}(0),$$
 (3.2.3)

since it is true for k = 0 and inductively $\langle \delta_0^{(k+1)}, \varphi \rangle = -\langle \delta_0^{(k)}, \varphi' \rangle = -(-1)^k \varphi'^{(k)}(0) = (-1)^{k+1} \varphi^{(k+1)}(0)$. Looking at the definition (3.1.13), we see that we have proven

$$pv\left(\frac{1}{x}\right) = \frac{d}{dx}(\ln|x|), \qquad \text{(distribution derivative)}.$$
(3.2.4)

Let f be a finitely-piecewise C^1 function defined on \mathbb{R} : it means that there is an increasing finite sequence of real numbers $(a_n)_{1 \le n \le N}$, so that f is C^1 on all closed intervals $[a_n, a_{n+1}]$ for $1 \le n < N$ and on $] - \infty, a_1]$ and $[a_N, +\infty[$. In particular, the function f has a left-limit $f(a_n^-)$ and a right-limit $f(a_n^+)$ which may be different. Let us compute the distribution derivative of f; for $\varphi \in \mathscr{D}(\mathbb{R})$, since f is locally integrable, we have, setting $a_0 = -\infty, a_{N+1} = +\infty$,

$$\begin{aligned} \langle f',\varphi\rangle &= -\langle f,\varphi'\rangle = -\int_{\mathbb{R}} f(x)\varphi'(x)dx = -\sum_{0\leq n\leq N} \int_{a_n}^{a_{n+1}} f(x)\varphi'(x)dx \\ &= \sum_{0\leq n\leq N} \int_{a_n}^{a_{n+1}} \frac{df}{dx}(x)\varphi(x)dx + \sum_{0\leq n\leq N} \left(f(a_n^+)\varphi(a_n) - f(a_{n+1}^-)\varphi(a_{n+1})\right) \\ &= \int \varphi(x) \left(\sum_{0\leq n\leq N} \frac{df}{dx}(x)\mathbf{1}_{[a_n,a_{n+1}]}(x)\right) + \sum_{1\leq n\leq N} f(a_n^+)\varphi(a_n) - \sum_{1\leq n\leq N} f(a_n^-)\varphi(a_n), \end{aligned}$$

so that we have obtained the so-called formula of jumps

$$f' = \sum_{0 \le n \le N} \frac{df}{dx} \mathbf{1}_{[a_n, a_{n+1}]} + \sum_{1 \le n \le N} \left(f(a_n^+) - f(a_n^-) \right) \delta_{a_n}, \tag{3.2.5}$$

where δ_{a_n} is the Dirac mass at a_n , defined by $\langle \delta_{a_n}, \varphi \rangle = \varphi(a_n)$.

We consider now the following determination of the logarithm given for $z \in \mathbb{C} \setminus \mathbb{R}_{-}$ by

$$\operatorname{Log} z = \oint_{[1,z]} \frac{d\xi}{\xi}, \qquad (3.2.6)$$

which makes sense since $\mathbb{C}\backslash\mathbb{R}_{-}$ is star-shaped with respect to 1, i.e. the segment $[1, z] \subset \mathbb{C}\backslash\mathbb{R}_{-}$ for $z \in \mathbb{C}\backslash\mathbb{R}_{-}$. Since the function Log coincides with \ln on \mathbb{R}^{*}_{+} and is holomorphic on $\mathbb{C}\backslash\mathbb{R}_{-}$, we get by analytic continuation that

$$e^{\log z} = z, \quad \text{for } z \in \mathbb{C} \setminus \mathbb{R}_{-}.$$
 (3.2.7)

Also by analytic continuation, we have for $|\operatorname{Im} z| < \pi$, $\operatorname{Log}(e^z) = z$. We want now to study the distributions on \mathbb{R} ,

 $u_y(x) = \text{Log}(x + iy)$, where $y \neq 0$ is a real parameter.

We leave as an exercise for the reader to prove that

$$\lim_{y \to 0_{\pm}} \log(x + iy) = \ln |x| \pm i\pi (1 - H(x)), \qquad (3.2.8)$$

where the limits are taken in the sense of the definition 3.1.16; also the reader can check

$$\frac{1}{x\pm i0} = \operatorname{pv}\left(\frac{1}{x}\right) \mp i\pi\delta_0, \qquad (3.2.9)$$

where we have defined

$$\langle \frac{1}{x \pm i0}, \varphi \rangle = \lim_{\epsilon \to 0_+} \int \frac{\varphi(x)}{x \pm i\epsilon} dx$$
 (3.2.10)

(part of the exercise is to prove that these limits exist for $\varphi \in \mathscr{D}(\mathbb{R})$). We conclude that section of examples with a more general lemma on a simple ODE.

Lemma 3.2.4. Let I be an open interval of \mathbb{R} . The solutions in $\mathscr{D}'(I)$ of u' = 0 are the constants. The solutions in $\mathscr{D}'(I)$ of u' = f make a one-dimensional affine subspace of $\mathscr{D}'(I)$.

Proof. We assume first that f = 0; if u is a constant, then it is of course a solution. Conversely, let us assume that $u \in \mathscr{D}'(I)$ satisfies u' = 0. Let $\chi_0 \in C_c^{\infty}(I)$ such that $\int_{\mathbb{R}} \chi_0(x) dx = 1$; then we have for any $\varphi \in C_c^{\infty}(I)$, with $J(\varphi) = \int_{\mathbb{R}} \varphi(x) dx$, $\psi(x) = \int_{-\infty}^x (\varphi(t) - J(\varphi)\chi_0(t)) dt$, noting that ψ belongs² to $C_c^{\infty}(I)$,

$$\langle u, \varphi - J(\varphi)\chi_0 \rangle = \langle u, \psi' \rangle = -\langle u', \psi \rangle = 0,$$

²The function ψ is obviously smooth and if φ, χ_0 are both supported in $\{a \leq x \leq b\}, a, b \in I$, so is ψ , thanks to the condition $\int \chi_0 = 1$.

which gives $\langle u, \varphi \rangle = J(\varphi) \langle u, \chi_0 \rangle$, i.e. $u = \langle u, \chi_0 \rangle$ proving that u is indeed a constant. We have proven that the solutions $u \in \mathscr{D}'(I)$ of u' = 0 are simply the constants. If $f \in \mathscr{D}'(I)$, we need only to construct a solution v_0 of $v'_0 = f$ and then use the previous result to obtain that the set of solutions of u' = f is $v_0 + \mathbb{R}$. Let us construct such a solution v_0 . For $\varphi \in \mathscr{D}(I)$, we define with the same ψ as above,

$$\langle v_0, \varphi \rangle = -\langle f, \psi \rangle.$$
 (3.2.11)

It is a distribution since for supp φ compact $\subset I$, we define (the compact set) $K_1 =$ supp $\varphi \cup$ supp χ_0 , and we have

$$|\langle v_0, \varphi \rangle| = |\langle f, \psi \rangle| \le C_{K_1} \max_{0 \le j \le N_{K_1}} \|\psi^{(j)}\|_{L^{\infty}} \le C \max_{0 \le j \le (N_{K_1} - 1)_+} \|\varphi^{(j)}\|_{L^{\infty}}$$

Moreover the formula (3.2.11) implies the sought result

$$\langle v_0', \varphi \rangle = -\langle v_0, \varphi' \rangle = \langle f, \psi_{\varphi'} \rangle = \langle f, \varphi \rangle,$$

since $\psi_{\varphi'}(x) = \int_{-\infty}^{x} (\varphi'(t) - J(\varphi')\chi_0(t)) dt = \varphi(x)$ because $J(\varphi') = 0$. The proof of the lemma is complete.

3.2.3 Product by smooth functions

We define now the product of a C^{∞} (resp. C^{N}) function by a distribution (resp. of order N).

Definition 3.2.5. Let Ω be an open subset of \mathbb{R}^n and $u \in \mathscr{D}'(\Omega)$. For $f \in C^{\infty}(\Omega)$, we define the product $f \cdot u$ as the distribution defined by

$$\langle f \cdot u, \varphi \rangle_{\mathscr{D}'(\Omega), \mathscr{D}(\Omega)} = \langle u, f\varphi \rangle_{\mathscr{D}'(\Omega), \mathscr{D}(\Omega)}.$$
(3.2.12)

If u is of order N and $f \in C^{N}(\Omega)$, we define the product $f \cdot u$ as the distribution of order N defined by

$$\langle f \cdot u, \varphi \rangle_{\mathscr{D}'^{N}(\Omega), C_{c}^{N}(\Omega)} = \langle u, f\varphi \rangle_{\mathscr{D}'^{N}(\Omega), C_{c}^{N}(\Omega)}.$$
(3.2.13)

Remark 3.2.6. Since the multiplication by a $C^{\infty}(\Omega)$ (resp. $C^{N}(\Omega)$) function is a continuous linear operator from $C_{c}^{\infty}(\Omega)$ (resp. $C_{c}^{N}(\Omega)$) into itself, we get that the above formulas actually define the products as distributions on Ω with the right order (see the proposition 3.1.12). Also the product defined in the second part coincides with the first definition whenever $f \in C_{c}^{\infty}(\Omega)$ and if $u \in L_{loc}^{1}(\Omega), f \in C^{0}(\Omega)$, the usual product fu coincides with the $f \cdot u$ defined here, thanks to the lemma 3.1.7.

The next theorem is providing an extension to the classical Leibniz' formula for the derivatives of a product.

Theorem 3.2.7. Let Ω be an open set of \mathbb{R}^n , $u \in \mathscr{D}'(\Omega)$, $f \in C^{\infty}(\Omega)$ and $\alpha \in \mathbb{N}^n$ be a multi-index (see (2.3.6)). Then we have

$$\frac{\partial_x^{\alpha}(fu)}{\alpha!} = \sum_{\substack{\beta,\gamma \in \mathbb{N}^n \\ \beta+\gamma=\alpha}} \frac{\partial_x^{\beta}(f)}{\beta!} \frac{\partial_x^{\gamma}(u)}{\gamma!}.$$
(3.2.14)

Proof. We get immediately by induction on $|\alpha|$ the formula

$$\frac{\partial_x^{\alpha}(fu)}{\alpha!} = \sum_{\substack{\beta,\gamma \in \mathbb{N}^n \\ \beta+\gamma=\alpha}} \sigma_{\beta,\gamma} \frac{\partial_x^{\beta}(f)}{\beta!} \frac{\partial_x^{\gamma}(u)}{\gamma!}, \quad \text{with } \sigma_{\beta,\gamma} \in \mathbb{R}_+.$$

To find the $\sigma_{\beta,\gamma}$, we choose $f(x) = e^{x \cdot \xi}$, $u(x) = e^{x \cdot \eta}$, with $\xi, \eta \in \mathbb{R}^n$. We find then for all $\xi, \eta \in \mathbb{R}^n$, the identity

$$\frac{(\xi+\eta)^{\alpha}}{\alpha!} = \frac{\partial_x^{\alpha}(e^{x\cdot(\xi+\eta)})}{\alpha!}_{|x=0} = \sum_{\substack{\beta,\gamma\in\mathbb{N}^n\\\beta+\gamma=\alpha}} \sigma_{\beta,\gamma} \frac{\partial_x^{\beta}(e^{x\cdot\xi})}{\beta!} \frac{\partial_x^{\gamma}(e^{x\cdot\eta})}{\gamma!}_{|x=0} = \sum_{\substack{\beta,\gamma\in\mathbb{N}^n\\\beta+\gamma=\alpha}} \sigma_{\beta,\gamma} \frac{\xi^{\beta}}{\beta!} \frac{\eta^{\gamma}}{\gamma!},$$

and the formula (2.3.7) shows that for β, γ such that $\beta + \gamma = \alpha$

$$\sigma_{\beta,\gamma} = \partial_{\xi}^{\beta} \partial_{\eta}^{\gamma} \Big(\frac{(\xi + \eta)^{\alpha}}{\alpha!} \Big)_{|\xi = \eta = 0} = 1,$$

completing the proof of the theorem.

Examples. Let f be a continuous function on \mathbb{R} and δ_0 be the Dirac mass at 0. The product $f \cdot \delta_0$ is equal to $f(0)\delta_0$: since δ_0 is a distribution of order 0, we can multiply it by a continuous function and if $\varphi \in C_c^0(\mathbb{R})$, we have

$$\langle f \cdot \delta_0, \varphi \rangle = \langle \delta_0, f\varphi \rangle = f(0)\varphi(0) = \langle f(0)\delta_0, \varphi \rangle \Longrightarrow f \cdot \delta_0 = f(0)\delta_0.$$
(3.2.15)

On the other hand if $f \in C^1(\mathbb{R})$ we have

$$f \cdot \delta_0' = f(0)\delta_0' - f'(0)\delta_0, \qquad (3.2.16)$$

since the Leibniz' formula (3.2.14) gives $f(0)\delta'_0 = (f \cdot \delta_0)' = f' \cdot \delta_0 + f \cdot \delta'_0 = f'(0)\delta_0 + f \cdot \delta'_0$. In particular $x\delta'_0 = -\delta_0$.

3.2.4 Division of distribution on \mathbb{R} by x^m

We want now to address the question of division of a function (or a distribution) by a polynomial; a typical example is the division of 1 by the linear function x expressed by the identity

$$x \operatorname{pv}(1/x) = 1$$
 (3.2.17)

which is an immediate consequence of (3.1.13). We note also from the previous examples that, for any constant c, we have $x(pv(1/x) + c\delta_0) = 1$. The next theorem shows that $T = pv(1/x) + c\delta_0$ are the only distributions solutions of the equation xT = 1.

Theorem 3.2.8. Let $m \ge 1$ be an integer. (1) If $u \in \mathscr{D}'(\mathbb{R})$ is such that $x^m u = 0$, then $u = \sum_{0 \le j < m} c_j \delta_0^{(j)}$. (2) Let $v \in \mathscr{D}'(\mathbb{R})$; there exists $u \in \mathscr{D}'(\mathbb{R})$ such that $v = x^m u$. *Proof.* Let us first prove (1). For $\varphi, \chi_0 \in C_c^{\infty}(\mathbb{R})$ with $\chi_0 = 1$ near 0, we have

$$\varphi(x) = \underbrace{\sum_{\substack{0 \le j < m} \\ p_{\varphi,m}(x)}}_{p_{\varphi,m}(x)} \underbrace{\varphi^{(j)}(0)}_{j!} x^{j} + \underbrace{\int_{0}^{1} \frac{(1-t)^{m-1}}{(m-1)!} \varphi^{(m)}(tx) dt}_{\psi_{m,\varphi}(x)} x^{m}, \quad \psi_{m,\varphi} \in C^{\infty}(\mathbb{R}),$$

and thus, since $x^m u = 0$,

$$\langle u, \varphi \rangle = \overbrace{\langle x^m u, x^{-m}(1-\chi_0)\varphi \rangle}^{=0} + \langle u, \chi_0\varphi \rangle = \langle u, \chi_0 p_{m,\varphi} \rangle + \overbrace{\langle x^m u, \chi_0\psi_{\varphi,m} \rangle}^{=0} \\ = \sum_{0 \le j < m} \frac{\varphi^{(j)}(0)}{j!} \langle u, \chi_0 \rangle = \sum_{0 \le j < m} \langle c_j \delta_0^{(j)}, \varphi \rangle,$$

which the sought result. To obtain (2), for $\varphi \in C_c^{\infty}(\mathbb{R})$, and a given $v_0 \in \mathscr{D}'(\mathbb{R})$, we define, using the above notations,

$$\langle u, \varphi \rangle = \langle v_0, \chi_0 \psi_{m,\varphi} \rangle + \langle v_0, x^{-m} (1 - \chi_0) \varphi \rangle.$$

This defines obviously a distribution on \mathbb{R} and $\langle x^m u, \varphi \rangle = \langle u, x^m \varphi \rangle$; for the function $\phi(x) = x^m \varphi(x)$, we have $p_{\phi,m} = 0, x^m \psi_{m,\phi}(x) = x^m \varphi(x)$, so that the smooth functions $\psi_{m,\phi} = \varphi$,

$$\langle x^m u, \varphi \rangle = \langle v_0, \chi_0 \varphi \rangle + \langle v_0, x^{-m} (1 - \chi_0) x^m \varphi \rangle = \langle v_0, \varphi \rangle. \qquad \Box$$

3.3 Distributions with compact support

3.3.1 Identification with \mathscr{E}'

Let Ω be an open subset of \mathbb{R}^n . We have already seen that the space $C^{\infty}(\Omega)$ (also denoted by $\mathscr{E}(\Omega)$) is a Fréchet space. Denoting by $\mathscr{E}'(\Omega)$ the topological dual of $\mathscr{E}(\Omega)$, we can consider $T \in \mathscr{E}'(\Omega)$ as a distribution \tilde{T} on Ω by defining

 $\langle \tilde{T}, \varphi \rangle_{\mathscr{D}'(\Omega), \mathscr{D}(\Omega)} = \langle T, \varphi \rangle_{\mathscr{E}'(\Omega), \mathscr{E}(\Omega)}$ (this makes sense since $\mathscr{D}(\Omega) \subset \mathscr{E}(\Omega)$).

The linearity is obvious and the continuity of T as a linear form on the Fréchet space $\mathscr{E}(\Omega)$ implies that there exists $C > 0, N \in \mathbb{N}$, K compact subset of Ω such that

$$\forall \varphi \in \mathscr{E}(\Omega), \quad |\langle T, \varphi \rangle_{\mathscr{E}'(\Omega), \mathscr{E}(\Omega)}| \leq C \sup_{|\alpha| \leq N, \ x \in K} |(\partial_x^{\alpha} \varphi)(x)|$$

This estimates also proves that \tilde{T} belongs to $\mathscr{D}'(\Omega)$; moreover, it has compact support in the sense of the definition (3.1.8): we have $\langle \tilde{T}, \varphi \rangle = 0$ for $\varphi \in C_c^{\infty}(\Omega)$, $\operatorname{supp} \varphi \subset K^c$, so that $\tilde{T}_{|K^c} = 0$ and thus $\operatorname{supp} \tilde{T} \subset K$. The next theorem proves that we can identify the space $\mathscr{E}'(\Omega)$ with the distributions on Ω with compact support, denoted by $\mathscr{D}'_{\text{comp}}(\Omega)$.

Theorem 3.3.1. Let Ω be an open subset of \mathbb{R}^n . The mapping $\iota : \mathscr{E}'(\Omega) \to \mathscr{D}'_{comp}(\Omega)$, defined as above by $\iota(T) = \tilde{T}$ is bijective.

Proof. The mapping ι is linear and if $\iota(T) = 0$, we know that T vanishes on all functions of $\mathscr{D}(\Omega)$.

Lemma 3.3.2. Let Ω be an open subset of \mathbb{R}^n . The space $\mathscr{D}(\Omega)$ is dense in $\mathscr{E}(\Omega)$.

Proof of the lemma. We consider a sequence $(K_j)_{j\geq 1}$ of compact subsets of Ω such that the lemma 2.3.1 is satisfied. For each $j \geq 1$, we may use the lemma 3.1.3 to construct a function $\chi_j \in \mathscr{D}(\Omega)$ with $\chi_j = 1$ near K_j . For a given $\varphi \in \mathscr{E}(\Omega)$, the sequence $(\varphi\chi_j)_{j\geq 1}$ of functions in $\mathscr{D}(\Omega)$ converges in $\mathscr{E}(\Omega)$ to φ , thanks to the last property of the lemma 2.3.1, proving the lemma.

Since T is continuous on $\mathscr{E}(\Omega)$, $\langle T, \varphi \rangle_{\mathscr{E}'(\Omega), \mathscr{E}(\Omega)} = \lim_{j \in T} \langle T, \varphi \chi_j \rangle_{\mathscr{E}'(\Omega), \mathscr{E}(\Omega)} = 0$ since T vanishes on $\mathscr{D}(\Omega)$. Let us consider now $T \in \mathscr{D}'_{\text{comp}}(\Omega)$ with supp T = L (compact subset of Ω). Using the lemma 3.1.3, we consider $\chi_0 \in \mathscr{D}(\Omega)$ such that $\chi_0 = 1$ on a neighborhood of L. For $\varphi \in \mathscr{E}(\Omega)$, we define $S \in \mathscr{E}'(\Omega)$ by

$$\langle S, \varphi \rangle_{\mathscr{E}'(\Omega), \mathscr{E}(\Omega)} = \langle T, \chi_0 \varphi \rangle_{\mathscr{D}'(\Omega), \mathscr{D}(\Omega)} \quad (\text{note that } |\langle S, \varphi \rangle| \le C \sup_{|\alpha| \le N, \ x \in \text{supp } \chi_0} |\partial_x^{\alpha} \varphi|),$$

We have $\iota(S) = T$ because

$$\langle \iota(S), \varphi \rangle_{\mathscr{D}'(\Omega), \mathscr{D}(\Omega)} = \langle S, \varphi \rangle_{\mathscr{E}'(\Omega), \mathscr{E}(\Omega)} = \langle T, \chi_0 \varphi \rangle_{\mathscr{D}'(\Omega), \mathscr{D}(\Omega)} = \langle \chi_0 T, \varphi \rangle_{\mathscr{D}'(\Omega), \mathscr{D}(\Omega)},$$

and since for $\varphi \in \mathscr{D}(\Omega)$, the function $(1 - \chi_0)\varphi$ vanishes on an open neighborhood V of L implying

$$\operatorname{supp}((1-\chi_0)\varphi) \subset V^c \subset L^c \Longrightarrow \langle T, (1-\chi_0)\varphi \rangle = 0,$$

so that $\iota(S) = \chi_0 T = \chi_0 T + \underbrace{(1 - \chi_0)T}_{=0} = T$. The proof of the theorem is complete.

Remark 3.3.3. We can then identify $\mathscr{D}'_{\text{comp}}(\Omega)$ with $\mathscr{E}'(\Omega)$, and we may note that for $T \in \mathscr{D}'_{\text{comp}}(\Omega)$ with supp T = L, T is of finite order N, and for all neighborhoods K of L, there exists C > 0 such that, for all $\varphi \in \mathscr{E}(\Omega)$,

$$|\langle T, \varphi \rangle| \le C \sup_{|\alpha| \le N, \ x \in K} |(\partial_x^{\alpha} \varphi)(x)|.$$
(3.3.1)

In general, it is not possible to take K = L in the above estimate.

3.3.2 Distributions with support at a point

The next theorem characterizes the distributions supported in $\{0\}$.

Theorem 3.3.4. Let Ω be an open subset of \mathbb{R}^n , $x_0 \in \Omega$ and let $u \in \mathscr{D}'(\Omega)$ such that supp $u = \{x_0\}$. Then $u = \sum_{|\alpha| \leq N} c_{\alpha} \delta_{x_0}^{(\alpha)}$, where the c_{α} are some constants.

3.4. TENSOR PRODUCTS

Proof. Let $\varphi \in C^{\infty}(\Omega)$; we have for $x \in V_0 \subset$ open neighborhood of x_0 (included in Ω), N_0 the order of u,

$$\varphi(x) = \sum_{|\alpha| \le N_0} \frac{(\partial_x^{\alpha} \varphi)(x_0)}{\alpha!} (x - x_0)^{\alpha} + \underbrace{\int_0^1 \frac{(1 - \theta)^{N_0}}{N_0!} \varphi^{(N_0 + 1)}(x_0 + \theta(x - x_0)) d\theta}_{\psi(x), \quad \psi \in C^{\infty}(V_0)} (x - x_0)^{N_0 + 1},$$

and thus for $\chi_0 \in C_c^{\infty}(V_0), \chi_0 = 1$ near x_0 ,

$$\langle u, \varphi \rangle = \langle u, \chi_0 \varphi \rangle = \sum_{|\alpha| \le N_0} \frac{(\partial_x^{\alpha} \varphi)(x_0)}{\alpha!} \langle u, \chi_0(x)(x - x_0)^{\alpha} \rangle + \langle u, \chi_0(x)\psi(x)(x - x_0)^{N_0 + 1} \rangle.$$
(3.3.2)

We have also

$$|\langle u, \chi_0(x)\psi(x)(x-x_0)^{N_0+1}\rangle| \le C_0 \sup_{|\alpha|\le N_0} |\partial_x^{\alpha} (\chi_0(x)\psi(x)(x-x_0)^{N_0+1})|.$$
(3.3.3)

We can take $\chi_0(x) = \rho(\frac{x-x_0}{\epsilon})$, where $\rho \in C_c^{\infty}(\mathbb{R}^n)$ is supported in the unit ball B_1 , $\rho = 1$ in $\frac{1}{2}B_1$ and $\epsilon > 0$. We have then

$$\chi_0(x)\psi(x)(x-x_0)^{N_0+1} = \epsilon^{N_0+1}\rho(\frac{x-x_0}{\epsilon})\psi(x_0+\epsilon\frac{(x-x_0)}{\epsilon})\frac{(x-x_0)^{N_0+1}}{\epsilon^{N_0+1}} = \epsilon^{N_0+1}\rho_1(\frac{x-x_0}{\epsilon})$$

with $\rho_1(t) = \rho(t)\psi(x_0 + \epsilon t)t^{N_0+1}$, so that $\rho_1 \in C_c^{\infty}(\mathbb{R}^n)$ is supported in the unit ball B_1 has all its derivatives bounded independently of ϵ . From (3.3.3), we get for all $\epsilon > 0$,

$$|\langle u, \chi_0(x)\psi(x)(x-x_0)^{N_0+1}\rangle| \le C_0 \sup_{|\alpha|\le N_0} \epsilon^{N_0+1-|\alpha|} |(\partial_t^{\alpha}\rho_1)(\frac{x-x_0}{\epsilon})| \le C_1\epsilon,$$

which implies that the left-hand-side of (3.3.3) is zero. On the other hand, for $\chi_1 \in C_c^{\infty}(V_0), \chi_1 = 1$ near the support of χ_0 , we have

$$\langle u, \chi_1(x)(x-x_0)^{\alpha} \rangle = \langle u, \underbrace{\chi_1(x)\chi_0(x)}_{=\chi_0(x)} (x-x_0)^{\alpha} \rangle + \langle u, \underbrace{\chi_1(x)(1-\chi_0(x))}_{\text{supported in (supp u)}^c} (x-x_0)^{\alpha} \rangle$$
$$= \langle u, \chi_0(x)(x-x_0)^{\alpha} \rangle$$

so that the latter does not depend on ε for ε small enough. The result of the theorem follows from (3.3.2).

3.4 Tensor products

Let X be an open subset of \mathbb{R}^m , Y be an open subset of \mathbb{R}^n and $f \in C_c^{\infty}(X), g \in C_c^{\infty}(Y)$. The tensor product $f \otimes g$ is defined by $(f \otimes g)(x, y) = f(x)g(y)$ and belongs