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On L2(R), we consider the Schrödinger operator

(1.1) Hε = − ∂2

∂x2
+ v(x)− εx,

where v is a real analytic 1-periodic function and ε is a positive constant. This
operator is a model to study a Bloch electron in a constant electric field ([1]). The
parameter ε is proportional to the electric field. The operator (1.1) was studied
both by physicists (see, e.g., the review [6]) and by mathematicians (see, e.g., [9]).
Its spectrum is absolutely continuous and fills the real axis. One of main features
of Hε is the existence of Stark-Wannier ladders. These are ε-periodic sequences of
resonances, which are poles of the analytic continuation of the resolvent kernel in
the lower half plane through the spectrum (see, e.g., [2]). Most of the mathematical
work studied the case of small ε (see, e.g., [9, 3] and references therein). When ε is
small, there are ladders exponentially close to the real axis. Actually, only the case
of finite gap potentials v was relatively well understood. For these potentials, there
is only a finite number of ladders exponentially close to the real axis. It was further
noticed that the ladders non-trivially “interact” as ε changes, and conjectured that
the behavior of the resonances strongly depends on number theoretical properties
of ε (see, e.g., [1]).

In the present note, we only consider the periodic potential v(x) = 2 cos(2πx) and
study the reflection coefficient r(E) of the Stark-Wannier operator (1.1) in the lower
half of the complex plane of the spectral parameter E. The resonances are the poles

of the reflection coefficient. We show that, as ImE → −∞, the function E 7→ 1

r(E)
can be asymptotically described in terms of a regularized cubic exponential sum that
is a close relative of the cubic exponential sums often encountered in analytic number
theory. This explains the dependence of the reflection coefficient on the arithmetic
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nature of ε. For π2

3ε
∈ Q, we describe the asymptotics of the Stark-Wannier ladders

situated far from the real axis.
Let us recall the definition of the reflection coefficient for (1.1) following [2]. Con-

sider the equation

(1.2) − ψ′′(x) + (v(x)− εx)ψ(x) = Eψ(x), x ∈ C,

For the sake of simplicity, assume that the potential v is entire. Assume also∫ 1

0

v(x) dx = 0. For any E ∈ C, there are unique solutions ψ± to (1.2) that admit

the asymptotic representations

(1.3)
ψ−(x,E) = 1

4√−εx−E e
−

∫−E/ε
x

√
−εt−E dt+o(1), x→ −∞,

ψ+(x,E) = 1
4√εx+E e

i
∫ x
−E/ε

√
εt+Edt+o(1), x→ +∞,

where the determinations of
√
· and 4

√
· are analytic in C\R− and positive along R+.

Consider also the solution ψ∗+(x,E) = ψ+(x̄, Ē). The solutions ψ+ and ψ∗+ being
linearly independent, one has

(1.4) ψ−(x,E) = w(E)ψ∗+(x,E) + w∗(E)ψ+(x,E), x ∈ R,

where the coefficient w(E) is independent of x and the function E 7→ w(E) is
entire. The ratio r(E) = w∗(E)/w(E) is the reflection coefficient. It is an ε-periodic
meromorphic function of E. The reflection coefficient is analytic in C+, and, for
E ∈ R, one has |r(E)| = 1. The poles of r are the resonances of Hε.

Let us now state the first of our results. Represent 1/r by its Fourier series

1/r(E) =
∑
m∈Z

e2πniE/εp(m) for ImE ≤ 0. Let a(ε) =
√

2
ε
πeiπ/4. One has

Theorem 1. Let v(x) = 2 cos(2πx). Then, as m→∞,

(1.5) p(m) = a(ε)
√
me−2πiωm

3−2m log (2πm/e)+δ(m), ω =
{
π2

3ε

}
,

where, for x real, {x} denotes the fractional part of x, and δ(m) = O(log2m/m).
This estimate is locally uniform in ε > 0.

Clearly, the asymptotic behavior of 1/r(E) as ImE → −∞ is determined by the
Fourier series terms with large positive m, and so, roughly,

(1.6)
1

r(E)
≈ a(ε)P(E/ε), P(s) =

∑
m≥1

√
me−2πiωm

3−2m log (2πm/e)+2πims.

It is worth to compare the function P with the cubic exponential sums
N∑
n=1

e−2πiωn
3

.

Such sums were extensively studied in analytic number theory, see, e.g., [4]. They
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were proved to depend strongly on the arithmetic nature of ω. This appears to be
true in our case too. We have

Theorem 2. Let v(x) = 2 cos(2πx). Assume that ω ∈ Q and represent it in the
form ω = p

q
, where 0 ≤ p < q are co-prime integers. If p = 0, we take q = 1. For

ξ ∈ R, we set Iq(ξ) := {m ∈ Z : |ξ − m
q
| ≤ 1/2}. As ImE → −∞, one has

(1.7) r−1(E) = b(ε) ρ
q

∑
m∈Iq(ξ)

Sq(p,m)eρe
iπ(ξ−m/q)+iπ(ξ−m/q)+O(log2 ρ/ρ) + eO( ρ

ln ρ
),

where b(ε) = π
3
2 eiπ/4/

√
2ε, ξ = ReE/ε, ρ = e−π ImE/ε, and

Sq(p,m) =

q−1∑
l=0

e−2πi
pl3−ml

q .

The error estimates are locally uniform in ε > 0.

Let us discuss this result. First, assume that ω = 0. By Theorem 2,

(1.8) (b(ε)r(E))−1 =
√
z e
√
z+O( ln

2 z√
z
)
+ eO(

√
z

ln z
), z = e2iπE/ε,

where the determination of
√
· is analytic in C \ R− and positive along R+. Recall

that 1/r is ε-periodic. Let Bε = {E ∈ C : ImE ≤ 0, 0 ≤ ReE ≤ ε}. Representa-
tion (1.8) implies

Corollary 1. Assume ω = 0. The resonances located in Bε have the following
properties :

• for sufficiently large y > 0, the resonances with ImE < −εy are located in
the domain |ReE − ε/2| ≤ Cε2/| ImE|, where C > 0 is a constant;
• let n(y) be the number of resonances in the rectangle [0, ε] − i [0, εy]; then,

one has

n(y) =
1

π
eπy+o(1) as y →∞.

The first statement immediately follows from Theorem 2; to prove the second one
has to use Jensen formula and Levin lower bounds for the absolute values of entire
functions, see, e.g., [8].
When ω = 0, it is difficult to obtain the asymptotics of the resonances as, in a
neighborhood of the line ReE/ε = 1/2 mod 1, they are determined by the first
Fourier coefficients of 1/r, i.e., by p(m) with m = 1, 2, 3 . . . . Hence, the problem is
not asymptotic in nature.

If ω 6= 0, then the description of the resonances is determined by the values of
Sq(p,m) for m = 1, 2, . . . q − 1 (the map m→ Sq(p,m) is q-periodic). The Sq(p,m)
are cubic complete rational exponential sums, see, e.g., [7]. One easily checks

Lemma 1. For any q ∈ N,

q−1∑
m=0

|Sq(p,m)|2 = q2.
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This implies that, for q ≥ 1, there is at least one integer 0 ≤ m0 < q − 1 such that
Sq(p,m0) 6= 0.

If Sq(p,m) is non zero for only one 0 ≤ m0 < q (this happens, for example, for
q = 2, 3, 6), then one can characterize the resonances as when ω = 0. Now, they live
near the lines {ReE/ε = m0/q + 1/2 + n}, n ∈ Z.

For large q, there are actually many non-zero values Sq(p,m):

Lemma 2. There exists a constant C > 0 such that, for any co-prime q > p > 0,
one has #{0 ≤ m < q : Sq(p,m) 6= 0} ≥ Cq

2
3 .

This statement follows from Lemma 1 and the well-known upper bound for general
complete rational exponential sums of Hua ([7]).

In general, the behavior of m 7→ Sq(p,m) is nontrivial; it is known to depend
strongly on the prime factorization of q. Computer calculations lead to the following
conjecture: if q is prime, 0 < p < q, and 0 < m < q, then Sq(p,m) 6= 0.

If Sq(p,m) is non zero for at least two values of m such that 0 ≤ m < q, then,
using (1.5), one can describe asymptotically all the resonances with sufficiently ne-
gative imaginary part. One has

Corollary 2. Assume that, for some integers m1 < m2 such that m2−m1 < q, one
has Sq(p,m1) 6= 0, Sq(p,m2) 6= 0, and Sq(p,m) = 0 for all m1 < m < m2. Then,
for sufficiently large y > 0, in the vertical half-strip{

E ∈ C : − ImE ≥ εy,
m1

q
≤ ReE

ε
≤ m2

q

}
,

there are resonances, and they are described by the asymptotic formulas:

(1.9)
E

ε
= −i

(
ln(πk)

π
− ln sin

π(m2 −m1)

q

)
+
m2 +m1

q
+ o(1), k ∈ N,

where o(1) →
k→+∞

0.

This statement easily follows from Theorem 2.
Finally, let us describe very briefly the ideas leading to Theorems 1 and 2. Bus-

laev’s solutions ψ± used to define the reflection coefficient (see (1.3)) are entire
functions of x and E; they satisfy the relations ψ±(x + 1, E) = ψ±(x,E + ε). It
appears that the analytic properties of such solutions can naturally be described in
terms of a system of two first order difference equations on the complex plane (see,
for example, [5]). To get the asymptotics of the Fourier coefficients of the reflection
coefficient, we study the solutions of this system far from the origin. The idea lead-
ing from Theorem 1 to Theorem 2 is analogous to one used to study the behavior of

the exponential sums
N∑
n=1

e−2πiωn
3

with ω ∈ Q for large N , see [4]. However, to use

it successfully, one has to carry out a non trivial analysis of properties of the error
term in (1.5).
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