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Abstract

We define constructively the Berkovich space of a Banach ring, as a locale,
and the Berkovich-Gelfand transform of its elements. We define constructively
the sheaf of sets of continuous functions. This defines a sheaf of generalized
rings, in a certain sense. We then proceed to define local analytic functions.
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1 Introduction
There is a well known important duality between algebra and geometry, that is
present in various domains of mathematics. This is the case, for example, of
Gelfand’s duality theory for commutative Banach algebras over C, and of the duality
between rings and their prime spectrum in algebraic geometry. Our motivation in
this work is to try to answer the following question: how many of these constructive
results can be adapted to the setting of (analytic) arithmetic geometry.

In algebraic arithmetic geometry, the spectrum Spec(A) of a finitely presented
algebra A = Z[x1, . . . , xn]/(f1, . . . , fm) over Z mainly encodes non-archimedean
algebraic information. The aim of Berkovich arithmetic analytic geometry (also
called global analytic geometry) is to define another spaceM(A) that encodes both
archimedean and non-archimedean analytic information. This seems important for
applications, because many results of arithmetic geometry use archimedean analytic
methods. Hodge theory give us an important example. Another example is given by
the proof of Fermat’s last theorem, that uses in an essential way analytic modular
forms on the Poincaré Half plane H := {z ∈ C, Im(z) > 0}. More generally, the
analytic theory of automorphic forms and their L-functions can’t be formulated in
a purely algebraic setting.

We first recall the main results of constructive algebraic geometry. Joyal pro-
posed in [Joy76] (see also the work of Espanol [Esp83]) a constructive definition of
the Zariski spectrum Spec(A) of a ring A, as the locale (formal topological space
without points) generated by the basic opens D(f) for f ∈ A. In [CLS09], Coquand,
Lombardi and Schuster gave a constructive definition of spectral schemes as ringed
locales. These works have led to the complete formalization of affine schemes in
the proof assistant cubical agda (using the constructive cubical version of univalent
homotopy type theory) by Mörtberg and Zeuner (see [ZM23] for a description of
this work).

On the analytic side, Coquand and Spitters developped a constructive proof
of the constructive Gelfand duality in [CS08], and Henry studied it further in the
setting of locales in [Hen23].

The aim of this note is to try to adapt part of the above results on the duality
between algebra and geometry to the context of arithmetic geometry, i.e., to the
context of Berkovich’s geometry over an arbitrary Banach ring (A, | · |A). This will
define a Berkovich (localic) space M(A, | · |A) together with a Gelfand transform
that sends a ∈ A to an element

â :M(A, | · |)→ A1
A

of the set C0 of continuous functions onM(A, | · |). Another important aim of this
note is to define a workable notion of sheaf of analytic functions O on the Berkovich
space.
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Let us first explain classically what the Berkovich-Gelfand duality is about. The
standard reference for this subject is Berkovich’s book [Ber90] (see also the book
[LP22] for more recent results), where those spaces were first defined and studied, in
the setting of classical mathematics. The space that replaces the Gelfand spectrum

C(A) = HomBanAlgC(A,C)

of a C-Banach algebra A, when A is a general Banach algebra is given by the
Berkovich spectrum

M(A) ⊂
∏
a∈A

R+,

whose classical points are bounded multiplicative seminorms on (A, | · |A). For every
a ∈ A, there is a natural continuous projection eva : M(A) → R+ on the a-
component of the product.

One may also define, following Berkovich, the affine space An
A as the space of

multiplicative seminorms on A[X1, . . . , Xn] whose restriction to A are bounded, and
the multiplicative group Gm,A as the space of multiplicative semi-norms on A[Y, Y −1]
whose restriction to A are bounded, or equivalently (classically), those multiplicative
seminorms y on A[Y ] (points of the affine line) such that |Y (y)| > 0.

To every element a ∈ A, the Berkovich-Gelfand transform associates the contin-
uous section â : M(A) → A1

A associated to the algebra morphism P (X) 7→ P (a).
More generally, to every pair (a, b) ∈ A, the Berkovich-Gelfand transform associates
the continuous section (̂a, b) : M(A) → A2

A associated to the A-algebra morphism
P (X, Y ) 7→ P (a, b).

A rational function without poles on an open subspace U ⊂ M(A) may be de-
fined as a local section (a/b) : U → A1

A of the natural projection A1
A → M(A)

obtained from the datum of a section (̂a, b)|U : U → (A1 × Gm)A (where the tar-
get space is classically the subspace of A2

A given by multiplicative seminorms x on
A[X, Y, Y −1] that are bounded on A) by application of the functorial inverse multi-
plication map (A1 × Gm)A → A1

A given by (a, b) 7→ ab−1 to a section associated to
a pair (a, b) ∈ A2. For example, 1/b is classically a rational function without poles
on {x, |b(x)| > ε} = ev−1b (]ε,+∞[) for every ε > 0 because we have classically the
inclusion:

{x, |X(x)| > ε} ⊂ {x, |X(x)| > 0} = Gm,A ⊂ A1
A

for every ε > 0. We denote K(U) the set of rational functions without poles on U
and Kb(U) its subset of bounded rational functions.

An analytic function on an open subspace U ⊂ M(A) is then a continuous
section s : U → A1

U of the natural projection p : A1
A →M(A) over U that is locally

the uniform limit of a bounded sequence of rational functions without poles. This
gives a sheaf O onM(A) called the sheaf of Berkovich analytic functions.

We first give an abstract definition of the constructive Berkovich spectrum, to-
gether with two different constructive sheaves of analytic functions: the sheaf of
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generalized rings Ocl of classical analytic functions (defined essentially as above),
together with a sheaf morphism Ocl → C0, and the sheaf of rings Oc of constructive
analytic functions, defined using locally some equivalence classes of rational frac-
tions without poles (that can’t be constructively related to C0). Classically, there
should be a natural morphism of sheaves

Oc → Ocl,

and this morphism should be an isomorphism.
We finish this introduction by remarking that there may be a third possible ap-

proach to constructive Berkovich geometry, given by the use of the semi-analytic
Grothendieck topology (usually called the G-topology in the non-archimedean sit-
uation) instead of the usual Berkovich topology. It may correspond to a spectral
locale (a kind of Zariski-Riemann space) that one can hope to totally describe by
generators and relations (in a similar fashion to Joyal’s constructive description of
the Zariski spectrum and to Coquand and Spitters’ description of the Gelfand spec-
trum from [CS08]). In such a more concrete approach, one may probably get a
sheaf of (ind-)Banach rings of analytic functions under some additional hypothe-
sis (Tate’s acyclicity hypothesis) on A. We leave this research direction for future
developments.

2 Some rudiments of point-free topology
We refer to the book [Joh86] (see also [Joh02]) for more details on point-free topology.
In constructive (i.e., intuitionistic) mathematics (i.e., without the law of excluded
middle and thus, the axiom of choice), there are may examples of “point-free topo-
logical spaces”. For example, it is not always possible to show that the spectrum of
a ring A has points (because without choice, we don’t have Zorn’s lemma), but one
may still define (following Joyal) the corresponding “point-free topological space”
Spec(A).

Definition 1. A frame T is a poset with all joins ∨ (suprema) and finite meets ∧
(infima), which satisfy the infinite distributivity law

x ∧ (∨iyi) = ∨i(x ∧ yi).

A frame morphism is a function ϕ : T → T ′ that preserves all joins and finite meets.
The category opposite to the category of frames is called the category of locales (aka
“point-free topological spaces”). If X is an object of this category, we denote T (X)
the corresponding frame, and if f : X → Y is a morphism of locales, we denote f−1
the corresponding frame morphism.

Example 1. The datum of a topological space (X, T (X)) contains its frame T (X)
of open subspaces. For example, the one point space 1 = {∗} defines the one point
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locale 1, whose frame is T (1) = {∅, {∗}}, and one defines a classical point of a
locale X to be a locale morphism x : 1 → X. Classical points of a locale define a
topological space, and a topological space is called sober if it is homeomorphic to
the set of points of its associated locale. In particular, any Hausdorf space is sober.

We refer to the book loc. cit. for the proof of the following result, that we will
use in our definition of the constructive Berkovich spectrum.

Theorem 1. The category of locales has all small limits and colimits.

Remark 1. The functor from topological spaces to locales doesn’t always commute
with limits. In particular, the product X ×Y of two locales associated to two topo-
logical spaces X and Y is not always the locale associated to the product topological
space X ×top Y . This however doesn’t lead to substantial problems.

Remark 2. One may define the notion of a compact locale, and the main advantage
of point-free topology on classical topology is that an arbitrary product of compact
spaces may be proved to be compact, without assuming the axiom of choice. This
is a constructive version of Tychonov’s theorem (that is known to be equivalent to
the axiom of choice in classical mathematics).

3 The constructive Berkovich spectrum
Adapting Coquand and Spitters’ work [CS08] to Berkovich’s setting, we define a
constructive Banach ring to be a set A together with a map | · |A : A → R+ where
R+ denotes the non-negative upper reals, such that |a| = 0 if and only if a = 0,
|a− b| ≤ |a| + |b|, |ab| ≤ |a| · |b| for every a, b ∈ A. We assume that A is complete:
any cauchy approximation has a unique limit. Depending on the context, we will
consider the space R+ as an ordered set (of upper reals, with an infimum for any of
its inhabited subsets) or as a locale. We start with the localic viewpoint.

The first important result is the description of the Berkovich space that avoids
the use of its points.

Proposition 1. Let A be a ring and [A,R+] =
∏

a∈A R+ be the corresponding (prod-
uct) locale of maps A → R+. There exists a sublocale M(A) ⊂ [A,R+] that cor-
responds classically to multiplicative seminorms on A. If f : A → B is a ring
morphism it induces a continuous map M(f) : M(B) → M(A), in a functorial
way. The localeM(A) is locally compact.

Proof. The locale R+ is an ordered semiringed locale, i.e., we have addition and
multiplication maps +, · : R+ × R+ → R+, and a closed relation sublocale R+,≤ ⊂
R+ × R+. There is for each a0 ∈ A a natural projection

pa0 :
∏
a∈A

R+ → R+.
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This induces, for every (a0, b0) ∈ A2, natural projections

pa0×b0 :
∏
a∈A

R+ → R+

and
pa0−b0 :

∏
a∈A

R+ → R+.

From this, we define two natural maps

p× :
∏
a∈A

R+ →
∏
a,b∈A

R+

and
p− :

∏
a,b∈A

R+ →
∏
a,b∈A

R+.

that send (xa) to (xab) and (xa−b) respectively. There are also natural maps

+,× :
∏
a∈A

R+ →
∏
a,b∈A

R+

sending (xa) to (xa + xb) and (xa · xb) respectively. We may ask, using a fiber
product of locales morphisms, that p× = × on M(A), which corresponds to the
multiplicativity |ab| = |a| · |b| of the map. More precisely, we may ask that there is
a cartesian diagram

M(A) //

��

∏
a∈A R+

p×

��∏
a∈AR+ ×

//
∏

a,b∈AR+

We may also ask, using a similar fiber product of locales, that p− ≤ +, meaning
that (p−,+) :

∏
a∈AR+ →

∏
a,b∈AR2

+ lands into
∏

a,b∈AR+,≤, which corresponds to
the triangular inequality |a − b| ≤ |a| + |b|. More precisely, we may ask that there
is a cartesian diagram

M(A) //

��

∏
a,b∈A R+,≤

p×

��∏
a∈A R+

(p−,+)
//
∏

a,b∈AR2
+

Using the natural projection p0, p1 :
∏

a∈A R+ → R+ and the two points 0, 1 :
∗ → R+, that give constant functions 0, 1 :

∏
a∈A R+ → R+, we may further ask that

|0| = 0 and |1| = 1, i.e., p0 = 0 and p1 = 1. Setting universally all these conditions
defines a limit diagram in locales whose limit is M(A). The fact that the locale
M(A) is locally compact follows from the fact that it is a closed sublocale of the
locally compact product

∏
a∈A R+ of the locally compact locales R+.
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Corollary 1. Let (A, | · |A) be a Banach ring and B be an A-algebra. There exists
a sublocaleM(A,|·|A)(B) ofM(B) that classifies multiplicative seminorms on B that
are bounded by | · |A on A. If f : B → B′ is a morphism of A-algebras, it defines a
continuous mapM(A,|·|A)(B

′)→M(A,|·|A)(B) in a functorial way.

Proof. The structural map ϕ : A→ B defines a natural map
∏

b∈B R+ →
∏

a∈AR+

by (xb) 7→ (xϕ(a)) and the norm |·|A : A→ R+ defines a point |·|A : {∗} →
∏

a∈AR+.
We may ask, using a fiber product, for an element in

∏
a∈AR+ to be smaller than

| · |A, meaning that it is in the fiber of the natural maps
∏

a∈AR+,≤ →
∏

a∈AR2
+ and∏

a∈A

R+
∼=

∏
a∈A

R+ × {∗}
(id,|·|A)−→

∏
a∈A

R2
+.

This defines a locale that maps toM(B) and that is clearly functorial in B.

4 The generalized sheaf of rings of continuous func-
tions

Continuous functions on the Berkovich space of an arbitrary ring should not be taken
with values in C. It is more natural to see them as continuous functions with values
in the affine line A1

A over A, i.e., as continuous sections of the natural projection
A1

A → M(A). However, such continuous sections may not be added or multiplied
in general. We will now explain precisely what kind of structure do this space of
continuous functions have.

Definition 2. For n ≥ 0, we define

1. the affine space on the Banach ring (A, |·|A) by An
A :=M(A,|·|A)(A[X1, . . . , Xn]),

2. the multiplicative group by Gm,A :=M(A,|·|A)(A[X,X−1]),

3. a continuous function on an open subspace U ⊂ M(A) to be a continuous
section s : U → A1

A of the natural projection A1
A →M(A, | · |A).

4. an invertible continuous function on an open subspace U ⊂ M(A) to be a
continuous section s : U → Gm,A of the natural projection Gm,A →M(A, |·|A).

5. more generally, if B is an A-algebra, a continuous M(B)-valued function is
a continuous section s : U → M(A,|·|A)(B) of the natural projection pB :
M(A,|·|A)(B)→M(A).

The continuousM(B)-valued functions onM(A) form a sheaf of sets C0M(A)(B) and
we denote its local sections on U ⊂M(A) by C0U(B).
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Remark 3. It is not possible to add or to multiply arbitrary usual pairs of continuous
functions f1, f2 : U → A1

A. However, it is possible to add and multiply sections
f = (f1 : f2) : U → A2

A by simply defining

+(f1 : f2) := + ◦ f and × (f1 : f2) := × ◦ f

where +,× : A2
A → A1

A are defined asM(+) andM(×) with +,× : A[X]→ A[X, Y ]
the A-algebra morphisms sending X to X + Y and X · Y respectively.

If we want to be more precise about the structure carried by continuous functions
onM(A), we may say that the map B 7→ C0M(A)(B) defines a functor on the category
whose objects are A-algebras, with values in sheaves of sets onM(A). This means
that it is a kind of sheaf of A-algebras onM(A) in a (very) generalized sense (the
given functor doesn’t a priori commute with colimits of algebras).

Proposition 2. The natural functor from the category Algop
A to the category of

locales given by B 7→ M(A,|·|A)(B) induces a natural functor

C0M(A) : Algop
A → Sh(M(A, | · |A)).

Proof. This follows from the definition of C0 as local sections of the natural projec-
tion M(A,|·|A)(B) → M(A, | · |A) and from the functoriality of M(A,|·|A)(B) in the
A-algebra B.

Remark 4. We may replace the category AlgA by the simpler subcategory PolyA

of polynomial algebras over A, and this makes the sheaf of continuous functions a
generalized (it doesn’t commute with products) model of the finitary Lawvere theory
of A-algebras.

Remark 5. We may also replace the category AlgA of algebras by the category
BanAlgA of Banach algebras. This would then make the sheaf of continuous func-
tions a sheaf of generalized Banach algebras.

5 The Berkovich-Gelfand transform
Definition 3 (Berkovich-Gelfand transform). The natural map

G : A→ C0M(A)(A[x]) = ΓC0(M(A),A1
A)

that sends a ∈ A to the section G(a) ≡ â :M(A)→ A1
A dual to the A-algebra map

A[X]→ A sending X to a is called the Berkovich-Gelfand transform.

We now want to say that the Berkovich-Gelfand transform is a morphism of
generalized rings in a certain sense. This will only be possible if we restrict our
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test category for generalized rings to the category PolyA ⊂ AlgA of polynomial
algebras over A. So define a functor

A : Polyop
A → Sets

by A(B) = HomAlgA
(B,A). For B = A[x1, . . . , xn], we get A(B) ∼= An. It is clear

that A commutes with finite products (this is the model of the Lawvere theory of
A-algebras corresponding to the algebra A). However, the corresponding functor of
continuous functions

C0M(A) : Polyop
A → Sets

given by C0M(A)(B) = ΓC0(M(A),M(B)) does not commute with product. We still
have the following result, that means that the above Gelfand transform is compatible
with addition and multiplication, and that is is a morphism of generalized finitary
A-algebras.

Proposition 3. There is a natural morphism of functors Polyop
A → Sets denoted

G : A→ C0M(A)

given sending (a1, . . . , an) ∈ An to the corresponding continuous section G(a1, . . . , an)
of An

A.

Proof. This just follows from the fact that a morphism f : A[x1, . . . , xn]→ A[x1, . . . , xm]
induces a commutative diagram showing the result.

6 The local Berkovich-Gelfand transform
Definition 4. A representative for a rational function without poles on U ⊂M(A)
is a triple (a, b, f) composed of a pair (a, b) ∈ A2 and a section f : U → (A1×Gm)A
such that if i : (A1 ×Gm)A → A2

A is the natural map, we have

i ◦ f = G(a, b)|U : U → A2
A.

We denote K̃U(A[x]) the set of representatives for rational functions. More gen-
erally, if A[x1, . . . , xn] is a polynomial algebra, we denote K̃U(A[x1, . . . , xn]) the
set of similar triples ((a1, . . . , an), (b1, . . . , bn), f) with (ai) ∈ An, (bi) ∈ An and
f : U → (A1 × Gm)nA fulfilling a similar relation with the multiple Gelfand trans-
form.

Proposition 4. The representatives for rational functions without poles define a
functor

K̃U : Polyop
A → Sets.
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Proof. We just describe how addition, multiplication, and their units are imple-
mented. The units are given by (1, 1, G(1)|U) and (0, 1, G(0)|U). The addition and
multiplication of representatives of fractions (a, b) and (c, d) are given by (ad+bc, bd)
and (ac, bd) as usual, and these may also be implemented on the third part f since
they are purely algebraic.

Proposition 5. There is a natural morphism of functors (i.e., of generalized finitary
A-algebras)

GU : K̃U → C0U
called the local Berkovich-Gelfand transform. It is obtained by precomposing the
third component f of an element of K̃U with the natural “take the fraction” map

(A1 ×Gm)A → A1
A

that sends (a, b) to ab−1.

Remark 6. A problem with the above local construction is that for example if we take
U ⊂M(A) to be given by {x, |b(x)| > ε} := |b|−1(]ε,+∞[), we are not able to show
that the section G(b) : M(A) → A1

A factors on U through Gm,A, which is exactly
what we need to invert it and define 1/b : U → Gm,A. Another way to say it is that
we are not able (without using points) to define some representative in K̃U of such
a very natural and simple rational function without poles. In the classical situation,
using residue fields at points, we may show easily that Gm,A ⊂ A1

A identifies with
{x, |X(x)| > 0}, which solves this problem. For this reason, we will later use a more
formal approach to the definition of the representatives of rational function without
poles on opens, so that this kind of problem doesn’t occur.
Remark 7. If A = `1(N,C) is the complex Banach algebra of power series converging
on the unit disc, then we don’t really need to use rational fraction without poles to
define analytic functions on an open subspace U of its Berkovich spectrum, because
it is classically covered by (its intersection with) complex open discs. We may then
define analytic functions locally by converging power series. This of course doesn’t
work for a more general Banach ring such as (Z, | · |∞).

7 The norm on continuous functions
In this section, we consider R+ as the set of upper reals, that has the property that
any of its inhabited subsets has an infimum.

For each U ⊂M(A), there is a natural “norm map”

| · | : C0U(U)→ C0(U,R+)

obtained by sending s : U → A1
A to evX ◦ s where evX : A1

A → R+ is induced by the
natural projection

∏
P∈A[X] R+

evX−→ R+ on the X-factor of the product.
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Definition 5. A continuous function s ∈ C0A1(U) on U ⊂ M(A) is called bounded
on U if there exists C > 0 such that |s|−1([0, C[) = U where |s| : U → R+ is the
norm of s on U . If s is a bounded continuous function on U , we define ‖s‖∞,U to
be the infimum of such C > 0. More generally, a continuous function s ∈ C0An(U) is
bounded on U if each its components are bounded on U . We denote C0b,An(U) the
set of such sections.

Remark that the natural substraction map − : C0A2(U) → C0A1(U) is compatible
with the corresponding norm | · |, meaning that |s − t| ≤ |s| + |t| : U → R+.
This follows from the triangular inequality |(X − Y )(x)| ≤ |X(x)|+ |Y (x)| true by
definition for x a formal point of the space A2

A. This implies that the formal sum of
two bounded continuous functions is bounded and that the supremum norm fulfils
the triangular inequality

‖s− t‖∞ := ‖ − ◦(s : t)‖∞ ≤ ‖s‖∞ + ‖t‖∞.

Similar reasonings imply that

‖st‖∞ := ‖ × ◦(s : t)‖∞ ≤ ‖s‖∞ · ‖t‖∞,

and
‖1‖∞ = 1 and ‖0‖∞ = 0.

8 The generalized sheaf of rings of analytic func-
tions

We are now able to define the notion of rational function without pole on an open
subspace U ⊂M(A, | · |A).

Remark 8 (Preliminary warning). The problem with the following definition is that
even if it is constructive, it is not efficient if we are not using classical mathematics.
Indeed, if U = {|b| > ε} = |b|−1(]ε,+∞[), we are not even able to define 1/b
constructively as a rational function without poles on U . This is related to the fact
that we can only prove classically (see Berkovich’s original book [Ber90], Chapter
1) that

Gm,A = {x ∈ A1
A, |X(x)| > 0}.

In the smooth complex situation, analytic functions are locally given by converging
power series on discs, so that we don’t need to use rational fractions without poles.
However, with arithmetic Banach rings such as (Z, | · |∞), the situation is different,
and the contents of this remark apply. We will thus take another approach to the
definition of rational function without pole in a forthcoming section.
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Definition 6. A representative for a rational function without pole on an open
subspace U ⊂M(A, | · |A) is the datum of a continuous section

s = (A : B) : U → (A1 ×Gm)A :=M(A,|·|A)(A[X, Y, Y −1]),

i.e., an element of C0A[X,Y,Y −1](U) such that its precomposition i ◦ (A : B) : U → A2
A

with the natural map i : (A1 ×Gm)A → A2
A is such that

i ◦ (A : B) = (̂a, b)|U : U → A2
A

is the restriction of a section (̂a, b) : M(A) → A2
A obtained by sending P (X, Y ) to

P (a, b) for some (a, b) ∈ A2. The rational function without poles A/B : U → A1
A

on U associated to (A : B) is its precomposition with the map (A1 × Gm)A → A1
A

given on polynomial variables by X 7→ XY −1.

Once the notion of rational function without pole is defined, we may follow
Berkovich’s approach to the definition analytic functions, as continuous functions
that are local uniform limits of bounded rational functions without poles. The
Berkovich space being locally compact, this definition using bounded rational func-
tions is classically equivalent to the usual one given by Berkovich, that uses only
usual rational functions.

Definition 7. A local representative for an analytic function on U ⊂ M(A) is a
continuous section

s = (An : Bn : f) : U → ((A1 ×Gm)N × A1)A :=M(A[{Xn, Yn, Y
−1
n , n ∈ N}, Z])

such that each (An : Bn) : U → (A1 × Gm)A is a representative for a bounded
rational function without poles and f : U → A1

A is a bounded continuous section (so
that all sections (An/Bn − f) : U → A1

A are bounded, by the triangular inequality
for the supremum norm), and we further have

lim
n→∞

‖(An/Bn)− f‖∞ = 0.

An analytic function on U ⊂ M(A) is a continuous section f : U → A1
A such that

there exists a covering U = ∪iUi such that f|Ui
= fi : Ui → A1

A is part of a local
representative si = (An,i, Bn,i, fi) for an analytic function. We denote OA1(U) the
set of analytic functions on U .

We want to say what it means to add two analytic functions, i.e., to see analytic
functions as some kind of generalized ring. It is not possible to define OB(U) ⊂
C0B(U) for any A-algebra B. However, if B = A[Z1, . . . , Zm] is a polynomial ring, we
may define OAm(U) := OB(U) ⊂ C0B(U). This allows us to define a functor

O∗(U) : FAlgop
A → Sets

where FAlgA is the category of finitely generated polynomialA-algebrasA[Z1, . . . , Zm]
with A-algebras morphisms.

12



Definition 8. Let B = A[Z1, . . . , Zm]. A local representative for an analytic func-
tion on U ⊂M(A) with values in B is a continuous section

s = (An,k : Bn,k : fk) : U → ((Am ×Gm
m)N × Am)A

such that for each k = 1, . . . , ,m, the corresponding component

(An,k : Bn,k : fk) : U → ((A1 ×Gm)N × A1)A

is a local representative of an analytic function with values in A1. A continuous
section f : U → Am

A is called an analytic function if it is locally of the form (fk) for
some local representative of an analytic function.

Proposition 6. The map A[Z1, . . . , Zm] 7→ OAm(U) = OA[Z1,...,Zm](U) gives a con-
travariant functor

O∗(U) : FAlgop
A → Sets

on the category of finitely generated polynomial A-algebras.

Proof. Let us first show that if f : U → A2
U is an analytic function, then + ◦ f :

U → A1
U is also an analytic function. By restriction to a smaller U , we may suppose

that f : U → A2
U is obtained from a local representative of analytic functions. Then

we have

s = (An,1 : An,2 : Bn,1 : Bn,2 : f1 : f2) : U → ((A2 ×G2
m)N × A2)A

such that f = (f1 : f2) and (‖An,k/Bn,k − fk‖∞)n tends to zero for k = 1, 2. Then
the triangular inequality for the supremum norm

‖(An,1/Bn,1 − An,2/Bn,2)− (f1 − f2)‖∞ ≤ ‖An,1/Bn,1 − f1‖∞ + ‖An,2/Bn,2)− f2‖∞

shows that (An,1+An,2 : Bn,1+Bn,2 : f1+f2) is a local representative for an analytic
function, whose associated analytic function is + ◦ f as required. Now we want to
prove that if f : U → A2

U is an analytic function, then × ◦ f : U → A1
U is also

an analytic function. The question is still local on U , so that we may restrict to
local representatives of analytic functions. Let us denote (fn,1 : fn,2 : f1, f2) : U →
((A2)N ×A2)A the sequences of rational functions without poles together with their
limits. The point is to show that

‖fn,1 · fn,2 − f1 · f2‖∞

tends to zero as n tends to infinity. At least, it is well defined because ‖ · ‖∞ is
submultiplicative and subadditive. Since converging sequences of bounded continu-
ous functions are uniformly bounded, the usual trick of the trade does the rest. We
may do similar proofs for mutliple sums and multiple products. It remains to show
that the external multiplication map by a ∈ A, denoted ·a : An

A → An
A, and defined

13



by X 7→ aX, also respects analytic functions, but this is true since |a(x)| ≤ |a|A
for every x ∈ M(A). Since arbitrary polynomials are constructed from additions,
multiplications, and scalar multiplications, this shows by generator and relations
that A[Z1, . . . , Zm] 7→ OAm(U) is indeed a well defined functor.

The intuitive meaning of the above functoriality statement is that the sheaf of
analytic functions comes equipped with some kind of polynomial operations, and
in particular, some kind of addition and multiplication, so that it is a ring in this
generalized sense.

Remark 9. We carefully inform the reader that the above functor is not a usual
ring structure (model of the Lawvere theory of polynomial rings over A) because it
doesn’t send coproducts of polynomial algebras to products.

9 The constructive sheaf of analytic functions
The Berkovich definition of analytic functions as local uniform limits of rational
functions without poles is not constructive, because it uses the existence of points
inM(A) and also the values of analytic (and in particular of rational) functions at
those points in an essential way.

We will circumvent this problem by using (the setoid or higher inductive-inductive
type of) equivalence classes of local uniform Cauchy sequences of bounded rational
functions without poles. Classically, this doesn’t change the resulting sheaf, but the
new notion is purely constructive and avoids the use of the excluded middle and of
the axiom of choice.

First recall that for a ∈ A, we denote |a| : U → R+ the associated locale
morphism, given by composition of the Berkovich-Gelfand transform â : M(A) →
A1

A = MA(A[X]) with the evaluation at X map |X(·)| : A1
A → R+. Let us first

describe the constructive version of rational functions without poles.

Definition 9. Let A be a Banach ring and U ⊂M(A) be an open sublocale of its
Berkovich locale. A (representative for a) bounded rational function (without poles)
on U is a tuple

f = (a, b, r, s, C) ∈ A2 × (Q∗+)2 × N

such that

1. We have |a| < r on U , i.e., |â|−1|U ([0, r[) = U .

2. We have |b| > s on U , i.e., |b̂|−1|U (]s,+∞[) = U .

3. We have r/s < C.

14



We carefully inform the reader that we will often simply write

|f | < r

s
< C

to encode the above three conditions. We denote K̃b(U) the set of such local repre-
sentatives of bounded rational functions f .

We may here point the fact that K̃b(U) is a constructive version of the ring of
bounded rational functions on U . We now remark that all we need to work with
bounded fractions is already present on the set K̃b(U).

Proposition 7. There are natural associative addition and multiplication operations
on K̃b(U), given by the usual operations on fractions of elements of A, R∗+ and by
addition and multiplication on N. There is also a natural inversion operation given
by (a, b, r, s, C) = (−a, b, r, s, C). This makes (K̃b(U),+, ·,−) a commutative semi-
ring with inversion without any units. There are also

1. for every r > 0 and s < 1 and r/s < C, a corresponding additive partial unit

0r,s,C := (0, 1, r, s, C) ≡ (0/1, r/s, C),

2. for every r > 1 and s < 1 such that 1 < r/s < C, a corresponding multiplica-
tive partial unit

1r,s,C := (1, 1, r, s, C) ≡ (1/1, r/s, C),

that give units on the fractional A-component.

Proof. The multiplication works fine because if |a/b| < r/s and |c/d| < t/u on U
(in the above notation), then, if we look at the denominator of (a/b) · (c/d), we have

|a|−1|U ([0, r[) = U and |c|−1|U ([0, t[) = U

and since |ac| = |a| · |c| :M(A)→ R+ by definition ofM(A), we get

|ac|−1|U ([0, rt[) = (|a||U · |c||U)−1([0, rt[) ⊃ |a|−1|U ([0, r[) ∩ |c|−1|U ([0, t[) = U

by compatibility of the multiplication on R+ with its order. This gives |ac| < rt. A
similar reasoning shows that |bd| > su. For addition, if |a/b| < r/s and |c/d| < t/u,
then we have

|(a/b) + (c/d)| < (r/s) + (t/u)

since | · | : M(A) → R+ fulfills the triangular inequality when applied to (Gelfand
transforms of) elements of a, and since the addition on R+ is compatible with its
order.
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Definition 10. The “fractional” equivalence relation on elements of K̃b(U) given by

F = (a1, b1, r1, s1, C2) ∼frac (a2, b2, r2, s2, C2) = G

if C1 = C2 in N, r1/s1 = r2/s2 in Q∗+, and there exists S, S−1 ∈ Kb(U) such that
S · S−1 = 1r,s,C for some (r, s, C) and

S · F = S ·G.

The quotient of K̃b(U) by this equivalence relation ∼frac is denoted Kb(U). We will
denote an element in Kb(U) by F = (a/b, r/s, C).

Proposition 8. The set Kb(U) is naturally equipped with a commutative semi-ring
structure without units that makes K̃b(U)→ Kb(U) a morphism.

There is a natural map Kb(U)→ Q∗+ ×N . It is completely formal to check that
the natural forgetful map

| · | : Kb(U)→ R+

given by |(a/b, r/s, C)| := r/s fulfills all the usual conditions for being a multi-
plicative seminorm for these operations, except that on partial units, we only get
|(0, r/s, C)| = r/s > 0 and |(1, r/s, C)| = r/s > 1.
Remark 10. A representative for a bounded rational function without poles on A
defines a continuous function

f : U → A2
A =M(A[X, Y ])

by the Berkovich-Gelfand transform associated to (X, Y ) 7→ (a, b), and this contin-
uous function factorizes through the open sublocale |X|−1([0, rf [)∩|Y |−1(]sf ,+∞[).
We don’t know a priori if the above function f factorizes through the natural map
(A1 × Gm)A → A2

A. If we make this additional (a priori not very constructive)
hypothesis, we may define a continuous function (̂a/b) : U → Gm,A by composition
with the natural map (A1 × Gm)A → Gm,A given by (X, Y ) 7→ XY −1. But we
are able to prove this additional hypothesis constructively only in the case, say, of
(a, 1, r, 1/2, [2r] + 1), i.e., for the rational function a/1, and not even for 1/b when
|b| > ε. The main problem here is to show that the open sublocale {|X| > 0} of A1

A

is naturally isomorphic to Gm,A, and Berkovich’s proof of this result is essentially
non-constructive.

We are now able to define the local representatives of analytic functions, given
by Cauchy sequences with moduli of bounded rational functions without poles.

Definition 11. Let U ⊂ M(A) be an open sublocale. A local representative of
analytic function on U is the datum of a tuple

f = ((fn), C, (Cp,q), k,N) ∈ K̃b(U)N × N× (Q2
+)N

2 × N× NN

composed of
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1. a sequence (fn) of rational functions in K̃b(U) bounded by the same integer
C ∈ N, i.e., such that

|fn| < Cfn < C

for every n,

2. a family of additional real bounds (Cp,q) = (rp,q/sp,q),

3. an integer k,

4. a modulus of convergence (increasing function) N : N→ N,

such that:

1. for p, q ≥ 0, we have that the differences fp− fq of the rational functions with
their new bounds

(fp − fq, Cp,q)

are also elements of K̃b(U), i.e., we have morally the inequality

|fp − fq| < Cp,q.

2. and all these elements for p, q ≥ 0 define a Cauchy sequence with modulus,
meaning that for every n > 0, if p, q ≥ N(n), we have

|fp − fq| < Cp,q <
k

n
.

We denote Õloc(U) the set of such local representatives f .

Proposition 9. There is a natural inclusion K̃b(U) ↪→ Õloc(U) and the semiring
structure (without units) on K̃b(U) naturally extends to Õloc(U).

Proof. The natural map i : K̃b(U)→ Õloc(U) sends (f, |f |, C) to the tuple

i(f, |f |, C) := ((f), C, (Cp,q = 1/(pq)), k = 1, N : n 7→ n+ 1).

We indeed know that for n > 0 and p, q ≥ n+ 1, we have

1/(pq) ≤ 1/(n+ 1)2 < 1/n = k/n.

The sum of f and g is defined by

f + g = ((fn + gn), Cf + Cg, (Cf
p,q + Cg

p,q), k
f + kg,max(N f , N g)).

It is associative by construction because the norm fulfills the triangular inequality.
To define the multiplication of f and g, we use, as usual, the triangular inequality

|fpgp−fqgg| ≤ |fpgp−fpgq|+|fpgq−fqgq| ≤ |fp|·|gp−gq|+|gq|·|fp−fq| < Cf ·Cg
p,q+C

g·Cf
p,q.
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The multiplication of f and g is thus defined by

f · g = ((fn · gn), Cfg, (C
fg
p,q), kfg, Nfg),

with
Cfg = Cf · Cg

Cfg
p,q = Cf · Cg

p,q + Cg · Cf
p,q

kfg = Cf · kg + Cg · kf
Nfg = max(N f , N g)

The associativities at the C, Cp,q, k and N levels work well. Let us check this at
the k level: we have

k(fg)h = Cfgkh + Chkfg = CfCgkh + ChCfkg + ChCgkf = Cfhgh + Cghkf = kf(gh).

We now want to quotient Õloc(U) by the relation that identifies two Cauchy
sequences f and g if their difference tends to zero. As in the above definition,
we need to make additional choices to make this definition constructive, and this
will not define an equivalence relation but a groupoid acting on Õloc(U), but the
difference here is essentially technical.

The intuitive idea behind the following definition of the identification groupoid
is that the triangular inequality gives

|fn−hn| = |fn−gn+gn−hn| ≤ |fn−gn|+|gn−hn| < rn/sn+tn/un <
kf,g
m

+
kg,h
m

=
kf,g + kg,h

m

under the condition that n ≥ max(N(m),M(m)) when N and M are the moduli of
convergence of |fn − gn| and |gn − hn| to 0.

Definition 12. Define the identification pre-groupoid (with only a partial unit)
R(U) acting on Õloc(U) as the set of tuples

((fn), (gn), (rn, sn), k,N) ∈ Õloc(U)× Õloc(U)× (Q2
+)N × N× NN

such that, for every n ≥ 0, we have morally (as above) the inequality

|fn − gn| < rn/sn

and rn/sn tends to zero with (up to the constant k) modulus of convergence N :
N→ N, i.e., for every m > 0, if n > N(m), then

rn/sn <
k

m
.
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The source and the target maps s, t : R(U) → Õloc(U) are the natural projections,
and the composition is given by

((fn), (gn), (rn, sn), k,N) ◦ ((gn), (hn), (tn, un), l,M)
‖

((fn), (hn), (rnun + sntn, snun), k + l,max(N,M))

The partial unit e : Õloc → R(U) sends (fn) to the diagonal Cauchy sequence

e((fn)) = ((fn), (fn), (1, n), 1, N : m 7→ m)

Indeed, for n > m, we have |f − f | < 1/n < 1/m. This fulfills

e((fn)) ◦ ((fn), (gn), (rn, sn), k,N) = ((fn), (gn), (rnn+ sn, snn), k + 1,max(N, idN)),

so that e is a left (and right) unit only on the Õloc(U)2 component. The obtained
pre-groupoid, that encodes the constructive quotient, is denoted

Oloc(U) :=

[
R(U)

s //

t
// Õloc(U)oo

]
.

The presence of the modulus doesn’t prevent the above composition map to
be associative, because of the presence of the additional constant k. Indeed, if
((hn), (kn), (vn, wn),m,K) is in R(U) then the modulus of its composition with
((fn), (hn), (rnun + sntn, snun), k + l, L) given above is

max(L,K) = max(N,M,K),

and its additional constant is k + l + m. The modulus of the other composition in
the associativity condition is also given by

max(N,M,K)

and the additional constant is also k + l +m.
We are now able to show a completeness result for the formal/constructive quo-

tient Oloc(U). As usual in constructive mathematics (see [BB85] and [TvD88]), to
avoid the use of the axiom of choice, we use Cauchy sequences with moduli of Cauchy
sequences with modulus to prove this result.

Definition 13. A Cauchy sequence with moduli of elements of Õloc(U) is a tuple

((fn), (r1,p,q, s1,p,q), (r2,s,p, r2,p,q), (k1, k2), (M,K,L)) ∈ Õloc(U)N×(R4
+)N

2×N2×(NN)2

such that for every m, if p, q > M(m), we have

|fp − fq| < r1,p,q/s1,p,q < k1/m,
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i.e., for every n > K(m) and p, q > M(m), we have

|fp,n − fq,n| < r1,p,q/s1,p,q < k1/m.

We further ask for a uniform modulus L for all the Cauchy sequences fq, i.e., an
L : N→ N such that if n > K(m) and p, q > L(m), then

|fn,p − fn,q| < r2,p,q/s2,p,q < k2/m.

We denote Cauchy(Õloc(U)) the set of Cauchy sequences with moduli.

The usual triangular inequality

|fp,p − fq,q| ≤ |fp,p − fq,p|+ |fq,p − fq,q|

gives the following constructive completeness result for Õloc(U).

Proposition 10. If ((fn), (r1,p,q, s1,p,q), (r2,s,p, r2,p,q), (k1, k2), (M,K,L)) is a Cauchy
sequence with moduli of elements of Õloc(U), then the diagonal sequence

lim
n
fn := (fn,n, r1,p,qs2,p,q + r2,q,ps1,p,q, s1,p,qs2,p,q, k1 + k2,max(M,K,L))

is an element of Õloc(U). This defines a natural map

lim : Cauchy(Õloc(U))→ Õloc(U)

Remark 11. It is possible but cumbersome to define a constructive pre-groupoid
CauchyR(U) acting on Cauchy(Õloc(U)) and a pre-groupoid morphism from it to
Oloc(U).
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