TD de Logique 8: Ultra-tout : filtres, produits, puissances (corrigé)

Exercice 1.

- 1. Soit X infini, on pose $\mathcal{F}_{Frechet} = \{A \in \mathcal{P}(X) : A \text{ est cofini}\}$. Montrer que $\mathcal{F}_{Frechet}$ est un filtre. Il est contenu dans un ultrafiltre (Zorn).
- 2. Il suffit de l'écrire. Soit une famille de filtre (\mathcal{F}_i) , on vérifie que $\bigcap \mathcal{F}_i$ est bien un filtre...
- 3. Soit \mathcal{F} un filtre sur un ensemble X. On procède par double inclusion pour montrer que

$$\mathcal{F} = \bigcap_{\mathcal{F} \subset \mathcal{U} \text{ ultrafiltre}} \mathcal{U}$$

 \mathcal{F} est contenu dans l'intersection, c'est immédiat. Pour l'inclusion réciproque, soit \mathcal{U} un ultrafiltre contenant \mathcal{F} et soit $A \in \mathcal{U} \setminus \mathcal{F}$. Alors $\mathcal{F} \cup \{X \setminus A\}$ à la propriété des intersections finies : en effet, \mathcal{F} est stable par intersection finie et ne contient pas \emptyset , et si $B \in \mathcal{F}$, alors $B \cap X \setminus A \neq \emptyset$, sinon, il existerait $B \in \mathcal{F}$ tel que $B \subset A$ et donc $A \in \mathcal{F}$. Donc $\mathcal{F} \cup \{X \setminus A\}$ s'étend en un ultrafiltre \mathcal{V} sur X, et clairement $A \notin \mathcal{V}$, donc A n'appartient pas à $\bigcap_{\mathcal{F} \subset \mathcal{U}} \bigcup_{\text{ultrafiltre}} \mathcal{U}$. Ce qui conclut l'inclusion réciproque.

Exercice 2.

• Soit \mathcal{U} un ultrafiltre. Si $A \cup B \in \mathcal{U}$, alors $A \in \mathcal{U}$ ou $B \in \mathcal{U}$. En effet, si ce n'est pas le cas, alors $\neg A, \neg B \in \mathcal{U}$, donc $\neg (A \cup B) = \neg A \cap \neg B \in \mathcal{U}$, contredisant l'hypothèse.

On montre alors facilement par récurrence que si $\bigcup_{i=1}^n A_i \in \mathcal{U}$, alors il existe i tel que $A_i \in \mathcal{U}$. Ceci montre l'existence pour la propriété de n-partitionnement. L'unicité se déduit de la stabilité par intersection finie de \mathcal{U} et de $\emptyset \notin \mathcal{U}$.

• Supposons que \mathcal{U} a la propriété de n-partitionnement pour un certain $n \geq 3$ et montrons que \mathcal{U} est un ultrafiltre. Tout d'abord, $X = X \sqcup \varnothing \sqcup \varnothing \ldots \sqcup \varnothing$. L'unicité du i et l'hypothèse $n \geq 3$ implique que $\varnothing \notin \mathcal{U}$ et $X \in \mathcal{U}$. De plus, en ajoutant des ensembles vides, on prouve que \mathcal{U} a la propriété de m-partitionnement pour tout $m \leq n$, a fortiori pour m = 2 et m = 3. La partition $X = A \sqcup \neg A$ montre donc que pour tout $A \subseteq X$, $A \in \mathcal{U}$ ou $\neg A \in \mathcal{U}$, et pas les deux à la fois. Pour deux ensembles disjoints A, B, la partition $X = A \sqcup B \sqcup \neg (A \cup B)$ montre qu'au plus un des deux ensembles A, B est dans \mathcal{U} .

Soit $A \in \mathcal{U}$ et $B \supseteq A$. A est disjoint de $\neg B$, donc $\neg B \notin \mathcal{U}$, donc $B \in \mathcal{U}$.

Soient $A, B \in \mathcal{U}$. A est disjoint de $B \setminus (A \cap B)$, donc $B \setminus (A \cap B) \notin \mathcal{U}$. La partition $X = (A \cap B) \sqcup (B \setminus (A \cap B)) \sqcup \neg B$ montre que $A \cap B \in \mathcal{U}$.

Ainsi, \mathcal{U} est un ultrafiltre.

Exercice 3.

- (1) \rightarrow (2) : Soit φ un énoncé. On pose $X := \{i \in I | \mathcal{M}_i \models \varphi \text{ et } \mathcal{N}_i \models \neg \varphi \}$ et $Y := \{i \in I | \mathcal{M}_i \models \neg \varphi \text{ et } \mathcal{N}_i \models \varphi \}$. Si l'un des deux ensembles X, Y est infini, mettons X, alors il existe un ultrafiltre \mathcal{U} non-principal le contenant, on a alors $\prod_{i \in I} \mathcal{M}_i / \mathcal{U} \models \varphi$ mais $\prod_{i \in I} \mathcal{N}_i / \mathcal{U} \models \neg \varphi$, contredisant (1). Ainsi, X et Y sont finis, et $I \setminus (X \cup Y)$ est exactement l'ensemble des i tels que $\mathcal{M}_i \models \varphi \Leftrightarrow \mathcal{N}_i \models \varphi$.
- (2) \rightarrow (1) : : Soit \mathcal{U} un ultrafiltre non-principal et φ un énoncé vrai dans $\prod_{i \in I} \mathcal{M}_i / \mathcal{U}$. On note $X := \{i \in I | \mathcal{M}_i \models \varphi\}$. On a $X \in U$ par le théorème de Łoś. On note $Y := \{i \in I | \mathcal{M}_i \models \varphi \Leftrightarrow \mathcal{N}_i \models \varphi\}$. Y est de complémentaire fini par hypothèse et U est non-principal, donc $Y \in U$. On a donc $X \cap Y \in U$ et si $i \in X \cap Y$, alors $\mathcal{N}_i \models \varphi$, donc $\prod_{i \in I} \mathcal{N}_i / \mathcal{U} \models \varphi$.

Exercice 4.

- Supposons \mathcal{M} modèle de T_0 . Soit φ un énoncé vrai dans \mathcal{M} . Si tout modèle fini de T vérifie $\neg \varphi$, alors $\neg \varphi \in T_0$, donc $\mathcal{M} \models \neg \varphi$, absurde. Il existe donc un modèle fini de T vérifiant φ .
- Supposons que tout énoncé φ vrai dans \mathcal{M} est vrai dans un modèle fini \mathcal{M}_{φ} de T. La famille $X_{\varphi} := \{\psi | \mathcal{M}_{\psi} \models \varphi\}$, pour $\varphi \in \text{Th}(\mathcal{M})$, a la propriété d'intersection finie, donc se prolonge en un ultrafiltre \mathcal{U} , et l'ultraproduit $\prod_{\varphi \in \text{Th}(\mathcal{M})} \mathcal{M}_{\varphi}/\mathcal{U}$ est élémentairement équivalent à \mathcal{M} .
- Supposons \mathcal{M} élémentairement équivalent à un ultraproduit de modèles finis de T. Tout modèle fini de T est modèle de T_0 , donc tout ultraproduit de modèles finis de T est modèle de T_0 , donc \mathcal{M} est modèle de T_0 .
- Exercice 5. 1. Les fonctions et les constantes de $\mathfrak Q$ se définissent aisément à partir des fonctions point à points dans $\mathbb Q^{\mathbb N}$. Montrer l'associativité, la commutativité et la distributivité ne pose pas de problème. Il faut montrer que $\mathfrak Q$ est un corps : soit $a\mathfrak Q$, $a\neq 0$ on note $a=\lim_{i\to\mathcal U}q_i$ pour signifier que a est dans la classe d'équivalence de $(q_i)_{i\in\mathbb N}$ pour l'ultrafiltre (ie $\{i\in\mathbb N:a_i=q_i\}\in\mathcal U$). Si a est non nul, alors $\{i\in\mathbb N:a_i\neq 0\}\in\mathcal U$. Alors on pose $b_i=a_i^{-1}$ pour $i\in\mathbb N$ tel que $a_i\neq 0$. Alors le produit ab est tel que $\{i\in\mathbb N:a_ib_i=1\}\in\mathcal U$. Donc $ab=\lim_{i\to\mathcal U}1=1^{\mathfrak Q}$. Donc $\mathfrak Q$ est un corps. Les propriétés de corps ordonnés se montrent essentiellement de la même manière et sont laissés en exercice.
 - 2. \mathfrak{M} est un idéal de A ne pose pas de problème. Il est maximal : si $I \supseteq \mathfrak{M}$, avec I est un idéal de A. Soit $x \in I \setminus \mathfrak{M}$, il existe $q \in \mathbb{Q}_+^*$ tel que |x| < q et $p \in \mathbb{Q}_+^*$ tel que |x| > p. Épargnons nous les valeurs absolues, et supposons x > 0.

Alors q < x < p, et comme \mathfrak{Q} est un corps ordonné, on a

$$p^{-1} < x^{-1} < q^{-1}$$

Donc l'inverse de x est dans A, puis comme I est un idéal, $1 = x^{-1}x \in I$ donc I = A, et \mathfrak{M} est maximal.

- 3. Soit \overline{x} et \overline{y} dans le quotient A/\mathfrak{M} . Supposons x < y. Si $x y \in \mathfrak{M}$, on a $\overline{x} = \overline{y}$. sinon il existe $q \in \mathbb{Q}$ tel que x < q < y, et pour tout $x' \in \overline{x}$ et $y' \in \overline{y}$ on a x' < q < y', donc on a bien $\overline{x} < \overline{y}$. Le relation < passe donc bien au quotient. Le lecteur montrera que A/\mathfrak{M} muni de l'ordre est bien un corps totalement ordonné, ie que l'ordre est invariant par translation et stable par multiplication par un élément positif.
- 4. Deux rationnels dans A (les éléments de la forme $\lim_{i\to\mathcal{U}}q$ pour $q\in\mathbb{Q}$) sont bien distincts dans le quotient $\mathfrak{R}=A/\mathfrak{M}$: si q< q', sont deux rationnels alors ils sont séparés par $\frac{q+q'}{2}$. La restriction est donc strictement croissante, donc injective, et son image est un sous-corps de \mathfrak{R} isomorphe à $(\mathbb{Q},0,1,+,\cdot)$: c'est bien le sous corps premier de \mathfrak{R}). On note le morphisme canonique:

$$\Pi: x \in A \mapsto \overline{x} \in \mathfrak{R}$$

Montrons que \mathbb{Q} (en fait $\Pi(\lim_{i\to\mathcal{U}}\mathbb{Q})$ pour les tâtillons) est non-minoré, non majoré, et dense dans \mathfrak{R} . \mathbb{Q} n'est ni minoré, ni majoré puisque A est l'anneau des éléments archimédiens et que < passe au quotient : si $x\in A$, il existe $q\in\mathbb{Q}$ tel que |x|< q, et alors $|\overline{x}|<\overline{q+1}$. Pour la densité, si $\overline{x}<\overline{y}$ dans \mathfrak{R} , notons $L_y=\{q\in\mathbb{Q}:q<\overline{y}\}$, et $R_x=\{q\in\mathbb{Q}:\overline{x}< q\}$ et supposons $R_x\cap L_y=\emptyset$. Chacun de ces deux ensembles est non vide (puisque \mathbb{Q} n'est pas minorée, ni majoré dans \mathfrak{R}), et pour tout $q\in L_y$, $p\in R_x$, on a

En particulier, q - p < x - y et $y - x . Autrement dit, <math>|x - y| . Donc comme <math>L_y$ et R_x forme une partition de \mathbb{Q} , il vient que pour tout $q \in \mathbb{Q}_+^*$, |x - y| < q.

5. Soit B partie non-vide et majorée de \mathfrak{R} , si B a un maximum, on a terminé. Sinon on pose $L = \{q \in \mathbb{Q} : \exists b \in Bq < b\}$. L est majorée, par densité de \mathbb{Q} dans \mathfrak{R} , on peut prendre une suite $(q_i)_{i \in \mathbb{N}} \in L^{\mathbb{N}}$ telle que pour tout $b \in B$, il existe i_0 , vérifiant pour tout $i > i_0$, $q_i > b$ (on construit la suite par récurrence). Il suffit de vérifier que $\lim_{i \to \mathcal{U}} q_i$ est bien la borne supérieure que l'on recherche (on notera

que j'ai à nouveau fait sauter le passage au quotient au milieu, le lecteur se convaincra que je ne fais pas n'importe quoi.)

D'une part, $\lim_{i \to \mathcal{U}} q_i$ majore B, en effet, si $b \in B$, il existe un nombre fini de i tel que $b > q_i$. On écrit $b = \lim_{i \to \mathcal{U}} b_i$, et comme \mathcal{U} est non principal, il existe i_0 , tel que pour tout $i > i_0$, $\{j \in \mathbb{N}: b_j < q_i\} \in \mathcal{U}$. On en déduit que $\{j \in \mathbb{N}: b_j \leq q_j\} \in \mathcal{U}$. Sinon, par maximalité de \mathcal{U} , $\{j \in \mathbb{N}: b_j \geq q_j\} \in \mathcal{U}$, donc

$$\{j \in \mathbb{N} : b_j < q_i\} \cap \{j \in \mathbb{N} : b_j \ge q_i\} \in \mathcal{U}$$

et $\{j \in \mathbb{N}: q_i > b_j \geq q_j\}$ est fini puisque q_i est croissante. Or \mathcal{U} est non principal : contradiction. Donc $\{j \in \mathbb{N}: b_j \leq q_i\} \in \mathcal{U}$. Par le théorème de Łoś, on en déduit que $\mathfrak{Q} \models b < \lim_{i \to \mathcal{U}} q_i$.

D'autre part, si $m \in \mathfrak{R}$ majore B, alors m majore chacun des rationnels $\lim_{j \to \mathcal{U}} q_i$. Écrivons $m = \lim_{j \to \mathcal{U}} m_j$, et supposons $m \leq \lim_{i \to \mathcal{U}} q_i$, ie par Łoś, $\{j \in \mathbb{N} : m_j > q_j\} \notin \mathcal{U}$. Alors par maximalité de \mathcal{U} , $\{j \in \mathbb{N} : m_j \leq q_j\} \in \mathcal{U}$. Comme m majore chacun des q_i , par le théorème de Łoś, on a $\{j \in \mathbb{N} : m_j \geq q_i\} \in \mathcal{U}$ pour tout i. Donc pour tout i, $\{j \in \mathbb{N} : q_i \leq m_j < q_j\} \in \mathcal{U}$, or $\min\{j \in \mathbb{N} : q_i \leq m_j < q_j\} \geq i$ et donc $|m - \lim_{i \to \mathcal{U}} q_i| < p$ pour tout $p \in \mathbb{Q}$, donc dans \mathfrak{R} , $m = \lim_{i \to \mathcal{U}} q_i$. Donc $\lim_{i \to \mathcal{U}} q_i$ est bien majoré par tous les majorants de B.

On vient de montrer que \mathfrak{R} est un corps archimédien et Dedekind complet. Or, il n'y a qu'un seul tel corps à isomorphisme près : \mathfrak{R} est donc isomorphe à \mathbb{R} .

6. Si on prend on autre corps ordonné k que \mathbb{Q} , on pourrait penser que les questions 1 à 5 amène à la construction d'un sur-corps $K \succeq k$ dans lequel (k,<) est dense, non majoré, ni minoré, et qui admet le théorème de la borne supérieur : c'est le complété de Dedekind de k. En fait, comme l'ultrapuissance est sur \mathbb{N} , on n'obtient que la convergence des suites adjacentes (indexé par \mathbb{N}) de k : est-ce aussi fort que le théorème de la borne supérieure?

Exercice 6.

- 1. Soit X un espace séparé et soit \mathcal{U} un ultrafiltre sur X. Soient x, y deux points distincts de X. Il existe deux ouverts V_1, V_2 disjoints contenant respectivement x et y. Les deux ouverts étant disjoints, il y en a au plus un qui appartient à \mathcal{U} , donc \mathcal{U} converge vers au plus un des deux points x, y, donc \mathcal{U} converge vers au plus un point.
 - Réciproquement, supposons que tout ultrafiltre converge vers au plus un point. Soient x, y deux points de X qu'on ne peut pas séparer, c'est-à-dire tel que pour tout ouvert V_1, V_2 contenant respectivement x et y, on a $V_1 \cap V_2 \neq \emptyset$. Alors la famille $\{V|V \text{ ouvert contenant } x \text{ ou } y\}$ a la propriété d'intersection finie, donc est contenue dans un ultrafiltre \mathcal{U} , et \mathcal{U} converge vers x et y, donc x = y.
- 2. Soit X un espace quasi-compact et soit \mathcal{U} un ultrafiltre sur X. Si \mathcal{U} ne converge vers aucun point, alors pour tout $x \in X$, il existe un ouvert V_x contenant x n'appartenant pas à \mathcal{U} . La famille $(V_x)_{x \in X}$ est un recouvrement ouvert de X, donc admet un sous-recouvrement fini $X = V_{x_1} \cup \ldots \cup V_{x_n}$. Ainsi, l'un des V_{x_i} appartient à \mathcal{U} , contradiction. \mathcal{U} converge donc vers au moins un point.
 - Réciproquement, supposons que tout ultrafiltre converge vers au moins un point. Soit $(V_i)_{i\in I}$ une famille d'ouverts telle que pour tout $I_0\subseteq I$ fini, $(V_i)_{i\in I_0}$ ne recouvre pas X. On veut montrer que la famille ne recouvre pas X. On pose $F_i=\neg V_i$, alors $(F_i)_{i\in I}$ est une famille ayant la propriété d'intersection finie. Cette famille est donc contenue dans un ultrafiltre \mathcal{U} , qui converge vers un point x. Ce point n'appartient pas à $\bigcup V_i$, car sinon il existerait i tel que $x\in V_i$, donc $V_i\in\mathcal{U}$ par définition de la convergence, mais $F_i=\neg V_i\in\mathcal{U}$, absurde. Les V_i ne recouvrent donc pas X, X est donc quasi-compact.
- 3. En préambule, on définit, pour $f: X \to Y$ une application et \mathcal{U} un ultrafiltre sur X, l'ultrafiltre image de \mathcal{U} par f noté $f(\mathcal{U})$, par $f(\mathcal{U}) = \{A \subseteq Y | f^{-1}(A) \in \mathcal{U}\}$. Alors $f(\mathcal{U})$ est bien un ultrafiltre, et si f est une application continue entre espaces topologiques et \mathcal{U} converge vers un point x de X, alors $f(\mathcal{U})$ converge vers f(x).
 - Soit $(X_i)_{i\in I}$ une famille d'espaces quasi-compacts. On pose $X:=\prod_i X_i$. Soit \mathcal{U} un ultrafiltre sur X. Pour tout i, on note p_i la projection canonique $X\to X_i$. $p_i(\mathcal{U})$ est un ultrafiltre sur X_i qui est quasi-compact, donc $p_i(\mathcal{U})$ converge vers au moins un point x_i . Montrons que \mathcal{U} converge vers $(x_i)_{i\in I}$. Soit V

un voisinage de (x_i) . V contient un voisinage de (x_i) de la forme $V' := V_{i_1} \times \ldots \times V_{i_n} \times \prod_{i \neq i_1, \dots i_n} X_i$, avec V_{i_j} ouverts de X_{i_j} , par définition de la topologie produit. Comme pour tout j, $p_{i_j}(\mathcal{U})$ converge vers x_{i_j} , on a $V_{i_j} \in p_{i_j}(\mathcal{U})$, c'est-à-dire $V_{i_j} \times \prod_{i \neq i_j} X_i \in \mathcal{U}$. L'intersection de ces ouverts est V', donc $V' \in \mathcal{U}$, ce qu'on voulait.

Exercice 7.

- 1. Soient A et B deux ensemble finis disjoints de nombres réels. Pour chaque point dans A, on prend un intervalle à extrémités rationnelles contenant ce point et disjoint de B. Alors la réunion de ces intervalles est de la forme O_n pour un certain entier n, et on a $n \in F_t$ pour $t \in A$ et $n \notin F_t$ pour $t \in B$.
- 2. Tout d'abord, un ultrafiltre sur $\mathbb N$ est un élément de $\mathcal P(\mathcal P(\mathbb N))$, il y a donc au plus $2^{2^{\aleph_0}}$ ultrafiltres sur $\mathbb N$

Ensuite, pour chaque partie X de \mathbb{R} , la famille $(F_t)_{t\in X} \cup (\neg F_t)_{t\notin X}$ a la propriété d'intersection finie d'après la question précédente. Ainsi, cette famille est prolongeable en un ultrafiltre \mathcal{U}_X . Si X et Y sont deux parties distinctes de \mathbb{R} , alors les ultrafiltres \mathcal{U}_X et \mathcal{U}_Y sont distincts. Ainsi, on a trouver autant d'ultrafiltres distincts que de parties de \mathbb{R} , c'est-à-dire $2^{2^{\aleph_0}}$.

3. On pourra regarder la fin de cette réponse.

Exercice 8. Posons βX l'ensemble des ultrafiltres sur X, muni de la topologie sur engendré par la famille

$$\{\mathcal{U} \in \beta X \colon A \in \mathcal{U}\}_{A \in \mathcal{P}(X)}$$

Où les éléments de X sont associés à leur filtres principaux (X est discret, donc $i_X: X \to \beta X$ est bien continue).

Soit $f: X \to K$ continue, avec K compact, et F un ultrafiltre sur X, alors f(F) est un ultrafiltre sur K. Alors f(F) admet une unique limite dans K puisque celui-ci est compact, on la note x est on pose $\beta f(F) = x$. Cela définit une extension continue de f à βX .

Alternative : On peut aussi raisonner en terme d'espace de Stone sur l'algèbre de Boole des parties de X (cet espace est en fait exactement l'ensemble des ultrafiltres.)

Bonus : Si on retire l'hypothèse X discret, la compactification existe-elle encore? En fait, il est possible d'étendre la preuve via les ultrafiltres aux espaces de Tychonoff (espace séparé, complètement régulier) en considérant un ensemble plus large de filtres.