${ m TD}$ de Logique 10: Va-et-vient, applications pratiques. ${ m (corrig\'e)}$

Exercice 0. Cela normallement a été vu en cours, mais comme il s'agit d'un exemple fondamental, il faut savoir le refaire tout seul.

Soit $\mathcal{M}, \mathcal{N} \models DLO$, comme DLO ne contient pas de symbole de constante ni de fonctions, \mathcal{M} et \mathcal{N} sont 0-isomorphes.

On note $\mathcal{I} = \{f : f \text{ est un 0-isomorphisme de support fini entre } \mathcal{M} \text{ et } \mathcal{N}\}$. \mathcal{I} est évidement close sous restriction (et contient bien $\emptyset_{\mathcal{M}} \to \emptyset_{\mathcal{N}}$ par le paragraphe précédent). Montrons que \mathcal{I} satisfait à la condition de va et vient sans restriction. Soit $f : \overline{a} \mapsto \overline{b} \in \mathcal{I}$. On peut toujours ordonné $a_0 < a_2 < \cdots < a_n$ et $b_0 < b_2 < \cdots < b_n$. Comme f est un 0-isomorphe, f est une application strictement croissante et par le principe des tiroirs $f(a_i) = b_i$. Montrons le va: soit $a_{n+1} \in \mathcal{M} \setminus \{a_1, \dots, a_n\}$. Comme < est total sur \mathcal{M} , on a alors trois cas:

- soit $a_i < a_{n+1} < a_{i+1}$, pour un certain i. Alors comme $(\mathcal{N}, <)$ est un ordre dense, on peut choisir $b_{n+1} \in \mathcal{N}$, tel que $b_i < b_{n+1} < b_{i+1}$;
- soit $a_{n+1} > a_n$ (respectivement $a_{n+1} < a_0$). Comme $(\mathcal{N}, <)$ est un ordre sans extrémités, on peut choisir $b_{n+1} > b_n$ (respectivement $b_{n+1} < b_0$)

Dans chaque cas on a défini b_{n+1} tel que $f': a_i \mapsto b_i$ pour $i \in \{0, \dots, n+1\}$ est une application strictement croissante telle que $a_{n+1} \in \text{dom } f': \text{donc } f' \in \mathcal{I}$ (puisque les 0-isomorphismes des modèles de DLO sont exactement les applications qui préserve l'ordre) et on a la propriété du va. Pour la condition du vient, on réalise exactement la même disjonction de cas, et les mêmes propriétés des ordres denses totaux.

On en conclut que \mathcal{I} a la propriété du va et vient sans restriction.

En particulier, deux modèles dénombrable de DLO sont ∞ -isomorphes donc isomorphes, et donc DLO est \aleph_0 -catégorique (et donc complète). Enfin, les 0-isomorphismes entre modèles sont des ∞ -isomorphismes donc tout type est uniquement déterminé par ses formules sans quantificateur ie DLO élimine les quantificateurs.

Exercice 1.

1. Un sens est évident puisque $\operatorname{Th}(\mathcal{A}) = \operatorname{tp}^{\mathcal{A}}(\emptyset)$, et qu'un *n*-isomorphisme préserve la satisfaction des formules de profondeur de quantification $\leq n$.

Pour la réciproque, montrons par récurrence qu'il n'y a qu'un nombre fini de classes d'équivalences de k-uplets modulo n-isomorphisme; en outre chacune de ces classes est définie par une formule de rang de quantification n. C'est évident pour n=0, puisque le langage est relationnel et fini. Pour la récurrence, on suppose que pour chaque k les classes d'équivalence de k-uplets modulo n-isomorphisme sont définies par les formules $\varphi_{k,n,0}(\bar{x}), \ldots \varphi_{k,n,d}(\bar{x})$.

On considère le k-uplet \bar{a} et l'on forme

$$I = \{0 \le i \le d \text{ tel qu'il existe } \alpha \text{ tel que } \mathcal{A} \models \varphi_{k+1,n,i}(\bar{a},\alpha)\}$$

puis

$$\chi(\bar{x}) = \left(\bigwedge_{i \in I} \exists y \ \varphi_{k+1,n,i}(\bar{x},y) \right) \wedge \left(\bigwedge_{i \not\in I} \neg \exists y \ \varphi_{k+1,n,i}(\bar{x},y) \right).$$

Il est alors clair que ces formules, en nombre fini quand \bar{a} varie, définissent la classe de n-isomorphisme de a.

Notamment si $\mathcal{A} \equiv \mathcal{B}$, alors la fonction $\emptyset : \emptyset_{\mathcal{A}} \to \emptyset_{\mathcal{B}}$ est pour tout n un n-isomorphisme : c'est un ω -isomorphisme.

2. En langage relationnel de cardinal arbitraire, l'énoncé est faux. Munissons \mathbb{N} de la structure suivante : pour chaque n la relation unaire R_n désigne le segment $x \leq n$. Soit $\mathbb{N}^* = \mathbb{N} \cup \{\infty\}$. Alors pour chaque restriction finie $\check{\mathcal{L}}$ du langage, $(\mathbb{N}, \check{\mathcal{L}}) \simeq_{\omega} (\mathbb{N}^*, \check{\mathcal{L}})$. En particulier par finitude des formules, on a bien $\mathbb{N} \equiv \mathbb{N}^*$ dans le langage global. Pourtant \emptyset n'est pas un 1-isomorphisme dans \mathcal{L} , car aucun isomorphisme local ne passe par ∞ .

En revanche $\mathcal{A} \equiv \mathcal{B}$ ssi pour toute restriction finie $\check{\mathcal{L}}$ du langage, $(\mathcal{A}, \check{\mathcal{L}}) \simeq_{\omega} (\mathcal{B}, \check{\mathcal{L}})$.

Exercice 2. Montrons d'abord que \mathcal{A} et \mathcal{B} sont ω -isomorphes pour si et seulement si pour tout k, $a_k = b_k$. En effet supposons $a_k = b_k$ pour tout k, par récurrence, si $x \in \mathcal{A}$, on envoie x sur un élément de \mathcal{B} dont la classe d'équivalence à le même cardinal. Soit un n-uplet $x_1 \cdots x_n$ dans \mathcal{A} . on peut trouver $y_1 \cdots y_{n-1}$ de même type que $x_1 \cdots x_{n-1}$. On peut supposer $x_n \neq x_1 \cdots x_{n-1}$. Alors ou x_n est dans la classe d'équivalence d'un $(x_i)_{i < n-1}$ auquel cas on prend y_n dans la classe d'équivalence d'un y_i avec i tel que $R(x_n, x_i)$; ou x_n n'est en relation avec aucun x_i , on prend alors y_n dans une classe de même cardinal k que la classe de x_n auquel aucun y_i n'appartient (une telle classe appartient par principe des tiroirs puisque $a_k = b_k$).

Réciproquement s'il existe k_0 tel que $a_{k_0} \neq b_{k_0}$, \mathcal{A} et \mathcal{B} ne sont pas ω -isomorphe : supposons $a_{k_0} > b_{k_0}$, on prend une famille de \mathcal{A} de représentant des classes de cardinal k_0 de cardinal, alors le type sans paramètre de toute sous-famille de cardinal $b_{k_0} + 1$ de cette famille n'est pas réalisé dans \mathcal{B} donc \mathcal{A} et \mathcal{B} ne sont pas $(b_{k_0} + 1)$ -isomorphes (et donc pas ω -isomorphe).

Pour le cas général, si $a_{k_0} \neq b_{k_0}$ pour un certain $k_0 \in \mathbb{N}$, \mathcal{A} et \mathcal{B} ne sont pas 0-isomorphes : supposons $a_{k_0} > b_{k_0}$, donc b_{k_0} est fini, et \mathcal{B} satisfait l'axiome disant qu'il existe au plus b_{k_0} classe d'équivalence de cardinal k_0 , donc $\mathcal{A} \not\equiv \mathcal{B}$.

Supposons $a_{\infty} > b_{\infty}$, et $a_k = b_k$ pour tout $k \in \mathbb{N}$. Si $b_{\infty} = 0$, $\mathcal{A} \equiv \mathcal{B}$ si et seulement s'il existe une infinité de $(b_k)_{n \in \mathbb{N}}$ non nulle, mais \mathcal{A} et \mathcal{B} ne seront jamais 1-isomorphe (la réalisation du 1-type être dans une classe infinie n'est pas reflétable dans \mathcal{B}).

Si $b_{\infty} \neq 0$, on a $\mathcal{A} \equiv \mathcal{B}$ et montrons alors que \mathcal{A} et \mathcal{B} sont b_{∞} -isomorphes, ou presque (mais pas plus par ce qui précède). \mathcal{A} et \mathcal{B} sont 0-isomorphes et les $(b_{\infty} - 1)$ -uplets de \mathcal{B} sont bien reflétables dans \mathcal{A} (détails en exercices). Les b_{∞} -uplets de \mathcal{B} sont bien reflétables dans \mathcal{A} si et seulement si s'il existe une infinité de $(b_k)_{n \in \mathbb{N}}$ non nulle (sinon, \mathcal{A} satisfait le schéma d'axiomes disant qu'il existe b_{k_0} classes infinies (avec les paramètres) et il existe une classe distinctes de cardinal au moins k pour tout entier k).

Exercice 3. Un groupe abélien divisible sans torsion non-dénombrable est isomorphe à $\mathbb{Q}^{(I)}$ avec I non-dénombrable. Entre deux tels groupes, les applications linéaires partielles de domaine un sous-espace de dimension fini forment un système de va-et-vient qui montre que ces deux groupes sont ∞ -isomorphes.

La notion de groupe abélien divisible sans torsion s'exprime au premier ordre, on obtient ainsi que cette théorie est complète car tous les modèles non-dénombrables sont élémentairement équivalents.

Dans le cas dénombrable, on n'a pas nécessairement $G \simeq_{\infty} G'$, par exemple en prenant $G = \mathbb{Q}$ et $G' = \mathbb{Q}^2$.

Exercice 4. On considère un langage contenant un symbole de relation binaire \sim et on prend la théorie T qui dit que \sim est une relation d'équivalence qui a deux classes d'équivalence, dont l'une des classes ne contient qu'un point. T est alors clairement \aleph_0 -catégorique, T admet des modèles infinis et T n'élimine pas les quantificateurs.

Exercice 5. Soit \mathcal{M} un modèle. La fonction s y est injective et sans cycle; tout élément non-nul est successeur. Appelons orbite de $a \in \mathcal{M}$ l'ensemble O(a) des images et éventuels antécédents de a sous s. Deux cas se présentent : $O(a) \simeq \mathbb{N}$ ou $O(a) \simeq \mathbb{Z}$. Mais il y a une seule orbite de type \mathbb{N} , qui est celle de 0 et de chacun de ses itérés. La structure générale des modèles en découle : $\mathcal{M} \simeq \mathbb{N} \sqcup \coprod_{I} \mathbb{Z}$ pour I un ensemble quelconque d'indices.

Appelons riche un modèle où I est infini. Par compacité, tout modèle possède une extension élémentaire riche. Le va-et-vient entre modèles riches est sans restrictions. La complétude et l'élimination des quantificateurs suivent.

Deux modèles \mathcal{M}_I , \mathcal{M}_J sont isomorphes ssi I et J sont en bijection. Clairement card $\mathcal{M}_I = \operatorname{card} I + \aleph_0$. Notamment si \mathcal{M}_I est non-dénombrable, alors card $I = \operatorname{card} \mathcal{M}_I$. D'où la κ -catégoricité en κ non-dénombrable (mais pas l' \aleph_0 -catégoricité).

Exercice 6. Tout modèle est clairement de la forme $\mathcal{M}_I = \mathbb{N} \sqcup_{<} \coprod_I \mathbb{Z}$, où I est ordonné. Appelons riche un modèle où I est un ordre linéaire dense sans extrémités. Tout modèle possède une extension élémentaire riche. Entre tels modèles, deux uplets 0-isomorphes au sens de $\hat{\mathcal{L}}$ sont ∞ -isomorphes. Cela montre tout.

On peut aussi montrer $\mathcal{M}_I \simeq \mathcal{M}_J$ ssi $I \simeq J$ (en tant qu'ordres). Ceci exclut la catégoricité en tout cardinal.

Exercice 7.

- 1. Une axiomatisation est donné par les énoncés suivants :
 - $\forall x \neg x R x$:
 - $\forall x, y(xRy \leftrightarrow yRx)$;
 - Pour tous entiers n, m, l'énoncé $\forall x_1, ... x_n, y_1, ..., y_m(\bigwedge_{i,j} x_i \neq y_j) \rightarrow \exists z (\bigwedge_i z R x_i \land \bigwedge_j z \neq y_j \land \neg z R y_j)$.
- 2. On construit par récurrence une suite croissante de graphes finis $(G_n)_{n\in\mathbb{N}}$ telle que pour tout n, pour toute partie X de G_n , il existe un point $y\in G_{n+1}$ tel que yRx pour tout $x\in X$ et $\neg yRx$ pour tout $x\in G_n\setminus X$. Le graphe $\bigcup_n G_n$ est alors un graphe aléatoire dénombrable.
- 3. On regarde $S_1 := \{ y \in dom(\varphi) | xRy \}$ et $S_2 := \{ y \in dom(\varphi) | \neg xRy \}$. Alors $\varphi(S_1)$ et $\varphi(S_2)$ sont deux ensembles finis disjoints de H, il existe donc $z \in H$ relié à chaque point de $\varphi(S_1)$ et à aucun point de $\varphi(S_2)$, on pose alors $\tilde{\varphi}(x) = z$. On obtient bien un isomorphisme partiel qui étend φ .
- 4. On applique la méthode du va-et-vient. Étant donné deux graphes aléatoires dénombrables G et H, on les énumère $(g_i)_{i\in\mathbb{N}}$, $(h_i)_{i\in\mathbb{N}}$ et on construit une suite d'isomorphismes partiels finis $(f_i)_{i\in\mathbb{N}}$ telle que pour tout $i, g_i \in dom(f_i)$ et $h_i \in im(f_i)$. En effet, étant donné f_i , on peut étendre f_i en isomorphisme partiel fini f dont le domaine contient g_i , puis on étend f^{-1} en un isomorphisme partiel fini f' dont le domaine contient h_i et on pose $f_{i+1} = f'^{-1}$. L'isomorphisme souhaité entre G et H est alors $\bigcup_i f_i$.

La théorie T est donc \aleph_0 -catégorique et n'a pas de modèle fini, elle est donc complète.

5. On considère deux modèles de T M, N qui ont une sous-structure commune A, $\varphi(\bar{x}, y)$ une formule sans quantificateurs, $\bar{a} \in A$ et $c \in M$ tels que $M \vDash \varphi(\bar{a}, c)$. On cherche $d \in N$ tel que $N \vDash \varphi(\bar{a}, d)$. Comme N est aléatoire, on peut étendre l'isomorphisme partiel $id : \bar{a} \to \bar{a}$ en un isomorphisme définit en c, dont on note d l'image. Comme φ est sans quantificateur, on a $M \vDash \varphi(\bar{a}, c)$ si et seulement si $\{\bar{a}, c\} \vDash \varphi(\bar{a}, c)$ ssi $\{\bar{a}, d\} \vDash \varphi(\bar{a}, d)$ ssi $N \vDash \varphi(\bar{a}, d)$. Le point d convient, T élimine donc les quantificateurs.

Exercice 8. Supposons que X n'est pas \mathcal{L} -définissable sans paramètres (ie, R n'est pas équivalent modulo $\operatorname{Th}(\mathbb{A}')$ à une \mathcal{L} -formule). On va construit un automorphisme de \mathcal{L} -structure d'une \mathcal{L}' -extension élémentaire de \mathbb{A} qui ne préserve pas R.

Soient \overline{x} et \overline{y} deux n-uplet de variables disjoints. On considère le 2n-type suivant :

$$\{R(\overline{x}) \land \neg R(\overline{y})\} \cup \{\varphi(\overline{x}) \leftrightarrow \varphi(\overline{y}) : \varphi \in \text{Form}(\mathcal{L})\}$$

Par compacité, cet ensemble est satisfaisable, sinon R serait définissable par un nombre fini de \mathcal{L} -formules, et donc définissable sans paramètres. Soit \mathbb{A}'_0 une extension élémentaire de \mathbb{A}' qui réalise ce type. On note $\overline{a}, \overline{b}$ cette réalisation. Comme

$$\operatorname{tp}_{\mathcal{L}}(\overline{a}) = \operatorname{tp}_{\mathcal{L}}(\overline{b})$$

on pose un \mathcal{L} -isomorphisme partiel en posant $\varphi_0(\overline{a}) = \overline{b}$ qui ne préserve pas R. On peut étendre φ_0 en un automorphisme de \mathcal{L} -structure d'une extension élémentaire dénombrable de \mathbb{A} par va-et-vient. Supposons avoir construit φ_i , \mathcal{L} -automorphisme partiel de $\mathbb{A}_i \succ_{\mathcal{L}'} \mathbb{A}$. On se donne une énumération de \mathbb{A}_i (voir la remarque plus bas sur l'énumération).

Pour i impair, soit a le premier élément de \mathbb{A}_i qui n'est pas dans le domaine de φ_i . Alors il existe une extension élémentaire \mathbb{A}_{i+1} dénombrable de \mathbb{A}_i et $b \in \mathbb{A}_{i+1}$ tel que

$$\operatorname{tp}_{\mathcal{L}}(a/\operatorname{dom}(\varphi_i)) = \operatorname{tp}_{\mathcal{L}}(b/\operatorname{im}(\varphi_i))$$

On pose alors $\varphi_{i+1} = \varphi_i \cup \{(a,b)\}.$

Pour i pair, soit b le premier élément de \mathbb{A}_i qui n'est pas dans l'image de φ_i . Alors il existe une extension élémentaire \mathbb{A}_{i+1} dénombrable de \mathbb{A}_i et $a \in \mathbb{A}_{i+1}$ tel que

$$\operatorname{tp}_{\mathcal{L}}(a/\operatorname{dom}(\varphi_i)) = \operatorname{tp}_{\mathcal{L}}(b/\operatorname{im}(\varphi_i))$$

On pose alors $\varphi_{i+1} = \varphi_i \cup \{(a,b)\}.$

Pour tout i, on a alors,

$$\operatorname{tp}_{\mathcal{L}}(a\operatorname{dom}(\varphi_{i+1})/\emptyset) = \operatorname{tp}_{\mathcal{L}}(b\operatorname{im}(\varphi_{i+1})\emptyset)$$

On pose alors $\mathbb{B} = \bigcup_i \mathbb{A}_i$. Par union de chaîne élémentaire (colimite filtrante), $\mathbb{B} \succ_{\mathcal{L}'} \mathbb{A}$. Il faut montrer que $\bigcup_i \varphi_i$ est bien un \mathcal{L} -automorphisme de \mathbb{B} : il faut en fait prendre une énumération de B avant de construire les \mathbb{A}_i : on peut prendre une énumération d'une extension \aleph_0 -saturé dénombrable de \mathbb{A} et prendre une énumération de ce domaine tout entier. Avec cette énumération, $\bigcup_i \varphi_i$ est un \mathcal{L} -automorphisme de \mathbb{B} . Comme φ_0 ne préserve pas R, φ non plus : contradiction. Donc X est définissable sans paramètre.

Exercice 9. On considère la fonction de restriction :

$$\rho: S_n(A\overline{b}) \to S_n(A)$$

$$p \mapsto p \cap \text{Form}(\mathcal{L}_A)(\overline{x}),$$

qui est continue. Par commodité, on note seulement φ la formule $\varphi(\overline{x}, \overline{b})$. Par hypothèse, $\rho(O_{\varphi})$ et $\rho(O_{\neg \varphi})$ sont disjoints : ils partitionnent $S_n(A)$. Mais par compacité, continuité, et séparation, ce sont des fermés de $S_n(A)$, donc des ouverts-fermés. Notamment $\rho(O_{\varphi})$ est un O_{χ} pour une formule $\chi(\overline{x}, \overline{a})$ à paramètres dans A. Ainsi $\varphi(\overline{x}, \overline{b}) \in p$ ssi $\chi(\overline{x}, \overline{a}) \in p$.