TD de Logique 11.5 : Arithmétique de Presburger (corrigé)

Exercice 1. Cela se complique un peu par rapport aux théories successeur et ordre.

- 1. Essentiellement des récurrences. C'est à peine un exercice que d'identifier les énoncés-clefs. Grâce aux propriétés de divisibilité, on peut sans ajouter de quantificateurs parler de la classe de
- 2. Soit \mathcal{M} un modèle. Alors \leq y définit un ordre total, et l'on voit que $(\mathcal{M}, <) \models T_{\text{ord}}$. Notamment $(\mathcal{M}, <) \simeq \mathbb{N} \sqcup_{<} \coprod_{I} \mathbb{Z}$, où I est ordonné.

Soit $I_0 = \{0\} \cup I$ l'ensemble des magnitudes, où $\mu(a) = 0$ si $a \in \mathbb{N}$ et $\mu(a) = i$ si a est dans la i^e copie de \mathbb{Z} . On peut munir I_0 d'une structure de semi-groupe abélien ordonné tel que $\mu : \mathcal{M} \to I$ soit un morphisme. En outre à k fixé, $D_k(x) \vee \cdots \vee D_k(x+k-1)$ impose la k-divisibilité de I_0 . Noter que l'on n'a pas parlé de saturation.

3. Soient $\mathbb{A} \models \mathcal{T}_{Pres}$ et $\overline{a}, \alpha \in \mathbb{A}$. Comme 1 est dans \mathcal{L} on peut supposer $a_1 = 1$.

Une \mathcal{L} -formule de base $\varphi(\overline{a}, \alpha)$ est une relation additive; par associativité et commutativité, elle équivaut à $\gamma \alpha + \sum c_i a_i = \delta \alpha + \sum d_i a_i$, où les coefficients sont *naturels*. Par régularité on se ramène à $\gamma \alpha = t(\overline{a})$ (terme à combinaisons \mathbb{Z} -linéaires, grâce à la soustraction définissable).

Une $\hat{\mathcal{L}}$ -formule de base peut également être :

congruence modulo k (pour chaque entier naturel k).

- soit une inégalité;
- soit une relation de divisibilité $D_k(\gamma \alpha + t(\overline{a}))$. Si l'on connaît la classe modulo k de chaque a_i , c'est essentiellement une information de type $D_k(\gamma \alpha + \ell)$, d'ailleurs moins fine que $D_k(\alpha + \ell)$.

En conclusion le $\hat{\mathcal{L}}$ -type sans quantificateurs $\operatorname{tp}_0(\alpha/\overline{a})$ porte comme informations :

- des encadrements $t_{-}(\overline{a}) \leq \gamma \alpha \leq t_{+}(\overline{a})$ (combinaisons \mathbb{Z} -linéaires);
- des congruences $D_k(\gamma\alpha + \ell)$.
- 4. Va-et-vient entre modèles ω -saturés.

Soient \mathbb{A}, \mathbb{B} des modèles ω -saturés. On montre que les 0-isomorphismes au sens de $\hat{\mathcal{L}}$ sont des ∞ -isomorphismes. Soient $\overline{a} \simeq_0 \overline{b}$ dans $\hat{\mathcal{L}}$.

Avant l'argument, faisons sentir pourquoi se placer dans \mathcal{L} ne suffirait pas.

- Si a_1, a_2 sont N-libres avec $a_1 < a_2$ et $b_1 > b_2$, l'ajout de α tel que $a_2 = a_1 + \alpha$ est irreflétable : l'ordre est nécessaire.
- Si a_1 est \mathbb{N} -libre (de magnitude infinie) et pair, mais b_1 \mathbb{N} -libre et impair, l'ajout de α tel que $a_1 = \alpha + \alpha$ est irreflétable : les D_k sont nécessaires.

Mais nous supposons bien $\overline{a} \simeq_0 \overline{b}$ dans $\hat{\mathcal{L}}$. Reflétons l'ajout de α à \overline{a} par un $\beta \in \mathbb{B}$. Soient $p(x) = \operatorname{tp}_0(\alpha/\overline{a})$, et q(x) obtenu en substituant \overline{b} à \overline{a} . On veut montrer que q est satisfaisable dans \mathbb{B} . Par finitude de \overline{b} et ω -saturation, il suffit de démontrer que q est bien un type de \mathbb{B} , i.e. qu'il est finiment satisfaisable.

Un sous-ensemble fini de p porte :

• des encadrements $t_i^-(\overline{a}) \leq m_i \alpha \leq t_i^+(\overline{a})$;

• des congruences $D_{k_i}(n_i\alpha + \ell_i)$, moins fines que $D_{k_i}(\alpha + \ell'_i)$.

Prenant un multiple commun des coefficients m_i (en quantité finie), et ne gardant que les inégalités les plus contraignantes (l'ordre est total), l'information la plus fine possible est une seule conjonction $t^-(\overline{a}) \leq m\alpha \leq t^+(\overline{a})$ et de $D_{k_i}(\alpha + \ell_i)$. Deux cas se présentent.

- Si $t^-(\overline{a})$ et $t^+(\overline{a})$ sont à distance finie (de même magnitude), alors $m\alpha$ est déterminé explicitement en fonction de \overline{a} : et le $m\beta$ correspondant convient.
- Si $t^-(\overline{a})$ et $t^+(\overline{a})$ sont à distance infinie, alors $t^-(\overline{b})$ et $t^+(\overline{b})$ aussi, et l'on a une copie de \mathbb{Z} entre eux. Il suffit alors de résoudre un nombre fini de congruences pour β , en fixant $m\beta$ dans cette copie (i.e. en travaillant à magnitude de $m\beta$, et donc de β , fixée).

On a pu refléter α .

5. On conclut par les moyens classiques.

Par élimination des quantificateurs dans $\hat{\mathcal{L}}$, les ensembles infinis d'un modèle \mathcal{M} non-cofinis définissables à paramètres dans l'arithmétique de Presburger sont les ensembles ultimement périodiques, les unions finies d'intervalles et les intersection de ces deux types d'ensemble.

En particulier, dans $(\mathbb{N}, 0, 1, +)$ on ne peut définir que les ensembles ultimement périodiques (en plus des finis/cofinis).

6. On peut invoquer toute la force de la suite et la fameuse « fonction β ». Mais plus modestement, quand le produit est définissable, celui des nombres premiers, ou des carrés, l'est. Or d'après ce qui précède toute partie définissable de \mathbb{N} dans $\{+\}$ est ultimement périodique.