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Introduction

Martingales (with discrete time) lie at the centre of these notes (which might
become a book). They are known to have major applications to virtually every
corner of Probability Theory. Our central theme is their applications to the
Geometry of Banach spaces.

We should emphasize that we do not assume any knowledge about scalar
valued martingales. Actually, the beginning gives a self-contained introduction
to the basic martingale convergence theorems for which the use of the norm of
a vector valued random variable instead of the modulus of a scalar one makes
little difference. Only when we consider the “boundedness implies convergence”
phenomenon does it start to matter. Indeed, this requires the Banach space B
to have the Radon-Nikodym property (RNP in short).

While the RNP is infinite dimensional and we will concentrate on finite di-
mensional (also called “local”) properties, it is a convenient way to introduce
the stronger properties of uniform convexity and smoothness and supereflexiv-
ity. Indeed, the martingale inequalities satisfied by super-reflexive spaces can
be interpreted as “quantitative versions” of the RNP: roughly RNP means mar-
tingales converge and superreflexivity produces a uniform speed for their con-
vergence.

Our main theme in the first part is super-reflexivity and its connections with
uniform convexity and smoothness. Roughly we relate the geometric properties
of a Banach space B with the study of the p-variation

Sp(f) =
(∑∞

1
‖fn − fn−1‖pB

)1/p

of B-valued martingales (fn). Depending whether Sp(f) ∈ Lp is necessary or
sufficient for the convergence of (fn) in Lp(B), we can find an equivalent norm
on B with modulus of uniform convexity (resp. smoothness) “at least as good
as” the function t→ tp.

We also consider the strong p-variation

Vp(f) = sup
0=n(0)<n(1)<n(2)<···

(∑∞

1
‖fn(k) − fn(k−1)‖pB

)1/p

of a martingale. For that topic (exceptionally) we devote an entire chapter only
to the scalar case. Our crucial tool here is the “real interpolation method”.
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2 Introduction

The first part of the notes with the first 7 chapters are all related to super-
reflexivity, or more precisely, to the martingale versions of type and cotype. We
will see by an example (see chapter 7) that the latter are strictly stronger than
type and cotype.

However, if martingale difference sequences are unconditional, then the mar-
tingale versions of type and cotype reduce to the usual ones. This could be one
way to motivate the introduction of the UMD property in these notes, but UMD
is important in its own right: it is the key to harmonic analysis for Banach space
valued functions.

The chapter 8 is devoted to UMD Banach spaces and forms a second part
of the notes.

A major feature of the UMD property is its equivalence to the boundedness
of the Hilbert transform (HT in short) but we keave this for the final version of
these notes.

We also describe in chapter 9 some exciting recent work on non-linear prop-
erties of metric spaces analogous to uniform convexity/smoothness and type for
metric spaces.

We will now review the contents of these notes chapter by chapter.
Chapter 1 begins with preliminary background: We introduce Banach space

valued Lp-spaces, conditional expectations and the central notion in this book,
namely Banach space valued martingales associated to a filtration (An)n≥0 on a
probability space (Ω,A,P). We describe the classical examples of filtrations (the
dyadic one and the Haar one) in §1.3. If B is an arbitrary Banach space and the
martingale (fn) is associated to some f in Lp(B) by fn = EAn(f) (1 ≤ p <∞)
then, assuming A = A∞ for simplicity, the fundamental convergence theorems
say that

fn → f

both in Lp(B) and almost surely (a.s. in short).
The convergence in Lp(B) is Theorem 1.5, while the a.s. convergence is

Theorem 1.14. The latter is based on Doob’s classical maximal inequalities
(Theorem 1.9) that are proved using the crucial notion of stopping time. We also
describe the dual form of Doob’s inequality due to Burkholder–Davis–Gundy
(see Theorem 1.10). Doob’s maximal inequality shows that the convergence of
fn to f in Lp(B) “automatically” implies a.s. convergence. This of course is
special to martingales but in general it requires p ≥ 1. However, for martingales
that are sums of independent, symmetric random variables (Yn) (i.e. we have
fn =

∑n
1 Yk), this result holds for 0 < p < 1 (see Theorem 1.22). It also holds,

roughly, for p = 0.
In §1.5, we prove the strong law of large numbers using the a.s. convergence

of reverse B-valued martingales.
To get to a.s. convergence, all the preceding results need to assume in the

first place some form of convergence, e.g. in Lp(B). In classical (i.e. real valued)
martingale theory, it suffices to assume boundedness of the martingale {fn} in Lp
(p ≥ 1) to obtain its a.s. convergence (as well as norm convergence if 1 < p <∞).
However, this “boundedness ⇒ convergence” phenomenon no longer holds in
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the B-valued case unless B has a specific property called the Radon–Nikodym
property (RNP in short) that we introduce and study in Chapter 2. The RNP
of a Banach space B expresses the validity of a certain form of the Radon–
Nikodym theorem for B-valued measures, but it turns out to be equivalent
to the assertion that all martingales bounded in Lp(B) converge a.s. (and in
Lp(B) if p > 1) for some (or equivalently all) 1 ≤ p < ∞. Moreover, the RNP
is equivalent to a certain “geometric” property called “dentability”. All this is
included in Theorem 2.5. The basic examples of Banach spaces with the RNP
are the reflexive ones and separable duals (see Corollary 2.11).

Moreover, a dual space B∗ has the RNP iff the classical duality Lp(B)∗ =
Lp′(B∗) is valid for some (or all) 1 < p <∞ with 1

p + 1
p′ = 1, see Theorem 2.16.

Actually, for a general B one can also describe Lp(B)∗ as a space of martingales
bounded in Lp′(B∗), but in general the latter is larger than the (Bochner sense)
space Lp′(B∗) itself, see Proposition 2.14.

In §2.2, we discuss the Krein–Milman property (KMP): this says that any
bounded closed convex set C ⊂ B is the closed convex hull of its extreme points.
This is closely related to dentability, but although it is known that RNP⇒ KMP
(see Theorem 2.21) the converse implication is still open.

Chapter 3 is devoted to super-reflexivity. A Banach space B is super-reflexive
if every space that is finitely representable in B is reflexive. In §3.1 we intro-
duce finite representability and general super-properties in connection with ul-
traproducts. We include some background about the latter in an appendix to
Chapter 3.

In §3, we concentrate on super-P when P is either “reflexivity” or the
RNP. We prove that super-reflexivity is equivalent to the super-RNP (see The-
orem 3.11). We give (see Theorem 3.10) a fundamental characterization of
reflexivity, from which one can also derive easily (see Theorem 3.22) one of
super-reflexivity.

As in the preceding chapter, we replace B by L2(B) and view martingale
difference sequences as monotone basic sequences in L2(B). Then we deduce
the martingale inequalities from those satisfied by general basic sequences in
super-reflexive spaces.

In §3.3, we show that uniformly non-square Banach spaces are reflexive,
and hence automatically super-reflexive (see Theorem 3.24 and Corollary 3.26).
More generally, we go on to prove that B is super-reflexive iff it is J-convex, or
equivalently iff it is J-(n, ε) convex for some n ≥ 2 and some ε > 0. We say that
B is J-(n, ε) convex if for any n-tuple (x1, . . . , xn) in the unit ball of B there is
an integer j = 1, . . . , n such that∥∥∥∥∥∥

∑
i<j

xi −
∑
i≥j

xi

∥∥∥∥∥∥ ≤ n(1− ε).

When n = 2, we recover the notion of “uniformly non-square”. The implication
super-reflexive ⇒ J-convex is rather easy to derive (as we do in Corollary 3.34)
from the fundamental reflexivity criterion stated as Theorem 3.10. The con-
verse implication (due to James) is much more delicate. We prove it following
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essentially the Brunel–Sucheston approach ([77]), that in our opinion is much
easier to grasp. This construction shows that a non-super-reflexive (or merely
non-reflexive) space B contains very extreme finite dimensional structures that
constitute obstructions to either reflexivity or the RNP. For instance any such
B admits a space B̃ finitely representable in B for which there is a dyadic
martingale (fn) with values in the unit ball of B̃ such that

∀n ≥ 1 ‖fn − fn−1‖B ≡ 1.

Thus the unit ball of B̃ contains an extremely sparsely separated infinite dyadic
tree. (See Remark 1.25 for concrete examples of such trees.)

In §3.4, we finally connect super-reflexivity and uniform convexity. We prove
that B is super-reflexive iff it is isomorphic to either a uniformly convex space,
or a uniformly smooth one, or a uniformly non-square one. By the preceding
Chapter 4, we already know that the renormings can be achieved with moduli
of convexity and smoothness of “power type”. Using interpolation (see Propo-
sition 3.42) we can even obtain a renorming that is both p-uniformly smooth
and q-uniformly convex for some 1 < p, q <∞, but it is still open whether this
holds with the optimal choice of p > 1 and q < ∞. To end Chapter 3, we give
a characterization of super-reflexivity by the validity of a version of the strong
law of large numbers for B-valued martingales.

In Chapter 4, we turn to uniform convexity and uniform smoothness of Ba-
nach spaces. We show that certain martingale inequalities characterize Banach
spaces B that admit an equivalent norm for which there is a constant C and
2 ≤ q <∞ (resp. 1 < p ≤ 2) such that for any x, y in B

‖x‖q + C‖y‖q ≤ ‖x+ y‖q + ‖x− y‖q

2
(1)(

resp.

‖x+ y‖p + ‖x− y‖p

2
≤ ‖x‖p + C‖y‖p

)
.(2)

This is the content of Corollary 4.7 (resp. Corollary 4.22). We use this in
Theorem 4.1 (resp. Th. 4.24) to show that actually any uniformly convex (resp.
smooth) Banach space admits for some 2 ≤ q < ∞ (resp. 1 < p ≤ 2) such an
equivalent renorming. The inequality (1) (resp. (2)) holds iff the modulus of
uniform convexity (resp. smoothness) δ(ε) (resp. ρ(t)) satisfies infε>0 δ(ε)ε−q >
0 (resp. supt>0 ρ(t)t−p <∞). In that case we say that the space is q-uniformly
convex (resp. p-uniformly smooth). The proof also uses inequalities going back
to Gurarii, James and Lindenstrauss on monotone basic sequences. We apply
the latter to martingale difference sequences viewed as monotone basic sequences
in Lp(B). Our treatment of uniform smoothness in §4.2 runs parallel to that of
uniform convexity in §4.1.

In §4.3, we estimate the moduli of uniform convexity and smoothness of Lp
for 1 < p < ∞. In particular, Lp is p-uniformly convex if 2 ≤ p < ∞ and
p-uniformly smooth if 1 < p ≤ 2.
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In §4.5, we prove analogues of Burkholder’s inequalities but with the square
function now replaced by

Sp(f) =
(
‖f0‖pB +

∑∞

1
‖fn − fn−1‖pB

)1/p

.

Unfortunately the results are now only one-sided: if B satisfies (1) (resp. (2))
then ‖Sq(f)‖r is dominated by (resp. ‖Sp(f)‖r dominates) ‖f‖Lr(B) for all 1 <
r < ∞, but here p ≤ 2 ≤ q and the case p = q is reduced to the Hilbert space
case.

In §4.6, we return to the strong p-variation and prove analogous results to
the preceding ones but this time with Wq(f) and Wp(f) in place of Sq(f) and
Sp(f) and 1 < p < 2 < q < ∞. The technique here is similar to that used for
the scalar case in Chapter 6.

In Chapter 5, although we mention the complex method, we concentrate on
the real method of interpolation for pairs of Banach spaces (B0, B1) assumed
compatible for interpolation purposes. The complex interpolation space is de-
noted by (B0, B1)θ. It depends on the single parameter 0 < θ < 1, and requires
B0, B1 to be both complex Banach spaces. Complex interpolation is a sort of
“abstract” generalization of the classical Riesz–Thorin theorem, asserting that
if an operator T has norm 1 simultaneously on both spaces B0 = Lp0 and
B1 = Lp1 , with 1 ≤ p0 < p1 ≤ ∞, then it also has norm 1 on the space Lp for
any p such that p0 < p < p1.

The real interpolation space is denoted by (B0, B1)θ,q. It depends on two
parameters 0 < θ < 1, 1 ≤ q ≤ ∞, and now (B0, B1) can be a pair of real
Banach spaces. Real interpolation is a sort of abstract generalization of the
Marcinkiewicz classical theorem already proved in an appendix to Chapter 8.
The real interpolation space is introduced using the “K-functional” defined, for
any B0 +B1, by

∀t > 0 Kt(x) = inf{‖x0‖B0 + t‖x1‖B1 | x0 ∈ B0, x1 ∈ B1, x = x0 + x1}.

When B0 = L1(Ω, µ), B1 = L∞(Ω, µ) we find

Kt(x) =
∫ t

0

x∗(s)ds

where x∗ is the non-increasing rearrangement of |x| and (Ω, µ) is an arbitrary
measure space. We prove this in Theorem 5.3 together with the identification
of (L1, L∞)θ,q with the Lorentz space Lp,q for p = (1− θ)−1.

Real interpolation will be crucially used in the later Chapters 6 and 7 in
connection with our study of the “strong p-variation” of martingales. The two
interpolation methods satisfy distinct properties but are somewhat parallel to
each other. For instance, duality, reiteration and interpolation between vec-
tor valued Lp-spaces are given parallel treatments in Chapter 5. The classical
reference on interpolation is [5] (see also [35]).
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In Chapter 6 we study the strong p-variation Wp(f) of a scalar martingale
(fn). This is defined as the supremum of(

|fn(0)|p +
∑∞

k=1
|fn(k) − fn(k−1)|p

)1/p

over all possible increasing sequences

0 = n(0) < n(1) < n(2) < · · · .

The main results are Theorem 6.2 and Proposition 6.6. Roughly this says that,
if 1 ≤ p < 2, Wp(f) is essentially “controlled” by (

∑
|fn−fn−1|p)1/p, i.e. by the

finest partition corresponding to consecutive n(k)’s; while, in sharp contrast, if
2 < p <∞, it is “controlled” by |f∞| = lim |fn|, or equivalently by the coarsest
partition corresponding to the choice n(0) = 0, n(1) =∞.

The proofs combine a simple stopping time argument with the reiteration
theorem of the real interpolation method.

In Chapter 7, we study the real interpolation spaces (v1, `∞)θ,q. As usual,
`∞ (resp. v1) is the space of scalar sequences (xn) such that sup |xn| < ∞
(resp.

∑∞
1 |xn − xn−1| < ∞) equipped with its natural norm. The inclusion

v1 → `∞ plays a major part (perhaps behind the scene) in our treatment of
(super) reflexivity in Chapter 3. Indeed, by the fundamental Theorem 3.10, B
is non-reflexive iff the inclusion J : v1 → `∞ factors through B, i.e. it admits a
factorization

v1
a−→ B

b−→ `∞,

with bounded linear maps a, b such that J = ba.
The work of James on J-convexity (described in Chapter 3) left open an

important point: whether any Banach space B such that `n1 is not finitely repre-
sentable in B (i.e. is not almost isometrically embeddable in B) must be reflex-
ive. James proved that the answer is yes if n = 2, but for n > 2 this remained
open until James himself settled it in [166] by a counterexample for n = 3 (see
also [168] for simplifications). In the theory of type (and cotype), it is the same
to say that, for some n ≥ 2, B does not contain `n1 almost isometrically or to
say that B has type p for some p > 1 (see the survey [206]). Moreover, type p
can be equivalently defined by an inequality analogous to that of p-uniformly
smoothness but only for martingales with independent increments. Thus it is
natural to wonder whether the strongest notion of “type p”, namely type 2,
implies reflexivity. In another tour de force, James [167] proved that it is not
so. His example is rather complicated. However, it turns out that the real inter-
polation spacesWp,q = (v1, `∞)θ,q (1 < p, q <∞, 1−θ = 1/p) provide very nice
examples of the same kind. Thus, following [235] we prove in Corollary 7.19,
thatWp,q has exactly the same type and cotype exponents as the Lorentz space
`p,q = (`1, `∞)θ,q as long as p 6= 2, although as already explained Wp,q is not
reflexive since it lies between v1 and `∞. The singularity at p = 2 is necessary
since (unlike `2 = `2,2) the space W2,2, being non-reflexive, cannot have both
type 2 and cotype 2 since that would force it to be isomorphic to Hilbert space.
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In Chapter 7, we include a discussion of the classical James space (usually
denoted by J) that we denote by v0

2 . The spacesWp,q are in many ways similar to
the James space, in particular if 1 < p, q <∞ they are of codimension 1 in their
bidual (see Remark 7.8). We can derive the type and cotype ofWp,q in two ways.
The first one proves that the vector valued spacesWp,q(Lr) satisfy the same kind
of “Hölder–Minkowski” inequality than the Lorentz spaces `p,q with the only
exception of p = r. This is the substance of Corollary 7.18. Another way (see
Remark 7.25) goes through estimates of the K-functional for the pairs (v1, `∞)
and also (vr, `∞) for 1 < r < ∞, see Lemma 7.22. Indeed, by the reiteration
theorem, we may identify (v1, `∞)θ,q and (vr, `∞)θ,q if θ > θ(r) = 1 − 1

r , and
similarly in the vector valued case, see Theorem 7.23. We also use reiteration in
Theorem 7.14 to describe the space (vr, `∞)θ,q for 0 < r < 1. In the final
Theorem 7.26, we give an alternate description of Wp = Wp,p that should
convince the reader that it is a very natural space (this is closely connected
to “splines” in approximation theory). The description is as follows: a sequence
x = (xn)n belongs to Wp iff

∑
N SN (x)p < ∞ where SN (x) is the distance in

`∞ of x from the subspace of all sequences (yn) such that card{n | |yn−yn−1| 6=
0} ≤ N .

Chapter 8 is devoted to the UMD property. After a brief presentation of
Burkholder’s inequalities in the scalar case, we concentrate on their analogue
for Banach space valued martingales (fn). In the scalar case, when 1 < p <∞,
we have

sup
n
‖fn‖p ' ‖ sup |fn|‖p ' ‖S(f)‖p

where S(f) = (|f0|2 +
∑

(fn−fn−1)2)1/2, and where Ap ' Bp means that there
are positive constants C ′p and C ′′p such that C ′pAp ≤ Bp ≤ C ′′pAp. In the Banach
space valued case, we replace S(f) by:

(3) R(f)(ω) = supN

(∫ ∥∥∥∥f0(ω) +
∑N

1
εn(fn − fn−1)(ω)

∥∥∥∥2

dµ

)1/2

where µ is the uniform probability measure on the set D of all choices of signs
(εn)n with εn = ±1.

In §8.2 we prove Kahane’s inequality, i.e. the equivalence of all the Lp-norms
for series of the form

∑∞
1 εnxn with xn in an arbitrary Banach space when

0 < p <∞, see (8.13); in particular, up to equivalence, we can substitute to the
L2-norm in (3) any other Lp-norm for p <∞.
Let {xn} be a sequence in a Banach space, such that the series

∑
εnxn converges

almost surely. We set

R({xn}) =

∫
D

∥∥∥∑ εnxn

∥∥∥2

dµ

1/2

.

With this notation we have

(4) R(f)(ω) = R({f0(ω), f1(ω)− f0(ω), f2(ω)− f1(ω), · · · }).
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The UMDp and UMD properties are introduced in §8.3. Consider the series

(5) f̃ε = f0 +
∑∞

1
εn(fn − fn−1).

By definition, when B is UMDp, (fn) converges in Lp(B) iff (5) converges in
Lp(B) for all choices of signs εn = ±1 or equivalently iff it converges for almost
all (εn). Moreover, we have then for 1 < p <∞ and all choices of signs ε = (εn)

‖f̃ε‖Lp(B) ' ‖f‖Lp(B)(3)p
sup
n≥0
‖fn‖Lp(B) ' ‖R(f)‖p.(4)p

See Proposition 8.9. The case p = 1 (due to Burgess Davis) is treated in
§8.4. The main result of §8.3 is the equivalence of UMDp and UMDq for any
1 < p, q <∞. We give two proofs of this, the first one is based on distributional
(also called “good λ”) inequalities. This is an extrapolation principle that allows
to show that, for a given Banach space B, (3)q ⇒ (3)p for any 1 < p < q. In
the scalar case one starts from the case q = 2, that is obvious by orthogonality,
and uses the preceding implication to deduce from it the case 1 < p < 2 and
then 2 < p <∞ by duality.

The second proof is based on Gundy’s decomposition, that is a martingale
version of the Calderón–Zygmund decomposition in classical harmonic analysis.
There one proves a weak type (1,1) estimate and then invokes the Marcinkiewicz
theorem to obtain the case 1 < p < 2. We describe the latter in an appendix to
Chapter 8.

In §8.6 we show that to check that a space B is UMDp we may restrict
ourselves to martingales adapted to the dyadic filtration and the associated
UMD-constant remains the same.

In §8.7, we prove the Burkholder–Rosenthal inequalities. In the scalar case
this boils down to the equivalence

supn ‖fn‖p ' ‖σ(f)‖p + ‖ supn |fn − fn−1|‖p

valid for 2 < p <∞.
Rosenthal originally proved this when fn is a sum of independent variables and
Burkholder extended it to martingales. We describe a remarkable example of
complemented subspace of Lp (the Rosenthal space Xp) that motivated Rosen-
thal’s work.

In §8.8, we describe Stein’s inequality and its B-valued analogue when B is
a UMD Banach space. Let (An)n≥0 be a filtration as usual, and let (xn)n≥0 be
now an arbitrary sequence in Lp. Let yn = EAnxn. Stein’s inequality asserts
that for any 1 < p <∞ there is a constant Cp such that

(8)
∥∥∥∥(∑ |yn|2

)1/2
∥∥∥∥
p

≤ Cp
∥∥∥∥(∑ |xn|2

)1/2
∥∥∥∥
p

,

for any (xn) in Lp.
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For xn in Lp(B), with B UMD the same result remains valid if we replace
on both sides of (8) the expression (

∑
|xn|2)1/2 by(∫ ∥∥∥∑ εnxn

∥∥∥2

B
dµ

)1/2

.

See (8.53).
In §8.9, we discuss the space BMO and the B-valued version of H1 in the

martingale context. This leads naturally to the atomic version of B-valued H1,
denoted by H1

at(B). Its dual can be identified with a BMO-space for B∗-valued
martingales, at least for a “regular” filtration (An). Equivalently, the space
H1
at(B) can be identified with H1

max(B) that is defined as the completion of
L1(B) with respect to the norm f 7→ E supn ‖fn‖B (here fn = EAnf).

In §8.10, we describe Burkholder’s geometric characterization of UMD spaces
in terms of ζ-convexity (Theorem 8.47) but we prefer to give the full details of a
more recent result (Theorem 8.48). The latter asserts that a real Banach space
of the form B = X ⊕X∗ is UMD iff the function

x⊕ ξ → ξ(x)

is the difference of two real valued convex continuous functions on B. After
an already mentioned first appendix devoted to the Marcinkiewicz theorem,
the second one collects several facts (to be used later on) on reverse Hölder
inequalities. A typical result is that, when 0 < r < p < ∞, if (Zn) are i.i.d.
copies of a random variable, then the sequence {n−1/p sup

1≤k≤n
|zk| | n ≥ 1} is

bounded in Lr iff Z is in weak-Lp, in other words iff sup
t>0

tpP{|z| > t} <∞. We

call it reverse Hölder because the assumption is boundedness in Lr with r < p
and the conclusion is in weak-Lp (or Lp,∞) and a fortiori in Lq for all r < q < p.

In Chapter 9, we give two characterizations of super-reflexive Banach spaces
by properties of the underlying metric spaces. The relevant properties involve
finite metric spaces. Given a sequence T = (Tn, dn) of finite metric spaces, we
say that the sequence T embeds Lipschitz uniformly in a metric space (T, d) if for
some constant C there are subsets T̃n ⊂ T , and bijective mappings fn : Tn → T̃n
with Lipschitz norms satisfying

sup
n
‖fn‖Lip‖f−1

n ‖Lip <∞.

Consider for instance the case when Tn is a finite dyadic tree restricted to its
first 1 + 2 + · · · + 2n = 2n+1 − 1 points viewed as a graph and equipped with
the usual geodesic distance. In Theorem 9.1, we prove following [86] that a
Banach space B is super-reflexive iff it does not contain the sequence of these
dyadic trees Lipschitz uniformly. More recently (cf. [173]), it was proved that
the trees can be replaced in this result by the “diamond graphs”. We describe
the analogous characterization with diamond graphs in §9.2.

In §9.3, we discuss several non-linear notions of “type p” for metric spaces,
notably the notion of Markov type p and we prove the recent result from [212]
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that p-uniformly smooth implies Markov type p. The proof uses martingale
inequalities for martingales naturally associated to Markov chains on finite state
spaces.

Acknowledgement I am very grateful to all those who helped me to correct
mistakes, misprints and suggested improvements of all kind, in particular Julien
Giol, Rostyslav Kravchenko, Javier Parcet, Yanqi Qiu, .....



Chapter 1

Banach space valued
martingales

1.1 Banach space valued Lp-spaces. Conditional
expectations

Let (Ω,A,m) be a measure space. Let B be a Banach space. We will denote by
F (B) the space of all measurable step functions, i.e. the functions f : Ω → B
for which there is a partition of Ω, say Ω = A1 ∪ . . . ∪ AN with Ak ∈ A, and
elements bk ∈ B such that

(1.1) ∀ω ∈ Ω f(ω) =
∑N

1
1Ak(ω)bk.

Equivalently, F (B) is the space of all measurable functions f : Ω → B taking
only finitely many values.

Definition. We will say that a function f : Ω → B is Bochner measurable if
there is a sequence (fn) in F (B) tending to f pointwise.

We will denote by L0(Ω,A,m;B) the set of equivalence classes (modulo
equality almost everywhere) of Bochner measurable functions.

Let 1 ≤ p ≤ ∞. We will denote by Lp(Ω,A,m;B) the subspace of L0(Ω,A,m)
formed of all the functions f such that

∫
‖f‖pB dm < ∞ for p < ∞, and

ess sup‖f(·)‖B <∞ for p =∞. We equip this space with the norm

‖f‖Lp(B) =
(∫
‖f‖pB dm

)1/p

for p <∞

‖f‖L∞(B) = ess sup‖f(·)‖B for p =∞,

with which it becomes a Banach space.

11



12 CHAPTER 1. BANACH SPACE VALUED MARTINGALES

Of course, this definition coincides with the usual one in the scalar valued
case i.e. if B = R (or C). In that case, we often denote simply by Lp(Ω,A,m)
(or sometimes Lp(m), or even Lp) the resulting space of scalar valued functions.

For brievity, we will often write simply Lp(P;B) or, if there is no risk of
confusion, simply Lp(B) instead of Lp(Ω,A,P;B).

Given ϕ1, . . . , ϕN ∈ Lp and b1, . . . , bN ∈ B we can define a function f : Ω→
B in Lp(B) by setting f(ω) =

∑N
1 ϕk(ω)bk. We will denote this function by∑N

1 ϕk ⊗ bk and by Lp⊗B the subspace of Lp(B) formed of all such functions.

Proposition 1.1. Let 1 ≤ p <∞.

(i) F (B) ∩ Lp(B) is dense in Lp(B).

(ii) The subspace Lp ⊗B ⊂ Lp(B) is dense in Lp(B).

Proof. Consider f ∈ Lp(B). Let fn ∈ F (B) be such that fn → f pointwise.
Then ‖fn(·)‖B → ‖f(·)‖B pointwise, so that if we set gn(ω) = fn(ω)1{‖fn‖<2‖f‖}
we still have gn → f pointwise and in addition sup

n
‖gn−f‖ ≤ sup

n
‖gn‖+‖f‖ ≤

3‖f‖. Therefore, by dominated convergence, we must have
∫
‖gn−f‖pB dm→ 0

and of course gn ∈ F (B) ∩ Lp(B). This proves (i). The second point is then
obvious since F (B) ∩ Lp(B) ⊂ Lp ⊗ B (indeed we can take ϕk = 1Ak with
m(Ak) <∞, as in (1.1)).

Remark 1.2. If B is finite dimensional, then F (B) is dense in L∞(B) but this
is no longer true in the infinite dimensional case, because the unit ball of B is
not compact.

We now turn to the definition of the integral of a function in L1(B). Consider
a function f of the form (1.1) in L1(B) ∩ F (B). We define∫

f dm =
∑N

1
m(Ak)bk.

This defines a continuous linear map from L1(B) ∩ F (B) to B, since we have
obviously by the triangle inequality∥∥∥∥∫ f dm

∥∥∥∥ ≤∑m(Ak)‖bk‖ = ‖f‖L1(B).

By density, this linear map admits an extension defined on the whole of L1(B),
that we still denote by

∫
f dm when f ∈ L1(B). The extension clearly satisfies

the following fundamental inequality called Jensen’s inequality

(1.2) ∀f ∈ L1(B)
∥∥∥∥∫ f dm

∥∥∥∥
B

≤
∫
‖f‖B dm = ‖f‖L1(B).

This extends the linear map f →
∫
f dm from the scalar valued case to the

B-valued one. More generally: Let (Ω′,A′,m′) be another measure space and
let T : L1(Ω,A,m) → L1(Ω′,A′,m′) be a bounded operator. We may clearly
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define unambiguously a linear operator T0 : F (B) ∩ L1(m;B) → L1(m′, B) by
setting for any f of the form (1.1)

T0(f) =
∑N

1
T (1Ak)bk.

We have clearly by the triangle inequality

‖T0(f)‖L1(m′;B) ≤
∑N

1
‖T (1Ak)‖‖bk‖ ≤ ‖T‖

∑
m(Ak)‖bk‖ = ‖T‖‖f‖L1(B).

Thus, we can state

Proposition 1.3. Given a bounded operator T : L1(Ω,A,m)→ L1(Ω′,A′,m′),
there is a unique bounded linear map T̃ : L1(Ω,A,m;B) → L1(Ω′,A′,m′;B)
such that

(1.3) ∀ϕ ∈ L1(Ω,A,m) ∀b ∈ B T̃ (ϕ⊗ b) = T (ϕ)b.

Moreover, we have ‖T̃‖ = ‖T‖.

Proof. By the density of F (B) ∩ L1(B) in L1(B), the (continuous) map T0

admits a unique continuous linear extension T̃ from L1(m;B) to L1(m′;B),
with ‖T̃‖ ≤ ‖T0‖ ≤ ‖T‖. If ϕ is a step function in L1, then (1.3) is clear by
definition of T0. Approximating ϕ in L1 by a step function, we see that (1.3)
is true in general. The unicity of T̃ is clear since (1.3) implies that T̃ coincides
with T0 on F (B)∩L1(B). Finally, considering a fixed b with ‖b‖ = 1, we easily
derive from (1.3) that ‖T‖ ≤ ‖T̃‖, so we obtain ‖T‖ = ‖T̃‖.

We start by recalling some well known properties of conditional expectations.
Let (Ω,A,P) be a probability space and let B ⊂ A be a σ-subalgebra. The
conditional expectation f → EBf is a positive contraction on Lp(Ω,A,P) for all
1 ≤ p ≤ ∞. It is characterized by the property

∀h ∈ L∞(Ω,B,P) ∀f ∈ Lp(Ω,A,P)

EB(hf) = hEB(f).

On L2(Ω,A,P), the conditional expectation EB coincides with the orthogonal
projection onto the subspace L2(Ω,B,P).

It is not true in general that a bounded operator on Lp extends boundedly
to Lp(B) as in the preceding Proposition for p = 1. Nervertheless, it is true for
positive operators. The conditional expectation of a vector valued function can
be defined using that fact, as follows.

Proposition 1.4. let 1 ≤ p, q ≤ ∞. Let (Ω,A,P) be an arbitrary measure space
and let T : Lp(Ω) → Lq(Ω) be a bounded linear operator. Clearly, there is a
unique linear operator

T ⊗ IB : Lp(Ω,P)⊗B → Lq(Ω,P)⊗B
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such that

∀ϕ ∈ Lp(Ω,P) ∀x ∈ B (T ⊗ IB)(ϕ⊗ x) = T (ϕ)⊗ x.

Now, if T is positive (i.e. if T preserves nonnegative functions) then T ⊗ IB
extends to a bounded operator T̃ ⊗ IB from Lp(Ω,P;B) to Lq(Ω,P;B) which has
the same norm as T , i.e.

‖T̃ ⊗ IB‖Lp(B)→Lq(B) = ‖T‖Lp→Lq .

Proof. It clearly suffices to show that

(1.4) ∀f ∈ Lp(Ω,P)⊗B ‖(T ⊗ IB)f(·)‖B
a.s.
≤ T (‖f(·)‖B).

For that purpose, we can assume B separable (or even finite dimensional) so
that there is a countable subset D ⊂ B∗ verifying

∀x ∈ B ‖x‖ = sup
ξ∈D
|ξ(x)|.

Clearly for any ξ in B∗ we have

〈ξ, (T ⊗ IB)f(·)〉 = T (〈ξ, f(·)〉)

and hence by the positivity of T for any finite subset D′ ⊂ D

sup
ξ∈D′

|〈ξ, (T ⊗ IB)f(·)〉|
a.s.
≤ T (sup

ξ∈D
|〈ξ, f(·)〉|)

therefore we obtain (1.4) and the proposition follows.

Remark. Let B1 be another Banach space and let u : B → B1 be a bounded
operator. Then for any f in Lp(Ω,A,P;B) we have

˜T ⊗ IB1(u(f)) = u[T̃ ⊗ IB(f)].

In particular, for any ξ in B∗ we have

(1.5) T (ξ(f)) = ξ(T (f)).

Indeed, this is immediately checked for f in Lp(Ω,P)⊗B, and the general case
is obtained after completion.

Note that now that T̃ ⊗ IB makes sense, the preceding argument can be
repeated to show that

(1.6) ∀f ∈ Lp(Ω,P;B) ‖(T̃ ⊗ IB)f‖B
a.s.
≤ T (‖f(·)‖B).

A priori, in the above (1.6) we implicitly assume that B is a real Banach space,
but actually if B is a complex space (and T is C-linear on complex valued L1),
we may consider B a fortiori as a real space and then (1.6) remains valid.
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In particular, the preceding proposition applies for T = EB. For any f in
L1(Ω,A,P;B) we will denote again simply by EB(f) the function T̃ ⊗ IB(f) for
T = EB. Note that g = EB(f) is characterized by the following properties

(i) g ∈ L1(Ω,B,P;B)

(ii) ∀E ∈ B
∫
E
gdP =

∫
E
fdP.

Indeed, this is easy to check by ’scalarization’, since it holds in the scalar case.
More precisely, a B-valued function g has these properties iff for any ξ in B∗ the
scalar valued function 〈ξ, g(·)〉 has similar properties, or equivalently 〈ξ, g(·)〉 =
EB〈ξ, f〉, and hence by (1.5) 〈ξ, g〉 = 〈ξ,EBf〉 which means g = EBf as an-
nounced.

1.2 Martingales: basic properties

Let B be a Banach space. Let (Ω,A,P) be a probability space. A sequence
(Mn)n≥0 in L1(Ω,A,P;B) is called a martingale if there exists an increasing
sequence of σ-subalgebras A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ · · · ⊂ A (this is called “a
filtration”) such that for each n ≥ 0 Mn is An-measurable and satisfies

Mn = EAn(Mn+1).

For the precise definition of the conditional expectation in the Banach space
valued case, see the above Proposition 1.4. This implies of course that

∀n < m Mn = EAnMm.

In particular if (Mn) is a B-valued martingale, the above property (ii) (in the
preceding section) yields in the case B = An and n ≤ m

(1.7) ∀n ≤ m ∀A ∈ An
∫
A

MndP =
∫
A

MmdP.

A sequence of random variables (Mn) is called adapted to the filtration
(An)n≥0 if Mn is An-measurable for each n ≥ 0. Note that the martingale
property Mn = EAn(Mn+1) automatically implies that (Mn) is adapted. Of
course, the minimal choice of An is simply An = σ(M0,M1, . . . ,Mn).

We will also need the definition of a submartingale. A sequence (Mn)n≥0

of scalar valued random variables in L1 is called a submartingale if there are
σ-subalgebras An as above such that Mn is An-measurable and

∀n ≥ 0 Mn ≤ EAnMn+1.

This implies of course that

∀n < m Mn ≤ EAnMm.
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More generally, if I is any partially ordered set, then a collection (Mi)i∈I in
L1(Ω,P;B) is called a martingale (indexed by I) if there are σ-subalgebras
Ai ⊂ A such that Ai ⊂ Aj whenever i < j and Mi = EAiMj .

In particular, when
I = {0,−1,−2, . . .}

is the set of all negative integers, the corresponding sequence is usually called a
reverse martingale.

The following convergence theorem is fundamental.

Theorem 1.5. Let (An) be a fixed increasing sequence of σ-subalgebras of A.
Let A∞ be the σ-algebra generated by

⋃
n≥0

An. Let 1 ≤ p < ∞ and consider M

in Lp(Ω,P;B). Let us define Mn = EAn(M). Then (Mn)n≥0 is a martingale
such that Mn → EA∞(M) in Lp(Ω,P;B) when n→∞.

Proof. Note that since An ⊂ An+1 we have EAnEAn+1 = EAn , and similarly
EAnEA∞ = EAn . Replacing M by EA∞M we can assume w.l.o.g. that M is
A∞-measurable. We will use the following fact: the union

⋃
n
Lp(Ω,An,P;B)

is dense in Lp(Ω,A∞,P;B). Indeed, let C be the class of all sets A such that
1A ∈

⋃
n
L∞(Ω,An,P), where the closure is meant in Lp(Ω,P) (recall p < ∞).

Clearly C ⊃
⋃
n≥0

An and C is a σ-algebra hence C ⊃ A∞. This gives the scalar

case version of the above fact. Now, any f in Lp(Ω,A∞,P;B) can be approx-

imated (by definition of the spaces Lp(B)) by functions of the form
n∑
1

1Aixi

with xi ∈ B and Ai ∈ A∞. But since 1Ai ∈
⋃
n
L∞(Ω,An,P) we clearly have

f ∈
⋃
n
Lp(Ω,An,P;B) as announced.

We can now prove Theorem 1.5. Let ε > 0. By the above fact there is
an integer k and g in Lp(Ω,Ak,P;B) such that ‖M − g‖p < ε. We have then
g = EAng for all n ≥ k, hence

∀n ≥ k Mn −M = EAn(M − g) + g −M

and finally

‖Mn −M‖p ≤ ‖EAn(M − g)‖p + ‖g −M‖p
≤ 2ε.

This completes the proof.

Corollary 1.6. In the scalar case (or the f.d. case) every martingale which is
bounded in Lp for some 1 ≤ p <∞ and which is uniformly integrable if p = 1 is
actually convergent in Lp to a limit M∞ such that Mn = EAnM∞ ∀n ≥ 0.
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Proof. Let (Mnk) be a subsequence converging weakly to a limit which we denote
by M∞. Clearly M∞ ∈ Lp(Ω,A∞,P) and we have ∀A ∈ An∫

A

M∞dP = lim
∫
A

MnkdP,

but whenever nk ≥ n, we have
∫
A
MnkdP =

∫
A
MndP by the martingale prop-

erty. Hence

∀A ∈ An
∫
A

M∞dP =
∫
A

MndP

which forces Mn = EAnM∞. We then conclude by Theorem 1.5 that Mn →M∞
in Lp-norm.

Note that conversely any martingale which converges in L1 is clearly uni-
formly integrable.

Remark 1.7. Fix 1 ≤ p < ∞. Let I be a directed set, with order denoted
simply by ≤. This means that for any pair i, j in I there is k ∈ I such that
i ≤ k and j ≤ k. Let (Ai) be a family of σ-algebras directed by inclusion (i.e.
we have Ai ⊂ Aj whenever i ≤ j). The extension of the notion of martingale
is obvious: A collection of random variables (fi)i∈I in Lp(B) will be called a
martingale if fi = EAi(fj) holds whenever i ≤ j. The resulting net converges
in Lp(B) iff for any increasing sequence i1 ≤ · · · ≤ in ≤ in+1 ≤ · · · , the (usual
sense) martingale (fin) converges in Lp(B). Indeed, this merely follows from

the metrizability of Lp(B) ! More precisely, if we assume that σ
( ⋃
i∈I
Ai
)

= A,

then for any f in Lp(Ω,A,P;B), the directed net (EAif)i∈I converges to f in
Lp(B). Indeed, this net must satisfy the Cauchy criterion, because otherwise we
would be able for some δ > 0 to construct (by induction) an increasing sequence
i(1) ≤ i(2) ≤ . . . in I such that ‖EAi(k)f − EAi(k−1)f‖Lp(B) > δ for all k > 1,
and this would then contradict Theorem 1.5. Thus, EAif converges to a limit
F in Lp(B), and hence for any set A ⊂ Ω in

⋃
j∈I
Aj we must have

∫
A

f = lim
i

∫
A

EAif =
∫
A

F.

Since the equality
∫
A
f =

∫
A
F must remain true on the σ-algebra generated by⋃

Aj , we conclude that f = F , thus completing the proof that EAif → f in
Lp(B).

1.3 Examples of filtrations

The most classical example of filtration is the one associated to a sequence
of independent (real valued) random variables (Yn)n≥1 on a probability space
(Ω,A,P). Let An = σ(Y1, . . . , Yn) for all n ≥ 1 and A0 = {φ,Ω}. In that case,
a sequence of random variables (fn)n≥0 is adapted to the filtration (An)n≥0 iff
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f0 is constant and, for each n ≥ 1, fn depends only on Y1, . . . , Yn, i.e. there is
a (Borel measurable) function Fn on Rn such that

fn = Fn(Y1, . . . , Yn).

The martingale condition can then be written as

∀n ≥ 0 Fn(Y1, . . . , Yn) =
∫
Fn+1(Y1, . . . , Yn, y) dPn(y)

where Pn is the probability distribution (or “the law”) of Yn+1.
An equivalent but more “intrinsic” model arises when one considers Ω = RN∗

equipped with the product probability measure P =
⊗

n≥1 Pn. If one denotes
by Y = (Yn)n≥1 a generic point in Ω, the random variable Y → Yn appears as
the n-th coordinate, and Y → Fn(Y ) is An-measurable iff Fn(Y ) depends only
on the n first coordinates of Y .

The dyadic filtration (Dn)n≥0 on D = {−1, 1}N∗ is the fundamental example
of this kind: Here we denote by

εn : D → {−1, 1} (n = 1, 2, . . .)

the n-th coordinate, we equip D with the probability measure

µ = ⊗(δ1 + δ−1)/2,

and we set Dn = σ(ε1, . . . , εn), D0 = {φ,D}.
Clearly, the variables (εn) are independent on (D,D, µ) and take the values ±1
with equal probability 1/2.
Note thatDn admits exactly 2n atoms and moreover dimL2(D,Dn, µ) = 2n. For
any finite subset A ⊂ [1, 2, . . .], let wA =

∏
n∈A

εn with the convention wφ ≡ 1.

It is easy to check that {wA | A ⊂ [1, . . . , n]} (resp. {wA | |A| < ∞}) is an
orthonormal basis of L2(D,Dn, µ) (resp. L2(D,D, µ)).
Given a Banach space B, a B-valued martingale fn : D → B adapted to the
dyadic filtration (Dn) is caracterized by the property that

∀n ≥ 1 (fn − fn−1)(ε1, . . . , εn) = εnϕn−1(ε1, . . . , εn−1),

where ϕn−1 depends only on ε1, . . . , εn−1. We leave the easy verification of this
to the reader.
Of course the preceding remarks remain valid if one works with any sequence of
±1-valued independent random variables (εn) such that P(εn = ±1) = 1/2 on
an “abstract” probability space (Ω,P).

In classical analysis, it is customary to use the Rademacher functions (rn)n≥1

on the Lebesgue interval ([0, 1], dt) instead of (εn). We need some notation to
introduce these. Given an interval I ⊂ R we divide I into parts of equal length
and we denote by I+ and I− respectively the left and right half of I. Note
that we do not specify whether the end points belong to I since the latter are
negligible for the Lebesgue measure on [0, 1] (or [0, 1[ or R). Let

hI = 1I+ − 1I− .
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We denote I1(1) = [0, 1[, I2(1) = [0, 1
2 [, I2(2) =

[
1
2 , 1[ and more generally

In(k) =
[
k − 1
2n−1

,
k

2n−1

[
for k = 1, 2, . . . , 2n−1 (n ≥ 1).
We then set h1 ≡ 1, h2 = hI1(1), h3 =

√
2 hI2(1), h4 =

√
2 hI2(2) and more

generally

∀n ≥ 1 ∀k = 1, . . . , 2n−1 h2n−1+k = |In(k)|−1/2hIn(k).

Note that ‖hn‖2 = 1 for all n ≥ 1.
The Rademacher function rn can be defined, for each n ≥ 1, by

rn =
∑2n−1

k=1
hIn(k).

Then the sequence (rn)n≥1 has the same distribution on ([0, 1], dt) as the se-
quence (εn)n≥1 on (D,µ). Let An = σ(r1, . . . , rn). Then An is generated by
the 2n-atoms {In+1(k) | 1 ≤ k ≤ 2n}, each having length 2−n. The dimension
of L2([0, 1],An) is 2n and the functions {h1, . . . , h2n} (resp. {hn | n ≥ 1}) form
an orthonormal basis of L2([0, 1],An) (resp. L2([0, 1])).

The “Haar filtration” (Bn)n≥1 on [0, 1] is defined by

Bn = σ(h1, . . . , hn),

so that we have σ(h1, . . . , h2n) = σ(r1, . . . , rn) or equivalently B2n = An for all
n ≥ 1 (note that here B1 is trivial). It is easy to check that Bn is an atomic
σ-algebra, with exactly n atoms. Since the conditional expectation EBn is the
orthogonal projection from L2 to L2(Bn), we have for any f in L2([0, 1])

∀n ≥ 1 EBnf =
∑n

1
〈f, hk〉hk

and hence for all n ≥ 2

(1.8) EBnf − EBn−1f = 〈f, hn〉hn.

More generally for any B-valued martingale (fn)n≥∅ adapted to (Bn)n≥1 we
have

∀n ≥ 2 fn − fn−1 = hnxn

for some sequence (xn) in B. The Haar functions are in some sense the first
example of wavelets (see e.g. [64]). Indeed, if we set

h = 1[0, 12 [ − 1[ 12 ,1[

(this is the same as the function previously denoted by h2), then the system of
functions

(1.9)
{

2
m
2 h((t+ k)2m) | k,m ∈ Z

}
is an orthonormal basis of L2(R). Note that the constant function 1 is not in
L2(R).

In the system (1.9), the sequence {hn | n ≥ 1} coincides with the subsystem
formed of all functions in (1.9) with support included in [0, 1].
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1.4 Almost sure convergence and maximal in-
equalities

To handle the a.s. convergence of martingales, we will need (as usual) the
appropriate maximal inequalities. In the martingale case, these are Doob’s
inequalities. Their proof uses stopping times which are a basic tool in martingale
theory. Given an increasing sequence (An)n≥0 of σ-subalgebras on Ω, a random
variable T : Ω→ N ∪ {∞} is called a stopping time if

∀n ≥ 0 {T ≤ n} ∈ An,

or equivalently if
∀n ≥ 0 {T = n} ∈ An.

If T <∞ a.s., then T is called a finite stopping time.

Proposition 1.8. For any martingale (Mn)n≥0 relative to (An)n≥0 and for
every stopping time T , let us denote by Mn∧T the variable Mn∧T (ω)(ω). Then
(Mn∧T )n≥0 is a martingale relative to (An)n≥0.

Proof. Observe that Mn∧T clearly is in L1 (since Mn is always assumed in L1).
Moreover, we have

Mn∧T −M(n−1)∧T = 1{n≤T}(Mn −Mn−1),

but {n ≤ T}c = {T < n} ∈ An−1 hence

EAn−1(Mn∧T −M(n−1)∧T ) = 1{n≤T}EAn−1(Mn −Mn−1) = 0.

Given a stopping time T , we can define the associated σ-algebra AT as
follows: we say that a set A in A belongs to AT if A ∩ {T ≤ n} belongs to An
for each n ≥ 0. Then AT is a σ-algebra.

Exercises. (i) Consider M∞ in L1(Ω,A,P;B) and let Mn = EAnM∞ be the
associated martingale. Then if T is a stopping time, we have

MT = EAT (M∞).

Moreover,

(1.10) EAn(MT ) = MT∧n = EAT (Mn).

More generally, if S is any other stopping time, T ∧ S and T ∨ S are stopping
times and we have

EAS (MT ) = MT∧S = EAT (MS).

(ii) If (Mn)n≥0 is a martingale in L1(Ω,A,P;B) and if T0 ≤ T1 ≤ . . . is a
sequence of bounded stopping times then (MTk)k≥0 is a martingale relative to
the sequence of σ-algebras AT0 ⊂ AT1 ⊂ · · · . This also holds for unbounded
times if we assume as in (i) that (Mn)n≥0 converges in L1(Ω,A,P;B).
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Theorem 1.9 (Doob’s maximal inequalities). Let (M0,M1, . . . ,Mn) be a sub-
martingale in L1, and let M∗n = sup

k≤n
Mk. Then

(1.11) ∀t > 0 tP({M∗n > t}) ≤
∫
{M∗n>t}

MndP,

and if M∗n ≥ 0 then for all 1 < p <∞ we have

(1.12) ‖M∗n‖p ≤ p′‖Mn‖p

where 1
p + 1

p′ = 1.

Proof. We can rewrite the submartingale property as saying that for any A in
Ak with k ≤ n we have

(1.13)
∫
A

MkdP ≤
∫
A

(EAkMn)dP =
∫
EAk(1AMn)dP =

∫
A

MndP.

Fix t > 0. Let

T =

{
inf{k ≤ n |Mk > t} if M∗n > t,
∞ otherwise.

Then T is a stopping time relative to the sequence of σ-algebras (A′k) defined
by A′k = Ak∧n. We have since Mk > t on the set {T = k}

tP{M∗n > t} = tP{T ≤ n} = t
∑
k≤n

P{T = k} ≤
∑
k≤n

∫
{T=k}

Mk

hence by (1.13)

≤
∑
k≤n

∫
{T=k}

Mn =
∫
{T≤n}

Mn.

This proves (1.11). To prove (1.12) we use an extrapolation trick. We have if
M∗n ≥ 0

EM∗pn =
∫ ∞

0

ptp−1P{M∗n > t}dt

≤
∫ ∞

0

ptp−2

∫
{M∗n>t}

MndP dt

=
∫
Mn

(∫ M∗n

0

ptp−2dt

)
dP =

∫
p

p− 1
Mn(M∗n)p−1 dP

hence by Hölder’s inequality

≤ p′‖Mn‖p‖(M∗n)p−1‖p′

= p′‖Mn‖p(EM∗pn )
p−1
p ,

so that after division by (EM∗pn )
p−1
p we obtain (1.12).
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The following inequality is known as the Burkholder–Davis–Gundy inequal-
ity. It is dual to Doob’s maximal inequality. Indeed, by (1.12) we have for any
x in Lp

(1.14) ‖(Enx)‖Lp(`∞) = ‖ sup
n
|Enx|‖p ≤ p′‖x‖p

therefore it is natural to expect a dual inequality involving an “adjoint mapping”
from Lp′(`1) to Lp′ , as follows.

Theorem 1.10. Let (θn)n≥0 be an arbitrary family of random variables. Then
for any 1 ≤ p <∞

(1.15)
∥∥∥∑ |EAnθn|

∥∥∥
p
≤ p

∥∥∥∑ |θn|
∥∥∥
p
.

In particular if θn ≥ 0 ∥∥∥∑EAnθn
∥∥∥
p
≤ p

∥∥∥∑ θn

∥∥∥
p
.

Proof. Since |EAnθn| ≤ EAn |θn| it suffices to prove this assuming θn ≥ 0. In
that case, consider f ≥ 0 in Lp′ with ‖f‖p′ = 1 such that

∥∥∑EAnθn
∥∥
p

=〈∑
EAnθn, f

〉
. Then〈∑

EAnθn, f
〉

=
∑
〈θn,EAnf〉

≤
∥∥∥∑ θn

∥∥∥
p
‖ sup

n
EAnf‖p′

hence by Doob’s inequality

≤ p
∥∥∥∑ θn

∥∥∥
p
.

Remark 1.11. Note that it is crucial for the validity of Theorems 1.9 and 1.10
that the conditional expectations be totally ordered, as in a filtration. How-
ever, as we will now see, in some cases we can go beyond that. Let (A1

n)n≥0,
(A2

n)n≥0, . . . , (Adn)n≥0 be a d-tuple of (a priori mutually unrelated) filtrations
on a probability space (Ω,A,P). Let Id = Nd and for all i = (n(1), . . . , n(d)) let

(1.16) Ei = EA
1
n(1)EA

2
n(2) · · ·EA

d
n(d) .

Then by a simple iteration argument, we find that for any 1 < p ≤ ∞ and any
x in Lp we have

‖ sup
i∈Id
|Eix| ‖p ≤ (p′)d‖x‖p.

A similar iteration holds for the dual to Doob’s inequality: for any family (xi)i∈Id
in Lp′ we have ∥∥∥∑ |Eixi|

∥∥∥
p′
≤ (p′)d

∥∥∥∑ |xi|
∥∥∥
p′
.
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To illustrate this (following [91]), consider a dyadic rooted tree T , i.e. the points
of T are finite sequences ξ = (ξ1, . . . , ξk) with ξj ∈ {0, 1} and there is also a root
(or origin) denoted by ξφ. We introduce a partial order on T in the natural way,
i.e. ξφ is ≤ any element and then we set (ξ1, . . . , ξk) ≤ (ξ′1, . . . , ξ

′
j) if k ≤ j and

(ξ1, . . . , ξk) = (ξ′1, . . . , ξ
′
k). In other words, ξ ≤ ξ′ if ξ′ is on the same “branch”

as ξ but “after” ξ.
This is clearly not totally ordered since two points situated on disjoint

branches are incomparable. Nevertheless, as observed in [91], we have the fol-
lowing: Consider a family {εξ | ξ ∈ T} of independent random variables and for
any ξ in T let Aξ = σ({εη | η ≤ ξ}, and let

Eξ = EAξ .

We have then for any 1 < p ≤ ∞ and any x in Lp

‖ sup
ξ∈T
|Eξx| ‖p ≤ (p′)3‖x‖p.

The idea is that Eξ is actually of the form (1.16) with d = 3, see [91] for full
details.

Remark 1.12. Let B be a Banach space and let (Mn)n≥0 be a B-valued mar-
tingale. Then the random variables Zn defined by Zn(ω) = ‖Mn(ω)‖B form a
submartingale. Indeed, by (1.6) we have for every k and every f in L1(Ω,P;B)

(1.17) ‖EAk(f)‖
a.s.
≤ EAk(‖f‖B)

hence taking f = Mn with k ≤ n we obtain

‖Mk‖ ≤ EAk(‖Mn‖)

which shows that (Zn) is a submartingale. In particular, by (1.13) we have for
any A in Ak

(1.18) E(1A‖Mk‖) ≤ E(1A‖Mn‖).

As a consequence, we can apply Doob’s inequality to the submartingale (Zn)
and we obtain

Corollary 1.13. Let (Mn) be a martingale with values in an arbitrary Banach
space B. Then

(1.19) sup
t>0

tP{sup
n≥0
‖Mn‖ > t} ≤ sup

n≥0
‖Mn‖L1(B)

and for all 1 < p <∞

(1.20) ‖ sup
n≥0
‖Mn‖‖p ≤ p′ sup

n≥0
‖Mn‖Lp(B).

We can now prove the martingale convergence theorem.
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Theorem 1.14. Let 1 ≤ p <∞. Let B be an arbitrary Banach space. Consider
f in Lp(Ω,A,P;B) and let Mn = EAn(f) be the associated martingale. Then
Mn converges a.s. to EA∞(f). Therefore, if a martingale (Mn) is convergent in
Lp(Ω,P;B) to a limit M∞, then it necessarily converges a.s. to this limit, and
we have Mn = EAnM∞ for all n ≥ 0.

Proof. The proof is based on a general principle, going back to Banach, that
allows us to deduce almost sure convergence results from suitable maximal
inequalities. By Theorem 1.5, we know that EAn(f) converges in Lp(B) to
M∞ = EA∞(f). Fix ε > 0 and choose k so that supn≥k ‖Mn −Mk‖Lp(B) < ε.
We will apply (1.19) and (1.20) to the martingale (M ′n)n≥0 defined by

M ′n = Mn −Mk if n ≥ k and M ′n = 0 if n ≤ k.

We have in the case 1 < p <∞

‖ sup
n≥k
‖Mn −Mk‖‖p ≤ p′ε

and in the case p = 1

sup
t>0

tP{sup
n≥k
‖Mn −Mk‖ > t} ≤ ε.

Therefore if we define pointwise

` = lim
k→∞

sup
n,m≥k

‖Mn −Mm‖

we have
` = inf

k≥0
sup
n,m≥k

‖Mn −Mm‖ ≤ 2 sup
n≥k
‖Mn −Mk‖.

Hence we find ‖`‖p ≤ 2p′ε and

sup
t>0

tP{` > 2t} ≤ ε,

which implies (since ε > 0 is arbitrary) that ` = 0 a.s., and hence by the
Cauchy criterion that (Mn) converges a.s. Since Mn → M∞ in Lp(B) we have
necessarily Mn → M∞ a.s. Note that if a martingale Mn tends to a limit M∞
in Lp(B) then necessarily Mn = EAn(M∞). Indeed, Mn = EAnMm for all
m ≥ n and by continuity of EAn we have EAnMm → EAnM∞ in Lp(B) so that
Mn = EAnM∞ as announced. This settles the last assertion.

Corollary 1.15. Every scalar valued martingale (Mn)n≥0 which is bounded in
Lp for some p > 1 (resp. uniformly integrable) must converge a.s. and in Lp
(resp. L1).

Proof. By Corollary 1.6, if (Mn)n≥0 is bounded in Lp for some p > 1 (resp.
uniformly integrable) then Mn converges in Lp (resp. L1) and by Theorem 1.14
the a.s. convergence is then automatic.
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Let B be a Banach space and let (Mn)n≥0 be a sequence in L1(Ω,A,P;B).
We will say that (Mn) is uniformly integrable if the sequence of positive r.v.’s
(‖Mn(·)‖)n≥0 is uniformly integrable. More precisely, this means that (‖Mn‖)
is bounded in L1 and that for any ε > 0 there is a δ > 0 such that

∀A ∈ A P(A) < δ ⇒ sup
n≥0

∫
A

‖Mn‖ < ε.

The following useful lemma illustrates the use of stopping times as a way to
properly “truncate” a martingale.

Lemma 1.16. Let (Mn)n≥0 be a martingale bounded in L1(Ω,A,P;B) where
B is an arbitrary Banach space. Fix t > 0 and let

T =

{
inf{n ≥ 0 | ‖Mn‖ > t} if sup ‖Mn‖ > t,
∞ otherwise.

Then

(1.21) E(‖MT ‖1{T<∞}) ≤ sup
n≥0

E‖Mn‖

and moreover the martingale (Mn∧T )n≥0 is uniformly integrable.

Proof. First we claim that for any 0 ≤ k ≤ n we have

E(1{T=k}‖Mk‖) ≤ E(1{T=k}‖Mn‖).

Indeed {T = k} ∈ Ak so this is a particular case of (1.18). Summing this with
respect to k ≤ n we obtain

E(1{T≤n}‖MT ‖) ≤ E(1{T≤n}‖Mn‖),

and taking the supremum over n ≥ 0 we obtain (1.21).
Now recall that by definition sup ‖Mn‖ ≤ t on {T = ∞}. More generally, we
have supn<T ‖Mn‖ ≤ t, so that

sup
n
‖Mn∧T ‖ ≤ max{1{T<∞}‖MT ‖, t} ≤ 1{T<∞}‖MT ‖+ t.

Then we can write for any A in A

sup
n

E(1A‖Mn∧T ‖) ≤ E(1AZ)

where Z = 1{T<∞}‖MT ‖+ t. Thus we conclude that (‖Mn∧T ‖)n≥0 is uniformly
integrable (since the single variable Z is itself uniformly integrable).

To obtain what remains of Corollary 1.15 in the case p = 1, we will use the
following simple fact.
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Proposition 1.17. Let (Ω,A,P) be a probability space. Let B be a Banach
space and let (An)n≥0 be an increasing sequence of σ-subalgebras of A. The
following are equivalent:

(i) Every B-valued martingale adapted to (An)n≥0 and bounded in L1(Ω,P;B)
is a.s. convergent.

(ii) Every B-valued uniformly integrable martingale adapted to (An)n≥0 is a.s.
convergent.

Proof. Assume (ii). Let (Mn) be a martingale bounded in L1(B). Fix t > 0
and consider (Mn∧T ) as in Lemma 1.16. Since (Mn∧T ) is uniformly integrable,
it converges a.s. by (ii). This implies that if {T (ω) =∞} then (Mn(ω))n≥0 is
a.s. convergent. But by Doob’s inequalities

P{T <∞} = P{sup ‖Mn‖ > t} ≤ C

t

where C = sup E‖Mn‖. Therefore this probability can be made arbitrarily
small by choosing t large, so that we conclude that the martingale (Mn)n≥0

itself converges a.s. This shows that (ii) ⇒ (i). The converse is trivial.

Finally, we can state what is usually referred to as the “martingale conver-
gence theorem”.

Theorem 1.18. Every L1-bounded scalar valued martingale converges a.s.

Proof. By Corollary 1.6, every scalar valued uniformly integrable martingale
converges in L1, and hence by Theorem 1.14 it converges a.s. Thus the present
statement follows from the implication (ii) ⇒ (i) from Proposition 1.17.

We will also need the following

Theorem 1.19. Every submartingale (Mn) bounded in L1 (resp. and uniformly
integrable) converges a.s. (resp. and in L1.)

Proof. We use the so-called Doob decomposition: we will write our submartin-
gale as the sum of a martingale (M̃n)n≥0 and a predictable increasing se-
quence (An) (recall that this means that An is An−1 measurable for each
n ≥ 1). Let us write ∆0 = M0 and ∆n = Mn − Mn−1 if n ≥ 1. Let
dn = ∆n − EAn−1(∆n) if n ≥ 1 and d0 = ∆0, and let M̃n =

∑
k≤n

dk. Then

(M̃n)n≥0 is a martingale. Indeed, by construction we have EAn−1(dn) = 0 or
equivalently EAn−1M̃n = M̃n−1. To relate (M̃n) to (Mn), we note that

Mn =
∑

0≤k≤n

∆k =
∑

0≤k≤n

dk +
∑

1≤k≤n

EAk−1(∆k)

hence
Mn = M̃n +An
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where
An =

∑
1≤k≤n

EAk−1(∆k).

Moreover, by the submartingale property EAn−1(∆n) ≥ 0 for all n ≥ 1 so that

0 ≤ A1 ≤ A2 ≤ · · · ≤ An−1 ≤ An ≤ · · · .

On one hand, EAn =
∑

1≤k≤n
E∆k = EMn − EM0, and since (Mn) is assumed

bounded in L1 we have sup
n≥1

EAn <∞. Therefore by monotonicity An converges

a.s. and in L1 when n→∞ (in particular it is a uniformly integrable sequence).
On the other hand, we have

E|M̃n| = E|Mn −An| ≤ E|Mn|+ EAn

therefore (M̃n) also is bounded in L1 and is uniformly integrable if (Mn) is. By
the martingale convergence theorem (Theorem 1.18) (M̃n) converges a.s. hence
Mn = M̃n +An also converges a.s. and, in the uniformly integrable case, it also
converges in L1.

If we impose the initial condition A0 = 0, the above proof also shows unique-
ness: Indeed, Mn = M̃n+An implies An−An−1 = ∆n−dM̃n and (assuming An
n− 1-measurable) this imposes An −An−1 = EAn−1(∆n − dM̃n) = EAn−1(∆n)
which uniquely determines An if set A0 = 0.

Corollary 1.20. Let B be an arbitrary Banach space and let (Mn)n≥0 be a
B-valued martingale bounded in L1(B). Then ‖Mn‖B converges a.s. Moreover,
(Mn)n≥0 converges a.s. in norm iff {Mn(ω) | n ≥ 0} is relatively compact for
almost all ω.

Proof. The first assertion follows from Theorem 1.19 and Remark 1.12. It suf-
fices to prove the second one for a separable B. Assume that {Mn(ω) | n ≥ 0} is
ω-a.s. relatively compact. Let f(ω) be a cluster point in B of {Mn(ω) | n ≥ 0}.
Note that by Theorem 1.18 for any ξ in B∗, ξ(Mn(ω)) converges ω-a.s., and
hence it must converge to ξ(f(ω)). (Incidentally: this shows that f is scalarly
measurable, and hence by Appendix 2 is Bochner measurable). Let D ⊂ B∗

be a countable weak-∗ dense subset. Clearly, Mn(ω) tends ω-a.s. to f(ω) in
the σ(B,D)-topology, but if {Mn(ω) | n ≥ 0} is relatively compact, the latter
topology coincides on it with the norm topology, and hence Mn(ω) → f(ω) in
norm. Conversely, if {Mn(ω) | n ≥ 0} is convergent it is obviously relatively
compact.

Remark 1.21. The maximal inequalities for B-valued martingales can be con-
siderably strengthened when B = `r for some 1 < r < ∞: Consider a fil-
tration (An) as usual, f ∈ Lp(`r) and let (fn) be the martingale associated
to f . Let (ek) be the canonical basis of `r. We may develop f and fn as
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f =
∑
k f(k)ek and fn =

∑
k fn(k)ek. In accordance with previous notation,

we set f(k)∗ = supn |fn(k)|. Let then

f∗∗ = ‖
∑

f(k)∗ek‖`r = (
∑

f(k)∗r)1/r.

Then, for any 1 < p <∞, there is a constant c(p, r) such that

‖f∗∗‖p ≤ c(p, r)‖f‖Lp(`r) = c(p, r)‖(
∑
|f(k)|r)1/r‖p.

Note that p = r is an easy consequence of Doob’s inequality. See [56] for p ≤ r
and [187] for the general case and for a weak type-(1, 1) inequality that can be
proved using the Gundy decomposition described in the next chapter. Finally,
the extension to the case B = Lr requires only minor modifications.

There are cases where the maximal inequalities can be extended to Lp with
0 < p < 1. For instance, let (Yn)n≥0 be a sequence of independent B-valued
random variables, let fn =

∑n
0 Yn. If Yn ∈ L1(B) is symmetric for all n (this

implies EYn = 0), then (fn)n≥0 is a martingale satisfying P(sup
n
‖fn‖ > t) ≤

2 sup
n

P(‖fn‖ > t). More generally, we quote without proof the following:

Theorem 1.22. Let (Yn) be a sequence of B-valued random variables, such that,
for any choice of signs ξn = ±1, the sequence (ξnYn) has the same distribution
as (Yn). Let fn =

∑n
0 Yk. We have then:

∀t > 0 P(sup ‖fn‖ > t) ≤ 2 lim sup P(‖fn‖ > t)(1.22)
∀p > 0 E sup ‖fn‖p ≤ 2 lim sup E‖fn‖p.(1.23)

If fn converges to a limit f∞ in probability (i.e. ‖fn − f∞‖ → 0 in probability),
then it actually converges a.s. In particular, if fn converges in Lp (p > 0), then
it automatically converges a.s. Finally, if fn converges a.s. to a limit f∞, we
have

(1.24) ∀t > 0 P(sup ‖fn‖ > t) ≤ 2P(‖f∞‖ > t).

More generally for any Borel convex subset K ⊂ B, we have

P(∪n{fn 6∈ K}) ≤ 2P({f∞ 6∈ K}).

Corollary 1.23. Let (Yn) be independent variables in L1(B) with mean zero
(i.e. EYn = 0) and let fn =

∑n
0 Yk as before. Then, for any p ≥ 1, we have

‖ sup ‖fn‖‖p ≤ 21+1/p sup ‖fn‖Lp(B).

Proof. Let (Y ′n)n be an independent copy of the sequence (Yn), let Ỹn = Yn−Y ′n
and f ′n =

∑n
0 Y
′
n. Note that (Ỹn) are independent and symmetric. By (1.23) we

have
E sup ‖f̃n‖p ≤ 2 sup E‖f̃n‖p
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but now if p ≥ 1 we have by convexity

E sup ‖fn‖p = E sup ‖fn − Ef ′n‖p ≤ E sup ‖fn − f ′n‖p

≤ 2 sup E‖fn − f ′n‖p

≤ 2 sup E(‖fn‖+ ‖f ′n‖)p

≤ 2p(E sup ‖fn‖p + E sup ‖f ′n‖p) = 2p+1E sup ‖fn‖p.

Corollary 1.24. For a series of independent B-valued random variables, con-
vergence in probability implies almost sure convergence.

Proof. Let fn =
∑n

0 Yk, with (Yk) independent. Let (Y ′k) be an independent
copy of the sequence (Yk) and let f ′n =

∑n
0 Y
′
k. Then the variables (Yk − Y ′k)

are independent and symmetric. If fn converges in probability (when n→∞),
then obviously f ′n and hence fn − f ′n also does. By the preceding Theorem,
fn − f ′n converges a.s., therefore we can choose fixed values xn = f ′n(ω0) such
that fn − xn converges a.s.. A fortiori, fn − xn converges in probability, and
since fn also does, the difference fn − (fn − xn) = xn also does, which means
that (xn) is convergent in B. Thus the a.s. convergence of fn− xn implies that
of fn.

Remark 1.25. There are well known counterexamples showing that Theorem 1.18
does not extend to the Banach space valued case. For instance, let Ω = {−1, 1}N
equipped with the usual probability measure P and let An be the σ-algebra
generated by the (n+ 1) first coordinates denoted by ε0, ε1, . . . , εn. A classical
example of a real valued martingale is Mn =

∏
k≤n

(1 + εk), which is positive and

of integral 1. Note however that it does not converge in L1. Another example
is Mn =

∑
k≤n

αkεk where (αk) are real coefficients. This particular martingale is

bounded in L1 iff Σ|αn|2 is finite. By the martingale convergence theorem, these
two martingales must converge a.s. However, we can give very similar Banach
space valued examples which do not converge. Take for instance B = c0 and
let (en) be the canonical basis of c0. Let M1

n =
∑
k≤n

εkek. Then ‖M1
n(ω)‖c0 =

sup
k≤n
|εk(ω)| ≡ 1 but clearly there is no point ω in {−1, 1}N such that the sequence

(M1
n(ω))n≥0 is convergent in c0, since we have

∀ω ∈ Ω ∀k < n ‖M1
n(ω)−M1

k (ω)‖B = 1.

We can give a similar example in L1. Let B = L1(Ω,P) itself and let

(1.25) M2
n(ω) =

∏
k≤n

(1 + εk(ω)εk).

Then again ‖M2
n(ω)‖B = 1 for all ω, but also it is easy to check that

∀ω ∈ Ω ∀k < n ‖M2
n(ω)−M2

k (ω)‖B ≥ 1, and ‖M2
n(ω)−M2

n−1(ω)‖B = 1,
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so that (M2
n)n≥0 is nowhere convergent.

In the next chapter, we will show that the preceding examples cannot occur
in a Banach space with the RNP.

1.5 Reverse martingales

We will prove here the following

Theorem. Let B be an arbitrary Banach space. Let (Ω,A,P) be a probability
space and let A0 ⊃ A−1 ⊃ A−2 ⊃ · · · be a (this time decreasing) sequence of
σ-subalgebras of A. Let A−∞ =

⋂
n≥0

A−n. Then for any f in Lp(Ω,A, P ;B),

with 1 ≤ p < ∞, the reverse martingale (EA−n(f))n≥0 converges to EA−∞(f)
a.s. and in Lp(B).

We first check the convergence in Lp(B). Since the operators (EA−n)n≥0

are equicontinuous on Lp(B) it suffices to check this for f in a dense subset of

Lp(B). In particular, it suffices to consider f of the form f =
n∑
1
ϕixi with ϕi

an indicator function and xi in B. Since ϕi ∈ L2(Ω,P), we have (by classical
Hilbert space theory) EA−nϕi → EA−∞ϕi in L2(Ω,P) when n→∞. (Note that
L2(Ω,A−∞,P) is the intersection of the family (L2(Ω,A−n,P))n≥0.)
Observe that ‖f − g‖p ≤ ‖f − g‖2 if p ≤ 2 and ‖f − g‖pp ≤ 2p−2‖f − g‖22
if ‖f‖∞ ≤ 1, ‖g‖∞ ≤ 1 and p > 2. Using this, we obtain that, a fortiori,
EA−nf → EA−∞f in Lp(B) for every f of the above form, and hence for every
f in Lp(B).

We now turn to a.s. convergence. We first replace f by f̃ = f − EA−∞(f)
so that we can assume EA−n(f) → 0 in Lp(B) and a fortiori in L1(B). Let
fn = EA−nf . Now fix n > 0 and k > 0 and consider the (ordinary sense)
martingale

Mj =
{
f−n−k+j for j = 0, 1, . . . , k,
f−n if j ≥ k.

Then by Doob’s inequality (1.19) applied to (Mj) we have for all t > 0

tP{ sup
n≤m≤n+k

‖f−m‖ > t} ≤ E‖f−n‖

therefore
tP{ sup

m≥n
‖f−m‖ > t} ≤ E‖f−n‖

and since E‖f−n‖ → 0 when n → ∞, we have sup
m≥n
‖f−m‖ → 0 a.s., or equiva-

lently f−n → 0 a.s. when n→∞. �
As a corollary, we have the following classical application to the strong law

of large numbers.
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Corollary. Let ϕ1, . . . , ϕn be a sequence of independent, identically distributed
random variables in L1(Ω,A,P;B). Let Sn = ϕ1 + · · · + ϕn. Then Sn

n → Eϕ1

a.s. and in L1(B).

Proof. Let A−n be the σ-algebra generated by (Sn, Sn+1, . . .). We claim that
1
nSn = EA−n(ϕ1). Indeed, for every k ≤ n, since the exchange of ϕ1 and ϕk
preserves Sn, Sn+1, . . . , we have

EA−n(ϕk) = EA−n(ϕ1).

Therefore averaging the preceding equality over k ≤ n we obtain

EA−n(ϕ1) =
1
n

∑
1≤k≤n

EA−n(ϕk) = EA−n
(
Sn
n

)
=
Sn
n
.

Hence (Sn/n)n≥1 is a reverse martingale satisfying the assumptions of the pre-
ceding theorem (we may take say A0 = A−1), therefore 1

nSn → EA−∞(ϕ1) a.s.
and in L1(B). Finally, let T =

⋂
n≥0

σ{ϕn, ϕn+1, · · · } be the tail σ-algebra. By

the zero-one law, T is trivial. The limit of Sn/n is clearly T -measurable, hence
it must be equal to a constant c, but then E(Sn/n)→ c, so c = E(ϕ1).

1.6 Notes and Remarks

Among the many classical books on Probability that influenced us, we men-
tion [17, 9], see also [26]. As for martingales, the references that considerably
influenced us are [48, 25, 20] and the papers [101, 108].

Martingales were considered long before Doob (in particular by Paul Lévy)
but he is the one who invented the name and proved their basic almost sure
convergence properties using what is now called Doob’s maximal inequality.

We give more references in the Appendix relative to continuous time.
In Theorem 1.22, we slightly digress and concentrate on a particular sort of

martingale, those that are partial sums of series of independent random vectors.
In the symmetric case, it turns out that the maximal inequalities (and the
associated almost sure convergence) hold for “martingales” bounded in Lp(B)
for p < 1. Our presentation of this is inspired by Kahane’s book [31].
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Chapter 2

Radon Nikodym property

2.1 Martingales, dentability and Radon Nikodym
property

To introduce the Radon Nikodym property (in short RNP), we will need to
briefly review the basic theory of vector measures. Let B be a Banach space.
Let (Ω,A) be a measure space. Every σ-additive map µ : A → B will be called
a (B-valued) vector measure. We will say that µ is bounded if there is a finite
positive measure ν on (Ω,A) such that

(2.1) ∀A ∈ A ‖µ(A)‖ ≤ ν(A).

When this holds, it is easy to show that there is a minimal choice of the measure
ν. Indeed, for all A in A let

|µ|(A) = sup{Σ‖µ(Ai)‖}

where the supremum runs over all decompositions of A as a disjoint union
A = ∪Ai of finitely many sets in A. Using the triangle inequality, one checks
that |µ| is an additive set function, by (2.1) |µ| must be σ-additive and finite.
Clearly, when (2.1) holds, we have

|µ| ≤ ν.

We define the “total variation norm” of µ as follows

‖µ‖ = inf{ν(Ω) | ν ∈M(Ω,A), ν ≥ |µ|},

or equivalently
‖µ‖ = |µ|(Ω).

We will denote by M(Ω,A) the Banach space of all bounded complex valued
measures on (Ω,A), and by M+(Ω,A) the subset of all positive bounded mea-
sures. We will denote by M(Ω,A;B) the space of all bounded B-valued mea-
sures µ on (Ω,A). When equipped with the preceding norm, it is a Banach

33
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space. Let µ ∈M(Ω,A;B) and ν ∈M+(Ω,A). We will write

|µ| � ν

if |µ| is absolutely continuous (or equivalently admits a density) with respect to
ν. This happens iff there is a positive function w ∈ L1(Ω,A, ν) such that

|µ| ≤ w.ν

or equivalently such that

∀A ∈ A ‖µ(A)‖ ≤
∫
A

wdν.

Recapitulating, we may state:

Proposition 2.1. A vector measure µ is bounded in the above sense iff its total
variation is finite, the total variation being defined as

V (µ) = sup

(
n∑
1

‖µ(Ai)‖

)

where the sup runs over all measurable partitions Ω =
n⋃
i=1

Ai of Ω. Thus, if µ

is bounded, we have V (µ) = |µ|(Ω).

Proof. Assuming V (µ) <∞, let ∀A ∈ A ν(A) = sup (
∑n

1 ‖µ(Ai)‖), where the

sup runs over all measurable partitions A =
n⋃
i=1

Ai of A. Then ν is a σ-additive

finite positive measure on A, and satisfies (2.1). Thus µ is bounded in the above
sense (and of course ν is nothing but |µ|). The converse is obvious.

Remark. It is easy to check that if dµ = f.dν with f ∈ L1(Ω,A, ν;B), then

(2.2) d|µ| = ‖f(.)‖Bdν,

and therefore

(2.3) ‖f.ν‖M(Ω,A;B) = ‖f‖L1(Ω,A,ν;B).

Indeed, by Jensen’s inequality we clearly have

∀A ∈ A ‖µ(A)‖ ≤
∫
A

‖f‖dν,

hence d|µ| ≤ ‖f(.)‖Bdν. To prove the converse, let ε > 0 and let g be a B-valued
simple function such that

∫
A
‖f − g‖dν < ε. We can clearly assume that g is

supported by A, so that we can write g =
∑n

1 1Aixi, with xi ∈ B and Ai is a
disjoint partition of A. We have

Σ‖µ(Ai)− ν(Ai)xi‖ = Σ‖
∫
Ai

(f − g)dν‖ ≤
∫
A

‖f − g‖dν < ε



2.1. MARTINGALES, DENTABILITY AND THE RNP 35

hence ∫
A

‖g‖dν = Σν(Ai)‖xi‖ ≤ Σ‖µ(Ai)‖+ ε

and finally ∫
A

‖f‖dν ≤
∫
A

‖g‖dν + ε ≤ Σ‖µ(Ai)‖+ 2ε,

which implies ∫
A

‖f‖dν ≤ |µ|(A) + 2ε.

This completes the proof of (2.2).
We will use very little from the theory of vector measures, for more details

we refer the reader to [16].

Definition. A Banach space B is said to have the Radon Nikodym property (in
short RNP) if for every measure space (Ω,A), for every finite positive measure
ν on (Ω,A) and for every B-valued measure µ in M(Ω,A;B) such that |µ| � ν,
there is a function f in L1(Ω,A, ν;B) such that µ = f.ν i.e. such that

∀A ∈ A µ(A) =
∫
A

fdν.

We will need the concept of a δ-separated tree.

Definitions. Let δ > 0. A martingale (Mn)n≥0 in L1(Ω,A,P;B) will be called
δ-separated if

(i) M0 is constant,

(ii) Each Mn takes only finitely many values,

(iii) ∀n ≥ 1, ∀ω ∈ Ω ‖Mn(ω)−Mn−1(ω)‖ ≥ δ.

Moreover, the set S = {Mn(ω) | n ≥ 0, ω ∈ Ω} of all possible values of such a
martingale will be called a δ-separated tree.

Another perhaps more intuitive description of a δ-separated tree is as a
collection of points {xi | i ∈ I} indexed by the set of nodes of a tree-like structure
which starts at some origin (0) then separates into N1 branches which we denote
by (0, 1), (0, 2), . . . , (0, N1), then each branch itself splits into a finite number of
branches, etc. in such a way that each point xi is a convex combination of its
immediate successors, and all these successors are at distance at least δ from
xi. We will also need another more geometric notion.

Definition. Let B be a Banach space. A subset D ⊂ B is called dentable if
for any ε > 0 there is a point x in D such that

x /∈ conv(D\B(x, ε))

where conv denotes the closure of the convex hull, and where

B(x, ε) = {y ∈ B | ‖y − x‖ < ε}.
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Remark 2.2. Let D ⊂ B be a bounded subset and let C be the closed convex hull
of D. If C is dentable, then D is dentable. Moreover, C is dentable iff C admits
slices of arbitrarily small diameter. Note in particular that the dentability of all
closed bounded convex sets implies that of all bounded sets.

Indeed, the presence of slices of small diameter clearly implies dentability.
Conversely, if C is dentable, then for any ε > 0 there is a point x in C that does
not belong to the closed convex hull of C \B(x, ε), and hence by Hahn-Banach
separation, there is a slice of C containing x and included in B(x, ε), therefore
with diameter less than 2ε. Now if C = conv(D), then this slice must contain a
point in D, exhibiting that D itself is dentable.

The following beautiful theorem gives a geometric sufficient condition for
the RNP. We will see shortly that it is also necessary.

Theorem 2.3. If every bounded subset of a Banach space B is dentable, then
B has the RNP.

Proof. Let (Ω,A,m) be a σ-finite measure space and let µ : A → B be a
bounded vector measure such that |µ| � m. We will show that µ admits a
Radon Nikodym derivative in L1(Ω,A,m;B). Clearly (by replacing m by |µ|)
we may as well assume that m is finite and |µ| ≤ m. Indeed, let m′ = |µ| =
w.m for some w in L1(m), if we find f ′ such that µ = f ′.m′, we have by (2.2)
|µ| = ‖f ′‖.m′ hence ‖f ′‖ = 1 a.s. and therefore if f = wf ′ we have µ = f.m

and f ∈ L1(m;B). Now assume |µ| ≤ m and for every A in A let xA = µ(A)
m(A)

and let
CA = {xβ | β ∈ A, β ⊂ A, m(β) > 0}.

Note that ‖xA‖ ≤ 1 for all A in A, so that the sets CA are bounded. We will
show that if every set CA is dentable then the measure admits a Radon Nikodym
derivative f in L1(Ω,A,m;B).
Step 1: We first claim that if CΩ is dentable then ∀ε > 0 ∃A ∈ A with m(A) > 0
such that

diam(CA) ≤ 2ε.

This (as well as the third) step is proved by an exhaustion argument. Sup-
pose that this does not hold, then ∃ε > 0 such that every A with m(A) > 0
satisfies diam(CA) > 2ε. In particular, for any x in B, A contains a subset β
with m(β) > 0 such that ‖x − xβ‖ > ε. Then, consider a fixed measurable
A with m(A) > 0 and let (βn) be a maximal collection of disjoint measurable
subsets of A with positive measure such that ‖xA − xβn‖ > ε. (Note that since
m(βn) > 0 and the sets are disjoint, such a maximal collection must be at
most countable.) By our assumption, we must have A =

⋃
βn, otherwise we

could take A′ = A −
⋃
n
βn and find a subset β of A′ that would contradict the

maximality of the family (βn). But now if A =
⋃
βn, we have

xA = Σ(m(βn)/m(A))xβn and ‖xA − xβn‖ > ε.

Since we can do this for every A ⊂ Ω with m(A) > 0 this means that for
some ε > 0, every point x of CΩ lies in the closed convex hull of points in
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CΩ − B(x, ε), in other words this means that CΩ is not dentable, which is the
announced contradiction. This proves the above claim and completes step 1.
Working with CA instead of CΩ, we immediately obtain
Step 2:

∀ε > 0 ∀A ∈ A with m(A) > 0

∃A′ ⊂ A with m(A′) > 0 such that

diam(CA′) ≤ 2ε.

Step 3: We use a second exhaustion argument. Let ε > 0 be arbitrary and let
(An) be a maximal collection of disjoint measurable subsets of Ω withm(An) > 0
such that diam(CAn) ≤ 2ε. We claim that, up to a negligible set, we have
necessarily Ω =

⋃
An. Indeed if not, we could take A = Ω−(

⋃
An) in step 2 and

find A′ ⊂ A contradicting the maximality of the family (An). Thus Ω =
⋃
An.

Now let gε = Σ1AnxAn . Clearly, gε ∈ L1(Ω,m;B) and we have

(2.4) ‖µ− gε.m‖M(Ω,A;B) ≤ 2εm(Ω).

Indeed, for every A in A with m(A) > 0

µ(A)−
∫
A

gεdm = Σm(A ∩An)[xA∩An − xAn ]

hence ∥∥∥∥µ(A)−
∫
A

gεdm

∥∥∥∥ ≤ Σm(A ∩An)‖xA∩An − xAn‖

≤ m(A)(2ε),

which implies (2.4).
This shows that µ belongs to the closure in M(Ω,A, B) of the set of all

measures of the form f.m for some f in L1(Ω,A;B), and since this set is closed
by (2.3) we conclude that µ itself is of this form. Perhaps, a more concrete way
to say the same thing is to say that if fn = g2−n then f = f0 +

∑
n≥1

fn − fn−1

is in L1(Ω,m;B) and we have µ = f.m. (Indeed, note that (2.4) (with (2.2))
implies ‖fn − fn−1‖L1(B) ≤ 6.2−nm(Ω).)

To expand on Theorem 2.3, the following simple lemma will be useful.

Lemma 2.4. Fix ε > 0. Let D ⊂ B be a subset such that

(2.5) ∀x ∈ D x ∈ conv(D\B(x, ε))

then the enlarged subset D̃ = D +B(0, ε/2) satisfies

(2.6) ∀x ∈ D̃ x ∈ conv(D̃\B(x, ε/2)).
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Proof. Consider x in D̃, x = x′ + y with x′ ∈ D and ‖y‖ < ε/2. Choose
δ > 0 small enough so that δ + ‖y‖ < ε/2. By (2.5) there are positive numbers
α1, . . . , αn with Σαi = 1 and x1, . . . , xn ∈ D such that ‖xi − x′‖ ≥ ε and
‖x′ − Σαixi‖ < δ. Hence x′ = Σαixi + z with ‖z‖ < δ. We can write x =
x′ + y = Σαi(xi + z + y). Note that xi + z + y ∈ D̃ since ‖z + y‖ < ε/2 and
moreover

‖x− (xi + z + y)‖ = ‖x′ − xi − z‖ ≥ ‖x′ − xi‖ − ‖z‖
≥ ε− δ ≥ ε/2.

Hence we conclude that (2.6) holds.

We now come to a very important result which incorporates the converse to
Theorem 2.3.

Theorem 2.5. Fix 1 < p ≤ ∞. The following properties of a Banach space B
are equivalent

(i) B has the RNP.

(ii) Every uniformly integrable martingale in L1(B) converges a.s. and in
L1(B).

(iii) Every B-valued martingale bounded in L1(B) converges a.s.

(iv) Every B-valued martingale bounded in Lp(B) converges a.s.

(v) For every δ > 0, B does not contain a bounded δ-separated tree.

(vi) Every bounded subset of B is dentable.

Proof. (i) ⇒ (ii). Assume (i). Let (Ω,A,P) be a probability space and let
(An)n≥0 be an increasing sequence of σ-subalgebras. Let us assume A = A∞
for simplicity. Let (Mn) be a B-valued uniformly integrable martingale adapted
to (An)n≥0. We can associate to it a vector measure µ as follows. For any A in
A = A∞, we define

(2.7) µ(A) = lim
n→∞

∫
A

MndP.

We will show that this indeed makes sense and defines a bounded vector measure.
Note that if A ∈ Ak then by (1.7) for all n ≥ k

∫
A
MndP =

∫
A
MkdP, so

that the limit in (2.7) is actually stationary. Thus, (2.7) is well defined when
A ∈

⋃
n≥0

An. Since (Mn) is uniformly integrable, ∀ε > 0 ∃δ > 0 such that

P(A) < δ ⇒ ‖µ(A)‖ < ε. Using this, it is easy to check that µ extends to a σ-
additive vector measure onA∞. Indeed, note that (for instance by scalarization)
E(Mn1A) = E(MnEAn(1A)). Thus the limit in (2.7) is the same as

(2.8) lim
n→∞

E(MnEAn(1A)).
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To check that this definition makes sense, note that if ϕn = EAn(1A), then

(2.9) ∀n < m E(Mnϕn)− E(Mmϕm) = E(Mm(ϕn − ϕm))

but by the uniform integrability (since |ϕn − ϕm| ≤ 2) we also must have
‖E(Mm(ϕn − ϕm))‖ → 0 when n,m→∞. Indeed, we can write for any t > 0

‖E(Mm(ϕn − ϕm))‖ ≤ 2 sup
m

∫
‖Mm‖>t

‖Mm‖+ tE|ϕn − ϕm|,

so that lim supn,m→∞ ‖E(Mm(ϕn − ϕm))‖ ≤ 2 supm
∫
‖Mm‖>t ‖Mm‖ and hence

must vanish by the uniform integrability. Thus by (2.9) we conclude that the
limit in (2.7) exists by the Cauchy criterion.

By Theorem 1.19, the submartingale ‖Mn‖ converges in L1 to a limit w in
L1. Note that for all A in A

(2.10) |µ|(A) ≤
∫
A

wdP.

Indeed, by (2.7) and Jensen’s inequality, we have

‖µ(A)‖ ≤ lim
n→∞

E(‖Mn‖1A) =
∫
A

wdP,

and hence also for all A1, . . . , Am in A disjoint with A = ∪Ai
m∑
1

‖µ(Ai)‖ ≤
m∑
1

∫
Ai

wdP =
∫
A

wdP.

and taking the supremum of the left hand side, we obtain the above claim (2.10).
This shows |µ| � P. By our assumption (i), there is f in L1(Ω,A,P;B) such
that µ(A) =

∫
A
fdP for all A in A.

Recall that for any k ≥ 0 and for any A in Ak we have by (1.7)

∀n ≥ k E(Mn1A) = E(Mk1A)

hence by (2.7) µ(A) = E(Mk1A) for any A in Ak. Therefore we must have

∀k ≥ 0 ∀A ∈ Ak
∫
A

fdP =
∫
A

MkdP

or equivalently, since this property characterizes EAk(f) (see the remarks after
(1.5)) Mk = EAk(f). Hence by Theorems 1.5 and 1.14, (Mn) converges to f
a.s. and in L1(B). This completes the proof of (i) ⇒ (ii).
(ii) ⇒ (iii). This follows from Proposition 1.17.
(iii) ⇒ (iv) is obvious. We give below a direct proof that (iv) implies (i).
(iv)⇒ (v) is clear, indeed a bounded δ-separated tree is the range of a uniformly
bounded martingale (Mn) which converges nowhere since ‖Mn −Mn−1‖ ≥ δ
everywhere.
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(vi) ⇒ (i) is Theorem 2.3, so it only remains to prove (v) ⇒ (vi).
Assume that (vi) fails. We will show that (v) must also fail. Let D ⊂ B be

a bounded nondentable subset. Replacing D by the set D̃ in Lemma 2.4, we
can assume that there is a number δ > 0 such that

∀x ∈ D x ∈ conv(D −B(x, δ)).

We will then construct a δ-separated tree insideD. Let (Ω,A,P) be the Lebesgue
interval. We pick an arbitrary point x0 in D and let M0 ≡ x0 on Ω = [0, 1].
Then since x0 ∈ conv(D −B(x0, δ))

∃α1 > 0, . . . , αn > 0 with
n∑
1

αi = 1 ∃x1, . . . , xn ∈ D

such that

(2.11) x0 =
n∑
1

αixi and ‖xi − x0‖ ≥ δ.

We can find in Ω disjoint subsets A1, . . . , An such that P(Ai) = αi and ∪Ai = Ω.
We then let A0 be the trivial σ-algebra and let A1 be the σ-algebra generated
by A1, . . . , An. Then we define M1(ω) = xi if ω ∈ Ai. Clearly (2.11) implies
EA0M1 = M0 and ‖M1 −M0‖ ≥ δ everywhere. Since each point xi is in D,
we can continue in this way and represent each xi as a convex combination
analogous to (2.11). This will give M2,M3, etc.

We skip the details of the obvious induction argument. This yields a δ-
separated martingale and hence a δ-separated tree. This completes the proof of
(v) ⇒ (vi) and hence of Theorem 2.5.

Finally, as promised, let us give a direct argument for (iv) ⇒ (i). Assume
(iv) and let µ be a B-valued vector measure such that |µ| � ν where ν is as in
the definition of the RNP. Then, by the classical RN theorem, there is a scalar
density w such that |µ| = w.ν, thus it suffices to produce a RN density for µ
with respect to |µ|, so that, replacing ν by |µ| and normalizing, we may as well
assume that we have a probability P such that

∀A ∈ A ‖µ(A)‖ ≤ P(A).

Then for any finite σ-subalgebra B ⊂ A, generated by a finite partition A1,
· · · , AN of Ω, we consider the B-measurable (step) function fB : Ω → B that
is equal to µ(Aj)P(Aj)−1 on each atom Aj of B. It is then easy to check that
{fB | B ⊂ A, |B| < ∞} is a martingale indexed by the directed set of all such
B’s. By the above Remark 1.7, if (iv) holds then the resulting net converges
in Lp(B), and a fortiori in L1(B) to a limit f ∈ L1(B). By the continuity of
EC , for each fixed finite C, EC(fB) → EC(f) in L1(B), and EC(fB) = fC when
C ⊂ B, therefore we must have EC(f) = fC for any finite C. Applying this to
an arbitrary A ∈ A, taking for C the σ-subalgebra generated by A (and its
complement), we obtain (recall that fC is constant on A, equal to µ(A)P(A)−1)

E(1Af) = E(1AfC) = P(A)× µ(A)P(A)−1 = µ(A),
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so that we conclude that f.P = µ, i.e. we obtain (i).

Remark. If the preceding property (vi) is weakened by considering only dyadic
trees (i.e. martingales relative to the standard dyadic filtration on say [0, 1]),
or k-regular trees, then it does not imply the RNP: Indeed, by [89] there is
a Banach space B (isometric to a subspace of L1) that does not contain any
bounded δ-separated dyadic tree, but that fails the RNP. Actually, that same
paper shows that for any given sequence (K(n)) of integers, there is a Banach
space B failing the RNP but not containing any δ-separated tree relative to a
filtration such that |An| ≤ K(n) for all n.

Corollary 2.6. If for some 1 ≤ p ≤ ∞ every B-valued martingale bounded in
Lp(B) converges a.s. then the same property holds for all 1 ≤ p ≤ ∞.

Remark 2.7. Note that for 1 < p <∞, if a B-valued martingale (Mn) is bounded
in Lp(B) and converges a.s. to a limit f , then it automatically also converges
to f in Lp(B). Indeed, by the maximal inequalities (1.20) the convergence of
‖Mn−f‖p to zero is dominated, hence by Lebesgue’s theorem

∫
‖Mn−f‖pdP→

0.

Corollary 2.8. The RNP is separably determined, that is to say: if every sep-
arable subspace of a Banach space B has the RNP, then B also has it.

Proof. This follows from Theorem 2.5 by observing that a B-valued martingale
in L1(B) must “live” in a separable subspace of B. Alternately, note that any
δ-separated tree is included in a separable subspace.

Corollary 2.9. If a Banach space B satisfies either one of the properties (ii)–
(v) in Theorem 2.5 for martingales adapted to the standard dyadic filtration on
[0,1], then B has the RNP.

Proof. It is easy to see by a suitable approximation that if B contains a bounded
δ-separated tree, then it contains one defined on a subsequence {Ank | k ≥ 1},
(n1 < n2 < . . .) of the dyadic filtration (An) in [0,1]. This yields the desired
conclusion.

Corollary 2.10. If a Banach space B satisfies the property in Definition 2.1
when (Ω, ν) is the Legesgue interval ([0, 1], dt), then B has the RNP.

Corollary 2.11. Any reflexive Banach space and any separable dual have the
RNP.

Proof. Since the RNP is separably determined by Corollary 2.8, it suffices to
prove that separable duals have the RNP. So assume B = X∗, and that B is
separable. Note that X is necessarily separable too and the closed unit ball of
B is a metrizable compact set for σ(X∗, X). Let {Mn} be a martingale with
values in the latter unit ball. For any ω, let f(ω) be a cluster point for σ(X∗, X)
of {Mn(ω) | n ≥ 0}. Let D ⊂ X be a countable dense subset of the unit ball of
X.
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For any d in D, the bounded scalar martingale 〈d,Mn〉 converges almost surely
to a limit which has to be equal to 〈d, f(ω)〉. Hence since D is countable, there
is Ω′ ⊂ Ω with P(Ω′) = 1 such that

∀ ω ∈ Ω′ ∀ d ∈ D 〈d,Mn(ω)〉 → 〈d, f(ω)〉.

In other words we have Mn(ω)
σ(X∗,D)−−−−−−−→f(ω) or equivalently (since we are in

the unit ball of B) Mn(ω)
σ(X∗,X)−−−−−→f(ω) for any ω in Ω′. Notice that we did

not discuss the measurability of f yet. But now we know that ω → 〈x, f(ω)〉
is measurable for any x in X, hence since X is separable for any x0 ∈ B,
ω → ‖x0 − f(ω)‖ is measurable, so f−1(β) = {ω | f(ω) ∈ β} is measurable for
any open (or closed) ball β ⊂ X∗, and finally since X∗ is separable, for any open
set U ⊂ X∗, the set f−1(U) must be measurable, so f is Borel measurable.

We claim that this implies that f is Bochner measurable. This (and the de-
sired conclusion) follows from Phillips’ theorem (see Appendix 2). Alternatively
we can conclude the proof by the same trick as in Appendix 2, as follows.
For any x0 in B we have

‖x0 −Mn‖ = sup
d∈D,‖d‖≤1

|〈d, x0 −Mn〉| = sup
d∈D,‖d‖≤1

|En〈d, x0 − f〉| ≤ En‖x0 − f‖

(note that ω → ‖x0−f(ω)‖ is bounded and measurable, so that En‖x0−f‖
a.s.−→

‖x0 − f‖). Hence lim sup
n
‖x0 −Mn‖

a.s.
≤ ‖x0 − f‖. We can assume that this

holds on the same set of probability one for all x0 in a countable dense subset
of B, hence actually for all x0 in B. But then taking x0 = f(ω) we have for
almost all ω, lim sup

n→∞
‖f(ω) −Mn(ω)‖ = 0. Thus we conclude by Theorem 2.5

that B has the RNP.

Remark. The above examples of divergent martingales show that the separable
Banach spaces L1([0, 1]) and c0 fail the RNP.
Remark. The RNP is clearly stable by passing to subspaces but obviously not
to quotients Indeed, `1, being a separable dual, has the RNP but any separable
space (e.g. c0) is a quotient of it.
Notation. By analogy with the Hardy space case, let us denote by

hp(Ω, (An)n≥0,P;B)

the (Banach) space of all B-valued martingales M = {Mn | n ≥ 0} that are
bounded in Lp(B), equipped with the norm

‖M‖ = sup
n≥0
‖Mn‖Lp(B).

Remark 2.12. Note that, by Theorem 1.5, the mapping

f → {En(f) | n ≥ 0}

defines an isometric embedding of

Lp(Ω,A∞,P;B) into hp(Ω, (An)n≥0,P;B).
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Remark 2.13. Let 1 < p ≤ ∞. With this notation, Theorem 2.5 says that B
has the RNP iff

hp(Ω, (An)n≥0,P;B) = Lp(Ω,A∞,P;B).

We now turn to the identification of the dual of Lp(B).
Let p′ be the conjugate exponent such that p−1 + p′

−1 = 1.
Suppose that we are given a filtration A0 ⊂ . . .An ⊂ An+1 ⊂ . . . of finite
σ-subalgebras and let us assume A = A∞. Let Lp(B) = Lp(Ω,A,P;B) with
1 ≤ p < ∞. Let ϕ be a bounded linear form on Lp(B). By restriction to
Lp(Ω,An,P;B), ϕ defines a linear form ϕn in Lp(Ω,An,P;B)∗. But, since An
is finite, we have Lp(Ω,An,P;B)∗ = Lp′(Ω,An,P;B∗) isometrically, hence ϕn
corresponds to an element Mn in Lp(Ω,An,P;B∗). Moreover, since ϕn is the
restriction of ϕn+1 it is easy to see that Mn = En(Mn+1), i.e. that {Mn} is a
B∗-valued martingale. Moreover, we have

sup
n
‖Mn‖Lp′ (B∗) = ‖ϕ‖Lp(B)∗ .

Proposition 2.14. In the above situation, the correspondence

ϕ→ (Mn)n≥0

is an isometric isomorphism from Lp(Ω,A,P;B)∗ to the space

hp′(Ω, (An)n≥0,P;B∗).

Proof. Indeed, it is easy to see conversely that given any martingale {Mn} in the
unit ball of hp′(Ω, (An)n≥0,P;B∗), Mn defines an element ϕn in Lp(Ω,An,P;B)∗

so that ϕn+1 extends ϕn, and ‖ϕn‖ ≤ 1. Hence by density of the union of the
spaces Lp(Ω,An,P;B) in Lp(B), we can extend the ϕn’s to a (unique) functional
ϕ in Lp(B)∗ with ‖ϕ‖ ≤ 1. Thus, it is easy to check that the correspondence is
one-to-one and isometric.

Remark 2.15. By Remark 2.12, we have an isometric embedding

Lp′(Ω,A∞,P;B∗) ⊂ Lp(Ω,A∞,P;B)∗.

Theorem 2.16. A dual space B∗ has the RNP iff for any countably generated
measure space and any 1 ≤ p <∞ we have (isometrically)

Lp(Ω,A,P;B)∗ = Lp′(Ω,A,P;B∗).

Moreover for B∗ to have the RNP it suffices that this holds for some 1 ≤ p <∞
and for the Lebesgue interval.

Proof. If A is countably generated we can assume A = A∞ with A∞ associated
to a filtration of finite σ-algebras (An) as above. Then Theorem 2.16 follows
from Proposition 2.14 and Remark 2.13. The second assertion folllows from
Corollary 2.9.
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Remark. Of course the preceding isometric duality holds for any dual space B∗

when the measure space is discrete (i.e. atomic).

Remark. The preceding theorem does remain valid for p = 1. Note however
that, if dim(B) = ∞, the B-valued step functions are, of course, not dense in
the space L∞(Ω,A,P;B). This is in sharp contrast with the finite dimensional
case. But if dim(B) = ∞ the unit ball is no longer compact, there is no finite
ε net for small ε, so, in general, we cannot uniformly approximate even the
nicest bounded continuous functions by step functions, i.e. functions taking only
finitely many values. Recall that instead, we defined the space L∞(Ω,A,P;B)
(in Bochner’s sense) as the space of B-valued Bochner-measurable functions f
(see Appendix 2) such that ‖f(.)‖B is in L∞, equipped with its natural norm.
This definition makes sense for any measure space (Ω,A,P), and, with it, the
preceding theorem is valid for p = 1.

A function f : Ω→ B∗ will be called weak∗ scalarly measurable if for every
b in B the scalar valued function 〈f(.), b〉 is measurable. Assume B separable.
Let us denote by Λp(Ω,A,P;B∗) the space of (equivalence classes of) scalarly
measurable functions f : Ω→ B∗ such that the function ω 7→ ‖f(ω)‖B∗ (which
is measurable since B is separable) is in Lp. We equip this space with the
obvious norm

‖f‖ = (
∫
‖f(ω)‖pB∗)

1/p.

We have then

Theorem 2.17. Assume B separable. Then for any countably generated mea-
sure space and any 1 ≤ p <∞ we have (isometrically)

Lp(Ω,A,P;B)∗ = Λp′(Ω,A,P;B∗).

Proof. We assume as before that A is generated by a filtration of finite algebras.
By Proposition 2.14, it suffices to show how to identify hp′(Ω, (An)n≥0,P;B∗)
with Λp′(Ω,A,P;B∗). Consider a martingale (fn) in hp′(Ω, (An)n≥0,P;B∗). By
the maximal inequality, (fn) is bounded a.s. and hence a.s. weak∗ compact. Let
f(ω) be a weak∗ cluster point of (fn). Then for any fixed b ∈ B, the scalar mar-
tingale 〈fn(.), b〉 converges a.s.. Its limit must necessarily be equal to 〈f(.), b〉.
This shows that f is weak∗ scalarly measurable. Let D be a countable dense sub-
set of the unit ball of B. Since D is countable, and 〈f(.), b〉 = limn→∞〈fn(.), b〉
for any b ∈ D, we have a.s.

‖f‖ = sup
b∈D
|〈f, b〉| ≤ lim

n→∞
‖fn‖

and hence by Fatou’s lemma

‖f‖Λp′ ≤ ‖(fn)‖hp′ .

Conversely, consider now f ∈ Λp′(Ω,A,P;B∗). Fix n. Let A be an atom of
An. Then b 7→ P(A)−1

∫
A
〈b, f〉 is a continuous linear form on B with norm



2.1. MARTINGALES, DENTABILITY AND THE RNP 45

≤ P(A)−1
∫
A
‖f‖B∗ . Let us denote it by fA. Let fn be the B∗-valued function

that is equal to fA on each atom A ∈ An. We have clearly En(〈b, f〉) = 〈b, fn〉
and hence En(〈b, fn+1〉) = 〈b, fn〉 for any b in D. Since D separates points, this
shows that (fn) is a martingale, and moreover ‖fn‖ = supb∈D |〈b, fn〉| ≤ En‖f‖.
It follows that

‖(fn)‖hp′ ≤ (
∫
‖f‖p

′
)1/p′ = ‖f‖Λp′ .

This shows that the correspondence (fn) 7→ f is an isometric isomorphism from
hp′ to Λp′ .

Remark 2.18. The notion of “quasi-martingale” is useful to work with random
sequences which are obtained by perturbation of a martingale. An adapted
sequence (Fn)n≥0 in L1(B) is said to be a quasi-martingale if

∞∑
1

‖En−1(Fn − Fn−1)‖L1(B) <∞.

Given such a sequence, let

fn = Fn −
∑n

1
Ek−1(Fk − Fk−1),

so that
dfn = dFn − En−1(dFn).

Clearly (fn) is then a martingale and for all m < n we have pointwise

‖(fn − fm)− (Fn − Fm)‖B ≤
∑

m<k≤n
‖Ek−1(Fk − Fk−1)‖B

and hence

‖(fn − fm)− (Fn − Fm)‖L1(B) ≤
∑

m<k≤n
‖Ek−1(Fk − Fk−1)‖L1(B).

Note that (Fn) is bounded in L1(B) (resp. uniformly integrable) iff the same is
true for (fn). Therefore, if this holds and if B has the RNP, (Fn) converges a.s.
(resp. and in L1(B)).

The following complements the panorama of the interplay between martin-
gale convergence and Radon-Nikodym theorems. This statement is valid for
general Banach spaces, but we should emphasize for the reader that the ω-a.s.
convergence of the variables ω 7→ ‖fn(ω)‖ is considerably weaker than that of
the sequence (fn(ω)) itself. The latter requires the RNP by Theorem 2.5.

Proposition. Let B be an arbitrary Banach space. Consider µ ∈ M(Ω,A;B)
such that |µ| = w · P where P is a probability measure on (Ω,A) and w ∈
L1(Ω,A,P). Let (An)n≥0 be a filtration such that A∞ = A, and such that,
for each n, µ|An admits a RN density fn in L1(Ω,A,P;B) (for instance this is
automatic if An is finite or atomic). Then ‖fn‖ → w a.s.
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Proof. By Proposition 2.1, for each fixed ε > 0 we can find unit vectors ξ1, . . . , ξN
in B∗ such that the vector measure

µN : A → `N∞

defined by µN (A) = (ξj(µ(A)))j≤N satisfies |µN |(Ω) > |µ|(Ω) − ε = 1 − ε.
Assume |µ|(Ω) =

∫
w dP = 1 for simplicity. Note that |µ|An | ≤ |µ||An = wn · P

where wn = EAnw. Therefore ‖fn‖ ≤ wn. By the martingale convergence
Theorem 1.5, wn → w a.s. and in L1, and hence

lim sup ‖fn‖ ≤ w a.e.

and
∫

lim sup ‖fn‖ ≤
∫
w = 1. We claim that∫

lim inf ‖fn‖ ≥
∫

lim inf sup
j≤N
|ξj(fn)| = |µN |(Ω) > 1− ε.

Indeed, being finite dimensional, `N∞ has the RNP and hence µN = ϕN · P for
some ϕN in L1(Ω;A,P; `N∞). This implies (by (2.2)) |µN | = ‖ϕN‖ · P. Clearly
EAnϕN = (ξj(fn))j≤N and hence

supj≤N |ξj(fn)| → ‖ϕN‖ a.s. and

in L1. Thus

E lim inf supj≤N |ξj(fn)| =
∫
‖ϕN‖dP = |µN |(Ω) > 1− ε,

proving the above claim.
Using this claim, we conclude easily: We have lim inf ‖fn‖ ≤ lim sup ‖fn‖ ≤

w but
∫

lim inf ‖fn‖dP >
∫
w dP−ε, so we obtain lim inf ‖fn‖ = lim sup ‖fn‖ =

w a.e.

2.2 The Krein Milman property

Recall that a point x in a convex set C ⊂ B is called extreme in C if whenever
x lies inside a segment S = {θy + (1 − θ)z | 0 < θ < 1} with endpoints y, z in
C, then we must have y = z = x. Equivalently C\{x} is convex. See [16] and
[8] for more information.

Definition. We will say that a Banach space B has the Krein Milman property
(in short KMP) if every closed bounded convex set in B is the closed convex
hull of its extreme points.

We will show below that RNP ⇒ KMP.
The converse remains a well known important open problem (although it is

known that RNP is equivalent to a stronger form of the KMP, see below). We
will use the following beautiful fundamental result due to Bishop and Phelps,
but we will skip the proof (see e.g. [16, p. 189]).
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Theorem 2.19 (Bishop–Phelps). Let C ⊂ B be a closed bounded convex sub-
set of a Banach space B. Then the set of functionals in B∗ that attain their
supremum on C is dense in B∗.

Remark 2.20. (i) Let x∗ ∈ B∗ be a functional attaining its supremum on C,
so that if α = sup{x∗(b) | b ∈ C}, the set F = {b | x∗(b) = α} is non-void.
We will say that F is a face of C. We need to observe that a face enjoys
the following property: If a point in F is inside the segment joining two
points in C, then this segment must entirely lie in F .

(ii) In particular, any extreme point of F is an extreme point of C.

(iii) Now assume that we have been able to produce a decreasing sequence of
sets · · · ⊂ Fn ⊂ Fn−1 ⊂ · · ·F0 = C such that Fn is a face of Fn−1 for any
n ≥ 1 and the diameter of Fn tends to zero. Then, by the Cauchy criterion,
the intersection of the Fn’s contains exactly one point x0 in C. We claim
that x0 is an extreme point of C. Indeed, if x0 sits inside a segment S
joining two points in C, then by (i) we have S ⊂ F1, hence (since F2 is a
face in F1 and x0 ∈ F2) S ⊂ F2 and so on. Hence S ⊂ ∩Fn = {x0}, which
shows that x0 is extreme in C.

(iv) Assume that every closed bounded convex subset C ⊂ B has at least one
extreme point. Then B has the KMP. Indeed, let C1 ⊂ C be the closed
convex hull of the extreme points of C. We must have C1 = C. Indeed,
otherwise there is x in C\C1 and by Hahn–Banach there is x∗ in B∗ such
that x∗|C1

< β and x∗(x) > β. Assume first that this functional achieves
its supremum α = sup{x∗(b) | b ∈ C}. This case is easier. Note α > β.
Then let F = {b ∈ C | x∗(b) = α}, so that F is a face of C disjoint
from C1. But now F is another non-void closed bounded convex set that,
according to our assumption, must have an extreme point. By (ii) this
point is also extreme in C, but this contradicts the fact that F is disjoint
from C1.
In general, x∗ may not achieve its norm, but we can use the Bishop–Phelps
Theorem 2.19 to replace x∗ by a small perturbation of itself that will play
the same role in the preceding argument.
Indeed, by Theorem 2.19, for any ε > 0 there is y∗ in B∗ with ‖x∗−y∗‖ < ε
that achieves its sup on C. We may assume ‖b‖ ≤ r for any b in C. Let
γ = sup{y∗(b) | b ∈ C} and note that γ > α − rε; and hence y∗(b) = γ
implies x∗(b) > α− 2rε. Hence if ε is chosen so that α− 2rε > β, we are
sure that F̃ = {b ∈ C | y∗(b) = γ} is included in {b | x∗(b) > β} hence is
disjoint from C1. We now repeat the preceding argument: F̃ must have
an extreme point, by (ii) it is extreme in C hence must be in C1, but this
contradicts F̃ ∩ C1 = ∅.

(v) The preceding argument establishes the following general fact: let S be a
slice of C, i.e. we assume given x∗ in B∗ and a number β so that

S = {b ∈ C | x∗(b) > β},
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then if S is non-void it must contain a (non-void) face of C.

Theorem 2.21. The RNP implies the KMP.

Proof. Assume B has the RNP. Let C ⊂ B be a bounded closed convex subset.
Then by Theorem 2.5, C is dentable. So for any ε > 0, there is x in C such
that x /∈ conv(C\B(x, ε)). By Hahn–Banach separation, there is x∗ in B∗ and
a number β such that the slice S = {b ∈ C | x∗(b) > β} contains x and is
disjoint from C\B(x, ε). In particular, we have ‖b − x‖ ≤ ε for any b in S, so
the diameter of S is ≤ 2ε. By Remark 2.20 (v), S must contain a face F1 of C,
a fortiori of diameter ≤ 2ε.

Now we can repeat this procedure on F1 : we find that F1 admits a face F2

of arbitrary small diameter, then F2 also admits a face of small diameter, and so
on. Thus, adjusting ε > 0, we find a sequence of (non-void) sets · · · ⊂ Fn+1 ⊂
Fn ⊂ · · · ⊂ F1 ⊂ F0 = C such that Fn+1 is a face of Fn and diam(Fn) < 2−n.
Then, by Remark 2.20 (iii), the intersection of {Fn} contains an extreme point
of C. By Remark 2.20 (iv), we conclude that B has the KMP.

Let C ⊂ B be a convex set. A point x in C is called “exposed” if there is a
functional x∗ such that x∗(x) = sup{x∗(b) | b ∈ C} and x is the only point of
C satisfying this. (Equivalently, if the singleton {x} is a face of C.) The point
x is called “strongly exposed” if the functional x∗ can be chosen such that, in
addition, the diameter of the slice

{b ∈ C | x∗(b) > sup
C
x∗ − ε}

tends to zero when ε→ 0. Clearly, the existence of such a point implies that C
is dentable. More precisely, if C is the closed convex hull of a bounded set D,
then D is dentable because every slice of C contains a point in D (see Remark
2.2).

We will say that B has the “strong KMP” if every closed bounded convex
subset C ⊂ B is the closed convex hull of its strongly exposed points. It is clear
(by (vi)⇒ (i) in Theorem 2.5) that the strong KMP implies the RNP. That the
converse also holds is a very beautiful and deep result due to Bob Phelps [225]:

Theorem 2.22. The RNP is equivalent to the strong KMP.

2.3 Edgar’s Choquet Theorem

2.4 Notes and Remarks

For vector measures and Radon–Nikodym theorems, a basic reference is [16]. A
more recent, much more advanced, but highly recommended reading is Bour-
gain’s Lecture Notes on the RNP [81].

For the Banach space valued case, the first main reference is Chatterji’s
paper [112] where the equivalence of (i), (ii), (iii) and (iv) in Theorem 2.5 is
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proved. The statements numbered from 2.6 to 2.16 all follow from Chatterji’s
result but some of them were probably known before.

Rieffel introduced dentability and proved that it suffices for the RNP. The
converse is (based on work by Maynard) due to Davis–Phelps and Huff inde-
pendently. The Lewis–Stegall theorem in §?? comes from [188]. Theorem 2.21
is due to Joram Lindenstrauss and Theorem thm1.31a to Phelps [225]. See [16]
for a more detailed history of the RNP and more precise references.

Our presentation of the RNP is limited to the basic facts. We will now
briefly survey additional material.

In §2.3 we present Edgar’s theorem (improving Theorem 2.21) that the RNP
implies a Choquet representation theorem. This is proved using the martingale
convergence theorem and a basic measure theoretic result (namely von Neumann
measurable lifting theorem). See also [183] for more illustrations of the use of
Banach valued martingales.

Charles Stegall [252] proved the following beautiful characterization of duals
with the RNP:

Stegall’s Theorem ([252])
Let B be a separable Banach space. Then B∗ has the RNP iff it is separable.
More generally, a dual space B∗ has the RNP iff for any separable subspace
X ⊂ B, the dual X∗ is separable.

In the 80’s, a lot of work was devoted (notably at the impulse of H.P. Rosen-
thal and Bourgain) to “semi-embeddings”. A Banach space X is said to semi-
embed in another one Y if there is an injective linear mapping u : X → Y such
that the image of the closed unit ball of X is closed in B (and such a u is then
called a semi-embedding). The relevance of this notion lies in

Proposition 2.23. If X is separable and semi-embeds in a space Y with the
RNP, then X has the RNP.

Proof. One way to prove this is to consider a martingale (fn) with values in
the closed unit ball BX of X. Let u : X → Y be a semi-embedding. If Y has
RNP then the martingale gn = u(fn) converges in Y to a limit g∞ such that
g∞(·) ∈ u(BX) = u(BX). Let now f(ω) = u−1(g∞(ω)). We will show that f
is Borel measurable. Let U be any open set in X. By separability, there is a
sequence {βn} of closed balls in X such that U = ∪βn. Then

{ω | f(ω) ∈ U} = ∪n{ω | g∞(ω) ∈ u(βn)}

but since u(βn) is closed and g∞ measurable we find that f−1(U) is measurable.
This shows that f is Borel measurable. By Phillips’ theorem, f is Bochner
measurable. Now, since gn = En(g∞) = En(u(f)) = u(En(f)) we have

fn = u−1(gn) = En(f),

and hence fn converges to f a.s. This shows that X has the RNP (clearly one
could use a vector measure instead of a martingale and obtain the RNP a bit
more directly).



50 CHAPTER 2. RADON NIKODYM PROPERTY

We refer to [90] for work on semi-embeddings. More generally, an injective
linear map u : X → Y is called a Gδ-embedding if the image of any closed
bounded subset of X is a Gδ-subset of Y .

We refer to [140, 141, 143, 144, 149] for Ghoussoub and Maurey’s work on
Gδ-embeddings. To give the flavor of this work, let us quote the main result
of [141]: A separable Banach space X has the RNP iff there is a Gδ-embedding
u : X → `2 such that u(BX) is a countable intersection of open sets with convex
complements.

The proof of the above Proposition 2.23 shows that the RNP is stable under
Gδ-embedding.

As mentioned in the text, it is a famous open problem whether KMP implies
RNP. It was proved for dual spaces by Huff and Morris using the above theorem
of Stegall [252], see [8, p. 91], and also for Banach lattices by Bourgain and
Talagrand ([8, p. 423]). See also Chu’s paper [113] for preduals of von Neu-
mann algebras. Schachermayer [245] proved that it is true for Banach spaces
isomorphic to their square. See also [246, 247, 248] for related work by the same
author.

We should mention that one can define the RNP for subsets of Banach spaces.
One can then show that weakly compact sets are RNP sets. See [8, 50] for more
on RNP sets.

A Banach space X is called an Asplund space if every continuous convex
function defined on a (non-empty) convex open subset D ⊂ E is Fréchet dif-
ferentiable on a dense Gδ-subset of D. Stegall [253] proved that X is Asplund
iff X∗ has the RNP. We refer the reader to [50] for more information in this
direction.



Chapter 3

Super-reflexivity

3.1 Finite representability and Super-properties

The notion of “finite representability” is the basis for that of “super-property.”

Definition. A Banach space X is said to be finitely representable (f.r. in short)
in another Banach space Y if for any finite dimensional subspace E ⊂ X and
for any ε > 0 there is a subspace Ẽ ⊂ Y that is (1 + ε)-isomorphic to E (i.e.
there is an isomorphism u : E → Ẽ with ‖u‖‖u−1‖ ≤ 1 + ε).

In other words, X f.r. Y means that, although Y may not contain an isomor-
phic copy of the whole of X, it contains an almost isometric copy of any finite
dimensional subspace of X. In Appendix 1 to this chapter devoted to back-
ground on ultraproducts, we show that X is f.r. Y iff X embeds isometrically
in an ultraproduct of Y .

The following simple perturbation argument will be used repeatedly.

Lemma 3.1. Let X,Y be Banach spaces. Let E0 ⊂ · · · ⊂ En ⊂ En+1 ⊂ · · · be
a sequence (or a family directed by inclusion) of finite dimensional subspaces of
X such that ∪En = X. Then for X to be f.r. in Y it suffices that for any ε > 0
and any n there is a subspace Ẽn ⊂ Y that is (1 + ε)-isomorphic to En.

Proof. Consider E ⊂ X with dim(E) < ∞. It suffices to show that for any
fixed ε > 0 there is n and Ê ⊂ En such that E is (1 + ε) isomorphic to Ê. Let
δ > 0 to be specified later. Let x1, . . . , xd be a linear basis of E. Choose n and
x̂1, . . . , x̂d in En such that ‖xj − x̂j‖ < δ for all j = 1, . . . , d. Let v : E → Ê be
the linear map determined by v(xj) = x̂j . For any (αj) ∈ Kd we have by the
triangle inequality

(3.1)
∣∣∣ ∥∥∥v (∑αjxj

)∥∥∥− ∥∥∥∑αjxj

∥∥∥ ∣∣∣ ≤ δ∑ |αj |,

but since all norms are equivalent on Rd there is a constant CE such that∑
|αj | ≤ CE

∥∥∥∑αjxj

∥∥∥ .
51
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Thus (3.1) implies

(1− δCE)
∥∥∥∑αjxj

∥∥∥ ≤ ∥∥∥∑αj x̂j

∥∥∥ ≤ (1 + δCE)
∥∥∥∑αjxj

∥∥∥ ,
and hence Ê is λ-isomorphic to E with λ = (1 + δCE)(1− δCE)−1. To conclude
we simply choose δ small enough so that λ < 1 + ε.

Remark. The preceding Lemma shows in particular that Lp is f.r. in `p for any
1 ≤ p <∞, and that L∞ is f.r. in c0.

Definition. Consider a property P for Banach spaces. We say that a Banach
space Y has “super-P” if every Banach space X that is f.r. in Y has P .

Remark. In particular Y is super-reflexive (resp. has the super-RNP) if every
X f.r. in Y is reflexive (resp. has the RNP). The passage from P to super-P
is a fruitful way to associate to an infinite dimensional property (such as e.g.
reflexivity) its finite dimensional counterpart. If the property P is already stable
by finite representability, then P and super P are the same. Such properties are
usually called “local.” The “local theory” of Banach spaces designates the part
of the theory that studies infinite dimensional spaces through the collection of
their finite dimensional subspaces.

Remark 3.2. Let B be a complex Banach space. If B is super-reflexive as a real
Banach space then it is also super-reflexive as a complex space. Indeed, any
complex space X that is f.r. in B must be reflexive as a real space, but this is
the same as reflexive as a complex space. Conversely, if B is super-reflexive as a
complex space, it is also as a real space, but this is a bit less obvious. It follows
e.g. from (i) ⇔ (iii) in Theorem 3.22 below, since the notion of separated tree
is the same in the real or complex cases. It also follows from Proposition 3.8
below.

The following result called the “local reflexivity principle” is classical.

Theorem 3.3 ([191]). The bidual B∗∗ of an arbitrary Banach space B is f.r.
in B.

To study super-reflexivity, we will need the following elementary fact.

Lemma 3.4. Let B be a Banach space. Then for any b∗∗ in B∗∗ any ε > 0
and any finite subset ξ1, . . . , ξn in B∗ there is b in B with ‖b‖ ≤ (1 + ε)‖b∗∗‖
such that

〈ξi, b∗∗〉 = 〈ξi, b〉 ∀i = 1, . . . , n.

Proof. Let K = R or C be the scalar field. We may clearly assume ξi linearly
independent. Assume ‖b∗∗‖ = 1 for simplicity. Let C ⊂ Kn be the convex set
{(〈ξi, b〉)i≤n | b ∈ B ‖b‖ ≤ 1}. Clearly, since b∗∗ is in the σ(B∗∗, B∗) closure of
the unit ball of B, we know that (〈ξi, b∗∗〉)i≤n ∈ C. But (since we assumed the
ξi’s independent) C has nonempty interior hence C ⊂ (1 + ε)C for any ε > 0.
Thus we conclude that (〈ξi, b∗∗〉)i≤n ∈ (1 + ε)C.
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The following result is classical. It combines several known facts, notably
(iv) ⇒ (iii) goes back to R.C. James [162].

Theorem 3.5. The following properties of a Banach space B are equivalent:

(i) Every Banach space is f.r. in B.

(ii) c0 is f.r. in B.

(iii) For any λ > 1 and any n ≥ 1 there are xn1 , . . . , x
n
n in B satisfying

(3.2) ∀(αj) ∈ Kn sup |αj | ≤
∥∥∥∑n

1
αjx

n
j

∥∥∥ ≤ λ sup |αj |.

(iv) For some λ > 1, for any n ≥ 1 there are xn1 , . . . , x
n
n in B satisfy (3.2).

(v) For some λ > 1, for any n ≥ 1 there are xn1 , . . . , x
n
n in B with norm ≥ 1

and such that
sup

{∥∥∥∑n

1
εjx

n
j

∥∥∥ | εj = ±1
}
≤ λ.

Proof. (i) ⇒ (ii) ⇒ (iii) ⇒ (iv)⇒ (v) are trivial. We will show that (iii) ⇒ (i)
and (v) ⇒ (iii). Assume (iii). Let E ⊂ B1 be a finite dimensional subspace
in an arbitrary Banach space B1. Let S = {s1, . . . , sn} be an ε-net in the unit
sphere of E. For each sj ∈ S, choose ξj ∈ E∗ such that 〈ξj , sj〉 = 1 = ‖ξj‖. We
define u : E → `n∞ by setting u(x) = (ξj(x))j≤n. We have ‖u‖ = 1 and

∀s ∈ S ‖u(s)‖`n∞ = 1.

Therefore by Lemma 3.47

∀x ∈ E (1− ε)‖x‖ ≤ ‖u(s)‖`n∞ ≤ ‖x‖.

This shows that E embeds (1− ε)−1-isomorphically into `n∞. Thus (iii) implies
that B1 is f.r. in B, or equivalently (iii) ⇒ (i).

The proof that (v) ⇒ (iii) is a well known “blocking trick” . Assume (v).
Let C(n) be the smallest constant C such that for any x1, . . . , xn in B we have

infj≤n ‖xj‖ ≤ C sup
εj=±1

∥∥∥∑n

1
εjxj

∥∥∥ .
A simple blocking argument shows that C(nk) ≤ C(n)C(k) for all n, k. Since
we assume (v), we have infn C(n) ≥ λ−1, but by the submultiplicativity of C(n)
this implies C(n) ≥ 1 for all n. Therefore, for any n and any λ > 1 we can
find x1, . . . , xn in B such that supεj=±1 ‖

∑
εjxj‖ ≤ λ and infj≤n ‖xj‖ ≥ 1. For

each k, choose ξk ∈ B∗ such that ‖ξk‖ = 1 and ξk(xk) ≥ 1. Note that if εj is
the sign of ξk(xj) we have∑

|ξk(xj)| =
〈
ξk,
∑

εjxj

〉
≤
∥∥∥∑ εjxj

∥∥∥ ≤ λ.
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Consequently

(3.3)
∑
j 6=k

|ξk(xj)| ≤ λ− 1.

Let C be the set of real scalars α1, . . . , αn with sup |αj | ≤ 1. Note that the
maximum value on C of ‖

∑
αjxj‖ is attained on an extreme point of C (of the

form αj = ±1), so we have ‖
∑
αjxj‖ ≤ λ sup |αj | for any (α1, . . . , αn) in Rn.

Let x =
∑
αjxj . Choose k so that |αk| = supj |αj |. By (3.3) we have

sup |αj | = |αk| =

∣∣∣∣∣∣ξk
(∑

αjxj

)
−
∑
j 6=h

αjξk(xj)

∣∣∣∣∣∣ ≤ ‖x‖+ (λ− 1) sup |αj |

and hence we find (2− λ) sup |αj | ≤ ‖x‖. Thus we conclude

sup |αj | ≤ (2− λ)−1‖x‖ ≤ (2− λ)−1λ sup |αj |,

and since (2−λ)−1λ is arbitrarily close to 1 this shows that (v)⇒ (iii), at least
in the real case. To check the complex case, note that

sup
zj∈C|zj |=1

∥∥∥∑ zjxj

∥∥∥ ≤ 2 sup
εj=±1

∥∥∥∑ εjxj

∥∥∥ .
From this one sees that in (v) we may replace the choices of signs by unimodular
complex numbers and complete the proof of (v) ⇒ (iii) exactly as in the real
case.

Recall from §4.4:

Definition. We say thatB contains `n∞’s uniformly if it satisfies (iii) in Theorem
3.5. We sometimes say λ-uniformly if we wish to keep track of the constant.

A property P (of Banach spaces) is called a super-property if super− P ⇔ P .

Corollary 3.6. Let P be a non-universal super-property, meaning that there
is at least one Banach space failing it. Then a Banach space with property P
cannot contain `n∞’s uniformly.

The reader will find background on ultrafilters, ultraproducts and ultrapow-
ers in the appendix to this chapter.

Proposition 3.7. Let X,Y be Banach spaces. Then X is finitely representable
in Y (in short X f.r. Y ) iff X embeds isometrically into an ultrapower of Y .

Proof. Assume that X embeds isometrically into an ultrapower Y I/U of Y . By
Lemma 3.48, for any Y , Y I/U , and hence a fortiori X, is f.r. in Y , proving
the “if” part. Conversely assume X f.r. in Y . Let I be the set of pairs (E, ε)
where E ⊂ Y is a finite dimensional subspace and ε > 0. We equip I with the
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order defined by i = (E1, ε1) ≤ j = (E2, ε1) if E1 ⊂ E2 and ε2 < ε1. Note that
obviously for any x in X there is i = (E, ε) in I such that x ∈ E. Since X f.r.
Y , for any i = (E, ε) there is a linear map ui : E → Y such that

(3.4) ∀x ∈ E ‖x‖ ≤ ‖ui(x)‖ ≤ (1 + ε)‖x‖.

Then we define u : X → Y I/U as follows: for any x inX we set u(x) =
˙︷ ︸︸ ︷

ui(xi))i∈I
where x(E,ε) = x whenever x ∈ E and (say) x(E,ε) = 0 if x /∈ E. By the
observation after (3.48), this indeed defines a linear map u : X → Y I/U . Let
εi denote the second coordinate of i so that i = (E, εi). Note that lim εi = 0
and hence limU εi = 0. Therefore, by (3.48) and (3.4) for any x in X

‖ux‖ = limU ‖ui(x)‖ = ‖x‖.

This shows that u is an isometric embedding of X into Y I/U .

The following is an immediate consequence of Proposition 3.7:

Proposition 3.8. Let P be a Banach space property. A Banach space B has
super-P iff any space isometric to a subspace of an ultrapower of B has P .

Proposition 3.9. Let P be a Banach space property that is stable under iso-
morphism (for example reflexivity). Then super-P is also stable under isomor-
phisms.

Proof. Indeed, if B1 ' B (isomorphically) then, for any (I,U), we have obvi-
ously BI1/U ' BI/U (isomorphically). By Proposition 3.8, if B has super-P
then any subspace of BI/U has P , and hence (by the stability under isomor-
phism) any subspace of BI1/U has P , so that B1 has super-P .

3.2 Super-reflexivity and inequalities for basic
sequences

We will make crucial use of the following beautiful theorem due to V. Ptak
[239]. This was later rediscovered by several authors, among which R.C. James
who made an extremely deep contribution ([163, 164, 165]) to the subject of
reflexivity and weak compactness.

Theorem 3.10. The following properties of a Banach space B are equivalent:

(i) B is not reflexive.

(ii) For any 0 < θ < 1, there is a sequence (xn, ξn)n≥1 in B×B∗ with ‖xn‖ ≤
1, ‖ξn‖ ≤ 1 for all n such that

ξj(xi) = 0 ∀i < j(3.5)
ξj(xi) = θ ∀i ≥ j.(3.6)
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(ii)′ For some 0 < θ < 1, there is (xn, ξn)n≥1 as in (ii).

(iii) For any 0 < θ < 1, there is a sequence (xn) in B such that for any finitely
supported scalar sequence (αn) we have

(3.7) θ sup
j

∣∣∣∣∣∣
∑
i≥j

αi

∣∣∣∣∣∣ ≤
∥∥∥∑αixi

∥∥∥ ≤∑ |αi|.

(iii)′ For some 0 < θ < 1, the same as (iii) holds.

(iv) For any 0 < θ < 1, there is a sequence (yn) in B such that for any finitely
supported scalar sequence (βn) we have

(3.8) θ sup
n
|βn| ≤

∥∥∥∑βnyn

∥∥∥ ≤∑
n≥0

|βn − βn+1|.

(iv)′ For some 0 < θ < 1, the same as (iv) holds.

(v) The inclusion mapping v1 → `∞ (where v1 denotes the space of scalar
sequences (βn) with

∑
n≥0 |βn − βn+1| <∞) factors through B.

Proof. (ii) ⇒ (ii)′ is trivial and (ii)′ ⇒ (i) is easy. Indeed, if (ii)′ holds and if
x∗∗ is a σ(B∗∗, B∗) cluster point of (xn), we must have ξj(x∗∗) = θ by (3.6).
Let ξ ∈ B∗ be a σ(B∗, B) cluster point of (ξn). Then by (3.5) we must have
ξ(xi) = 0. If x∗∗ ∈ B, on one hand this implies ξ(x∗∗) = 0 but on the other
hand ξj(x∗∗) = θ implies ξ(x∗∗) = θ. This contradiction shows that x∗∗ /∈ B
and hence that B is not reflexive.

The main point is to show (i) ⇒ (ii). Assume (i). Fix 0 < θ < 1 and
ε > 0. Pick x∗∗ ∈ B∗∗ with ‖x∗∗‖ = 1 such that dist(x∗∗, B) > θ. (Obviously,
such an x∗∗ must exist, otherwise a simple iteration argument would show that
B∗∗ = B.)

Since ‖x∗∗‖ = 1, there is ξ1 in B∗ with ‖ξ1‖ ≤ 1 such that x∗∗(ξ1) = θ.
Hence (see Lemma 3.4), for any ε > 0, there is x1 in B with ‖x1‖ ≤ 1 + ε such
that x1(ξ1) = θ. We will now prove by induction the existence of a sequence as
in (ii) except that we will find ‖xn‖ ≤ 1+ε, but a posteriori we may renormalize
(xn), so this is unimportant.

Let E1 be the subspace spanned by {x1}. Since dist(x∗∗, E1) > θ (and since
B∗∗/E1 = (B/E1)∗∗ = (E⊥1 )∗), there is ξ2 in B∗ with ‖ξ2‖ ≤ 1 such that
ξ2 ∈ E⊥1 and x∗∗(ξ2) = θ. Then, by Lemma 3.4, there is x2 in B with ‖x2‖ ≤
1 + ε such that x2(ξ1) = θ and x2(ξ2) = θ and so on. To check the induction
step, assume we have constructed (x1, · · · , xn), (ξ1, · · · , ξn) satisfying (3.5) and
(3.6). Let En = span{x1, . . . , xn}, we find ξn+1 ∈ E⊥n with ‖ξn+1‖ ≤ 1 such that
x∗∗(ξn+1) = θ, and (using Lemma 3.4) we find xn+1 in B with ‖xn+1‖ ≤ 1 + ε
such that xn+1(ξi) = θ ∀i ≤ n+ 1. This completes the induction step and also
the proof that (i) implies (ii).

It is an easy exercise to see that (ii) ⇔ (iii) and (ii)′ ⇔ (iii)′.



3.2. SUPER-REFLEXIVITY AND BASIC SEQUENCES 57

The equivalences (iii)⇔ (iv) and (iii)′ ⇔ (iv)′ are obvious : just note the
identity (“Abel summation”)

∑
αixi =

∑
βnyn where y0 = x0 and yn = xn −

xn−1 (or equivalently xn = y0 + · · · + yn), αn = βn − βn+1 (or equivalently
βn =

∑
i≥n αi).

Lastly, (iv)⇔ (v) is easy: (iv) can be interpreted as a factorization v1 →
Y → `∞ of the inclusion v1 → `∞ through the closed span Y of (yn) but using
Hahn-Banach extensions of the functionals

∑
βnyn 7→ βn we can extend the

second map Y → `∞ to one from B to `∞, and this gives the factorisation in
(v). Conversely if (v) holds i.e. we have a factorisation v1 → B → `∞ (with
bounded maps) then (iv)′ is immediate.

Theorem 3.11. The super-RNP is equivalent to super-reflexivity.

Proof. From reflexive⇒ RNP, we deduce trivially super-reflexive⇒ super-RNP.
To show the converse, it suffices obviously to prove that super RNP⇒ reflexive.
Equivalently it suffices to show that if B is a non-reflexive space then there is
a space X that is f.r. in B failing the RNP. Assume B non-reflexive. Then by
the preceding Theorem there is a sequence (xn) in B such that for any finitely
supported scalar sequence (αn) we have ξj(

∑
αixi) = θ

∑
i≥j

αi, hence

(3.9) θ sup
j

∣∣∣∣∣∣
∑
i≥j

αi

∣∣∣∣∣∣ ≤
∥∥∥∑αixi

∥∥∥ ≤∑ |αi|.

We will now construct a space X that will be f.r. in B and will contain a
θ/2-separated dyadic tree, and hence will fail the RNP. The space X will be
defined as the completion of L1 with respect to the norm ||| · ||| defined below.

The underlying model for the construction is this: When (xi) is the canonical
basis of `1 (which satisfies (3.9) with θ = 1) then the construction produces L1

as the space X.
Let (An) be the dyadic filtration in L1 = L1([0, 1]). For any f in L1 we

introduce the semi-norm

‖f‖(n) =

∥∥∥∥∥∥∥
∑

0≤k<2n

(k+1)2−n∫
k2−n

f(t)dt · xk

∥∥∥∥∥∥∥ .
Let U be a nontrivial ultrafilter on N, i.e. an ultrafilter adapted to N (see
Appendix 1). We set

|||f ||| = lim
n,U
‖f‖(n).

We have by (3.9) for all f in L1

(3.10) θ sup
0≤s≤1

∣∣∣∣∫ 1

s

f(t)dt
∣∣∣∣ ≤ |||f ||| ≤ ∫ |f(t)| dt

Indeed, (3.9) implies this on the left side with the supremum over s of the form
s = k2−n, hence (3.10) follows by continuity of s→

∫ 1

s
f(t)dt.
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Let X be the completion of (L1, |||·|||). By a routine argument one can check
that this space X embeds in an ultraproduct of copies of B and hence is f.r. in
B. By Lemma 3.12 below, the unit ball of X contains an infinite θ/2-separated
dyadic tree and hence fails the RNP.

Lemma 3.12. Let X be a Banach space. Assume that there is a linear map
J : L1([0, 1], dt)→ X such that for some θ > 0 we have for all f in L1

θ sup
0≤s≤1

∣∣∣∣∫ 1

s

f(t)dt
∣∣∣∣ ≤ ‖J(f)‖ ≤

∫ 1

0

|f(t)|dt.

Then the unit ball of X contains a θ/2-separated dyadic tree and hence X fails
the RNP.

Proof. Fix n. To any (ε1, . . . , εn) in {−1, 1}n we associate the interval I(ε1, . . . ,
εn) defined by induction as follows we set I(1) = [0, 1

2 [, I(−1) = [ 1
2 , 1] and if

I(ε1, . . . , εn) is given we define I(ε1, . . . , εn,+1) as the left half of I(ε1, . . . , εn)
and I(ε1, . . . , εn,−1) as its right half.

Note that |I(ε1, . . . , εn)| = 2−n. Let then Ω = {−1, 1}N. Let (Mn)n≥0 be
the L1-valued martingale defined for ε = (εn)n ∈ Ω by M0 ≡ 1 and

Mn(ε) = 2n · 1I(ε1,...,εn).

Note that ‖Mn(ε)‖L1 = 1 for all ε in Ω and since

Mn(ε)−Mn−1(ε) = 2n−1εn(1I(ε1,...,εn−1,1) − 1I(ε1,...,εn−1,−1))

for all n ≥ 1 we have

sup
s

∣∣∣∣∫ 1

s

(Mn −Mn−1)(t) dt
∣∣∣∣ ≥ 1/2.

Hence the martingale (J(Mn(·))) is a B-valued θ/2-separated dyadic martingale
with range in the unit ball of B.

Remark 3.13. The proof of Theorem 3.11 shows that, if B is not reflexive, then,
for any θ < 1 there is a space X f.r. in B satisfying the condition in Lemma
3.12. In the case of real valued scalars, this will be refined in (3.36) below, but
the proof of this improvement is much more delicate.

Remark 3.14. By [89] (see also [82]), there are Banach spaces without RNP
that do not contain any δ-separated infinite dyadic tree, whatever δ > 0 may
be. This gives an example of a space X failing the RNP but also failing the
assumption of Lemma 3.12.

Definition. Fix a number λ ≥ 1. A finite sequence {x1, . . . , xN} in a Banach
space B is called λ-basic if for any N -tuple of scalars (α1, . . . , αN ) we have

(3.11) sup
1≤n≤N

∥∥∥∥∥∥
n∑
j=1

αjxj

∥∥∥∥∥∥ ≤ λ
∥∥∥∥∑N

1
αjxj

∥∥∥∥ .
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An infinite sequence (xn) is called λ-basic if {x1, . . . , xN} is λ-basic for allN ≥ 1.
The case λ = 1 has already been distinguished in the preceding chapter: 1-basic
sequences are called “monotone basic” sequences.

Note that (3.11) trivially implies by the triangle inequality

(3.12) sup |αj |‖xj‖ ≤ 2λ
∥∥∥∑αjxj

∥∥∥
If span[xn] = B, the sequence {xn} is said to be a basis (sometimes called a
Schauder basis) of B. Then any x in B has a unique representation as the sum
of a convergent series

∑∞
1 αjxj with uniquely determined scalar coefficients.

Conversely any sequence (xn) with this property must be λ-basic for some λ ≥
1 by the classical Banach–Steinhaus principle. Indeed, this property implies
that there are biorthogonal functionals x∗n in B∗ such that any b in B can be
written as b =

∑∞
1 x∗n(b)xn. Let PN (b) =

∑N
1 x∗n(b)xn so that, for any b in B,

PN (b)→ b and hence supN ‖PN (b)‖ <∞. By the Banach–Steinhaus principle,
we must have sup

N
‖PN‖ <∞, so that (xn) is λ-basic with λ = supN ‖PN‖.

Obviously, a λ-basic sequence is a basis for the closed subspace it spans.
This justifies the term “basic.”

The natural basis of `p (1 ≤ p < ∞) or c0 is of course a basis in the
above sense. Let B be any Banach space. In the sequel we will use repeatedly
the observation that a sequence of martingale differences (dfn) in Lp(B) is a
monotone (i.e. λ-basic with λ = 1) basic sequence in Lp(B).

Definition 3.15. A basis (xn) is called boundedly complete if for any scalar
sequence (αn) such that supN ‖

∑N
1 αnxn‖ < ∞ the sum SN =

∑N
1 αnxn

converges in B.

Note that if SN → b we have automatically x∗n(SN ) → x∗n(b) for each n
and hence αn = x∗n(b) for all n. Let PN : B → B be, as above, the projection
defined by PN (b) =

∑N
1 x∗n(b)xn.

Definition 3.16. A basis (xn) is called shrinking if for any x∗ in B∗ we have
‖x∗ − P ∗Nx∗‖ → 0. Equivalently, this means that the biorthogonal functionals
(x∗n) form a basis in B∗.

The following classical theorem due to R.C. James characterizes reflexive
Banach spaces with a basis.

Theorem 3.17. Let B be a Banach space with a basis (xn). Then B is reflexive
iff (xn) is both boundedly complete and shrinking.

Proof. We may assume that (xn) is λ-basic for some λ ≥ 1. Assume that B is
reflexive. Let SN =

∑N
1 αnxn. If {SN} is bounded, by weak compactness of the

closed balls, there is a subsequence weakly converging to a limit b in B. Then,
for any fixed n, x∗n(SN ) → x∗n(b) (along a subsequence), but αn = x∗n(SN ) for
all N > n, therefore αn = x∗n(b) for any n and hence (see the remarks preceding
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Definition 3.15) SN = PN (b) tends to b when N → ∞. This shows that (xn)
is boundedly complete. Since PN (b)→ b for any b in B, we have x∗(PN (b))→
x∗(b) for any x∗ in B∗ and hence P ∗Nx

∗ → x∗ with respect to σ(B∗, B). If B
is reflexive, σ(B∗, B) = σ(B∗, B∗∗) is the weak topology on B∗, and hence by
Mazur’s theorem x∗ lies in the norm closure of conv{P ∗Nx∗ | N ≥ 1}. This
yields: ∀ε > 0 ∃m ∃ξ ∈ conv{P ∗Nx∗ | 1 ≤ N ≤ m} with ‖ξ − x∗‖ < ε. Clearly
P ∗mξ = ξ (since PNPm = PmPN = PN ∀N ≤ m) we have

‖(1− P ∗m)(x∗)‖ ≤ ‖(1− P ∗m)(x∗ − ξ)‖ ≤ (1 + λ)ε

and hence we conclude that (xn) is shrinking. Conversely, assume that (xn)
is boundedly complete and shrinking. Consider x∗∗ in B∗∗. We can write
P ∗∗N (x∗∗) =

∑N
1 x∗∗(x∗n)xn. We have

sup
∥∥∥∥∑N

1
x∗∗(x∗n)xn

∥∥∥∥ ≤ sup ‖PN‖ ≤ λ.

Since (xn) is assumed boundedly complete,
∑N

1 x∗∗(x∗n)xn converges to an ele-
ment b in B. But now for any fixed n we have

x∗∗(x∗n) = x∗n

(∑N

1
x∗∗(x∗n)xn

)
→ x∗n(b) when N →∞

and hence x∗∗(x∗n) = b(x∗n) for any n. Finally, if (xn) is assumed shrinking,
{x∗n} is norm total in B∗, so this last equality implies x∗∗(x∗) = b(x∗) for any
x∗ in B∗ which means x∗∗ = b. Thus we conclude that B is reflexive.

Remark 3.18. Let p > 1 (resp. q < ∞). Let (en) be a basic sequence in a
Banach space B. We say that (en) satisfies an upper p-estimate (resp. a lower
q-estimate) if there is a constant C such that for any finite sequence x1, . . . , xN
of disjoint consecutive (finite) blocks on (en) we have∥∥∥∑xj

∥∥∥ ≤ C (∑ ‖xj‖p
)1/p

(
resp.

(∑
‖xj‖q

)1/q

≤ C
∥∥∥∑xj

∥∥∥) .
If this holds, then (en) is shrinking (resp. is boundedly complete).

Indeed, let PN denote the projection onto span[e0, . . . , eN ]. Consider ξ ∈ B∗.
Dualizing our hypothesis we find that for any increasing sequence 0 = n(0) <
n(1) < . . . we have(∑

‖(Pn(k) − Pn(k−1))∗ξ‖p
′
)1/p′

≤ C‖ξ‖.

This implies (Pn(k) − Pn(k−1))∗ξ → 0 when k → ∞. But we may choose the
sequence n(k) inductively so that (say) ‖(Pn(k+1) − Pn(k))∗ξ‖ > (1/2)‖(I −
Pn(k))∗ξ‖ so we conclude that ‖ξ − P ∗Nξ‖ → 0 when N → ∞. The boundedly
complete case is similar. We leave the details to the reader. �
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Remark 3.19. Fix 1 < p < ∞. By Theorem 2.5, B has the RNP iff any
martingale difference sequence in Lp(B) is boundedly complete when viewed as
a monotone basic sequence.

We will use two variants of Theorem 3.10 as follows.

Remark 3.20. If B is not reflexive then for any λ > 1 there is a sequence (xn, ξn)
satisfying (ii) in Theorem 3.10 but moreover such that the sequence (ξn) is λ-
basic.
Indeed, choose numbers 1 < λn < λ such that

∏
λn < λ. It is easy to modify the

induction step to obtain this: at each step where we have produced (xj , ξj)j≤n
we can find a finite subset Fn of the unit ball of B such that for any ξ in
span(ξ1, . . . , ξn) we have ‖ξ‖ ≤ λn sup{|ξ(x)| | x ∈ Fn}. Suppose we have
produced x1, . . . , xn, ξ1, . . . , ξn. We then replace En by span(En, Fn) to find
ξn+1 in E⊥n ∩ F⊥n with otherwise the same properties, so we may continue and
find xn+1 with ‖xn+1‖ ≤ 1 + ε such that xn+1(ξj) = θ for all j ≤ n + 1. The
fact that ξn+1 ∈ F⊥n guarantees that for any ξ ∈ span[ξ1, . . . , ξn] and any scalar
α, we have

∀x ∈ Fn ξ(x) = (ξ + αξn+1)(x)

and hence

(3.13) ‖ξ‖ ≤ λn sup
x∈Fn

|ξ(x)| ≤ λn‖ξ + αξn+1‖.

Now if we choose our sequence λ1, . . . , λn, . . . as announced so that
∏
λn < λ,

we clearly deduce from (3.13) that (ξn) is λ-basic.

Remark 3.21. By an analogous refinement, if B is not reflexive then for any
λ > 4 there is a sequence (xn, ξn) satisfying (ii) in Theorem 3.10 but moreover
such that the two sequences (xn) and (x1, x2 − x1, x3 − x2, . . .) are λ-basic.
Let x∗∗ be as in the proof of Theorem 3.10. Suppose given x1, . . . , xn and
En = span(x1, . . . , xn). Since d(x∗∗, En) > θ, we have for any x in En and any
scalar α

θ|α| ≤ ‖x+ αx∗∗‖

and hence by the triangle inequality

(3.14) ‖x‖ ≤ (1 + θ−1)‖x+ αx∗∗‖.

Let ε > 0. Let Gn be a finite subset of BE∗n such that

∀x ∈ En ‖x‖ ≤ (1 + ε) sup{|ξ(x)| | ξ ∈ Gn}.

By (3.14), each ξ in BE∗n (in particular each ξ in Gn) extends to a linear form
ξ̂ of norm ≤ 1 + θ−1 on the span of x∗∗ and En that vanishes on x∗∗. Then
we claim that ξ̂ extends to ξ̃ ∈ B∗ with ‖ξ̃‖ ≤ (1 + θ−1)(1 + ε). Indeed, since
span[En, x∗∗] ⊂ B∗∗, the Hahn–Banach theorem a priori gives us ξ̃ in B∗∗∗,
extending ξ̂ to the whole of B∗∗, but we can use Lemma 3.4, applied to B∗

instead of B, to find ξ̃ in B∗. In any case, note that ξ̃(x∗∗) = 0.
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Let G̃n = {ξ̃ | ξ ∈ Gn}. Then in the induction step, we may select xn+1 so
that ξ(xn+1) = 0 for all ξ in G̃1 ∪ · · · ∪ G̃n. This guarantees that, for any k, all
the xi’s for i > k vanish on G̃k, so for any x in Ek, say x =

∑k
1 αjxj we have

‖x‖ ≤ (1 + ε) sup{|ξ(x)| | ξ ∈ G̃k}

≤ (1 + ε) sup

{∣∣∣∣∣ξ
(
x+

∑
i>k

αixi

)∣∣∣∣∣
∣∣∣∣ ξ ∈ G̃k

}

≤ (1 + θ−1)(1 + ε)2

∥∥∥∥∥x+
∑
i>k

αixi

∥∥∥∥∥ .
Thus, if we choose θ and ε so that (1+θ−1)(1+ε)2 ≤ λ′, we obtain (xn) λ′-basic
(so we can obtain it λ′-basic for any λ′ > 2). In addition, we will show that the
sequence (zi) defined by z1 = x1 and zi = xi − xi−1 is λ′(1 + θ−1(1 + ε))-basic
(so we can obtain it λ-basic for any λ > 4). Indeed, consider scalars (βi) and
let

x =
∑j

1
βizi, y =

∑n

j+1
βizi.

Note that x ∈ Ej but our problem is that zj+1 = xj+1 − xj involves xj . We
must show

‖x‖ ≤ λ′(1 + θ−1(1 + ε))‖x+ y‖.

We have by (3.9)

(3.15) θ|βj+1| ≤ ‖x+ y‖,

and hence by the triangle inequality

‖x+ (y + βj+1xj)‖ ≤ ‖x+ y‖+ |βj+1|(1 + ε) ≤ (1 + θ−1(1 + ε))‖x+ y‖.

But now since (xi) is λ′-basic and y+ βj+1xj is in the span of {xj+1, xj+2, · · · }

‖x‖ ≤ λ′‖x+ (y + βj+1xj)‖

and hence the announced result

‖x‖ ≤ λ′(1 + θ−1(1 + ε))‖x+ y‖.

To state the next result it will be convenient to introduce two sequences of
positive numbers attached to a Banach space B, as follows.

For each n ≥ 1, we set

bion(B) = inf

sup
i≤n

∥∥∥∥∥∥
∑
j≤i

yj

∥∥∥∥∥∥
B

sup
j≤n
‖ξj‖B∗





3.2. SUPER-REFLEXIVITY AND BASIC SEQUENCES 63

where the infimum runs over all biorthogonal systems (yi, ξi)i≤n in B × B∗

(biorthogonal means here that ξi(yj) = 0 if i 6= j and = 1 if i = j).
Note that obviously bion(B) ≤ bion+1(B) for all n ≥ 1. Let c = sup ‖ξi‖.

Replacing ξi by c−1ξi and yi by cyi we may assume c = 1. By the Hahn–Banach
theorem, (y1, . . . , yn) admits a biorthogonal system (ξj) with sup ‖ξj‖B∗ ≤ 1 iff
for any scalar n-tuple (α1, . . . , αn) we have

(3.16) sup |αj | ≤
∥∥∥∑αjyj

∥∥∥ .
Thus, we can equivalently define bion(B) as the infimum of sup

i≤n

∥∥∥∥∥∑j≤i yj
∥∥∥∥∥ over all

(yj) satisfying (3.16).
Equivalently, setting xi = θ

∑
j≤i yj , we have

(3.17) bion(B) = inf{θ−1}

where the infimum runs over all θ ≤ 1 for which there is an n-tuple (x1, . . . , xn)
in B satisfying for any scalar n-tuple (α1, . . . , αn)

θ sup
j

∣∣∣∣∣∣
∑
i≥j

αi

∣∣∣∣∣∣ ≤
∥∥∥∑αixi

∥∥∥ ≤∑ |αi|.

Note that (3.17) clearly shows that if a space X is f.r. in B then necessarily

(3.18) bion(B) ≤ bion(X) ∀n ≥ 1.

In particular, this shows by Theorem 3.3, that bion(B) ≤ bion(B∗∗). The
converse is obvious: since B ⊂ B∗∗ we must have bion(B∗∗) ≤ bion(B). Thus
we obtain

(3.19) bion(B∗∗) = bion(B) ∀n ≥ 1.

Moreover, (3.17) also shows that for any quotient space, say B/S (with S ⊂ B
a closed subspace), we have

(3.20) bion(B) ≤ bion(B/S).

Indeed, one verifies this by a trivial lifting of xi ∈ B/S up in B.
Note one more equivalent definition of bion(B):

(3.21) bion(B) = inf{θ−1} where θ ≤ 1 runs over

all the numbers for which there is a n-tuple (xj , ξj)j≤n in B×B∗ with ‖xj‖ ≤ 1,
‖ξj‖ ≤ 1 such that

(3.22) ξj(xi) = θ ∀i ≥ j and ξj(xi) = 0 ∀i < j.
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Indeed, if (yi, ξi) is as in the original definition, if we set xi = θ
∑
j≤i

yj with

θ =

(
sup
i

∥∥∥∥∥∑j≤i yj
∥∥∥∥∥
)−1

and sup ‖ξi‖ = 1, we obtain (3.22). Conversely, given

(3.22), if we set yj = θ−1(xj − xj−1), y1 = θ−1x1 we find sup

∥∥∥∥∥∑j≤i yj
∥∥∥∥∥ ≤ θ−1.

From (3.21), it is immediate (replacing (yj , ξj) by (ξn+1−j , yn+1−j), 1 ≤ j ≤
n) that

bion(B∗) ≤ bion(B).

Hence also bion(B∗∗) ≤ bion(B∗), and since we already saw bion(B∗∗) =
bion(B), we conclude that bion(B) is self-dual:

(3.23) bion(B) = bion(B∗) ∀n ≥ 1.

We also introduce

tn(B) = inf{sup
ω
‖Mn(ω)‖B}

where the infimum runs over all dyadic martingales (Mk)k≥0 such that ‖Mk(ω)−
Mk−1(ω)‖ ≥ 1 for all ω and all 1 ≤ k ≤ n. Again we have obviously tn(B) ≤
tn+1(B) for all n. Note that t = supn tn(B) <∞ iff B contains for some δ > 0
arbitrarily long δ-separated finite dyadic trees in its unit ball.

Again we have tn(B) ≤ tn(X) if X f.r. B. Moreover, by an easy lifting
argument, this also holds when X is isometric to a quotient of B.

Theorem 3.22. The following properties of a Banach space B are equivalent:

(i) B is super-reflexive.

(i)′ B∗ is super-reflexive.

(ii) bion(B)→∞ when n→∞.

(iii) tn(B)→∞ when n→∞.

(iv) For any λ > 1, there is q <∞ and a constant C such that for any N and
any λ-basic sequence (y1, . . . , yN ) in B or in any quotient of B we have

(3.24)
(∑

‖yj‖q
)1/q

≤ C
∥∥∥∑ yj

∥∥∥ .
(iv)′ For some λ > 1, the same as (iv) holds.

(v) For any λ > 1, there is p > 1 and a constant C such that for any N and
any λ-basic sequence (y1, . . . , yN ) in B we have

(3.25)
∥∥∥∑ yj

∥∥∥ ≤ C (∑ ‖yj‖p
)1/p

.
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(v)′ For some λ > 1, the same as (v) holds.

Proof. The proofs that (i) ⇒ (ii) or that (i) ⇒ (iii) are similar to the proof
of Theorem 3.11. Assume that bion(B) (resp. tn(B)) remains bounded when
n → ∞. We will show that there is a space X (resp. Y ) that is f.r. in B and
that is not reflexive (resp. fails the RNP). This will show that (i) ⇒ (ii) (resp.
(i) ⇒ (iii)). Let us outline the argument for (i) ⇒ (ii). Assume that (ii) fails
i.e. that bion(B) < C for all n ≥ 1. Then, for each n we have (by homogeneity)
a biorthogonal system (yni , ξ

n
i )i≤n such that sup

i≤n

∥∥ ∑
j≤i

ynj
∥∥ ≤ C and

‖ξni ‖ = 1 for i = 1, 2, . . . , n.

We will define the Banach space X as the completion of K(N) for the norm ‖·‖X
defined as follows. For each n we set for any finitely supported scalar sequence
α = (αk)

‖α‖n =

∥∥∥∥∥∥
∑

1≤k≤n

αk
∑
j≤k

ynj

∥∥∥∥∥∥ .
Then we fix a nontrivial ultrafilter U on N and we set:

‖α‖X = lim
n,U
‖α‖n.

Let x =
∑

1≤k≤n
αk
∑
j≤k

ynj . We have clearly by biorthogonality ξni (x) =
∑
k≥i

αk

hence

sup
i≤n

∣∣∣∣∣∣
∑
k≥i

αk

∣∣∣∣∣∣ ≤ ‖α‖n ≤ C
∑
|αi|

and hence

sup
i

∣∣∣∣∣∣
∑
k≥i

αk

∣∣∣∣∣∣ ≤ ‖α‖X ≤ C
∑
|αi|.

By (i) ⇔ (iii) in Theorem 3.10 we see that X is not reflexive, but since X
manifestly embeds in an ultraproduct of subspaces of B,X is f.r. in B. This
completes the proof that (i) ⇒ (ii).

The proof that (i) ⇒ (iii) is similar: if tn(B) < C for all n we produce Y
f.r. in B and containing in its unit ball an infinite δ-separated dyadic tree with
δ = 1/C (see the proof of Theorem 3.11); we leave the details to the reader.
Note that (ii)⇒ (i) follows from Theorem 3.10. Indeed, by the latter theorem if
B is not reflexive bion(B) is bounded; therefore (ii) implies B reflexive. But by
(3.18), if B satisfies (ii) then any X f.r. in B also satisfies (ii) and hence must
be reflexive. This shows that (ii) ⇒ (i).

Similarly, we have (iii) ⇒ (i). Indeed, it suffices to show (iii) implies B
reflexive. But if B is not reflexive, Remark 3.13 (and tn(B) ≤ tn(X) if X f.r.
B) clearly shows that tn(B) remains bounded when n→∞; this shows (iii) ⇒
(i). Thus we have proved (i) ⇔ (ii) ⇔(iii), and hence by (3.23), (i) ⇔ (i)′.
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We will now show that (ii) ⇒ (iv). Fix λ > 1. We will show that if (iv) fails
for this λ then (ii) also fails. We will argue as we did in the preceding section
for monotone basic sequences. Let b(N,λ) be the smallest constant b such that
for any λ-basic (y1, . . . , yN ) in a quotient of B we have

inf
1≤k≤N

‖yk‖ ≤ b
∥∥∥∥∑N

1
yk

∥∥∥∥ .
Clearly (see the proof of Theorem 4.9)

(3.26) b(NK,λ) ≤ b(N,λ)b(K,λ) for all N,K,

and also b(K,λ) ≤ λb(N,λ) for any K > N . Therefore, if b(N,λ) < 1 for some
N > 1 we find r < ∞ and C such that b(N,λ) ≤ CN−1/r for all N and this
leads to (see the proof of (4.10))

(∑
‖yj‖q

)1/q

≤ C
∥∥∥∑ yj

∥∥∥ for q > r

and some constant C. This argument shows that if (iv) fails for some λ > 1
we must have b(n, λ) ≥ 1 for all n > 1. Equivalently, for any ε > 0 there is
(y1, . . . , yn) λ-basic in a quotient of B, say B/S for some subspace S ⊂ B, such
that ‖

∑n
1 yj‖ ≤ 1 + ε but ‖yj‖ > 1 for all 1 ≤ j ≤ n. By (3.12), there are

functionals (ξi) biorthogonal to yj with ‖ξi‖ ≤ 2λ, and by (3.11) we have

sup
i

∥∥∥∥∥∥
∑
j≤i

yj

∥∥∥∥∥∥ ≤ λ
∥∥∥∑n

1
yj

∥∥∥ ≤ λ(1 + ε)

hence we obtain bion(B/S) ≤ λ(1+ε)2λ, but by (3.20) we know that bion(B) ≤
bion(B/S), therefore (ii) fails. This completes the proof that (ii) ⇒ (iv).

We now show (ii) ⇒ (v). Assume (ii). Then, as we already mentioned,
by (3.23), B∗ satisfies (ii) and hence, using the already proved implication (ii)
⇒ (iv), B∗ satisfies (iv), and actually all quotient spaces of B∗ satisfy (iv).
Then let (x1, . . . , xn) be λ-basic in B. Let E = span{x1, . . . , xn}. We have
E∗ = B∗/E⊥ and the biorthogonal functionals (x∗1, . . . , x

∗
n) are λ-basic in E∗.

By (iv) applied in E∗, we have for any scalar n-tuple (note that (αix∗i )i≤n is
also basic if αi 6= 0)

(∑
|αi|q‖x∗i ‖q

)1/q

≤ C
∥∥∥∑αix

∗
i

∥∥∥
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hence, by duality, if p > 1 is conjugate to q we find∥∥∥∑xi

∥∥∥ = sup
{∣∣∣(∑xi

)
(x∗)

∣∣∣ ∣∣∣ x∗ ∈ E∗, ‖x∗‖ ≤ 1
}

= sup
{∣∣∣∑αi

∣∣∣ ∣∣∣ ∥∥∥∑αix
∗
i

∥∥∥ ≤ 1
}

≤ sup
{(∑

(|αi|‖x∗i ‖)q
)1/q (∑

‖x∗i ‖−p
)1/p ∣∣∣ ∥∥∥∑αix

∗
i

∥∥∥ ≤ 1
}

≤ C
(∑

‖x∗i ‖−p
)1/p

≤ C
(∑

‖xi‖p
)1/p

where for the last line we used 1 = x∗i (xi) ≤ ‖x∗i ‖‖xi‖. This completes the proof
that (ii) ⇒ (v).

Note that (iv) ⇒ (iv)′ and (v) ⇒ (v)′ are trivial. Now, we prove (v)′ ⇒ (i):
Since (v)′ is clearly a super-property, it suffices to show (v)′ implies B reflexive.
But if B is not reflexive, by Remark 3.20, for any λ > 1, we can find a λ-basic
sequence (ξn) with ‖ξn‖ ≤ 1 satisfying (3.6) for some (xn) in the unit ball of B.
This implies

θn =
∑
j≤n

ξj(xn) ≤
∥∥∥∑n

1
ξj

∥∥∥
but now (v)′ implies

∥∥∥∑n
1 ξj

∥∥∥ ≤ Cn1/p with p > 1 which is impossible when n→
∞. This contradiction shows that (v)′ implies the reflexivity of B, concluding
the proof of (v)′ ⇒ (i).

It only remains to show (iv)′ ⇒ (v)′. Since the finite dimensional subspaces
of B∗ are the duals of the finite dimensional quotients of B, by duality (iv)′

implies that B∗ satisfies (v)′. Applying the (just proved) implication (v)′ ⇒ (i)
to the space B∗, we conclude that B∗ must be super-reflexive, and hence (recall
(3.23)) B itself satisfies (ii), and we already proved (ii) ⇒ (v) ⇒ (v)′. So we
conclude (iv)′ ⇒ (v)′.

Remark. Returning to Remark 3.21, recall that the sequence (zi) (defined by
z1 = x1 and zi = xi− xi−1 for i > 1) can be found λ-basic with λ > 4, and also
‖zi‖ ≥ ξi(zi) = θ. But then

∑n
1 zi = xn hence

∥∥∥∑n
1 zi

∥∥∥ ≤ 1, which contradicts

any estimate of the form
(∑
‖zi‖q

)1/q

≤ C
∥∥∥∑ zi

∥∥. This shows that if B itself
(without its quotients) satisfies (iv) then B is super-reflexive.

Corollary 3.23. If B is super-reflexive then for any λ > 1 there are p > 1
and q < ∞ and positive constants C ′ and C ′′ such that any λ-basic sequence
(x1, . . . , xN ) is B satisfies

(C ′)−1
(∑

‖xi‖q
)1/q

≤
∥∥∥∑xi

∥∥∥ ≤ C ′′ (∑ ‖xi‖p
)1/p

.

Proof. This is immediate from Theorem 3.22 since we can replace B by B∗ in
(v).
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3.3 Uniformly non-square and J-convex spaces

We start this section by a remarkable result discovered by R.C. James [162].

Theorem 3.24. In any non-reflexive Banach space B, there is, for any δ > 0,
a pair x, y in the unit sphere of B such that

‖x± y‖ ≥ 2− δ.

Remark. Banach spaces that fail the conclusion of Theorem 3.24 are called
uniformly non-square. More precisely, B is “uniformly non-square” if there is
δ > 0 such that for any x, y in the unit ball we have either ‖(x+ y)/2‖ ≤ 1− δ
or ‖(x− y)/2‖ ≤ 1− δ. This is a weak form of uniform convexity. In fact, this
is the same as saying that the uniform convexity modulus δB(ε) is > 0 for some
ε > 0 (while uniform convexity is the same but for all ε > 0).
Remark. Let α, β ∈ R such that |α| + |β| = 1. Assume ‖x‖, ‖y‖ ≤ 1 and
‖x± y‖ ≥ 2− δ. Then for some ε = ±1 we have

‖αx+ βy‖ = ‖ |α|x+ ε|β|y‖ ≥ ‖x+ εy‖ − ‖(1− |α|)x+ ε(1− |β|)y‖
≥ 2− δ − (1− |α|+ 1− |β|) = 1− δ.

Therefore by homogeneity we have

∀α, β ∈ R (1− δ)(|α|+ |β|) ≤ ‖αx+ βy‖ ≤ |α|+ |β|.

In particular, any non-reflexive Banach space contains for any δ > 0 a 2-
dimensional subspace (1 + δ)-isometric to `(2)

1 .
In the real case, `(2)

1 is the same (isometrically) as `(2)
∞ . Explicitly: Given

x, y as above, let a = (x+ y)/2 and b = (x− y)/2. Then

∀α, β ∈ R (1− δ) max{|α|, |β|} ≤ ‖αa+ βb‖ ≤ max{|α|, |β|}.

Note however that this is no longer valid in the complex case.
Thus we have

Corollary 3.25. The 2-dimensional space `(2)
1 (over the reals) is finitely rep-

resentable in every non-reflexive real Banach space.

Corollary 3.26. Any uniformly non-square Banach space is super-reflexive.

By Proposition 3.9 we can “automatically” strengthen the preceding state-
ment:

Corollary 3.27. Any Banach space isomorphic to a uniformly non-square one
is super-reflexive.

Naturally the question was raised whether `(2)
1 could be replaced by `(n)

1 for
n > 2 in particular for n = 3, but, in a 1973 tour de force, James himself gave
a counterexample ([166], see also [125, 168]). We will give different and simpler
examples of the same kind in Chapter 7. In the positive direction, one can
generalize Theorem 3.24 as follows. This is also due to James (see [162, 169]).
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Theorem 3.28. Let B be a non-reflexive space. Then for any n ≥ 1 and any
δ > 0 there are x1, . . . , xn in the unit sphere of B such that for any choice of
signs εj = ±1 where the + signs all precede the − signs (we call these “admis-
sible” choices of signs) we have

‖ε1x1 + · · ·+ εnxn‖ ≥ n− δ.

More explicitly we have for any j = 1, . . . , n− 1,

‖x1 + · · ·+ xj − xj+1 − · · · − xn‖ ≥ n− δ and also ‖x1 + · · ·+ xn‖ ≥ n− δ.

Definition. A Banach space B is called J-convex if there is an integer n > 1
and a number δ > 0 such that for any x1, . . . , xn in the unit ball of B

inf ‖
∑

εkxk‖ ≤ n(1− δ)

where the infimum runs over all admissible choice of signs i.e. such that εk = ±1
and all the + signs appear before the − signs (if any).

Note that if B is J-convex then any space f.r. in B is automatically J-convex.
Using this, Theorem 3.28 can then be rephrased as follows.

Corollary 3.29. Any J-convex Banach space is reflexive (and actually super-
reflexive).

The next result will be deduced rather easily from this last one.

Corollary 3.30. J-convexity and super-reflexivity are equivalent properties.

Remark 3.31. The girth of the unit ball of a real Banach space B is the infimum
of the lengths of centrally symmetric simple closed rectifiable curves on its sur-
face. It is proved in [169] (see also [249]) that a Banach space is super-reflexive if
and only if the girth of its unit ball is (strictly) more than 4. In sharp contrast,
the girth of `1, c0 or `∞ is equal to 4. This is closely connected to the fact that
super-reflexivity is equivalent to J-convexity.

The original proofs of both Theorems 3.24 and 3.28 are rather delicate. We
follow a simpler approach due to Brunel and Sucheston [110].

We will need the following notion.

Definition. A sequence (x̂n) in a Banach space will be called subsymmetric if
for any integer N , for any (α1, . . . , αN ) in RN and for any increasing sequence
n(1) < n(2) < · · · < n(N) we have∥∥∥∥∑N

1
αj x̂j

∥∥∥∥ =
∥∥∥∥∑N

1
αj x̂n(j)

∥∥∥∥ .
The sequence (x̂n) will be called “additive” if for any finite sequence of real
scalars (αj) and for any m ≥ 1, the preceding term

∥∥∥∑N
1 αj x̂j

∥∥∥ is equal to:∥∥∥∥∥∥α1

∑
0<j≤m

x̂j/m+ α2

∑
m<j≤2m

x̂j/m+ · · ·+ αN
∑

(N−1)m<j≤Nm

x̂j/m

∥∥∥∥∥∥ .
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We will also need

Lemma 3.32. Let (xn) be a subsymmetric sequence such that x1 6= x2 in a
Banach space B. Then the sequence dj = x2j−1 − x2j (j ≥ 1) is an uncondi-
tional basic sequence with constant 2. More precisely, for any finitely supported
sequence of scalars (αj) and any subset β ⊂ N we have

(3.27)
∥∥∥∑

j∈β
αjdj

∥∥∥ ≤ ∥∥∥∑αjdj

∥∥∥
and hence

(3.28) sup
±

∥∥∥∑±αjdj
∥∥∥ ≤ 2

∥∥∥∑αjdj

∥∥∥ .
Proof. Clearly (3.27) implies (3.28) by considering the index sets β+ and β−
where the sign is + or −. By an elementary iteration, it suffices to prove (3.27)
when β is the complement of a singleton {j}. Equivalently, it suffices to prove

‖α1d1 + · · ·+ α̂jdj + · · ·+ aNdN‖ ≤
∥∥∥∑αjdj

∥∥∥
where the hat marks the absence. But now by subsymmetry for any m and any
0 < p ≤ m

(3.29)
∥∥∥∑αjdj

∥∥∥ =
∥∥∥∥∑j−1

k=1
αkdk + αjDj+p +

∑∞

k=j+1
αkdk+m

∥∥∥∥ ,
where Dj+p = x2(j−1)+p − x2(j−1)+p+1. Note m−1(Dj+1 + · · · + Dj+m) → 0
when m→∞ (telescoping sum). Averaging (3.29) over 0 < p ≤ m and letting
m→∞ we obtain (3.27).

Notation: Consider a bounded function f : I×I → R. For each fixed k ∈ I, we
can define limU f(k, i) but also limU f(i, k) and of course these differ in general.
To avoid ambiguity we will denote by lim

i U
f(i, j) the limit (relative to i) when j

is kept fixed, and we denote by lim
j U

f(i, j) the limit (relative to j) when i is kept

fixed. Similarly, given a function f : IN → R we can define the iterated limits

lim
i(1) U

( lim
i(2) U

. . . ( lim
i(N) U

f(i(1), . . . , i(N)) . . .).

Lemma 3.33. If B is non-reflexive then there is a subsymmetric and additive
sequence (xn) satisfying (3.7) for some θ > 0 and such that the closed span of
[xn] is f.r. in B.

Proof. By Theorem 3.10, B contains a sequence (xn) satisfying (3.7). Let (en)
be the canonical basis in the space K(N) of finitely supported sequences of scalars
(K = R or C). For any N and any (αj) in KN we define

‖α1e1 + · · ·+ αNeN‖ = lim
i(1) U

( lim
i(2) U

. . . ( lim
i(N) U

‖α1xi(1) + · · ·+ αNxi(N)‖) . . .).
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LetB1 be the completion of K(N) equipped with this norm. Since span[e1, . . . , eN ]
is (by definition) a subspace of an N -times iteration of ultrapowers starting with
one of B, it must be f.r. in B (see Lemma 3.48). Therefore B1 itself is f.r. in
B. Clearly, if we replace (xn) by (xi(1), xi(2), . . .) with i(1) < i(2) < · · · then
(3.7) remains valid, therefore (en) itself still satisfies (3.7). Lastly, it takes a mo-
ment of thought to check that (en) is subsymmetric. We will now modify (en)
to obtain a sequence that is also additive. Consider again a finitely supported
sequence of scalars (α1, . . . , αN , 0, 0, . . .), we define

‖(αj)‖(m) =
∥∥∥∥α1m

−1
∑m

j=1

ej + α2m
−1
∑2m

j=m+1

ej + · · ·+ αNm
−1
∑Nm

j=m(N−1)+1

ej

∥∥∥∥.
We claim that ‖(αj)‖(m) converges when m→∞. By subsymmetry of (en) and
the triangle inequality, we have obviously

‖(αj)‖(m) ≤ ‖(αj)‖(1) =
∥∥∥∑αjej

∥∥∥ .
More generally, for any pair of integer k,m we have

(3.30) ‖(αj)‖(mk) ≤ ‖(αj)‖(m).

Thus for any n ≥ m, dividing n by m we can write n = mk+ p with p < m and
we easily check (again by the triangle inequality) that

‖(αj)‖(n) ≤
mk

n
‖(αj)‖(mk) +

p

n
‖(αj)‖(p).

This gives us by (3.30)

∀m ≥ 1 lim
n→∞

‖(αj)‖(n) ≤ ‖(αj)‖(m),

and hence lim
n→∞

‖(αj)‖(n) = inf
m
‖(αj)‖(m). This proves the announced claim.

We now define a norm ||| · ||| on R(N) by setting

(3.31) |||(αj)||| = lim
m→∞

‖(αj)‖(m).

Let B2 be the completion of (K(N), ||| · |||). Let us denote by (x̂n) the basis
(en) viewed as sitting in B2. Then, an easy verification shows that (x̂n) is
subsymmetric and still satisfies (3.7). Moreover, using (3.30) it is easy to see
that (x̂n) is additive. Lastly, note that (3.31) implies that B2 is f.r. in B1 and
a fortiori in B.

Proof of Theorem 3.24. By Lemma 3.33, we may assume that B contains a
subsymmetric additive sequence (xn) satisfying (3.7) for some θ > 0. The idea
of the proof (going back to [162]) can be roughly outlined as follows: Consider
two long sequences of coefficients equal to ±1 as follows,

1 0 −1 0 1 0 −1 0 . . . 1 0 −1 0
0 1 0 −1 0 1 0 −1 . . . 0 1 0 −1
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where the second sequence is obtained from the first one by a single right shift.
Then if these represent x and y we have ‖x‖ = ‖y‖ by subsymmetry and ‖x +
y‖ = 2‖x‖ by additivity. But moreover (this needs more care) x − y is very
similar (up to 2 digits) to 2x so we also can get ‖x− y‖ ' 2‖x‖. More precisely,
let (these depend on m but for the moment we deliberately keep m silent):

z1 = x1 − x3 + x5 − x7 + · · ·+ x4m−3 − x4m−1(3.32)
z2 = x2 − x4 + x6 − x8 + · · ·+ x4m−2 − x4m.(3.33)

Let r(m) = ‖z1‖. Note that ‖z1‖ = ‖z2‖ = r(m). Observe that the sequence of
signs appearing in z1 + z2 is (+ + − − + + − − · · · ). Therefore, by additivity,
we have

‖z1 + z2‖ = 2‖z1‖ = 2r(m).

As for z1 − z2 the sequence of signs is

(+−−+ +−− · · · − −+).

This is as before except for the first and last sign. From this we easily deduce

‖z1 − z2‖ ≥ 2‖z1‖ − ‖ − e1 + e2‖ = 2r(m)− ‖e2 − e1‖.

We then distinguish two cases.

Case 1. r(m) is unbounded when m→∞. Let x = z1/‖z1‖ and y = z2/‖z2‖.
We have ‖x+y‖ = 2 and ‖x−y‖ ≥ 2−δ(m) where δ(m) = ‖e2−e1‖r(m)−1 → 0
when m→∞, so the proof is complete in this case.

Case 2. supm r(m) <∞. By Lemma 3.32, we have

sup
±

∥∥∥∑m

1
±(x2j−1 − x2j)

∥∥∥ ≤ 2
∥∥∥∑m

1
x2j−1 − x2j

∥∥∥ = 2r(m).

Thus we find for any (αj) in Rm∥∥∥∑m

1
αj(x2j−1 − x2j)

∥∥∥ ≤ 2r(m) sup |αj |.

Moreover by (3.27) we have for any j

|αj |‖x1 − x2‖ ≤
∥∥∥∑αj(x2j−1 − x2j)

∥∥∥
and hence sup |αj |‖x1 − x2‖ ≤ ‖

∑
αj(x2j−1 − x2j)‖. Thus we conclude in this

case that span[x2j−1 − x2j ] is isomorphic to c0, and hence that B contains `n∞’s
uniformly. By Theorem 3.5 any Banach space (in particular `1) is f.r. in B.
Thus we obtain the desired conclusion in this case also.

Proof of Theorem 3.28. The idea is similar to that of the preceding proof. We
keep the same notation. We define for k = 1, 2, . . . , n

zk = xk − xn+k + x2n+k − x3n+k + · · ·+ x(2m−2)n+k − x(2m−1)n+k.
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Note that again, for any k = 1, . . . , n, we have by subsymmetry

‖zk‖ = ‖x1 − x2 + · · ·+ x2m−1 − x2m‖ = r(m),

and by additivity
‖z1 + · · ·+ zn‖ = n‖z1‖ = nr(m).

Consider now z1 + · · ·+ zj − (zj+1 + · · ·+ zn) with 1 ≤ j < n.
The ordered sequence of nonzero basis coefficients of that vector is

j︷ ︸︸ ︷
+ · · ·+

n︷ ︸︸ ︷
− · · ·−

n︷ ︸︸ ︷
+ · · ·+ · · ·

n︷ ︸︸ ︷
− · · ·−

n−j︷ ︸︸ ︷
+ · · ·+

where in the middle we have 2m − 1 series of n equal signs. This implies by
additivity that

‖z1 + · · ·+ zj − (zj+1 + · · ·+ zn)‖ ≥ nr(m)− (n− j)‖e1 − e2‖.

We may assume that we are in case 1, i.e. r(m)→∞. Let then

z′j = zj/‖zj‖.

We find ‖z′1 + · · ·+ z′n‖ = n and

‖z′1 + · · ·+ z′j − (z′j+1 + · · ·+ z′n)‖ ≥ n− δ′(m)

with δ′(m) = (n/m)‖e1 − e2‖ → 0 when m→∞.

Corollary 3.34. Let B be a non-reflexive or merely a non-J-convex Banach
space. Then there is a Banach space B̃ f.r. in B that contains a sequence (xn)
such that (here we deliberately insist on real scalars)
(3.34)

∀(αj) ∈ R(N) sup
j


∣∣∣∣∣∣
∑
i<j

αi

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
i≥j

αi

∣∣∣∣∣∣
 ≤ ∥∥∥∑αixi

∥∥∥ ≤∑ |αi|.

Equivalently, there are ξj in B̃∗ with ‖ξj‖ ≤ 1 such that ξj(xi) = 1 for all i < j
and ξj(xi) = −1 for all i ≥ j.

Proof. Choose a sequence δn tending to 0, say δn = 1/n. By Theorem 3.28,
we may assume that B is not J-convex, so that for any n ≥ 1, there are
x

(n)
1 , . . . , x

(n)
n in the unit sphere of B such that∥∥∥∑n

1
εjx

(n)
j

∥∥∥ ≥ n− δn
for all the admissible choices of signs. Note that this implies obviously

(3.35) ∀k ≤ n
∥∥∥∥∑k

1
εjx

(n)
j

∥∥∥∥ ≥ k − δn.
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For any (α1, α2, . . . , αN , 0, 0 . . .) in K(N) we define∣∣∣∣∣∣∣∣∣∑αjej

∣∣∣∣∣∣∣∣∣ = lim
nU

∥∥∥∑n

1
αjx

(n)
j

∥∥∥ .
Let B̃ be the completion of (K(N), ||| · |||) and let xj = ej viewed as an element
of B̃. By Lemma 3.48 we know that B̃ is f.r. in B. Then by (3.35) we have
|||
∑k

1 εjxj ||| ≥ k (and hence this is = k) for any k and any admissible choice
of signs. For each n and j ≤ n let ξ(n)

j in the unit sphere of B̃∗ be such that

ξ
(n)
j (x1 + · · ·+ xj − xj+1− · · · − xn) = n. Clearly we must have ξ(n)

j (xi) = 1 for
all i ≤ j and = −1 for all i such that j < i ≤ n (if any). Let ξj be a σ(B̃∗, B̃)
cluster point of {ξ(n)

j | n ≥ 1} (or let ξj = lim
n U

ξ
(n)
j ). Clearly, (ξj) satisfies the

property in Corollary 3.34. Then (3.34) follows since (here we deliberately insist
on real scalars)

ξn

(∑
αjxj

)
=
∑

j≤n
αj −

∑
j>n

αj

and also

ξN+1

(∑N

1
αjxj

)
=
∑N

1
αj .

Proof of Corollary 3.30. By Corollary 3.29 we know that J-convexity implies
super-reflexivity, and Corollary 3.34 implies the converse. Indeed, the space B̃
appearing in Corollary 3.34 satisfies (3.7) and hence is not reflexive.

Remark. We suspect that Corollary 3.34 fails in the complex case. More pre-
cisely, there might exist non-reflexive complex Banach spaces that do not contain
almost isometric copies of the complex version of “squares”, i.e. do not contain
almost isometrically the space C2 equipped with the norm ‖(x, y)‖ = |x|+ |y|.

Corollary 3.35. Let B be a non-reflexive real Banach space. Then there is a
space X f.r. in B admitting a linear map J : L1([0, 1], dt; R)→ X such that for
any f (real valued) in L1

(3.36) sup
0≤s≤1

∣∣∣∣∫ s

0

f(f)dt
∣∣∣∣+
∣∣∣∣∫ 1

s

f(t)dt
∣∣∣∣ ≤ ‖J(f)‖ ≤

∫ 1

0

|f(t)|dt.

Proof. Let (xn) be the sequence in the preceding corollary and let X be the
associated space via the construction described in the proof of Theorem 3.11.
We clearly have the announced property.

Corollary 3.36. Let B be a non-reflexive space. Then there is a space X f.r.
in B such that there is a dyadic martingale (fn) in L∞(X) satisfying for all
n ≥ 1 and all ω ∈ {−1, 1}n

‖fn(ω)‖ ≤ 1, but ‖fn(ω)− fn−1(ω)‖ = 1.

In addition, for all n ≥ 1 and all ω 6= ω′ ∈ {−1, 1}n we have

‖fn(ω)− fn(ω′)‖ = 2, ‖fn(ω)− fn−1(ω′)‖ = 2.
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In particular, the unit ball of X contains a 1-separated infinite dyadic tree.

Proof. We just repeat the argument for Lemma 3.12. Then the stronger prop-
erty (3.36) yields the announced result.

See Remark 1.25 for concrete examples of infinite trees as described in the
preceding statement.

3.4 Super-reflexivity and uniform convexity

The main result of this section is the following.

Theorem 3.37. The following properties of a Banach space B are equivalent.

(i) B is super-reflexive.

(ii) There is an equivalent norm on B for which the associated modulus of
uniform convexity δ satisfies for some 2 ≤ q <∞

inf
0<ε≤2

δ(ε)/εq > 0.

(ii)’ There is an equivalent norm on B for which the associated modulus of
uniform smoothness ρ satisfies for some 1 < p ≤ 2

sup
t>0

ρ(t)/tp <∞.

(iii) B is isomorphic to a uniformly convex space.

(iii)’ B is isomorphic to a uniformly smooth space.

(iv) B is isomorphic to a uniformly nonsquare space.

The equivalence of (i),(iii),(iii)’ and (iv) is a beautiful result due to Enflo
[131]. As in the preceding chapter, we will follow the martingale inequality
approach of [227] and prove directly that (i)⇒ (ii) (or equivalently since super-
reflexivity is self-dual (i) ⇒ (ii)’).

The proof will use martingale inequalities in L2(B). So we first need to
replace B by Ls(B). This is the content of the next two statements.

Lemma 3.38. Let 1 < s < ∞. Then a Banach space B is J-convex iff there
are n > 1 and α < 1 such that for any x1, . . . , xn in B we have

(3.37)

n−1
∑

ξ∈A(n)

∥∥∥∑ ξjxj

∥∥∥s
1/s

≤ αn 1
s′
(∑

‖xj‖s
)1/s

,

where A(n) ⊂ {−1, 1}n is the subset formed of the n admissible choices of signs.
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Proof. Assume B J-convex, so ∃n ∃δ > 0 such that ∀x1, . . . , xn ∈ B

(3.38) inf
ξ∈A(n)

∥∥∥∑n

1
ξjxj

∥∥∥ ≤ n(1− δ) max ‖xj‖

Fix 1 < s <∞. We claim that there is δ′ > 0 such that ∀x1, . . . , xn ∈ B

(3.39) inf
ξ∈A(n)

∥∥∥∑ ξjxj

∥∥∥ ≤ n1/s′(1− δ′)
(∑

‖xj‖s
)1/s

.

Indeed, if not then ∃x1, . . . , xn such that

(3.40) (1− δ′)n1/s′
(∑

‖xj‖s
)1/s

< inf
∥∥∥∑ ξjxj

∥∥∥ ≤∑ ‖xj‖.

Moreover we may assume by homogeneity
∑
‖xj‖ = n. But (3.40) contains an

approximate reverse Hölder inequality, so an elementary reasoning shows that
(3.40) implies

max{|‖xi‖ − ‖xj‖| | 1 ≤ i, j ≤ n} ≤ ϕn(δ′)

with ϕn(δ′)→ 0 when δ′ → 0. Since
∑n

1 ‖xj‖ = n, we obtain

max ‖xj‖ ≤ 1 + ϕn(δ′) and min ‖xj‖ ≥ sup ‖xj‖ − ϕn(δ′) ≥ 1− ϕn(δ′).

But then (3.38) and (3.40) together imply

n(1− δ′)(1− ϕn(δ′)) < n(1− δ)(1 + ϕn(δ′)),

and here δ > 0 is fixed while δ′ and ϕn(δ′) tend to zero, so this is impossible.
This establishes (3.39). Then we note that (3.39) trivially implies (3.37) with
α = (n−1((1− δ′)s + (n− 1))1/s and δ′ > 0 ensures α < 1.
Conversely if (3.37) holds then a fortiori infξ∈A(n) ‖

∑
ξjxj‖ ≤ αn sup ‖xj‖ and

hence B is J-convex.

Proposition 3.39. Let 1 < s < ∞ and let (Ω,A, µ) be any measure space. If
B is super-reflexive, then Ls(µ;B) also is.

Proof. By Corollary 3.30 it suffices to show that B is J-convex iff Ls(µ;B) also
is. By integration at the s-th power, it is clear that B satisfies (3.37) iff Ls(µ;B)
also does.

Corollary 3.40. Fix 1 < s < ∞. If B is super-reflexive, then there are 1 <
p ≤ 2 ≤ q <∞ (a priori depending on s) and positive constants C and C ′ such
that any B-valued martingale (fn) satisfies:
(3.41)

C−1
(∑∞

0
‖dfn‖qLs(B)

)1/q

≤ sup ‖fn‖Ls(B) ≤ C ′
(∑∞

0
‖dfn‖pLs(B)

)1/p

.

Proof. By the preceding Proposition, we may apply Theorem 3.22 to Ls(B).
Note that martingale difference sequences are monotone basic sequences in
Ls(B). Thus the Corollary follows from (i)⇒ (iv) and (v) in Theorem 3.22.
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We can outline the proof of Theorem 3.37 like this: if B is super-reflexive,
so is L2(B), so that all monotone basic sequences in L2(B) satisfy a lower q-
estimate of the form (3.24). Applying this to B-valued martingales we find that
there is q < ∞ and a constant C such that all B-valued martingales (fn)n≥0

satisfy (recall the convention df0 = f0 and dfk = fk − fk−1 for all k ≥ 1)

(3.42) ∀N ≥ 1
(∑N

0
‖dfn‖qL2(B)

)1/q

≤ C
∥∥∥∥∑N

0
dfn

∥∥∥∥
L2(B)

.

The technical problem that we solved in the preceding chapter is to pass from
(3.42) to an inequality of the form (4.8). By Theorem 4.51 and Remark 4.58,
(4.8) is equivalent to an estimate of the form

(3.43) ∀N ≥ 1
∥∥∥∥(∑ ‖dfn‖q

)1/q
∥∥∥∥

2

≤ C ′
∥∥∥∥∑N

0
dfn

∥∥∥∥
L2(B)

.

The difficulty here is that when 2 ≤ q <∞ we have always

(3.44)
(∑

‖dfn‖qL2(B)

)1/q

≤
∥∥∥∥(∑ ‖dfn‖q

)1/q
∥∥∥∥

2

but not conversely! So the inequality we need appears significantly stronger than
(3.42). However, in the context of martingales there are frequent situations
where a priori weak inequalities actually imply stronger ones. The proof of
Lemma 4.13 in the preceding chapter illustrates this principle.

Proof of Theorem 3.37. We first prove the equivalence of (i)-(iv). The implica-
tions (ii) ⇒ (iii) ⇒ (iv) are trivial and (iv) ⇒ (i) is Corollary 3.27. Thus it
suffices to show (i) ⇒ (ii). Assume (i). By Proposition 3.39 L2(B) is super-
reflexive. By Theorem 3.22, there is a constant C and s < ∞ such that any
finite martingale (fn) in L2(B) satisfies (4.8). By Lemma 4.12 and Corollary
4.7 we obtain (ii).

We now turn to (ii)’ and (iii)’. Note that B satisfies (ii)’ (resp. (iii)’) iff
B∗ satisfies (ii) (resp. (iii)) in Theorem 3.37. Thus since B is super-reflexive iff
B∗ also is (see Theorem 3.22) we can deduce (i) ⇔ (ii)’ ⇔ (iii)’ from the part
of Theorem 3.37 that we just proved above. However, the reader will surely
observe that a direct argument for the main point (i) ⇒ (ii)’ can alternatively
be obtained by combining together (i)⇒ (v) in Theorem 3.22 applied to L2(B),
Lemma 4.13 and Corollary 4.22.

Corollary 3.41. If a Banach space B is super-reflexive, there are p > 1 and
q < ∞ and a single equivalent norm | · | satisfying both (4.1) and (4.24) for
some constants δ, C > 0.

Proof. Assume first that B is a complex Banach space. Then by the preceding
Proposition the complex interpolation method applied between the two norms
appearing respectively in (ii) and (ii)’ in Theorem 3.37 produces an interpolated
norm (of course still equivalent to the original one) that satisfies the desired
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property. Indeed, if the first norm, say ‖ ‖0, is q-uniformly convex and the
second one, say ‖ ‖1, is p-uniformly smooth, then, by the following Proposition
3.42, the interpolated norm ‖ ‖θ, is both qθ-uniformly convex and pθ-uniformly
smooth, where q−1

θ = (1 − θ)q−1 + θ∞−1 and p−1
θ = (1 − θ)1−1 + θp−1. If B

is a real space, its complexification (e.g. B(H,B) with H = C viewed as a two
dimensional real Hilbert space) inherits the super-reflexivity of B. Indeed, by
Proposition 3.39), it is isomorphic to a super-reflexive (real) space (namely the
`2-sense direct sum B ⊕ B) and hence (see Remark 3.2) it is super-reflexive as
a complex space. Therefore the real case reduces to the complex one.

Let 1 ≤ p ≤ 2 ≤ q ≤ ∞. Recall that a Banach space is q-uniformly convex
(resp. p-uniformly smooth) with constant C if for all x, y in B we have

(3.45) ‖(x+ y)/2‖q + C−q‖(x− y)/2‖q ≤ 2−1(‖x‖q + ‖y‖q)

(resp. 2−1(‖x+ y‖p + ‖x− y‖p) ≤ ‖x‖p + Cp‖y‖p).
Note that any Banach space is trivially 1-uniformly smooth and ∞-uniformly
convex with constant 1. The next result describes the stability of these notions
under complex interpolation.

Proposition 3.42. Let (B0, B1) be a compatible couple of complex Banach
spaces. Let 0 < θ < 1 and let Bθ = (B0, B1)θ.

(i) Let 2 ≤ q0, q1 ≤ ∞. If Bj is qj-uniformly convex with constant Cj (j =
0, 1) then Bθ is qθ-uniformly convex with constant Cθ = C1−θ

0 Cθ1 where
q−1
θ = (1− θ)q−1

0 + θq−1
1 .

(ii) Let 1 ≤ p0, p1 ≤ 2. If Bj is pj-uniformly smooth with constant Cj (j =
0, 1) then Bθ is pθ-uniformly smooth with constant Cθ = C1−θ

0 Cθ1 where
p−1
θ = (1− θ)p−1

0 + θp−1
1 .

Proof. Let Y (qj) denote the direct sumBj⊕Bj equipped with the norm ‖(x, y)‖ =
((‖x‖qj + ‖y‖qj )/2)1/qj . Let X(qj) denote Bj ⊕ Bj equipped with the norm

‖(x, y)‖X(qj) = (‖x‖qj + C
−qj
j ‖y‖qj )

1
qj .

By ??, we have both (Y (q0), Y (q1))θ = Y (qθ) and (X(q0), X(q1))θ = X(qθ) iso-
metrically for any 1 ≤ q0, q1 ≤ ∞.
Consider the operator T defined by

T (x, y) =
(x+ y

2
,
x− y

2
)
.

Note that by our assumption in (i) we have ‖T : Y (qj)→ X(qj)‖ ≤ 1 both for
j = 0 and j = 1. Therefore by the interpolation Theorem

‖T : Y (qθ)→ X(qθ)‖ ≤ 1.

This proves (i). The proof of (ii) is similar (or can be deduced by duality).

Remark.
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Problem: If B is both isomorphic to a p-uniformly smooth space and iso-
morphic to a q-uniformly convex one, is B isomorphic to a space that is both
q-uniformly convex and p-uniformly smooth?

Note that the interpolation argument in Corollary 3.41 yields a norm that
is both qθ-uniformly convex and pθ-uniformly smooth but with “worse” values
qθ > q and pθ < p and in such a way that qθ → ∞ when pθ → p (and pθ → 1
when qθ → q).

We now return to the strong law of large numbers, this time for (Banach
space valued) martingales.

Lemma 3.43. Fix an integer n ≥ 1. Let Ω = {−1, 1}n, let εk : Ω → {−1, 1}
denote as usual the k-th coordinate, let A0 = {φ,Ω} be the trivial σ-algebra and
let Ak = σ(ε1, . . . , εk) for k = 1, 2, . . . , n. Fix an integer n ≥ 1. The following
properties of a finite dimensional Banach space B are equivalent:

(i) There is a B-valued martingale (f0, . . . , fn) adapted to (A0, . . . ,An) such
that for all 1 ≤ k ≤ n and all ω ∈ Ω

‖dfk(ω)‖ = 1 and ‖fn(ω)‖ = 1.

(ii) There is a B∗-valued martingale (g0, . . . , gn) adapted to (A0, . . . ,An), with
g0 = 0 such that for all 1 ≤ k ≤ n and all ω ∈ Ω

‖gn(ω)‖ = n and ‖dgk(ω)‖ = 1.

Proof. We start by observing that for anyB-valued dyadic martingale (f0, . . . , fn)
on (A0, . . . ,An) we have (pointwise):

‖dfk(ω)‖ ≤ ‖fk(ω)‖ for all k = 1, . . . , n.
Indeed since dfk = εkψk−1 with ψk−1 being Ak−1-measurable we have fk(ω) =
fk−1(ω) ± dfk(ω) if εk(ω) = ±1, so this observation follows from the triangle
inequality. A fortiori, we have

‖dfk‖Lp(B) ≤ ‖fk‖Lp(B) ≤ ‖fn‖Lp(B).
Note however that this is special to the dyadic filtration, the general case re-
quires an extra factor 2.
Assume (i). Since 1 ≤ ‖dfk(.)‖ there is ϕk in the unit ball of L∞(An, B∗) such
that 1 ≤ 〈dfk(.), ϕk(.)〉 and a fortiori 1 ≤ E〈dfk, ϕk〉.
Let gn =

∑n
1 (Ek − Ek−1)(ϕk). We have

n ≤
∑n

1
E〈dfk, ϕk〉 = E〈fn, gn〉

and hence n ≤ E‖gn‖, but since (by the preceding observation for p = ∞)
‖dgk‖L∞(B∗) = ‖(Ek−Ek−1)ϕk‖L∞(B∗) ≤ ‖ϕk‖L∞(B∗) ≤ 1 we have ‖gn‖L∞(B∗) ≤
n and hence E‖gn‖ ≥ n forces ‖gn(ω)‖ = n for all ω. Similarly, since 1 ≤
E〈dfk, ϕk〉 = E〈dfk, dgk〉 ≤ E‖dgk‖, the fact that ‖dgk‖L∞(B∗) ≤ 1 forces
‖dgk(ω)‖ = 1 for all ω.
Conversely, assume (ii). Since E‖gn‖ ≥ n there is fn in the unit ball of
L∞(An, B) such that E〈fn, gn〉 ≥ n, and hence

∑n
1 E〈dfk, dgk〉 ≥ n. The latter
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implies
∑n

1 E‖dfk‖ ≥ n but (by the preceding observation again with p = ∞)
we have

‖dfk‖L∞(B) ≤ 1 and hence
∑n

1
‖dfk(ω)‖ ≤ n

for all ω. It follows that ‖dfk(ω)‖ = 1 for all k = 1, . . . , n and all ω. In addition,
since we have ‖dfn(ω)‖ ≤ ‖fn(ω)‖, we also obtain ‖fn(ω)‖ = 1 for all ω.

Lemma 3.44. If a Banach space B is not super-reflexive then for each n ≥
1 and any 0 < θ < 1 there is a B-valued martingale (g̃0, . . . , g̃n) adapted to
A0, . . . ,An with g̃0 = 0 such that

inf
ω∈Ω
‖g̃n(ω)‖ ≥ θn and sup

1≤k≤n
sup
ω∈Ω
‖dg̃k(ω)‖ ≤ 1.

Proof. By Theorem 3.22 we may assume that B∗ is not super-reflexive. By
Corollary 3.36, for each n there is a finite dimensional space E f.r. in B∗ contain-
ing an E-valued martingale satisfying (i) in Lemma 3.43. Fix ε > 0. Since E is
(1+ε)-isomorphic to a subspace ofB∗, E∗ is (1+ε)-isomorphic to a quotient ofB.
Thus, E∗ contains the range of a martingale (gn) satisfying (ii) in Lemma 3.43.
We have dgk = εkψk−1 with ψk−1 in the unit ball of L∞(Ak−1, E

∗). Fix θ so that
0 < θ < (1+ε)−1. Let UB denote the unit ball of B. Let Q : B∗ → E∗ be a sur-
jection of norm 1 such that Q(UB) ⊃ θUE∗ . Then there is ψ̃k−1 in L∞(Ak−1, B)
with ‖ψ̃k−1‖L∞(B) ≤ θ−1 lifting ψk−1, i.e. such that Q(ψ̃k−1) = ψk−1. Let then
g̃n = θ

∑n
1 εkψ̃k−1. We have ‖dfk‖L∞(B) = θ‖ψ̃k−1‖L∞(B) ≤ 1 and Q(g̃n) = θgn

therefore
θn = ‖θgn(ω)‖ ≤ ‖g̃n(ω)‖

for all ω in Ω.

The strong law of large numbers yields one more characterization of super-
reflexivity:

Theorem 3.45. Fix 1 < s ≤ ∞. The following properties of a Banach space
B are equivalent:

(i) B is super-reflexive.

(ii) For any martingale (fn) in Ls(B) such that supn ‖dfn‖Ls(B) < ∞, we
have n−1fn → 0 almost surely.

(iii) For any dyadic B-valued martingale such that sup
n
‖dfn‖L∞(B) < ∞ we

have n−1fn → 0 almost surely.

(iv) For any dyadic B-valued martingale such that supn ‖dfn‖L∞(B) ≤ 1 we
have lim supn→∞ n−1‖fn‖ < 1 almost surely.

Proof. Assume (i). By Corollary 3.40 there is p > 1 and C such that (3.41)
holds. If sup ‖dfn‖Ls(B) < ∞, this implies that

∑
n−1dfn converges in Ls(B)

and hence (cf. Theorem 1.14) almost surely. By a classical (elementary) lemma
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due to Kronecker any sequence {xn} in B such that
∑
n−1xn converges must

satisfy n−1
∑n

1 xk → 0. Therefore we obtain (ii) and (ii) ⇒ (iii)⇒ (iv) are
trivial. Conversely, assume (iv). If B is not super-reflexive, we will construct a
dyadic B-valued martingale (Fn)n≥0 with ‖dFn‖L∞(B) ≤ 1 for all n and such
that lim supn→∞ n−1‖Fn‖ = 1 a.s., thus contradicting (iv). This shows that
(iv) ⇒ (i). We now turn to the announced construction:
Our basic building block will be this: Let 0 < θ < 1. By Lemma 3.44, for
any N there is a dyadic martingale g

(N)
1 , . . . , g

(N)
N with g

(N)
0 = 0 such that

‖dg(N)
k ‖L∞(B) ≤ 1 and infω ‖g(N)

N (ω)‖ ≥ θN .
Now let 0 < θn < 1 and ξn > 0 be sequences such that

lim
n
θn = 1 and lim

n
ξn = 0.

Let N(1) < N(2) < · · · < N(n) < · · · be increasing sufficiently fast so that

(3.46)
N(1) + · · ·+N(n− 1)

N(n)
< ξn for all n ≥ 1.

Let S(n) = N(1)+ · · ·+N(n). Let g[n]
1 , . . . , g

[n]
N(n) (with g[n]

0 = 0) be the product
of our basic building block, when we take N = N(n) and θ = θn. We define a
martingale (FS(n))n≥1 adapted to (AS(n)) as follows: we set FS(1) = g

[1]
N(1), then

FS(2) − FS(1) = g
[2]
N(2)(εS(1)+1, . . . , εS(1)+N(2)) . . . and

(3.47) FS(n) − FS(n−1) = g
[n]
N(n)(εS(n−1)+1, . . . , εS(n−1)+N(n)).

Since Eg(N)
N = g

(N)
0 = 0 for all N , (FS(n))n≥0 is indeed a martingale adapted

to (AS(n))n≥1. For any k ≤ S(n) we set Fk = EAk(FS(n)). Then (Fk)k≥1 is a
(dyadic) martingale adapted to (Ak)k≥1 and of course Fk = FS(n) if k = S(n).
Note that ‖Fk‖L∞(B) ≤

∑k
1 ‖dFj‖L∞(B) ≤ k for all k ≥ 1. We have by (3.47)

for any ω

‖FS(n)(ω)‖ ≥ θnN(n)−‖FS(n−1)‖ ≥ θnN(n)−S(n−1) ≥ θnS(n)−(1+θn)S(n−1)

and hence by (3.46)

‖FS(n)(ω)‖ ≥ S(n)(θn − (1 + θn)ξn).

Thus, since θn − (1 + θn)ξn → 1, for any ω

lim sup
n→∞

‖n−1Fn(ω)‖ ≥ 1

as announced.

3.5 Notes and Remarks

The notion of “finitely representable” and “super-property” are due to R.C.
James [163]. The local reflexivity principle (Theorem 3.3) goes back to Lin-
denstrauss and Rosenthal [191]. As we mentioned in the text, Ptak’s paper
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[239] seems to be the earliest reference for Theorem 3.10 but it was indepen-
dently proved (slightly later) by D. Milman and V. Milman and by James.
The reformulations in terms of factorizations such as (v) in Theorem 3.10 were
emphasized in Lindenstrauss and Pe lczyński’s influential paper [190].

Theorem 3.11 was stated in [227]. Theorems 3.17 and 3.22 are due to R.C.
James as well as Corollary 3.23 and essentially all the results in §3.3. James first
proved in [162] that uniformly non-square implies reflexive. In the same paper,
he notes that the extension from pairs to triples of vectors leads to a proof that if
n = 3 for any ε > 0 any J-(n, ε) convex space is reflexive. Later on in [170], the
authors observe that the same proof works for any integer n ≥ 2, thus showing
that J-convex implies reflexive. Since J-convex is a super-property, this shows
that J-convex implies super-reflexive. But the converse was an easy consequence
of James early ideas on reflexivity. Therefore this yielded the equivalence of “J-
convex” and “super-reflexive”. In the mean time, in [163], having observed
the implications (isomorphic to uniformly non-square) ⇒ super-reflexive and
(isomorphic to uniformly convex) ⇒ super-reflexive, James asked whether the
converses hold. In his remarkable paper [131], Enflo proved that indeed the
converses are true. In Theorem 3.37, this corresponds to the equivalence of (i),
(iii), (iii)′ and (iv) which all come from [131]. The equivalence with (ii) and (ii)′

(i.e. the existence of moduli of power type) was proved later in [227].
We follow [227] throughout §3.4. The strong law of large numbers for super-

reflexive spaces given in Theorem 3.43 (essentially from [227]) is modeled on
Beck’s strong law of large numbers ([73]) for B-convex Banach spaces, that is
restricted to martingales with independent increments.

Appendix 1: Ultrafilters. Ultraproducts

Let I be a “directed set”. By this we mean that I is a partially ordered set such
that for any i, j in I there exists k in I such that k ≥ i and k ≥ j.

If (xi)i∈I is a family in a metric space, we view (xi)i∈I as a “generalized
sequence” so that xi → x means that ∀ε > 0 ∃j such that ∀i ≥ j d(xi, x) < ε.

Definition. Consider a linear form U ∈ `∞(I)∗ that is also a ∗-homomorphism

(i.e. ∀x, y ∈ `∞(I) U(xy) = U(x)U(y) and U(x̄) = U(x)).

We will say that U is an ultrafilter adapted to I if for any (xi) in `∞(I) such
that xi → x we have U((xi)) = x.

Remark 3.46. The existence of ultrafilters adapted to I is easy to check: let
δi ∈ `∞(I)∗ be the evaluation homomorphism defined by δi(x) = xi. Let Fj
be the pointwise closure of the set {δi | i ≥ j}. Since I is a directed index set,
the intersection of finitely many of the Fj ’s is non-empty. Thus, by the weak-∗
compactness of the unit ball of `∞(I)∗, the intersection of the whole family of
sets {Fj} is non void and it is formed of ultrafilters in the above sense.
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We will denote by convention

limU xi = U((xi)i∈I).

Given a family of Banach spaces (Bi)i∈I , let B =
(
⊕
∑
i∈I

Bi

)
∞

, i.e. B is formed

of families b = (bi)i∈I with bi ∈ Bi for all i such that ‖b‖B = supi∈I ‖bi‖ < ∞.
For any b in B we set

pU (b) = limU ‖bi‖Bi .

Then pU is a semi-norm on B. The ultraproduct
∏
i∈I

Bi/U is defined as the

Banach space quotient B/ ker(pU ). Fix an element x in
∏
i∈I

Bi/U . It is important

to observe that for any representative (bi)i∈I of the equivalence class of x modulo
ker(pU ) we have

(3.48) ‖x‖Q
i∈I

Bi/U = limU ‖bi‖Bi .

We will denote by ḃ the element of
∏
i∈I

Bi/U determined by b = (bi)i∈I so we

can rewrite (3.48) as ‖ḃ‖ = limU ‖bi‖Bi . Another useful observation is that if
for some j we have bi = b′i ∀i ≥ j then ḃ = ḃ′. Indeed, this implies ‖bi− b′i‖ → 0
(relative to the directed set I) and hence limU ‖bi − b′i‖ = 0.

Remark. Let K be a compact subset of a locally convex space L. Let (yi)i∈I be
a family of elements of K. Clearly there is a unique y in K such that for any
linear form ξ ∈ L∗ we have ξ(y) = limU ξ(yi). In that case also we will denote
y = limU yi.

When Bi = B for all i ∈ I, we say that
∏
Bi/U is an ultrapower and we

denote it by BI/U .
The following elementary lemma will be useful

Lemma 3.47. Let E, Y be Banach spaces. let S be an ε-net in the unit sphere
of E and let u : E → Y be a linear operator such that

∀s ∈ S 1− δ ≤ ‖u(s)‖ ≤ 1 + δ.

Then

∀x ∈ E
(

1− δ − 2ε
1− ε

)
‖x‖ ≤ ‖u(x)‖ ≤

(
1 + δ

1− ε

)
‖x‖

Proof. Assume dim(E) <∞ (this is the only case we will use). Consider x ∈ E
with ‖x‖ = 1 and ‖u‖ = ‖ux‖. Choose s ∈ S such that ‖x − s‖ ≤ ε. Then
‖u‖ = ‖ux‖ ≤ ‖us‖+‖u(x−s)‖ ≤ (1+δ)+ε‖u‖ and hence ‖u‖ ≤ (1+δ)(1−ε)−1.
In the converse direction, if ‖x‖ = 1 we have

‖ux‖ ≥ ‖us‖ − ε‖u‖ ≥ 1− δ − ε(1 + δ)(1− ε)−1 = (1− δ − 2ε)(1− ε)−1.

The argument can be easily adapted to the infinite dimensional case.
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Lemma 3.48. Assume that each space in the family (Bi)i∈I is f.r. in a Ba-
nach space B. Then the ultraproduct

∏
Bi/U is f.r. in B. In particular, any

ultrapower BI/U of B is f.r. in B.

Proof. Let E ⊂
∏
Bi/U be a finite dimensional subspace. Note that since its

unit sphere is compact it admits a finite ε-net S. Let (ė1, . . . , ėn) be a linear
basis of E with representatives (e1(i))i∈I , . . . , (en(i))i∈I . Any x ∈ E can be
uniquely written as x =

∑n
1 αj ėj (αj ∈ K). We define ui : E → Bi by setting

ui(x) =
∑n

1 αjej(i) for each i in I. Note that ∀x ∈ E,
˙︷ ︸︸ ︷

(ui(x))i∈I = x. Therefore
by (3.48) we have

∀x ∈ E lim
U
‖ui(x)‖ = ‖x‖.

Fix δ > 0. Since S is finite there is j such that

∀i ≥ j ∀s ∈ S 1− δ < ‖ui(s)‖ < 1 + δ

and hence by Lemma 3.47 we have

∀x ∈ E (1− δ − 2ε)(1− ε)−1‖x‖ ≤ ‖ui(x)‖ ≤ (1 + δ)(1− ε)−1‖x‖.

Thus we conclude that E is (1 + f(ε, δ))-isometric to ui(E) ⊂ Bi for some
function (ε, δ) 7→ f(ε, δ) tending to 0 when ε and δ tend to 0. Since each Bi is
f.r. in B we conclude that

∏
Bi/U is f.r. in B.



Chapter 4

Uniformly convex Banach
space valued martingales

4.1 Uniform convexity

This chapter is based mainly on [227]. The main result is:

Theorem 4.1. Any uniformly convex Banach space B admits an equivalent
norm | · | satisfying for some constant δ > 0 and some 2 ≤ q <∞

(4.1) ∀x, y ∈ B |x+ y

2
|q + δ|x− y

2
|q ≤ |x|

q + |y|q

2
,

or equivalently

(4.2) ∀x, y ∈ B |x|q + δ|y|q ≤ |x+ y|q + |x− y|q

2
.

In other words, B with its new norm is at least as uniformly convex as Lq

(for some 2 ≤ q < ∞). The argument crucially uses martingale inequalities,
but the relevant inequalities (see Corollary 4.7 below) are “weaker” than those
expressing the UMD property.

We recall:

Definition 4.2. A Banach space B is called uniformly convex if for any 0 <
ε ≤ 2 there is a δ > 0 such that for any pair x, y in B the following implication
holds

(‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε)⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ.

The modulus of uniform convexity δB(ε) is defined as the “best possible” δ i.e.

δB(ε) = inf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥ ∣∣∣ ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε
}
.

85
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Note that uniform convexity obviously passes from B to any subspace (resp.
any quotient B/S) S ⊂ B with δS(ε) ≥ δB(ε) (resp. δB/S(ε) ≥ δB(ε)) for all
0 < ε ≤ 2.

It is easy to see that if B = C or if B is a Hilbert space of R-dimension ≥ 2,
we have δB(ε) = 1 − (1 − ε2/4)1/2. Indeed, the parallelogram identity can be
equivalently written as∥∥∥∥x+ y

2

∥∥∥∥2

+
∥∥∥∥x− y2

∥∥∥∥2

=
‖x‖2 + ‖y‖2

2

from which δB(ε) ≥ 1 − (1 − ε2/4)1/2 (≥ ε2/8) can be deduced and this is
obviously optimal.

Since by Dvoretzky’s theorem (see Th. 4.38 below) any infinite dimensional
Banach space B contains `n2 ’s almost isometrically (in particular for n = 2), we
must have δB(ε) ≤ (1− ε2/4)1/2 hence δB(ε) ∈ O(ε2) when ε→ 0. Actually, by
[221], this already holds for any B with dim(B) > 1. We will show in §4.3 that

δLp(ε) ∼

{
Cpε

2 if 1 < p ≤ 2
Cpε

p if 2 ≤ p <∞.

Moreover, it is easy to see that L1 and `1 are not uniformly convex. Also (note
that `1 isometrically embeds in L∞ or `∞) L∞ and `∞ are not uniformly convex.

The following result (due to David Milman) is classical.

Theorem 4.3. Any uniformly convex Banach space is reflexive.

Proof. Let UB denote the unit ball of B. Fix x∗∗ ∈ B∗∗ with ‖x∗∗‖ = 1. Let (xi)
be a generalized sequence in the unit ball of B converging to x∗∗ ∈ B∗∗ for the
topology σ(B∗∗, B∗), i.e. such that 〈xi, ξ〉 → 〈x∗∗, ξ〉 for any ξ in UB∗ . Clearly
this implies ‖xi‖ → ‖x∗∗‖ (indeed, for ε > 0 choose ξ such that 〈x∗∗, ξ〉 > 1− ε
and note |〈xi, ξ〉| ≤ ‖xi‖), and similarly ‖2−1(xi + xj)‖ → ‖x∗∗‖ = 1 when
i, j → ∞. If B is assumed uniformly convex, this forces ‖xi − xj‖ → 0 when
i, j → ∞ and hence by Cauchy’s criterion xi converges in norm to x ∈ B.
Obviously we must have x∗∗ = x so we conclude B∗∗ = B.

We will use below the following results due to Figiel ([133, 134]). Although
their proofs are elementary, the details are tedious so we skip them here.

Lemma 4.4. Let B be uniformly convex.

(i) The function ε→ δB(ε)/ε is non-decreasing on [0, 2].

(ii) For any measure space (Ω, µ), and any 1 < r <∞ the space Lr(µ;B) (in
particular L2(µ;B)) is uniformly convex.

Remark 4.5. With our definition of δB(ε), it is obvious that ε → δB(ε) is
non-decreasing. This is less obvious (but nevertheless true) for the function
ε→ δ̂B(ε) defined by

δ̂B(ε) = inf
{

1−
∥∥∥∥x+ y

2

∥∥∥∥ ∣∣∣ ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε

}
.
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Indeed, it turns out that δ̂B(ε) = δB(ε) if the (real) dimension of B is at least
2 (see e.g. [133]).

To illustrate the next statement by a concrete example, let us anticipate the
forthcoming § 4.3 and consider the case of B = Lq. As we will show in § 4.3:
If 2 ≤ q <∞ we have

∀x, y ∈ Lq
∥∥∥∥x+ y

2

∥∥∥∥q
q

+
∥∥∥∥x− y2

∥∥∥∥q
q

≤
‖x‖qq + ‖y‖qq

2
,

which implies δLq (ε) ≥ 1− (1− (ε/2)q)1/q ∼ q−1(ε/2)q.
If 1 < q ≤ 2, we will show :

∀x, y ∈ Lq

(∥∥∥∥x+ y

2

∥∥∥∥2

q

+ (q − 1)
∥∥∥∥x− y2

∥∥∥∥2

q

)1/2

≤
(‖x‖qq + ‖y‖qq

2

)1/q

,

from which we deduce δLq (ε) ≥ 1− (1− (q − 1)(ε/2)2)1/2 ≥ (q − 1)ε2/8.

Theorem 4.6. Let 2 ≤ q <∞ and let α > 0 and C be fixed positive constants.
The following two properties of a Banach space B are equivalent:

(i) There is a norm | · | on B such that for all x, y in B we have α‖x‖ ≤ |x| ≤
‖x‖ and

(4.3)
∣∣x+ y

2

∣∣q +
∥∥x− y

2C

∥∥q ≤ |x|q + |y|q

2
.

(ii) For all B-valued dyadic martingales (Mn)n≥0 in Lq(B) we have

(4.4) αqE‖M0‖q + C−q
∑∞

1
E‖dMn‖q ≤ supn≥0 E‖Mn‖q.

Moreover, this implies:

(iii) All B-valued martingales (Mn)n≥0 in Lq(B) satisfy

αqE‖M0‖q + 2(2C)−q
∑∞

1
E‖dMn‖q ≤ supn≥0 E‖Mn‖q.

Proof. (i) ⇒ (ii) Consider a dyadic martingale on Ω = {−1, 1}N∗ associated
to An = σ(ε1, . . . , εn), where εn : Ω → {−1, 1} denotes the n-th coordinate.
Then ∀n ≥ 1 dMn = εn∆n−1 with ∆n−1 (n−1)-measurable. Let x = Mn−1(ω),
y = ∆n−1(ω). Then (i) implies for any fixed ω

|Mn−1(ω)|q + C−q‖dMn(ω)‖q ≤
∫
|Mn−1(ω) + εn(ω′)∆n−1(ω)|qdP (ω′).

Integrating this with respect to ω, we find (since εn and An−1 are independent)

E|Mn−1|q + C−qE‖dMn‖q ≤ E|Mn|q,
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which yields after a summation over n ≥ 1

E|M0|q + C−q
∑
n≥1

E‖dMn‖q ≤ sup E|Mn|q.

Finally, replacing | | by the equivalent norm ‖ ‖, we obtain (ii).
(i) ⇒ (iii) The proof is similar to the preceding. We take x = Mn−1, y = Mn.
This yields after integration of (4.3)

(4.5) E|Mn−1 + 2−1dMn|q + C−qE‖2−1dMn‖q ≤ 2−1(E|Mn−1|q + E|Mn|q)

but also we have trivially (Jensen)

E|Mn−1|q ≤ E|Mn−1 + 2−1dMn|q

hence plugging this into (4.5) we may subtract 2−1E|Mn−1|q to both sides of
the resulting inequality and after multiplication by 2 we find

E|Mn−1|q + 2C−qE‖2−1dMn‖q ≤ E|Mn|q

then the proof of (i) ⇒ (iii) is completed exactly as above for (i) ⇒ (ii).

(ii) ⇒ (i) Assume (ii). We define the norm | | as follows: for any x in B we set

|x|q = inf
{

E‖MN‖q − C−q
∑N

n=1
E‖dMn‖q

}
where the infimum runs over all N and all (finite) dyadic martingales (M0,M1,
. . . ,MN ) which start at x, i.e. such that M0 = x.

By (4.4), we have for any x in B

αq‖x‖q ≤ |x|q

and consideration of the trivial martingale Mn ≡ x yields

(4.6) |x|q ≤ ‖x‖q,

so that | | is indeed equivalent to the original norm on B. Now consider x, y in
B and fix ε > 0. Let M ′,M ′′ be finite martingales with x = M ′0 and y = M ′′0
such that (note that we may clearly increase N , by adding null increments, in
order to use the same N for both martingales)

E‖M ′N‖q − C−q
∑N

1
E‖dM ′n‖q < |x|q + ε

E‖M ′′N‖q − C−q
∑N

1
E‖dM ′′N‖q < |y|q + ε.

Then, let (Mn) be the martingale that starts at (x+ y)/2, i.e. M0 ≡ (x+ y)/2,
jumps with M1 either to x or to y with equal probability 1/2 and then continues
along the paths of M ′ or M ′′ depending on M1 = x or M1 = y. More precisely,
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we can write Mn as follows: (Since M ′k and M ′′k depend only on ε1, . . . , εk we
may denote them as M ′k(ε1, . . . , εk) and M ′′k (ε1, . . . , εk).)

M0 ≡ (x+ y)/2,
M1 = (x+ y)/2 + ε1(x− y)/2, . . . ,
Mn = ((1 + ε1)/2)M ′n−1(ε2, . . . , εn) + ((1− ε1)/2)M ′′n−1(ε2, . . . , εn).

Finally, we clearly have

E‖MN+1‖q = (E‖M ′N‖q + E‖M ′′N‖q)/2

and
N+1∑

1

E‖dMn‖q = ‖(x− y)/2‖q +
(∑N

1
E‖dM ′n‖q +

∑N

1
E‖dM ′′N‖q

)
/2

thus we find (recalling the original choice of M ′ and M ′′)

|(x+ y)/2|q ≤ E‖MN+1‖q − C−q
∑N+1

1
E‖dMn‖q

≤ (|x|q + |y|q)/2− C−q‖(x− y)/2‖q + ε

so we obtain

(4.7) |(x+ y)/2|q + C−q‖(x− y)/2‖q ≤ (|x|q + |y|q)/2,

and hence by (4.6)

|(x+ y)/2|q + C−q|(x− y)/2|q ≤ (|x|q + |y|q)/2.

It is not entirely evident that | · | is a norm, but (4.7) guarantees that for
any pair x, y in B the function f : R → R defined by f(t) = |x + ty|q satisfies
f((t1 + t2)/2) ≤ (f(t1) + f(t2))/2 for any t1, t2 ∈ R, and the latter implies (see
e.g. [53]) that f is a convex (and hence continuous) function on R. Knowing
this, it becomes obvious that {x | |x| ≤ 1} is a convex set, so that | · | is indeed
a norm on B.

This completes the proof of (ii) ⇒ (i).

Note that when α = 1 we have ‖x‖ = |x| for all x, so that the original norm
coincides with the “new” one and hence is uniformly convex. The next result
corresponds to the case α < 1.

Corollary 4.7. Fix 2 ≤ q <∞. The following properties of a Banach space B
are equivalent.

(i) There is an equivalent norm | · | on B such that (4.1) holds for some δ > 0.

(ii) There is a constant C such that all B-valued martingales (Mn)n≥0 in
Lq(B) satisfy (recall the convention dM0 = M0)

(4.8)
∑
n≥0

E‖dMn‖q ≤ Cq sup
n≥0

E‖Mn‖q.
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(iii) Same as (ii) for all dyadic martingales, i.e. all martingales based on the
dyadic filtration of [0,1], or the corresponding one on {−1, 1}N.

We now turn to the main point, i.e. the proof that any uniformly convex B
satisfies (4.8) for some p and C. We first place ourselves in a more “abstract”
setting, replacing martingales by monotone basic sequences, defined as follows.

Definition 4.8. A finite sequence {x1, . . . , xN} of elements in a Banach space
is called a monotone basic sequence if for any sequence of scalars λ1, . . . , λN we
have

sup
1≤n≤N

∥∥∥∑n

1
λkxk

∥∥∥ ≤ ∥∥∥∥∑N

1
λkxk

∥∥∥∥ .
An infinite sequence (xn)n≥1 is called a monotone basic sequence if (x1, . . . , xN )
is one for any 1 ≤ N <∞.

Independently of James’s work on basic sequences in super-reflexive spaces
analogous results (such as (4.9) below) were proved in the USSR by the Gurarii
brothers [155] for uniformly convex spaces.

Theorem 4.9. Let B be a uniformly convex Banach space. Then for any mono-
tone basic sequence (x1, . . . , xN ) in B, the following implication holds

(4.9)
∥∥∥∥∑N

1
xk

∥∥∥∥ ≤ 1⇒ ‖x1‖+
∑N

2
δB(‖xk‖) ≤ 1.

Consequently, there is a number 1 ≤ q < ∞ and a constant C such that any
monotone basic sequence (x1, . . . , xN ) satisfies

(4.10)
(∑

‖xk‖q
)1/q

≤ C
∥∥∥∥∑N

1
xk

∥∥∥∥ .
Proof. Let Sn =

∑n
1 xk. Assume ‖SN‖ ≤ 1. Fix 2 ≤ k ≤ N . Let ak = ‖Sk‖.

Using x = a−1
k Sk and y = a−1

k Sk−1 we find

a−1
k ‖Sk−1 + xk/2‖ ≤ 1− δB(a−1

k ‖xk‖)

and since (by monotone basicity) ak−1 ≤ ‖Sk−1 + xk/2‖, we find

ak−1 ≤ ak(1− δB(a−1
k ‖xk‖))

or equivalently for all k ≥ 2

akδB(a−1
k ‖xk‖) ≤ ak − ak−1.

But then, since a−1
k ≥ 1, by Lemma 4.4 (i)

δB(‖xk‖) ≤ ak − ak−1

from which (4.9) follows immediately. We deduce from (4.9) that for all N ≥ 2∥∥∥∥∑N

1
xk

∥∥∥∥ ≤ 1⇒ inf
1≤k≤N

δB(‖xk‖) ≤ (N − 1)−1.
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Let ε(N) be the largest ε > 0 such that δB(ε) ≤ (N−1)−1. Note that ε(N)→ 0
since δB(ε) > 0 for all ε > 0 and δB is non-decreasing. Hence∥∥∥∥∑N

1
xk

∥∥∥∥ ≤ 1⇒ inf ‖xk‖ ≤ ε(N)

which we may rewrite by homogeneity

(4.11) inf
1≤k≤1

‖xk‖ ≤ ε(N)
∥∥∥∥∑N

1
xk

∥∥∥∥ .
We will now show that (4.11) implies the second assertion of Theorem 4.9. This
follows by a very general principle based on the fact that (4.11) automatically
holds for any sequence of N “blocks” built out of a longer monotone basic
sequence. More precisely, let us denote by b(N) the best constant b such that
for any monotone basic sequence (x1, . . . , xN ) we have

inf
1≤k≤N

‖xk‖ ≤ b
∥∥∥∥∑N

1
xk

∥∥∥∥ .
It is easy to see that b(N) ≥ b(N + 1) for all N ≥ 1. Moreover, a moment of
thought shows that b is “submultiplicative” i.e. for all integers N,K we have

b(NK) ≤ b(N)b(K).

(Hint: Given y1, . . . , yNK consider x1 = y1 + · · · + yK , x2 = yK+1 + · · · + y2K ,
xN = y(K−1)N+1 + · · ·+ yNK .)

But now (4.11) ensures that b(N) ≤ ε(N) and hence that b(N) → 0 when
N →∞. Let us then choose an integer m such that b(m) < 1 and let 0 < r <∞
be determined by b(m) = m−1/r.

Then, by submultiplicativity, we have b(mk) ≤ (mk)−1/r for any k ≥ 1. If
n is arbitrary we choose k so that mk ≤ n < mk+1 and hence, since b(·) is
non-increasing we find finally b(n) ≤ m1/rn−1/r for all n ≥ 1.

Let x1, . . . , xN be a monotone basic sequence with
∥∥∥∑N

1 xk

∥∥∥ ≤ 1. Let
(xσ(1), . . . , xσ(N)) be a permutation chosen so that ‖xσ(1)‖ ≥ · · · ≥ ‖xσ(N)‖.
Note that of course this is a priori no longer a monotone basic sequence. Fix
j. Let 1 ≤ m(1) < m(2) < · · · < m(j) ≤ N be the places corresponding to
{σ(1), . . . , σ(j)} in [1, . . . , N ]. Let y1 =

∑m(1)
1 xk, y2 =

∑
m(1)<k≤m(2)

xk, . . . , yj =∑
m(j−1)<k≤N

xk.

We have then
inf

1≤t≤j
‖yt‖ ≤ b(j)

and moreover by the triangle inequality and the “monotony”

‖xm(1)‖ ≤ ‖y1‖+
∥∥∥∥∑m(1)−1

1
xk

∥∥∥∥ ≤ 2‖y1‖
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and similarly
‖xm(2)‖ ≤ 2‖y2‖, . . . , ‖xm(j)‖ ≤ 2‖yj‖

so that we find

‖xσ(j)‖ = inf
1≤t≤j

‖xm(t)‖ ≤ 2 inf
t≤j
‖yt‖ ≤ 2b(j).

We conclude ‖xσ(j)‖ ≤ 2m1/rj−1/r and hence for any q > r∑
‖xj‖q =

∑
‖xσ(j)‖q ≤ (2m1/r) ·

∑
j−q/r.

Thus, for any q > r, setting C = (2m1/r
∑∞

1 j−q/r)1/q, we obtain the announced
result (4.10) .

Corollary 4.10. Let B be isomorphic to a uniformly convex Banach space. Fix
1 < s <∞. Then there is a number 2 ≤ q <∞ and a constant C such that any
B-valued martingale (fn) in Lq(B) satisfies

(4.12)
(∑∞

0
‖fn − fn−1‖qLs(B)

)1/q

≤ C sup ‖fn‖Ls(B).

Proof. If B is uniformly convex, so is Ls(B) by Lemma 4.4. So this follows from
the preceding Theorem.

We will need a very simple “dualization” of the preceding inequality:

Proposition 4.11. Let (An)n≥0 be a filtration on a probability space (Ω,A,P)
with A = A∞. Let 1 < s < ∞ and 1 ≤ q′ ≤ 2 ≤ q ≤ ∞ with 1

q + 1
q′ = 1. The

following properties of a Banach space B are equivalent.

(i) There is a constant C such that for all B-valued martingales (fn)n≥0

adapted to (A)n≥0 we have (recall f−1 ≡ 0 by convention)(∑∞

0
‖fn − fn−1‖qLs(B)

)1/q

≤ C sup ‖fn‖Ls(B).

(ii) There is a constant C ′ such that for all B∗-valued martingales (gn)n≥0

adapted to (An)n≥0 we have

sup ‖gn‖Ls′ (B∗) ≤ C
′
(∑∞

0
‖gn − gn−1‖q

′

Ls′ (B
∗)

)1/q′

.

Moreover the best constants C and C ′ satisfy C/2 ≤ C ′ ≤ C.

Proof. Assume (i). Fix n. Let gn ∈ Ls′(B∗). For any ε > 0 there is fn with
‖fn‖Ls(B) = 1 such that

‖gn‖Ls′ (B∗) ≤ (1 + ε)|〈fn, gn〉|,
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but 〈fn, gn〉 =
∑n

0 〈dfk, dgk〉 and hence

‖gn‖Ls′ (B∗) ≤ (1 + ε)
∣∣∣∑n

0
〈dfk, dgk〉

∣∣∣
≤ (1 + ε)

(∑n

0
‖dfk‖qLs(B)

)1/q (∑n

0
‖dgk‖q

′

Ls′ (B
∗)

)1/q′

,

so that by (i) we find

‖gn‖Ls′ (B∗) ≤ (1 + ε)C
(∑n

0
‖dgk‖q

′

Ls′ (B
∗)

)1/q′

and (ii) follows immediately with C ′ ≤ C. Conversely, assume (ii). Fix n and
let fn ∈ Ls(B). For any ε > 0 there are ϕ0, . . . , ϕn in Ls′(Ω,A,P;B∗) with
(
∑n

0 ‖ϕk‖
q′

Ls′ (B
∗))

1/q′ ≤ 1 + ε such that

∣∣∣∑n

0
〈dfk, ϕk〉

∣∣∣ =
(∑n

0
‖dfk‖qLs(B)

)1/q

.

Note that ∑n

0
〈dfk, ϕk〉 =

∑n

0
〈dfk, (Ek − Ek−1)ϕk〉 = 〈fn, gn〉

where gn =
∑n

0 (Ek − Ek−1)(ϕk). In addition since dgk = Ekϕk − Ek−1ϕk we
have ‖dgk‖Ls′ (B∗) ≤ 2‖ϕk‖Ls′ (B∗) and hence (

∑
‖dgk‖q

′

Ls′ (B
∗))

1/q′ ≤ 2. Thus
we obtain by (ii)(∑n

0
‖dfk‖qLs(B)

)1/q

= |〈fn, gn〉| ≤ ‖fn‖Ls(B)‖gn‖Ls′ (B∗) ≤ 2C ′‖fn‖Ls(B).

This shows that (ii) ⇒ (i) with C ≤ 2C ′.

To prove Theorem 4.1 we apply Corollary 4.10 with B replaced by L2(B). If
we wished, we could use Ls(B) for some 1 < s <∞, but the reader should note
that we have a priori no control over how q depends on s so we cannot just set
q = s ! Thus the main difficulty is to pass from (4.12) to (4.8). This is precisely
what the next crucial result achieves, with a slight loss on the exponent.

Lemma 4.12. Let 2 ≤ s < ∞. Let B be a Banach space. Assume that for
some constant χ, all B-valued martingales (fn)n≥0 satisfy

(4.13) ∀N ≥ 0 (N+1)−1
∑

0≤n≤N

‖dfn‖L2(B) ≤ χ(N+1)−1/s‖fN‖L2(B).

Then for each q > s there is a constant C = C(q, s) such that all dyadic B-valued
martingales, on {1, 1}N with the usual filtration An = σ(εj , j ≤ n), satisfy (4.8).

Proof. By the dualization given by Proposition 4.11, this Lemma is equivalent
to the next one, which is proved below.
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Lemma 4.13. Let 1 < r ≤ 2. Let B be a Banach space. Assume that for some
constant χ, all B-valued martingales (fn)n≥0 satisfy

(4.14) ∀N ≥ 0 ‖fN‖L2(B) ≤ χ(N + 1)1/r sup
n≤N
‖dfn‖L2(B).

Then for each 1 < p < r there is a constant C = C(p, r) such that all dyadic
B-valued martingales satisfy

sup
n≥0

E‖fn‖p ≤ (C)p
(
E‖f0‖p +

∑
n≥1

E‖dfn‖p
)
.

Proof. Step 1. We will first show that for any p < r there is a constant
C1 = C1(p, r) such that all (finite) dyadic B-valued martingales (fn) satisfy

(4.15)
∥∥∥∑∞

0
dfn

∥∥∥
L2(B)

≤ C1

∥∥∥∥(∑n≥0
‖dfn‖p

)1/p
∥∥∥∥
∞
.

Clearly this reduces to finite martingales so we will assume that there is N > 0
so that dfn ≡ 0 for all n > N and we let f =

∑∞
0 dfn = fN . By homogeneity

we may assume ‖(
∑
n≥0 ‖dfn‖p)1/p‖∞ = 1. Then we let

Ik(ω) = {n ≥ 0 | 2−(k+1)/p < ‖dfn(ω)‖ ≤ 2−k/p}.

Note that since ‖dfn(ω)‖ is An−1 measurable, the set {ω | n ∈ Ik(ω)} is in
An−1. Therefore we may enumerate the integers in Ik(ω) using stopping times:
we define

T
(k)
0 (ω) = inf{n ∈ Ik(ω)} and for m = 1, 2, . . .

T (k)
m (ω) = inf{n > T

(k)
m−1(ω), n ∈ Ik(ω)},

with the convention inf φ = N + 1 (we could choose equivalently inf φ = ∞).
Let

∆(k)
m = f

T
(k)
m
− f

T
(k)
m −1

.

Observe that if T (k)
m (ω) = N + 1, then ∆(k)

m (ω) = 0, so that
∑
m ∆(k)

m (ω) =∑
n∈Ik(ω) dfn(ω). Moreover, we have

1 ≥
∑

n∈Ik(ω)

‖dfn(ω)‖p > 2−(k+1)|Ik(ω)|

and hence
|Ik(ω)| < 2k+1.

This implies ∆(k)
m = 0, ∀m > 2k+1. Moerover, by definition of Ik(ω) we have

‖∆(k)
m (ω)‖ ≤ 2−k/p for a.a. ω. Therefore our hypothesis (4.14) implies that for

each fixed k∥∥∥∥∥∥
∑

n∈Ik(ω)

dfn(ω)

∥∥∥∥∥∥
L2(B)

=
∥∥∥∑∆(k)

m

∥∥∥
L2(B)

≤ χ2(k+1)/r supm ‖∆(k)
m ‖L2(B)

≤ χ21/r2k( 1
r−

1
p ).
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We remind the reader (see Proposition 1.8 and the exercises following it) that
if T1, T2 are stopping times and fn converges (say) in L1(B) we have

fT1∧T2 = EAT1 fT2 = EAT1 fT2 ,

therefore, if T1 ≤ T2 ≤ T3 are stopping times, we have

(4.16) EAT1 (fT3 − fT2) = 0.

Since, by an earlier observation, the sets {ω | n ∈ Ik(ω)} are all in An−1, the
stopping times T (k)

m are “predictable,” i.e. T (k)
m − 1 is also a stopping time, and

hence, since ∆(k)
m = (f

T
(k)
m
− f

T
(k)
m −1

) if we set Bm = A
T

(k)
m
, by (4.16) we have

EBm−1(∆(k)
m ) = 0 (because T (k)

m−1 ≤ T
(k)
m − 1 ≤ T (k)

m ). Thus we obtain

∥∥∥∑∞

0
dfn

∥∥∥
L2(B)

≤
∑

k≥0

∥∥∥∥∥∥
∑

n∈Ik(ω)

dfn(ω)

∥∥∥∥∥∥
L2(B)

≤ χ21/r
∑∞

0
2k( 1

r−
1
p ),

and Step 1 follows with C1(p, r) = χ2
1
r (1− 2

1
r−

1
p )−1.

Step 2. For all 1 < p < r there is a constant C2 = C2(p, r) such that all
B-valued dyadic martingales (fn)n≥0 satisfy

(sup
t>0

tp/2P{sup ‖fn‖ > t})2/p ≤ C2

(∑∞

0
E‖dfn‖p

)1/p

.

By Step 1 and Doob’s inequality (see Theorem 1.9) we have

(4.17) (sup
t>0

t2P{sup ‖fn‖ > t})1/2 ≤ 2C1

∥∥∥∥(∑∞

0
‖dfn‖p

)1/p
∥∥∥∥
∞
.

Let Vn = (
∑n

0 ‖dfk‖p)1/p for all n ≥ 0 and V∞ = (
∑∞

0 ‖dfn‖p)1/p = supn Vn.
Fix s > 0. Let T = inf{n ≥ 0 | Vn+1 > s}. Note that, since Vn+1 is An-
measurable for all n ≥ 0, T is a stopping time. We then repeat the trick used
for Lemma 8.20: We have 1{T>0}VT ≤ s. By (4.17) applied to the martingale
(1T>0fn∧T ) this implies

(4.18) t2P{sup ‖fn∧T ‖ > t, T > 0} ≤ (2C1s)2.

Note {T <∞} = {V∞ > s}. Therefore for any t > 0

P{sup ‖fn‖ > t} ≤ P{T <∞}+ P{T =∞, sup ‖fn‖ > t}
≤ P{V∞ > s}+ P{T > 0, sup ‖fn∧T ‖ > t}
≤ P{V∞ > s}+ (2C1s)2/t2

≤ s−pEV p∞ + (2C1s)2/t2.
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We may assume EV p∞ = 1 by homogeneity. Choosing (say) s =
√
t we obtain

(we could use a better choice for s but it is of no consequence for the next step)

∀t ≥ 1 P(sup ‖fn‖ > t} ≤ t−p/2 + (2C1)2t−1 ≤ (1 + (2C1)2)t−p/2

and Step 2 follows with C2 = (1 + (2C1)2)2/p.

Step 3. For any p < r there is a constant C3 = C3(p, r) such that all B-valued
dyadic martingales (fn)n≥0 satisfy

sup
t>0

tpP{sup ‖fn‖ > t} ≤ (C3)p
∑∞

0
E‖dfn‖p.

We will use the reverse Hölder principle from Appendix 2 in Chapter 8 (this
trick goes back to Burkholder [100]). Consider f in Lp(AN ;B) with f0 = 0 so
that f depends only on (ε1, . . . , εN ) and assume that E

∑∞
0 ‖dfn‖p = 1. We

introduce a sequence of independent copies of f on {−1, 1}N as follows: Let
ω = (εn)n∈N. We set

f (1)(ω) = f(ε1, . . . , εN )
f (2)(ω) = f(εN+1, . . . , ε2N )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f (m)(ω) = f(ε(m−1)N+1, . . . , εmN ).

We then consider g = m−1/p(f (1) + · · ·+f (m)). We have clearly E
∑∞

0 ‖dgn‖p =
E
∑∞

0 ‖dfn‖p = 1. Therefore by Step 2

∀t > 0 tp/2P{sup ‖gn‖ > t} ≤ (C2)p/2.

Note sup
1≤k≤m

‖m−1/pf (k)‖ ≤ 2 sup
n≥0
‖gn‖ and hence

(4.19) P( sup
1≤k≤m

m−1/p‖f (k)‖ > t/2) ≤ (C2t
−1)p/2,

so we may invoke the reverse Hölder principle formulated in Proposition 8.53 to
deduce from (4.19) that for some constant C3 we have

∀t > 0 P{‖f‖ > t} ≤ (C3)pt−p

and Step 3 follows by homogeneity.
We can now complete the proof by the Marcinkiewicz Theorem 8.51: indeed,

for any 1 < p < r, choose p0, p1 such that 1 < p0 < p < p1 < r. Let D =
{−1, 1}N equipped with its usual probability ν. Let Dn = {−1, 1}n equipped
with the uniform probability νn. Consider the space Λp of all sequences (ϕn)n≥0

with ϕ0 ∈ Lp(D0, ν0;B), ϕn ∈ Lp(Dn−1, νn−1;B) for all n ≥ 1 such that∑
‖ϕn‖pLp(B) < ∞. We set ‖(ϕn)‖Λp = (

∑∞
0 ‖ϕn‖

p
Lp(B))

1/p. Note that we
may clearly identify isometrically Λp with Lp(Ω, µ;B) for a suitable measure
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space (Ω, µ) obtained as the disjoint union of (D0, ν0) and (Dn−1, νn−1)n≥1.
We consider the operator

T : Lp(Ω, µ;B)→ Lp(D, ν;B)

defined by T ((ϕn)n≥0) =
∑∞

0 εnϕn. By Step 3 this operator is of weak type
(p0, p0) and (p1, p1) for any p0, p1 as above. Therefore by the Marcinkiewicz
theorem, T is of strong type (p, p) for any p0 < p < p1 and this is exactly the
conclusion of the Lemma.

Remark 4.14. Recall that the space BMO associated to (An) is defined in §8.9. It
is easy to deduce from (4.15) that ‖(

∑
‖dfn‖p)1/p‖∞ <∞ implies f =

∑
dfn ∈

BMO and that if f0 = 0 we have

‖f‖BMO ≤ C1

∥∥∥∥(∑ ‖dfn‖p
)1/p

∥∥∥∥
∞
.

Indeed, for any A atom of An, let PA be the probability defined on A by
PA(B) = P(A)−1P(A ∩ B), for any B in A∞. Note that for any fixed n ≥ 1,
the sequence (1A(fk− fn−1))k≥n is a (dyadic) martingale on (A,PA). Applying
(4.15) to that martingale yields 1

P(A)

∫
A

‖f − fn−1‖2dP

1/2

≤ C1

∥∥∥∥(∑k≥n
‖dfk‖p

)1/p
∥∥∥∥
∞

and hence

‖(En‖f − fn−1‖2)1/2‖∞ ≤ C1

∥∥∥∥(∑∞

1
‖dfn‖p

)1/p
∥∥∥∥
∞
.

Proof of Theorem 4.1. If B is uniformly convex, Corollary 4.10 (with s = 2)
shows that B satisfies the assumption of Lemma 4.12. Therefore we conclude
by Corollary 4.7.

Theorem 4.1 admits the following refinement:

Theorem 4.15. Let 2 < q0 < ∞. If a uniformly convex Banach space B
satisfies

δB(ε)ε−q0 →∞ when ε→ 0

then there is an equivalent norm on B for which the associated modulus of
convexity δ satisfies for some q < q0

inf
0<ε≤2

δ(ε)ε−q > 0.
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Proof. By results due to Figiel, we may replace B by L2(B). We can then argue
exactly as in the preceding proof of Theorem 4.1. Here is a slightly more direct
argument: Let a(N) be the smallest constant C such that for all N -tuples of
B-valued martingale differences d1, · · · , dN we have

N−1
∑

1≤n≤N

‖dn‖L2(B) ≤ C‖d1 + · · ·+ dN‖L2(B).

Then it is easy to check that a(NK) ≤ a(N)a(K) for all N,K ≥ 1. Applying
(4.9) in L2(B) shows that a(N)N−1/q0 → 0 when N →∞. Then the submulti-
plicativity implies that there is q1 < q0 such that a(N)N−1/q1 is bounded. Thus,
(4.13) holds with s = q1, so the conclusion follows again, with q1 < q < q0, from
Lemma 4.12 and Corollary 4.7.

Definition 4.16. We will say that a Banach space B is q-uniformly convex if
there is a constant c > 0 such that δB(ε) ≥ cεq for all 0 < ε ≤ 2.

With this terminology, let us recapitulate:
B is q-uniformly convex iff there is C > 0 such that ∀x, y ∈ B ‖x+y

2 ‖
q +

C−q‖x−y2 ‖
q ≤ ‖x‖

q+‖y‖q
2 and the latter holds iff (4.4) holds with α = 1.

Moreover, B is isomorphic to a q-uniformly convex space iff it satisfies (4.8)
for some constant C.

Lastly, any uniflormly convex space is isomorphic to a q-uniformly convex
one for some q <∞ (see Theorem 4.1).

4.2 Uniform smoothness

Uniform smoothness is dual to uniform convexity: B is uniformly smooth (resp.
uniformly convex) iff B∗ is uniformly convex (resp. uniformly smooth). There-
fore many of its properties can be deduced from the corresponding properties
of uniform convexity. Nevertheless, the intrinsic geometric significance of uni-
form smoothness is of considerable interest in many questions involving e.g.
differentiability of functions on B.

Definition 4.17. A Banach space B is called uniformly smooth if there is a
function t → ρ(t) on R+ that is o(t) when t → 0 such that for any x, y in the
unit sphere of B we have

‖x+ ty‖+ ‖x− ty‖
2

≤ 1 + ρ(t).

The modulus of (uniform) smoothness ρB(t) is defined as the “best possible” ρ,
i.e.

ρB(t) = sup{2−1(‖x+ ty‖+ ‖x− ty‖)− 1 | x, y ∈ B, ‖x‖ = ‖y‖ = 1}.

With this notation, B is uniformly smooth iff

lim
t→0

ρB(t)/t = 0.
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For example, for a Hilbert space H, we have ρH(t) = (1 + t2)1/2− 1 ' t2/2. By
Dvoretzky’s theorem (see Th. 4.38), for any infinite dimensional space B, we
must have ρB(t) ≥ (1 + t2)1/2 − 1, since H = `2 is f.r. in B.

The following formula due to Lindenstrauss [189] (see also [126]) illustrates
the dual relationship between δB and ρB∗ .

Lemma 4.18. For any (real or complex) Banach space B

(4.20) ρB∗(t) = sup{tε/2− δB(ε) | 0 < ε ≤ 2}.

Proof. Let UB = {x ∈ B | ‖x‖ ≤ 1} and SB = {x ∈ B | ‖x‖ = 1}. By definition
we have in the real case

ρB∗(t) = sup{2−1(‖ξ + tη‖+ ‖ξ − tη‖)−1 | ξ, η ∈ SB∗}
= sup{2−1(〈ξ + tη, x〉+ 〈ξ − tη, y〉)−1 | ξ, η ∈ SB∗ , x, y ∈ UB}

= sup
{∥∥∥∥x+ y

2

∥∥∥∥+ t

∥∥∥∥x− y2

∥∥∥∥−1
∣∣∣ x, y ∈ UB}

= sup
0<ε≤2

sup
{∥∥∥∥x+ y

2

∥∥∥∥+ tε/2− 1
∣∣∣ x, y ∈ UB , ‖x− y‖ ≥ ε}

= sup
0<ε≤2

{tε/2− δB(ε)}.

In the complex case, just use ‖ξ ± tη‖ = sup{<(〈ξ ± tη, x〉) | x ∈ UB}.

It is natural to wonder whether conversely δB∗ is in duality with ρB . Un-
fortunately, this is not true because, unlike ρB , the function δB∗ is in general
not convex (see [192]). Nevertheless, if we denote by δ̃B the largest convex
function dominated by δB , we have a nice duality, and moreover, δ̃B and δB are
essentially equivalent. We refer to [136, 133] for more on this.

Lemma 4.19. For any (real or complex) Banach space B

(4.21) δ̃B∗(ε) = sup{tε/2− ρB(t) | 0 < t <∞}.

Moreover for any 0 < γ < 1 and ε > 0 we have

(γ−1 − 1)δB∗(γε) ≤ δ̃B∗(ε) ≤ δB∗(ε).

Proof. The first formula is proved just like (4.20), and we find sup{tε/2−ρB(t) |
0 < t < ∞} = supt>0(inf0<s≤2{δB(s) + t(ε − s)/2} but note that being the
supremum of affine functions the right hand side of (4.21) is a convex function,
that majorizes any affine function f (say f(ε) = aε + b) such that f ≤ δB∗

because it is easy to see that

sup
t>0

( inf
0<s≤2

{f(s) + t(ε− s)/2} = f(ε).

This establishes (4.21). The second assertion is more delicate, we refer the
reader to [133].
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As a consequence we have

Proposition 4.20. A Banach space B is uniformly convex (resp. uniformly
smooth) iff its dual B∗ is uniformly smooth (resp. uniformly convex).

Proof. If B is uniformly convex, the formula (4.20) clearly implies by elementary
calculus that B∗ is uniformly smooth (note that ρB∗ is essentially the Legendre
conjugate of δB). Conversely, if B is uniformly smooth, then Lemma 4.19 implies
that B∗ is uniformly convex. Note that by Theorem 4.3, B is reflexive if either
B or B∗ is uniformly convex. From this it is easy to complete the proof.

In view of the preceding (almost perfect) duality, it is not surprising that
the results of §6.1 have analogues for uniform smoothness, so we will content
ourselves with a brief outline with mere indications of proofs.

Theorem 4.21. Let 1 < p ≤ 2 and let α > 0 and C > 0 be fixed constants.
The following two properties of a Banach space B are equivalent:

(i) There is a equivalent norm | | on B such that for all x, y in B we have
‖x‖ ≤ |x| ≤ α−1‖x‖ and

(4.22) 2−1(|x+ y|p + |x− y|p) ≤ |x|p + Cp‖y‖p.

(ii) For any dyadic B-valued martingale (Mn)n≥0 in Lp(B) we have

(4.23) sup E‖Mn‖p ≤ α−pE‖M0‖p + Cp
∑∞

1
E‖dMn‖p.

Moreover, this implies:

(iii) All B-valued martingales in Lp(B) satisfy

sup E‖Mn‖p ≤ α−pE‖M0‖p + 2Cp
∑∞

1
E‖dMn‖p.

Proof. (ii) ⇒ (i). Assume (ii). We define

|x|p = sup
{

E‖MN‖p − Cp
∑N

1
E‖dMn‖p

}
where the supremum runs over all N ≥ 1 and all dyadic martingales M0,M1, . . . ,
MN such that M0 = x. Note that we trivially have |x| ≥ ‖x‖ (by choosing
MN = x), and by (ii) we have |x| ≤ α−1‖x‖, so that | · | and ‖ · ‖ are equivalent.
The same idea as in the previous section shows that

∀x, y ∈ B 2−1(|x|p + |y|p) ≤ |2−1(x+ y)|p + ‖2−1(x− y)‖p

or equivalently (replace (x, y) by (x+ y, x− y))

2−1(|x+ y|p + |x− y|p) ≤ |x|p + Cp‖y‖p ≤ |x|p + Cp|y|p
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so we obtain (i). Lastly, in case x→ |x| is not a norm we define

|x|1 = inf
{∑

|xk|
}

over all the decompositions x =
∑
xk as a finite sum of elements of B. Note

that for any t > |x|1 we can write x =
∑
λkxk with λk ≥ 0,

∑
λk = 1 and

|xk| ≤ t. Using this, it is then easy to check that (4.22) remains true when | |1
replaces | |, completing the proof that (ii) ⇒ (i).

(i) ⇒ (iii) and (i) ⇒ (ii). For any n ≥ 1 and ω we have

2−1(|Mn−1(ω)+dMn(ω)|p+|Mn−1(ω)−dMn(ω)|p) ≤ |Mn−1(ω)|p+Cp‖dMn(ω)‖p

and hence after integration

2−1(E|Mn|p + E|Mn−1 − dMn|p) ≤ E|Mn−1|p + CpE‖dMn‖p

but since E|Mn−1|p ≤ E|Mn−1 − dMn|p we deduce

E|Mn|p ≤ E|Mn−1|p + 2CpE‖dMn‖p

and hence (note the telescoping sum)

sup E|Mn|p ≤ E|M0|p + 2Cp
∑∞

1
E‖dMn‖p.

Since | · | is an equivalent norm, (iii) follows. To check (i) ⇒ (ii) just observe
that in the dyadic case E|Mn−1 − dMn|p = E|Mn−1 + dMn|p = E|Mn|p (so the
factor 2 disappears in the prceding argument).

Corollary 4.22. Fix 1 < p ≤ 2. The following properties of a Banach space B
are equivalent

(i) There is an equivalent norm | · | on B such that for some constant C we
have

(4.24) ∀x, y ∈ B 2−1(|x+ y|p + |x− y|p) ≤ |x|p + Cp|y|p.

(ii) There is a constant C such that all B-valued martingales (Mn)n≥0 in
Lp(B) satisfy (recall dM0 = M0 by convention)

(4.25) sup E‖Mn‖p ≤ Cp
∑∞

0
E‖dMn‖p.

(iii) Same as (ii) for all dyadic martingales.

The next result is the dual analogue of Theorem 4.9, and although we prefer
to give a direct argument, it can be proved by duality.
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Theorem 4.23. Assume B uniformly smooth. Then for any (finite or infinite)
monotone basic sequence (xn) in B, we have

supn ‖xn‖+ 2
∑∞

1
ρB(‖xn‖) ≤ 1⇒ supn ‖x1 + · · ·+ xn‖ ≤ 2.

Consequently, there is a constant C and 1 < p ≤ 2 such that for all N and all
monotone basic sequences (xn) we have

‖
∑N

1
xn‖ ≤ C(

∑
‖xn‖p)1/p.

Proof. Let Sn = x1 + · · ·+ xn. We have

‖Sn−1‖−1(‖Sn−1 + xn‖+ ‖Sn−1 − xn‖)− 2 ≤ 2ρB(‖xn‖‖Sn−1‖−1)

and also 1 ≤ ‖Sn−1‖−1‖Sn−1 − xn‖ by monotony. Put together, this yields

‖Sn‖ ≤ ‖Sn−1‖+ 2‖Sn−1‖ρB(‖xn‖‖Sn−1‖−1).

Assume ‖Sn−1‖ ≥ 1, then t→ ρB(t)/t is non-decreasing (since ρB is convex) so
that ‖Sn−1‖ρB(‖xn‖‖Sn−1‖−1) ≤ ρB(‖xn‖) and we find

‖Sn‖ ≤ ‖Sn−1‖+ 2ρB(‖xn‖).

This yields (telescoping sum) that if ‖SN‖ ≥ 1 we have for all n ≥ N

‖Sn‖ ≤ ‖SN‖+ 2
∑

n>N
ρB(‖xn‖).

Let N be the first integer (if any) such that ‖SN‖ ≥ 1. Then ‖SN‖ ≤ 1 + ‖xN‖
so we obtain sup ‖Sn‖ ≤ 1 + ‖xN‖+ 2

∑
n>N ρB(‖xn‖) ≤ 2.

The analogue of Theorem 4.1 for smoothness is now immediate:

Theorem 4.24. Any uniformly smooth Banach space B admits an equivalent
norm | · | satisfying for some constant C > 0 and some 1 < p ≤ 2

(4.26) ∀x, y ∈ B |x+ y|p + |x− y|p

2
≤ |x|p + C|y|p.

Proof. Using Proposition 4.20, this can be easily deduced from Theorem 4.1 by
duality. Alternatively, a direct proof can be obtained by combining Theorem
4.9 with Lemma 4.13 and Corollary 4.22.

Theorem 4.24 admits the following refinement:

Theorem 4.25. Let 1 < r < 2. If a uniformly smooth Banach space B satisfies

(4.27) ρB(t)t−r → 0 when t→ 0

then there is an equivalent norm on B for which the associated modulus of
smoothness ρ satisfies for some p > r

sup
t>0

ρ(t)t−p <∞.



4.2. UNIFORM SMOOTHNESS 103

Proof. By the Lindenstrauss duality formula (see (4.18) and Lemma 4.19), this
can be immediately deduced from Theorem 4.15 by duality.

Definition. We will say that B (its unit sphere or its norm) is smooth if for
any x, y in B with x 6= 0 the function t→ ‖x+ ty‖ is differentiable at t = 0.

Remark. Fix x, y ∈ B. Let f(t) = ‖x+ ty‖ (t ∈ R). Assume that

(f(t) + f(−t))/2− 1→ 0

when t→ 0. Then f is differentiable at 0. Indeed, since f is a convex function,
it admits left and right derivatives everywhere, in particular at t = 0 where
we denote them by f ′−(0) and f ′+(0) respectively, but our assumption implies
f ′−(0) = f ′+(0) so f ′(0) exists (and the converse is obvious). Let us denote
ξx(y) = f ′(0). We now assume that B is smooth, i.e. ξx(y) exists for any y in
B. We will show that, if B is a real Banach space

(4.28) ξx ∈ B∗, ‖ξx‖B∗ = 1 and ξx(x) = ‖x‖.

Taking y = x, we immediately find ξx(x) = ‖x‖. Note that ξx(sy) = sξx(y) for
any s ∈ R. Moreover, from ‖x + t(y1 + y2)/2‖ ≤ (‖x + ty1‖ + ‖x + ty2‖)/2 we
deduce easily that if ξx(y) exists for any y, then we must have ξx(y1 + y2) =
ξx(y1) + ξx(y2), so that y → ξx(y) is a linear form on B. Moreover, from
|f(t) − ‖x‖| ≤ |t|‖y‖ we deduce |ξx(y)| ≤ ‖y‖ so that (since ξx(x) = ‖x‖)
‖ξx‖B∗ = 1.

In addition, ξx is the unique ξ ∈ B∗ satisfying (4.28). Indeed, for any such
ξ we have (when |t| → 0)

‖x‖+ tξ(y) ≤ ‖x+ ty‖ = ‖x‖+ tξx(y) + o(|t|)

and hence ξ = ξx. �

By the preceding remark, if B is uniformly smooth, a fortiori its unit sphere
SB is “smooth,” and for any x 6= 0 in B there is a unique ξx ∈ SB∗ satisfying
(4.28). It is useful to observe that when B is uniformly smooth the map

x 7→ ξx : B − {0} → SB∗

is uniformly continuous when restricted to closed bounded subsets of B − {0}.
More precisely we have (here we reproduce a proof in [4]).

Proposition 4.26. Let B be a uniformly smooth Banach space. Then
(4.29)
∀x, y ∈ B ‖ξx − ξy‖ ≤ 2ρB(2

∥∥x‖x‖−1 − y‖y‖−1
∥∥)/
∥∥x‖x‖−1 − y‖y‖−1

∥∥.
In particular, if ‖x‖ = ‖y‖ = 1

‖ξx − ξy‖ ≤ 2ρB(2‖x− y‖)/‖x− y‖.
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Proof. Recall that, by definition of ξa, for all a, b in B with a 6= 0

lim
|t|→0

t−1(‖a+ tb‖ − ‖a‖) = 〈ξa, b〉.

By convexity of t 7→ ψ(t) = ‖a + tb‖ − ‖a‖, the function t 7→ ψ(t)/t must be
non-decreasing on R+, and hence

(4.30) 〈ξa, b〉 ≤ ‖a+ b‖ − ‖a‖.

Since ξx = ξx‖x‖−1 it suffices to prove (4.29) when ‖x‖ = ‖y‖ = 1. In that case,
(4.29) becomes

(4.31) ‖x− y‖‖ξx − ξy‖ ≤ 2ρB(2‖x− y‖).

Let z ∈ B be such that ‖z‖ = ‖x − y‖. Assuming ‖x‖ = ‖y‖ = 1, we have by
repeated use of (4.30) (note also 〈ξx, x− y〉 = 1− 〈ξx, y〉 ≥ 0)

〈ξy, z〉 − 〈ξx, z〉 ≤ ‖y + z‖ − 1− 〈ξx, z〉
≤ ‖y + z‖ − 1 + 〈ξx, x− y − z〉
≤ ‖y + z‖ − 1 + ‖2x− y − z‖ − 1
= ‖x+ (y − x+ z)‖+ ‖x− (y − x+ z)‖ − 2
≤ 2ρB(‖y − x+ z‖) ≤ 2ρB(2‖y − x‖).

The last step because ‖z‖ = ‖y − x‖. Taking the supremum of the preceding
over all z with ‖z‖ = ‖x− y‖, we obtain (4.31).

Corollary 4.27. For 0 < δ < R < ∞, let B(δ,R) = {x ∈ B | δ ≤ ‖x‖ ≤ R}.
The following properties of a Banach space B are equivalent.

(i) B is uniformly smooth.

(ii) B is smooth and x→ ξx is uniformly continuous on the unit sphere SB.

(iii) B is smooth and x → ξx is uniformly continuous on B(δ,R) for any
0 < δ < 1 < R <∞.

Proof. (i)⇒ (ii) follows from Proposition 4.26 and (ii)⇔ (iii) is easy using ξx =
ξx‖x‖−1 . If (iii) holds, then assuming ‖x‖ = ‖y‖ = 1 and |t| < min(1− δ,R− 1)
we have by the “calculus fundamental formula”

‖x+ ty‖ − ‖x‖ =
∫ t

0

〈ξx+sy, y〉ds

and hence

2−1(‖x+ ty‖+ ‖x− ty‖ − 2‖x‖) =
∫ t

0

〈ξx+sy − ξx−sy, y〉ds/2.

Therefore, we find

ρB(t) ≤ |t| sup{‖ξx − ξx′‖ | x, x′ ∈ B(δ,R), ‖x− x′‖ ≤ t}/2,

from which (iii) ⇒ (i) is immediate.
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Corollary 4.28. Let 1 < p ≤ 2. Assume that ρB(t) ∈ O(tp) when t → 0.
Then, for any 0 < δ < R <∞, there is a constant C = Cδ,R such that

∀x, y ∈ B(δ,R) ‖ξx − ξy‖ ≤ C‖x− y‖p−1.

In particular, if p = 2, the map x 7→ ξx is Lipschitzian on B(δ,R).

Proof. This is an immediate consequence of (4.29) by elementary calculus.

We refer the reader to [14, 27] for supplementary information and more
references.

The property appearing in Corollary 4.28 was already considered in early
pioneering work by Fortet and Mourier on the strong law of large numbers for
Banach space valued random variables, cf. [137]. As we will show in the next
chapter (see Theorem 3.45), the validity of the strong law of large numbers for
B-valued martingales is equivalent to the super-reflexivity of B.

Definition 4.29. We will say that a Banach space B is p-uniformly smooth if
there is a constant c > 0 such that ρB(t) ≤ ctp for all t > 0.

With this terminology, let us recapitulate:
B is p-uniformly smooth iff there is C > 0 such that ∀x, y ∈ B ‖x+y

2 ‖
p +

C‖x−y2 ‖
p ≥ ‖x‖

p+‖y‖p
2 and the latter holds iff (4.23) holds with α = 1.

Moreover, B is isomorphic to a p-uniformly smooth space iff it satisfies (4.25)
for some constant C.

Lastly, any uniflormly smooth space is isomorphic to a p-uniformly smooth
one for some p > 1 (see Theorem 4.24).

4.3 Uniform convexity and smoothness of Lp

We should first note of course that any Hilbert space H is both uniformly convex
and uniformly smooth, by the “parallelogram identity”

∀x, y ∈ H 2−1(‖x+ y‖2 + ‖x− y‖2) = ‖x‖2 + ‖y‖2.

The latter implies

δH(ε) = (1− (1− ε2/4)1/2 ' ε2/8 and ρH(t) = (1 + t2)1/2 − 1 ' t2/2

In this section, we denote simply by Lp the space Lp(Ω,A,m) where (Ω,A,m)
is an arbitrary measure space. Our goal is to prove

Theorem 4.30. (i) If 1 < p ≤ 2, we have: ∀t > 0 ∀ε ∈ [0, 2]

ρLp(t) ≤ tp/p and δLp(ε) ≥ (p− 1)ε2/8

(ii) If 2 ≤ p′ <∞, we have ∀t > 0 ∀ε ∈ [0, 2]

ρLp′ (t) ≤ (p′ − 1)t2/2 δLp′ (ε) ≥ (ε/2)p
′
/p′.
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Remark. The constants in the preceding estimates are sharp, i.e. they give the
right order of magnitude when t or ε are small. For instance, if 1 < p ≤ 2, we
have ρLp(t) = tp/p+ o(tp) when t→ 0, and similarly for the other estimates.

Part of the preceding statement is very easy to prove by interpolation:

Lemma 4.31. Let 1 < p ≤ 2 ≤ p′ <∞. We have then:

(4.32) ∀x, y ∈ Lp
(‖x+ y‖pp + ‖x− y‖pp

2

)1/p

≤ (‖x‖pp + ‖y‖pp)1/p,

(4.33) ∀x, y ∈ Lp′ (‖x‖p
′

p′ + ‖y‖p
′

p′)
1/p′ ≤

(
‖x+ y‖p

′

p′ + ‖x− y‖p
′

p′

2

)1/p′

.

Proof. Assume Lp = Lp(Ω, µ). Let D1 = {−1, 1} equipped with ν1 = (δ1 +
δ−1)/2. For (4.32), we consider the operator

T : `(2)
p (Lp)→ Lp(D1, ν1;Lp)

defined by T (x, y) = x + ε1y (here ε1(ω) = ω ∀ω ∈ D1). Note that `(2)
p (Lp)

(resp. Lp(D1, ν1;Lp)) can obviously be identified with the Lp-space associated
to the disjoint union of two copies of (Ω, µ) (resp. with Lp(D1 × Ω, ν1 × µ)).
Clearly T is a contraction both when p = 1 (triangle inequality) and when p = 2
(parallelogram inequality). Therefore by interpolation (cf. Corollary ??) (4.32)
is valid for any intermediate value: 1 < p < 2. The proof of (4.33) can be done
in a similar fashion by considering the operator

T ∗ : Lp′(D1, µ;Lp′)→ `
(2)
p′ (Lp′)

interpolating between p′ = 2 and p′ =∞. Alternatively, one can simply observe
that (4.33) follows from ‖T‖ = ‖T ∗‖ when p−1 + p′

−1 = 1.

The other estimates follow from:

Lemma 4.32. If 1 < p < 2, then for all x, y in Lp

(4.34) (‖x‖2p + (p− 1)‖y‖2p)1/2 ≤
(‖x+ y‖pp + ‖x− y‖pp

2

)1/p

or equivalently

(4.35)

(∥∥∥∥x+ y

2

∥∥∥∥2

p

+ (p− 1)
∥∥∥∥x− y2

∥∥∥∥2

p

)1/2

≤
(‖x‖pp + ‖y‖pp

2

)1/p

.
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Proof. By the 2-point hypercontractive inequality (see Theorem 8.3 with q = 2)
we know that for any fixed ω

(|x(ω)|2 + (p− 1)|y(ω)|2)1/2 ≤
(
|(x+ y)(ω)|p + ‖(x− y)(ω)|p

2

)1/p

taking the Lp-norm of both sides (and using the Hölder–Minkowski contractive
inclusion Lp(`2) ⊂ `2(Lp)) we find (4.34)

Proof of Theorem 4.30. (i) Assume 1 < p ≤ 2. By (4.32) we have

2−1(‖x+ ty‖p + ‖x− ty‖p) ≤ (1 + tp)1/p ≤ 1 + tp/p

and hence ρLp(t) ≤ tp/p. By (4.35), if ‖x‖p, ‖y‖p ≤ 1 and ‖x − y‖p ≥ ε then∥∥x+y
2

∥∥
p
≤ (1−(p−1)ε2/4)1/2 ≤ 1−(p−1)ε2/8, and hence δLp(ε) ≥ (p−1)ε2/8.

(ii) Now assume 2 ≤ p′ <∞. Replacing (x+ y, x− y) by (x, y) in (4.33) we
obtain ∥∥∥∥x+ y

2

∥∥∥∥p′
p′

+
∥∥∥∥x− y2

∥∥∥∥p′
p′
≤
‖x‖p

′

p′ + ‖y‖p
′

p′

2

and hence we find

δLp′ (ε) ≥ 1− (1− (ε/2)p
′
)1/p′

≥ (ε/2)p
′
/p′.

By duality, (4.34) implies

(4.36) (
‖x+ y‖p

′

p′ + ‖x− y‖p
′

p′

2
)1/p′ ≤ (‖x‖2p′ + (p− 1)−1‖y‖2p′)1/2

and hence

ρLp′ (t) ≤ (1 + (p− 1)−1t2)1/2 − 1 ≤ t2/(2(p− 1)) = (p′ − 1)t2/2.

4.4 Type, cotype and UMD

The notions of type/cotype provide a classification of Banach spaces that par-
allels in many ways the one given by uniform smoothness/uniform convexity.
To give a more complete picture for the reader, we feel the need to describe the
basic results of that theory, but since it is only loosely related to martingales,
we limit ourselves to a survey without proofs (for more detailed information see
[207, 230, 46, 206] and also [37, Chapter 9] and [38, Chapter 4]).

Recall our notation D = {−1, 1}N equipped with the uniform probability
measure ν. We denote by εn : D → {−1, 1} the n-th coordinate on D, so
that the sequence (εn) is an i.i.d. sequence of symmetric {−1, 1}-valued random
variables. Let B be a Banach space. We will denote simply by ‖ ‖Lp(B) the
“norm” in the space Lp(D, ν;B), for 0 < p ≤ ∞.
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Definitions. i) Let 1 ≤ p ≤ 2. A Banach space B is called of type p if there
is a constant C such that, for all finite sequences (xj) in B

(4.37)
∥∥∥∑ εjxj

∥∥∥
L2(B)

≤ C
(∑

‖xj‖p
)1/p

.

We denote by Tp(B) the smallest constant C for which (4.37) holds.

ii) Let 2 ≤ q ≤ ∞. A Banach space B is called of cotype q if there is a
constant C such that for all finite sequences (xj) in B

(4.38)
(∑

‖xj‖q
)1/q

≤ C
∥∥∥∑ εjxj

∥∥∥
L2(B)

.

We denote by Cq(B) the smallest constant C for which (4.38) holds. Clearly,
if p1 ≤ p2 then type p2 ⇒ type p1 while cotype p1 ⇒ cotype p2. Let us
immediately observe that every Banach space is of type 1 and of cotype∞ with
constants equal to 1. In some cases this cannot be improved, for instance if
B = `1 it is easy to see that (4.37) holds for no p > 1. Similarly, if B = `∞ or
c0, then (4.38) holds for no q <∞. We make this more precise in Remark 4.41
below. At the other end of the classification, if B is a Hilbert space then

∀x1, . . . , xn ∈ B
∥∥∥∑ εjxj

∥∥∥
L2(B)

=
(∑

‖xj‖2
)1/2

.

Therefore a Hilbert space is of type 2 and cotype 2 (with constants 1). More
generally, any space B that is isomorphic to a Hilbert space is of type 2 and
cotype 2. It is a striking result of Kwapień [184] that the converse is true: if B
is of type 2 and cotype 2, then B must be isomorphic to a Hilbert space.

Actually, by Kahane’s inequality (Theoem 8.1), the choice of the norm in
L2(D, ν;B) plays an inessential rôle in the above definitions. In the case B = R,
Kahane’s reduces to Khintchine’s inequality (8.7). These inequalities make it
very easy to analyze the type and cotype of the Lp-spaces:

Proposition 4.33. If 1 ≤ p ≤ 2, every Lp-space is of type p and of cotype 2.
If 2 ≤ p <∞, any Lp-space is of type 2 and of cotype p.

These are essentially best possible. The space L∞ contains isometrically
any separable Banach space, in particular the already mentioned `1 and c0.
Therfore, L∞ is of type 1 and cotype ∞ and nothing more.

Using Kahane’s inequality, one can easily generalize the preceding observa-
tion.

Proposition 4.34. Let B be a Banach space of type p and of cotype q. Let
(Ω,m) be any measure space. Then Lr(Ω,m;B) is of type r ∧ p and of cotype
r ∨ q.

Similar ideas lead to the following result that shows how to use type and
cotype to study sums of independent random variables.
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Proposition 4.35. Let (Ω,A,P) be a probability space. Let (Yn) be a sequence
of independent mean zero random variables with values in a Banach space B.
Assume that B is of type p and cotype q, and that the series

∑
Yn is a.s.

convergent. Then for 0 < r <∞, we have

αE
(∑

‖Yn‖q
)r/q

≤ E
∥∥∥∑Yn

∥∥∥r ≤ βE
(∑

‖Yn‖p
)r/p

where α and β are positive constants depending only on r, q and B.

Proof. Assume first that each Yn is symmetric. Consider the sequence (εnYn)n≥1

defined on (D×Ω, ν ×P). This sequence has the same distribution as (Yn)n≥1.
It is therefore easy to deduce Proposition 4.35 in that case from (4.37), (4.38)
and Kahane’s inequality. The general case follows by an easy symmetrization
argument.

In particular, taking r = p (resp. r = q) in Proposition 4.35 we find

E
∥∥∥∑Yn

∥∥∥p ≤ β∑E‖Yn‖p(4.39) [
resp. α

∑
E‖Yn‖q ≤ E

∥∥∥∑Yn

∥∥∥q ].(4.40)

We now compare type and cotype with the notions introduced in Definitions
4.16 and 4.29.

Proposition 4.36. Let B be a Banach space. If B is isomorphic to a p-
uniformly smooth (resp. q-uniformly convex) space then B is of type p (resp.
cotype q).

Proof. This is an immediate consequence of (4.25) (resp. (4.8)) applied to the
martingale Mn =

∑n
1 εjxj .

The converse to the preceding Proposition is not true in general. This is
obvious if we consider only cotype: Indeed L1 or `1 is of cotype 2 but being
non-reflexive has no equivalent uniformly convex (or smooth) norm.
For type, this is much less obvious, but we will present in Chapter 7 examples
of non-reflexive spaces of type 2 and cotype q > 2 (see Corollary 7.20). Again,
being non-reflexive, these necessarily admit no equivalent uniformly convex (or
smooth) norm.

The situation changes dramatically for the class of UMD spaces. In the
latter class, the notions we are comparing actually coincide:

Proposition 4.37. Assume B UMD. Then B is p-uniformly smooth (resp.
q-uniformly convex) iff B is of type p (resp. cotype q).

Proof. Assume B UMDp so that (8.18) holds. Then if B is of type p we find
that (8.18) implies (4.25). The proof for cotype is similar.
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The notions of type and cotype have appeared in various problems involving
the analysis of vector valued functions or random variables. One of the great
advantages of the classification of Banach spaces in terms of type and cotype
is the existence of a rather satisfactory “geometric” characterization of these
notions. We first explain the characterization of spaces which have a nontrivial
type or a nontrivial cotype. The reader should compare this with the character-
izations of super-reflexivity in the next chapter, for instance (i) in Theorem 4.40
below is reminiscent of the equivalence between J-convexity and the existence
of p > 1 such that (4.25) holds.

Definition. Let 1 ≤ p ≤ ∞. Fix λ > 1. We say that B contains `np ’s λ-
uniformly if, for all n, there exist x1, · · · , xn in B such that

(4.41) ∀(αj) ∈ Rn
(∑

|αj |p
)1/p

≤

∥∥∥∥∥
n∑
1

αjxj

∥∥∥∥∥ ≤ λ(∑ |αj |p
)1/p

.

For future reference we recall here a fundamental result (see [135])

Theorem 4.38 (Dvoretzky’s Theorem). For any ε > 0, any infinite dimen-
sional Banach space contains `n2 ’s (1 + ε)-uniformly.

Remark 4.39. Krivine proved [181] that if a Banach space B contains `np ’s (1+ε)-
uniformly for some ε > 0 then it also contains them (1 + ε)-uniformly for all
ε > 0. The cases p = 1 and p = ∞ (see Theorem 3.5 for that one), go back to
James [162]. Therefore, from now on we simply say in that case that B contains
`np ’s uniformly.

Theorem 4.40 ([207]). Let B be a Banach space.

i) B is of type p for some p > 1 iff B does not contain `n1 ’s uniformly.

ii) B is of cotype q for some q <∞ iff B does not contain `n∞’s uniformly.

Remark 4.41. In such results, the “only if” part is trivial. Indeed, assume (4.41).
Then we have

n1/p ≤
∥∥∥∑ εjxj

∥∥∥
L2(B)

≤ λn1/p,

and

n1/r ≤
(∑

‖xj‖r
)1/r

≤ λn1/r.

Therefore B cannot be of type r > p or of cotype r < p. In particular if p = 1
(resp. r =∞) B cannot have a nontrivial type (resp. cotype).

Actually Theorem 4.40 can be extended as follows: Let 1 ≤ p0 < 2 < q0 <∞.
A space B is of type p for some p > p0 iff B does not contain `np0 ’s uniformly.
The type and cotype indices are defined as follows:

p(B) = sup{p | B is of type p}(4.42)
q(B) = inf{q | B is of cotype q}.(4.43)
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Corollary 4.42. If p(B) > 1 then q(B) <∞.
Moreover, p(B) > 1 iff p(B∗) > 1.

Proof. These statements follow easily from Theorem 4.40. Indeed, if we note
that `n1 embeds isometrically (in the real case) into `2

n

∞ , we immediately see that
B contains `n1 ’s uniformly as soon as it contains `n∞’s uniformly. This shows that
p(B) > 1 implies q(B) < ∞. Similarly, it is easy to see that B contains `n1 ’s
uniformly iff its dual B∗ also does. We leave this as an exercise to the reader
(use the fact that it is the same to embed `n1 in a quotient of B∗ or in B∗

itself).

Remark. In addition, it is rather easy to show that B is of type p (resp. cotype
q) iff its bidual B∗∗ has the same property.

The main theorem relating the type and cotype of B to the geometry of B
is

Theorem 4.43 ([207, 181]). Let B be an infinite dimensional Banach space.
Then for each ε > 0, B contains `np ’s (1 + ε)-uniformly both for p = p(B) and
p = q(B).

By Theorem 4.43 and Remark 4.41, we have

p(B) = inf{p | B contains `np ’s uniformly}(4.44)

q(B) = sup{p | B contains `np ’s uniformly}.(4.45)

For classical concrete spaces, the type and cotype has been completely elu-
cidated. For instance, the case of Banach lattices is completely clear, cf. [204].
Here are the main results in that case (which includes Orlicz spaces, Lorentz
spaces, etc.). Let us consider a Banach lattice B which is a sublattice of the
lattice of all measurable functions on a measure space (Ω,m). Then if x1, . . . , xn
are elements of B and if 0 < p <∞, the function (

∑
|xj |p)1/p is well defined as

a measurable function and is also in B (by the lattice property).
Maurey proved a Banach lattice generalization of Khintchine’s inequality

which reduces the study of type and cotype for lattices to some very simple
“deterministic” inequalities:

Theorem 4.44 ([204]). Let B be a Banach lattice as above. Assume q(B) <∞.
Then there is a constant β depending only on B such that for all x1, . . . , xn in
B we have

(4.46)
1√
2

∥∥∥∥(∑ |xj |2
)1/2

∥∥∥∥ ≤ ∥∥∥∑ εjxj

∥∥∥
L2(B)

≤ β
∥∥∥∥(∑ |xj |2

)1/2
∥∥∥∥ .

Note: The left side of (4.46) holds in any Banach lattice B; it follows from
Khintchine’s inequality, see (8.74).
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It follows immediately that B (as above) is of type p (resp. cotype q) iff there
is a constant C such that any finite sequence (xj) in B satisfies∥∥∥∥(∑ |xj |2

)1/2
∥∥∥∥ ≤ C (∑ ‖xj‖p

)1/p

resp.
(∑

‖xj‖q
)1/q

≤ C
∥∥∥∥(∑ |xj |2

)1/2
∥∥∥∥ .

In the case p < 2 (or q > 2), one can even obtain a much simpler result as shown
by the following:

Theorem 4.45 ([204]). Let B be a Banach lattice as above.

(i) Let 2 < q <∞. Then B is of cotype q iff there is a constant C such that
any sequence (xj) of disjointly supported elements of B satisfies(∑

‖xj‖q
)1/q

≤ C
∥∥∥∑xj

∥∥∥ .
(ii) Assume q(B) < ∞. Let 1 < p < 2. Then B is of type p iff there is a

constant C such that any sequence (xj) of disjointly supported elements
satisfies ∥∥∥∑xj

∥∥∥ ≤ C (∑ ‖xj‖p
)1/p

.

Remark. For q = 2 (or p = 2) the preceding statement is false, the Lorentz
spaces L2,1 (or L2,q for 2 < q <∞) provide counterexamples.

Note that for a disjointly supported sequence (xj) we have∥∥∥∑ |xj |
∥∥∥ = ‖ sup |xj | ‖ =

∥∥∥∑xj

∥∥∥ .
Remark. In the particular case of Banach lattices, type and cotype are closely
connected to the moduli of uniform smoothness or uniform convexity. This is
investigated in great detail in the paper [134].

We should mention that there are several relatively natural spaces for which
the type or cotype is not well understood. For instance, by [255] the projective
tensor product `2⊗̂`2 is of cotype 2, but is unknown whether `2⊗̂`2⊗̂`2 is also
of cotype 2.

In the rest of this section we briefly review the notion of K-convexity that
is the key to the duality between type and cotype. More precisely, let B be a
Banach space. We will see below (Proposition 4.46) that if B is of type p, then
B∗ is of cotype p′ with 1

p + 1
p′ = 1, the converse fails in general, but it is true if B

is a K-convex space. The real meaning of K-convexity was elucidated in [228],
where it is proved that a Banach space B is K-convex if (and only if) B does
not contain `n1 ’s uniformly. The spaces that do not contain `n1 ’s uniformly are
sometimes called B-convex; so that with this terminology B- and K-convexity
are equivalent properties.
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We now define K-convexity. We need some notation. We denote by IB the
identity operator on a Banach space B. Let us denote by R1 the orthogonal
projection from L2(D, ν) onto the closed span of the sequence {εn | n ∈ N}. A
Banach space B is called K-convex if the operator R1⊗IB (defined a priori only
on L2(D, ν) ⊗ B) extends to a bounded operator from L2(D, ν;B) into itself.
We will denote by K(B) the norm on R1⊗ IB considered as an operator acting
on L2(D, ν;B). Clearly R1⊗IB is bounded on L2(B) iff R1⊗IB∗ is bounded on
L2(B∗). Let us first treat a simple example, the case when B = `k1 with k = 2n.
Then, we may isometrically identify B with L1(Dn) where Dn = {−1,+1}n,
equipped with its normalized Haar measure. Let us denote by bj the j-th
coordinate on {−1,+1}n considered as an element of L1(Dn). Consider then

the B-valued function F : D → B defined by F (ω) =
n∏
j=1

(1+ εj(ω)bj). We have

‖F (ω)‖B = 1 hence ‖F‖L2(B) = 1. But on the other hand, we have clearly

(4.47) ((R1 ⊗ IB)F )(ω) =
n∑
j=1

εj(ω)bj ,

so that

(4.48) ‖(R1 ⊗ IB)(F )‖L2(B) = E

∣∣∣∣∣
n∑
1

εj

∣∣∣∣∣ ≥ A1n
1/2

for some positive numerical constant A1. Returning the definition of K(B), we
find

K(`2
n

1 ) ≥ A1n
1/2.

In particular, K(`n1 ) is unbounded when n→∞. From this (and the observation
that if S is a closed subspace of B than K(S) ≤ K(B)) we deduce immediately.

Proposition 4.46. A K-convex Banach space cannot contain `n1 ’s uniformly.

We now turn to the duality between type and cotype. We first state some
simple observations.

Proposition 4.47. Let B be a Banach space. Let 1 ≤ p ≤ 2 ≤ p′ ≤ ∞ be such
that 1

p + 1
p′ = 1.

(i) If B is of type p, then B∗ is of cotype p′.

(ii) If B is K-convex, and if B∗ is of cotype p′ then B is of type p.

To clarify the proof we state the following

Lemma 4.48. Consider x1, . . . , xn in an arbitrary Banach space B. Define

(4.49) |||(xj)||| = sup

|
n∑
1

〈xj , x∗j 〉| | x∗j ∈ B∗
∥∥∥∥∥
n∑
1

εjx
∗
j

∥∥∥∥∥
L2(B∗)

≤ 1

 .
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Then

(4.50) |||(xj)||| = inf


∥∥∥∥∥
n∑
1

εjxj + Φ

∥∥∥∥∥
L2(B)


where the infimum is over all Φ in L2(B) such that E(εjΦ) = 0 for all j =
1, 2, . . . , n (or equivalently over all Φ in L2 ⊗B such that (R1 ⊗ IB)(Φ) = 0).

Proof of Lemma 4.48. We consider the natural duality between L2(B) and L2(B∗).
Let S ⊂ L2(B∗) be the subspace

S =

{
n∑
1

εjx
∗
j | x∗j ∈ B∗

}
.

The norm that appears on the right side of (4.50) is the norm of the space
X = L2(B)/S⊥. Clearly X ∗ = S⊥⊥ = S. Therefore, the identity (4.50) is
nothing but the familiar equality

∀z ∈ X sup{|〈z, z∗〉| | z∗ ∈ X ∗, ‖z∗‖ ≤ 1} = ‖x‖.

Proof of Proposition 4.47. We leave part (i) as an exercise for the reader. Let
us prove (ii). Assume B∗ of cotype p′ so that ∃C ∀n ∀x∗j ∈ B∗(∑

‖x∗j‖p
′
)1/p′

≤ C
∥∥∥∑ εjx

∗
j

∥∥∥
L2(B∗)

.

This implies for all xj in B

|||(xj)||| ≤ C
(∑

‖xj‖p
)1/p

.

Assume
∑
‖xj‖p < 1. By (4.50) there is a Φ in L2(B) such that E(εjΦ) = 0 for

all j and such that ∥∥∥∑ εjxj + Φ
∥∥∥
L2(B)

< C.

We have ∑
εjxj = (R1 ⊗ IB)

(∑
εjxj + Φ

)
hence ∥∥∥∑ εjxj

∥∥∥
L2(B)

≤ K(B)C.

By homogeneity, this proves that B is of type p with constant not more than
K(B)C.

We come now to the main result of this section which is the converse to
Proposition 4.46.

Theorem 4.49. A Banach space B is K-convex if (and only if) it does not
contain `n1 ’s uniformly.
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The projection R1 can be replaced by all kinds of projections which behave
similarly in the preceding statement. For instance, let (gn) be an i.i.d. sequence
of normal Gaussian r.v.’s on some probability space (Ω,A,P), and let G1 be
the orthogonal projection from L2(Ω,A,P) onto the closed span of {gn | n ∈
N}. Then a space B is K-convex iff G1 ⊗ IB is a bounded operator from
L2(Ω,A,P;B) into itself.
We can proceed similarly in the context of Proposition 4.35, by introducing a
projection Q1 as follows. Let (Ω,A,P) be a probability space. We write simply
L2 for L2(Ω,A,P). Let (Cn)n≥1 be a sequence of independent σ-subalgebras
of A. Let S0 be the (one dimensional) subspace of L2 formed by the constant
functions. Let S1 be the subspace formed by all the functions of the form∑∞

n=1
yn

with yn ∈ L2(Cn) for all n, Eyn = 0 and
∑

E|yn|2 < ∞. We denote by Q1 the
orthogonal projection from L2 onto S1. One can then show (see Theorem 4.50
below) that if B is K-convex then Q1 ⊗ IB is bounded on L2(B). Note that, in
the case (Ω,P) = (D, ν), if we take for Cn the σ-algebra generated by εn then
Q1 coincides with R1.

Let us return to our probability space (Ω,A,P). We may as well assume
that

⋃
n
Cn generates the σ-algebra A. Actually we can define a sequence of

projections (Qk)k≥0 as follows. Let us denote by Fk the closed subspace of L2

spanned by all the functions f for which there are n1 < n2 < · · · < nk such that
f is measurable with respect to the σ-algebra generated by Cn1 ∪ · · · ∪ Cnk .
{Consider the following special case: let (θn) be a sequence of independent

r.v.’s and let Cn be the σ-algebra generated by θn. Then Fk is the subspace of all
the functions in L2 which depend on at most k of the functions {θn | n ≥ 1}.}

Note that Fk ⊂ Fk+1 and ∪Fk is dense in L2. Let then Sk = Fk ∩F⊥k−1, and
let Qk be the orthogonal projection from L2 onto Sk. When k = 0, we denote
by Q0 the orthogonal projection onto the subspace of constant functions.
{Note: In the special case considered above, let us denote by λn the law of θn.

Then Sk is the subspace spanned by all the functions of the form F (θn1 , . . . , θnk)
such that ∫

F (x1, . . . , xj , . . . , xk)dλnj (xj) = 0

for all j = 1, 2, . . . , k.}
We can now formulate a strengthening of Theorem 4.49.

Theorem 4.50. Let (Qk)k≥0 be as above. If a Banach space B does not contain
`n1 ’s uniformly then Qk ⊗ IB defines a bounded operator on Lp(Ω,A,P;B) for
1 < p <∞ and any k ≥ 0. Moreover there is a constant C = C(p,B) such that
the norm of Qk ⊗ IB on Lp(B) satisfies

‖Qk ⊗ IB : Lp(B)→ Lp(B)‖ ≤ Ck for all k ≥ 0.

Clearly Theorem 4.49 is a consequence of Theorem 4.50. The proofs of these
results are intimately connected with the theory of holomorphic semi-groups.
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Since this would take us too far from our main theme, we refer the reader to
[228, 229] (or to [206]) for complete proofs and details.

4.5 Square function inequalities in q-uniformly
convex and p-uniformly smooth spaces

Let (fn)n≥0 be a B-valued martingale in L1(B). We denote (with the convention
df0 = f0)

Sp(f)(ω) =
(∑∞

0
‖dfn(ω)‖pB

)1/p

and f∗(ω) = supn≥0 ‖fn(ω)‖B .

Recall that by Doob’s inequality (1.20) we have

supn ‖fn‖Lr(B) ≤ ‖f∗‖r ≤ r′ supn ‖fn‖Lr(B).(4.51)

When p = 2 and B is either R,C or a Hilbert space, we recover the classical
square function, see §8.1. In that case, we already know that, for any 1 ≤ r <∞,
‖S2(f)‖r and ‖f∗‖r are equivalent, see (8.29) and (8.36). Our main result in
this section is an analogue of this for Sp(f) (resp. Sq(f)) in case B is p-uniformly
smooth (resp. q-uniformly convex). Unfortunately however, we cannot take p =
q in general (unless B is a Hilbert space) and hence the analogous inequalities
are only one sided, as in the next two statements.

Theorem 4.51. Let B be a Banach space. Fix 2 ≤ q < ∞. The properties in
Corollary 4.7 are equivalent to:

(iv) For any 1 ≤ r <∞, there is a constant C = C(q, r) such that all B-valued
martingales (fn)n≥0 in Lr(B) satisfy

(4.52) ‖Sq(f)‖r ≤ C‖f∗‖r.

Theorem 4.52. Let B be a Banach space. Fix 1 < p ≤ 2. The properties in
Corollary 4.22 are equivalent to:

(iv) For any 1 ≤ r <∞ there is a constant C ′ = C ′(p, r) such that all B-valued
martingales (fn)n≥0 in Lr(B) satisfy

(4.53) ‖f∗‖r ≤ C ′‖Sp(f)‖r.

To clarify the duality between (4.52) and (4.53) the following Lemma will
be used.

Lemma 4.53. Let 1 < r, p <∞, let (An)n≥0 be any filtration and set as usual
En = EAn . Then for any sequence (ϕn)n≥0 in Lr(Ω,A,P) we have for any
1 < p <∞

(4.54)
∥∥∥∥(∑ |Enϕn|p

)1/p
∥∥∥∥
r

≤ C(1/p)
∥∥∥∥(∑ |ϕn|p

)1/p
∥∥∥∥
r

,

where C(1/p) = r(r − 1)
1
p−1.
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Proof. By Doob’s inequality (1.14) (resp. the dual Doob inequality (1.15)) (4.54)
holds for p = ∞ (resp. p = 1) with C(0) = r′ = r(r − 1)−1 (resp. C(1) =
r). Therefore by the complex interpolation of “mixed normed spaces” (see
Theorem ??), (4.54) holds for a general 1 < p <∞ with C(1/p) = C(0)1−θC(1)θ

where θ = 1/p. This yields C(1/p) = (r′)1/p′(r)1/p = r(r − 1)−1/p′ .

Proposition 4.54. Fix 1 < r, r′ < ∞ and 1 < p, p′ < ∞ with 1
r + 1

r′ = 1 and
1
p + 1

p′ = 1. For a Banach space B and a given filtration (An)n≥0 on (Ω,A,P)
the following are equivalent:

(i) There is a constant C such that all B-valued martingales (fn)n≥0 in
Lr(B), adapted to (An)n≥0, satisfy

(4.55) sup ‖fn‖r ≤ C‖Sp(f)‖r.

(ii) There is a constant C ′ such that all B∗-valued martingales (gn)n≥0 in
Lr′(B∗), adapted to (An)n≥0, satisfy

(4.56) ‖Sp′(g)‖r′ ≤ C ′ sup ‖gn‖r′ .

Moreover, we may exchange the rôles of B and B∗ if we wish.

Proof. The proof that (ii) ⇒ (i) is very easy: assuming (ii), for ε > 0, choose
g in the unit ball of Lr′(B∗) so that ‖fn‖Lr(B) ≤ (1 + ε)〈g, fn〉. Let gn =
Eng. Then note 〈g, fn〉 = 〈gn, fn〉 =

∑n
0 〈dgk, dfk〉, it follows ‖fn‖Lr(B) <

(1 + ε)E|
∑n

0 〈dgk, dfk〉| ≤ (1 + ε)E(Sp′(g)Sp(f)) ≤ (1 + ε)‖Sp′(g)‖r′ ||Sp(f)‖r ≤
(1 + ε)C ′‖Sp(f)‖r so we obtain (i) with C ≤ C ′. Conversely, assume (i). To
prove (4.56) we may assume (gn)n≥0 is a finite martingale so that gk = gn for
all k ≥ n. Fix ε > 0. Let ϕ0, . . . , ϕn ∈ Lr(B) be such that

(4.57)
∥∥∥∥(∑n

0
‖ϕk‖p

)1/p
∥∥∥∥
r

≤ 1 and E
∑n

0
〈ϕk, dgk〉 ≥ (1 + ε)‖Sp′(g)‖r′ .

Note that
(4.58)

E
∑n

0
〈ϕk, dgk〉 = E

∑n

0
〈dfk, dgk〉 = E〈fn, gn〉 ≤ ‖fn‖Lr(B)‖gn‖Lr′ (B∗),

where dfk = (Ek − Ek−1)ϕk and fn =
∑n

0 dfk. Moreover, by the triangle
inequality and (4.54), we have

(4.59) ‖Sp(f)‖r ≤ 2C(1/p)
∥∥∥∥(∑ ‖ϕk‖p

)1/p
∥∥∥∥
r

≤ 2C(1/p).

Thus we obtain by (4.57), (4.58), (4.55) and (4.59)

(1 + ε)‖Sp′(g)‖r′ ≤ ‖fn‖Lr(B)‖gn‖Lr′ (B∗) ≤ 2CC(1/p)‖gn‖Lr′ (B∗),

so we obtain (ii) with C ′ ≤ 2CC(1/p).
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It will be convenient to break the proofs of Theorems 4.51 and 4.52 in two.
The first parts are formulated in the next two Lemmas.

Lemma 4.55. Let us denote by (iv)r the assertion (iv) in Theorem 4.51 for a
fixed value 1 ≤ r <∞. Then (iv)s ⇒ (iv)r for any 1 ≤ r < s.

Proof. We will use the “extrapolation method” described in Lemma 8.20 and the
B. Davis decomposition in Lemma 8.22. By Lemma 8.22, we have fn = gn +hn
with h0 = 0, ‖dgn‖B ≤ 6f∗n−1 for all n ≥ 1 and

∥∥∑∞
0 ‖dhn‖

∥∥
r
≤ 6r‖f∗‖r for

any 1 ≤ r < ∞. We set vn(ω) = (
∑n

0 ‖dgk(ω)‖qB)1/q and wn(ω) = ‖gn(ω)‖B .
Applying (iv)s to the martingale (1{T>0}gn∧T )n≥0, we find

(4.60) ‖1{T>0}vT ‖s ≤ C(q, s)‖1{T>0}wT ‖s.

Fix r such that 1 ≤ r < s. By Lemma 8.20

(4.61) ‖Sq(g)‖r ≤ ((s/(s− r))1/r + 1)‖g∗‖r + 6‖f∗‖r.

But since g is essentially a “perturbation of f by h” we have Sq(f) ≤ Sq(g) +∑
‖dhn‖ and g∗ ≤ f∗ +

∑
‖dhn‖, and hence ‖Sq(f)‖r ≤ ‖Sq(g)‖r + 6r‖f∗‖r

and ‖g∗‖r ≤ (1 + 6r)‖f∗‖r, so that (4.61) yields (4.52) with C(q, r) ≤ (s((s −
r))1/r(1 + 6r) + 6 + 6r.

Lemma 4.56. Assume B p-uniformly smooth (actually we use only type p).
Then there is a constant tp such that for any 1 ≤ r < ∞ and any martingale
(fn)n≥0 in Lr(B), there is a choice of sign ξn ± 1 such that the transformed
martingale f̃n =

∑n
0 ξkdfk satisfies

(4.62) ‖f̃∗‖r ≤ tp‖Sp(f)‖r.

Proof. Since B is p-uniformly smooth, a fortiori by Proposition 4.36, it is of
type p, i.e. there is a constant C such that for any finite sequence (xj) in B we
have ∥∥∥∑ εjxj

∥∥∥
Lr(ν;B)

≤ C
(∑

‖xj‖p
)1/p

.

By (1.22) we have∥∥∥supn
∥∥∥∑n

0
εjxj

∥∥∥∥∥∥r
r
≤ 2Cr

(∑
‖xj‖p

)r/p
.

Replacing xj by dfj(ω) and integrating in ω we find I ≤ 21/rC‖Sp(f)‖r, where

I =
(∫∫

supn
∥∥∥∑n

0
εjdfj

∥∥∥r dνdP)1/r

.

Thus to conclude it suffices to choose ξj = εj(ω0) so that ‖f̃∗‖r ≤ I (the latter
because the infimum over ω is not more than the average).
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Lemma 4.57. Let us denote by (iv)r the assertion (iv) in Theorem 4.52 for a
fixed value of 1 ≤ r <∞. Then (iv)s ⇒ (iv)r for all 1 ≤ r < s.

Proof. The idea is the same as for Lemma 4.55 but there is an extra difficulty
which is overcome by using Lemma 4.56 above. As earlier, we use the decom-
position in Lemma 8.22: we have f = g + h with h0 = 0, ‖dgn‖ ≤ 6f∗n−1 for
all n ≥ 1 and ‖

∑
‖dhn‖B‖r ≤ 6r‖f∗‖r for all 1 ≤ r < ∞. Let ξn = ±1 be an

arbitrary choice of signs. Again we denote

g̃n =
∑n

0
ξkdgk and f̃n =

∑n

0
ξkdfk.

We set vn(ω) = g̃∗n(ω) and wn(ω) = (
∑n

0 ‖dgn(ω)‖p)1/p. Assuming (iv)s, we
find for any stopping time T

‖1{T>0}vT ‖s ≤ C ′(p, s)‖1{T>0}wT ‖s.

Fix r such that 1 ≤ r ≤ s. By (8.32) (applied with ψn = 6f∗n) there is a constant
C (depending on r and s) such that

(4.63) ‖g̃∗‖r ≤ C‖Sp(g)‖r + 6‖f∗‖r.

Since ‖f̃∗‖r ≤ ‖g̃∗‖r +
∥∥∑ ‖dhn‖∥∥r and ‖Sp(g)‖r ≤ ‖Sp(f)‖r + ‖

∑
‖dhn‖

∥∥
r

we deduce from (4.63)

‖f̃∗‖r ≤ C‖Sp(f)‖r + (6r(C + 1) + 1)‖f∗‖r.

Since this holds for any choice of signs ξn = ±1 we may exchange the roles of f
and f̃ (note that ˜̃

f = f !) and we find

‖f∗‖r ≤ C‖Sp(f)‖r + (6r(C + 1) + 1)‖f̃∗‖r.

If we now choose ξn according to Lemma 4.56 we obtain (4.53) with C ′ ≤
C + (6r(C + 1) + 1)tp.

Proof of Theorem 4.51. The case 1 ≤ r ≤ q is covered by Lemma 4.55. Recall
‖f∗‖r ≤ r′ supn ‖fn‖r by Doob’s inequality. Let p = q′ so that p−1 + q−1 = 1.
If q ≤ r′ < ∞ then 1 < r ≤ p, and, by Proposition 4.54, (4.55) holds at least
with r = p. By Lemma 4.57, (4.55) holds for all 1 < r < p, therefore by
Proposition 4.54 again, (4.56) (and a fortiori also (4.52)) holds for all r′ with
q = p′ < r′ <∞.

Proof of Theorem 4.52. The argument is the same as for Theorem 4.51: The
case 1 ≤ r ≤ p is covered by Lemma 4.57 and the case p < r < ∞ (i.e.
1 < r′ < p′) can be deduced from Lemma 4.55 (applied to q = p′) by duality
using Proposition 4.54.

Remark 4.58. The preceding two proofs actually show that if (4.52) (resp. (4.53)
holds for some 1 < r < ∞ (for some constant C) then it also holds for all
1 < r < ∞ (with a different constant). In other words, the assertions denoted
above by (iv)r (resp.(iv)r) are actually independent of 1 < r <∞.
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4.6 Strong p-variation, uniform convexity and
smoothness

We will now extend the method presented in Chapter 6 to the Banach space val-
ued case. The extension to the Hilbert space valued case is straightforward, but
the martingale inequalities (4.8) (resp. (4.25)) satisfied by q-uniformly convex
(resp. p-uniformly smooth) spaces allow us to go much further:

Theorem 4.59. Let 1 < p1 ≤ 2 ≤ q0 <∞

(i) Assume that B is isomorphic to a p1-uniformly smooth space. Then for
all 1 < p < p1 there is a constant C = C(p, p1) such that all B-valued
martingales f = (fn)n≥0 in Lp(B) satisfy

EVp(f)p ≤ CE
∑∞

0
‖dfn‖pB .

(ii) Assume that B is isomorphic to a q0-uniformly convex space. Then for all
q > q0 there is a constant C = C(q, q0) such that all B-valued martingales
in Lq(B) satisfy

EVq(f)q ≤ C supn E‖fn‖q.

The proof is based on the following key fact:

Lemma 4.60. Let 1 < r < ∞ and let 0 < θ < 1 be such that 1 − θ = 1
r .

Let (fn)n≥0 be a B-valued martingale converging in Lr(B). Assume that for all
increasing sequences of stopping times 0 ≤ T0 ≤ T1 ≤ T2 ≤ . . . we have

E‖fT0‖r +
∑

k≥1
E‖fTk − fTk−1‖r ≤ 1.

Then
‖{fn}‖(L1(v1(B)),L∞(`∞(B)))θ,∞ ≤ 2.

Proof. This can be proved by an obvious adaptation of the argument for Lemma 6.3.
One just chooses Tk = inf{n > Tk−1 | ‖fn − fTk−1‖ > tθ−1}.

We will use repeatedly the identity (see Theorem 5.7)

(4.64) Lp((B0, B1)θ,p) = (L1(B0), L∞(B1))θ,p

valid for any 0 < θ < 1 provided p is linked to θ by 1− θ = 1/p.

Proof of Theorem 4.59. Here again we can adapt the proof of Theorem 6.2.
(i) Assume B p1-uniformly smooth. Then by (4.8) applied (with p replaced by
p1) to the martingale Mn = fTk∧n− fTk−1∧n (here k is fixed) we have (for some
constant C1)

E‖fTk − fTk−1‖p1 ≤ C1

∑
Tk−1<n≤Tk

E‖fn − fn−1‖p1
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and hence ∑∞

0
E‖fTk − fTk−1‖p1 ≤ C0

∑∞

0
E‖dfn‖p1 .

Let ‖f‖D(p1) =
(∑∞

0 E‖dfn‖p1
)1/p1

. Let θ1 be such that 1 − θ1 = 1/p1. On
one hand, by the preceding Lemma we have a bounded inclusion

(4.65) D(p1) ⊂ (L1(v1(B)), L∞(`∞(B)))θ1,∞

and on the other hand we have trivially (actually this is an equality)

(4.66) D(1) ⊂ L1(v1(B)).

By the same argument as in Chapter 6 we know (see (6.14)) that D(p1) =
(D(1), D(∞))θ1,p1 where we set D(∞) = `∞(L∞(B)). Therefore, by the reiter-
ation Theorem, (4.65) and (4.66) imply that, for any θ with 0 < θ < θ1 and any
1 ≤ p ≤ ∞, we have

(D(1), D(∞))θ,p ⊂ (L1(v1(B)), `∞(L∞(B)))θ,p.

We now choose p so that 1 − θ = 1/p. This gives us (D(1), D(∞))θ,p = D(p)
and also by (4.64) (see (6.3))

(L1(v1(B)), `∞(L∞(B)))θ,p = Lp((v1(B), `∞(B))θ,p)

but by Lemma 6.1
(v1(B), `∞(B))θ,p ⊂ vp(B).

Thus we obtain that the inclusion

D(p) ⊂ Lp(vp(B))

is bounded, and this is precisely (i).
To prove (ii) assume B q0-uniformly convex. Let θ0 be such that 1 − θ0 =

1/q0. By (4.25) applied to the martingale (fTk)k≥0 we have for some constant
C0 ∑

E‖fTk − fTk−1‖q0 ≤ C0 sup E‖fn‖q0 .

Let Lq0(B)→ `∞(Lq0(B)) be defined by T (M) = (EnM −En−1M)n≥0. By the
preceding Lemma we have (boundedly)

(4.67) T (Lq0(B)) ⊂ (L1(v1), L∞(`∞(B)))θ0,∞

and trivially

(4.68) T (L∞(B)) ⊂ `∞(L∞(B)).

Observe that Lq0(B) = (L1(B), L∞(B))θ0,q0 (see (4.64)). Therefore, by the
reiteration Theorem, (4.67) and (4.68) imply

T ((L1(B), L∞(B))θ,q) ⊂ (L1(v1), `∞(L∞(B)))θ,q
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for any θ with θ0 < θ < 1 and any 1 ≤ q ≤ ∞. If we choose q so that 1−θ = 1/q
we find by (4.64)

T (Lq(B)) ⊂ Lq((v1(B), `∞(B))θ,q)

and again (v1(B), `∞(B))θ,q ⊂ vq(B) so we obtain

T (Lq(B)) ⊂ Lq(vq(B))

which is exactly (ii).

Remark. In the situation of Theorem 4.59, fix 1 < p < p1 (resp. q > q0). Then
for each 1 ≤ r ≤ p (resp. 1 ≤ r ≤ q) there is a constant C such that

‖Vp(f)‖r ≤ C
∥∥∥∥(∑ ‖dfn‖pB

)1/p
∥∥∥∥
r

(resp. ‖Vq(f)‖r ≤ C‖ sup ‖fn‖B‖r and ‖Vq(f)‖1,∞ ≤ C sup ‖fn‖L1(B) ). Indeed,
this can be proved exactly as above in the proofs of part (ii) in Theorems 6.2
and 6.5.

4.7 Notes and Remarks

The source of this chapter is mainly [227], but the latter paper was inspired
by Enflo’s fundamental results on super-reflexivity that are described in detail
in the next chapter. Enflo’s main result from [131] was that “super-reflexive”
implies “isomorphic to uniformly convex,” thus completing a program initiated
by R.C. James ([162, 163]), that we describe in the notes and remarks of the
next chapter. While Enflo and James work with “trees,” in [227] the relevance
of martingales was recognized and a new proof, was given of Enflo’s theorem
with an improvement: the modulus of convexity can always be found of power
type, or equivalently we can always find a renorming satisfying (4.1).

In our presentation, we find it preferable to separate the two steps: in this
chapter we show that any uniformly convex is isomorphic to a space with a
modulus “of power type” (i.e. satisfying (4.1)) and only in the next one do
we show Enflo’s result that “super-reflexive” implies “isomorphic to uniformly
convex”.

In both chapters, we replace the Banach space B by Lq(B) with 1 < q <∞
and we treat martingale difference sequences simply as monotone basic se-
quences in Lq(B). The corresponding inequalities for basic sequences in uni-
formly convex (resp. smooth) spaces are due to the Gurarii brothers [155] (resp.
to Lindenstrauss [189]).

We learnt about the work of Fortet–Mourier through unpublished work by
J. Hoffmann–Jørgensen. The presentation in §4.2 was strongly influenced by [4],
to which we refer the reader interested in non-linear aspects of Banach space
theory. The estimates for the modulus of convexity (and of smoothness) of Lp in
§4.3 are due to O. Hanner [158]. See also [71] for more recent results including
the non-commutative case. The results of §4.6 come essentially from [227], while
those of §4.5 come from [236].



Chapter 5

The Real Interpolation
method

We assume in this chapter that the reader has some familiarity with the com-
plex method of interpolation, or at least with the famous Riesz interpolation
theorem. We will mainly use the real method of interpolation in our later ex-
position to analyze the type and cotype of the spaces of sequences that are in
the interpolated space between “bounded variation” and “bounded”.

Roughly the common interpolation methods produce a family of “interpo-
lated” Banach spaces (Bθ)θ∈[0,1] starting from a pair (B0, B1). We will need to
assume that the initial pair (B0, B1) is “compatible”. This means that we are
given a topological vector space V and continuous injections

j0 : B0 → V and j1 : B1 → V.

This very rudimentary structure is just what is needed to define the intersection
B0 ∩B1 and the sum B0 +B1.
The space B0 ∩B1 is defined as j0(B0) ∩ j1(B1) equipped with the norm

‖x‖ = max{‖j−1
0 (x)‖B0 , ‖j−1

1 (x)‖B1}.

The space B0 +B1 is defined as the setwise sum j0(B0) + j1(B1) equipped with
the norm

‖x‖B0+B1 = inf{‖x0‖B0 + ‖x1‖B1 | x = j0(x0) + j1(x1)}.

It is an easy exercise to check that B0 ∩B1 and B0 +B1 are Banach spaces. It
is a well established tradition to identify B0 and B1 with j0(B0) and j1(B1), so
that j0 and j1 become the inclusion mappings B0 ⊂ V and B1 ⊂ V . We then
have ∀i = 0, 1

B0 ∩B1 ⊂ Bi ⊂ B0 +B1

and these inclusions have norm ≤ 1. Note that if we wish we may now replace
V by B0 +B1, so that we may as well assume that V is a Banach space.

123
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5.1 The real interpolation method

Let (B0, B1) be a compatible couple. For any ε > 0 and any x in B0 + B1, we
define

Kt(x;B0, B1) = inf{‖b0‖B0 + t‖b1‖B1 | x = b0 + b1}.

We will often abbreviate and write simply Kt(x) instead of Kt(x;B0, B1) when
the context leaves no room for ambiguity. Let 0 < θ < 1 and 1 ≤ p ≤ ∞. We
define

(B0, B1)θ,q =
{
x ∈ B0 +B1

∣∣∣ ∫ ∞
0

(t−θKt(x))q
dt

t
<∞

}
and we equip it with the norm

‖x‖(B0,B1)θ,q =
(∫ ∞

0

(t−θKt(x))q
dt

t

)1/q

.

Of course, when q =∞, this should be understood as meaning sup
t
t−θKt(x).

Note
Kt(x;B0, B1) = tKt−1(x;B1, B0)

and hence

(5.1) (B0, B1)θ,q = (B1, B0)1−θ,q isometrically.

Remark 5.1. Obviously we have inclusions (with norms at most 1)

B0 ∩B1 ⊂ (B0, B1)θ,q ⊂ B0 +B1.

Moreover, it is easy to show that if q <∞ B0 ∩B1 is dense in (B0, B1)θ,q.

Note that t→ Kt(x) is by definition the infimum of a family of affine func-
tions, hence it is concave on R+, nonnegative and nondecreasing.

Since Kt is nondecreasing

θ−1t−θKt(x) = Kt(x)
∫ ∞
t

s−θds/s ≤
∫ ∞
t

s−θKs(x)ds/s,

and hence

(5.2) (B0, B1)θ,1 ⊂ (B0, B1)θ,∞.

More generally, for any q0 ≤ q1 we have

(5.3) (B0, B1)θ,q0 ⊂ (B0, B1)θ,q1 .

If we assume B0 ⊂ B1, then it is easy to check that, when 0 < θ0 < θ1 < 1, for
arbitrary 1 ≤ q0, q1 ≤ ∞, we have bounded inclusions

(5.4) B0 ⊂ (B0, B1)θ0,q0 ⊂ (B0, B1)θ1,q1 ⊂ B1.

Just as for the complex case, the fundamental interpolation property holds:
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Theorem 5.2. Let (B0, B1) and (C0, C1) be two compatible couples. Let T0 : B0 →
C0 and T1 : B1 → C1 be bounded operators that are “essentially the same”.
Then the resulting operator T : B0 + B1 → C0 + C1 maps (B0, B1)θ,q to
(C0, C1)θ,q for any 0 < θ < 1 and 1 ≤ p ≤ ∞, and moreover, if we denote
its restriction by Tθ,q : (B0, B1)θ,q → (C0, C1)θ,q, have

‖Tθ,q‖ ≤ ‖T0‖1−θ‖T1‖θ.

Proof. We obviously can write for any x in B0 + B1, say x = x0 + x1 with
xj ∈ Bj

Tx = T0x0 + T1x1

and hence

‖T0x0‖+ t‖T0‖‖T1‖−1‖T1x1‖ ≤ ‖T0‖(‖x0‖B0 + t‖x1‖B1)

so that

(5.5) Kt‖T0‖‖T1‖−1(Tx) ≤ ‖T0‖Kt(x).

Let λ = ‖T0‖‖T1‖−1. Since dt
t is a Haar measure over the multiplicative group

(0,∞), we have by (5.5)

‖t−θKt(Tx)‖Lp( dtt ) = ‖(tλ)−θKtλ(Tx)‖Lp( dtt )

≤ λ−θ‖t−θ‖T0‖Kt(x)‖Lp( dtt )

≤ ‖T0‖λ−θ‖t−θKt(x)‖Lp( dtt ),

and hence
‖Tθ,q‖ ≤ ‖T0‖λ−θ = ‖T0‖1−θ‖T1‖θ.

The fundamental example is the case of Lp-spaces: Let (Ω,A,m) be a mea-
sure space, and let f : Ω→ R be a measurable function. We define its decreasing
rearrangement f∗: (0,∞)→ R+ by setting

f∗(t) = inf{c > 0 | m({|f | > c}) ≤ t}.

Then f∗ ≥ 0 is non-increasing, right continuous and such that

(5.6) |{f∗ > c}| = m({|f | > c}).

The latter equality shows that f∗ and |f | have the same distribution relative
respectively to Lebesgue measure on (0,∞) and m. Recall that∫

|f |pdm =
∫ ∞

0

pcp−1m({|f | > c}) dc.
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As an immediate consequence of (5.6) we have in particular

∀p > 0
∫ ∞

0

f∗(t)pdt =
∫
|f |p dm.

More generally, the Lorentz spaces Lp,q(Ω,m) (or simply Lp,q) are defined (0 <
p, q <∞) as formed of the functions f such that∫ ∞

0

(t1/pf∗(t))q
dt

t
<∞

equipped with the quasi-norm

(5.7) ‖f‖p,q =
(∫ ∞

0

(t1/pf∗(t))q
dt

t

)1/q

.

Note that Lp,p = Lp isometrically. When q = ∞, the above should be under-
stood as

‖f‖p,∞ = sup
t>0

t1/pf∗(t) = (sup
c>0

cpm({|f | > c}))1/p.

The space Lp,∞ is usually called “weak Lp”.

Theorem 5.3. Let Lp = Lp(Ω,A,m) on an arbitrary measure space. Consider
f ∈ L1 + L∞ (0 < p <∞). Then

Kt(f ;L1, L∞) =
∫ t

0

f∗(s)ds.

Consequently, for any 1 ≤ q ≤ ∞

(L1, L∞)θ,q = Lp,q

where 1
p = 1−θ

1 + θ
∞ , with equivalent quasi-norms. This shows that (5.7) is

equivalent to a norm. In particular (L1, L∞)θ,p = Lp.

Proof. Let w(x) = f(x)|f(x)|−1 (sign of f(x)). Fix t > 0. Let

f0 = 1{|f |>f∗(t)}(f − f∗(t)w) = w1{|f |>f∗(t)}(|f | − f∗(t))
f1 = f − f0.

Note |f1| = |f | ∧ f∗(t). Then let Ωt = {|f | > f∗(t)}. We have

Kt(f ;L1, L∞) ≤ ‖f0‖1 + t‖f1‖∞

≤
∫
Ωt

[|f | − f∗(t)] dm+ tf∗(t)

=
∫ m(Ωt)

0

(f∗(s)− f∗(t)) ds+ tf∗(t)



5.1. THE REAL INTERPOLATION METHOD 127

and hence since m(Ωt) ≤ t and f∗(s) = f∗(t) on [m(Ωt), t], we obtain

Kt(f) ≤
∫ t

0

f∗(s) ds.

Conversely, assume that f = f0 + f1, f0 ∈ L1, f1 ∈ L∞. Clearly m({|f | >
c0 + c1}) ≤ m({|f0| > c0}) +m({|f1| > c1}), and hence for any 0 < ε < 1

f∗(s) ≤ f∗0 ((1− ε)s) + f∗1 (εs),

so that∫ t

0

f∗(s)ds ≤
∫ t

0

f∗0 ((1− ε)s) ds+
∫ t

0

f∗1 (εs)ds

≤
∫ t

0

f∗0 ((1− ε)s)ds+ tf∗1 (0)

≤ (1− ε)−1‖f∗0 ‖1 + t‖f∗1 ‖∞ = (1− ε)−1‖f0‖1 + t‖f1‖∞.

Taking the limit when ε→ 0 and the infimum over f0, f1 yields∫ t

0

f∗(s) ds ≤ Kt(f ;L1, L∞).

To complete the proof it suffices to prove

(5.8) ‖f‖p,q ≤ ‖f‖(L1,L∞)θ,q ≤ θ
−1‖f‖p,q,

where 1− θ = p−1 (and hence θ−1 = p′).
Let f∗∗(t) = t−1

∫ t
0
f∗(s)ds. Note that f∗(t) ≤ f∗∗(t), and hence

‖f‖p,q = ‖t1−θf∗‖Lq( dtt ) ≤ ‖t
1−θf∗∗‖Lq(t−1dt).

For the converse direction, we write
∫ t

0
f∗(s)ds =

∫ 1

0
f∗(st)t ds, so that f∗∗(t) =∫ 1

0
f∗(st)ds. Then by Jensen’s inequality (since q ≥ 1) we have

‖t1−θf∗∗‖Lq(t−1dt) ≤
∫ 1

0

‖t1−θf∗(st)‖Lq(t−1dt)ds

= ‖t1−θf∗(t)‖Lq(t−1dt)

∫ 1

0

sθ−1ds = θ−1‖f‖p,q,

which proves (5.8).

Remark. With the preceding notation, since (5.7) is equivalent to a norm, for
some constant C = C(p, q) we have:

(5.9) ‖f∗‖p,q ≤ ‖f∗∗‖p,q ≤ C‖f∗‖p,q ,

where ‖ ‖p,q denotes the quasi-norm in Lp,q((0,∞), dt). Indeed, this can be
verified by Jensen’s inequality as we just did to prove (5.8).
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Lemma 5.4. If µ is non-atomic, for any f in L1 + L∞ we have∫ t

0

f∗(s)ds = sup


∫
E

|f |dµ | µ(E) = t

 .

Proof. It is easy to check that (1Ef)∗(s) = 0 for all s > µ(E) and also that
(1Ef)∗(s) ≤ f∗(s) for all s > 0. Therefore,∫

E

|f |dµ =
∫ ∞

0

(1Ef)∗(s)ds ≤
∫ t

0

f∗(s)ds.

This yields

(5.10) sup
µ(E)=t

∫
E

|f |dµ ≤
∫ t

0

f∗(s)ds.

If µ{|f | = f∗(t)} = 0, the converse inequality is easy: we have |{f∗ > f∗(t)}| =
µ({|f | > f∗(t)}) = t and hence the choice of E = {|f | > f∗(t)} shows that
(5.10) is an equality. If µ{|f | = f∗(t)} > 0, a little more care is needed. We
have µ({|f | > f∗(t)}) ≤ t ≤ µ({|f | ≥ f∗(t)}). We will use the assumption that
µ is non-atomic to select a set E such that {|f | > f∗(t)} ⊂ E ⊂ {|f | ≥ f∗(t)},
with µ(E) = t. Let t′ = µ{|f | > f∗(t)}. Since |f | and f∗ have the same
distribution and {f∗ > f∗(t)} = [0, t′), we have then∫

{|f |>f∗(t)}
|f |dµ =

∫ t′

0

f∗ds

and hence∫
E

|f |dµ ≤
∫
{|f |>f∗(t)}

|f |dµ+(t−t′)f∗(t) =
∫ t′

0

f∗ds+(t−t′)f∗(t) =
∫ t

0

f∗(s)ds.

More generally, using a suitable version of the reiteration theorem for the
real method we have

Theorem 5.5. Consider 0 < p0, q0, p1, q1 ≤ ∞. Assume p0 6= p1. Then, for
any 0 < θ < 1 and 0 < q ≤ ∞,

(Lp0,q0 , Lp1,q1)θ,q = Lpθ,q

with equivalent norms, where

1/pθ = (1− θ)/p0 + θ/p1.

In particular, (Lp0 , Lp1)θ,q = Lpθ,q, and the latter space coincides with Lpθ if
q = pθ. Moreover, if p0 = p1 = p then we have

(Lp,q0 , Lp,q1)θ = Lp,qθ

with equivalent norms where 1/qθ = (1− θ)/q0 + θ/q1.
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Remark. Historically, the preceding result was inspired by, and appears as an
abstract version of the Marcinkiewicz interpolation Theorem (see Theorem 8.51
above). It implies it as an easy corollary: if an operator is bounded both
from Lp0 to Lp0,∞ and from Lp1 to Lp1,∞ (p0 6= p1), then it is bounded from
(Lp0 , Lp1)θ,p to (Lp0,∞, Lp1,∞)θ,p, and hence, choosing p = pθ, we conclude, by
the preceding Theorem that it is bounded from Lpθ to itself.

Remark 5.6. Let (B0, B1) be a compatible pair. Let 0 < θ < 1, 1 ≤ q ≤ ∞
and let p be determined by p−1 = 1 − θ. Consider x ∈ B0 + B1 and let
fx(t) = t−1Kt(x;B0, B1). It is not difficult to check that there is a positive
constant C = C(p, q) such that for any x in B0 +B1 we have

C−1‖fx‖Lp,q([0,∞)) ≤ ‖x‖(B0,B1)θ,q ≤ C‖fx‖Lp,q([0,∞)).

Indeed, assume for simplicity that t 7→ Kt(x) is differentiable with derivative
K ′t(x). Then since t 7→ Kt(x) is concave, K ′t(x) is non-increasing, so this equiv-
alence follows from (5.9) with t 7→ K ′t(x) in place of f∗.

We will use several times the following result.

Theorem 5.7. Let 1 ≤ p < ∞ and 0 < θ < 1. Let (B0, B1) be a compatible
pair and let (Ω, µ) be any measure space.

(i) Then

(5.11) (Lp(µ;B0), Lp(µ;B1))θ,p = Lp(µ; (B0, B1)θ,p)

with equivalent norms.

(ii) More generally, if 1 ≤ p0 6= p1 ≤ ∞ are such that 1−θ
p0

+ θ
p1

= 1
p , then

(5.12) (Lp0(µ;B0), Lp1(µ;B1))θ,p = Lp(µ; (B0, B1)θ,p)

with equivalent norms.

Proof. The proof of (i) is rather easy. For simplicity we write Lp(B) instead of
Lp(µ;B). Let f ∈ Lp(B0) + Lp(B1). We will show

2−1/p′Kt(f ;Lp(B0), Lp(B1)) ≤
(∫

Kt(f(ω);B0, B1)pdµ(ω)
)1/p

(5.13)

≤ Kt(f ;Lp(B0), Lp(B1)).

Indeed, if f = f0 + f1 with fj ∈ Lp(Bj) (j = 0, 1) then

Kt(f(ω);B0, B1) ≤ ‖f0(ω)‖B0 + t‖f1(ω)‖B1

from which the second inequality in (5.13) is immediate. To prove the first
inequality, fix ε > 0, and let f(ω) = f0(ω)+f1(ω) be such that f0, f1 are Bochner
measurable and such that ‖f0(ω)‖B0 + t‖f1(ω)‖B1 ≤ (1 + ε)Kt(f(ω);B0, B1).
We have then∥∥‖f0(·)‖B0 + t‖f1(·)‖B1

∥∥
p
≤ (1 + ε)‖Kt(f(·);B0, B1)‖p,
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and then using

‖f0‖Lp(B0) + t‖f1‖Lp(B1) ≤ 21/p′‖(‖f0(·)‖pB0
+ ‖tf1(·)‖pB1

)1/p‖p
≤ 21/p′

∥∥(‖f0(·)‖B0 + t‖f1(·)‖B1)
∥∥
p

the first inequality in (5.13) follows immediately. Clearly, (5.13) implies (5.11)
by integration.

Remark. More generally, the same argument yields that for any q ≥ p (resp.
q ≤ p) we have a bounded inclusion

(Lp(B0), Lp(B1))θ,q ⊃ Lp((B0, B1)θ,q)
(resp. (Lp(B0), Lp(B1))θ,q ⊂ Lp((B0, B1)θ,q)).

This follows again by integration but using the fact (“Hölder–Minkowski”) that
Lq(dtt , Lp) ⊃ Lp(Lq(

dt
t )) (resp. Lq(dtt , Lp) ⊂ Lp(Lq(

dt
t ))). See [119] for more on

this.

Remark 5.8. When p1 =∞, (5.12) becomes

(5.14) (Lp0(B0), L∞(B1))θ,p = Lp((B0, B1)θ,p).

Recall however that L∞(B1) is defined as the space of essentially bounded
Bochner measurable B1-valued functions. This is rather restrictive in certain
“concrete” situations. To extend the scope of (5.14) we record here a simple
observation: Assume L∞(B1) isometrically embedded in an priori larger space
L of B1-valued functions (or classes of functions), for instance L = Λ∞(B1).
Intuitively, L is formed of bounded B1-valued functions but measurable in a
broader sense, and we assume that L∞(B1) ⊂ L is formed of those elements in
L that are Bochner measurable. Assume B0 ⊂ B1. Then, for any x that is a
Bochner measurable B1-valued function we have

∀t > 0 Kt(x;Lp0(B0), L∞(B1)) = Kt(x;Lp0(B0),L).

Indeed, if x = x0 + x1 with x0 ∈ Lp0(B0) and x1 ∈ L, then a fortiori x0 ∈
Lp0(B1), so that x1 = x − x0 is Bochner-measurable as a B1-valued function
and hence automatically in L∞(B1). Consequently, the norms of such an x in
the (θ, q) interpolated spaces is the same for the two pairs (Lp0(B0), L∞(B1))
and (Lp0(B0),L). We will use this for the following example: B1 = L∞(`∞(B))
and L = `∞(L∞(B)). Note that with our (Bochner sense) definition of L∞(B),
when we take as measure space N equipped with the counting measure, the
space L∞(B) is in general smaller than `∞(B), but the latter coincides in that
case with Λ∞(B).

We will use later (especially in Chapter 6) the real interpolation analogue of
the reiteration theorem, as follows (cf. [5, p. 50]).
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Theorem 5.9. Let (B0, B1) be a compatible couple of Banach spaces. Let 0 <
θ0 6= θ1 < 1 and 1 ≤ q0, q1 ≤ ∞. Consider the couple X0, X1 where

Xj = (B0, B1)θj ,qj j = 0, 1.

Then for any 0 < θ < 1 and 1 ≤ q ≤ ∞ we have

(X0, X1)θ,q = (B0, B1)τ,q

(with equivalent norms) where 0 < τ < 1 is determined by (1− θ)θ0 + θθ1 = τ .

Remark 5.10. The reiteration theorem can be viewed as an “abstract” version
of the Marcinkiewicz theorem: Indeed this implies that if 1 ≤ p0 < p1 <∞ and
1 ≤ q ≤ ∞ we have

(Lp0∞, Lp1∞)θ,q = (Lp0,1, Lp11)θ,q = (Lp0 , Lp1)θ,q.

Therefore, if T : Lpj → Lpj∞ is bounded for j = 0, 1, it must be also bounded
from (Lp0 , Lp1)θ,q to itself for any 0 < θ < 1 and any 1 ≤ q ≤ ∞. Choosing q
so that 1

q = 1−θ
p0

+ θ
p1

we find that T is bounded on Lq for any p0 < q < p1.

Remark. The “Holmstedt formula” expresses the K-functional for the reiterated
pair (X0, X1) in terms of the K-functional for the original pair (B0, B1). See
[5] for details on this very useful formula.

Note that it is crucial that θ0 6= θ1 in order to obtain that (X0, X1)θ,q does
not depend on q0 or q1. In case θ0 = θ1, the result is as follows (see [5, p. 51
and p. 112].

Theorem 5.11. With the notation of Theorem 5.9, assume now that 0 < θ0 =
θ1 < 1. In that case, we have

(X0, X1)θ,q = Bτ,q

(with equivalent norms) where τ is as before, but q is now restricted to satisfy
1
q = 1−θ

q0
+ θ

q1
.

The extremal endspaces (B0, B1)θ,1 and (B0, B1)θ,∞ (recall (5.3)) play a
very important rôle in real interpolation. The next Lemma helps to recognize
when a space is intermediate between them.

Lemma 5.12. Let B be any Banach space. Consider an operator T : B0∩B1 →
B. Fix 0 < θ < 1. If, for any x ∈ B0 ∩B1, we have

‖Tx‖B ≤ ‖x‖1−θB0
‖x‖θB1

,

then T extends to a bounded operator from (B0, B1)θ,1 to B with

‖T : (B0, B1)θ,1 → B‖ ≤ C,

where C is a constant depending only on θ.
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The duality for the real method is given by the following.

Theorem 5.13. Let (B0, B1) be a compatible couple of Banach spaces. Assume
that B0 ∩B1 is dense in both B0 and B1, so that the pair (B∗0 , B

∗
1) is naturally

compatible. Then, for any 0 < θ < 1 and 1 ≤ q < ∞, setting as usual q′ =
q/(q − 1), we have

(B0, B1)∗θ,q = (B∗0 , B
∗
1)θ,q′ ,

with equivalent norms.

The next result gives the main general known connection between the two
methods.

Theorem 5.14. Let (B0, B1) be a compatible couple of complex Banach spaces.
Then, for any 0 < θ < 1, the following bounded inclusions hold

(B0, B1)θ,1 ⊂ (B0, B1)θ ⊂ (B0, B1)θ,∞.

5.2 Dual and self-dual interpolation pairs

Let B be a reflexive Banach space. Assume given a continuous injection

T : B → B∗

that is self-dual, i.e. such that

(5.15) ∀x, y ∈ B T (x)(y) = T (y)(x).

For any x in B, we set

‖x‖0 = ‖x‖B and ‖x‖1 = ‖Tx‖B∗ ,

and we denote by B1 the completion of the normed space (B, ‖ · ‖1). We have
a canonical inclusion B0 ⊂ B1 that allows us to view (B0, B1) as a compatible
pair of Banach spaces.

Note that, since B is reflexive and T = T ∗ by (5.15), T injective implies that
T has dense range. We have an isometric isomorphism

Φ: B1 → B∗

defined by first setting Φ(x) = Tx for x ∈ B, observing that this is isometric
(with B equipped with ‖ · ‖1) and then noting that B and T (B) are dense
respectively in B1 and B∗.

Theorem 5.15. In the above situation, let 0 < θ < 1 and 1 ≤ q <∞.

(i) In the complex case, we have isometrically

(B0, B1)∗θ ' (B0, B1)1−θ.

In particular, (B0, B1)1/2 is isometric to its dual.
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(ii) In the real case, we have isomorphically

(B0, B1)∗θ,q ' (B0, B1)1−θ,q′ .

In particular B1/2,2 is isomorphic to its dual.

Proof. The key is simply to observe that the pair (B∗0 , B
∗
1) can be identified

with (B1, B0). Indeed, consider ϕ ∈ (B0 ∩B1)∗ = B∗. Obviously

(5.16) ‖ϕ‖B∗0 = ‖ϕ‖B∗ .

Also ϕ ∈ B∗1 with norm c iff we have |ϕ(y)| ≤ c‖y‖B1 = c‖T (y)‖B∗ for any y in
B, or equivalently by Hahn–Banach, iff there is b in B with ‖b‖ ≤ c such that
ϕ(y) = T (y)(b) for any y in B. In other words, we have ϕ = T ∗b with ‖b‖ ≤ c.
Since we assume (5.15) we have T = T ∗ and hence we find B∗1 = T (B) with

(5.17) ‖ϕ‖B∗1 = ‖T−1ϕ‖B .

From (5.16) (resp. (5.17)) we see that the mapping T : B → B∗ extends (si-
multaneously) to an isometric isomorphism from B1 to B∗0 (resp. B0 → B∗1).
From this it is clear that T defines an isometric isomorphism from (B0, B1)θ to
(B∗1 , B

∗
0)θ and by Theorem ?? we have (B∗1 , B

∗
0)θ = (B1, B0)∗θ = (B0, B1)∗1−θ.

This completes the proof of (i). In the real case, the proof is the same but now
we use Theorem 5.13.

Remark 5.16. A slightly different but equivalent viewpoint consists in using
the map T : B → B∗ to define the compatibility of the couple (B,B∗). Let
(β0, β1) be the resulting interpolation pair. It is easy to check that T extends
(by density) to an isometric isomorphism from (B0, B1)θ to (β0, β1)θ and also
from (B0, B1)θ,q to (β0, β1)θ,q for all 0 < θ < 1 and 1 ≤ q ≤ ∞.

Remark 5.17. Let v : B∗ → α1 be an isometric (resp. isomorphic) isomorphism
from B∗ onto another Banach space α1. Note that if we replace T by vT
then the pair (B0, B1) is unchanged (resp. except for an equivalent norm on
B1). Therefore, the resulting complex (real) interpolation spaces are identical
(resp. isomorphic). Moreover, since the symmetry of T was not used there, the
preceding remark remains valid: If we set α0 = B and use vT : α0 → α1 to define
compatibility, then vT extends to an isometric isomorphism from (B0, B1)θ
to (α0, α1)θ and also from (B0, B1)θ,q to (α0, α1)θ,q for all 0 < θ < 1 and
1 ≤ q ≤ ∞.

The Hilbert space self-duality is the classical illustration of the preceding
principle:

Proposition 5.18. Let B and T be as above.

(i) In the real case, assume T (x)(x) ≥ 0 for all x in B. Then B1/2,2 is iso-
morphic to a Hilbert space and, when restricted to B, its norm is equivalent
to x 7→ T (x)(x)1/2.



134 CHAPTER 5. THE REAL INTERPOLATION METHOD

(ii) In the complex case, assume there is an isometric antilinear involution
J : B∗ → B∗ such that T (x)(Jx) ≥ 0 for all x in B. Then B1/2 is
isometric to a Hilbert space and

∀x ∈ B ‖x‖B1/2 = (T (x)(Jx))1/2.

Proof. Recall that since T is injective and symmetric its range is dense. We will
prove the complex case. We have a bilinear map Φ: (x, y)→ T (x)(y) that is of
norm ≤ 1 both on B0 ×B1 and on B1 ×B0. By the fundamental interpolation
property (see Theorem ??), we have ‖Φ: Bθ×B1−θ → C‖ ≤ 1 and in particular

∀x, y ∈ B |T (x)(y)| ≤ ‖x‖B1/2‖y‖B1/2

and if y = Jx

|T (x)(Jx)| ≤ ‖x‖2B1/2
.

Thus we find

(5.18) ‖x‖H ≤ ‖x‖B1/2

where, by definition, we set ‖x‖H = T (x)(Jx). Let H be the completion of
(B, ‖ · ‖H). By the duality (5.18) implies

(5.19) ‖x‖B∗1/2 ≤ ‖x‖H

and since, by (i) in Theorem 5.15, B∗1/2 = B1/2 we conclude from (5.18) and
(5.19) that equality holds in (5.18). This shows that B1/2 = H. The proof of
the real case is entirely similar.

For example, the preceding statement applies to the pair

(`n1 , `
n
∞)

with T : `n1 → `n∞ the identity map. We recover the identity (`n1 , `
n
∞)1/2 = `n2

and (uniformly over n)
(`n1 , `

n
∞)1/2,2 ' `n2 .

Note however that Theorem 5.15 is quite interesting also when there is no
Hilbert space in the picture (we will use the next example in Chapter 7):

Example 5.19. Let vn1 denote Kn equipped with the norm

‖x‖vn1 = |x1|+ |x2 − x1|+ · · ·+ |xn − xn−1|.

We consider the interpolation spaces (vn1 , `
n
∞)θ,q and (vn1 , `

n
∞)θ (0 < θ < 1, 1 ≤

q ≤ ∞). Let p = (1− θ)−1. We denote

Wn
p,q = (vn1 , `

n
∞)p,q and Wn

p =Wp,p.
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Note that ‖x‖vn1 = ‖Tx‖`n1 where

(5.20) Tx = (xn − xn−1, xn−1 − xn−2, . . . , x2 − x1, x1).

Note that T satisfies (5.15) with respect to the canonical duality on Kn (equiv-
alently the matrix of T is symmetric). Note that by (5.1) we have isometrically

Wn
p,q = (`n∞, v

n
1 )1−θ,q.

Therefore (exchanging the rôles of vn1 and `n∞ for convenience) Theorem 5.15
yields:

Corollary 5.20. In the complex case we have isometrically (vn1 , `
n
∞)∗θ =

(vn1 , `
n
∞)1−θ and in particular (vn1 , `

n
∞)1/2 is isometric to its dual, via the map-

ping T : (vn1 , `
n
∞)1−θ → (vn1 , `

n
∞)∗θ defined in (5.20).

Let (e1, . . . , en) denote the canonical basis in Kn and let (e∗1, . . . , e
∗
n) be the

biorthogonal functionals in (Kn)∗.

Corollary 5.21. For all 1 < p < ∞ and 1 ≤ q ≤ ∞ there is a constant C
(independent of n) such that

‖T : Wn
p′,q′ → (Wn

p,q)
∗‖ ≤ C and ‖T−1 : (W∗p,q)n →Wn

p′,q′‖ ≤ C.

Moreover, if we let σj =
∑j

1 ek (1 ≤ j ≤ n) then for all x in Kn we have

(5.21)
1

2C

∥∥∥∑n

1
xje
∗
j

∥∥∥
(Wn

p,q)
∗
≤
∥∥∥∑n

1
xjσj

∥∥∥
Wn
p′,q′

≤ 2C
∥∥∥∑n

1
xje
∗
j

∥∥∥
(Wn

p,q)
∗

Proof. The first part is but a particular case of Theorem 5.15. Let x = Ty,
y ∈ Kn. We have

(5.22)
1
C

∥∥∥∑ yjej

∥∥∥
Wn
p′,q′

≤
∥∥∥∑xje

∗
j

∥∥∥
(Wn

p,q)
∗
≤ C

∥∥∥∑ yjej

∥∥∥
Wn
p′,q′

.

Let V : Kn → Kn be defined by V (z1, . . . , zn) = (zn, . . . , z1). Note that
‖V z‖vn1 ≤ 2‖z‖vn1 , V is an isometry on `n∞ and V = V −1, therefore we have

∀z ∈ Kn 2−1‖z‖Wn
p′,q′
≤ ‖V z‖Wn

p′,q′
≤ 2‖z‖Wn

p′,q′
.

But then we have

y = T−1x = (xn, xn + xn−1, . . . , xn + · · ·+ x1) = V
∑n

1
xjσj .

Therefore

2−1
∥∥∥∑n

1
xjσj

∥∥∥
Wn
p′,q′

≤ ‖y‖Wn
p′,q′
≤ 2

∥∥∥∑n

1
xjσj

∥∥∥
Wn
p′,q′

and (5.21) follows from (5.22).
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5.3 Notes and Remarks

The material in this chapter is classical. The basic reference is [5] and also [35].
For real interpolation, see [10] and also [6].

The complex interpolation method was introduced independently by A.
Calderón and J.L. Lions around 1960. While Lions wrote nothing but the
Comptes Rendus note [193], Calderón published a very detailed, very thorough
account of all aspects of his theory. His memoir [111] remains must reading for
anyone interested in the subject.

In turn, J.L. Lions concentrated his efforts on the real interpolation in col-
laboration with J. Peetre, see notably [194]. Later on, Peetre introduced the
K- and J-method that replaced advantageously the Lions–Peetre methods and
have been tremendously successful in analysis and approximation theory.

The self-duality results in §5.2 go back to the early days of interpolation, both
real and complex. However, the original versions required extra assumptions
such as e.g. reflexivity, that were lifted later on. See [256] and the references
there for the state of the art in that direction. Corollaries 5.20 and 5.21 go back
to some 1974 discussions with Bernard Maurey.



Chapter 6

The strong p-variation of
scalar valued martingales

This chapter is based on [236].
Let 0 < p < ∞ and let x = (xn) be a sequence in a Banach space B. The

strong p-variation of x = (xn), denoted by Vp(x), is defined as follows

Vp(x) = sup

‖x0‖p +
∑
j≥1

‖xn(j) − xn(j−1)‖p
1/p

where the supremum runs over all increasing sequences of integers 0 = n(0) <
n(1) < n(2) < . . . . We denote by vp(B) the space of all sequences x = (xn)
such that Vp(x) <∞. When B = R, we set vp = vp(R).
Note that for all 0 < p < q <∞ we have

(6.1) Vq(x) ≤ Vp(x).

Clearly, when p ≥ 1, the spaces vp(B) and vp are Banach spaces. The
extreme cases p = ∞ and p = 1 are especially simple. Indeed, the analogue of
Vp(x) for p = ∞ is equivalent to supn≥0 ‖xn‖, so it is natural to set v∞(B) =
`∞(B). As for p = 1, the triangle inequality shows that

V1(x) = ‖x0‖+ ‖x1 − x0‖+ ‖x2 − x1‖+ · · ·

so that v1(B) is just the space of sequences in B with bounded variation.
We will make crucial use of real interpolation. Consider a measure space

(Ω,A, µ) and a Banach space B. For simplicity of notation we set Lp(B) =
Lp(Ω, µ,A;B). Let (B0, B1) be an interpolation pair of Banach spaces. Consider
the interpolation pair (Lp0(B0), Lp1(B1)) where 1 ≤ p0 6= p1 ≤ ∞. Let 0 < θ <
1 and 1

p = 1−θ
p0

+ θ
p1

. By (5.12) we have

(6.2) Lp((B0, B1)θ,p) = (Lp0(B0), Lp1(B1))θ,p,

137
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with equivalent norms.
In this chapter the couple (v1(B), `∞(B)) plays the central rôle. Let 1 <

p <∞ and θ = 1− 1/p. We denote

Wp,q(B) = (v1(B), `∞(B))θ,q (0 < θ < 1, 1 ≤ q ≤ ∞).

We also set
Wp(B) =Wp,p(B).

We now apply (6.2) to the couple (v1(B), `∞(B)). This gives us assuming
p = (1− θ)−1 (i.e. 1

p = 1−θ
1 + θ

∞ ):

(6.3) Lp(Wp(B)) = (L1(v1(B)), L∞(`∞(B)))θ,p

with equivalent norms. The connection between Wp(B) and the strong p-
variation lies in the following.

Lemma 6.1. If 1 < p < ∞ and 1 − θ = 1
p , then Wp(B) ⊂ vp(B) and this

inclusion has norm bounded by a constant K(p) depending only on p.

Proof. This is easy to prove. Indeed for any fixed sequence 0 = n(0) < n(1) <
. . . we introduce the operator T : v1(B)→ `1(B) defined by

T (x) = (x0, xn(1) − x0, . . . , xn(k) − xn(k−1), . . .).

This has clearly norm ≤ 1. On the other hand, considered as operator from
`∞(B) into `∞(B), T has norm ≤ 2. Therefore it follows from the interpolation
theorem (cf. Theorem 5.2 above), that T has norm ≤ 2 as an operator from
Wp(B) into (`1(B), `∞(B))θ,p. By Theorem 5.7, this space can be identified
with `p(B) with an equivalent norm. This yields (for some constant K(p))(

‖x0‖p +
∑
‖xn(k) − xn(k−1)‖p

)1/p

≤ K(p)‖x‖Wp(B),

and the announced result clearly follows from this.

In this chapter we study the strong p-variation of scalar martingales. We will
return to the B-valued case in a later chapter. Our main result is the following

Theorem 6.2. Assume 1 ≤ p < 2.

(i) There is a constant Cp such that every martingale M = (Mn)n≥0 in Lp
satisfies (with the convention M−1 ≡ 0)

EVp(M)p ≤ (Cp)p
∑

n≥0
E|Mn −Mn−1|p.

(ii) More generally, if 1 ≤ r ≤ p, there is a constant Cpr such that every
martingale M = (Mn)n≥0 in Lr satisfies

‖Vp(M)‖r ≤ Cpr

∥∥∥∥∥∥∥
∑
n≥0

|Mn −Mn−1|p
1/p

∥∥∥∥∥∥∥
r

.
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Throughout the sequel, we will set by convention M−1 = 0 whenever M =
(Mn)n≥0 is a martingale. All the r.v.’s are assumed to be defined on a given
probability space (Ω,A,P). We will need the following key lemma.

Lemma 6.3. For any martingale M in L2, we have

‖M‖(L1(v1),L∞(`∞)) 1
2∞
≤ 2

∑
n≥0

E|Mn −Mn−1|2
1/2

.

Note that by orthogonality we have

(6.4)
∑
n≥0

E|Mn −Mn−1|2 = sup
n≥0

E|Mn|2.

Proof of Lemma 6.3. Given a sequence of r.v.’s X = (Xn)n≥0, we denote simply
by Kt(X) the Kt-norm of X with respect to the couple (L1(v1), L∞(`∞)).
Explicitly, assuming that (Xn) converges a.s., we have

(6.5) Kt(X) = inf

‖X0
0‖1 +

∑
n≥1

‖X0
n −X0

n−1‖1 + t sup
n
‖X1

n‖∞


where the infimum runs over sequences of r.v.’s X0 and X1 such that Xn =
X0
n + X1

n for all n ≥ 0. Note that the assumed a.s. convergence allows us to
invoke Remark 5.8 with Λ1 = `∞(L∞).

Let (Mn) be a martingale, relative to an increasing sequence of σ-algebras
(An)n≥0, and let 0 ≤ T0 ≤ T1 ≤ . . . be a sequence of stopping times (relative
to (An)n≥0) with values in N ∪ {∞}. We assume that (Mn) is bounded in
L2, hence Mn converges a.s. (and in L2) to a limit denoted by M∞ which is
in L2. Moreover, we have Mn = E(M∞|An) and MT = E(M∞|AT ) for any
stopping time T with values in N ∪ {∞}. Therefore, the sequence (MTk)k≥0 is
a martingale, and (6.4) implies

E

|MT0 |2 +
∑
k≥1

|MTk −MTk−1 |2
 ≤ sup E|MTk |2(6.6)

≤ E|M∞|2 =
∑
n≥0

E|Mn −Mn−1|2,

To prove Lemma 6.3, we may assume for simplicity that ‖M∞‖2 ≤ 1. Then we
define by induction starting with T0 = inf{n ≥ 0, |Mn| > t−1/2},

T1 = inf{n > T0, |Mn −MT0 | > t−1/2}
...

Tk = inf{n > Tk−1, |Mn −MTk−1 | > t−1/2}
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and so on. As usual, we make the convention inf ∅ = +∞, i.e., we set Tk = +∞
on the set where

sup
n>Tk−1

|Mn −MTk−1 | ≤ t−1/2.

Clearly {Tk} is increasing sequence of stopping times so that (6.6) holds. We
note that if T0(ω) <∞ then |MT0(ω)(ω)| ≥ t−1/2 and

(6.7) if Tk(ω) <∞ and k ≥ 1 then (MTk −MTk−1)(ω) ≥ t−1/2.

Moreover, we have for all k ≥ 0

(6.8) sup
Tk≤n<Tk+1

|Mn −MTk | ≤ t−1/2 a.s. and sup
n<T0

|Mn| ≤ t−1/2 a.s.

Hence, we can write Mn = X0
n +X1

n, with X0, X1 defined as follows

X0
n =

∑
k≥0

1{Tk≤n<Tk+1}MTk

X1
n =

∑
k≥0

1{Tk≤n<Tk+1}(Mn −MTk) + 1{n<T0}Mn.

By (6.8), on one hand we have

(6.9) ‖ sup |X1
n| ‖∞ ≤ t−1/2.

On the other hand, let ∆0 = |MT0 | and ∆k = |MTk −MTk−1 | for k ≥ 1.
We have

(6.10) |X0
0 |+

∑
n≥1
|X0

n −X0
n−1| = 1{T0<∞}∆0 +

∑
k≥1

∆k1{Tk<∞}.

This can be estimated as follows. We have by (6.7)

(6.11) t−1/2
(

1{T0<∞} +
∑

k≥1
1{Tk<∞}

)
≤ ∆01{T0<∞}+

∑
k≥1

∆k1{Tk<∞}.

Let N = 1{T0<∞} +
∑
k≥1

1{Tk<∞}. By Cauchy–Schwarz, (6.11) implies

(6.12) Nt−1/2 ≤ N1/2
(
|∆0|2 +

∑
k≥1
|∆k|2

)1/2

.

Clearly N is finite a.s. (since Mn converges a.s.), (6.12) implies

N1/2 ≤ t1/2
(
|∆0|2 +

∑
|∆k|2

)1/2

and hence by (6.6)

(6.13) (EN)1/2 ≤ t1/2‖M∞‖2 ≤ t1/2.
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Now going back to (6.10) we find again by Cauchy–Schwarz and (6.13)

E
(
|X0

0 |+
∑

n≥1
|X0

n −X0
n−1|

)
≤ (EN)1/2

∥∥∥∥(|∆0|2 +
∑
|∆k|2

)1/2
∥∥∥∥

2

≤ t1/2.

By (6.9) and (6.5), this yields Kt(M) ≤ 2t1/2 so that

‖M‖(L1(v1),L∞(`∞))1/2,∞ ≤ 2.

By homogeneity, this completes the proof of Lemma 6.3.

Proof of Theorem 6.2. Let (An)n≥0 be a fixed increasing sequence of σ-sub-
algebras of A. All martingales below will be with respect to (An)n≥0. For 1 ≤
p ≤ ∞, we will denote by Dp the subspace of `p(Lp) formed of all the sequences
ϕ = (ϕn)n≥0 such that ϕn is An-measurable for all n ≥ 0 and E(ϕn|An−1) = 0
for all n ≥ 1. We first claim that if 1 ≤ p0, p1 ≤ ∞ and if 1

p = 1−θ
p0

+ θ
p1

then

(6.14) Dp = (Dp0 , Dp1)θ,p.

This follows from an argument well known to interpolation theorists. Indeed,
to check this, we first note that by (6.2) we have

(6.15) (Lp0(`p0), Lp1(`1))θ,p = Lp(`p),

with equivalent norms.
We may clearly identify isometrically Lp(`p) and `p(Lp). There is a projection
P : Lp(`p)→ Dp defined by

∀X = (Xn)n≥0 ∈ Lp(`p) P (X) = (ϕn)n≥0

with
ϕ0 = E(X0|A0) and ϕn = E(Xn|An)− E(Xn|An−1).

Clearly, P is a bounded projection onto Dp and

‖P (X)‖Dp ≤ 2‖X‖Lp(`p),

and consequently ‖P (X)‖(Dp0 ,Dp1 )θ,p ≤ 2‖X‖(Lp0 (`p0 ),Lp1 (`p1 ))θ,p . By (6.15),
this implies that for some constant C = C(p0, p1, θ)

‖P (X)‖(Dp0 ,Dp1 )θ,p ≤ C‖X‖L1(`p).

Applying this for X in Dp, we find

(6.16) ‖X‖(Dp0 ,Dp1 )θ,p ≤ C‖X‖Dp .

On the other hand, we have trivially

‖X‖Lpi (`pi ) ≤ ‖X‖Dpi for i = 0, 1
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and hence by interpolation

(6.17) ‖X‖Lp(`p) ≤ C ′‖X‖(Dp0 ,Dp1 )θ,p

for some constant C ′ = C ′(p0, p1, θ).
Combining (6.16) and (6.17), we find the above claim (6.14).
We can now complete the proof of Theorem 6.2 (i).
Let us denote by T the operator which associates to any ϕ in D1 the martin-

gale (Mn)n≥0 defined by Mn =
∑
i≤n

ϕi. Clearly ‖T (ϕ)‖L1(v1) ≤ ‖ϕ‖D1 . On the

other hand, Lemma 6.3 implies that T is bounded from D2 into B1 = (L1(v1),
L∞(`∞)) 1

2∞
, with norm ≤ 2. Therefore if 1 < p < 2 the interpolation The-

orem 5.2 implies that T is bounded from (D1, D2)θ,p into (L1(v1), B1)θ,p. By
the reiteration Theorem 5.9 we have (L1(v1), B1)θ,p = (L1(v1), L∞(`∞))δ,p with
δ = θ/2. Now if θ is chosen so that 1

p = 1− δ, we have by (6.3) and Lemma 6.1

(L1(v1), L∞(`∞))δ,p = Lp(Wp) ⊂ Lp(vp).

On the other hand, by (6.14) we have (since 1−θ
1 + θ

2 = 1
p ) (D1, D2)θ,p = Dp.

Recapitulating, we find a constant C = C(p) depending only on 1 ≤ p < 2 such
that for all ϕ in Dp we have

‖T (ϕ)‖Lp(vp) ≤ C‖ϕ‖Dp .

This establishes the first part of Theorem 6.2.
The second part follows from the standard arguments used to prove the

Burkholder–Davis–Gundy inequalities. We use the general method described in
Lemma 8.20. Let g(ω) = (gn(ω))n≥0 be a martingale in Lr. We set v∞(ω) =
Vp(g(ω)) and for any N ≥ 1 we denote by vN (ω) the strong p-variation of
{g0(ω), . . . , gN (ω)} i.e. the strong p-variation of the restriction of our martingale
to [0, 1, . . . , N ]. Equivalently,vN (ω) is the strong p-variation of (gn∧N (ω))n≥0 .
We set wN = (

∑N
0 |dgk|p)1/p. Applying (i) to the martingale (1{T>0}gn∧T )n≥0,

we find that (8.30) holds for any stopping time T . If we assume |dgn+1| ≤ ψn
for all n ≥ 0 with (ψn) adapted then Lemma 8.20 yields that for any 0 < r < p
we have for some constant C1 = C1(p, r)

(6.18) ‖v∞‖r ≤ C1(‖w∞‖r + ‖ψ∗‖r).

We now invoke Lemma 8.22 (B. Davis decomposition) with r replacing p. This
gives us a decomposition Mn = hn + gn with h0 = 0, |dgn| ≤ 6M∗n−1 and
‖
∑
|dhn|‖r ≤ 6r‖M∗‖r. By (6.18) we have

‖Vp(g)‖r ≤ C ′
(∥∥∥∥(∑ |dgn|p

)1/p
∥∥∥∥
r

+ 6‖M∗‖r
)
,

and since Vp(M) ≤ Vp(g) +
∑
|dhn|, (

∑
|dgn|p)1/p ≤ (

∑
|dMn|p)1/p +

∑
|dhn|

and also ‖
∑
|dhn|‖r ≤ 6r‖M∗‖r, this implies that for some constant C2 =

C2(p, r) we have

‖Vp(M)‖r ≤ C2

(∥∥∥∥(∑ |dMn|p
)1/p

∥∥∥∥
r

+ ‖M∗‖r
)
.
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By the classical Burkholder–Gundy–Davis martingale inequalities (see (8.29)
and (8.36)) and Doob’s inequality (cf. (1.12)) we have for some constant C3 =
C3(r)

‖M∗‖r ≤ C3

∥∥∥∥(∑ |dMn|2
)1/2

∥∥∥∥
r

and hence, since (
∑
|dMn|2)1/2 ≤ (

∑
|dMn|p)1/p, we obtain

‖Vp(M)‖r ≤ C2(1 + C3)
∥∥∥∥(∑ |dMn|p

)1/p
∥∥∥∥
r

. �

The next result is an immediate consequence of Theorem 6.2.

Corollary 6.4. Let 1 ≤ p < 2. Let M = (Mt)t≥0 be a martingale in Lp.
Assume that the paths of M are right continuous and admit left limits and that
the continuous part of M is 0. Let

Vp(M) = sup
0=t0≤t1≤...

|Mo|p +
∑
i≥1

|Mti −Mti−1 |p
1/p

and

Sp(M) =

 ∑
t∈[0,∞[

|Mt −Mt− |p
1/p

.

Then, for all 1 ≤ r <∞, we have for any martingale M in Lr

(6.19) ‖Vp(M)‖r ≤ Cpr‖Sp(M)‖r.

Remark. There are also inequalities similar to Theorem 6.2 (ii) or (6.19) with
a “moderate” Orlicz function space instead of Lr, cf. [101, 108].

Our method gives (with almost no extra effort) a new proof of the following
results of Lépingle [187].

Theorem 6.5. Assume 2 < p < ∞ and 1 ≤ r ≤ p. Then there is a constant
Cpr such that every martingale M = (Mn)n≥0 in Lr satisfies

‖Vp(M)‖r ≤ Cpr‖ supn |Mn| ‖r.

Moreover, there is a constant C ′p such that every martingale M = (Mn)n≥0 in
L1 satisfies

(6.20) ‖Vp(M)‖1,∞ ≤ C ′p supn ‖Mn ‖1.
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Proof. We first consider the particular case r = p. With the above notation,
consider the operator S : L∞ → L∞(`∞) defined for ϕ in L∞ by

S(ϕ) = (E(ϕ|An))n≥0.

Clearly ‖S‖ ≤ 1. Let B0 = (L1(v1), L∞(`∞))1/2,∞. By Lemma 6.3, S is
bounded from L2 into B0. By the interpolation Theorem S must be bounded
from (L2, L∞)θ,p into (B0, L∞(`∞))θ,p (0 < θ < 1, 1 ≤ p ≤ ∞). Now assume
that 1

p = 1−θ
2 + θ

∞ . Then, by (6.2), (L2, L∞)θ,p = Lp. Moreover, by the
reiteration Theorem 5.9

(B0, L∞(`∞))θ,p = (L1(v1), L∞(`∞))ωp

for ω = 1−θ
2 +θ = 1+θ

2 . Note that 1−ω
1 + ω

∞ = 1
p , hence by (6.2), the last equality

implies (B0, L∞(`∞))θ,p = Lp(Wp). Recapitulating, we find that S is bounded
from Lp into Lp(Wp) with norm ≤ C1(p) for some constant C1(p) depending
only on p. Let ϕ ∈ Lp and let Mn = E(ϕ|An). Applying Lemma 6.1 again we
conclude that

‖M‖Lp(vp) ≤ K(p)‖M‖Lp(Wp) ≤ K(p)C1(p)‖ϕ‖p.

This proves Theorem 6.5 in the case r = p.
We now turn to the case 1 ≤ r ≤ p. We will argue as above for Theo-

rem 6.2. Consider a martingale (Mn) in Lr. We apply the B. Davis decomposi-
tion (Lemma 8.22) in Lr, i.e. we have M = g+h with h0 = 0, |dgn| ≤ 6M∗n−1 and
‖
∑
|dhn|‖r ≤ 6r‖M∗‖r. We define vn and v∞ as in the proof of Theorem 6.2,

but we set
wn = supk≤n |gn| and w∞ = supn |gn|.

Then applying the first part of the proof (i.e. the case r = p) to the martingale
(1{T>0}gn∧T ), we find that (8.30) holds for any stopping time T . Therefore, by
Lemma 8.20 (note that in our case ψ∗ = 6M∗) there is a constant C4 = C4(p, r)
such that

‖v∞‖r ≤ C4(‖w∞‖r + ‖M∗‖r),

or equivalently

‖Vp(g)‖r ≤ C4(‖g∗‖r + ‖M∗‖r).

But since Vp(M) ≤ Vp(g) +
∑
|dhn|, g∗ ≤ M∗ +

∑
|dhn| and ‖

∑
|dhn|‖r ≤

6r‖M∗‖r we obtain finally

(6.21) ‖Vp(M)‖r ≤ (6r + 6rC4 + C4)‖M∗‖r.

The weak type 1-1 inequality (6.20) is now an easy application of Theorem 8.13
(Gundy’s decomposition). We leave the details as an exercise.
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Remark. Of course, there is also a version of Theorem 6.5 in the case of a
continuous parameter martingale (Mt)t>0.

One can easily derive from Theorems 6.2 and 6.5 (by a classical stopping
time argument) the following analogous “almost sure” statements.

Proposition 6.6. Let M = (Mn) be a martingale with E sup
n≥1
|Mn−Mn−1| <∞.

If 1 ≤ p < 2, then {Vp(M) <∞} a.s.= {
∑
n≥1

|Mn −Mn−1|p <∞}.

Moreover if 2 < p <∞, then {Vp(M) <∞} a.s.= {sup |Mn| <∞}.

Proof. Let Bp = {Vp(M) < ∞}, Ap = {
∑∞

0 |dMn|p < ∞}, and Ap(t) =
{
∑∞

0 |dMn|p ≤ t}. To prove the first assertion it suffices to show that Ap(t) ⊂
Bp for all 0 < t <∞. Fix 0 < t <∞. Let T = inf{n |

∑n
0 |dMn|p > t}. We may

assume M0 = 0 and hence T > 0 and Ap(t) = {T =∞}. Let fn = Mn∧T . Then∑
|dfn|p =

∑
n≤T |dMn|p ≤ t + sup |dMn|p. Therefore (

∑
|dfn|p)1/p ∈ L1. By

(ii) (case r = 1) in Theorem 6.2 Vp((fn)) ∈ L1 and hence Vp((fn)) <∞ a.s., but
on {T =∞} we have (fn) = (Mn) so Ap(t) ⊂ Bp. To prove the second assertion
in case 2 < p <∞ , we set T = inf{n | |Mn| > t} and again fn = Mn∧T . Then
{T = ∞} = {sup |fn| ≤ t}, sup |fn| ≤ t + sup |dMn| and hence sup |fn| ∈ L1.
By Theorem 6.5 (case r = 1), Vp((fn)) ∈ L1 and hence Vp((fn)) < ∞ a.s. and
since (fn) = (Mn) on {T = ∞} we conclude that Vp(M) < ∞ a.s. on the set
{sup |fn| ≤ t}. This proves the second assertion.

6.1 Notes and Remarks

This chapter closely follows [236]. Theorem 6.5 was obtained first by Lépingle
using the Skorokhod embedding of martingales into Brownian motion. Our
proof is very different. Indeed we prove both Theorem 6.5 and Theorem 6.2
using the same idea, combining Lemma 6.3 and reiteration.

There is an extensive literature on the strong p-variation both in probability
theory, function theory and harmonic analysis. We will only give below a few
sample references.

Prior to [236], analogous questions had been considered mainly for sequences
or processes with independent increments (cf. e.g. [92, 209, 210]). For a more
recent approach to Corollary 6.4, see [226]. See [197] for a study of the strong
p-variation of (strong) Markov processes.

See [251] for a more recent result on the strong p-variation of α-stable pro-
cesses for 0 < α ≤ 2 and p > α.

See [18] for more information on the relations between p-variation, differen-
tiability and empirical processes.

See [87, 174, 127] for inequalities analogous to those of this chapter in ergodic
theory.

Note that our subsequent Chapter 7 contains a detailed study of the in-
terpolation spaces (v1, `∞)θ,q that is quite useful to understand the spaces of
functions with strong p-variation finite.
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Chapter 7

Interpolation between
strong p-variation spaces

In chapter 6 we already used interpolation to establish several martingale in-
equalities involving the space vp of scalar sequences with finite “strong p-variation”.
When p = 1 the latter is just the space of sequences with bounded variation. In
this chapter we will focus on the real interpolation space, defined, for 0 < θ < 1,
p = (1− θ)−1 and 1 ≤ q ≤ ∞, by

(7.1) Wp,q = (v1, `∞)θ,q.

In words, we are interested in interpolating between the properties bounded
variation and boundedness. Clearly

v1 ⊂ Wp,q ⊂ `∞.

Remark 7.1. Note that by Theorem 3.10 any intermediate Banach space between
v1 and `∞ is necessarily non-reflexive. Actually, the argument for (iv) ⇒ (i) in
Theorem 3.10 shows that the inclusion map v1 → `∞ is not weakly compact.

7.1 Strong p-variation: The spaces vp and Wp

If we replace v1 by `1 in (7.1) we obtain the Lorentz space `p,q and in particular
if q = p we find the space `p. We will show that although (7.1) is non-reflexive
it behaves in many ways like the spaces `pq and like `p when q = p.
When q = p we write simply

(7.2) Wp =Wp,p.

More generally, for any auxiliary Banach space B we define, again with p =
(1− θ)−1

Wp,q(B) = (v1(B), `∞(B))θ,q,(7.3)
Wp(B) =Wp,p(B) = (v1(B), `∞(B))θ,p.(7.4)

147
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A simple application of interpolation yields:

Lemma 7.2. For any increasing sequence 0 = n(0) < n(1) < n(2) < . . . of
integers and any x in Wp,q(B)

(7.5) ‖(x0, xn(1) − x0, · · · , xn(k) − xn(k−1), · · · )‖`p,q(B) ≤ 21−1/p‖x‖Wp,q(B).

Proof. Indeed, we just apply the fundamental interpolation property (Theorem
5.2) to the operator T defined by T (x) = (x0, xn(1)−x0, · · · , xn(k)−xn(k−1), · · · ).
This is clearly bounded simultaneously from v1(B) to `1(B) (with norm ≤ 1)
and from `∞(B) to `∞(B) (with norm ≤ 2), and hence from Wp,q(B) =
(v1(B), `∞(B))θ,q to `p,q(B) = (`1(B), `∞(B))θ,q (with norm ≤ 21−1/p).

By general interpolation theory (see (5.3) and (5.4)), for all 1 < p < r and
arbitrary 1 ≤ q0, q1 ≤ ∞ we have bounded inclusions

(7.6) Wp,q0(B) ⊂ Wr,q1(B).

This also holds in case p = r, but then only if q1 ≥ q0.
We denote as usual by c0 (resp. c0(B)) the subspace of `∞ (resp. `∞(B))

formed of all sequences that tend to zero. Similarly we will denote by v0
1 (resp.

v0
1(B)) the subspace of v1 (resp. v1(B)) formed of all sequences that tend to

zero. Recall that K denotes the sclars i.e. K = R or K = C. Note that, by
subtracting its limit from a sequence in v1 or in v1(B) we find

(7.7) v1 ' K⊕ v0
1 and v1(B) ' B ⊕ v0

1(B).

The pair (v1, `∞) has a self-dual character that will be crucial in the sequel. Let
us describe this duality. For x ∈ v1, y ∈ `∞ we set

(7.8) 〈x, y〉 = x0y0 +
∑∞

1
(xn − xn−1)yn.

Note that |〈x, y〉| ≤ ||x‖v1‖y‖∞. Moreover, with this duality we have

(v0
1)∗ ' `∞ and (c0)∗ = v1.

More generally, we have

(7.9) v0
1(B)∗ ' `∞(B∗) and c0(B)∗ = v1(B∗)

with respect to the duality defined either for x ∈ v1(B∗) and y ∈ c0(B), or for
x ∈ `∞(B∗) and y ∈ v0

1(B), by

〈x, y〉 = 〈x0, y0〉+
∑∞

1
〈xn − xn−1, yn〉(7.10)

= lim
n→∞

(〈x0, y0 − y1〉+ · · ·+ 〈xn−1, yn−1 − yn〉+ 〈xn, yn〉)(7.11)

=
∑∞

1
〈xn−1, yn−1 − yn〉.(7.12)

More precisely, we have

(7.13) 2−1‖x‖`∞(B∗) ≤ ‖x‖(v01(B))∗ ≤ ‖x‖`∞(B∗) and ‖x‖(c0(B))∗ = ‖x‖v1(B∗).
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Remark. For any sequence x = (xn), let x̂ be the shifted sequence defined by
x̂0 = 0 and x̂n = xn−1 for all n ≥ 1. If x = (xn) and y = (yn) are both finitely
supported, then, taking B = K for simplicity, Abel summation (or integration
by parts) shows 〈x, y〉 = −〈y, x̂〉. A similar identity holds if y (resp. x) is a
B-(resp. B∗)-valued sequence (but this requires exchanging the roles of B and
B∗).

We will now introduce preduals u0
p′ and u0

p respectively for the spaces vp or
vp′ when (we keep this notation throughout)

1 < p, p′ <∞ and
1
p

+
1
p′

= 1.

Recall that for any x in BN, its strong p-variation Vp(x) is defined by

Vp(x) = sup
{(
‖x0‖p +

∑
‖xn(k) − xn(k−1)‖p

)1/p
}

where the supremum runs over all 0 = n(0) < n(1) < · · · . We set

vp(B) = {x ∈ BN | Vp(x) <∞} and ‖x‖vp(B) = Vp(x).

When B = K we denote simply vp = vp(K).
Note that, by the Cauchy criterion, Vp(x) < ∞ implies that xn converges to a
limit x∞ ∈ B when n→∞.
Let

v0
p(B) = vp(B) ∩ c0(B) and v0

p = vp ∩ c0.
Note that

(7.14) ∀x ∈ vp(B) (xn − x∞)n≥0 ∈ v0
p(B).

Let B(N) denote the space of finitely supported functions b = (b(n))n∈N with
b(n) ∈ B for all n. It is easy to see that B(N) is dense in v0

p(B) for any 1 ≤ p <∞
(see the proof of Lemma 7.6 below).

For any b = (b(n)) ∈ B(N) there is a finite partition of N into disjoint intervals
I0, I1, . . . , IN with I0 = [0, n(0)], I1 = ]n(0), n(1)], . . . , IN =]n(N−1), n(N)] and
there are ξ0, . . . , ξN ∈ B such that

(7.15) ∀n ∈ N b(n) =
∑N

0
ξk1Ik(n).

We require that ξN 6= 0 and ξk 6= ξk+1 for all 0 ≤ k < N and we set

[b]p′ =
(∑N

0
‖ξk‖p

′
)1/p′

.

Note that the preceding requirement minimizes
∑
‖ξk‖p

′
.

For any x ∈ (B∗)N we have

〈x, b〉 = 〈xn(0), ξ0〉+
∑N

1
〈xn(k) − xn(k−1), ξk〉
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and hence we have

(7.16) sup{|〈x, b〉| | b ∈ B(N), [b]p′ ≤ 1} = Ṽp(x)

where

Ṽp(x) = sup
0≤n(0)<n(1)<···

{(‖xn(0)‖p + ‖xn(1) − xn(0)‖p + · · · )1/p}.

Note that

(7.17) Vp(x) ≤ Ṽp(x) ≤ 21/p′Vp(x).

Note also that if I0 = [0, n(0)] we have

(7.18) 〈x, ξ01I0〉 = 〈xn(0), ξ0〉.

We then set for any b ∈ B(N)

‖b‖u0
p′ (B) = inf

{∑m

1
[bj ]p′

}
where the infimum runs over all decompositions b =

∑m
1 bj (bj ∈ B(N)). In

other words, ‖ · ‖u0
p′ (B) is the gauge of the convex hull of {b | [b]p′ ≤ 1}. Then

we define the Banach space u0
p′(B) as the completion of B(N) equipped with

this norm. Note that sup ‖b(n)‖ ≤ [b]p′ and hence limn→∞ b(n) = 0 for any b in
u0
p′(B) so that we have a bounded inclusion

u0
p′(B) ⊂ c0(B).

In fact, b ∈ u0
p′(B) iff b can be written as b =

∑∞
1 bj with bj ∈ B(N) such that∑∞

1 [bj ]p′ <∞. Moreover (the inf being over all such decompositions):

‖b‖u0
p′ (B) = inf

∑∞

1
[bj ]p′ .

When B = K, we denote simply

u0
p′ = u0

p′(K).

From (7.16) it is immediate that, with respect to the duality (7.10) we have

(7.19) vp(B∗) = u0
p′(B)∗

with equivalent norms. More explicitly, any x ∈ vp(B∗) defines a linear form
fx on u0

p′(B)∗ by setting fx(b) = 〈x, b〉 for any b ∈ B(N). By (7.16) and (7.17),
the latter form admits a unique bounded extension to an element of u0

p′(B)∗

satisfying
‖x‖vp(B∗) = Vp(x) ≤ ‖fx‖u0

p′ (B)∗ ≤ 21/p′‖x‖vp(B∗).
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Conversely, to any linear form f ∈ u0
p′(B)∗, we associate the sequence (xn) ∈

B∗N defined by f(ξ1[0,n]) = xn(ξ) (for all ξ ∈ B, n ≥ 0). Then, recalling (7.18),
we have f(b) = fx(b) for any b ∈ B(N) and (7.16) again shows that x ∈ vp(B∗)
and of course f = fx. Thus we conclude that the correspondence x 7→ fx
is a surjective isomorphism from vp(B∗) onto u0

p′(B)∗. In this way, we avoid
discussing the possible types of convergence of the series (7.10).

Remark 7.3. By an abuse of notation we will continue to denote by 〈x, y〉 the
duality just established for x ∈ vp(B∗) and y ∈ u0

p′(B). (We adopt that notation
also for x ∈ u0

p′(B
∗) and y ∈ v0

p(B).) Note however, that this is really defined
only when y is finitely supported and extended by density and continuity to the
whole of u0

p′(B).

In particular, vp = (u0
p′)
∗. Thus there is a constant C = C(p) such that for

all x in vp(B∗) we have

(7.20)
1
C
‖x‖vp(B∗) ≤ sup{|〈x, y〉| | y ∈ u0

p′(B), ‖y‖u0
p′ (B) ≤ 1} ≤ C‖x‖vp(B∗).

Moreover, since u0
p′(B)∗ norms u0

p′(B), there is a constant C ′ = C ′(p) such that
for any y in u0

p′(B) we have

(7.21)
1
C ′
‖y‖u0

p′ (B) ≤ sup{|〈x, y〉| | x ∈ v0
p(B∗), Vp(x) ≤ 1} ≤ C ′‖y‖u0

p′ (B).

Indeed, the last equivalence is clear if we replace v0
p(B∗) by vp(B∗) = u0

p′(B)∗,
but if y is supported say in [0, . . . , N ] then for any x in vp(B∗)

〈x, y〉 = 〈PN (x), y〉

where PN (x) = (x0, x1, . . . , xN , 0 . . .) and we have obviously

(7.22) Vp(PN (x)) ≤ 2Vp(x).

From this (7.21) follows easily for all y in u0
p′(B).

Let us denote gy(x) = 〈x, y〉. Then (7.21) can be rewritten

(7.23)
1
C ′
‖y‖u0

p′ (B) ≤ ‖gy‖v0p(B∗)∗ ≤ C ′‖y‖u0
p′ (B).

Remark 7.4. Using the `p,q norm in place of the `p norm in the definition of
[ . ]p′ , we can define analogously the space u0

p,q(B) and if 1 ≤ p, q <∞ the same
argument leads to u0

p,q(B)∗ = vp′,q′(B∗).

By Theorem 3.10 we already know that v0
p (and a fortiori vp) is non-reflexive,

but it is much less obvious that, if 1 < p <∞, it is quasi-reflexive, i.e. of finite
codimension in its bidual. This phenomenon was discovered by James. For that
reason, the space v0

2 is usually denoted by J and called the James space. In fact
we have
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Theorem 7.5. Let 1 < p < ∞ with 1
p + 1

p′ = 1. By Remark 7.3, the duality
(7.8) (or (7.10) in the B valued case) is well defined for x ∈ vp, y ∈ u0

p′ , and
also for x ∈ u0

p′ , y ∈ v0
p. With respect to that duality, we have

(v0
p)∗ = u0

p′ and (u0
p′)
∗ = vp

with equivalent norms. More explicitly, the mapping y 7→ gy (resp. x 7→ fx)
extends to an isomorphism from u0

p′ to (v0
p)∗ (resp. from vp to (u0

p′)
∗). In

particular if X is either u0
p′ , v

0
p or vp we have dim(X∗∗/X) = 1. More generally,

if dim(B) = n then if X = vp(B) or if X = u0
p(B) we have dim(X∗∗/X) = n.

Lemma 7.6. The canonical basis (en) is a basis of v0
p satisfying an upper p-

estimate in the sense of Remark 3.18. In particular, it is a shrinking basis of
v0
p (1 < p <∞).

Proof. By (7.22) we already know that (en) is a basic sequence in v0
p. Let PNx =

(x0, x1, . . . , xN , 0, . . .). Assume Vp(x) <∞. We will show that Vp(x−PNx)→ 0
when N →∞ for any x ∈ v0

p. Choose 0 = n(0) < n(1) < · · · < n(K) such that

Vp(x)p − ε < |x0|p + |xn(1) − x0|p + · · ·+ |xn(K) − xn(K−1)|p.

We have then for any n(K) < n(K + 1) < · · ·∑
j>K
|xn(j) − xn(j−1)|p < ε

and hence if N = n(K)

Vp(x− PNx)p ≤ sup
j≥N
|xj |p + ε,

and since we may assume that N = n(K) is as large as we wish we conclude
that Vp(x− PNx)→ 0 when N →∞ for any x ∈ v0

p.
Note that by (7.17) we have

sup |xj | ≤ 21/p′Vp(x)

and hence
Vp(PNx) ≤ (Vp(x)p + sup |xj |p)1/p ≤ 3Vp(x).

Thus we conclude that (en) is a basis of v0
p. Note that by (7.17) the norm in vp

is equivalent to

max

{
sup |xj |, sup

n(0)<n(1)<···

(∑
|xn(k) − xn(k−1)|p

)1/p
}
.

From this it is easy to see that there is a constant C so that for any sum of
disjoint consecutive blocks b1, . . . , bN on (en) we have

‖b1 + · · ·+ bN‖ ≤ C(‖b1‖p + · · ·+ ‖bN‖p)1/p.

By Remark 3.18 the basis (en) must be shrinking.
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Proof of Theorem 7.5. In the duality (7.8) (recall (7.18)), the vectors σn =∑n
0 ek are biorthogonal to en, i.e. we have 〈ek, σn〉 = 0 for all k 6= n and = 1 if

k = n. By Lemma 7.6, (en) is a shrinking basis for v0
p. Therefore (σn) is a basis

for (v0
p)∗. Note that span(σ0, . . . , σn) = span(e0, . . . , en). By (7.23) we find

(v0
p)∗ = u0

p′ . We already know by (7.19) that vp = (u0
p′)
∗. Thus if X = v0

p we
have X∗∗ = vp and hence by (7.14) dim(X∗∗/X) = 1. If X = vp (resp. X = u0

p′)
then X ' v0

p⊕K (resp. X∗ ' vp ' v0
p⊕K) and hence X∗∗ ' (v0

p)∗∗⊕K ' X⊕K
(resp. X∗∗ ' (v0

p)∗⊕K ' X⊕K). The other assertions are proved similarly.

We will now identify the dual ofWp,q. LetW0
p,q = (v0

1 , c0)θ,q with 1−θ = 1/p.
Note that

(7.24) W0
p,q =Wp,q ∩ c0.

Indeed, since (see (7.7))

v1 ' v0
1 ⊕K and c ' c0 ⊕K.

we obviously have

(7.25) Wp,q ' (v0
1 , c0)θ,q ⊕K

where the second coordinate is x 7→ limxn. Therefore (7.24) follows immedi-
ately.

By general interpolation (see Remark 5.1) v0
1∩c0 is dense inW0

p,q = (v0
1 , c0)θ,q

(0 < θ < 1, 1 ≤ q < ∞), from which it is easy to see that finitely supported
sequences form a dense subspace ofW0

p,q. Thus by (7.25)W0
p,q can be identified

with the closure in Wp,q of the space of finitely supported sequences.

Theorem 7.7. Let (en) denote the canonical basis of K(N), let (e∗n) be the
biorthogonal functionals and let σn =

∑n
0 ej. Let 1 < p < ∞ and 1 ≤ q < ∞.

Then (en) and (σn) each form a basis in W0
p,q. If moreover q > 1, (e∗n) is

a basis of (W0
p,q)
∗. The linear mapping T defined on span[σn] by Tσn = e∗n

(n ≥ 0) extends to an isomorphism from W0
p′,q′ onto (W0

p,q)
∗. In particular,

W0
p′ is isomorphic to (W0

p )∗.

Proof. Each of (en) and (σn) is a basis for both spaces c0 and v0
1 . By interpo-

lation applied to the partial sum operators, it follows that each is also a basis
in W0

p,q for any 1 < p < ∞, 1 ≤ q < ∞. Recall the notion of upper p-estimate
from Remark 3.18. Obviously, (en) satisfies an upper r-estimate in v0

1 for r = 1,
but it also satisfies one in c0 for any r (or say for r = ∞). Therefore, by an
interpolation argument based on Theorem 5.7, it follows that (en) satisfies an
upper r-estimate in W0

p,q for 1 < r < min(p, q). It follows (see Remark 3.18)
that (en) is shrinking in W0

p,q. Equivalently this means that (e∗n) is a basis in
(W0

p,q)
∗. Define T : span[σn] → (W0

p,q)
∗ by T (σn) = e∗n. By Corollary 5.21

there is a constant C (independent of n) such that for any n and any x in
span(σ0, . . . , σn) we have

C−1‖x‖W0
p′,q′
≤ ‖T (x)‖(W0

p,q)
∗ ≤ C‖x‖W0

p′,q′
,
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but since span(σn) and span(e∗n) are dense respectively inW0
p′,q′ and (W0

p,q)
∗, T

extends to an isomorphism from W0
p′,q′ to (W0

p,q)
∗.

Remark 7.8. One can check, arguing as for Theorem 7.5, that dim(X∗∗/X) = 1
when X is any of the spaces W0

p,q or Wp,q with 1 < p <∞ and 1 < q <∞.

Remark 7.9. Moreover, the B-valued analogue of Theorem 7.7 also holds with
the obvious adjustments: the dual space (W0

p,q(B))∗ is isomorphic toW0
p′,q′(B

∗).

The following result will be crucial in the sequel ([75, 235]).

Lemma 7.10. Let 0 < θ < 1, p = (1− θ)−1 and let B be an arbitrary Banach
space. We have bounded inclusions

(v1(B), `∞(B)θ,1 ⊂ vp(B) ⊂ (v1(B), `∞(B))θ,∞(7.26)

(v0
1(B), c0(B))θ,1 ⊂ u0

p(B) ⊂ v0
p(B) ⊂ (v0

1(B), c0(B))θ,∞.(7.27)

Consequently, for any 1 < r < p < s <∞ we have bounded inclusions

(7.28) Wr(B) ⊂ vp(B) ⊂ Ws(B).

Proof. The second inclusion in (7.27), namely u0
p(B) ⊂ v0

p(B) is clear from
the definition of u0

p(B), since for any b as in (7.15) we have obviously Vp(b) ≤
2[b]p. Let us show vp(B) ⊂ Wθ,∞ = (v1(B), `∞(B))θ,∞. Let x ∈ BN with
Vp(x) ≤ 1. Fix t > 1. Then let n(1) = inf{n > 0 | ‖xn − x0‖ ≥ t−(1−θ)},
and let n(2) < n(3) < · · · be defined similarly by n(k) = inf{n > n(k − 1) |
‖xn−xn(k−1)‖ > t−(1−θ)}. Whenever the preceding infimum runs over the void
set we set n(k) =∞ and we stop the process. Since Vp(x) ≤ 1, the process has
to stop at a certain stage k (so that n(k) < ∞ but n(k + 1) = ∞). We have
then on one hand

t−(1−θ)k1/p ≤ (‖xn(1) − x0‖p + · · ·+ ‖xn(k) − xn(k−1)‖p)1/p ≤ 1

and hence k ≤ t. But on the other hand we can decompose x as x = x0 + x1

with x′ = x− x0 and x0 defined by

x0
n = xn(j) if n(j) ≤ n < n(j + 1)

where we set by convention n(0) = 0 and n(k + 1) = ∞. By definition of
n(0) < n(1) < · · · we have ‖x1‖`∞(B) ≤ t−(1−θ) and also (recall k ≤ t)

‖x0‖v1(B) ≤‖x0‖+ ‖xn(1) − x0‖+ · · ·+ ‖xn(k) − xn(k−1)‖

≤(k + 1)1/p′Vp(x) ≤ 2k1/p′ ≤ 2t1/p
′

= 2tθ,

so we find Kt(x; v1(B), `∞(B)) ≤ ‖x0‖v1(B) + t‖x1‖`∞(B) ≤ 3tθ. Thus we con-
clude

‖x‖Wθ,∞(B) ≤ 3‖x‖vp(B).

Note that if x ∈ c0(B) ∩ vp(B) we find x0 and x1 in c0(B) also, so the same
argument gives ‖x‖(v01(B),c0(B))θ,∞ ≤ 3‖x‖v0p(B). That yields the third inclusion
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in (7.27). The inclusion Wθ,1(B) ⊂ vp(B) is an immediate consequence of the
following simple Hölder type inequality

‖x‖vp(B) ≤ ‖x‖1−θv1(B)(2‖x‖`∞(B))θ,

once one recalls Lemma 5.12. Thus we have established (7.26). It only remains
to prove the first inclusion in (7.27). But by duality the latter is equivalent to

u0
p(B)∗ ⊂ (v0

1(B), c0(B))∗θ,1

and by the duality for real interpolation spaces (Theorem 5.13) and by (7.13)
this boils down to

u0
p(B)∗ ⊂ (`∞(B∗), v1(B∗))θ,∞ = (v1(B∗), `∞(B∗))1−θ,∞.

Equivalently, since u0
p(B)∗ = vp′(B∗) this reduces to

vp′(B∗) ⊂ (v1(B∗), `∞(B∗))1−θ,∞

and this is but the second part of (7.26) with B∗, p′, 1− θ in place of B, p, θ.
The last assertion follows from the general fact (see (5.4)) that for an inter-

polation pair (A0, A1) with A0 ⊂ A1, for any 0 < α < θ < β we have bounded
inclusions (A0, A1)α,r ⊂ (A0, A1)θ,1 and (A0, A1)θ,∞ ⊂ (A0, A1)β,s.

We will denote by c(B) ⊂ `∞(B) the subspace formed of all convergent
sequences, equipped with the norm induced by `∞(B).

Note that for any 0 < θ < 1, 1 ≤ q ≤ ∞

(7.29) (v1(B), `∞(B))θ,q = (v1(B), c(B))θ,q,

with identical norms. To check this, we first claim that

(v1(B), `∞(B))θ,q ⊂ c(B).

Indeed, a basic fact in interpolation theory asserts that A0 ∩ A1 is dense in
(A0, A1)θ,q when q < ∞ (see Remark 5.1). Applying this to (A0, A1) =
(v1(B), `∞(B)), we find that A0 = v1(B) is dense in (A0, A1)θ,q, but in our
specific case A0 ⊂ A1, and hence (A0, A1)θ,q is included in the closure of
A0 in A1 and since v1(B) ⊂ c(B), and c(B) is closed in `∞(B), the lat-
ter closure is included in c(B). This proves our claim for q < ∞. But if
q = ∞, we may choose any θ′ with θ < θ′ < 1, then for any finite Q we have
(A0, A1)θ,∞ ⊂ (A0, A1)θ′,Q ⊂ c(B) and we obtain the claim also for q =∞.
Obviously, since v1(B) ⊂ c(B), for any x ∈ c(B) that is also in v1(B) + `∞(B)
we have

Kt(x; v1(B), `∞(B)) = Kt(x; v1(B), c(B))

and hence the norms of x in (v1(B), `∞(B))θ,q and in (v1(B), c(B))θ,q coincide.
Now, from our claim that (v1(B), `∞(B))θ,q ⊂ c(B), (7.29) becomes clear.



156 CHAPTER 7. INTERPOLATION AND STRONG P -VARIATION

Definition. For b = (b(n)) ∈ c(B), let b(∞) = lim b(n) ∈ B. We denote by
up(B) the subspace of c(B) formed of all b = (b(n)) such that

(b(n)− b(∞))n∈N ∈ u0
p.

We equip up(B) with the norm

‖b‖up(B) = ‖b(∞)‖+ ‖(b(n)− b(∞))‖u0
p(B).

Remark 7.11. Thus up(B) ' B ⊕ u0
p(B). In the same decomposition we have

v1(B) ' B ⊕ v0
1(B) and c(B) ' B ⊕ c0(B). Therefore we must have also

(v1(B), c(B))θ,q ' B ⊕ (v0
1(B), c0(B))θ,q

for any 0 < θ < 1 and 1 ≤ q ≤ ∞. In particular (7.27) and (7.29) imply
obviously

(7.30) (v1(B), `∞(B))θ,1 ⊂ up(B) ⊂ vp(B) ⊂ (v1(B), `∞(B))θ,∞.

We recall the notation

Wp(B) = (v1(B), `∞(B))θ,p

with p = (1− θ)−1.

Lemma 7.12. Let 1 < r < p < s < ∞. 0 < α, β < 1 be determined by the
equalities 1

p = 1−α
r + α

∞ and 1
p = 1−β

1 + β
s . Then

Wp(B) = (vr(B), `∞(B))α,p(7.31)
Wp(B) = (v1(B), us(B))β,p(7.32)

with equivalent norms. More generally, for any 1 ≤ q ≤ ∞, we have
Wp,q(B) = (vr(B), `∞(B))α,q and Wp,q(B) = (v1(B), us(B))β,q .

Proof. The key is to use “reiteration”. By Lemma 7.10 the reiteration Theo-
rem 5.9 implies (7.31) and (7.32).

For simplicity, the following definition was kept implicit until now, but we
will need to refer to it.

Let 0 < p < ∞, 1 ≤ q ≤ ∞. We denote by vp,q(B) the space of sequences
x = (xn) in BN such that

Vp,q(x) = sup{‖(x0, xn(1) − xn(0), xn(2) − xn(1), . . .)‖`p,q(B)} <∞

where the supremum runs over all sequences 0 = n(0) < n(1) < n(2) < . . . of
integers, and we equip it with the quasi-norm x 7→ Vp,q(x). Recall here that by
(7.5) (easily extended to p < 1) we have

Vp,q(x) ≤ ‖x‖Wp,q .

The space vp,∞(B) corresponds to the sequences with variation in weak-`p. It
corresponds to an “intersection” between the scales vp,q andWp,q as formulated
in the following lemma:
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Lemma 7.13. For any 1 < p <∞ and any B we have

vp,∞(B) =Wp,∞(B)

with equivalent norms.

Proof. By (7.5) we already observedWp,∞(B) ⊂ vp,∞(B). Conversely, the proof
of (7.26) actually shows vp,∞(B) ⊂ (v1(B), `∞(B))θ,∞ where 1

p = 1− θ.

Let 0 < p <∞, 0 < q ≤ ∞. Let us denote by δp,q(B) the space of sequences
x = (xn) ∈ BN such that the sequence y = (yn), defined by y0 = x0 and
yn = xn − xn−1 for all n ≥ 1, is in `p,q(B). We equip it with the quasi-norm

‖x‖δp,q(B) = ‖y‖`p,q(B).

When 0 < r < 1, the spaces vr behave slightly surprisingly with respect to
interpolation, as the next statement shows.

Theorem 7.14. Let B be any Banach space. Fix 0 < r < 1. Let 0 < θ < 1,
1 ≤ q ≤ ∞. Let p be determined by 1

p = 1−θ
r . Then (vr(B), `∞(B))θ,q can be

described as follows:

(i) If r < p < 1 (i.e. 0 < θ < α) we have

(vr(B), `∞(B))θ,q = δp,q(B)

with equivalent norms.

(ii) If 1 < p <∞ (i.e. α < θ < 1) we have

(vr(B), `∞(B))θ,q =Wp,q(B)

with equivalent norms.

Proof. Let X(α, q) = (vr(B), `∞(B))α,q. Since the operator T taking (xn) to
(x0, x1−x0, · · · , xn−xn−1, · · · ) is bounded simultaneously from vr(B) to `r(B)
and from `∞(B) to itself, it is also bounded (by Theorem 5.2) from X(α, 1) to
(`r(B), `∞(B))α,1 = `1(B). Therefore X(α, 1) ⊂ v1(B). Then, by the same
argument as for Lemma 7.10 we obtain

X(α, 1) ⊂ v1(B) ⊂ X(α,∞)

Therefore, by the reiteration Theorem 5.9 (extended to the quasi-normed case
see [5, p. 67]) for any 0 < γ < 1, 0 < δ < 1 and 1 ≤ q ≤ ∞, we have

(7.33) (vr(B), v1(B))γ,q = (vr(B), `∞(B))θ,q

where θ = γα, and

(7.34) (v1(B), `∞(B))δ,q = (vr(B), `∞(B))θ,q
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where θ = (1 − δ)α + δ
.= α + δ(1 − α). As before, define y = (yn) by y0 = x0

and yn = xn − xn−1 for all n ≥ 1. Since ‖x‖vr(B) = ‖y‖δr(B) for any 0 < r ≤
1, we may identify vr(B) with δr(B), or equivalently with `r(B), so that by
Theorem 5.7 we have

(vr(B), v1(B))γ,q = δp,q(B).

Thus (7.33) implies (i). By definition of Wp,q(B), (7.34) is the same as (ii).

7.2 Type and cotype of Wp

In this section, we will show that the spaces Wp satisfy an analogue of the
Hölder–Minkowski inequality (see Appendix 2 in Chapter 8). The latter refers
to the fact that, assuming 1 ≤ r ≤ p ≤ ∞, for any measure spaces (Ω1, µ1),
(Ω2, µ2) we have a norm 1 inclusion

(7.35) Lr(µ1;Lp(µ2)) ⊂ Lp(µ2;Lr(µ1)).

Note that the reverse inclusion holds when p ≤ r and when p = r, Fubini’s
theorem gives us isometrically

Lp(µ1;Lp(µ2)) ' Lp(µ2;Lp(µ1)) ' Lp(µ1 × µ2).

Although this is very special to (and in some sense characteristic of) Lp-spaces,
it turns out that the space Wp satisfies an analogous property: If r < p we
have a bounded inclusion Lr(Wp) ⊂ Wp(Lr), while if p < r we have the reverse
Wp(Lr) ⊂ Lr(Wp). There is however (necessarily) a singularity when r = p
that reflects the non-reflexivity of Wp.

Theorem 7.15. Let (Ω, µ) be any measure space and B any Banach space.
For simplicity, we write Lp(B) instead of Lp(Ω, µ;B). Let 1 < p <∞. For any
r < p < s we have the following bounded natural inclusions:

Lr(Wp(B)) ⊂ Wp(Lr(B))(7.36)
Wp(Ls(B)) ⊂ Ls(Wp(B)).(7.37)

Proof. We first observe that this can be easily reduced to the case of an atomic
measure space with finitely many atoms, and this allows us to ignore all mea-
surability considerations since we may as well assume Lr = `nr and Ls = `ns . Let
0 < α, β < 1 be as in Lemma 7.12. Now observe that the following inclusions
both hold with norm ≤ 1

Lr(vr(B)) ⊂ vr(Lr(B)) and Lr(`∞(B)) ⊂ `∞(Lr(B)).

Therefore by interpolation we have

(Lr(vr(B)), Lr(`∞(B)))α,p ⊂ (vr(Lr(B)), `∞(Lr(B)))α,p



7.2. TYPE AND COTYPE OF WP 159

but by (7.31) the last space coincides withWp(Lr(B)) and by Remark 5.7 since
p > r we have

Lr(Wp(B)) ⊂ (Lr(vr(B)), Lr(`r(B)))α,p

and hence (7.36) follows.
The proof of (7.37) is entirely similar but with the inclusions reversed. By

the duality between vp(B∗) and u0
p′(B) we have

u0
s(Ls(B)) ⊂ Ls(u0

s(B)),

or equivalently (see Remark 7.11) us(Ls(B)) ⊂ Ls(us(B)), and obviously also

v1(Ls(B)) ⊂ Ls(v1(B)).

Therefore by Remark 5.7 again since s > p

(v1(Ls(B)), us(Ls(B)))β,p ⊂ Ls((v1(B), us(B))β,p) = Ls(Wp(B)),

and by (7.32) we obtain (7.37).

Remark. By Remark 7.9, it is easy to see that (7.36) and (7.37) are actually
equivalent by duality.

The next Corollary shows how to apply our study of the spaces Wp,q to the
more classical spaces vp. The main point is the fact that the two scales are
intertwined in the form expressed by Lemma 7.10.

Corollary 7.16. In the situation of Theorem 7.15, let 1 < p0 < p1 <∞. Then
for any r, s such that 1 < r < p0 < p1 < s < ∞ we have the following bounded
inclusions:

vp0(Ls(B)) ⊂ Ls(vp1(B))
Lr(vp0(B)) ⊂ vp1(Lr(B)).

Proof. Pick p such that p0 < p < p1. We have (by (7.6) and Lemma 7.10)
bounded inclusions vp0(B) ⊂ Wp(B) ⊂ v1(B). Moreover, this holds for any B
(and hence also with Lr(B) or Ls(B) in place of B). Therefore the result follows
immediately from Theorem 7.15.

Lemma 7.17. Let T : B1 → B2 be a bounded operator between Banach spaces.
Then, for any 1 < p < ∞, T extends “naturally” to a bounded operator T̃ :
Wp(B1) → Wp(B2) taking x = (xn)n≥0 ∈ Wp(B1) to (Txn)n≥0, and moreover
‖T̃‖ = ‖T‖.

Proof. This is a direct application of the fundamental interpolation principle
(cf. Theorem 5.2): indeed we have clearly ‖T̃ : v1(B1) → v1(B2)‖ ≤ ‖T‖ and
‖T̃ : `∞(B1) → `∞(B2)‖ ≤ ‖T‖, therefore ‖T̃ : Wp(B1) → Wp(B2)‖ ≤ ‖T‖.
The converse is obvious by considering the action of T̃ on sequences (xn) such
that x0 ∈ B1 and xn = 0 for all n > 0.
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Corollary 7.18. Let (Ω1, µ1), (Ω2, µ2) be two measure spaces. With the nota-
tion of Theorem 7.15, any bounded linear operator T : Lr(µ1)→ Ls(µ2) extends
to a bounded operator

T̃ : Lr(µ1;Wp)→ Ls(µ2;Wp)

such that T (f ⊗ x) = T (f)⊗ x (f ∈ Lr(µ1), x ∈ Wp).

Proof. By Theorem 7.15, it suffices to show that T̃ is bounded from Wp(Lr) to
Wp(Ls), and this follows from the preceding Lemma.

Corollary 7.19. Let 1 < r < p < s < ∞. Then Wp is of type r ∧ 2 and of
cotype s ∨ 2 for any 1 < p <∞.

Proof. Let Ω = {−1, 1}N equipped with its usual probability µ. Consider the
operator

T : `r∧2 → Ls∨2

defined by T ((αn)) =
∑
αnεn. By the Khintchine inequalities (cf. (8.7)), T is

bounded, and hence so is T̃ by the preceding Corollary, and that meansWp is of
type r ∧ 2. We may argue similarly with the operator T : Lr∧2 → `s∨2 defined
by T (f) = (

∫
fεn dµ)n≥0 and this shows that Wp is of cotype s ∨ 2.

Note that, by the classical Kwapień theorem, a Banach space is of type 2
and cotype 2 iff it is isomorphic to a Hilbert space. In particular, type 2 and
cotype 2 forces reflexivity. However, we now can state:

Corollary 7.20. For any ε > 0, there are non-reflexive Banach spaces of type
2 and of cotype 2 + ε.

Recall that the Banach-Mazur d(E,F ) between two (isomorphic) Banach
spaces is defined by

d(E,F ) = inf{‖u‖‖u−1‖}

where the infimum runs over all possible isomorphisms u : E → F .

Remark 7.21. The space W2 has several remarkable properties reminiscent
of Hilbert space: it is isomorphic to its dual and moreover there is a con-
stant C such that any n-dimensional subspace (n > 1) E ⊂ W2 satisfies
d(E, `n2 ) ≤ CLog n. This logarithmic growth is sharp. Indeed W2 is of course
non-reflexive (see Remark 7.1) but any Banach space X for which the function
f(n) = sup{d(E, `n2 ) | E ⊂ X} is o(Log(n)) must be reflexive! We refer to [235]
for more details.

7.3 Strong p-variation in approximation theory

For any x ∈ BN we denote

Vp,N (x) = sup{(‖x0‖p + ‖xn(1) − x0‖p + · · ·+ ‖xn(N) − xn(N−1)‖p)1/p}
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where N is fixed and the supremum runs over all increasing N -tuples of integers
n(1) < n(2) < · · · < n(N). Note that

(7.38) Vp,N (x) ≤ 2(1 +N)1/p‖x‖∞.

Lemma 7.22 ([75]). Let 1 ≤ r <∞. For any x in vr(B) + `∞(B) we have for
any N ≥ 1

2−1−1/rVr,N (x) ≤ KN1/r (x, vr(B), `∞(B)) ≤ 2Vr,N (x).

Proof. For simplicity we set Kt(x) = Kt(x, vr(B), `∞(B)). We have obviously
Vr,N (x) ≤ Vr(x) and Vr,N (x) ≤ 2(N + 1)1/r‖x‖∞. Therefore if x = x0 + x1 we
can write

Vr,N (x) ≤ Vr,N (x0) + Vr,N (x1) ≤ ‖x0‖vr(B) + 2(N + 1)1/r‖x1‖∞

and hence Vr,N (x) ≤ 21+1/rKN1/r (x).
For the converse inequality, we use the same idea as in the above proof

of Lemma 7.10. By homogeneity we may assume Vr,N (x) = 1. We let n(1) =
inf{n | ‖xn−x0‖ > N−1/r}, n(2) = inf{n > n(1) | ‖xn−xn(1)‖ > N−1/r} and so
on. The process will stop at some integer k. Note that N−1/rk1/r < Vr,N (x) = 1
and hence k < N . We then define x0

n = x0 on [0, n(1)], x0
n = xn(k−1) if

n ∈ ]n(k − 1), n(k)] and x1 = x− x0. Then ‖x1‖∞ ≤ N−1/r and, since k < N ,
‖x0‖vr(B) ≤ Vr,N (x) = 1. Thus we obtain

KN1/r (x) ≤ ‖x0‖vr(B) +N1/r‖x1‖∞ ≤ 2.

Remark. Actually the preceding Lemma remains valid for 0 < r < 1 with
possibly different constants, with the same proof. In that case, the space vr is
only a quasi-normed space.

Now that we have a more concrete description of the K-functional, we can
give a rather nice one for the interpolation spaces Wp,q(B):

Theorem 7.23. Assume 1 ≤ r < p <∞, 1 ≤ q ≤ ∞. A sequence x = (xn) in
BN belongs to Wp,q(B) iff the sequence (N−1/rVr,N (x))N≥1 is in `p,q and the
corresponding norms (or quasi-norms) are equivalent.

Proof. We use Lemma 7.12. Let aN (x) = N−1/rVr,N (x). Simply observe that
if 1
p = 1−α

r + α
∞ and 1 ≤ q <∞, by “change of variable” (we replace t by N1/r)∫ ∞

0

(t−αKt(x, vr(B), `∞(B))q
dt

t
'
∑

N≥1
(N−α/rKN1/r (x, vr(B), `∞(B)))qN−1

'
∑

N≥1
(N1/paN (x))qN−1,

and the result follows by Remark 5.6.

Remark 7.24. The preceding result shows that, for any B and any closed sub-
space S ⊂ B,Wp,q(S) is a closed subspace ofWp,q(B) and its norm is equivalent
to the one induced on it by Wp,q(B).
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Remark 7.25. One can derive an alternate proof of (7.36) from Theorem 7.23
(or from Lemma 7.22). Then (7.37) follows by a duality argument.

Another useful description of the space Wp can be given in terms of approx-
imation theory. Actually, it would be more natural (as is done in [75]) to work
with functions on [0, 1] and to consider approximation by splines, but we prefer
to stick to our “discrete” setting.

Let SN ⊂ `∞(B) be the subset formed of all b = (b(n))n≥0 such that N can
be partitioned into N intervals on each of which b is constant. Note SN ⊂ SN+1.
Then let

∀x ∈ `∞(B) SN (x) = inf{‖x− b‖∞ | b ∈ SN}.

This is simply the distance of x in `∞(B) to SN .
For any x ∈ SN we have obviously

(7.39) V1(x) = supk V1,k(x) = V1,N (x) ≤ (1 + 2N)‖x‖∞

Theorem 7.26. Let 1 < p <∞. The following properties of a sequence x ∈ BN

are equivalent:

(i) x ∈ Wp(B).

(ii)
∑
N SN (x)p < ∞.

Moreover the corresponding quasi-norm x 7→ (‖x0‖p +
∑
N≥1 SN (x)p)1/p is

equivalent to the norm (namely Vp(x)) in the space Wp(B).

Proof. The proof of Lemma 7.22 actually shows that SN (x) ≤ N−1/rVr,N (in-
deed in that proof x0 ∈ SN ). Therefore by Theorem 7.23, (i) implies (ii).
Conversely, assume (ii). Note that Sn + Sk ⊂ Sn+k for any n, k ≥ 1, and also∑
SN (x)p '

∑
2nS2n(x)p < ∞. Let x(n) ∈ Sn be such that ‖x − x(n)‖∞ <

2S2n(x). Let ∆n = x(n) − x(n+1) and x(0) = 0. Note x =
∑∞

0 ∆n and
∆n ∈ S2n+2n+1 ⊂ S2n+2 . Therefore, by (7.39), we have V1,2k(∆n) ≤ 2n+3‖∆n‖∞
that we will use when 2k ≥ 2n+2, while, for any k, we already saw in (7.38) that
V1,2k(∆n) ≤ (2k+1 + 1)‖∆n‖∞. We have

V1,2k(x) ≤ V1,2k

 ∑
n≤k−2

∆n

+ V1,2k

( ∑
n>k−2

∆n

)
,

≤
∑

n≤k−2

V1,2k(∆n) +
∑

n>k−2

(2k+1 + 1)‖∆n‖∞

≤
∑

n≤k−2

2n+3‖∆n‖∞ + (2k+1 + 1)
∑

n>k−2

‖∆n‖∞.

But ‖∆n‖∞ ≤ ‖x(n) − x‖∞ + ‖x − x(n+1)‖∞ ≤ 4S2n(x) so we find for some
constant c an estimate of the form

2−kV1,2k(x) ≤ c
(

2−k
∑

n≤k
2nS2n(x) +

∑
n≥k

S2n(x)
)
,
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or equivalently for any N ≥ 1 (with a different c)

N−1V1,N (x) ≤ c
(
N−1

∑
n≤N

Sn(x) +
∑

n≥N
n−1Sn(x)

)
.

From this, elementary arguments show that∑
SN (x)p <∞⇒

∑
(N−1V1,N (x))p <∞.

Indeed, by Hardy’s classical inequality, for any 1 < p < ∞ and for any scalar
sequence (a1, a2, · · · ), we have

‖(N−1
∑

n≤N
an)N≥1‖`p ≤ p′‖(an)‖`p

and therefore by duality also for any 1 < p′ <∞ and any sequence (b1, b2, · · · )

‖(
∑

N≥n
bN/N)n≥1‖`p′ ≤ p

′‖(bN )‖`p′ ,

and hence
∑
SN (x)p <∞⇒ x ∈ Wp by Theorem 7.23.

Remark 7.27. The preceding proof shows that the properties in Theorem 7.26
are also equivalent to

(iii) For each integer n ≥ 1, there are ∆n ∈ S2n such that x =
∑
n ∆n and∑

2n supk≥2n ‖∆k‖p`∞(B) <∞.

Remark 7.28. Let B,B1 be arbitrary Banach spaces. Let Q : B → B1 be a
bounded surjection onto B1 so that B1 ' B/ ker(Q). Then for any 1 < p <∞
the associated map I⊗Q is a surjection fromWp(B) ontoWp(B1). Indeed, this
is an easy consequence of the preceding remark. This lifting (or “projective”)
property can also be proved by duality using Remarks 7.24 and 7.9.

Throughout this chapter we have collected a wealth of information on the
real interpolation spacesWp,q. In sharp contrast, the complex analogue remains
a long standing open question:

Problem: Describe the complex interpolation spaces between the complex val-
ued versions of v1 and `∞.

7.4 Notes and Remarks

This chapter is mainly based on [235]. A key idea comes from Bergh and Peetre’s
[75]: There they prove Lemma 7.22 and (7.26) in the scalar case but the Banach
valued case is identical. As mentioned in the text, the classical James space J
is the one that we denote by v0

2 . Theorem 7.5 and Lemma 7.6 are due to James.
See [231] for a proof that J∗ is of cotype 2.

Our approach can be applied equally well to the couple of function spaces
(V1(I;B), `∞(I;B)) when I ⊂ R is an interval (in particular when I = R). Here
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the definition of Vp(I;B) (0 < p < ∞) is exactly the same as for sequences, or
equivalently a function f : I → B is in Vp(I;B) iff for any increasing mapping
T : N → I, the composition f ◦ T : n 7→ f(T (n)) is in vp(B) and ‖f‖Vp(I;B)

is equivalent to sup{‖f ◦ T‖vp(B)} where the sup runs over all possible such
increasing mappings T . In case I = R, it is natural to define V 0

p (I;B) as the
closure of the subset of compactly supported infinitely differentiable functions,
and to replace (as we did for sequence spaces) Vp(I;B) by V 0

p (I;B). See [75]
for connections with approximation by splines.

We then define exactly as beforeWp,q(I;B) = (V1(I;B), `∞(I;B))θ,q. Many
results of this chapter remain valid, for instance this is the case for Theorem 7.15,
Corollaries 7.16 to 7.19 and those in §??. Among the few references we know
(besides [231]) that study the Banach spaces of functions with finite strong
p-variation, we should mention [11] and [180].



Chapter 8

The UMD property for
Banach spaces

8.1 Martingale transforms (scalar case)
Burkholder’s inequalities

Let (Mn)n≥0 be a scalar valued martingale on a filtration (An)n≥0. We will
always set dM0 = M0 (or we make the convention that M−1 ≡ 0) and

∀n ≥ 1 dMn = Mn −Mn−1.

When there is no ambiguity, we will often denote by En the conditional expec-
tation relative to An. Moreover we will sometimes say n-measurable instead of
An-measurable.

Let (ϕn)n≥0 be an arbitrary sequence of random variables, that we merely
assume to be adapted to (An)n≥0, i.e. we assume that ϕn is An-measurable for
each n ≥ 0.

Let then M̃0 = ϕ0M0 and

∀n ≥ 1 M̃n = ϕ0M0 +
∑n

1
ϕn−1 dMn.

Clearly M̃ is a martingale and the correspondenceM → M̃ is called a martingale
transform.

An adapted sequence (ψn) is called predictable if ψn is An−1-measurable
for each n ≥ 0. In the above, we crucially used the fact that (ψn) defined by
ψn = ϕn−1 (and say ψ0 = 0) is predictable.

The key property about these transforms is that, if sup
n
‖ϕn‖∞ < ∞, then

M → M̃ is bounded on Lp for all 1 < p <∞ and is of weak type (1-1). This is
due to Burkholder as well as the corresponding inequalities: for each 1 ≤ p <∞
there is a constant βp such that if 1 < p <∞

(8.1) sup ‖M̃n‖p ≤ βp sup ‖ϕn‖∞ sup ‖Mn‖p

165
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and if p = 1

(8.2) sup
λ>0

λP(sup |M̃n| > λ) ≤ β1 sup ‖ϕn‖∞ sup ‖Mn‖1.

For the proof, see Theorem 8.18 and Corollary 8.14 below.
By Doob’s maximal inequality, (8.1) implies that, if sup ‖ϕn‖∞ ≤ 1, we have

(8.3) (E sup |M̃n|p)1/p ≤ β′p(E sup |Mn|p)1/p,

where β′p = p′βp. In this form, (8.3) remains valid when p = 1. Namely, there
is a constant β′1 such that

(8.4) E sup |M̃n| ≤ β′1E sup |Mn|.

This and (8.10) below are known as B. Davis’s inequality. See Corollary 8.26
below.

This is already of interest when each of the variables ϕn is constant and
in that special case (8.1) expresses the fact that the sequence (dMn)n≥0 is an
unconditional basic sequence in Lp, i.e. the convergence in Lp of the series∑
dMn is automatically unconditional. Let ε = (εn)n be a fixed choice of signs,

i.e. εn = ±1. Then (8.1) implies for any (Mn) converging in Lp

(8.5)
∥∥∥∑ εn dMn

∥∥∥
p
≤ βp

∥∥∥∑ dMn

∥∥∥
p
.

Replacing dMn by εn dMn in (8.5) we find the reverse inequality

(8.6)
∥∥∥∑ dMn

∥∥∥
p
≤ βp

∥∥∥∑ εn dMn

∥∥∥
p
.

Let us now introduce the uniform probability µ on {−1, 1}N and recall the
classical Khintchine inequalities: For any 0 < p <∞ there are constants Ap > 0
and Bp > 0 such that for any sequence x = (xn) in `2 we have

(8.7) Ap

(∑
|xn|2

)1/2

≤
(∫ ∣∣∣∑xnεn

∣∣∣p dµ(ε)
)1/p

≤ Bp
(∑

|xn|2
)1/2

.

Then if we integrate (8.5) and (8.6) (after raising to the p-th power) we find

Apβ
−1
p ‖S‖p ≤

∥∥∥∑ dMn

∥∥∥
p
≤ βpBp‖S‖p

where S is the so-called “square function” defined by

(8.8) S =
(
|M0|2 +

∑∞

1
|dMn|2

)1/2

.

A similar argument can be applied to (8.2) and it yields a constant β′1 such that

(8.9) sup
λ>0

λP(S > λ) ≤ β′1 sup ‖Mn‖1.

Moreover, using the Khintchine inequality (8.7) for p = 1, and also (1.23),
we find

(8.10) A1(β′1)−1ES ≤ E sup |Mn| ≤ 2β′1ES.
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8.2 Kahane’s inequalities

In the Banach space, the square function sup
n

(∑n
0 |dk|2

)1/2 must be replaced by

(8.11) sup
n

∫
D

∥∥∥∑n

0
εkdk

∥∥∥2

B
dν

1/2

where D = {−1, 1}N equipped with its usual probability ν and where εn = D →
{−1, 1} denotes the n-th coordinate.

When B is a Hilbert space, for all xk in B we have∫ ∥∥∥∑n

0
εkxk

∥∥∥2

=
∑n

0
‖xk‖2

and hence we recover the square function, but in general this is not possible and
we must work with (8.11). We will show in the next section that for the Banach
spaces with the UMD property, the Burkholder inequality remains valid when
the square function is replaced by (8.11).

This motivates a preliminary study of averages such as (8.11) in a general
Banach space when dk are constant.

Theorem 8.1 (Kahane). For any 0 < p < q < ∞ there is a constant K(p, q)
such that for any Banach space B and any finite subset x1, . . . , xn in B we have∥∥∥∑ εkxk

∥∥∥
Lq(B)

≤ K(p, q)
∥∥∥∑ εkxk

∥∥∥
Lp(B)

.

In particular
∥∥∑ εkxk

∥∥
L2(B)

is equivalent to
∥∥∑ εkxk

∥∥
Lp(B)

for any 0 < p < ∞.

Remark 8.2. Consider the Banach space B̃ formed of all sequences x = (xn) of
elements of B such that supn ‖

∑n
0 xk‖ <∞, equipped with the norm

‖x‖B̃ = sup
n

∥∥∥∥∥
n∑
k=0

xk

∥∥∥∥∥ .
Then applying Kahane’s inequality to the Banach space B̃ we immediately get
that, if we denote S∗ = supn ‖

∑n
k=0 εkxk‖, then for any sequence (xn) in B we

have
‖S∗‖q ≤ K(p, q)‖S∗‖p.

We will base the proof of Kahane’s Theorem on the classical hypercontractive
inequality on 2-point space made famous by Nelson and Beckner [72] (but first
proved in [80]), as follows.

Theorem 8.3. Let 1 < p < q <∞. Let ξ = ((p− 1)/(q − 1))1/2. Let B be an
arbitrary Banach space. Then

∀x, y ∈ B
(
‖x+ ξy‖q + ‖x− ξy‖q

2

)1/q

≤
(
‖x+ y‖p + ‖x− y‖p

2

)1/p

.
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Proof. Let Ω = {−1, 1},P = (δ1 + δ−1)/2. Let ε1 : Ω→ {−1, 1} be the identity
map. The proof actually reduces to the case B = R. Indeed, let T : Lp(Ω,P)→
Lq(Ω,P) be the operator defined by T1 = 1, Tε1 = ξε1. Then T ≥ 0 (T =
convolution by 1 + ξε1 and 1 + ξε1 ≥ 0!). Thus the passage from R to a general
B follows from Proposition 1.4. For the proof in the scalar case, we refer to the
appendix (still to be written).

Consider now D = {−1, 1}N equipped with ν as before, let (εn)n≥0 denote
the coordinates and moreover for any finite subset S ⊂ N, let

wS =
∏
n∈S

εn.

Corollary 8.4. Let 1 < p < q < ∞ and let ξ = ((p − 1)/(q − 1))1/2 as before
with B arbitrary. Then for any family {xS | S ⊂ {1, . . . , n}} in B we have

(8.12)
∥∥∥∑ ξ|S|wSxS

∥∥∥
Lq(B)

≤
∥∥∥∑wSxS

∥∥∥
Lp(B)

.

In particular for any x1, . . . , xn in B

(8.13)
∥∥∥∑ εkxk

∥∥∥
Lq(B)

≤ ((q − 1)/(p− 1))1/2
∥∥∥∑ εkxk

∥∥∥
Lp(B)

.

Proof. The proof is based on the following elementary observation: let

T1 : Lp(Ω1, µ1;B)→ Lq(Ω′1, µ
′
1;B)

and
T2 : Lp(Ω2, µ2;B)→ Lq(Ω′2, µ

′
2;B)

be s (i.e. with norms ≤ 1). Then, if q ≥ p, the operator T1 ⊗ T2 : Lp(µ1 ×
µ2;B) → Lq(µ′1 × µ′2;B) also has norm ≤ 1. (To check this one uses the
classical Hölder–Minkowski inequality that says that we have a norm 1 inclusion
Lp(µ;Lq(µ′)) ⊂ Lq(µ′;Lp(µ)), see (8.79).)

It follows from this observation by iteration that T ⊗ T ⊗ · · · ⊗ T (n times)
is a contraction from Lp(B) to Lq(B), and since this operator multiplies wSxS
by ξ|S| we obtain (8.12) and hence (8.13).

Proof of Kahane’s Theorem. The preceding corollary already covers the case
1 < p < q < ∞ with K(p, q) = ((q − 1)/(p − 1))1/2. In particular if we set
f(·) =

∥∥∑ εk(·)xk‖, we have proved for 1 < p < q <∞

‖f‖q ≤ K(p, q)‖f‖p.

Let 0 < r < 1 < p < q. Define 0 < θ < 1 by the identity 1
p = 1−θ

q + θ
r . Then by

Hölder we find
‖f‖q ≤ K(p, q)‖f‖1−θq ‖f‖θr

hence after division by ‖f‖1−θq , we obtain

‖f‖q ≤ K(p, q)1/θ‖f‖r
which yields K(r, q) ≤ K(p, q)1/θ.
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We might as well record here an elementary “contraction principle”: Assume
1 ≤ p ≤ ∞. Let B be an arbitrary Banach space. Then ∀x1, . . . , xn ∈ B
∀α1, . . . , αn ∈ R

(8.14)
∥∥∥∑αkεkxk

∥∥∥
Lp(B)

≤ sup |αk|
∥∥∥∑ εkxk

∥∥∥
Lp(B)

;

moreover ∀β1, . . . , βn ∈ C

(8.15)
∥∥∥∑βkεkxk

∥∥∥
Lp(B)

≤ 2 sup |βk|
∥∥∥∑ εkxk

∥∥∥
Lp(B)

.

To verify this, note that by convexity the supremum of the left side of (8.14)
over all (αk) in Rn with sup |αk| ≤ 1 is attained on an extreme point, i.e. an
element of {−1, 1}n, for which (8.14) becomes an equality. This proves (8.14).
To verify (8.15), simply write βk = α′k + iα′k and use the triangle inequality.

Lemma 8.5. Let 0 < p < q < ∞. Let F be a subset of Lq(Ω,A,P). Assume
that there is C > 0 such that

∀f ∈ F ‖f‖q ≤ C‖f‖p.

Then there are δ > 0 and R > 0 such that

∀f ∈ F P(|f | > R‖f‖q) ≥ δ.

Proof. Let r be such that p−1 = q−1 + r−1. Replacing f by f‖f‖−1
q we may

assume that ‖f‖q = 1 for all f in F . By Hölder’s inequality for any R > 0 we
have

‖f1{|f |>R}‖p ≤ (P(|f | > R))1/r.

Hence we can write

1 = ‖f‖q ≤ C‖f‖p ≤ C‖f1{|f |≤R}‖p + C‖f1{|f |>R}‖p
≤ CR+ C(P(|f | > R))1/r.

Thus if we choose R = (2C)−1 and δ = (2C)−r we obtain the announced
result.

Let fn and f be B-valued random variables. Recall that, by definition, fn
converges to f in probability if

∀ε > 0 P(‖fn − f‖ > ε)→ 0 when n→∞.

This convergence is in general strictly weaker than a.s. convergence. However,
by Corollary 1.24, it is equivalent for sums of independent random variables, in
particular for the sums considered in Theorem 8.6 below.

The corresponding topology is the natural one on the topological vector
space L0(B) of B-valued Bochner measurable functions. The preceding Lemma
is an extrapolation principle: If the Lq-topology on a linear space F coincides
with the Lp-topology for some p < q, then it also coincides with the topology
of convergence in probability (i.e. the L0-topology).

In particular, we obtain
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Theorem 8.6. (i) Let (αn) be a scalar sequence. Then
∑∞

0 εnαn converges
in probability iff

∑
|αn|2 < ∞, and then it converges a.s. and in Lp for

all p <∞.

(ii) Let (xn) be a sequence in a Banach space B. Then the series
∑∞

0 εnxn
converges in probability iff it converges in Lp(B) for some 0 < p < ∞.
Then it converges a.s. and in Lp(B) for all 0 < p <∞.

Proof. (i) By the Khintchine inequalities and the preceding Lemma, the Lp-
and L0-topologies coincide on the span of {εn} for any 0 < p < ∞.
Then the a.s. convergence follows either from Theorem 1.22 or from the
martingale convergence theorem since fn =

∑n
0 εkαk is a martingale and

we may choose p > 1.

(ii) Same argument as for (i) but using the Kahane inequalities instead of the
Khintchine ones.

Applications

(i) Let 0 < r <∞. Let (xn) be a sequence in the Banach (or quasi-Banach)
space B = Lr(T, µ) over a measure space. Then the series

∑
εnxn con-

verges a.s. in B iff ∫
(
∑
|xn|2)r/2dµ <∞

or equivalently iff (
∑
|xn|2)1/2 ∈ B. Indeed, choosing p = r in the last

Theorem this is an easy consequence.

(ii) In particular, if B = `r, with canonical basis (ek) and if for each n, we set
xn =

∑
xn(k)ek, then

∑
εnxn converges a.s. in B iff∑
k

(
∑
n

|xn(k)|2)r/2 <∞.

(iii) Let (an) be a scalar sequence indexed by Z. Consider the formal Fourier
series

∑
n∈Z ane

int. Let B be a Banach space of functions over the circle
group T, such as for instance the space of continuous functions C(T) or
the space Lr(T, µ) with respect to the normalized Haar measure µ. Note
that in both cases the Fourier transform of an element of B determines
the element. By convention, we will write

∑
n∈Z ane

int ∈ B if there is
an element f ∈ B with Fourier transform equal to (an), i.e. such that
∀n ∈ Z f̂(n) = an. Then,

∑
n∈Z εnane

int ∈ Lr(T, µ) for almost all choice
of signs (εn) iff

∑
|an|2 < ∞. Note that the condition we find does not

depend on r, which is surprising at first glance.

(iv) With the same notation, f =
∑
n∈Z εnane

int ∈ C(T) for almost all choice
of signs (εn) iff a.s. the partial sums of the random Fourier series∑

|n|≤N

εnane
int
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converge uniformly over T when N → ∞; moreover, this holds iff both
(unilateral) series

∑N
0 εnane

int and
∑−N
−1 εnane

int converge uniformly
over T. By the preceding theorem, we then have for any p <∞

E sup
t∈T

∣∣∣∣∣∣
∑
|n|>N

εnane
int

∣∣∣∣∣∣
p

→ 0.

Let f+ =
∑
n≥0 εnane

int and f− =
∑
n<0 εnane

int. Observe that f = f+ + f−
has the same distribution as f = f+−f−, and hence: f ∈ B a.s. iff both f+ ∈ B
a.s. and f− ∈ B a.s. . Then, the last point (iv) follows from (the Ito-Nisio)
Theorem ??, taking for D the countable collection of all measures µ such that
|µ|(T) < 1 with finitely supported Fourier transform taking values in any fixed
dense countable subset of C, say in Q + iQ.

8.3 Extrapolation. Gundy’s decomposition. UMD

The central idea to prove the Burkholder inequalities is usually described as
“extrapolation”. Schematically, the main point in the scalar case is:

- the L2-case is obvious by the orthogonality of martingale differences,
-the Lp-case can be deduced from the L2-one by extrapolation. The basic

principles of extrapolation go back to [108]. there are several ways to implement
the extrapolation technique. We use the Gundy decomposition because it will
be adaptable easily to all the other situations of interest to us in these notes.
We will use similar ideas in the vector-valued case. However, although we use
classical ideas we will need to be careful about certain details because we are
interested in the precise relations between certain constants, such as the UMD
constants of a Banach space.

Definition 8.7. Let 1 < p < ∞. A Banach space B is called UMDp if there
is a constant C such that for any martingale (fn) converging in Lp(B) we have
for any choice of signs εn = ±1

(8.16) sup
n

∥∥∥∑n

0
εkdfk

∥∥∥
Lp(B)

≤ C sup
n
‖fn‖Lp(B).

We will denote the best C in (8.16) by Cp(B). We will say that B is UMD
if this holds for some 1 < p < ∞ (we will see below that it then holds for all
1 < p <∞).

Clearly, any Hilbert space is UMD2.
Remark. Equivalently, we may restrict (8.16) to “finite” martingales, i.e. one
for which there is an integer n such that dfk = 0 for all k > n.

By an elementary duality argument one easily checks:

Proposition 8.8. B is UMDp iff B∗ is UMDp′ with 1
p + 1

p′ = 1. Moreover, we
have

(8.17) Cp′(B∗) = Cp(B).
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Let x = {xn} be a sequence in a Banach space B. We define

R(x) = sup
n

∥∥∥∑n

0
εkxk

∥∥∥
L2(D,ν;B)

.

Let (fn) be any martingale on (Ω,A,P) that is bounded in Lp(B). For any
ω ∈ Ω, we define

Rdf (ω) = R({dfn(ω) | n ≥ 0})
or equivalently

Rdf (ω) = sup
n

∥∥∥∑n

0
εkdfk(ω)

∥∥∥
L2(D,ν;B)

where the L2-norm is with respect to the variables (εn) defined on (D, ν).
The B-valued version of Burkholder’s inequalities reads as follows:

Proposition 8.9. B is UMDp iff there are positive constants C1, C2 such that
for any martingale (fn) converging in Lp(B) we have

(8.18) C−1
1 ‖Rdf‖p ≤ sup

n
‖fn‖Lp(B) ≤ C2‖Rdf‖p.

Proof. Fix a choice of signs εn = ±1. Let gn =
∑n

0 εkdfk. Note the pointwise
equality (recall the proof of (8.14))

Rdg = Rdf .

The latter immediately implies the “if-part”. Conversely, assume B UMDp.
Then we have (8.16). But actually, applying (8.16) to g in place of f , we also
find the converse inequality

sup
n
‖fn‖Lp(B) ≤ C sup

n

∥∥∥∑n

0
εkdfk

∥∥∥
Lp(B)

.

Assume for simplicity that (fn) is a finite martingale. Then if we elevate to the
p-th power and average both (8.16) and its converse over all choices of signs, we
obtain (8.18); note that we use Kahane’s inequalities (Theorem 8.1) to replace
the Lp-norm over the signs by the L2-norm, i.e. by Rdf .

As before, let (ϕn)n≥0 be a sequence of scalar valued r.v.’s, adapted to a
filtration (An)n≥0. Let (fn)n≥0 be a B-valued martingale relative to (An)n≥0.
Just as in the scalar case, the sequence defined by

f̃n = ϕ0f0 +
∑n

1
ϕk−1(fk − fk−1)

forms a martingale, called a “martingale transform” of (fn)n≥0.

Proposition 8.10. If B is UMDp and (ϕn) real valued, then with the preceding
notation we have

sup
n≥0
‖f̃n‖Lp(B) ≤ C1C2 sup

n≥0
‖ϕn‖∞ sup

n≥0
‖fn‖Lp(B).

If the (ϕn)’s are complex valued, this holds with 2C1C2 instead of C1C2.
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Proof. By (8.14) we have for a.a. ω

Rdf̃ (ω) ≤ sup
n≥0
‖ϕn‖∞Rdf (ω),

so the announced inequality follows from (8.18). In the complex case, we use
(8.15) instead.

Remark 8.11. Consider the dyadic case, i.e. we take Ω = {−1, 1}N∗ , with
εk : Ω → {−1, 1} the k-th coordinate for k = 1, 2, . . . and we set A0 = {φ,Ω}
and An = σ(ε1, . . . , εn) for all n ≥ 1. We claim that, in that case, Proposition
8.10 holds (for real multipliers) with C1C2 replaced by the UMDp constant of
B. For notational convenience, we will use the Rademacher functions defined in
§1.3 i.e. we take Ω = [0, 1] and εn = rn. In that case we have An = B2n where
(Bk) is the Haar filtration (see §1.3). Consider then a martingale transform
f̃n = ϕ0f0 +

∑n
1 ϕk−1(fk − fk−1) associated to the predictable family (ϕk−1)

with respect to the filtration (An). Let then Fk = E(fn|Bk) for k = 1, · · · , 2n,
in particular so that F2n = fn. We have then

f̃n − f̃n−1 =
∑

2n−1<k≤2n
ϕn−1(Fk − Fk−1).

But now ϕn−1 is constant on the support of Fk −Fk−1 for each 2n−1 < k ≤ 2n.
Indeed, by (1.8), Fk − Fk−1 and hk have the same support and the functions
r1, · · · , rn−1 are all constant on that support if 2n−1 < k ≤ 2n. Therefore, with
respect to the filtration (Bk), f̃n appears as a martingale transform relative to
constant multipliers (and not only predictable ones). This shows that, in the
dyadic case, Proposition 8.10 holds with C1C2 replaced by the UMDp constant
of B.

Then we will prove:

Theorem 8.12. Consider a Banach space B. Then for any 1 < p, q < ∞, B
is UMDp iff it is UMDq and we have positive constants α(p, q) and β(p, q)
depending only on p and q such that

α(p, q)Cp(B) ≤ Cq(B) ≤ β(p, q)Cq(B).

To prove Theorem 8.12 we will use Gundy’s decomposition of martingales.
This is a martingale analogue of the classical Calderón–Zygmund decomposition
(see the next section and also [57]).

Theorem 8.13. Let B be a Banach space. Let (fn)n≥0 be a martingale adapted
to (An)n≥0, and converging in L1(B) to a limit f with ‖f‖L1(B) ≤ 1. Then for
any λ > 0 there is a decomposition

f = a+ b+ c

with a, b, c ∈ L1(B) such that:
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(i) ‖a‖L1(B) ≤ 2 and
P(sup

n
‖dan‖ 6= 0) ≤ 3λ−1

(ii)
∥∥∑ ‖dbn‖∥∥1

≤ 4

(iii) ‖c‖L∞(B) ≤ 2λ and ‖c‖L1(B) ≤ 5.

Note that (iii) implies for any 1 < p <∞

(8.19) ‖c‖Lp(B) ≤ 51/p(2λ)1−1/p.

Proof. We follow Gundy’s original proof closely. Recall that by convention we
denote En instead of EAn , so that fn = Enf and dfn = fn − fn−1 ∀n ≥ 1 and
df0 = f0. Let r = inf{n | ‖fn‖ > λ}. Let vn = ‖dfn‖ · 1{r=n}. Then let

s = inf

{
n |

n∑
k=0

Ek(vk+1) > λ

}
.

Finally let
T = r ∧ s.

Clearly r, s and T are stopping times. Let a = f − fT so that an = fn − fT∧n.
We have clearly (since fT = EAT f) ‖a‖L1(B) ≤ 2.

Moreover, obviously T =∞ implies dan = 0 so

{sup ‖dan‖ 6= 0} =
⋃
n

{dan 6= 0} ⊂ {T <∞} = {s <∞} ∪ {r <∞}

and hence

(8.20) P{sup ‖dan‖ 6= 0} ≤ P(r <∞) + P(s <∞).

Now by Doob’s inequality (see Theorem 1.9)

(8.21) P(r <∞) = P(sup
n
‖fn‖ > λ) ≤ λ−1

and also

P(s <∞) = P

( ∞∑
k=0

Ek(vk+1) > λ

)
≤ λ−1

∑∞

0
E(Ek(vk+1)) = λ−1

∑∞

1
Evk.

But now
Evk = E(‖dfk‖1{r=k})

and r = k implies ‖fk−1‖ ≤ λ < ‖fk‖ hence ‖dfk‖ ≤ ‖fk‖ + ‖fk−1‖ ≤ 2‖fk‖.
This implies

Evk ≤ E(2‖fk‖1{r=k}) = 2E‖Ek(f1{r=k})‖
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hence since by Jensen ‖Ek(f1{r=k})‖ ≤ Ek(‖f‖1{r=k}), we have

(8.22) Evk ≤ 2E(‖f‖1{r=k})

and hence

(8.23) P(s <∞) ≤ λ−1
∑∞

0
Evk ≤ 2λ−1‖f‖L1(B) ≤ 2λ−1.

Thus combining (8.20), (8.21) and (8.23) we obtain (i).
Note that f − a = fT so we must have a priori

bn + cn = fT∧n,

which will guarantee that

(8.24) ‖b+ c‖L1(B) ≤ 1.

Also

fT∧n − fT∧(n−1) = dfn1{n≤T} = dfn · 1{n≤r} · 1{n≤s} = γn + δn

where

γn = dfn · 1{n<r}1{n≤s}
δn = dfn · 1{n=r}1{n≤s}.

Obviously since (fT∧n) is a martingale we have

En−1(γn + δn) = 0 ∀n ≥ 1

so we can define db0 = δ0, dc0 = γ0 and for all n ≥ 1

dbn = δn − En−1(δn)
dcn = γn + En−1(δn).

Since En−1(δn) = −En−1(γn) these are indeed martingale differences.
Note that by Jensen

E
∑
‖dbn‖ ≤ 2E

∑
‖δn‖ ≤ 2E

∑
|vn|

hence by (8.23) we have (ii).
We now turn to (iii). First note that by (8.24), (ii) and the triangle inequality

we have
‖c‖L1(B) ≤ 5.

Finally,
∑
γn =

∑
n≤s

dfn1{n<r} = f(r−1)∧s if r ≥ 1 and
∑
γn = 0 if r = 0, so

that by definition of r

(8.25)
∥∥∥∑ γn

∥∥∥
L∞(B)

≤ λ.
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Moreover, since {n ≤ s} is (n− 1)-measurable∥∥∥∥∥∥
∑
n≥1

En−1(δn)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
n≤s

En−1(dfn1{n=r})

∥∥∥∥∥∥
hence by Jensen

≤
∑
n≤s

En−1(‖dfn‖ · 1{n=r})

=
∑
k<s

Ek(‖dfk+1‖1{r=k+1})

which by definition of s is ≤ λ.
Thus we conclude

∥∥∥ ∑
n≥1

En−1(δn)
∥∥∥
L∞(B)

≤ λ and (iii) follows from (8.25) by

the triangle inequality.

Corollary 8.14. Assume that B is UMDp for some 1 < p < ∞. Then all
martingale transforms are of weak-type (1-1). More precisely there is a constant
C such that for all martingales (fn)n≥0 bounded in L1(B) and for all choices of
signs εn = ±1 the transformed martingale f̃n =

∑n
0 εkdfk satisfies

(8.26) sup
λ>0

λP(sup
n≥0
‖f̃n‖ > λ) ≤ C sup

n≥0
‖fn‖L1(B).

More generally, the same holds when

f̃n =
∑n

0
ϕk−1dfk

and (ϕn)n≥0 is an adapted sequence of scalar valued variables such that

∀n ≥ 0 ‖ϕn‖∞ ≤ 1,

with the usual convention ϕ−1 ≡ 0.

Proof. By homogeneity, we may assume ‖f‖L1(B) ≤ 1. We have f̃n = ãn+b̃n+c̃n
and
(8.27)

P(sup ‖f̃n‖ > 3λ) ≤ P(sup ‖ãn‖ > λ) + P(sup ‖b̃n‖ > λ) + P(sup ‖c̃n‖ > λ).

We estimate each term on the right side separately: since sup ‖ãn‖ > λ implies
sup
n
‖dan‖ 6= 0 we have by (i)

P(sup ‖ãn‖ > λ) ≤ 3λ−1.

By Chebyshev’s inequality, since sup ‖b̃n‖ ≤
∑
‖dbn‖

P(sup ‖b̃n‖ > λ) ≤ λ−1
∑

E‖dbn‖ ≤ 4λ−1.
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Finally, by (8.19), UMDp and Doob’s inequality, we have∥∥∥ sup ‖c̃n‖
∥∥∥
p
≤ p′Cp(B)51/pλ1−1/p

hence by Chebyshev again

P(sup ‖c̃n‖ > λ) ≤ (p′Cp(B)51/p)pλ−1

so by (8.27) we obtain (8.26) with the constant C ≤ 3(7 + 5(p′Cp(B))p).
For the more general case of predictable multipliers (ϕn), the same argument

works using Proposition 8.10.

Remark 8.15. Note that the preceding argument also shows

sup
n≥0

sup
λ>0

λP(‖f̃n‖ > λ) ≤ C ′ sup
n≥0
‖fn‖L1(B)

with C ′ ≤ 3(7 + 5Cp(B)p).

Corollary 8.16. In the scalar case (i.e. B = R or C) we find (8.26) with
C ≤ 81. Moreover, for any martingale (fn)n≥0 bounded in L1 we have

sup
λ>0

λP
((∑

|dfn|2
)1/2

> λ

)
≤ 81 sup

n≥0
‖fn‖1.

More generally, if B is a Hilbert space we find

(8.28) sup
λ>0

λP
((∑

‖dfn‖2
)1/2

> λ

)
≤ 81 sup ‖fn‖L1(B).

Proof. The first assertion is clear since C2(R) = C2(C) = 1. To prove the second
one, one simply observes that∥∥∥∥(∑ |dfn|2

)1/2
∥∥∥∥

2

= ‖f‖2

so that the same argument applies when we substitute S(f) =
(∑
|dfn|2

)1/2 to
sup
n≥1
|f̃n|.

Remark 8.17. Note that (8.28) only requires that B is UMD and of cotype 2.

Theorem 8.18 (Burkholder’s inequalities). For any 1 < p < ∞, there is a
positive constant βp such that, for any scalar martingale (Mn) in Lp and for
any predictable uniformly bounded scalar sequence (ϕn), we have

sup
n
‖

n∑
0

ϕkdMk‖p ≤ βp sup
n
‖Mn‖p sup

n
‖ϕn‖∞.

Let S be the square function defined by (8.8). There are positive constants ap
and bp such that any scalar martingale (Mn) in Lp satisfies

(8.29) a−1
p ‖S‖p ≤ sup

n
‖Mn‖p ≤ bp‖S‖p.
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Proof. By homogeneity we may assume supn ‖ϕn‖∞ ≤ 1. Let Tϕ be the trans-
formation taking f ∈ L2 to

∑
ϕndfn. Clearly, by Parseval, ‖Tϕ : L2 → L2‖ ≤ 1.

A fortiori, Tϕ is of weak type (2-2). By Corollary 8.14 applied to B = C, Tϕ is
of weak type (1-1), hence by Marcinkiewicz Theorem 8.51, for any 1 < p < 2,
there is βp so that ‖Tϕ : Lp → Lp‖ ≤ βp. By duality, since Tϕ is (essen-
tially) self-adjoint we have ‖Tϕ : Lp′ → Lp′‖ ≤ βp for any p′ > 2. This estab-
lishes the first assertion. To prove the second one, we first fix a choice of signs
ε = (εn) and we use ϕn = εn. Let TεMn =

∑n
0 εkdMk. The first assertion

gives us ‖TεMn‖p ≤ βp‖Mn‖p but since Tε(TεMn) = Mn we have by iteration
‖Mn‖p ≤ βp‖TεMn‖p. Therefore,

(βp)−1‖TεMn‖p ≤ ‖Mn‖p ≤ βp‖TεMn‖p.

But if we now integrate with respect to ε and use the Khintchine inequalities
(8.7), letting Sn = (

∑n
o |dMk|2)1/2 we find

Ap(βp)−1‖Sn‖p ≤ ‖Mn‖p ≤ βpBp‖Sn‖p,

and we conclude by taking the supremum over n.
Note that, for 1 < p < 2, we can also deduce the square function inequal-
ity ‖S‖p ≤ bp supn ‖Mn‖p from Corollary 8.16 by the sublinear version of
Marcinkiewicz Theorem (see Remark 8.52).

Proof of Theorem 8.12. Assume B UMDp. Then by Corollary 8.14 and by the
Marcinkiewicz interpolation Theorem 8.51, B is UMDq for all 1 < q < p. But
now, by (8.17) B∗ is UMDp′ , and hence we may repeat the preceding argument
for B∗, and obtain that B∗ is UMDq′ for any 1 < q′ < p′. By (8.17) again, this
means that B is UMDq for all q > p, and hence finally for all 1 < q <∞.

We now give the basic examples of UMD spaces.

Corollary 8.19. Let (S,Σ,m) be an arbitrary measure space and let 1 < p <∞.
Then the Banach space B = Lp(S,Σ,m) is UMD. More generally, if B is any
UMD space, then the space Lp(S,Σ,m;B) is UMD.

Proof. By Fubini’s theorem, it is easy to see that, if B is UMDp, then the space
Lp(S,Σ,m;B) is UMDp. The case B = C corresponds to the first assertion.
Since UMDp does not depend on p, this proves these two assertions.

We will now give a different approach to Theorem 8.12 based on “extrap-
olation”. This is particularly efficient in the dyadic case: Indeed, the dyadic
filtration has the advantage that ‖dfn+1(ω)‖B is actually An-measurable for
each n ≥ 0. In other words the lengths of the increments are “predictable”.

We start by a rather general version of the extrapolation principle.

Lemma 8.20. Let (vn)n≥0 and (wn)n≥0 be adapted sequences of non-negative
random variables, converging a.s. to limits denoted by v∞ and w∞. Fix p > 0.
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Let C > 0 be a constant. Assume that for any stopping time T : Ω→ N ∪ {∞}
we have

(8.30) ‖1{T>0}vT ‖p ≤ ‖1{T>0}wT ‖p.

Moreover, assume that there is an adapted non-negative sequence (ψn)n≥0 such
that

∀n ≥ 0 wn+1 − wn ≤ ψn.

Let w∗ = supn wn and ψ∗ = supn ψn. Then for any t > 0

(8.31) P{v∞ > t} ≤ t−pE(tp ∧ w∗p) + P{w∗ + ψ∗ > t},

and hence for any 0 < q < p

(8.32) Evq∞ ≤ (p/(p− q))Ew∗q + E(w∗ + ψ∗)q.

Proof. Let T = inf{n | wn + ψn > t}. Note that on {T > 0} we have

wT ≤ wT−1 + ψT−1 ≤ t,

and hence

(8.33) 1{T>0}wT ≤ t ∧ w∗.

We have obviously

P(v∞ > t) ≤ P(vT > t, T =∞) + P(v∞ > t, T <∞)
≤ P(vT > t, T > 0) + P(T <∞)

≤ t−pE(1{T>0}v
p
T ) + P(sup(wn + ψn) > t)

and hence by (8.30) and (8.33)

≤ t−pE(1{T>0}w
p
T ) + P(w∗ + ψ∗ > t)

≤ t−pE(tp ∧ w∗p) + P(w∗ + ψ∗ > t),

which proves (8.31). Then, using Evq∞ =
∫∞

0
qtq−1P{v∞ > t}dt and 1 ∧

(w∗/t)p = 1{w∗>t} + (w∗/t)p1{w∗≤t} we obtain (8.32) by an elementary compu-
tation.

Remark. Note that actually we only use ‖1{T=∞}vT ‖p ≤ ‖1{T>0}wT ‖p which
is a priori weaker than (8.30)
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Second Proof of Theorem 8.12. Let 1 < q < p < ∞. Assume B UMDp. Con-
sider a finite dyadic martingale (fn) and a fixed choice of signs (εn). We will
apply Lemma 8.20. Let f̃∞ =

∑
εndfn, f̃n = En(f̃∞) and let T be a stopping

time. We set vn = ‖f̃n‖B and wn = Cp(B)‖fn‖B . By (8.16) applied to the
martingale (1{T>0}fn∧T ), we have

‖1{T>0}vT ‖p = ‖1{T>0}f̃T ‖Lp(B) ≤ Cp(B)‖1{T>0}fT ‖Lp(B) = ‖1{T>0}wT ‖p

and hence (8.30) holds.
For dyadic martingales, ‖dfn+1‖B is n-measurable, so we can take simply

ψn = Cp(B)‖dfn+1‖B . Note that w∗+ψ∗ ≤ 3f∗. By Doob’s maximal inequality,
if 1 < q < p, (8.32) implies

‖f̃∞‖Lq(B) = ‖v∞‖q ≤ Cp(B)
(

3 + (p/(p− q))1/q
)
q′‖f‖Lq(B).

This shows B is UMDq. By duality (see (8.17)), the preceding argument applied
to B∗ shows B∗ is UMDq′ for 1 < q′ < p′ <∞, and hence that B also is UMDq

for any 1 < p < q < ∞. All this is restricted to the dyadic filtration, but it is
known ([202], see section 8.6 below), that it suffices.

Remark 8.21. Assume B UMDp again. The preceding argument shows that,
for any q with 0 < q < p, there is a constant D(q, p) such that for any dyadic
B-valued martingale we have

‖ sup
n
‖f̃n‖B‖q ≤ D(q, p)Cp(B)‖ sup

n
‖fn‖B‖q.

Indeed, this follows easily from Lemma 8.20 setting vn = supk≤n ‖f̃k‖B and
wn = supk≤n ‖fk‖B .

8.4 The UMD property for p = 1
Burgess Davis decomposition

The following classical decomposition due to Burgess Davis is very useful to
control the “jumps” of a martingale when a priori their length is not predictable.

Lemma 8.22. A general B-valued martingale (fn)n≥0 with E supn ‖fn‖ < ∞
can be decomposed as a sum

fn = hn + gn

with h0 = 0,
∑∞

1 E‖dhn‖ ≤ 6 E supn ‖fn‖ and where almost surely for all n ≥ 1

‖dgn‖ ≤ 6 f∗n−1,

with the notation f∗n = sup
k≤n
‖fk‖. More generally, for any p ≥ 1 we have

(8.34)
∥∥∥∑∞

1
‖dhn‖

∥∥∥
p
≤ 6p ‖sup ‖fn‖‖p
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and hence

(8.35) ‖sup ‖gn‖‖p ≤ (1 + 6p) ‖sup ‖fn‖‖p .

Proof. We define h and g via their increments by setting h0 = 0, g0 = f0 and

dhn = dfn · 1{f∗n>2f∗n−1} − En−1(dfn · 1{f∗n>2f∗n−1})

and
dgn = dfn · 1{f∗n≤2f∗n−1} − En−1(dfn · 1{f∗n≤2f∗n−1}).

Note that when f∗n > 2f∗n−1 then f∗n ≤ 2(f∗n − f∗n−1) hence we must have

‖dfn‖1{f∗n>2f∗n−1} ≤ (f∗n+f∗n−1)1{f∗n>2f∗n−1} ≤ (3/2)f∗n1{f∗n>2f∗n−1} ≤ 3(f∗n−f∗n−1).

Hence ∑
‖dhn‖L1(B) ≤

∑
6E(f∗n − f∗n−1) ≤ 6E sup

n
‖fn‖.

On the other hand, we have

‖dfn · 1{f∗n≤2f∗n−1}‖ ≤ (f∗n + f∗n−1) · 1{f∗n≤2f∗n−1} ≤ 3f∗n−1

hence ‖dgn‖ ≤ 6f∗n−1. Finally, (8.34) follows from the dual to Doob’s inequality
(namely Theorem 1.10), since we have∑

‖dhn‖ ≤
∑

3(f∗n − f∗n−1) +
∑

En−1[3(f∗n − f∗n−1)],

and (8.35) follows from the triangle inequality.

Theorem 8.23. Let B be a UMD Banach space. Let C = 54 C2(B). Then
for all filtrations (An)n≥0 and all choices of signs εn = ±1 we have for all
martingales (fn)n≥0

(8.36) E sup
n

∥∥∥∥∥
n∑
0

εkdfk

∥∥∥∥∥ ≤ CE sup
n
‖fn‖.

Proof. We will use Lemma 8.22. Let f̃n =
∑
k≤n εkdfk and let f̃∗n = supk≤n ‖f̃k‖

and f̃∗ = supn f̃∗n, and similarly for (gn) and (hn). By the UMD property
and Doob’s maximal inequality, we have for any stopping time T (note that
(1{T>0}g̃n∧T ) is a martingale)

‖g̃∗T 1{T>0}‖2 ≤ 2‖g̃T 1{T>0}‖L2(B) ≤ 2 C2(B)‖gT 1{T>0}‖L2(B).

By the triangle inequality we have on one hand

‖f̃∗‖1 ≤
∑
‖dhn‖L1(B) + ‖g̃∗‖1 ≤ 6‖f∗‖1 + ‖g̃∗‖1.

On the other hand, by (8.32), applied with vn = g̃∗n, wn = 2 C2(B)g∗n and
ψn = 2 C2(B)6f∗n, we have

‖g̃∗‖1 ≤ 12 C2(B)‖f∗‖1 + 6 C2(B)‖g∗‖1
hence, using ‖g∗‖1 ≤ ‖f∗‖1 + ‖h∗‖1 ≤ 7‖f∗‖1, we obtain the announced result
after some arithmetic.
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Remark 8.24. Conversely, any space B satisfying (8.36) for some C must be
UMD. More generally, for ε = (εn) ∈ D, let us denote Tε(f) =

∑∞
0 εndfn. If

we have for any ε
‖Tε(f)‖1 ≤ C‖f‖L∞(B),

thenB is UMD. Actually even if an inequality of the form ‖Tε(f)‖r ≤ C‖f‖L∞(B),
holds for some 0 < r < 1 then B is UMD. This follows from the type/cotype the-
ory (see [207, 206]). Let us briefly sketch the argument. Indeed, this inequality
implies that B is of type p > 1 and of cotype q <∞. The cotype <∞ implies
that for some q < ∞ and some C1 we have ‖Tε(f)‖r ≤ C1‖f‖Lq(B), then by
Gundy’s decomposition (Theorem 8.13) we find for some 0 < t < 1 an inequality
of the form ‖Tε(f)‖t ≤ C2‖f‖L1(B). A fortiori we have ‖Tε(f)‖t ≤ C2‖f‖Lp(B)

for p > 1. Therefore using the type > 1, we conclude that, for a suitable p > 1,
we have ‖Tε(f)‖p ≤ C3‖f‖Lp(B), and hence B is UMD.

Third Proof of Theorem 8.12. This is merely a variant of the second proof that
avoids the restriction to dyadic martingales by making use of the B. Davis
decomposition. Let 1 < q <∞. Assume B UMDp. Consider a finite martingale
(fn) in Lq(B) and let (gn) be as in Lemma 8.22. Note that (gn) is also a
finite martingale. We may assume for simplicity f0 = g0 = 0. Fix a choice of
signs ε = (εn). Let g∞ =

∑∞
1 εkdgk, g̃n =

∑n
1 εkdgk and let g̃∗ = sup

n
‖g̃n‖,

g̃∗n = sup
k≤n
‖g̃k‖ and g∗n = sup

k≤n
‖gk‖. Since B is UMDp, by (8.16) and Doob’s

inequality, we have
‖g̃∗‖p ≤ p′Cp(B)‖g∞‖Lp(B).

Since this also holds for all the stopped martingales (1{T>0}gn∧T ) for any stop-
ping time T , we have

‖1{T>0}g̃
∗
T ‖p ≤ p′Cp(B)‖1{T>0}gT ‖Lp(B),

and a fortiori if we set vn = g̃∗n we have

‖1{T>0}vT ‖p ≤ p′Cp(B)‖1{T>0}gT ‖Lp(B).

We will use Lemma 8.20 with wn = p′Cp(B)g∗n and ψn = p′Cp(B)6f∗n. Therefore
by (8.32), we have for any 1 ≤ q < p

‖g̃∗‖q ≤ p′Cp(B)[6‖f∗‖q + (1 + (p/(p− q))1/q)‖g∗‖q]

and hence by (8.35)

‖g̃∗‖q ≤ p′Cp(B)(6 + (1 + (p/(p− q))1/q)(1 + 6q))‖f∗‖q = Cp(B)C(p, q)‖f∗‖q

Finally, since we have trivially

f̃∗ ≤ g̃∗ +
∑
‖dhn‖,
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recalling (8.34) and assuming 1 ≤ q < p we obtain

‖f̃∗‖q ≤ ‖g̃∗‖q +
∥∥∥∑ ‖dhn‖

∥∥∥
q

≤ (Cp(B)C(p, q) + 6q)‖f∗‖q.

Now, when 1 < q < p, Doob’s maximal inequality yields

‖f̃‖Lq(B) ≤ ‖f̃∗‖q ≤ q′(Cp(B)C(p, q) + 6q)‖f‖Lq(B),

and hence
Cq(B) ≤ q′Cp(B)C(p, q) + 6q.

This shows that UMDp ⇒ UMDq. The converse is proved by duality as in the
second proof.

Definition. A Banach space B is called UMD1 if there is a constant C such
that for any martingale in L1(B) we have for any choice of signs εn = ±1

(8.37) E sup
n

∥∥∥∑n

0
εkdfk

∥∥∥
B
≤ CE sup

n
‖fn‖B .

We will denote the best C in (8.37) by C1(B).

The preceding (or Theorem 8.23) shows that for any p 6= 1 UMDp ⇒ UMD1.
(Just take q = 1 in the preceding “third” proof, and stop the proof before the
last step.) The converse, namely UMD1 ⇒ UMD is also true by the preceding
Remark 8.24.

Here is the analogue of Proposition 8.9 for the case p = 1:

Proposition 8.25. A Banach space B is UMD1 (or equivalently UMD) iff there
are constants C ′1 and C ′2 such that for any martingale (fn) in L1(B) we have

(C ′1)−1ERdf ≤ E sup
n
‖fn‖B ≤ C ′2ERdf .

Here we recall that

Rdf (ω) = sup
n

∥∥∥∑n

0
εkdfk(ω)

∥∥∥
L2(B)

.

Proof. Since ˜̃
f = f , we may apply (8.37) with f̃ in place of f and we obtain

C−1E sup ‖fn‖ ≤ E sup
∥∥∥∑n

0
εkdfk

∥∥∥ ≤ CE sup ‖fn‖.

After averaging over the choices of signs ε = (εn), this becomes

(8.38) C−1E sup ‖fn‖ ≤ EΦ ≤ CE sup ‖fn‖

where Φ(ω) =
∫

sup
n
‖
∑n

0 εkdfk(ω)‖Bdµ. By Kahane’s inequality (see Remark

8.2) and by Doob’s inequality (or Corollary 1.23 with an extra
√

2 factor), we
have

Rdf ≤ Φ ≤ 2K(2, 1)Rdf
and hence the Proposition follows from (8.38)
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Corollary 8.26. In the scalar (or Hilbert space) valued case there is a posi-
tive constant β′1 such that for any scalar martingale (Mn) and any predictable
sequence (ϕn) with ‖ϕn‖∞ ≤ 1 we have

E sup
n

∣∣∣∑n

0
ϕkdMk

∣∣∣ ≤ β′1E sup |Mn|.

Let S be the square function defined by (8.8). There are constants a′1, b
′
1 such

that for any martingale (Mn) in L1 we have

(8.39) (a′1)−1‖S‖1 ≤ E sup |Mn| ≤ b′1‖S‖1.

8.5 Examples

Consider again the martingale Mn =
∏n

1 (1 + εk) on D = {−1, 1}N with respect
to the filtration An = σ(ε1, . . . , εn). We set M0 = 1 and let A0 be the trivial
σ-algebra. Note that Mk = 2k1{ε1=...=εk=1} and dMk = εkMk−1 for all k ≥ 1.
Let Ω0 = {ε1 = −1}, Ωk = {ε1 = . . . = εk = 1, εk+1 = −1} for all 0 < k < n
and finally

Ωn = {ε1 = ε1 = . . . = εn = 1}.

Note that Ω0,Ω1, . . . ,Ωn form a partition of our probability space D. We have
for any n ≥ 1

sup
k≤n
|Mk| = 1Ω0 +

∑
0<k<n

1Ωk2k + 1Ωn2n

and hence
E sup
k≤n
|Mk| =

∑
0<k<n

2−k−12k + 1 = (n+ 1)/2.

Let

Sn = (|M0|2 + |dM1|2 + · · ·+ |dMn|2)1/2

= (1 + |M0|2 + · · ·+ |Mn−1|2)1/2.

We have

Sn = 1Ω021/2+
∑

0<k<n

1Ωk(1+1+22+· · ·+22k)1/2+1Ωn(1+1+22+· · ·+22n−2)1/2

and hence

ESn = 2−1/2 +
∑

0<k<n

2−k−1

(
1 +

22k+2 − 1
3

)1/2

+ 2−n
(

1 +
22n − 1

3

)1/2

,

which shows that there is α > 0 independent of n such that

n/α ≤ ESn ≤ αn.
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As a consequence, we may infer that

(8.40) nA1/α ≤ sup
ξk=±1

∥∥∥∑n

0
ξkdMk

∥∥∥
1
.

Indeed, by Khintchine’s inequality we have for any ω

A1Sn(ω) ≤
∫ ∣∣∣∑n

0
ξkdMk(ω)

∣∣∣ dµ(ξ)

and hence after integration in ω

A1ESn ≤
∫ ∥∥∥∑n

0
ξkdMk

∥∥∥
1
dµ(ξ)

which obviously implies (8.40).
In particular this shows that the inequality ‖S‖p ≤ ap sup

n
‖Mn‖p (see The-

orem 8.18), as well as Doob’s maximal inequality do not remain valid for p = 1.
We will now show that the spaces `1, c0, L1, C[0,1] and L∞ all fail UMD.

The proof is based on the following

Proposition 8.27. For each 1 < p < ∞, there is δ > 0 such that the UMDp-
constant of `N1 satisfies

∀N ≥ 1 Cp(`N1 ) ≥ δLog(N).

Proof. It suffices to show this for N = 2n. Consider B = L1(D,µ) and let (fn)
be the B-valued martingale defined by fn(ω) =

∏n
1 (1 + εk(ω)εk). Note that by

the translation invariance of µ (indeed µ is the Haar measure on {−1, 1}N) we
have for any ω

(8.41) ‖fn(ω)‖B = ‖Mn‖1

where (Mn) is the scalar valued martingale in the previous paragraph. Similarly,
for any choice of signs ξ = (ξn)n we have for any ω

(8.42)
∥∥∥∑n

0
ξkdfk(ω)

∥∥∥
B

=
∥∥∥∑n

0
ξkdMk

∥∥∥
1
.

Now observing that (f1, . . . , fn) actually takes values in a subspace of B that is
isometric to `2

n

1 , we have∥∥∥∑n

0
ξkdfk

∥∥∥
Lp(B)

≤ Cp(`2
n

1 )
∥∥∥∑n

0
dfk

∥∥∥
Lp(B)

and hence by (8.41) and (8.42)∥∥∥∑n

0
ξkdMk

∥∥∥
1
≤ Cp(`2

n

1 )‖Mn‖1 ≤ Cp(`2
n

1 ).

which implies by (8.40)
nA1/α ≤ Cp(`2

n

1 ).
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Remark. Note that by (8.42) we have for any fixed ω ∈ Ω

Rdf (ω) =

∫ ∥∥∥∥∥
n∑
0

ξkdMk

∥∥∥∥∥
2

1

dµ(ξ)

1/2

,

and hence by Jensen’s inequality and by (8.7)

A1ESn ≤ Rdf (ω) ≤ ESn.

Thus, we obtain for any ω

(A1/α)n ≤ Rdf (ω) ≤ αn.

We say that a Banach space B contains `n1 ’s uniformly (equivalently in the
terminology of §3.1), `1 is finitely representable in B) if for any ε > 0 there is a
subspace E ⊂ B that is (1 + ε)-isomorphic to `n1 . We then have

Corollary 8.28. The spaces `1, L1 (and also c0, `∞, C[0, 1] and L∞[0, 1]) all fail
the UMD property. More generally, any space B that contains `n1 ’s uniformly
must fail UMD.

Proof. The last assertion is an obvious consequence of the Proposition. Then the
other assertions all follow since each of the spaces listed contains `n1 ’s uniformly.
Indeed, note that `n1 ⊂ `2

n

∞ isometrically. Alternatively, one can use duality (we
have Cp(`N1 ) = Cp′(`N∞)) to deduce from the Proposition that c0, `∞, C[0, 1] and
L∞([0, 1]) fail UMDp′ .

8.6 Dyadic UMD implies UMD

We wish to show that we may restrict ourselves to the dyadic filtration in the
definition of UMD spaces. For that purpose, the following Lemmas will be
convenient.

Lemma 8.29. Let (fn)n≥0 be a martingale in Lp(Ω,A;B) (1 ≤ p < ∞). Let
ε > 0. Then there is a martingale (f ′n)n≥0 formed of step functions such that

∀n ≥ 0 ‖fn − f ′n‖Lp(B) < ε.

Proof. Fix δn > 0 with
∑
δn < δ. Let An = σ(f0, . . . , fn). For each n ≥ 0, let

Fn be an An-measurable step function such that

‖dfn − Fn‖Lp(B) < δn.

Let Bn = σ(F0, . . . , Fn). Note Bn ⊂ An and Bn is finite since the Fk’s are step
functions. Let f ′n = F0 +

∑n
1 Fk − EBk−1Fk. Note that for all n ≥ 1

‖dfn − df ′n‖Lp(B) ≤ ‖dfn − Fn‖Lp(B) + ‖EBn−1(Fn − dfn)‖Lp(B) < 2δn
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and hence
‖fn − f ′n‖Lp(B) ≤ 2

∑n

0
δk < 2δ.

Since Bn is finite, f ′n is a step function and finally (f ′n)n≥0 is clearly a martingale,
so the result follows with δ = ε/2.

Recall that the dyadic filtration on ([0, 1[, dt) is defined by A0 = (∅, [0, 1])
and Am is generated by the partition into the 2m intervals

[(j − 1)2−m, j2−m[ j = 1, 2, . . . , 2m.

Given (Ω,A,P) and C ∈ A with P(C) > 0, We will denote by PC the conditional
probability on C i.e.

∀A ∈ A PC(A) = P(C)−1P(A ∩ C).

Note that if Ij is a finite (measurable) partition of C,

PC(A) =
∑
j

PC(Ij)PIj (A).

For simplicity, we use the notation P(F = x) instead of P({F = x}).

Lemma 8.30. Let f be a B-valued variable on (Ω,A,P) taking values in a finite
set V ⊂ B. We assume P(f = x) > 0 for all x in V . Then for any ε > 0 we
can find positive integers m and {kx | x ∈ V } with

∑
x 2−mkx = 1 such that

∀x ∈ V |P(f = x)− 2−mkx| < ε.

Moreover, if this holds, then, denoting by P′ the Lebesgue (probability) measure
on [0, 1]

(i) There is an Am-measurable variable ϕ on ([0, 1],P′), taking the same val-
ues as f , such that, for all x in V , P′(ϕ = x) = 2−mkx.

(ii) Let m′ ≥ 1 be any integer and let C be any set in Am′ . Then there is a
Am′+m-measurable variable ϕ on C such that for any non-negligible I ⊂ C
with I ∈ Am′

P′I(ϕ = x) = 2−mkx

and hence
|P(f = x)− P′I(ϕ = x)| < ε.

Proof. The first assertion as well as (i) are essentially obvious. For (ii), assume
that |C| = 2−m

′
K, so that C is a disjoint union of (atomic) intervals of Am′

say {Ij | j ≤ K} with |Ij | = 2−m
′
. Then on each Ij , by (i) transported on Ij ,

we can find an Am′+m-measurable variable ϕj such that

P′Ij (ϕj = x) = 2−mkx
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so it suffices to set
ϕ =

∑
j

1Ijϕj

to obtain
P′C(ϕ = x) =

∑
j
P′C(Ij)P′Ij (ϕj = x) = 2−mkx,

and the same with C replaced by any I ⊂ C (I ∈ Am′ , |I| > 0).

Lemma 8.31. Let (fn)n≥0 be a B-valued martingale formed of step functions,
so that for each N ≥ 0, (f0, . . . , fN ) takes values in a finite subset VN ⊂ BN+1

and f0 is constant. Let δn ≥ 0 and δ > 0 be such that
∑
δn < δ. Then there

are integers
0 = m(0) ≤ m(1) ≤ · · · ≤ m(N) ≤ · · ·

and a sequence (f ′n)n≥0 on [0, 1] adapted to (Am(n))n≥0 such that for each N ,
F ′N = (f ′0, . . . , f

′
N ) takes the same values VN as FN = (f0, . . . , fN ) and such

that

∀x ∈ VN |P((f0, . . . , fN ) = x)− P′((f ′0, . . . , f ′N ) = x)| < δ1 + · · ·+ δN

and
∀n ≥ 1 ‖f ′n−1 − EAm(n−1)f ′n‖L∞(B) < δn.

Proof. We prove this by induction on N . The case N = 0 is obvious (since f0

is constant). Assume this proved up to N for a given δ > 0 and let us produce
m(N + 1) and f ′N+1. Fix a value x in VN . Consider A(x) = {(f0, . . . , fN ) = x}.
Then fN+1 is a step function on (A(x),PA(x)). Applying Lemma 8.30 to it, we
find an integer m as in Lemma 8.30. Since we have only finitely many x’s to
consider, we choose m large enough so it is suitable for all x’s simultaneously.
Consider A′(x) = {(f ′0, . . . , f ′N ) = x} ⊂ [0, 1]. By Lemma 8.29 (ii) applied
to fN+1|A(x) with (Ω, P ) = (A(x),PA(x)) and m′ = m(N), we can find an
Am(N)+m-measurable variable ϕx on A′(x) such that

∀y ∈ B |P′A′(x)(ϕx = y)− PA(x)(fN+1 = y)| < ε.

We then define f ′N+1 on A′(x) by

f ′n+1|A′(x) = ϕx.

Then
P((FN , fN+1) = (x, y)) = P(A(x))PA(x)(fN+1 = y)

and similarly for (F ′N , f
′
N+1). Recall

|P(A(x))− P′(A′(x))| ≤ δ1 + · · ·+ δN

|PA(x)(fN+1 = y)− P′A′(x)(f
′
N+1 = y)| < ε

hence

|P((FN , fN+1) = (x, y))− P′((F ′, f ′N+1) = (x, y))| < δ1 + · · ·+ δN + ε.
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Finally, the martingale condition for (FN , fN+1) means that if x = (x0, · · · , xN )

xN =
∑

y
PA(x)(fN+1 = y)y,

so that ∥∥∥xN −∑
y

P′A′(x)(f
′
N+1 = y)y

∥∥∥ < Kε

where K = sup
∑
‖y‖ with the sum running over all the (finitely many) values

of fN+1 on A(x) (i.e. those y’s such that PA(x)(fN+1 = y) > 0) and the sup is
over all x’s. Since (see Lemma 8.30) we actually can obtain the same with A(x)
replaced by any Am(N)-atom I ⊂ A(x), this implies

‖f ′N − EAm(N)f ′N+1‖∞ < Kε.

Thus it suffices to choose ε > 0 small enough to obtain the (N + 1)-th step of
the induction.

Theorem 8.32. Let 1 < p < ∞. To compute the UMDp constant of a Ba-
nach space B, we may restrict ourselves to martingale differences relative to the
dyadic filtration on [0,1] i.e. their unconditionality constant dominates that of
any martingale difference sequence.

Proof. Assume, we know that

(8.43)
∥∥∥∑ εndgn

∥∥∥
Lp(B)

≤ C
∥∥∥∑ dgn

∥∥∥
Lp(B)

for any εn = ±1 and any finite dyadic martingale (g0, . . . , gN ) relative to
A0,A1, . . . ,AN . Then, by an obvious blocking argument, the same still holds
for martingales relative to a subsequence A0,Am(1),Am(2), . . . of the dyadic
filtration.

Now fix ε > 0. Consider an arbitrary martingale (f0, . . . , fN ) in Lp(B).
We claim that it satisfies (8.43). By Lemma 8.29, we may assume that F =
(f0, . . . , fN ) are step functions. Let then F ′ = (f ′0, . . . , f

′
N ) be as in Lemma

8.31. Note that we have

E‖fN‖p − E‖f ′N‖p =
∑
‖x‖p(P(fN = x)− P(f ′N = x))

where the sum runs over the range RN of fN , hence

(8.44) |E‖fN‖p − E‖f ′N‖p| ≤ C1ε

with C1 =
∑
x∈RN ‖x‖

p.
For any x ∈ BN+1, let T (x) = (y0, . . . , yN ) where y0 = x0 and yn − yn−1 =

εn(xn − xn−1). Note that T is its own inverse. Then

P(T (F ) = x) = P(F = T−1(x))

hence
|P(T (F ) = x)− P(T (F ′) = x)| < ε
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which implies by the same reasoning as above for (8.44) that

(8.45)
∣∣∣E∥∥∥∑ εndfn

∥∥∥p − E
∥∥∥∑ εndf

′
n

∥∥∥p∣∣∣ < C2ε.

Thus we are essentially reduced to proving (8.43) for (f ′n). But since (f ′n)
satisfies the quasi-martingale estimate:

N∑
1

‖f ′n−1 − EAm(n−1)f ′n‖∞ ≤ Nε,

we know by Remark 2.18 that there is a bona fide dyadic martingale gn such
that for k = 1, . . . , N

‖f ′k − gm(k)‖Lp(B) < C3ε.

Therefore, we deduce from (8.43)

‖
N∑
0

εndf
′
n‖Lp(B) ≤ C‖f ′N‖Lp(B) + C4ε,

and from (8.44) and (8.45) we get finally

‖
N∑
0

εndfn‖Lp(B) ≤ C‖fN‖Lp(B) + C5ε.

Letting ε→ 0 proves our claim.

8.7 The Burkholder–Rosenthal inequality

We now turn to what we call the Burkholder–Rosenthal inequality, because
Burkholder apparently was inspired by Rosenthal’s discovery of this inequality
for sums of independent random variables.

Let (fn)n≥0 be a scalar (or Hilbert space valued) martingale in L2. We will
denote by σ(f) the “conditioned square function”, namely

(8.46) σ(f) =
(
‖f0‖2 +

∑∞

1
En−1‖dfn‖2

)1/2

.

We will also denote
d∗(f) = sup

n≥0
|dfn|.

We have then

Theorem 8.33 (Burkholder–Rosenthal inequality). For any 2 ≤ p <∞, there
are positive constants α′p, β

′
p such that any scalar or Hilbert space valued mar-

tingale (fn)n≥0 in Lp satisfies

α′p(‖σ(f)‖p + ‖d∗(f)‖p) ≤ sup
n≥0
‖fn‖p ≤ β′p[‖σ(f)‖p + ‖d∗(f)‖p]
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Proof. We will prove this in the scalar case only. The Hilbert space case is
identical. For short, we will write σ and d∗ instead of σ(f) and d∗(f). By
convention, we set E−1|d0|2 = |d0|2. Recall that we have

(8.47) αp‖S‖p ≤ sup ‖fn‖p ≤ βp‖S‖p.

Since p/2 ≥ 1, by Theorem 1.10 (the dual to Doob’s inequality) we have on one
hand ∥∥∥∑En−1|dn|2

∥∥∥
p/2
≤ (p/2)

∥∥∥∑ |dn|2
∥∥∥
p/2

therefore
‖σ‖p ≤ (p/2)1/2‖S‖p.

On the other hand, by Doob we have

‖f∗‖p ≤ p′ sup ‖fn‖p;

since d∗ ≤ 2f∗, this last inequality implies

‖d∗‖ ≤ 2p′ sup ‖fn‖p.

Therefore we obtain

‖σ‖p + ‖d∗‖p ≤ ((p/2)1/2α−1
p + 2p′) sup ‖fn‖p.

For the other side, we will estimate

S2 − σ2 =
∑∞

1
|dn|2 − En−1|dn|2.

Since d′n = |dn|2 − En−1|dn|2 are martingale differences, we have

‖S2 − σ2‖p/2 ≤ βp/2
∥∥∥∥(∑ |d′n|2

)1/2
∥∥∥∥
p/2

≤ βp/2(I + II),

where

I =
∥∥∥∥(∑ |dn|4

)1/2
∥∥∥∥
p/2

and

II =
∥∥∥∥(∑(En−1|dn|2)2

)1/2
∥∥∥∥
p/2

≤
∥∥∥∑En−1|dn|2

∥∥∥
p/2

= ‖σ‖2p.

But now (∑
|dn|4

)1/4

≤ (Sd∗)1/2
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hence ∥∥∥∥(∑ |dn|4
)1/4

∥∥∥∥
p

≤ (‖S‖p‖d∗‖p)1/2

so that

I =
∥∥∥∥(∑ |dn|4

)1/4
∥∥∥∥2

p

≤ ‖S‖p‖d∗‖p,

hence by the arithmetic/geometric mean inequality for any t > 0
√

I ≤ 2−1(t‖S‖p + t−1‖d∗‖p).

Recapitulating, this gives us since
√

I + II ≤
√

I +
√

II

‖|S2−σ2|1/2‖p ≤ (βp/2)1/2(
√

I+
√

II) ≤ (βp/2)1/2(2−1t‖S‖p+ t−1‖d∗‖p+‖σ‖p).

But now
S =

√
S2 ≤ |S2 − σ2|1/2 + σ

therefore

‖S‖p ≤ (βp/2)1/2(2−1t‖S‖p + 2−1t−1‖d∗‖p + ‖σ‖p) + ‖σ‖p.

Finally, if we choose t so that (βp/2)1/2t = 1 we find

‖S‖p ≤ 2−1‖S‖p + 2−1βp/2‖d∗‖p + (βp/2)1/2‖σ‖p + ‖σ‖p
⇒ ‖S‖p ≤ βp/2‖d∗‖p + 2(βp/2)1/2‖σ‖p + 2‖σ‖p,

so that we obtain the desired inequality with β′p = max{βp/2, 2(βp/2)1/2+2}.

Lemma 8.34. Let 2 ≤ p ≤ ∞. Any scalar (or Hilbert space) valued martingale
(fn)n≥0 satisfies ( ∞∑

0

‖dfn‖pp

)1/p

≤ 21/p′‖f‖p

Proof. Consider f in L∞. Let fn = Enf . We have trivially both(∑∞

0
‖dfn‖22

)1/2

≤ ‖f‖2

and

sup
n
‖dfn‖∞ ≤ 2‖f‖∞.

Therefore the inequality follows by complex interpolation.
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Let us denote for (fn) as in (8.46)

σp(f) =
(
‖f0‖p +

∑∞

1
‖dfn‖p

)1/p

.

Note that

‖σp(f)‖p =
(∑∞

0
‖dfn‖pp

)1/p

.

Then the following variant of the Burkholder–Rosenthal inequality is particu-
larly useful:

Theorem 8.35. Let 2 ≤ p <∞. Let α′′p = 2−1 min(α′p, 2
−1/p′). Any scalar (or

Hilbert space) valued martingale (fn)n≥0 satisfies

(8.48) α′′p(‖σ(f)‖p + ‖σp(f)‖p) ≤ sup ‖fn‖p ≤ βp(‖σ(f)‖p + ‖σp(f)‖p).

Proof. The first inequality follows from Lemma 8.34. Moreover, we have trivially
d∗(f) ≤ σp(f) and hence

‖d∗(f)‖p ≤ ‖σp(f)‖p.

Thus we obtain the second inequality.

Corollary 8.36. Let (Yn) be independent random variables in Lp, 2 < p <∞,
with mean zero, i.e. EYn = 0 for all n. Then the series

∑
Yn converges in Lp

iff both
∑
‖Yn‖22 <∞ and

∑
‖Yn‖pp <∞. Moreover, we have

α′′p [(
∑
‖Yn‖22)1/2+(

∑
‖Yn‖pp)1/p] ≤ ‖

∑
Yn‖p ≤ βp[(

∑
‖Yn‖22)1/2+(

∑
‖Yn‖pp)1/p].

Proof. Let An = σ(Y0, Y1, · · · , Yn). Clearly, since the (Yn)’s are independent,
we have EAn−1 |Yn|2 = E|Yn|2 hence if f =

∑
Yn (i.e. dfn = Yn), we have

σ(f) = (
∑
‖Yn‖22)1/2 and ‖σp(f)‖p = (

∑
‖Yn‖pp)1/p. Thus the result follows

from (8.48).

Corollary 8.37. Let (Ω,A,P) be a probability space. Let (Cn) be a sequence
of independent σ-subalgebras of A. Let Σp ⊂ Lp(Ω,A,P) be the closure of the
linear space of all the finite sums

∑
Yn with Yn ∈ Lp, Cn-measurable and with

EYn = 0 for all n. Then the orthogonal projection Q : L2 → Σ2, defined by

∀f ∈ L2 Q(f) =
∑

(ECn(f)− E(f))

is bounded on Lp for all 1 < p <∞.

Proof. By duality, it suffices to show this for 2 < p < ∞. Let f ∈ Lp and let
An = σ(C0, C1, · · · , Cn). As usual we set dfn = Enf − En−1f . We may as well
assume A = A∞. Then Σp clearly coincides with the set of all f in Lp such
that dfn is Cn-measurable for all n, and we have Qf =

∑
ECndfn for all f in L2.

Assuming p > 2, we have

(
∑
‖ECndfn‖22)1/2 ≤ (

∑
‖dfn‖22)1/2 = ‖f‖2 ≤ ‖f‖p,
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and by interpolation between the cases p = ∞ and p = 2 (as in Lemma 8.34
above) we have

(8.49) (
∑
‖ECndfn‖pp)1/p ≤ 21/p′‖f‖p.

Therefore, by Corollary 8.36 we find

‖Qf‖p ≤ βp[(
∑
‖ECndfn‖22)1/2 + (

∑
‖ECndfn‖pp)1/p] ≤ βp(1 + 21/p′)‖f‖p,

which means ‖Q : Lp → Lp‖ ≤ βp(1 + 21/p′).

Corollary 8.38. Let p ≥ 2. Let (Yn) be a sequence of independent mean zero
random variables in Lp(Ω,A,P) with ‖Yn‖p = 1. Let wn = ‖Yn‖2 and w = (wn).
Let x = (xn) be a scalar sequence. Then the series

∑
xnYn converges in Lp iff

both
∑
w2
n|xn|2 < ∞ and

∑
|xn|p < ∞. Let Xp,w be the space of all such

sequences with norm ‖x‖p,w = (
∑
w2
n|xn|2)1/2 + (

∑
|xn|p)1/p. We have then

α′′p‖x‖p,w ≤ ‖
∑

xnYn‖p ≤ βp‖x‖p,w.

Therefore, as a Banach space, the span in Lp of (Yn) depends only on w = (wn).

Proof. This is immediate from (8.48) (see Corollary 8.36).

Corollary 8.39. Let p ≥ 2. Let wn > 0. Let (Yn) be a sequence of independent
symmetric random variables with ‖Yn‖2 = wn, ‖Yn‖p = 1 and such that, for
each n, |Yn| has only one non-zero value. Then the orthogonal projection P
onto the closed span of (Yn) in L2 is bounded on Lp. Consequently, the space
Xp,w is isomorphic to a complemented subspace of Lp.

Proof. An elementary calculation shows that, since |Yn| is a multiple of an
indicator function we have

‖Yn‖p‖Yn‖p′ = ‖Yn‖22,

and hence, since ‖Yn‖p = 1, ‖Yn‖p′ = ‖Yn‖22. Let Cn be the σ-algebra generated
by Yn. Let Q be as in Corollary 8.37. Note that 〈f, Yn〉 = 〈ECn(f)− E(f), Yn〉
for all n. We have

∀f ∈ L2 Pf =
∑
‖Yn‖−2

2 〈f, Yn〉Yn =
∑
‖Yn‖−2

2 〈Qf, Yn〉Yn.

We have on one hand clearly ‖Pf‖2 ≤ ‖f‖2 ≤ ‖f‖p, and on the other one∑
|‖Yn‖−2

2 〈f, Yn〉|p =
∑
‖Yn‖−2p

2 |〈ECn(f)− E(f), Yn〉|p

≤
∑

(‖Yn‖−2
2 ‖Yn‖p′)p‖ECn(f)−E(f)‖pp =

∑
‖ECn(f)−E(f)‖pp ≤ (21/p′‖f‖p)p,

where at the last step we used (8.49); therefore Corollary 8.38 yields

‖Pf‖p ≤ βp(1 + 21/p′)‖f‖p.
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Remark 8.40. In the preceding statement, the dual of the space Xp,w can be
identified with the closed span in Lp′ of the variables (Yn). Since Xp,w is the
intersection of `p with a weighted `2-space, its dual is the sum of the respec-
tive duals. It follows that, the series

∑
xnYn‖Yn‖−1

p′ converges in Lp′ iff (xn)
admits a decomposition of the form xn = an + bn with both

∑
|an|p

′
<∞ and∑

|w−1
n bn|2 <∞, and the corresponding norms are equivalent.

Remark 8.41. Fix p > 2. Let q = 2p/(p − 2) so that 1/2 = 1/p + 1/q. By
Hölder, we have

(
∑

w2
n|xn|2)1/2 ≤ (

∑
|xn|p)1/p(

∑
|wn|q)1/q,

so that, on one hand, if
∑
|wn|q <∞, then X(p, w) = `p and on the other hand,

if inf wn > 0, obviously X(p, w) = `2. Now if w = (wn) splits as the disjoint
union of a sequence such that

∑
|wn|q <∞ and one such that inf wn > 0 , then

X(p, w) is isomorphic to `p ⊕ `2.
If none of these three cases happens, w must satisfy both lim inf wn = 0 and∑
n:wn<ε

|wn|q = ∞ for any ε > 0. Rosenthal proved that the resulting space
X(p, w) is actually independent of w up to isomorphism. More precisely, if w
and w′ are two sequences both satisfying this, then X(p, w) and X(p, w′) are
isomorphic to the same Banach space, which therefore can be denoted simply by
Xp. Historically, this space was the first example of a genuinely new Lp-space,
one that was not obtained by direct sums from the classical examples `2, `p or
Lp. Shortly after that breakthrough, uncountably many examples of Lp-spaces
were produced in [91].

8.8 Stein Inequalities in UMD spaces

Bourgain [83] observed that the UMD property of a Banach space B implies a
certain B-valued version of Stein’s inequality. In its most classical form, Stein’s
inequality is as follows. Consider a filtration (An)n≥0 on a probability space
(Ω, P ) and let 1 < p <∞. Then for any sequence (Fn)n≥0 in Lp we have

(8.50)
∥∥∥∥(∑ |EnFn|2

)1/2
∥∥∥∥
p

≤ C(p)
∥∥∥∥(∑ |Fn|2

)1/2
∥∥∥∥
p

where C(p) is a constant depending only on p.
When p = 1 this is no longer valid.

As usual in the B-valued case, the “square function”
(∑
|Fn|2

)1/2 must be
replaced by an average of ‖

∑
εnFn‖B over all signs ε = (εn). In particular,

Bourgain proved that, if B is UMD, if F = (Fn)n≥0 is an arbitrary sequence in
Lp(Ω, P ;B) and if we define as before

(8.51) R({Fn}) =
(∫ ∥∥∥∑ εnFn

∥∥∥2

B
dν(ε)

)1/2

,
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then we have

(8.52) ‖R({EnFn})‖p ≤ C(p,B)‖R({Fn})‖p

where C(p,B) depends only on p and B (see Theorem 8.42 below).
When B = R or C or when B is Hilbertian, we recover Stein’s inequality.

Theorem 8.42. Let F = (Fn)n≥0 be an arbitrary sequence in Lp(Ω, P ;B). We
have for any 1 < p <∞

(8.53)
∥∥∥∑ εnEn(Fn)

∥∥∥
Lp(dν×dP ;B)

≤ Cp(B)
(∫ ∥∥∥∑ εnFn

∥∥∥p dν dP)1/p

.

Proof. Consider as usual D = {−1,+1}N equipped with the filtration

Bn = τ(ε0, ε1, . . . , εn).

Then we define a filtration (Cn)n≥0 on Ω×D by setting

C2j = Aj ⊗ Bj
C2j+1 = Aj+1 ⊗ Bj .

Note that this is an increasing filtration. Now consider f ∈ Lp(Ω×D;B) defined
by

f =
∑
n≥0

Fnεn.

We will apply the preceding results to the martingale

fn = ECn(f).

Note that we have
f2j =

∑
n≤j

Ej(Fn)εn

and
f2j+1 =

∑
n≤j

Ej+1(Fn)εn.

This implies that the increments are of two kinds: on one hand

df2j+1 =
∑
n≤j

d(Fn)j+1εn

and on the other
df2j = Ej(Fj)εj .

Thus, by the definition of UMDp, we find

(8.54)
∥∥∥∑Ej(Fj)εj

∥∥∥
Lp(B)

=
∥∥∥∑ df2j

∥∥∥
Lp(B)

≤ Cp(B)‖f‖Lp(B).
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When B is isomorphic to a Hilbert space (and in some sense only then, see
[184]), then R({xn}) is equivalent to(∑

‖xn‖2
)1/2

,

but in a general Banach space these two ways to measure the “quadratic varia-
tion” of a sequence are quite different.

8.9 H1 spaces. Atoms. BMO

The Hardy space H1 has many analogues in martingale theory. The main
one is probably as follows: we define the space “martingale-H1” relative to
a filtration (An)n≥0 to be the space of scalar valued martingales (fn)n≥0 such
that the maximal function f∗ = sup

n≥0
|fn| is in L1. By convention, we always set

A−1 = {Ω, φ}. The space “martingale-BMO” is then defined as the space of all
martingales (fn)n≥0 converging in L1 such that

sup
n≥1
‖En|f∞ − fn−1|‖∞ <∞.

Equivalently, let us assume A = A∞. For any f in L1, we set

‖f‖BMO = sup
n≥1
‖En|f − fn−1|‖∞ <∞.

We will identify BMO with the space of all A∞-measurable f ’s for which this
is finite. Note that, strictly speaking this is not a norm, only one “modulo
the constants”, i.e. it becomes one if we pass to the quotient modulo the (one
dimensional) subspace spanned by the constant functions.

We will need to work with “regular” filtrations

Definition 8.43. A filtration (An)n≥0 is called regular if there is a constant
C ≥ 1 such that, for all n ≥ 1 and for all f ≥ 0 in L1(Ω,A,P), we have

(8.55) En(f) ≤ CEn−1(f).

We will also assume for convenience that the initial σ-field A0 is trivial.

For example it is easy to see that the dyadic filtration is regular. More generally,
if An is finite for all n and there is δ > 0 such that, for all n ≥ 1, for all atoms
α of An−1 and all atoms α′ ⊂ α of An, we have P(α′)P(α)−1 ≥ δ, then the
filtration is regular (the dyadic case corresponds to δ = 1/2).

If the filtration is regular and (8.55) holds, then

(8.56) C−1‖f‖BMO ≤ sup
n≥0
‖En|f − fn|‖∞ ≤ 2‖f‖BMO.

Indeed, we have

En|f − fn−1| ≤ CEn−1|f − fn−1| ≤ C sup
n≥0
‖En|f∞ − fn|‖∞,
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whence the first inequality. Also |fn − fn−1| ≤ En|f − fn−1| ≤ ‖f‖BMO and
since |f − fn| ≤ |f − fn−1|+ |fn − fn−1|, we obtain the other side.

The martingale version of the Fefferman duality theorem then says that, in
the regular case, the space BMO can be identified with the dual of H1, the
duality being:

〈g, f〉 = lim
n→∞

E(gnfn).

It is well known that all this can be extended rather easily to the Banach space
valued case, as follows (cf. [78], see also [79]).

Let (An)n≥0 be a fixed filtration on a probability space (Ω,A,P). Let B be a
Banach space. We will denote by H1

max(B) the space of all B-valued martingales
(fn)n≥0 converging in L1(B) and such that

E sup
n≥0
‖fn‖B <∞,

equipped with the norm ‖f‖H1
max(B) = E sup

n≥0
‖fn‖B . We will again denote by

f∗ the maximal function, i.e. we set

f∗(·) = sup
n≥0
‖fn(·)‖B .

Remark. Note that, if p > 1, we could also define more generally the Ba-
nach space Hp

max(B) as the space of all B-valued martingales (fn)n≥0 such that
E supn≥0 ‖fn‖

p
B <∞, equipped with the norm ‖f‖Hpmax(B) = (E supn≥0 ‖fn‖

p
B)1/p.

But then, by Doob’s maximal inequality (1.20), this simply would coincide with
the space of Lp-bounded martingales denoted earlier by hp(Ω, (An)n≥0,P;B);
moreover, if B has the RNP, this can be identified (see Remark 2.12) with the
space Lp(Ω,A∞,P;B).

The duality betweenH1 and BMO can be reformulated nicely using “atoms”,
as follows. A function a : Ω → B in L1(Ω,P;B) is called an atom (relative to
our fixed filtration (An)n≥0) if there is an integer n ≥ 0 and a set A ∈ An such
that

{a 6= 0} ⊂ A

En(a) = 0 and ‖a‖L∞(B) ≤ 1/P(A). The space H1
at(B) (relative to our fixed

filtration) is then defined as the space of all functions f in L1(B) which can be
written as an absolutely convergent series of the form

f = E0(f) +
∞∑
n=1

λnan

where an are atoms and
∑
|λn| <∞. We define

‖f‖H1
at(B) = ‖E0(f)‖+ inf

{∑
|λn|

}
where the infimum runs over all possible such representations of f .
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Theorem 8.44. In the regular case (for example in the dyadic case), the spaces
H1
max(B) and H1

at(B) are identical and their norms are equivalent, with equiv-
alence constants independent of B.

Proof. If a is an atom, we have clearly ‖a‖L1(B) ≤ ‖a‖L2(B) ≤ 1 hence Doob’s
inequality yields ‖a∗‖2 ≤ 2 and hence ‖a‖H1

max(B) ≤ 2, so that we find

‖f‖H1
max(B) ≤ 2‖f‖H1

at(B).

To prove the converse we will use the following consequence of (8.55): for any
An-measurable f ≥ 0 we have

(8.57) En−1(f) ≤ C3(En−1(f1/2))2.

Indeed, (8.55) obviously implies f2 ≤ C2En−1(f)2 and hence (En−1f
2)1/2 ≤

CEn−1(f). But now by Hölder’s inequality we have if 1 = 1−θ
p + θ

q

En−1(f) ≤ (En−1f
p)

1−θ
p (En−1f

q)
θ
q

hence choosing p = 1/2, q = 2, θ = 2/3 we find

(En−1f
2)1/2 ≤ CEn−1(f) ≤ C(En−1

√
f)2/3(En−1f

2)1/3,

which implies (8.57) (once we divide by (En−1f
2)1/3, raise to the power 3 and

note that En−1(f) ≤ (En−1f
2)1/2).

Consider now f with

‖f‖H1
max(B) = Ef∗ ≤ 1.

We will prove that

(8.58) ‖f‖H1
at(B) ≤ ‖E(f)‖+ 9C + 64C4 ≤ 1 + 9C + 64C4.

Clearly (replacing f by f − E0f) we may assume f0 = Ef = 0. As usual we let
dn = fn − fn−1. Then for any m ≥ 0 we introduce the stopping time

Tm = inf{n ≥ 0 | ‖fn‖+ En‖dn+1‖ > 2m}.

Note that Tm > 0 since f0 = 0 and E0‖d1‖ = E‖f1‖ ≤ 1. We claim that

(8.59) ‖fTm‖ ≤ C2m.

Indeed, if Tm = n > 0 we have ‖fn−1‖ + En−1‖dn‖ ≤ 2m and hence by (8.55)
‖fn‖ ≤ ‖fn−1‖ + ‖dn‖ ≤ C2m. We can now conclude: since Tm ↑ ∞ we can
write

f = fT0 +
∑
m≥1

fTm − fTm−1 .

Let a0 = C−1fT0 . Then ‖a0‖∞ ≤ 1, E0(a0) = Ef = 0, therefore a0 is an atom
relative to A0 (with support included in Ω). For any m ≥ 1 and n > 0 we set

am,n = (fTm − fTm−1) · 1{Tm−1=n}(C2m+1P{Tm−1 = n})−1.
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Then am,n is an atom: indeed it is supported on {Tm−1 = n} and (8.59) implies
‖am,n‖∞ ≤ P{Tm−1 = n}−1. Here we assume P{Tm−1 = n} > 0 otherwise
we set for notational convenience am,n = 0. Finally En(am,n) = 0. Indeed,
we have Tm−1 ≤ Tm, so that Tm ∧ n = Tm−1 ∧ n when Tm−1 = n, and since
{Tm−1 = n} ∈ An, by (1.10) we may write

En(1{Tm−1=n}(fTm − fTm−1)) = 1{Tm−1=n}(fTm∧n − fTm−1∧n) = 0.

We can now complete the proof of (8.58). We have

f = Ca0 +
∑
m,n>0

C2m+1P{Tm−1 = n}am,n

therefore

‖f‖H1
at(B) ≤ C + C

∑
m,n>0

2m+1P{Tm−1 = n}

= C + C
∑
m>0

2m+1P{Tm−1 <∞}.

Note that
P(Tm−1 <∞) ≤ P{f∗ + sup

n
En‖dn+1‖ > 2m−1}

and hence if we set Z = f∗ + sup
n

En‖dn+1‖

∑
2m+1P(Tm−1 <∞) ≤ E

(∑
n

2m+11{2m−1<Z}

)
≤ 8EZ.

Finally, since ‖dn+1‖ ≤ 2f∗, by (8.57) we have

En‖dn+1‖ ≤ C3(En(‖dn+1‖1/2))2 ≤ 2C3(En
√
f∗)2

therefore by Doob’s inequality (i.e. (1.12) with p = 2)

E sup
n

En‖dn+1‖ ≤ 2C3E(sup
n

En
√
f∗)2 ≤ 8C3Ef∗ ≤ 8C3.

Thus we finally obtain as announced

‖f‖H1
at(B) ≤ C + 8CEZ ≤ C + 8C(1 + 8C3) = 9C + 64C4.

Let us now assume that each An is finite and the σ-algebra A is generated
by the An’s (so that A = A∞).

Assume 1 ≤ p < ∞, and p−1 + (p′)−1 = 1. Recall that the dual of Lp(B)
can be identified with the space hp′(Ω, (An)n≥0, P ;B∗) formed of all the B∗-
valued martingales which are bounded in Lp′(B∗), equipped with the norm
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‖ϕ‖ = sup
n≥0
‖ϕn‖Lp′ (B∗). For all f in Lp(B) and all such ϕ, the duality is defined

by setting
〈ϕ, f〉 = lim

n→∞
E〈ϕn, fn〉 = lim

n→∞
E〈ϕn, f〉.

It is easy to see (by the density of
⋃
n≥0

Lp(Ω,An,P;B) in Lp(B)) that the pre-

ceding limits exist. Then, by the above Proposition 2.14, we have isometrically

Lp(B)∗ = hp′(Ω, (An)n≥0, P ;B∗).

The B∗-valued analogue of BMO can then be defined. We will denote by
BMOσ(B∗) the space of all martingales ϕ = (ϕn)n≥0 in L1(B∗) such that
sup
n≥0

sup
m≥n
‖En‖ϕm − ϕn‖B∗‖∞ < ∞ and we equip it with the “norm” (modulo

constants)
‖ϕ‖ = sup

n≥0
sup
m≥n
‖En‖ϕm − ϕn‖B∗‖∞.

We have then the following easy result:

Theorem 8.45. In the same duality as above, in the regular case, we have
H1
at(B)∗ = BMOσ(B∗). More precisely if we let

‖ϕ‖∗ = sup{|〈ϕ, f〉| | f ∈ H1
at(B) ‖f‖H1

at(B) ≤ 1},

then, assuming ϕ0 = 0, we have

(8.60) ‖ϕ‖∗ ≤ ‖ϕ‖BMOσ(B∗) ≤ 2‖ϕ‖∗.

Sketch. The preceding supremum can be restricted to the set of atoms. More-
over we can restrict the atoms (by martingale convergence) to be in⋃

m≥0

L1(Ω,Am,P;B).

Let
‖ϕ‖∗ = sup{|〈ϕ, f〉| | f ∈ H1

at(B) ‖f‖H1
at(B) ≤ 1}.

If an atom a is Am-measurable with {a 6= 0} ⊂ A, A ∈ An, En(a) = 0 and
‖a‖L∞(B) ≤ P(A)−1, we have

〈ϕ, a〉 = lim
k→∞

E〈ϕk, ak〉 = E〈ϕm, a〉

= E〈ϕm − En(ϕm), a〉

hence

|〈ϕ, a〉| ≤ 1
P(A)

∫
A

‖ϕm − En(ϕm)‖B∗dP ≤ ess sup En‖ϕm − En(ϕm)‖B∗

(where the last inequality uses A ∈ An).
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Thus we obtain for all atoms a

(8.61) |〈ϕ, a〉| ≤ ‖ϕ‖BMOσ(B∗).

Conversely, it is easy to check that

(8.62) ‖ϕ‖BMOσ(B∗) ≤ 2 sup{|〈ϕ, a〉| | a atom}.

Indeed, if |〈ϕ, a〉| ≤ 1 for all a, then we deduce that, for all A in An and all
functions b in the unit ball of L∞(A,P;B), since 2−1P(A)−11A(b−En(b)) is an
atom, we have

P(A)−1|〈ϕm, 1A(b− En(b))〉| ≤ 2

or equivalently

P(A)−1

∣∣∣∣∫
A

〈ϕm − En(ϕm), b〉
∣∣∣∣ ≤ 2

which implies (taking the sup over all b’s) that

P(A)−1

∫
A

‖ϕm − En(ϕm)‖B∗ ≤ 2,

completing the proof of (8.62).

By a famous theorem of John and Nirenberg, any ϕ in BMOσ(B∗) auto-
matically is in Lσq (B∗) for all q <∞. More precisely if we define

‖ϕ‖[q] = sup
m

sup
n≥0
‖(En‖ϕm − En−1ϕm‖q)1/q‖∞

then we have ‖ϕ‖[q] < ∞ for any q < ∞ and there is a numerical constant K
such that for all 1 ≤ q <∞

‖ϕ‖BMOσ(B∗) ≤ ‖ϕ‖[q] ≤ Kq‖ϕ‖BMOσ(B∗).

8.10 Burkholder’s geometric characterization of
UMD space

In [103], Burkholder found a somewhat geometric condition, that he called ζ-
convexity that is equivalent to the UMD property.

Definition 8.46. A Banach space B is called ζ-convex if there is a function
ζ : B ×B → R that is symmetric (i.e. ζ(x, y) = ζ(y, x)), separately concave in
each of the two variables, satisfying ζ(0, 0) > 0 and such that

∀x, y ∈ B ζ(x, y) ≤ ‖x+ y‖ whenever ‖x‖ ≤ 1 ≤ ‖y‖.

Theorem 8.47. A Banach space B is UMD iff it is ζ-convex.



8.10. GEOMETRIC CHARACTERIZATION OF UMD 203

The following result from [178] is closely connected to Burkholder’s charac-
terization but the meaning of the condition is somewhat easier to grasp, since
it involves only the rather standard class of (differences of) convex continuous
functions.

Theorem 8.48. Let B be a real Banach space. We set X = B ⊕B∗. Then B
is UMD iff the function ϕ : X → R defined by

ϕ(x, x∗) = x∗(x)

is the difference of two convex continuous functions on X.

Remark 8.49. LetX be a Banach space. Then ϕ : X → R is the difference of two
convex continuous functions on X iff there is a convex continuous ψ : X → R
such that ψ±ϕ are both convex and continuous. Indeed, if ψ±ϕ are convex and
continuous then ψ = ϕ1−ϕ2 with ϕ1 = (ψ+ϕ)/2, ϕ2 = (ψ−ϕ)/2. Conversely,
if ϕ = ϕ1 − ϕ2 with ϕ1, ϕ2 convex continuous then if ψ = ϕ1 + ϕ2, ψ is convex
continuous and both ψ + ϕ and ψ − ϕ are also convex and continuous. �

In the rest of this section we set Ω = {−1, 1}N∗ , denote by εk : Ω→ {−1, 1}
the k-th coordinate for k = 1, 2, . . . . We setA0 = {φ,Ω} andAn = σ(ε1, . . . , εn)
for all n ≥ 1.

We will use the following.

Lemma 8.50. Let V : X → X∗ be a bounded linear operator. Assume that
there is a constant C such that for all finite X-valued dyadic martingales with
f0 = 0 we have

(8.63)
∑∞

1
E|V (dfn)(dfn)| ≤ C‖f‖2L∞(X).

Then there is a constant C ′ such that for all such (fn) we actually have

(8.64)
∑∞

1
E|V (dfn)(dfn)| ≤ C ′E‖f‖2X .

Proof. Fix k ≥ 0. For simplicity we set dn = dfn. We first claim that

(8.65) Ek
∑
n>k

|V (dn)(dn)| ≤ 4C‖f‖2L∞(B).

Indeed, consider f − fk fix (ε1, . . . , εk), and let

∀ω ∈ {−1, 1}N F (ω) = f(ε1, . . . , εk, ω)− fk(ε1, . . . , εk).

Applying (8.63) to F with (ε1, . . . , εk) fixed we find∑
n>k

Eω|V (dn)(dn)|(ε1, . . . , εk, ω) ≤ C supω ‖f(ε1, . . . , εk, ω)−fk(ε1, . . . , εk)‖2,

and hence for any stopping time T0∫
{T0=k}

∑
n>T0

|V (dn)(dn)| ≤ CP{T0 = k}‖f − fT0‖2L∞(X),
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so that summing over k we find

(8.66) E
(

1{T0<∞}
∑

n>T0
|V (dn)(dn)|

)
≤ CP{T0 <∞}‖f − fT0‖2L∞(X).

Now let T1 ≥ T0 be another stopping time. Replacing f by fT1 in (8.66) we find

(8.67) E
(

1{T0<∞}
∑

T0<n≤T1
|V (dn)(dn)|

)
≤ CP{T0 <∞}‖fT1 − fT0‖2L∞(X).

We will now prove (8.64). We may assume by homogeneity that E‖f‖2X = 1.
We define T0 = inf{n ≥ 0 | ‖fn‖+ ‖dn+1‖ > 1} and for all m ≥ 1

Tm = inf{n > Tm−1 | ‖fn − fTm−1‖+ ‖dn+1‖ > 2m}.

We have then
E
∑∞

1
|V (dn)(dn)| = I + II

where I = E
∑
n≤T0

|V (dn)(dn)| and II =
∑
m≥1 E

∑
Tm−1<n≤Tm |V (dn)(dn)|.

But by (8.67) we have

(8.68) II ≤
∑

m≥1
CP{Tm−1 <∞}‖fTm − fTm−1‖2L∞(X).

Since ‖fTm − fTm−1‖ ≤ 2m if Tm > Tm−1 (because ‖fTm−1− fTm−1‖+ ‖dTm‖ ≤
2m) and also fTm−fTm−1 = 0 if Tm = Tm−1, we have ‖fTm−fTm−1‖L∞(X) ≤ 2m.
Moreover

P{Tm−1 <∞} ≤ P{2 supn,k ‖fn − fk‖+ ‖dn+1‖ > 2m} ≤ P{4 sup ‖fn‖ > 2m}

so (8.68) implies (setting f∗ = sup ‖fn‖)

II ≤ C
∑

m≥1
P{4f∗ > 2m}22m

≤ C ′Ef∗2 ≤ 4C ′E‖f‖2X ≤ 4C ′,

where at the last step we used Doob’s inequality. Moreover by (8.63) applied
with fT0 in place of f we have I ≤ C‖fT0‖2L∞(X) and if T0 ≥ 1 we again have
‖fT0‖ ≤ ‖fT0−1‖ + ‖dT0‖ ≤ 1 while if T0 = 0 we have fT0 = 0. Therefore we
find I ≤ C and we conclude E

∑∞
1 |V (dn)(dn)| ≤ 1 + 4C ′. By homogeneity this

proves the announced result.

Proof of Theorem 8.48. Let V : X → X∗ be the unique self-adjoint linear map
such that V (x)(x) = ϕ(x) for all x in X. Equivalently, this means

(8.69) ∀x, y ∈ X V (x)(y) = V (y)(x) = (ϕ(x+ y)− ϕ(x− y))/4.

If x = (b, b∗) and y = (c, c∗), we have V (x)(y) = (b∗(c) + c∗(b))/2. Note that
‖V ‖ ≤ 1 (actually ≤ 1/2). Assume that B and hence X is UMD. We claim
that if C is the UMD2 constant of X then any finite X-valued martingale (fn)
in L2(X) satisfies ∑∞

1
E|V (dn)(dn)| ≤ CE‖f‖2X .
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Indeed, since V (dn)(dn) is predictable (recall that in the dyadic case dn =
εnϕn−1 with ϕn−1 An−1-measurable), the random variable ξn = sign(V (dn)(dn))
is An−1-measurable (“predictable”) so that we can write∑n

1
E|V (dn)(dn)| = E

∑∞

1
ξnV (dn)(dn) = E

(
V
(∑∞

1
ξndn

)(∑∞

0
dn

))
and hence recalling Remark 8.11

≤ ‖V ‖E
∥∥∥∑∞

1
ξndn

∥∥∥ ∥∥∥∑∞

0
dn

∥∥∥
≤ ‖V ‖

∥∥∥∑∞

1
ξndn

∥∥∥
L2(X)

∥∥∥∑∞

0
dn

∥∥∥
L2(X)

≤ C‖f‖2L2(X).

This proves our claim.
Using this claim we define for any x in X

ψ(x) = inf
{
CE‖f‖2X −

∑∞

1
|EV (dfn)(dfn)|

}
where the infimum runs over all finite dyadic martingales (fn) with f0 = x.

We will now show that for any y in X

(8.70) |V (y)(y)| ≤ 2−1(ψ(x+ y) + ψ(x− y))− ψ(x).

Let ε > 0 and let (fn), (gn) be such that f0 = x+ y, g0 = x− y and

CE‖f‖2 −
∑∞

1
E|V (dfn)(dfn)| < ψ(x+ y) + ε

CE‖g‖2 −
∑∞

1
E|V (dgn)(dgn)| < ψ(x− y) + ε.

We then define a dyadic martingale Fn by setting F0 = x, F1 = x + ε1y and
then for n > 1 Fn(ε1, ε2, . . . , εn) = f(ε2, . . . , εn) if ε1 = 1 and = g(ε2, . . . , εn) if
ε1 = −1. We then find since |V (dF1)(dF1)| = |V (y)(y)|

ψ(x) ≤ CE‖F‖2 −
∑∞

1
E|V (dFn)(dFn)|

< 2−1(ψ(x+ y) + ψ(x− y)) + ε− |V (y)(y)|

and hence we obtain (8.70). But then (8.70) can be rewritten as
(8.71)
|V (y)(y)| = |2−1(ϕ(x+y)+ϕ(x−y))−ϕ(x)| ≤ 2−1(ψ(x+y)+ψ(x−y))−ψ(x)

so by Remark 8.49 this implies that ψ ± ϕ is convex, or more precisely mid-
convex, but since we obviously have (consider fn = x ∀n ≥ 1) ψ(x) ≤ C‖x‖2, it
follows that ψ ± ϕ are bounded on bounded sets and hence by classical results
(cf. [53, p. 215]) they are actually both convex and continuous. This completes
the proof of the “only if” part.
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Conversely, assume that ϕ is the difference of two convex continuous func-
tions. By Remark 8.49 there is ψ convex continuous such that ψ ± ϕ is convex
and hence (8.71) holds. Let (fn) be a finite X-valued dyadic martingale, and
let dn = dfn. Applying (8.71) with x = fn−1, y = dn we find for all n ≥ 1

|V (dn)(dn)| ≤ En−1(ψ(fn)− ψ(fn−1))

and hence after integration∑∞

1
E|V (dn)(dn)| ≤ E(ψ(f)− ψ(0)).

Assume f0 = 0. Since ψ is continuous, there is r > 0 such that ‖x‖ ≤ r implies
|ψ(x) − ψ(0)| ≤ 1. Therefore if ‖f‖L∞(X) ≤ r we find

∑∞
1 E|V (dn)(dn)| ≤ 1.

By homogeneity, this implies that

(8.72)
∑∞

1
E|V (dn)(dn)| ≤ (1/r)2‖f‖2L∞(X),

and hence, by Lemma 8.50, we obtain (8.64). Let (gn) be another finite dyadic
X-valued martingale. Let d′n = dgn. Clearly by polarization

V (dn)(d′n) = 4−1(V (dn + d′n)(dn + d′n)− V (dn − d′n)(dn − d′n))

and hence (8.64) implies

(8.73)
∑∞

1
E|V (dn)(d′n)| ≤ (C ′/4)(‖f + g‖2L2(X) + ‖f − g‖2L2(X)).

Now let ξn = ±1 be arbitrary signs. Let f̃ =
∑
ξndn. Since V : X → X∗ is

isometric, we have

‖f̃‖L2(X) = ‖V (f̃)‖L2(X∗),

= sup{EV (f̃)(g) | g ∈ BL2(X)}.

But for g ∈ BL2(X) we have

EV (f̃)(g) = E
∑∞

1
V (df̃n)(dgn) = E

∑∞

1
ξnV (dn)(dgn)

and hence by (8.73) if g, f ∈ BL2(X)

|EV (f̃)(g)| ≤ E
∑∞

1
|V (dn)(dgn)| ≤ 2C ′.

Thus we obtain ‖f̃‖L2(X) ≤ 2C ′. By homogeneity, ‖f̃‖L2(X) ≤ 2C ′‖f‖L2(X). In
other words, UMD2(X) ≤ 2C ′.
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8.11 Notes and Remarks

The inequalities (8.1) and (8.2) were obtained in a 1966 paper by Burkholder.
We refer the reader to the classical papers [101] and [108] for more on this. See
also the book [25].

The best constants in the Khintchine inequalities are known: see [254, 156].
Szarek [254] proved that A1 = 2−1/2. More generally, let γp be the Lp-norm of
a standard Gaussian distribution (with mean zero and variance 1). It is well
known that

γp = 21/2
(
Γ((p+ 1)/2)/

√
π
)1/p 0 < p <∞.

Let p0 = 1.87... be the unique solution in the interval ]1, 2[ of the equation
21/2−1/p = γp (or explicitly Γ((p + 1)/2) =

√
π/2), then Haagerup (see [156])

proved :

(8.74) Ap = 21/2−1/p 0 < p ≤ p0,

(8.75) Ap = γp p0 ≤ p ≤ 2,

(8.76) Bp = γp 2 ≤ p <∞.

The lower bounds Ap ≥ max{γp, 21/2−1/p} for p ≤ 2 and Bp ≥ γp for p ≥ 2
are easy exercises (by the Central Limit Theorem).

For Kahane’s inequalities, some of the optimal constants are also known, in
particular (see [185]), if 0 < p ≤ 1 ≤ q ≤ 2, we have K(p, q) = 2

1
p−

1
q .

Kahane’s inequalities follow from the results in the first edition of [31].
The idea to derive them from the 2-point hypercontractive inequality is due
to C. Borell.

The property UMD was introduced by B. Maurey and the author (see [202]),
together with the observations that Burkholder’s ideas could be extended to
show that UMDp ⇔ UMDq for any 1 < p, q <∞. It was also noted that UMDp

implies reflexivity (and even super-reflexivity), see Chapter 3 below for more on
this. The Gundy decomposition appearing in Theorem 8.13 comes from [154].

The extrapolation principle appearing in Lemma 8.20 (sometimes called
“good λ-inequality”) is based on the early ideas of Burkholder and Gundy
([108]), but our presentation was influenced by the refinements from [186].
§8.4 is a simple adaptation to the B-valued case of Burgess Davis classical

results from [123]. §8.5 is “folkloric”. §8.6 is due to B. Maurey [202]. The
Burkholder–Rosenthal inequality in Theorem 8.33 appears in [101]. It was pre-
ceded by Rosenthal’s paper [242] from which Corollaries 8.36 to 8.38 are ex-
tracted. §8.8 is due to Bourgain [83], but the original Stein inequality comes
from [56]. The extension to the Banach valued case of the atomic decomposi-
tion of functions in H1(R) or H1(T) (related to §8.9) is due independently to
Garcia–Cuerva and Bourgain ([83]). We refer to O. Blasco’s [78] for a detailed
account of the H1-BMO duality in the B-valued case but in the classical setting
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of functions on T or R. Our §8.9 is just the martingale analogue of his main
result (see also [79]).

In §??, the main inequality (??) is due to Azuma [68]. §8.10 is motivated by
Burkholder’s characterization of UMD spaces in terms of ζ-convexity, for which
we refer to [103, 104, 105, 107]. For Theorem 8.48, we refer to [178].

Appendix 1: Marcinkiewicz theorem

In the next statement, it will be convenient to use the following terminology.
Let X,Y be Banach spaces, let (Ω, µ), ((Ω′, µ′) be measure spaces and let
T : Lp(µ;X) → L0(µ′;Y ) be a linear operator. We say that T is of weak
type (p, p) with constant C if we have for any f in Lp(µ;X)

(sup
λ>0

λpµ′(‖Tf‖ > λ))1/p ≤ C‖f‖Lp(X).

We say that T is of strong type (p, p) if it bounded from Lp(X) to Lp(Y ). We
invoke repeatedly the following famous classical result due to Marcinkiewicz.

Theorem 8.51 (Marcinkiewicz). Let 0 < p0 < p1 ≤ ∞ in the above situation,
assume that T is both of weak type (p0, p0) with constant C0 and of weak type
(p1, p1) with constant C1. Then for any 0 < θ < 1, T is of strong type (pθ, pθ)
with p−1

θ = (1− θ)p−1
0 + θp−1

1 , and moreover we have

‖T : Lpθ (X)→ Lpθ (Y )‖ ≤ K(p0, p1, p)C1−θ
0 Cθ1

where K(p0, p1, p) is a constant depending only on p0, p1, p.

Proof. Let f ∈ Lp0(X) ∩ Lp1(X). Consider a decomposition

f = f0 + f1 with
f0 = f · 1{‖f‖>γλ} and
f1 = f · 1{‖f‖≤γλ},

where γ > 0 and λ > 0 are fixed. We have by our assumptions

µ′(‖T (f0)‖ > λ) ≤ (C0λ
−1)p0

∫
{‖f‖>γλ}

‖f‖p0 dµ

µ′(‖T (f1)‖ > λ) ≤ (C1λ
−1)p1

∫
{‖f‖≤γλ}

‖f‖p1 dµ

hence since ‖T (f)‖ ≤ ‖T (f0)‖+ ‖T (f1)‖

(8.77) µ′(‖T (f)‖ > 2λ) ≤ Cp00 λ−p0
∫

‖f‖>γλ

‖f‖p0dµ+ Cp11 λ−p1
∫

‖f‖≤γλ

‖f‖p1dµ.
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Let p = pθ. If we now multiply (8.77) by 2ppλp−1 and integrate with respect to
λ, using ∫

{‖f‖>γλ}
λp−p0−1dλ = (p− p0)−1(‖f‖/γ)p−p0

and ∫
{‖f‖≤γλ}

λp−p1−1dλ = (p1 − p)−1(‖f‖/γ)p−p1 ,

we find ∫
‖T (f)‖p dµ′ ≤ 2ppCp00 (p− p0)−1γp0−p

∫
‖f‖p dµ

+ 2ppCp11 (p1 − p)−1γp1−p
∫
‖f‖p dµ.

Hence, we obtain the estimate

‖T : Lp(X)→ Lp(Y )‖ ≤ 2Cp0/p0 (p− p0)−1/pγ(p0−p)/p

+ 2Cp1/p1 (p1 − p)−1γ(p1−p)/p,

so that choosing γ so that

Cp00 γp0−p = Cp11 γp1−p

we finally find the announced result with

K = 2(p− p0)−1/p + 2(p1 − p)−1/p.

Remark 8.52. It is fairly obvious and well known that the preceding proof re-
mains valid for “sublinear” operators. Indeed, all that we need for the operator
T is the pointwise inequalities

‖T (f0 + f1)‖B ≤ ‖T (f0)‖B + ‖T (f1)‖B

for any pair f0, f1 in Lp0(X) ∩ Lp1(X), and also the positive homogeneity, i.e.

∀λ ≥ 0, ∀f ∈ Lp0(X) ∩ Lp1(X) ‖T (λf)‖B = λ‖T (f)‖B .

Appendix 2: Hölder-Minkowski inequality

For further reference, we wish to review here a classical set of inequalities usually
referred to as “the Hölder–Minkowski inequality”. Let 0 < q ≤ p ≤ ∞ and let
(Ω,A, µ) be any measure space. Consider a sequence (xn) in Lp(Ω,A, µ). Then

(8.78)
∥∥∥∥(∑ |xn|q

)1/q
∥∥∥∥
p

≤
(∑

‖xn‖qp
)1/q

.
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Indeed, this is an easy consequence of the fact (since p/q > 1) that Lp/q is a
normed space. In particular, when q = 1 we find∥∥∥∑ |xn|

∥∥∥
p
≤
∑
‖xn‖p

that is but the triangle inequality in Lp. If 0 < p ≤ q ≤ ∞, the inequality is
reversed: we have

(8.79)
∥∥∥∥(∑ |xn|q

)1/q
∥∥∥∥
p

≥
(∑

‖xn‖qp
)1/q

.

In particular, when q =∞, we find simply the obvious inequality∥∥ supn |xn|
∥∥
p
≥ supn ‖xn‖p.

One way to check (8.79) is to set r = q/p, r′ = r(r− 1)−1 and yn = |xn|p. Then
(8.79) is the same as ∥∥∥∥(∑ |yn|r

)1/r
∥∥∥∥

1

≥
(∑

‖yn‖r1
)1/r

that is easy to derive from(∑
|yn|r

)1/r

= sup
{∑

αn|yn|
∣∣ αn ≥ 0

∑
|αn|r

′
≤ 1
}
.

Indeed, we find∫ (∑
|yn|r

)1/r

≥ sup
αn≥

P
|αn|r′≤1

∫ ∑
|αn| |yn| =

(∑
‖yn‖r1

)1/r

.

In its simplest form (8.78) and (8.79) reduce to: ∀x, y ∈ Lp

‖(|x|q + |y|q)1/q‖p ≤ (‖x‖qp + ‖y‖qp)1/q if p ≥ q

‖(|x|q + |y|q)1/q‖p ≥ (‖x||qp + ‖y‖qp)1/q if p ≤ q.

It is easy to see that actually the preceding inequalities imply conversely (8.78)
and (8.79).

In the opposite direction, one can easily deduce from (8.78) and (8.79) the
following refinements of (8.78) and (8.79). Let (Ω′,A′, µ′) be another measure
space. Consider a measurable function F : Ω×Ω′ → R. Then (8.78) and (8.79)
become

‖F‖Lp(µ;Lq(µ′)) ≥ ‖F‖Lq(µ′;Lp(µ)) if p ≥ q(8.80)

‖F‖Lp(µ;Lq(µ′)) ≤ ‖F‖Lq(µ′;Lp(µ)) if p ≤ q.(8.81)

Essentially the same proof as for (8.78) and (8.79) establishes (8.80) and (8.81).
Note that (8.78) and (8.79) correspond to Ω′ = N equipped with the counting
measure µ′ =

∑
δn.
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Appendix 3: Reverse Hölder principle

The classical Hölder inequality implies that for any measurable function Z ≥ 0
on a probability space and any 0 < q < p < ∞ we have ‖Z‖q ≤ ‖Z‖p. By the
“reverse Hölder principle” we mean the following two statements (closely related
to [100]) in which the behaviour of Z in Lq controls conversely its belonging to
Lp. We will use the notation

‖Z‖p,∞ =
(

sup
λ>0

tpP{Z > t}
)1/p

.

Our first principle corresponds roughly to the case q = 0.

Proposition 8.53. Let 0 < p <∞. For any 0 < δ < 1 and any R > 0 there is
a constant Cp(ε,R) such that the following holds. Consider a random variable
Z ≥ 0 and a sequence (Z(n))n≥0 of independent copies of Z. We have then

(8.82) supN≥1 P
{

sup
n≤N

N−1/pZ(n) > R

}
≤ δ ⇒ ‖Z‖p,∞ ≤ Cp(δ,R).

Proof. Assume P{N−1/p sup
n≤N

Z(n) > R} ≤ δ for all N ≥ 1. By independence of

Z(1), Z(2), . . . we have

P
{

sup
n≤N

Z(n) ≤ RṄ1/p

}
= (P{Z ≤ RN1/p})N ,

therefore P{Z ≤ RN1/p} ≥ (1− δ)1/N and hence

P{Z > RN1/p} ≤ 1− (1− δ)1/N ≤ C1(δ,R)N−1.

Consider t > 0 such that RN1/p < t ≤ R(N + 1)1/p. We have

P{Z > t} ≤ C1(δ,R)N−1 ≤ C2(δ,R)t−p.

Since we trivially have P{Z > t} ≤ 1 if t ≤ R, we obtain as announced

‖Z‖p,∞ ≤ (max{R,C2(δ,R)})1/p.

Corollary 8.54. For any 0 < q < p <∞ there is a constant R(p, q) such that
for any Z as in Proposition 8.53 we have

(8.83) ‖Z‖p,∞ ≤ R(p, q) sup
N≥1
‖N−

1
p sup
n≤N

Z(n)‖q.

Proof. By homogeneity we may assume supN≥1 ‖N−1/p supn≤N Z(n)‖q ≤ 1.
Then P{N−1/p supn≤N Z(n) > δ−1/q} ≤ δ, so by Proposition 8.53 with R =
δ−1/q and (say) δ = 1/2 we obtain (8.83).
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The following Banach space valued version of the “principle” will be used
several times in the sequel. Let B be an arbitrary Banach space and let f : Ω→
B be a B-valued random variable. Regardless whether these are finite, let us
denote

‖f‖Lp,∞(B) =
(

sup
t>0

tpP{‖f‖B > t}
)1/p

and ‖f‖Lp(B) = (E‖f‖pB)1/p. We will denote again by f (1), f (2), . . . a sequence
of independent copies of the variable f .

Proposition 8.55. For any 1 ≤ q < p < ∞ there is a constant R′(p, q) such
that any f in Lq(B) with E(f) = 0 satisfies

‖f‖Lp,∞(B) ≤ R′(p, q) supN≥1N
−1/p‖f (1) + · · ·+ f (N)‖Lq(B).

Proof. Assume N−1/p‖f (1) + · · · + f (N)‖Lq(B) ≤ 1 for all N ≥ 1. By Corol-
lary 1.23 we have∥∥∥∥ sup

1≤n≤N
N−1/p‖f (1) + · · ·+ f (n)‖B

∥∥∥∥
q

≤ 21+1/q

and hence by the triangle inequality∥∥∥∥ sup
1≤n≤N

N−1/p‖f (n)‖B
∥∥∥∥
q

≤ 22+1/q.

Therefore we conclude by Corollary 8.54 applied to Z(·) = ‖f(·)‖B .



Chapter 9

Martingales and metric
spaces

9.1 Metric characterization of super-reflexivity:
Trees

This section is based on Bourgain’s [86]. By general arguments (see [4]) it was
known that super-reflexivity is preserved under Lipschitz isomorphism. There-
fore knowing this, one would expect there should be a characterization of super-
reflexive Banach spaces using only their structure as metric spaces. This is
precisely the content of Bourgain’s characterization in Theorem 9.1 below.

Definition. Let (T1, d1), (T2, d2) be metric spaces. A map F : T1 → T2 is called
Lipschitz (or Lipschitzian) if there is a constant C such that

∀s, t ∈ T1 d2(F (s), F (t)) ≤ Cd1(s, t).

The smallest such constant C will be denoted by ‖F‖Lip, i.e.

‖F‖Lip = sup
s6=t
{d2(F (s), F (t))/d1(s, t)}.

Definition. Let (Tn, dn) be a sequence of metric spaces. We say that a metric
space (T, d) contains {Tn} Lipschitz uniformly if for any n there are injective
Lipschitz mappings Fn : Tn → T such that

sup
n
{‖Fn‖Lip‖F−1

n|Fn(Tn)‖Lip} <∞.

In other words, there is λ ≥ 1 and positive constants an, bn with anbn ≤ λ such
that for all n

∀s, t ≥ Tn (1/an)d(s, t) ≤ d(Fn(s), Fn(t)) ≤ bnd(s, t).

In the latter case we say that (T, d) (or simply T ) contains the sequence {Tn}
λ-uniformly.

213
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Let Tn be a finite dyadic tree with 1 + 2 + · · · + 2n = 2n+1 − 1 vertices (or
nodes). We will label these points as τ(ε1 . . . εj), 1 ≤ j ≤ n, εj ∈ {−1, 1} and
we denote by τφ the “root” of the tree.

We equip Tn with its natural “geodesic” distance as a graph, i.e. we set

d(τ(ε′1 . . . ε
′
j), τ(ε′′1 . . . ε

′′
k)) = j + k −N

where N = N(ε′, ε′′) is the largest N such that (ε′1, . . . , ε
′
N ) = (ε′′1 , . . . , ε

′′
N ).

Theorem 9.1. A Banach space B is super-reflexive iff B does not contain the
sequence {Tn} Lipschitz uniformly.

The if part follows from:

Lemma 9.2. If B is not super-reflexive then B contains the sequence {Tn}
Lipschitz uniformly.

Proof. By Theorem 3.10 if B is not super-reflexive, for any 0 < θ < 1 and any
n ≥ 1 there are x0, . . . , x2n in B such that for any scalars αj we have

(9.1) (θ/2) supj
(∣∣∣∑

i<j
αi

∣∣∣+
∣∣∣∑

i≥j
αi

∣∣∣) ≤ ∥∥∥∑αjxj

∥∥∥ ≤∑ |αj |.

There is a natural partial order on Tn: we say that s < t (s, t ∈ Tn) if s, t lie
on the same branch with s closer to the root. This can also be reformulated by
saying s, t are of the form s = τ(ε1 . . . εj) and t = τ(ε1 . . . εk) for some k > j
and (ε1, . . . , εk) ∈ {−1, 1}k.

We write s ≤ t if either s < t or s = t. Note that there is a bijective
mapping ϕ : Tn → [1, . . . , 2n+1− 1] such that ϕ maps disjoint intervals starting
at different levels in Tn to disjoint ones in [1, . . . , 2n+1 − 1]. The existence of ϕ
can be proved either by looking at a picture of a tree or using the expansion of
numbers in “base 2”: Just set ψ(τφ) = 0 and ψ(τ(ε1 . . . εk)) =

∑k
1 2−jεj and,

to obtain ϕ, just relabel the range of ψ in increasing order as [1, . . . , 2n+1 − 1].
We can then define an “embedding” Fn : Tn → B by setting

∀t ∈ Tn Fn(t) =
∑
w≤t

xϕ(w).

We claim that for all s, t

(9.2) (θ/2)d(s, t) ≤ ‖Fn(s)− Fn(t)‖ ≤ d(s, t).

Indeed, assume d(s, t) = j + k with

s = τ(ε1 . . . εNε
′
N+1 . . . εN+j) and t = τ(ε1 . . . εNε

′′
N+1 . . . ε

′′
N+k),

with ε′N+1 6= ε′′N+1. Let r = τ(ε1 . . . εN ). Then

Fn(s)− Fn(t) =
∑

k∈A′
xk −

∑
k∈A′′

xk

where A′ ⊂ I ′, A′′ ⊂ I ′′ are disjoint subsets included in disjoint subintervals
I ′, I ′′ of [0, . . . , 2n], with |I ′| = |{w | r < w ≤ s}| = j and |I ′′| = |{w | r < w ≤
t}| = k, and hence (9.1) yields (9.2).
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The only if part of Theorem 9.1 will be deduced from:

Lemma 9.3. If B is super-reflexive then there is a constant C and q <∞ such
that:

(i) For any m > 1 and any family (x0, . . . , xm) in B we have

(9.3) inf
0≤j,j+2k≤m

k−1‖xj + xj+2k − 2xj+k‖ ≤ C(Log m)−
1
q sup

1≤j≤m
‖xj − xj−1‖.

(ii) For any n > 1 and any F : Tn → B we have

inf
2k≤N+k≤n

k−1E‖F (τ(ε1 . . . εNε
′
N+1 . . . ε

′
N+k))− F (τ(ε1 . . . εNε

′′
N+1 . . . ε

′′
N+k))‖

(9.4)

≤ C(Log(n))−1/q‖F‖Lip,(9.5)

where the expectation sign denotes the (triple) average with respect to
ε, ε′, ε′′ in {−1, 1}N.

Proof. If B (and hence L2(B)) is super-reflexive, we know (see (3.42)) that there
is 2 ≤ q <∞ and C such that for all B-valued dyadic martingales (fk) we have(∑n

1
‖dfk‖qL2(B)

)1/q

≤ C‖fn‖L2(B).

A fortiori we have

(9.6) inf1≤k≤n ‖dfk‖L1(B) ≤ Cn−1/q‖fn‖L∞(B).

Let (Ak)k≥0 denote the dyadic filtration on [0, 1[. Recall that An is generated by
the 2n atoms In(k) = [(k−1)2−n, k2−n[. Let m = 2n+1 and let fn : [0, 1]→ B
be the An-measurable function equal to

xk − xk−1 on In(k).

It is easy to check that all the values of the increments dfk(ω) = fk(ω)−fk−1(ω)
are of the form (2k)−1(xj + xj+2k − 2xj+k) for some 0 ≤ j, j + 2k ≤ m. Thus,
from (9.6), we obtain (9.3) for m of the form m = 2n + 1. For the general
case, just choose n such that 2n + 1 ≤ m < 2n+1 + 1 and note that Log m '
Log(2n + 1) ' n. This completes the proof of (i).

To prove (ii), we apply (i) to L2(B) in place of B. Set (for j = 1, · · · , n)

xj = F (τ(ε1 . . . εj))

and we view xj as an Aj-measurable function of (ε1, ε2, . . .) in L2({−1, 1}N, B).
Let N = j + k. Let us denote ξ = (ε1 . . . εN ), η′ = (ε′N+1 . . . ε

′
N+k), and
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η′′ = (ε′′N+1 . . . ε
′′
N+k). Note that xj+k and xj (and hence xj − 2xj+k) both

depend only on ξ = (ε1 . . . εN ) so that by the triangle inequality

‖xN+k(ξ, η′)− xN+k(ξ, η′′)‖L2(B)

≤ ‖xN+k(ξ, η′) + xj − 2xj+k‖L2(B) + ‖xN+k(ξ, η′′) + xj − 2xj+k‖L2(B)

= 2‖xN+k + xj − 2xj+k‖L2(B).

Note that ‖xj − xj−1‖L2(B) ≤ ‖xj − xj−1‖L∞(B) ≤ ‖F‖Lip, and also that the
condition 2k ≤ N +k ≤ n is equivalent to 0 ≤ j, j+2k ≤ n. Therefore a fortiori
we obtain (ii) from (9.3) applied to L2(B), but this time with m = n.

Remark 9.4. Let F : Tn → B be an injective map. If B satisfies (ii) in
Lemma 9.3, for some constant C ′ > 0 independent of n we have

(9.7) ‖F‖Lip‖F−1
|F (Tn)‖Lip ≥ C ′(Log n)1/q.

Indeed, we may assume that ‖F−1
|F (Tn)‖Lip = 1. Then we have

d(F (s), F (t)) ≥ d(s, t)

for all s, t. From this it is easy to check that Tn satisfies

k−1Ed(τ(ε1 . . . εNε
′
N+1 . . . ε

′
N+k), τ(ε1 . . . εNε

′′
N+1 . . . ε

′′
N+k)) ≥ 1

(because ε′N+1 6= ε′′N+1 implies that the above distance is equal to 2k and this
event occurs with probability 1/2). Therefore (9.4) immediately implies (9.7).�

Proof of Theorem 9.1. The if part follows from Lemma 9.2 and the converse
from the preceding remark.

Remark 9.5. Bourgain observed in [86] that already in Hilbert space the estimate
of (9.7) is sharp. See also Matoušek’s [201] for more on this.

9.2 Another metric characterization of super-
reflexivity: Diamonds

This section is based on [173]. Here the sequence {Tn} is replaced by the se-
quence {∆n} of the diamond graphs defined as follows. It will be convenient to
view ∆n as embedded in the Hamming cube, i.e. the set {0, 1}2n equipped with
the Hamming distance d(s, t) =

∑2n

1 |sj . . . tj | = |{j | sj 6= tj}|. The embed-
ding is realized by induction as follows. We set ∆0 = {0, 1}. Then assuming
∆n−1 ⊂ {0, 1}2

n−1
, we define ∆′n ⊂ {0, 1}2

n

simply by doubling each element
in ∆n−1, i.e. we set ∆′n = {(t, t) | t ∈ ∆n−1} ⊂ {0, 1}2

n

. Then if (s, t) ∈ ∆n−1

is a pair of neighbours, i.e. s, t differ just by one digit say sj 6= tj then there are
exactly two points s′ and t′ in {0, 1}2n such that d(s′, (s, s)) = d(s′, (t, t)) = 1
and similarly d(t′, (s, s)) = d(t′, (t, t)) = 1. We let ∆′′n denote the collection of
all the points s′, t′ obtained in this way and we then define ∆n = ∆′n ∪∆′′n.
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Note that if V (∆n) (resp. E(∆n)) denotes the set of vertices (resp. edges)
in ∆n we have by an elementary induction

(9.8) |E(∆n)| = 4n and |V (∆n)| = 2 + 2
∑n−1

0
4j = 2 + 2

4n − 1
3

.

Theorem 9.6. A Banach space B is super-reflexive iff B does not contain the
sequence {∆n} Lipschitz uniformly.

The if part will follow from:

Lemma 9.7. Fix θ > 0 and λ ≥ 1. Let (x1 . . . , x2n) be a λ-basic sequence in
the unit ball of B such that∥∥∥∑

j∈A
xj

∥∥∥ ≥ θ|A| for any A ⊂ {1, . . . , 2n}.

Then the function F : ∆n → B defined (viewing ∆n as a subset of {0, 1}2n) by
F (t) =

∑n
1 tjxj satisfies

∀s, t ∈ ∆n (θ/8λ)d(s, t) ≤ d(F (s), F (t)) ≤ d(s, t).

For the only if part we will use:

Lemma 9.8. Assume that B is uniformly convex. Then for any F : ∆1 → B
such that d(s, t) ≤ ‖F (s)− F (t)‖ ≤Md(s, t) for any s, t in ∆1 we have

‖F (11)− F (00)‖ ≤ 2M(1− δB(2/M)).

Proof. Let

x1 = F (11)− F (10)
x2 = F (10)− F (00)
x3 = F (11)− F (01)
x4 = F (01)− F (00)

so that x1+x2+x3+x4 = 2(F (11)−F (00)). Note 1 ≤ ‖xj‖ ≤M for j = 1, . . . , 4
and also 2 ≤ ‖x1 − x3‖ ≤M and 2 ≤ ‖x2 − x4‖ ≤M . Therefore

‖(x1 + x3)/2M‖ ≤ 1− δB(2/M) and ‖(x2 + x4)/2M‖ ≤ 1− δB(2/M),

and hence

‖F (11)− F (00)‖ = ‖x1 + x3 + x2 + x4‖/2 ≤ 2M(1− δB(2/M)).

Proof of Theorem 9.6. If B is not super-reflexive then by Remark 3.20 for any
0 < θ < 1, for any λ > 1 and for any n there is a sequence x1, . . . , x2n in B
satisfying the assumption of Lemma 9.7 (indeed any such finite sequence in a
space f.r. in B can obviously be “copied” back in B). Thus Lemma 9.7 estab-
lishes the if part. Conversely assume B super-reflexive. Then by Theorem 3.37
we may as well assume B uniformly convex.
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Let Mn = inf{‖F‖Lip‖F−1
|F (∆n)‖Lip} where the infimum runs over all injective

F : ∆n → B. We claim that

(9.9) Mn−1 ≤Mn(1− δB(2/Mn)).

Fix a number M > Mn. Let F : ∆n → B be such that ‖F−1
|F (∆n)‖Lip ≤ 1

and ‖F‖Lip ≤ M . We will use the observation that ∆′n ⊂ ∆n is metrically a
copy of ∆n−1 inside ∆n with double distance: more precisely we have obviously
d∆n((s s), (t t)) = 2d∆n−1(s, t) for any pair (s s), (t t) in ∆′n. Moreover, if
s and t are neighbours in ∆n−1 then (s s), (t t) and the “new points” s′, t′

appearing in the definition of ∆′′n form an isometric copy of D1 with (s s)(t t)
sitting on opposite vertices. Thus for any pair of the form (s s)(t t) in ∆′n
with d∆n−1(s, t) = 1 we must have by Lemma 9.8

‖F (s s)− F (t t)‖ ≤ 2M(−δB(2/M)).

Let F̂ (t) = F (t t)/2. We have

‖F̂ (s)− F̂ (t)‖ ≤M(1− δB(2/M))

for any pair of neighbours s, t in ∆n−1. By the triangle inequality (consider a
minimal path s = t0, t1, . . . , tN = t with d(tj , tj−1) = 1 for all j) this implies

∀s, t ∈ ∆n−1 ‖F̂ (s)− F̂ (t)‖ ≤M(1− δB(2/M))d∆n−1(s, t).

Moreover by our assumption on F , ‖F̂ (s) − F̂ (t)‖ ≥ d∆n
((s s), (t t))/2 =

d∆n−1(s, t). Therefore we conclude Mn−1 ≤M(1− δB(2/M)). This proves our
claim (9.9). Given this, it is easy to deduce that Mn → ∞ if B is uniformly
convex. Indeed, if Mn ≤ M for all n, let δ = δB(2/M), then (9.9) implies
Mn ≥ M0(1− δ)−n and hence Mn → ∞. This completes the proof of the only
if part.

9.3 Markov type p and uniform smoothness

The notion of Markov type p was introduced by K. Ball using Markov chains
on (finite subsets of) the Banach space under consideration.

Let E be an arbitrary finite space and let X0, X1, . . . , Xn be a stationary
symmetric Markov chain on E with invariant probability measure µ on E. This
means that X0, . . . , Xn are E-valued random variables on a probability space
(Ω,A,P) for which there is a symmetric kernel P : E × E → R+ (“transition
probability”) such that for any function f : E → V with values in (say) a vector
space V we have for any 0 ≤ k ≤ n

(9.10) Eσ(X0,...,Xk)f(Xn) =
∫
Pn−k(Xk, ω)f(ω)dµ(ω).
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Note in particular that, since this last expression depends only on Xk, this
encodes the “Markov property”

Eσ(X0,...,Xk)f(Xn) = Eσ(Xk)f(Xn).

The symmetry of the transition probability P implies that the chain is reversible,
i.e. that X0, X1, . . . , Xn have the same joint distribution as Xn, Xn−1, . . . , X0.

Definition 9.9. A Banach space B is called of Markov type p (1 ≤ p ≤ 2)
if there is a constant C such that, for any n for any finite set E and any
(X0, . . . , Xn) as above we have

‖f(Xn)− f(X0)‖Lp(B) ≤ Cn1/p‖f(X1)− f(X0)‖Lp(B).

The smallest such C is called the Markov type p constant of B.

The next result from [212] answers a question left open by K. Ball in [70].

Theorem 9.10 ([70]). Let 1 ≤ p ≤ 2. If a Banach space B is isomorphic to a
p-uniformly smooth, then B is of Markov type p.

Proof. By our assumption on B, we know that all B-valued martingales in
Lp(B) satisfy (4.25). The idea of the proof is to show that f(Xn)− f(X0) can
be rewritten as a sum ∑

d′k +
∑

d′′k + δ

where (d′k) and (d′′k) are martingale differences and we have for all k = 1, . . . , n

max{‖d′k‖Lp(B), ‖d′′k‖Lp(B), ‖δ‖Lp(B)} ≤ 2‖f(X1)− f(X0)‖Lp(B).

Let Ak = σ(X0, . . . , Xk) and Bk = σ(Xn, . . . , Xk). Let fn = f(Xn) and δk =
fk − fk−1. We have obviously

(9.11) fn − f0 =
∑n

1
δk =

∑n

1
d′k +

∑n

1
EAk−1δk

where d′k = (EAk − EAk−1)(δk).
We thus obtain fn − f0 written as a sum of martingale differences

∑
d′k up

to another term that we will now estimate. We have

(9.12) fn − f0 =
∑n+1

2
δk−1 =

∑n+1

2
d′′k +

∑n+1

2
EBk−1(δk−1)

where d′′k = (EBk−2 − EBk−1)(δk−1). Here again (d′′k) are martingale differences.
We now claim that for any k = 2, . . . , n

(9.13) EBk−1(δk−1) = −EAk−1δk.

This is a simple consequence of the reversibility of the chain. Indeed, on one
hand we have EAk−1δk = EAk−1fk − fk−1 and hence by (9.10)

EAk−1δk =
∫
P (Xk−1, t)f(t)dµ(t)− f(Xk−1).
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On the other hand, since (Xn, . . . , X0) and (X0, . . . , Xn) have the same distri-
bution, we have

EBk−1(δk−1) = EXn...Xk−1fk−1−EXn...Xk−1fk−2 = fk−1−
∫
P (Xk−1, t)f(t)dµ(t),

and this proves our claim (9.13). Thus, adding (9.11) and (9.12) yields

(9.14) 2(fn − f0) =
∑n

1
d′k +

∑n+1

2
d′′k + EA0δ1 + EBnδn.

We now observe that by the triangle inequality

‖d′k‖Lp(B) ≤ 2‖δk‖Lp(B)

and since (Xk, Xk−1) and (X1, X0) have the same distribution, we have ‖δk‖Lp(B) =
‖f1 − f0‖Lp(B) for all k, so that ‖d′k‖Lp(B) ≤ 2‖f1 − f0‖Lp(B) and similarly
‖d′′k‖Lp(B) ≤ 2‖f1 − f0‖Lp(B). Thus we obtain finally from (9.14)

‖fn − f0‖Lp(B) ≤
∥∥∥∑n

1
d′k

∥∥∥
Lp(B)

+
∥∥∥∥∑n+1

2
d′′k

∥∥∥∥
Lp(B)

+ 2‖f1 − f0‖Lp(B)

and since by our assumption on B all B-valued martingales satisfy (4.25) we
conclude that

‖fn − f0‖Lp(B) ≤ (Cn1/p + Cn1/p + 2)‖f1 − f0‖Lp(B).

Remark. The converse to Theorem 9.10 remains an open problem: It is rather
easy to show that Markov type p > 1 implies type p, but it is unclear whether
it implies super-reflexivity.

9.4 Notes and Remarks

....
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