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Introduction

Martingales (with discrete time) lie at the centre of these notes (which might
become a book). They are known to have major applications to virtually every
corner of Probability Theory. Our central theme is their applications to the
Geometry of Banach spaces.

We should emphasize that we do not assume any knowledge about scalar
valued martingales. Actually, the beginning gives a self-contained introduction
to the basic martingale convergence theorems for which the use of the norm of
a vector valued random variable instead of the modulus of a scalar one makes
little difference. Only when we consider the “boundedness implies convergence”
phenomenon does it start to matter. Indeed, this requires the Banach space B
to have the Radon-Nikodym property (RNP in short).

While the RNP is infinite dimensional and we will concentrate on finite di-
mensional (also called “local”) properties, it is a convenient way to introduce
the stronger properties of uniform convexity and smoothness and supereflexiv-
ity. Indeed, the martingale inequalities satisfied by super-reflexive spaces can
be interpreted as “quantitative versions” of the RNP: roughly RNP means mar-
tingales converge and superreflexivity produces a uniform speed for their con-
vergence.

Our main theme in the first part is super-reflexivity and its connections with
uniform convexity and smoothness. Roughly we relate the geometric properties
of a Banach space B with the study of the p-variation

So(h) = (X W= fuallp)”

of B-valued martingales (f,). Depending whether S,(f) € L, is necessary or
sufficient for the convergence of (f,,) in L,(B), we can find an equivalent norm
on B with modulus of uniform convexity (resp. smoothness) “at least as good
as” the function t — ¢P.

We also consider the strong p-variation

o0 1/p
Vp(f) = sup (21 | frgry — fn(lc—l)H%)

0=n(0)<n(l)<n(2)<---

of a martingale. For that topic (exceptionally) we devote an entire chapter only
to the scalar case. Our crucial tool here is the “real interpolation method”.
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The first part of the notes with the first 7 chapters are all related to super-
reflexivity, or more precisely, to the martingale versions of type and cotype. We
will see by an example (see chapter 7) that the latter are strictly stronger than
type and cotype.

However, if martingale difference sequences are unconditional, then the mar-
tingale versions of type and cotype reduce to the usual ones. This could be one
way to motivate the introduction of the UMD property in these notes, but UMD
is important in its own right: it is the key to harmonic analysis for Banach space
valued functions.

The chapter 8 is devoted to UMD Banach spaces and forms a second part
of the notes.

A major feature of the UMD property is its equivalence to the boundedness
of the Hilbert transform (HT in short) but we keave this for the final version of
these notes.

We also describe in chapter 9 some exciting recent work on non-linear prop-
erties of metric spaces analogous to uniform convexity /smoothness and type for
metric spaces.

We will now review the contents of these notes chapter by chapter.

Chapter 1 begins with preliminary background: We introduce Banach space
valued L,-spaces, conditional expectations and the central notion in this book,
namely Banach space valued martingales associated to a filtration (A, ),>0 on a
probability space (€2, .4, P). We describe the classical examples of filtrations (the
dyadic one and the Haar one) in §1.3. If B is an arbitrary Banach space and the
martingale (f,) is associated to some f in L,(B) by f, = EA»(f) (1 <p < 00)
then, assuming A = A, for simplicity, the fundamental convergence theorems
say that

fn— f

both in L,(B) and almost surely (a.s. in short).

The convergence in L,(B) is Theorem 1.5, while the a.s. convergence is
Theorem 1.14. The latter is based on Doob’s classical maximal inequalities
(Theorem 1.9) that are proved using the crucial notion of stopping time. We also
describe the dual form of Doob’s inequality due to Burkholder-Davis—Gundy
(see Theorem 1.10). Doob’s maximal inequality shows that the convergence of
fn to fin L,(B) “automatically” implies a.s. convergence. This of course is
special to martingales but in general it requires p > 1. However, for martingales
that are sums of independent, symmetric random variables (Y,,) (i.e. we have
fn =1 Yi), this result holds for 0 < p < 1 (see Theorem 1.22). It also holds,
roughly, for p = 0.

In §1.5, we prove the strong law of large numbers using the a.s. convergence
of reverse B-valued martingales.

To get to a.s. convergence, all the preceding results need to assume in the
first place some form of convergence, e.g. in L,(B). In classical (i.e. real valued)
martingale theory, it suffices to assume boundedness of the martingale { f,,} in L,
(p > 1) to obtain its a.s. convergence (as well as norm convergence if 1 < p < 00).
However, this “boundedness = convergence” phenomenon no longer holds in
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the B-valued case unless B has a specific property called the Radon—-Nikodym
property (RNP in short) that we introduce and study in Chapter 2. The RNP
of a Banach space B expresses the validity of a certain form of the Radon—
Nikodym theorem for B-valued measures, but it turns out to be equivalent
to the assertion that all martingales bounded in L,(B) converge a.s. (and in
L,(B) if p > 1) for some (or equivalently all) 1 < p < co. Moreover, the RNP
is equivalent to a certain “geometric” property called “dentability”. All this is
included in Theorem 2.5. The basic examples of Banach spaces with the RNP
are the reflexive ones and separable duals (see Corollary 2.11).

Moreover, a dual space B* has the RNP iff the classical duality L,(B)* =
L,/ (B*) is valid for some (or all) 1 < p < oo with %+ i =1, see Theorem 2.16.
Actually, for a general B one can also describe L,(B)* as a space of martingales
bounded in L,/ (B*), but in general the latter is larger than the (Bochner sense)
space L, (B*) itself, see Proposition 2.14.

In §2.2, we discuss the Krein-Milman property (KMP): this says that any
bounded closed convex set C' C B is the closed convex hull of its extreme points.
This is closely related to dentability, but although it is known that RNP = KMP
(see Theorem 2.21) the converse implication is still open.

Chapter 3 is devoted to super-reflexivity. A Banach space B is super-reflexive
if every space that is finitely representable in B is reflexive. In §3.1 we intro-
duce finite representability and general super-properties in connection with ul-
traproducts. We include some background about the latter in an appendix to
Chapter 3.

In §3, we concentrate on super-P when P is either “reflexivity” or the
RNP. We prove that super-reflexivity is equivalent to the super-RNP (see The-
orem 3.11). We give (see Theorem 3.10) a fundamental characterization of
reflexivity, from which one can also derive easily (see Theorem 3.22) one of
super-reflexivity.

As in the preceding chapter, we replace B by Lo(B) and view martingale
difference sequences as monotone basic sequences in Lo(B). Then we deduce
the martingale inequalities from those satisfied by general basic sequences in
super-reflexive spaces.

In §3.3, we show that uniformly non-square Banach spaces are reflexive,
and hence automatically super-reflexive (see Theorem 3.24 and Corollary 3.26).
More generally, we go on to prove that B is super-reflexive iff it is J-convex, or
equivalently iff it is J-(n, e) convex for some n > 2 and some £ > 0. We say that

B is J-(n, &) convex if for any n-tuple (z1,...,z,) in the unit ball of B there is
an integer j = 1,...,n such that

Z:ci — sz <n(l-—e).

1<y (4]

When n = 2, we recover the notion of “uniformly non-square”. The implication
super-reflexive = J-convex is rather easy to derive (as we do in Corollary 3.34)
from the fundamental reflexivity criterion stated as Theorem 3.10. The con-
verse implication (due to James) is much more delicate. We prove it following
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essentially the Brunel-Sucheston approach ([77]), that in our opinion is much
easier to grasp. This construction shows that a non-super-reflexive (or merely
non-reflexive) space B contains very extreme finite dimensional structures that
constitute obstructions to either reflexivity or the RNP. For instance any such
B admits a space B finitely representable in B for which there is a dyadic
martingale (f,,) with values in the unit ball of B such that

Vn>1 lfn = fnallz =1.

Thus the unit ball of B contains an extremely sparsely separated infinite dyadic
tree. (See Remark 1.25 for concrete examples of such trees.)

In §3.4, we finally connect super-reflexivity and uniform convexity. We prove
that B is super-reflexive iff it is isomorphic to either a uniformly convex space,
or a uniformly smooth one, or a uniformly non-square one. By the preceding
Chapter 4, we already know that the renormings can be achieved with moduli
of convexity and smoothness of “power type”. Using interpolation (see Propo-
sition 3.42) we can even obtain a renorming that is both p-uniformly smooth
and g-uniformly convex for some 1 < p,q < oo, but it is still open whether this
holds with the optimal choice of p > 1 and ¢ < co. To end Chapter 3, we give
a characterization of super-reflexivity by the validity of a version of the strong
law of large numbers for B-valued martingales.

In Chapter 4, we turn to uniform convexity and uniform smoothness of Ba-
nach spaces. We show that certain martingale inequalities characterize Banach
spaces B that admit an equivalent norm for which there is a constant C' and
2 < g < oo (resp. 1 < p <2) such that for any =,y in B

[+ yl1? + [l — yl|?

0 et + Cllyle < !
(resp.

eyl + P
2 leylt < el + Cllyl?).

This is the content of Corollary 4.7 (resp. Corollary 4.22). We use this in
Theorem 4.1 (resp. Th. 4.24) to show that actually any uniformly convex (resp.
smooth) Banach space admits for some 2 < ¢ < oo (resp. 1 < p < 2) such an
equivalent renorming. The inequality (1) (resp. (2)) holds iff the modulus of
uniform convexity (resp. smoothness) d(g) (resp. p(t)) satisfies inf.~ d(e)e~? >
0 (resp. sup,~q p(t)t 7P < 00). In that case we say that the space is g-uniformly
convex (resp. p-uniformly smooth). The proof also uses inequalities going back
to Gurarii, James and Lindenstrauss on monotone basic sequences. We apply
the latter to martingale difference sequences viewed as monotone basic sequences
in L,(B). Our treatment of uniform smoothness in §4.2 runs parallel to that of
uniform convexity in §4.1.

In §4.3, we estimate the moduli of uniform convexity and smoothness of L,
for 1 < p < oo. In particular, L, is p-uniformly convex if 2 < p < oo and
p-uniformly smooth if 1 < p < 2.
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In §4.5, we prove analogues of Burkholder’s inequalities but with the square
function now replaced by

00 1/
So() = (ol + 32 Mt = fualll)

Unfortunately the results are now only one-sided: if B satisfies (1) (resp. (2))
then ||Sy(f)||» is dominated by (resp. ||S,(f)||» dominates) || f]|z,(p) for all 1 <
r < 00, but here p < 2 < ¢ and the case p = ¢ is reduced to the Hilbert space
case.

In §4.6, we return to the strong p-variation and prove analogous results to
the preceding ones but this time with W, (f) and W,(f) in place of S,(f) and
Sp(f) and 1 < p < 2 < ¢ < co. The technique here is similar to that used for
the scalar case in Chapter 6.

In Chapter 5, although we mention the complex method, we concentrate on
the real method of interpolation for pairs of Banach spaces (B, B1) assumed
compatible for interpolation purposes. The complex interpolation space is de-
noted by (By, B1)g. It depends on the single parameter 0 < 6 < 1, and requires
By, B to be both complex Banach spaces. Complex interpolation is a sort of
“abstract” generalization of the classical Riesz—Thorin theorem, asserting that
if an operator 7" has norm 1 simultaneously on both spaces By = L,, and
By =Ly, with 1 < py < p; < 00, then it also has norm 1 on the space L, for
any p such that pg < p < p1.

The real interpolation space is denoted by (B, B1)g,q. It depends on two
parameters 0 < § < 1, 1 < g < o0, and now (B, B1) can be a pair of real
Banach spaces. Real interpolation is a sort of abstract generalization of the
Marcinkiewicz classical theorem already proved in an appendix to Chapter 8.
The real interpolation space is introduced using the “K-functional” defined, for
any By + By, by

Vi >0 Ki(x) =inf{||zo||p, + t|z1lB, | x0o € Bo,x1 € B1,x = xo + x1}.

When By = L1(Q, 1), By = Loo(€, 1) we find

Ko(z) = /O o (s)ds

where x* is the non-increasing rearrangement of |z| and (2, ) is an arbitrary
measure space. We prove this in Theorem 5.3 together with the identification
of (L1, Leo)e,q with the Lorentz space L, , for p= (1 —60)~1.

Real interpolation will be crucially used in the later Chapters 6 and 7 in
connection with our study of the “strong p-variation” of martingales. The two
interpolation methods satisfy distinct properties but are somewhat parallel to
each other. For instance, duality, reiteration and interpolation between vec-
tor valued L,-spaces are given parallel treatments in Chapter 5. The classical
reference on interpolation is [5] (see also [35]).
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In Chapter 6 we study the strong p-variation W,(f) of a scalar martingale
(fn)- This is defined as the supremum of

1/
(|fn(0)|p + Z:;l | fr(r) — fn(k—1)|p) !

over all possible increasing sequences
0=n(0) <n(l)<n(2) <-- .

The main results are Theorem 6.2 and Proposition 6.6. Roughly this says that,
if 1 <p <2, W,(f) is essentially “controlled” by (3> |fn— fn_1|?)}/?, i.e. by the
finest partition corresponding to consecutive n(k)’s; while, in sharp contrast, if
2 < p < o0, it is “controlled” by |feo| = lim | f,]|, or equivalently by the coarsest
partition corresponding to the choice n(0) = 0, n(1) = oco.

The proofs combine a simple stopping time argument with the reiteration
theorem of the real interpolation method.

In Chapter 7, we study the real interpolation spaces (vi, f)g,q- As usual,
Lo (resp. v1) is the space of scalar sequences (z,) such that sup|z,| < oo
(resp. > 7" |zn — Tp—1| < 00) equipped with its natural norm. The inclusion
v1 — Ll plays a major part (perhaps behind the scene) in our treatment of
(super) reflexivity in Chapter 3. Indeed, by the fundamental Theorem 3.10, B
is non-reflexive iff the inclusion J: v; — £ factors through B, i.e. it admits a
factorization

U1 L B L’ £007
with bounded linear maps a, b such that J = ba.

The work of James on J-convexity (described in Chapter 3) left open an
important point: whether any Banach space B such that ¢} is not finitely repre-
sentable in B (i.e. is not almost isometrically embeddable in B) must be reflex-
ive. James proved that the answer is yes if n = 2, but for n > 2 this remained
open until James himself settled it in [166] by a counterexample for n = 3 (see
also [168] for simplifications). In the theory of type (and cotype), it is the same
to say that, for some n > 2, B does not contain ¢} almost isometrically or to
say that B has type p for some p > 1 (see the survey [206]). Moreover, type p
can be equivalently defined by an inequality analogous to that of p-uniformly
smoothness but only for martingales with independent increments. Thus it is
natural to wonder whether the strongest notion of “type p”, namely type 2,
implies reflexivity. In another tour de force, James [167] proved that it is not
so. His example is rather complicated. However, it turns out that the real inter-
polation spaces W, 4 = (v1,400)8,4 (1 < p,q < 00,1 —60 = 1/p) provide very nice
examples of the same kind. Thus, following [235] we prove in Corollary 7.19,
that W, 4 has exactly the same type and cotype exponents as the Lorentz space
lpq = (l1,0)0,q as long as p # 2, although as already explained W, , is not
reflexive since it lies between v; and fo,. The singularity at p = 2 is necessary
since (unlike o = {3 5) the space W o, being non-reflexive, cannot have both
type 2 and cotype 2 since that would force it to be isomorphic to Hilbert space.
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In Chapter 7, we include a discussion of the classical James space (usually
denoted by J) that we denote by v3. The spaces W, , are in many ways similar to
the James space, in particular if 1 < p, ¢ < oo they are of codimension 1 in their
bidual (see Remark 7.8). We can derive the type and cotype of W, 4 in two ways.
The first one proves that the vector valued spaces W), 4(L,) satisfy the same kind
of “Hélder-Minkowski” inequality than the Lorentz spaces £, , with the only
exception of p = r. This is the substance of Corollary 7.18. Another way (see
Remark 7.25) goes through estimates of the K-functional for the pairs (v1, ¢so)
and also (v,,{s) for 1 < r < oo, see Lemma 7.22. Indeed, by the reiteration
theorem, we may identify (v1,0u)p,q and (vy,loo)g,q if @ > 6(r) = 1 — 1, and
similarly in the vector valued case, see Theorem 7.23. We also use reiteration in
Theorem 7.14 to describe the space (vr,fx)s,q for 0 < r < 1. In the final
Theorem 7.26, we give an alternate description of W, = W, , that should
convince the reader that it is a very natural space (this is closely connected
to “splines” in approximation theory). The description is as follows: a sequence
z = (xy)n belongs to W, iff Y\, Sn(2)? < oo where Sy(x) is the distance in
L of z from the subspace of all sequences (y,,) such that card{n | |y, — yn—1| #
0} < N.

Chapter 8 is devoted to the UMD property. After a brief presentation of
Burkholder’s inequalities in the scalar case, we concentrate on their analogue
for Banach space valued martingales (f,,). In the scalar case, when 1 < p < oo,
we have

sup [ fullp = lsup [fulllp = 1S(f)l

where S(f) = (|fol? +>2(fn — fn-1)?)"/?, and where A, ~ B, means that there
are positive constants C;, and C}' such that C; A, < B, < CJA,. In the Banach
space valued case, we replace S(f) by:

) 1/2

d,u>

where p is the uniform probability measure on the set D of all choices of signs
(en)n with e, = 1.

In §8.2 we prove Kahane’s inequality, i.e. the equivalence of all the L,-norms
for series of the form Zcfo En®y with z, in an arbitrary Banach space when
0 < p < o0, see (8.13); in particular, up to equivalence, we can substitute to the
Lo-norm in (3) any other L,-norm for p < co.

Let {x,} be a sequence in a Banach space, such that the series Y e,,, converges
almost surely. We set

(8)  R()w)=supy ( / \ fo@) + 3 enlfa— fac))(@)

1/2

2
dp

Rifea)) = | [ |30

With this notation we have

(4) R(f)(w) = R({fo(w), fi(w) = fo(w), fa(w) = fr(w),---}).



8 Introduction

The UMD,, and UMD properties are introduced in §8.3. Consider the series

(5) f5:f0+2j05n(fn_fnfl)-

By definition, when B is UMD, (f,) converges in L,(B) iff (5) converges in
L,(B) for all choices of signs ¢,, = £1 or equivalently iff it converges for almost
all (e,,). Moreover, we have then for 1 < p < oo and all choices of signs € = (&)

(3)p I felle, ) 2= 1£ ]z, 5)
(4)p sup I fullz, By = IR(f)lp-

See Proposition 8.9. The case p = 1 (due to Burgess Davis) is treated in
§8.4. The main result of §8.3 is the equivalence of UMD, and UMD, for any
1 < p,q < co. We give two proofs of this, the first one is based on distributional
(also called “good \”) inequalities. This is an extrapolation principle that allows
to show that, for a given Banach space B, (3); = (3), forany 1 < p < ¢. In
the scalar case one starts from the case ¢ = 2, that is obvious by orthogonality,
and uses the preceding implication to deduce from it the case 1 < p < 2 and
then 2 < p < co by duality.

The second proof is based on Gundy’s decomposition, that is a martingale
version of the Calderén—Zygmund decomposition in classical harmonic analysis.
There one proves a weak type (1,1) estimate and then invokes the Marcinkiewicz
theorem to obtain the case 1 < p < 2. We describe the latter in an appendix to
Chapter 8.

In §8.6 we show that to check that a space B is UMD, we may restrict
ourselves to martingales adapted to the dyadic filtration and the associated
UMD-constant remains the same.

In §8.7, we prove the Burkholder-Rosenthal inequalities. In the scalar case
this boils down to the equivalence

supy, [ fallp = [lo(F)llp + [Isupy [fo = Fa-allls

valid for 2 < p < co.
Rosenthal originally proved this when f,, is a sum of independent variables and
Burkholder extended it to martingales. We describe a remarkable example of
complemented subspace of L, (the Rosenthal space X,,) that motivated Rosen-
thal’s work.

In §8.8, we describe Stein’s inequality and its B-valued analogue when B is
a UMD Banach space. Let (A,,)n>0 be a filtration as usual, and let (z,,)n>0 be
now an arbitrary sequence in L,. Let y, = EA»z,. Stein’s inequality asserts
that for any 1 < p < oo there is a constant C), such that

® [(t) | <o | (o)

for any (x,,) in L,.

)
p
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For z, in L,(B), with B UMD the same result remains valid if we replace
on both sides of (8) the expression (3 |z,|?)*/? by

(fISeell, )
Sec (8.53).

In §8.9, we discuss the space BMO and the B-valued version of H' in the
martingale context. This leads naturally to the atomic version of B-valued H',
denoted by HL,(B). Its dual can be identified with a BMO-space for B*-valued
martingales, at least for a “regular” filtration (A,). Equivalently, the space
H},(B) can be identified with H!  (B) that is defined as the completion of
L1(B) with respect to the norm f + Esup,, || f.|5 (here f, = EA»f).

In §8.10, we describe Burkholder’s geometric characterization of UMD spaces
in terms of (-convexity (Theorem 8.47) but we prefer to give the full details of a
more recent result (Theorem 8.48). The latter asserts that a real Banach space

of the form B = X & X* is UMD iff the function

x®E— &(x)

is the difference of two real valued convex continuous functions on B. After
an already mentioned first appendix devoted to the Marcinkiewicz theorem,
the second one collects several facts (to be used later on) on reverse Holder
inequalities. A typical result is that, when 0 < r < p < o0, if (Z,,) are i.i.d.

copies of a random variable, then the sequence {n~'/? sup |z | n > 1} is
1<k<n

bounded in L, iff Z is in weak-L,, in other words iff sup t?!P{|z| > t} < co. We
t>0

call it reverse Holder because the assumption is boundedness in L, with r < p
and the conclusion is in weak-L,, (or L, ) and a fortiori in L, for all r < ¢ < p.

In Chapter 9, we give two characterizations of super-reflexive Banach spaces
by properties of the underlying metric spaces. The relevant properties involve
finite metric spaces. Given a sequence 7 = (T, d,,) of finite metric spaces, we
say that the sequence 7 embeds Lipschitz uniformly in a metric space (T, d) if for
some constant C' there are subsets Tn C T, and bijective mappings f,,: T, — Tvn
with Lipschitz norms satisfying

sup || ful[Lip £ lLip < o0
n

Consider for instance the case when T, is a finite dyadic tree restricted to its
first 1 +24--- 42" = 27! _ 1 points viewed as a graph and equipped with
the usual geodesic distance. In Theorem 9.1, we prove following [86] that a
Banach space B is super-reflexive iff it does not contain the sequence of these
dyadic trees Lipschitz uniformly. More recently (cf. [173]), it was proved that
the trees can be replaced in this result by the “diamond graphs”. We describe
the analogous characterization with diamond graphs in §9.2.

In §9.3, we discuss several non-linear notions of “type p” for metric spaces,
notably the notion of Markov type p and we prove the recent result from [212]
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that p-uniformly smooth implies Markov type p. The proof uses martingale
inequalities for martingales naturally associated to Markov chains on finite state
spaces.

Acknowledgement 1 am very grateful to all those who helped me to correct
mistakes, misprints and suggested improvements of all kind, in particular Julien
Giol, Rostyslav Kravchenko, Javier Parcet, Yanqi Qiu, .....



Chapter 1

Banach space valued
martingales

1.1 Banach space valued L,-spaces. Conditional
expectations

Let (Q, A, m) be a measure space. Let B be a Banach space. We will denote by
F(B) the space of all measurable step functions, i.e. the functions f: Q — B
for which there is a partition of Q, say Q = A; U...U Ay with Ax € A, and
elements b, € B such that

N

(1.1) Vw € Q flw) = Zl 14, (w)by.

Equivalently, F(B) is the space of all measurable functions f: Q — B taking
only finitely many values.

Definition. We will say that a function f: Q — B is Bochner measurable if
there is a sequence (f,) in F(B) tending to f pointwise.

We will denote by Lo(2,.A4,m; B) the set of equivalence classes (modulo
equality almost everywhere) of Bochner measurable functions.

Let 1 < p < co. We will denote by L, (€, A, m; B) the subspace of Ly(£2, A, m)
formed of all the functions f such that [|f||} dm < oo for p < oo, and
ess sup|| f(+)||p < oo for p = co. We equip this space with the norm

1/p
1l = ( st dm> for p< oo
o =essswplfQ)lz  for p=oc,

with which it becomes a Banach space.

11
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Of course, this definition coincides with the usual one in the scalar valued
case i.e. if B =R (or C). In that case, we often denote simply by L,(f2, .4, m)
(or sometimes L, (m), or even L,) the resulting space of scalar valued functions.

For brievity, we will often write simply L,(P;B) or, if there is no risk of
confusion, simply L, (B) instead of L,(2, A, P; B).

Given ¢1,...,¢on € Ly and by, ...,by € B we can define a function f:  —
B in L,(B) by setting f(w) = Zf[ ok (w)bg. We will denote this function by
Zi\’ ©r @ by, and by L, ® B the subspace of L, (B) formed of all such functions.

Proposition 1.1. Let 1 < p < co.
(i) F(B)NLy(B) is dense in L,(B).
(ii) The subspace L, ® B C L,(B) is dense in L,(B).

Proof. Consider f € L,(B). Let f, € F(B) be such that f, — f pointwise.
Then || f,(")ll3 — ||f(-)|| B pointwise, so that if we set g, (w) = frn(w)1qys, <2171}
we still have g, — f pointwise and in addition sup ||gn — f|| < sup ||gn|l + || f]] <

3|If]l. Therefore, by dominated convergence, we must have [ ||g, — ||’ dm — 0
and of course g, € F(B) N L,(B). This proves (i). The second point is then
obvious since F(B) N L,(B) C L, ® B (indeed we can take ¢, = 14, with
m(Ag) < o0, as in (1.1)). O

Remark 1.2. If B is finite dimensional, then F'(B) is dense in Lo (B) but this
is no longer true in the infinite dimensional case, because the unit ball of B is
not compact.

We now turn to the definition of the integral of a function in L, (B). Consider
a function f of the form (1.1) in L;(B) N F(B). We define

This defines a continuous linear map from L, (B) N F(B) to B, since we have
obviously by the triangle inequality

H/f de < > (A bl = 11l 5.

By density, this linear map admits an extension defined on the whole of L;(B),
that we still denote by [ f dm when f € Li(B). The extension clearly satisfies
the following fundamental inequality called Jensen’s inequality

(12)  VfeLi(B) H/f dm

< / 1l dm = |l
B

This extends the linear map f — [ f dm from the scalar valued case to the
B-valued one. More generally: Let (€', A’,m’) be another measure space and
let T: Li(Q,A,m) — L1(, A, m') be a bounded operator. We may clearly
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define unambiguously a linear operator Ty: F(B) N Li(m; B) — Li(m/, B) by
setting for any f of the form (1.1)

() =3, T(1a )i

We have clearly by the triangle inequality

N
ITo ()l zatmrimy < Do IT@a) ol < IT1 D m(Allbel = 1T 2,2
Thus, we can state

Proposition 1.3. Given a bounded operator T: Li(Q, A,m) — L1 (', A", m'),
there is a unique bounded linear map T: L1(Q, A,m;B) — Li(Y, A’,m'; B)
such that

(1.3) Vo e Li(LAm)Vbe B T(p®b)=T(p)b.

Moreover, we have |T|| = |T|.

Proof. By the density of F(B) N Li(B) in Li(B), the (continuous) map Ty
admits a unique continuous linear extension T from Ly(m;B) to Li(m’; B),
with ||T|| < |Toll < |T|l. If ¢ is a step function in Ly, then (1.3) is clear by
definition of Tp. Approximating ¢ in L; by a step function, we see that (1.3)
is true in general. The unicity of T is clear since (1.3) implies that T coincides
with T on F(B) N Ly1(B). Finally, considering a fixed b with ||b]| = 1, we easily

derive from (1.3) that ||T]| < || T, so we obtain ||T|| = || T O

We start by recalling some well known properties of conditional expectations.
Let (2, A,P) be a probability space and let B C A be a o-subalgebra. The
conditional expectation f — EBf is a positive contraction on L, (2, A, P) for all
1 < p < 0. It is characterized by the property

Vh € Lo (22, B,P) Vf e Ly,(QAP)
EE(hf) = hEP(f).

On Ly(92, A, P), the conditional expectation EB coincides with the orthogonal
projection onto the subspace Lo (€2, B, P).

It is not true in general that a bounded operator on L, extends boundedly
to L,(B) as in the preceding Proposition for p = 1. Nervertheless, it is true for
positive operators. The conditional expectation of a vector valued function can
be defined using that fact, as follows.

Proposition 1.4. let 1 < p,q < co. Let (2, A,P) be an arbitrary measure space
and let T: L,(2) — Ly(Q) be a bounded linear operator. Clearly, there is a
unique linear operator

T®Ip: Ly(LP)® B — L,(Q,P)® B
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such that
Vo € L,(L,P) VreB (T@Ig)e®x)=T(p) @ .

Now, if T is positive (i.e. if T preserves nonnegative functions) then T @ Ip

extends to a bounded operator T% from L,(2,P; B) to Ly(Q2,P; B) which has
the same norm as T, i.e.

IT ® IpllL,B)—L,8) = ITL,~L,-

Proof. 1t clearly suffices to show that

(1.4) WeL QP B  [(Telf0)ls < T(FOls).

For that purpose, we can assume B separable (or even finite dimensional) so
that there is a countable subset D C B* verifying

VeeB |zl = sup[{(z)]-
&ebD

Clearly for any £ in B* we have

(€& T@I)f() =T F())
and hence by the positivity of T for any finite subset D' C D

sup [(&, (T @ I) £(-))] a‘ss'T(;gg & FODD

£eD’
therefore we obtain (1.4) and the proposition follows. O

Remark. Let By be another Banach space and let w: B — Bj; be a bounded
operator. Then for any f in L,(2, A, P; B) we have

T ®Ip, (u(f)) = ulT @ Ip(f)].
In particular, for any £ in B* we have

(1.5) T(E(f) = &(T(f))-

Indeed, this is immediately checked for f in L,(Q2,P) ® B, and the general case
is obtained after completion.

Note that now that T'® I makes sense, the preceding argument can be
repeated to show that

(1.6) Vfe L(QPB)  |(T®Ip)fls < T(fC)s)-

A priori, in the above (1.6) we implicitly assume that B is a real Banach space,
but actually if B is a complex space (and T is C-linear on complex valued L),
we may consider B a fortiori as a real space and then (1.6) remains valid.
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In particular, the preceding proposition applies for T = EB. For any f in
L1(Q, A, P; B) we will denote again simply by EB(f) the function T ® I(f) for
T = EB. Note that g = EB(f) is characterized by the following properties

(i) g € L1 (2, B,P; B)
(i) VE € B [, gdP = [, fdP.

Indeed, this is easy to check by ’scalarization’, since it holds in the scalar case.
More precisely, a B-valued function g has these properties iff for any £ in B* the
scalar valued function (£, g(+)) has similar properties, or equivalently (£, g(-)) =
EB(¢, f), and hence by (1.5) (£, g) = (£, EBf) which means ¢ = E5f as an-
nounced.

1.2 Martingales: basic properties

Let B be a Banach space. Let (€2, A,P) be a probability space. A sequence
(My,)n>0 in L1(Q2, A, P; B) is called a martingale if there exists an increasing
sequence of g-subalgebras Ag C A3 C -+ C A, C -+ C A (this is called “a
filtration”) such that for each n > 0 M,, is A,-measurable and satisfies

M,, = EA" (M, 41).

For the precise definition of the conditional expectation in the Banach space
valued case, see the above Proposition 1.4. This implies of course that

Vn<m M, =E*M,,.

In particular if (M,) is a B-valued martingale, the above property (ii) (in the
preceding section) yields in the case B = A, and n <m

(1.7) Yn<m VAEA, / MndIP’:/ M, dP.
A A

A sequence of random variables (M,,) is called adapted to the filtration
(Ap)n>o if M, is A,-measurable for each n > 0. Note that the martingale
property M,, = EA»(M, ;) automatically implies that (M,) is adapted. Of
course, the minimal choice of A, is simply A,, = o(My, My, ..., M,).

We will also need the definition of a submartingale. A sequence (M,,)n>0
of scalar valued random variables in L; is called a submartingale if there are
o-subalgebras A,, as above such that M, is A,-measurable and

V>0 M, <EA"M,,.
This implies of course that

Vn<m M, <EA"M,,.
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More generally, if I is any partially ordered set, then a collection (M;);cs in
L1(Q,P; B) is called a martingale (indexed by I) if there are o-subalgebras
A; C A such that A; C A; whenever i < j and M; = EA"Mj.
In particular, when
I=1{0,—1,-2,..}

is the set of all negative integers, the corresponding sequence is usually called a
reverse martingale.
The following convergence theorem is fundamental.

Theorem 1.5. Let (A,) be a fized increasing sequence of o-subalgebras of A.

Let Ay be the o-algebra generated by |J A,. Let 1 < p < oo and consider M
n>0

in L,(Q,P;B). Let us define M,, = EA~(M). Then (M,)n>0 is a martingale
such that M,, — EA=(M) in L,(Q,P; B) when n — oo.

Proof. Note that since A, C A, we have EA»EAn+1 = EA» and similarly
EArEA~ = EA». Replacing M by E4~ M we can assume w.lo.g. that M is
Aso-measurable. We will use the following fact: the union |JL,(Q, A,,,P; B)

is dense in L,(Q, Ax,P; B). Indeed, let C be the class of all sets A such that
1a € ULx(9, A,,P), where the closure is meant in L,(Q,P) (recall p < o0).

Clearly C D |J A, and C is a o-algebra hence C D A.. This gives the scalar
n>0
case version of the above fact. Now, any f in L,(Q, A, P; B) can be approx-

imated (by definition of the spaces L,(B)) by functions of the form > 14,x;
T

with z; € B and A; € As. But since 14, € |JLoo(9Q, A, P) we clearly have

n

felUL,(Q, A, P; B) as announced.
n

We can now prove Theorem 1.5. Let € > 0. By the above fact there is
an integer k and g in L,(Q, Ay, P; B) such that |[M — g||, < e. We have then
g = EAng for all n > k, hence

Vn>k  M,-M=EA(M—g)+g—M
and finally

My, — M, < [[EA(M = g)llp + llg — M,
< 2e.

This completes the proof. O

Corollary 1.6. In the scalar case (or the f.d. case) every martingale which is
bounded in L, for some 1l < p < oo and which is uniformly integrable if p =1 is
actually convergent in Ly to a limit My, such that M,, = EA» M, Vn > 0.
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Proof. Let (My, ) be a subsequence converging weakly to a limit which we denote
by M. Clearly Mo, € L,(9Q, A, P) and we have VA € A,

/ M..dP = lim / M, dP,
A A

but whenever ny > n, we have [, M, dP = [, M,dP by the martingale prop-
erty. Hence

VAe A, / Mood]P’:/ M, dP
A A

which forces M,, = E“A» M,,. We then conclude by Theorem 1.5 that M,, — M.
in Ly-norm. L]

Note that conversely any martingale which converges in L, is clearly uni-
formly integrable.

Remark 1.7. Fix 1 < p < oo. Let I be a directed set, with order denoted
simply by <. This means that for any pair 4,7 in I there is £ € I such that
i <kandj<k. Let (A;) be a family of o-algebras directed by inclusion (i.e.
we have A; C A; whenever ¢ < j). The extension of the notion of martingale
is obvious: A collection of random variables (f;)ier in L,(B) will be called a
martingale if f; = E4( f;) holds whenever i < j. The resulting net converges
in L,(B) iff for any increasing sequence i1 < --- < i, < dyyq1 < ---, the (usual
sense) martingale (f;,) converges in L,(B). Indeed, this merely follows from
the metrizability of L,(B) ! More precisely, if we assume that 0’( U .Ai> = A,
i€l
then for any f in L,(Q,A,P; B), the directed net (E4i f);c; converges to f in
L,(B). Indeed, this net must satisfy the Cauchy criterion, because otherwise we
would be able for some ¢ > 0 to construct (by induction) an increasing sequence
i(1) <i(2) < ...in I such that ||[EAi® f — EAi-0 fll gy > 6 for all k > 1,
and this would then contradict Theorem 1.5. Thus, EAi f converges to a limit

F in L,(B), and hence for any set A C Qin |J A; we must have
JjeI

f=1lm [ EBAf= [ F
A o A A

Since the equality [, f = [, F must remain true on the o-algebra generated by
UA,, we conclude that f = F, thus completing the proof that EAf — fin
Ly(B).

1.3 Examples of filtrations

The most classical example of filtration is the one associated to a sequence
of independent (real valued) random variables (Y;,)n>1 on a probability space
(QAP). Let A, =0(Y1,...,Y,) for all n > 1 and Ay = {4, 2}. In that case,
a sequence of random variables (f,,)n>0 is adapted to the filtration (A, ),>¢ iff
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fo is constant and, for each n > 1, f,, depends only on Y7,...,Y,,, i.e. there is
a (Borel measurable) function F,, on R™ such that

fn = Fn(Y177Yn)

The martingale condition can then be written as
VTLZO Fn(Ylu7Yn):/Fn+1(Y177Ynuy) dPn(y)

where P, is the probability distribution (or “the law”) of Y;,11.

An equivalent but more “intrinsic” model arises when one considers = RN
equipped with the product probability measure P = ),,~; P,. If one denotes
by Y = (Y,,)n>1 a generic point in €, the random variable Y — Y,, appears as
the n-th coordinate, and Y — F,(Y) is A,,-measurable iff F,,(Y") depends only
on the n first coordinates of Y.

The dyadic filtration (Dy,)n>0 on D = {—1, 1}~ is the fundamental example
of this kind: Here we denote by

en: D —{-1,1} (n=1,2,...)
the n-th coordinate, we equip D with the probability measure
p=®(01+0-1)/2,

and we set D, = o(e1,...,&,), Do = {0, D}.

Clearly, the variables (e,,) are independent on (D, D, i) and take the values +1

with equal probability 1/2.

Note that D,, admits exactly 2" atoms and moreover dim Ly (D, D,,, u) = 2™. For

any finite subset A C [1,2,...], let wa = ][] &, with the convention wy = 1.
neA

It is easy to check that {wa | A C [1,...,n]} (resp. {wa | |A] < occ}) is an

orthonormal basis of La(D, Dy, 1) (vesp. La(D, D, ).

Given a Banach space B, a B-valued martingale f,: D — B adapted to the

dyadic filtration (D,,) is caracterized by the property that

Vn > 1 (fn = fa—1)(€1,- - 8n) = EnpPn-1(€1, - En—1),

where ¢, _1 depends only on €1,...,e,_1. We leave the easy verification of this
to the reader.

Of course the preceding remarks remain valid if one works with any sequence of
+1-valued independent random variables (g,,) such that P(e,, = +£1) = 1/2 on
an “abstract” probability space (Q2,P).

In classical analysis, it is customary to use the Rademacher functions (r,,),>1
on the Lebesgue interval ([0, 1], dt) instead of (). We need some notation to
introduce these. Given an interval I C R we divide I into parts of equal length
and we denote by I and I~ respectively the left and right half of I. Note
that we do not specify whether the end points belong to I since the latter are
negligible for the Lebesgue measure on [0, 1] (or [0, 1] or R). Let

h[: 1I+ —11—.
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We denote I1(1) = [0, 1], I(1) = [0, 1[, I2(2) = [, 1[ and more generally

)2 2
k-1 &k
k) = |:2n—1 > 9n—1 |:
for k=1,2,...,2"7 ! (n >1).

We then set hy = 1,ha = hr 1), hs = V2 hr,1), ha = V2 h1,(2) and more
generally

Vn>1Vk=1,..., 27! hon-14 = [ I (k)| 7Y 2hy,, )

Note that ||hy,||2 =1 for all n > 1.
The Rademacher function r,, can be defined, for each n > 1, by

I,

—~

2n71

rn = Zk:l hln(k)~

Then the sequence (r,,)n>1 has the same distribution on ([0, 1], dt) as the se-
quence (g)n>1 on (D, u). Let A, = o(r1,...,r,). Then A, is generated by
the 2™-atoms {I,41(k) | 1 < k < 2™}, each having length 27", The dimension
of Ly([0,1],.A,) is 2™ and the functions {hq,...,han} (resp. {hy, | n > 1}) form
an orthonormal basis of Ly([0,1],.4,,) (resp. La([0,1])).

The “Haar filtration” (Bp)n>1 on [0,1] is defined by

B, =0(hi,...,hy),

so that we have o(hq,...,han) = o(ry,...,7,) or equivalently Ban = A,, for all
n > 1 (note that here By is trivial). It is easy to check that B, is an atomic
o-algebra, with exactly n atoms. Since the conditional expectation EB» is the
orthogonal projection from Lo to Lo(B,,), we have for any f in Ly([0, 1])

Bn o n
vn > 1 E fle(f,hwhk
and hence for all n > 2
(1.8) BB f —EPr=t f = (f, h) P

More generally for any B-valued martingale (fy),>p adapted to (By)n>1 we
have

Vn22 fn_fnflzhnxn

for some sequence (z,,) in B. The Haar functions are in some sense the first
example of wavelets (see e.g. [64]). Indeed, if we set

h=1p1 =111

(this is the same as the function previously denoted by hs), then the system of
functions

(1.9) {27 h((t+k)2™) | k,m € Z}
is an orthonormal basis of Lo(R). Note that the constant function 1 is not in
L2 (R).

In the system (1.9), the sequence {h,, | n > 1} coincides with the subsystem
formed of all functions in (1.9) with support included in [0, 1].
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1.4 Almost sure convergence and maximal in-
equalities

To handle the a.s. convergence of martingales, we will need (as usual) the

appropriate maximal inequalities. In the martingale case, these are Doob’s

inequalities. Their proof uses stopping times which are a basic tool in martingale

theory. Given an increasing sequence (A, )n>0 of o-subalgebras on 2, a random
variable T: Q — NU {oo} is called a stopping time if

Vn>0 {T <n}eA,,

or equivalently if
Yn >0 {T =n} e A,.
If T < > a.s., then T is called a finite stopping time.

Proposition 1.8. For any martingale (My)n>0 relative to (Ay)n>0 and for
every stopping time T', let us denote by Muar the variable M7y (w). Then
(MyaT)n>0 is a martingale relative to (Ap)n>o0-

Proof. Observe that M, clearly is in Ly (since M,, is always assumed in L1).
Moreover, we have

Mot — M—tyar = Lin<ry (My, — My 1),
but {n <T}°={T <n} € A,_1 hence
EA (Muar — M(p_1ya1) = Lin<ry B4 (M, — M,,—1) = 0.
O

Given a stopping time T, we can define the associated o-algebra Ar as
follows: we say that a set A in A belongs to Ar if AN{T < n} belongs to A,
for each n > 0. Then A7 is a o-algebra.

Exercises. (i) Consider M., in L;(Q, A,P; B) and let M,, = E4» M., be the
associated martingale. Then if T is a stopping time, we have

My = EAT(M,).
Moreover,
(1.10) EA"(Mr) = Mpp, = EAT(M,).

More generally, if S is any other stopping time, T'A S and T V S are stopping
times and we have

EAS (Mr) = Mrag = EAT(Ms).
(if) If (My)n>0 is a martingale in L;(Q2, A,P;B) and if Ty < T; < ...is a
sequence of bounded stopping times then (M, )r>0 is a martingale relative to

the sequence of o-algebras Ar, C Ap C ---. This also holds for unbounded
times if we assume as in (i) that (M,,),>0 converges in L1 (Q2, A, P; B).
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Theorem 1.9 (Doob’s maximal inequalities). Let (Mo, My,...,M,) be a sub-
martingale in L1, and let M} = sup My. Then

k<n
(1.11) vVt >0 tP({M) > t}) < / M, dP,
{My >t}
and iof M > 0 then for all 1 < p < oo we have
(1.12) 1Myl < P/l Mol

1,1
where 5 + o 1.

Proof. We can rewrite the submartingale property as saying that for any A in
A, with k£ < n we have

(1.13) /Mkd]}”g/(EA’CMn)d]P’:/EAk(lAMn)dIP:/ M,,dP.
A A A

Fix ¢t > 0. Let

T = inf{k <n| M, >t} if M} >t
) otherwise.

Then T is a stopping time relative to the sequence of o-algebras (Aj}) defined
by A} = Agan. We have since My, > ¢ on the set {T' =k}

ﬂP{M;;>t}:tP{Tgn}:tZP{T:k}gZ/ M,
{T=k}

k<n k<n

hence by (1.13)

< M, = / M,.
2. /{T—k} {T<n}

k<n

This proves (1.11). To prove (1.12) we use an extrapolation trick. We have if
My >0

EM;? = / ptPIP{M > t}dt
0

< / ptP=2 / M,dP dt
(M3>1)

0
M p
= [ M, / ptP~2dt dIP’:/—Mn(M;)p_l dP
0 p—1

hence by Hélder’s inequality

< P IIMallp (M)
= 1| Myl (EM;P) 7

so that after division by (IEM:;]")DT_1 we obtain (1.12). O
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The following inequality is known as the Burkholder—-Davis—Gundy inequal-
ity. It is dual to Doob’s maximal inequality. Indeed, by (1.12) we have for any
zin L,

(1.14) IEnz)lL, ) = Il sup [Enz|ll, < pll2ll,

therefore it is natural to expect a dual inequality involving an “adjoint mapping”
from L, (¢1) to Ly, as follows.

Theorem 1.10. Let (6,,)n>0 be an arbitrary family of random variables. Then
forany 1 <p < oo

e [l <o

In particular if 6, > 0

p

o], <o [0

Proof. Since [EA»6,| < EA#|6,,| it suffices to prove this assuming 6,, > 0. In
that case, consider f > 0 in L, with ||f|l,, = 1 such that HZEA”OHHp =

(>-EA"6,, f). Then

(Y B0 f) =D (0n B4 )

<300 1swE i

p

hence by Doob’s inequality

<p HZ On [

Remark 1.11. Note that it is crucial for the validity of Theorems 1.9 and 1.10
that the conditional expectations be totally ordered, as in a filtration. How-
ever, as we will now see, in some cases we can go beyond that. Let (A})n>0,
(A2),>0, - - -, (AL),>0 be a d-tuple of (a priori mutually unrelated) filtrations

on a probability space (2, A, P). Let I; = N and for all i = (n(1),...,n(d)) let

p

(1.16) Ei — EA:;(UEAi(z) . EAZ(d).

Then by a simple iteration argument, we find that for any 1 < p < co and any
x in L, we have

d
I'sup [Eiz| [, < (2)° ]zl
1€Iy

A similar iteration holds for the dual to Doob’s inequality: for any family (z;)icr,

in L, we have
|2 Bl < @)X e

P
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To illustrate this (following [91]), consider a dyadic rooted tree T, i.e. the points
of T' are finite sequences { = (&1, ..., &) with §; € {0,1} and there is also a root
(or origin) denoted by £4s. We introduce a partial order on T in the natural way,
i.e. § is < any element and then we set (§1,...,&) < (§1,...,¢&;) if k < j and
(&1, &) = (&1, ...,&,). In other words, £ < ¢’ if ¢’ is on the same “branch”
as £ but “after” &.

This is clearly mot totally ordered since two points situated on disjoint
branches are incomparable. Nevertheless, as observed in [91], we have the fol-
lowing: Consider a family {e¢ | £ € T'} of independent random variables and for
any ¢ in T let A = o({e,, | n <&}, and let

Ee = EAe.
We have then for any 1 < p < oo and any x in L,

Isup [Eex| [l, < ()]l
EeT

The idea is that E¢ is actually of the form (1.16) with d = 3, see [91] for full
details.

Remark 1.12. Let B be a Banach space and let (M,,),>0 be a B-valued mar-
tingale. Then the random variables Z,, defined by Z,(w) = |M,(w)|| s form a
submartingale. Indeed, by (1.6) we have for every k and every f in L;(Q2,P; B)

(1.17) IEA ()] < E4(If115)
hence taking f = M,, with k < n we obtain
M| < B4 (|| M)

which shows that (Z,,) is a submartingale. In particular, by (1.13) we have for
any A in Ay

(1.18) E(Lal[Mg|) < E(LallM,]]).

As a consequence, we can apply Doob’s inequality to the submartingale (Z,)
and we obtain

Corollary 1.13. Let (M,) be a martingale with values in an arbitrary Banach
space B. Then

(1.19) sup tP{sup || M, | >t} < sup|[Myl|L, ()
t>0  n>0 n>0

and for all 1 < p < o0

(1.20) [[sup | M]|[l, < p"sup || My |1, (5)-
n>0 n>0

We can now prove the martingale convergence theorem.
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Theorem 1.14. Let1 < p < co. Let B be an arbitrary Banach space. Consider
fin L,(Q, A, P; B) and let M,, = EA~(f) be the associated martingale. Then
M,, converges a.s. to BA=(f). Therefore, if a martingale (M,,) is convergent in
L,(Q,P; B) to a limit My, then it necessarily converges a.s. to this limit, and
we have M,, = EA» M, for all n > 0.

Proof. The proof is based on a general principle, going back to Banach, that
allows us to deduce almost sure convergence results from suitable maximal
inequalities. By Theorem 1.5, we know that EA»(f) converges in L,(B) to
My, = EA>(f). Fix £ > 0 and choose k so that sup,,>, [[M, — Mgz, 5) < €.
We will apply (1.19) and (1.20) to the martingale (M), >0 defined by

M! =M, — M, ifn>k and M) =0if n<k.
We have in the case 1 < p < 0o

I sup | My, — Mi|lll, < p'e
n>k

and in the case p =1

sup tP{sup | M,, — My|| >t} <e.
t>0 n>k

Therefore if we define pointwise

= lim sup [ M, — My

k—o0 n,m>k

we have
¢=inf sup |M, — My| < 2sup ||M, — Mg||.
n>k

k>0 n,m>k

Hence we find ||¢||, < 2p’e and

sup tP{¢ > 2t} < ¢,
>0

which implies (since ¢ > 0 is arbitrary) that £ = 0 a.s., and hence by the
Cauchy criterion that (M,,) converges a.s. Since M,, — My, in L,(B) we have
necessarily M,, — M, a.s. Note that if a martingale M,, tends to a limit M,
in L,(B) then necessarily M, = E4"(M). Indeed, M, = E4»M,, for all
m > n and by continuity of E4» we have EA» M,,, — E4» M, in L,(B) so that
M,, = EA» M, as announced. This settles the last assertion. O

Corollary 1.15. Every scalar valued martingale (My,)n>0 which is bounded in
L, for some p > 1 (resp. uniformly integrable) must converge a.s. and in Ly,

(resp. Lq).

Proof. By Corollary 1.6, if (My)n>0 is bounded in L, for some p > 1 (resp.
uniformly integrable) then M,, converges in L, (resp. L;) and by Theorem 1.14
the a.s. convergence is then automatic. O
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Let B be a Banach space and let (M,,)n>0 be a sequence in Ly (2, A, P; B).
We will say that (M,,) is uniformly integrable if the sequence of positive r.v.’s
(1M, () >0 is uniformly integrable. More precisely, this means that (||M,]])
is bounded in Ly and that for any € > 0 there is a § > 0 such that

VAe A  P(A) <5:>sup/||M | <e.

n>0

The following useful lemma illustrates the use of stopping times as a way to
properly “truncate” a martingale.

Lemma 1.16. Let (M,)n>0 be a martingale bounded in L1(Q2, A,P; B) where
B is an arbitrary Banach space. Fiz t > 0 and let

_— inf{n > 0| ||M,| >t} ifsup||M,| >t,
00 otherwise.

Then

(1.21) E(IMr|1{r<oey) < sgpoElanH
nz

and moreover the martingale (MyaT)n>0 is uniformly integrable.
Proof. First we claim that for any 0 < k < n we have
E(1gp—py | Mgl]) < E(ir=py || Mal))-

Indeed {T' = k} € A so this is a particular case of (1.18). Summing this with
respect to k < n we obtain

E(1ir<ny |M7]]) < E(1ir<ny | Mal]),

and taking the supremum over n > 0 we obtain (1.21).
Now recall that by definition sup || M, | < t on {T = co}. More generally, we
have sup,, . || M,|| <t, so that

sup [|Mpnr|| < max{lircoy | Mz, t} < 1rcooy|[Mr]| +t.
n

Then we can write for any A in A

sup E(14[|Mnnr|)) < E(142)
where Z = 1{7<oc}|[Mr||+t. Thus we conclude that (|| M,az||)n>0 is uniformly
integrable (since the single variable Z is itself uniformly integrable). O

To obtain what remains of Corollary 1.15 in the case p = 1, we will use the
following simple fact.
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Proposition 1.17. Let (2, A,P) be a probability space. Let B be a Banach
space and let (A,)n>0 be an increasing sequence of o-subalgebras of A. The
following are equivalent:

(i) Every B-valued martingale adapted to (Ay)n>0 and bounded in L1(£2,P; B)
18 a.S. convergent.

(i1) Every B-valued uniformly integrable martingale adapted to (Ay)n>0 is a.s.
convergent.

Proof. Assume (ii). Let (M,,) be a martingale bounded in L;(B). Fix t > 0
and consider (M, 1) as in Lemma 1.16. Since (M, ) is uniformly integrable,
it converges a.s. by (ii). This implies that if {T'(w) = oo} then (M, (w))n>0 is
a.s. convergent. But by Doob’s inequalities

P{T < oo} =P{sup | M,| >t} <

+|Q

where C' = supE||M,,|. Therefore this probability can be made arbitrarily
small by choosing ¢ large, so that we conclude that the martingale (M, ),>0
itself converges a.s. This shows that (ii) = (i). The converse is trivial. O

Finally, we can state what is usually referred to as the “martingale conver-
gence theorem”.

Theorem 1.18. FEvery L;-bounded scalar valued martingale converges a.s.

Proof. By Corollary 1.6, every scalar valued uniformly integrable martingale
converges in L1, and hence by Theorem 1.14 it converges a.s. Thus the present
statement follows from the implication (ii) = (i) from Proposition 1.17. O

We will also need the following

Theorem 1.19. Every submartingale (M,,) bounded in Ly (resp. and uniformly
integrable) converges a.s. (resp. and in Lj.)

Proof. We use the so-called Doob decomposition: we will write our submartin-
gale as the sum of a martingale (M,),>0 and a predictable increasing se-
quence (A,) (recall that this means that A, is A,_; measurable for each
n > 1). Let us write Ag = My and A, = M, — M,_; if n > 1. Let

dp = A, —EA1(A,) if n > 1 and dy = Ao, and let M, = 3. dj. Then
k<n

(Mn)nzo is a martingale. Indeed, by construction we have EA»-1(d,) = 0 or
equivalently EA»~1 M, = M, ;. To relate (M,,) to (M,,), we note that

My= ) A=Y dit Y EM (A

0<k<n 0<k<n 1<k<n

hence
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where

A=Y EA1(Ag).

1<k<n

Moreover, by the submartingale property E“»-1(A,) > 0 for all n > 1 so that
0<A; <A< <4, 1 <A, <.

On one hand, EA, = > EA, = EM, — EM)y, and since (M,,) is assumed
1<k<n

bounded in L; we have supEA,, < oco. Therefore by monotonicity A, converges
n>1

a.s. and in Ly when n — oo (in particular it is a uniformly integrable sequence).
On the other hand, we have

E|M,| = E|M,, — A,| < E|M,| + EA,

therefore (M,) also is bounded in L; and is uniformly integrable if (M,,) is. By
the martingale convergence theorem (Theorem 1.18) (Mn) converges a.s. hence
M, = Mn + A,, also converges a.s. and, in the uniformly integrable case, it also
converges in Ly.

If we impose the initial condition Ag = 0, the above proof also shows unique-
ness: Indeed, M,, = M,,+ A,, implies A, — A,,_1 = A, —dM,, and (assuming A,
n — 1-measurable) this imposes A,, — A,_1 = EA-1(A, — dM,,) = EA-1(A,,)
which uniquely determines A, if set Ag = 0.

O

Corollary 1.20. Let B be an arbitrary Banach space and let (M,)n>0 be a
B-valued martingale bounded in L1(B). Then ||M,||p converges a.s. Moreover,
(M,)n>0 converges a.s. in norm iff {M,(w) | n > 0} is relatively compact for
almost all w.

Proof. The first assertion follows from Theorem 1.19 and Remark 1.12. It suf-
fices to prove the second one for a separable B. Assume that {M,,(w) | n > 0} is
w-a.s. relatively compact. Let f(w) be a cluster point in B of {M,(w) | n > 0}.
Note that by Theorem 1.18 for any £ in B*, {(M,(w)) converges w-a.s., and
hence it must converge to {(f(w)). (Incidentally: this shows that f is scalarly
measurable, and hence by Appendix 2 is Bochner measurable). Let D C B*
be a countable weak-* dense subset. Clearly, M, (w) tends w-a.s. to f(w) in
the o(B, D)-topology, but if {M,(w) | n > 0} is relatively compact, the latter
topology coincides on it with the norm topology, and hence M, (w) — f(w) in
norm. Conversely, if {M, (w) | n > 0} is convergent it is obviously relatively
compact. O]

Remark 1.21. The maximal inequalities for B-valued martingales can be con-
siderably strengthened when B = /¢, for some 1 < r < oo: Consider a fil-
tration (A,) as usual, f € L,(¢,) and let (f,) be the martingale associated
to f. Let (ex) be the canonical basis of £.. We may develop f and f, as



28 CHAPTER 1. BANACH SPACE VALUED MARTINGALES

[ =>,f(k)ey and f, = >, fn(k)er. In accordance with previous notation,
we set f(k)* = sup,, |fn(k)|. Let then

=00 fR)erlle, = Q) f(R) V.

Then, for any 1 < p < 0o, there is a constant ¢(p,r) such that

1PNl < eIl ey = e IO 1FEINY -

Note that p = r is an easy consequence of Doob’s inequality. See [56] for p < r
and [187] for the general case and for a weak type-(1,1) inequality that can be
proved using the Gundy decomposition described in the next chapter. Finally,
the extension to the case B = L, requires only minor modifications.

There are cases where the maximal inequalities can be extended to L, with

0 < p < 1. For instance, let (Y;,)n,>0 be a sequence of independent B-valued

random variables, let f, = > (Y,. If Y,, € Li(B) is symmetric for all n (this

implies EY,, = 0), then (f,)n>0 is a martingale satisfying P(sup || f,| > t) <
n

2sup P(|| fn|| > t). More generally, we quote without proof the following;:
n

Theorem 1.22. Let (Y;,) be a sequence of B-valued random variables, such that,
for any choice of signs &, = +1, the sequence (£,Yy,) has the same distribution
as (Yy,). Let f,, = > o Yi. We have then:

(1.22) vt >0 P(sup || full > t) < 2limsupP(|| fr|| > t)
(1.23) Vp >0 Esup || fn]|P < 2limsup E|| £, ||”.

If f,, converges to a limit fo, in probability (i.e. ||fn — fool| — 0 in probability),
then it actually converges a.s. In particular, if f, converges in L, (p > 0), then
it automatically converges a.s. Finally, if f, converges a.s. to a limit f, we
have

(1.24) vE>0  P(sup|[fall > t) < 2P(]|fc|| > ).
More generally for any Borel convex subset K C B, we have

P(Un{fn & K}) < 2P({fo & K7}).

Corollary 1.23. Let (Y,,) be independent variables in L,(B) with mean zero
(i.e. Y, =0) and let f, = Yi as before. Then, for any p > 1, we have

Isup [[fulllp < 242 sup || full, (5)-

Proof. Let (Y;),, be an independent copy of the sequence (Yy,), let Y, = Y, — Y/
and f], = > Y,. Note that (Y,) are independent and symmetric. By (1.23) we

have . -~
Esup || fol” < 2supE[| f,||”
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but now if p > 1 we have by convexity

Esup || fall” = Esup ||fn —Ef,|I” < Esup|lfn — fo "
< 2supE[fn — fo1°
< 2sup E(|[full + I1/21)7
< 27(Esup || full? + Esup||£;|7) = 27" Esup || o[-

O

Corollary 1.24. For a series of independent B-valued random variables, con-
vergence in probability implies almost sure convergence.

Proof. Let f, = Y0 Vi, with (Y}) independent. Let (Y)) be an independent
copy of the sequence (V) and let f/, = > Y/. Then the variables (Y} — Y})
are independent and symmetric. If f,, converges in probability (when n — 00),
then obviously f; and hence f,, — f/, also does. By the preceding Theorem,
fn — f! converges a.s., therefore we can choose fixed values x,, = f (wp) such
that f,, — x, converges a.s.. A fortiori, f, — x, converges in probability, and
since f,, also does, the difference f, — (f, — 2,,) = x, also does, which means
that (z,,) is convergent in B. Thus the a.s. convergence of f,, — z,, implies that
of fn. O

Remark 1.25. There are well known counterexamples showing that Theorem 1.18
does not extend to the Banach space valued case. For instance, let Q2 = {—1, 1}
equipped with the usual probability measure P and let A, be the o-algebra
generated by the (n + 1) first coordinates denoted by g, €1,...,e,. A classical

example of a real valued martingale is M,, = [] (1 + &), which is positive and
k<n
of integral 1. Note however that it does not converge in L;. Another example
is M, = > ager, where (ay) are real coefficients. This particular martingale is
k<n
bounded in L; iff ¥|a,, |? is finite. By the martingale convergence theorem, these
two martingales must converge a.s. However, we can give very similar Banach
space valued examples which do not converge. Take for instance B = ¢g and

let (e,) be the canonical basis of ¢y. Let M} = 3> exeg. Then || M} (w)lle, =
k<n

sup |ex(w)| = 1 but clearly there is no point w in {—1, 1} such that the sequence
I(CJS\/ZlL (w))n>0 is convergent in ¢y, since we have
YVweQ VYe<n |M}w)—- M w)|s=1.
We can give a similar example in L;. Let B = L' (Q,P) itself and let
(1.25) M2(w) =[] (1 +ex(w)er).
k<n

Then again |[M2(w)| g = 1 for all w, but also it is easy to check that
YweQ Vk<n |M2(w) — ME(w)|lp > 1, and |M2(w) — M?_,(w)||p =1,
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so that (M2),>¢ is nowhere convergent.

In the next chapter, we will show that the preceding examples cannot occur
in a Banach space with the RNP.

1.5 Reverse martingales
We will prove here the following

Theorem. Let B be an arbitrary Banach space. Let (Q, A, P) be a probability
space and let Ag D A1 D A_g D -+ be a (this time decreasing) sequence of

o-subalgebras of A. Let A_ = () A_,. Then for any f in L,(Q, A, P; B),
n>0

with 1 < p < oo, the reverse martingale (EA-"(f)),>0 converges to EA-=(f)
a.s. and in Ly(B).

We first check the convergence in L,(B). Since the operators (E4-7),¢
are equicontinuous on L,(B) it suffices to check this for f in a dense subset of

L,(B). In particular, it suffices to consider f of the form f = > ¢;z; with ¢;
1

an indicator function and x; in B. Since ¢; € Ly(€2,P), we have (by classical
Hilbert space theory) EA-np; — EA-~; in Ly(Q, P) when n — oco. (Note that
Ly(2, A_,P) is the intersection of the family (La(Q, A—p,P))n>0.)

Observe that |[f — gll, < |f —gl2 if p < 2 and [|f — gll} < 2°72(|f — g[l3
if Il <1, lglloc < 1 and p > 2. Using this, we obtain that, a fortiori,
EA-n f — EA->f in L,(B) for every f of the above form, and hence for every
fin L,(B).

We now turn to a.s. convergence. We first replace f by f = f — EA-=(f)
so that we can assume E4-~(f) — 0 in L,(B) and a fortiori in L;(B). Let
fn = EA-nf. Now fix n > 0 and & > 0 and consider the (ordinary sense)
martingale

f fon—g4j; for j=0,1,...k,
Mj‘{ AT P

Then by Doob’s inequality (1.19) applied to (M;) we have for all ¢ > 0

tP{ sup » [fmll >t} <E[fn]

n<m<n

therefore
P{sup |-l > 1} <Ef-ul

and since E||f_,|| — 0 when n — oo, we have sup || f_.,|| — 0 a.s., or equiva-
m>n

lently f_, — 0 a.s. when n — oo. O

As a corollary, we have the following classical application to the strong law

of large numbers.
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Corollary. Let ¢1,...,p, be a sequence of independent, identically distributed
random variables in Li1(Q, A,P;B). Let S, = 1+ -+ ¢n. Then % — Epq
a.s. and in L1(B).

Proof. Let A_,, be the o-algebra generated by (Sp,Sp+1,...). We claim that
18, = EA-"(¢1). Indeed, for every k < n, since the exchange of ¢ and ¢y
preserves Sy, Sp+1,-.. , we have

E4 (k) = EA " (1),
Therefore averaging the preceding equality over k < n we obtain
1 S, S,
EA-"(p1) = — A-n Y e
(1) = — > EA (o) =E - -
1<k<n

Hence (S, /n)n>1 is a reverse martingale satisfying the assumptions of the pre-
ceding theorem (we may take say Ao = A_1), therefore 15, — E4-=(¢;) a.s.
and in Lq(B). Finally, let 7 = [\ o{®n, @n+1," -} be the tail o-algebra. By

n>0
the zero-one law, 7 is trivial. The limit of S, /n is clearly 7-measurable, hence
it must be equal to a constant ¢, but then E(S,,/n) — ¢, so ¢ = E(¢1). O

1.6 Notes and Remarks

Among the many classical books on Probability that influenced us, we men-
tion [17, 9], see also [26]. As for martingales, the references that considerably
influenced us are [48, 25, 20] and the papers [101, 108].

Martingales were considered long before Doob (in particular by Paul Lévy)
but he is the one who invented the name and proved their basic almost sure
convergence properties using what is now called Doob’s maximal inequality.

We give more references in the Appendix relative to continuous time.

In Theorem 1.22; we slightly digress and concentrate on a particular sort of
martingale, those that are partial sums of series of independent random vectors.
In the symmetric case, it turns out that the maximal inequalities (and the
associated almost sure convergence) hold for “martingales” bounded in L, (B)
for p < 1. Our presentation of this is inspired by Kahane’s book [31].
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Chapter 2

Radon Nikodym property

2.1 Martingales, dentability and Radon Nikodym
property

To introduce the Radon Nikodym property (in short RNP), we will need to
briefly review the basic theory of vector measures. Let B be a Banach space.
Let (2,.4) be a measure space. Every o-additive map u: A — B will be called
a (B-valued) vector measure. We will say that p is bounded if there is a finite
positive measure v on (2,.4) such that

(2.1) VAe A (A < v(A).

When this holds, it is easy to show that there is a minimal choice of the measure
v. Indeed, for all A in A let

|1l (A) = sup{Z[n(4:)]}

where the supremum runs over all decompositions of A as a disjoint union
A = UA; of finitely many sets in A. Using the triangle inequality, one checks
that |p| is an additive set function, by (2.1) |g| must be o-additive and finite.
Clearly, when (2.1) holds, we have

lul <w.
We define the “total variation norm” of u as follows
[ull = inf{p(Q) | v € M(Q, A),v = |ul},

or equivalently
[l = 1al(€2).

We will denote by M(Q,.4) the Banach space of all bounded complex valued
measures on (€2, A), and by M, (€, A) the subset of all positive bounded mea-
sures. We will denote by M (Q, A; B) the space of all bounded B-valued mea-
sures p on (€, A). When equipped with the preceding norm, it is a Banach

33
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space. Let p € M(Q,A; B) and v € M, (2, A). We will write
lul <v

if |u| is absolutely continuous (or equivalently admits a density) with respect to
v. This happens iff there is a positive function w € L1 (2, A, v) such that

Il < w

or equivalently such that
VAeA  |u(A)] < / wdv.
A

Recapitulating, we may state:

Proposition 2.1. A vector measure u is bounded in the above sense iff its total
variation is finite, the total variation being defined as

V(p) = sup (Z ||U(Ai)||>
1

where the sup runs over all measurable partitions Q0 = CJ A; of Q. Thus, if p
is bounded, we have V(u) = |p|(). =

Proof. Assuming V() < oo, let VA € A v(A) =sup (37 [|(A;)]]), where the
sup runs over all measurable partitions A = O A; of A. Then v is a g-additive
finite positive measure on A, and satisfies (211:)1 Thus p is bounded in the above
sense (and of course v is nothing but |u|). The converse is obvious. O

Remark. 1t is easy to check that if du = f.dv with f € L1(Q2, A, v; B), then

(2.2) dlul = [If()llsdv,
and therefore
(2.3) I fvlae,a8) = 1fllL @.a.0:8)-

Indeed, by Jensen’s inequality we clearly have

VAEA  [u(A)] < /A 17 lldv,

hence d|u| < || f(.)||sdv. To prove the converse, let € > 0 and let g be a B-valued
simple function such that [, ||f — glldv < e. We can clearly assume that g is
supported by A, so that we can write g = E? la,z;, with x; € B and 4; is a
disjoint partition of A. We have

Slu(4) — viddaidl = SN [ (F =)l < [ 1 = gliv <<
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hence
/A lglldy = Su(As) sl < Sl(An)| + e
and finally
[ v < [ lglav +e < ) + 2
A A
which implies
/A 1 Flldv < al(A) + 2.

This completes the proof of (2.2).

We will use very little from the theory of vector measures, for more details
we refer the reader to [16].

Definition. A Banach space B is said to have the Radon Nikodym property (in
short RNP) if for every measure space (£2,.4), for every finite positive measure
v on (92, A) and for every B-valued measure p in M (€2, A; B) such that |u] < v,
there is a function f in L1 (92, A, v; B) such that = f.v i.e. such that

VAe A  p(A) = / fdv.
A

We will need the concept of a §-separated tree.

Definitions. Let § > 0. A martingale (M,,),>0 in L;1(£2, A,P; B) will be called
d-separated if

(i) My is constant,
(ii) Each M,, takes only finitely many values,
(iii) Vn > 1, Vw € Q || My (w) — M1 (w)|| > 4.

Moreover, the set S = {M,(w) | n > 0,w € Q} of all possible values of such a
martingale will be called a d-separated tree.

Another perhaps more intuitive description of a d-separated tree is as a
collection of points {z; | ¢ € I} indexed by the set of nodes of a tree-like structure
which starts at some origin (0) then separates into N7 branches which we denote
by (0,1),(0,2),...,(0, Ny), then each branch itself splits into a finite number of
branches, etc. in such a way that each point x; is a convex combination of its
immediate successors, and all these successors are at distance at least ¢ from
;. We will also need another more geometric notion.

Definition. Let B be a Banach space. A subset D C B is called dentable if
for any € > 0 there is a point = in D such that

x ¢ conv(D\B(z,¢))
where conv denotes the closure of the convex hull, and where

B(z,e) ={y € B |y — x| <e}.



36 CHAPTER 2. RADON NIKODYM PROPERTY

Remark 2.2. Let D C B be a bounded subset and let C' be the closed convex hull
of D. If C' is dentable, then D is dentable. Moreover, C' is dentable iff C' admits
slices of arbitrarily small diameter. Note in particular that the dentability of all
closed bounded convex sets implies that of all bounded sets.

Indeed, the presence of slices of small diameter clearly implies dentability.
Conversely, if C' is dentable, then for any € > 0 there is a point x in C that does
not belong to the closed convex hull of C'\ B(z,¢), and hence by Hahn-Banach
separation, there is a slice of C' containing x and included in B(z,¢), therefore
with diameter less than 2¢. Now if C' = conv(D), then this slice must contain a
point in D, exhibiting that D itself is dentable.

The following beautiful theorem gives a geometric sufficient condition for
the RNP. We will see shortly that it is also necessary.

Theorem 2.3. If every bounded subset of a Banach space B is dentable, then
B has the RNP.

Proof. Let (Q2,.A,m) be a o-finite measure space and let u: A — B be a
bounded vector measure such that |u| < m. We will show that p admits a
Radon Nikodym derivative in L1 (€2, A, m; B). Clearly (by replacing m by |u|)
we may as well assume that m is finite and |g| < m. Indeed, let m’ = |u| =
w.m for some w in Li(m), if we find f’ such that p = f'.m/, we have by (2.2)
|| = |If’]l.m" hence ||f’|| = 1 a.s. and therefore if f = wf’ we have p = f.m
and f € Li(m; B). Now assume |u| < m and for every A in A let x4 = f:l((’:))
and let

Ca={zp|Be€A BCA m(B) >0}

Note that ||z4] < 1 for all A in A, so that the sets Cy are bounded. We will
show that if every set C'4 is dentable then the measure admits a Radon Nikodym
derivative f in L1(Q, A, m; B).
Step 1: We first claim that if Cq, is dentable then Ve > 034 € A with m(A) > 0
such that

diam(Cy) < 2e.

This (as well as the third) step is proved by an exhaustion argument. Sup-
pose that this does not hold, then 3¢ > 0 such that every A with m(A4) > 0
satisfies diam(Cy4) > 2e. In particular, for any = in B, A contains a subset
with m(8) > 0 such that ||z — x| > €. Then, consider a fixed measurable
A with m(A) > 0 and let (3,) be a maximal collection of disjoint measurable
subsets of A with positive measure such that |[z4 — zg, || > €. (Note that since
m(Bn) > 0 and the sets are disjoint, such a maximal collection must be at
most countable.) By our assumption, we must have A = J3,, otherwise we
could take A’ = A — |8, and find a subset § of A’ that would contradict the

maximality of the family (3,). But now if A =]/, we have
za = X(m(Bn)/m(A))zp, and |lza—wzg,| > e

Since we can do this for every A C Q with m(A) > 0 this means that for
some ¢ > 0, every point x of Cq lies in the closed convex hull of points in
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Cq — B(z,¢), in other words this means that Cgq is not dentable, which is the
announced contradiction. This proves the above claim and completes step 1.
Working with C'4 instead of Cq, we immediately obtain
Step 2:

Ve>0 VAe A  with m(A) >0

JA’ C A with m(A’) > 0 such that
diam(Cly/) < 2e.

Step 3: We use a second exhaustion argument. Let € > 0 be arbitrary and let
(A,) be a maximal collection of disjoint measurable subsets of Q with m(A,,) > 0
such that diam(Cy,) < 2¢. We claim that, up to a negligible set, we have
necessarily Q = |J A,. Indeed if not, we could take A = Q—(|J A,,) in step 2 and
find A’ C A contradicting the maximality of the family (A,). Thus Q = | A,.
Now let g. = X14,x4,. Clearly, g. € L1(Q2, m; B) and we have

(2.4) = gem|lpr(o,am) < 2em(Q).

Indeed, for every A in A with m(A) >0

u(A) — / gedm = Xm(AN Ap)[Tana, —xa,)
A
hence

Hu(A) -/ gede < Sm(AN A)|eana, — a,
A
< m(4)(22),

which implies (2.4).

This shows that u belongs to the closure in M(2, A, B) of the set of all
measures of the form f.m for some f in Ly(Q,.4; B), and since this set is closed
by (2.3) we conclude that p itself is of this form. Perhaps, a more concrete way
to say the same thing is to say that if f,, = go—» then f = fo+ > fn — fn1

n>1

is in L1(2,m; B) and we have u = f.m. (Indeed, note that (2.4) (with (2.2))
implies || fr, — fn—1llz,(B) < 6.27"m().) O

To expand on Theorem 2.3, the following simple lemma will be useful.

Lemma 2.4. Fize > 0. Let D C B be a subset such that
(2.5) Ve e D x € conv(D\B(z,¢))
then the enlarged subset D = D + B(0,e/2) satisfies

(2.6) VeeD  z e conv(D\B(z,£/2)).
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Proof. Consider z in D, z = 2/ + y with 2 € D and [jy| < £/2. Choose
4 > 0 small enough so that § + ||y|| < €/2. By (2.5) there are positive numbers
a1,...,0an with Y¥a; = 1 and #1,...,2, € D such that ||z; — 2’| > ¢ and
lo" — Zayz;|| < 0. Hence 2/ = Boyx; + z with ||z]] < §. We can write x =
2/ +y = Soy(x; + z + y). Note that z; + z +y € D since ||z + y|| < /2 and
moreover

lz = (@i + 2+ y)ll = ll2" — 2 — 2] = [l&" — 2]l = |2
>e—3§>¢/2.

Hence we conclude that (2.6) holds. O

We now come to a very important result which incorporates the converse to
Theorem 2.3.

Theorem 2.5. Fiz 1 < p < oo. The following properties of a Banach space B
are equivalent

(i) B has the RNP.

(i) Every uniformly integrable martingale in Li(B) converges a.s. and in
Li(B).

(i4i) Every B-valued martingale bounded in Li(B) converges a.s.
(iv) Every B-valued martingale bounded in L,(B) converges a.s.

(v) For every § >0, B does not contain a bounded d-separated tree.
(vi) Every bounded subset of B is dentable.

Proof. (i) = (ii). Assume (i). Let (Q,.A,P) be a probability space and let
(An)n>0 be an increasing sequence of o-subalgebras. Let us assume A = A
for simplicity. Let (M,,) be a B-valued uniformly integrable martingale adapted
to (An)n>0. We can associate to it a vector measure p as follows. For any A in
A= A, we define

(2.7) w(A) = lim [ M,dP.

n—oo A

We will show that this indeed makes sense and defines a bounded vector measure.
Note that if A € Ay then by (1.7) for all n > k [, MpdP = [, MdP, so
that the limit in (2.7) is actually stationary. Thus, (2.7) is well defined when

A e |J A,. Since (M) is uniformly integrable, Ve > 036 > 0 such that
n>0

P(A) < § = ||u(A)|| < e. Using this, it is easy to check that p extends to a o-
additive vector measure on A.,. Indeed, note that (for instance by scalarization)
E(M,14) = E(M,EA»(14)). Thus the limit in (2.7) is the same as

(2.8) lim E(M,E*"(14)).

n—oo
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To check that this definition makes sense, note that if o, = E“»(1,4), then
(2.9) Vn <m E(Mnpn) — E(Mmem) = E(Mpn(pn — om))

but by the uniform integrability (since |¢, — ¢m| < 2) we also must have
IE(M.,(©n — ©m))|| — 0 when n,m — oo. Indeed, we can write for any ¢ > 0

[E(Mm(en — em)ll < 2sup/ [ M| + tElon — ml,
mJ || My, ||>t

so that limsup,, ,, oo [E(Mm(n — @m))|l < 2sup,, f”M >t ||M,, ]| and hence
must vanish by the uniform integrability. Thus by (2.9) we conclude that the
limit in (2.7) exists by the Cauchy criterion.

By Theorem 1.19, the submartingale ||M,|| converges in L to a limit w in
L;. Note that for all A in A

(2.10) ul(A) < /Awd]P’.

Indeed, by (2.7) and Jensen’s inequality, we have

(A < tim E(IM 10) = [ wa.

and hence also for all Ay,...,A,, in A disjoint with A = UA;

iMHMSiAﬂW:AMP

and taking the supremum of the left hand side, we obtain the above claim (2.10).
This shows |u| < P. By our assumption (i), there is f in L;(Q, A, P; B) such
that pu(A) = [, fdP for all Ain A.

Recall that for any & > 0 and for any A in A we have by (1.7)

Vn Z k ]E(MnlA) = ]E(MklA)

hence by (2.7) p(A) =E(Mgly4) for any A in Aj. Therefore we must have
Vk>0 VAe A /fd[E”:/MkdIP’
A A

or equivalently, since this property characterizes E-* (f) (see the remarks after
(1.5)) My, = E4%(f). Hence by Theorems 1.5 and 1.14, (M,,) converges to f
a.s. and in Lq(B). This completes the proof of (i) = (ii).

(ii) = (iii). This follows from Proposition 1.17.

(iii) = (iv) is obvious. We give below a direct proof that (iv) implies (i).

(iv) = (v) is clear, indeed a bounded d-separated tree is the range of a uniformly
bounded martingale (M,,) which converges nowhere since ||M,, — M,_1| > 6
everywhere.
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(vi) = (i) is Theorem 2.3, so it only remains to prove (v) = (vi).

Assume that (vi) fails. We will show that (v) must also fail. Let D C B be
a bounded nondentable subset. Replacing D by the set D in Lemma 2.4, we
can assume that there is a number § > 0 such that

Ve e D x € conv(D — B(z,9)).

We will then construct a d-separated tree inside D. Let (€, A, P) be the Lebesgue
interval. We pick an arbitrary point z¢ in D and let My = ¢ on © = [0,1].
Then since g € conv(D — B(xg,d))

n
a1 >0,...,a,, >0 with zppﬂzhpw%ep
1

such that

n
(2.11) To = Zaixi and |z; — zol| > 0.
1

We can find in Q2 disjoint subsets A1, ..., A, such that P(4;) = a; and UA; = Q.
We then let Ag be the trivial o-algebra and let A; be the o-algebra generated
by Ay,...,A,. Then we define Mj(w) = x; if w € A;. Clearly (2.11) implies
EAoM; = My and ||M; — Mg|| > § everywhere. Since each point z; is in D,
we can continue in this way and represent each x; as a convex combination
analogous to (2.11). This will give Ms, M3, etc.

We skip the details of the obvious induction argument. This yields a -
separated martingale and hence a d-separated tree. This completes the proof of
(v) = (vi) and hence of Theorem 2.5.

Finally, as promised, let us give a direct argument for (iv) = (i). Assume
(iv) and let u be a B-valued vector measure such that |u| < v where v is as in
the definition of the RNP. Then, by the classical RN theorem, there is a scalar
density w such that |u| = w.v, thus it suffices to produce a RN density for
with respect to |u|, so that, replacing v by |u| and normalizing, we may as well
assume that we have a probability P such that

vAe A [u(A)l <P(A).

Then for any finite o-subalgebra B C A, generated by a finite partition A,
<+« , AN of ©, we consider the B-measurable (step) function fz: Q — B that
is equal to p(A4;)P(A4;)~! on each atom A; of B. It is then easy to check that
{fs | B C A,|B| < oo} is a martingale indexed by the directed set of all such
B’s. By the above Remark 1.7, if (iv) holds then the resulting net converges
in L,(B), and a fortiori in L1(B) to a limit f € Li(B). By the continuity of
EC, for each fixed finite C, E¢(fz) — E°(f) in Li(B), and E¢(fs) = fc when
C C B, therefore we must have E€(f) = fc for any finite C. Applying this to
an arbitrary A € A, taking for C the o-subalgebra generated by A (and its
complement), we obtain (recall that fc is constant on A, equal to u(A)P(A)~1)

E(1af) =E(lafe) = P(A) x p(A)P(A) ™" = p(4),
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so that we conclude that f.P = u, i.e. we obtain (i). O

Remark. If the preceding property (vi) is weakened by considering only dyadic
trees (i.e. martingales relative to the standard dyadic filtration on say [0, 1]),
or k-regular trees, then it does not imply the RNP: Indeed, by [89] there is
a Banach space B (isometric to a subspace of Lj) that does not contain any
bounded é-separated dyadic tree, but that fails the RNP. Actually, that same
paper shows that for any given sequence (K (n)) of integers, there is a Banach
space B failing the RNP but not containing any J-separated tree relative to a
filtration such that |A,| < K(n) for all n.

Corollary 2.6. If for some 1 < p < oo every B-valued martingale bounded in
L,(B) converges a.s. then the same property holds for all 1 < p < co.

Remark 2.7. Note that for 1 < p < oo, if a B-valued martingale (M,,) is bounded
in L,(B) and converges a.s. to a limit f, then it automatically also converges
to fin L,(B). Indeed, by the maximal inequalities (1.20) the convergence of
| M,, — f||P to zero is dominated, hence by Lebesgue’s theorem [ ||M,, — f||PdP —
0.

Corollary 2.8. The RNP is separably determined, that is to say: if every sep-
arable subspace of a Banach space B has the RNP, then B also has it.

Proof. This follows from Theorem 2.5 by observing that a B-valued martingale
in L;(B) must “live” in a separable subspace of B. Alternately, note that any
d-separated tree is included in a separable subspace. O]

Corollary 2.9. If a Banach space B satisfies either one of the properties (ii)-
(v) in Theorem 2.5 for martingales adapted to the standard dyadic filtration on
[0,1], then B has the RNP.

Proof. 1t is easy to see by a suitable approximation that if B contains a bounded
d-separated tree, then it contains one defined on a subsequence {A,, | k > 1},
(n1 < ng < ...) of the dyadic filtration (A,,) in [0,1]. This yields the desired
conclusion. O

Corollary 2.10. If a Banach space B satisfies the property in Definition 2.1
when (2, v) is the Legesgue interval ([0, 1],dt), then B has the RNP.

Corollary 2.11. Any reflexive Banach space and any separable dual have the
RNP.

Proof. Since the RNP is separably determined by Corollary 2.8, it suffices to
prove that separable duals have the RNP. So assume B = X*, and that B is
separable. Note that X is necessarily separable too and the closed unit ball of
B is a metrizable compact set for o(X*, X). Let {M,} be a martingale with
values in the latter unit ball. For any w, let f(w) be a cluster point for o(X*, X)
of {M,(w) | n > 0}. Let D C X be a countable dense subset of the unit ball of
X.
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For any d in D, the bounded scalar martingale (d, M,,) converges almost surely
to a limit which has to be equal to (d, f(w)). Hence since D is countable, there
is Q' C Q with P(€) = 1 such that

VweQ VYdeD (d, M (w)) — (d, f(w)).

In other words we have M, (w)M
the unit ball of B) Mn(w)Mf(w) for any w in Q'. Notice that we did
not discuss the measurability of f yet. But now we know that w — (z, f(w))
is measurable for any x in X, hence since X is separable for any zo € B,
w — ||z — f(w)] is measurable, so f~1(3) = {w | f(w) € B} is measurable for
any open (or closed) ball 8 C X*, and finally since X* is separable, for any open
set U C X*, the set f~!(U) must be measurable, so f is Borel measurable.
We claim that this implies that f is Bochner measurable. This (and the de-
sired conclusion) follows from Phillips’ theorem (see Appendix 2). Alternatively
we can conclude the proof by the same trick as in Appendix 2, as follows.
For any x( in B we have

|xg — Myl = sup  [{d,zo—M,)| = sup [En{d,z0— f)| < Epllzo— f]
deD,||d||<1 deD,||d||<1

f(w) or equivalently (since we are in

(note that w — ||zo — f(w)]| is bounded and measurable, so that B, ||z — f|| =
a.s.
[zo — fII). Hence limsup [[zg — My|| < [lzo — fI|. We can assume that this

holds on the same set of probability one for all xy in a countable dense subset
of B, hence actually for all zp in B. But then taking xg = f(w) we have for
almost all w, limsup || f(w) — M, (w)|| = 0. Thus we conclude by Theorem 2.5

n—oo

that B has the RNP. O

Remark. The above examples of divergent martingales show that the separable
Banach spaces L1 ([0, 1]) and ¢ fail the RNP.

Remark. The RNP is clearly stable by passing to subspaces but obviously not
to quotients Indeed, ¢, being a separable dual, has the RNP but any separable
space (e.g. ¢p) is a quotient of it.

Notation. By analogy with the Hardy space case, let us denote by
hp(Q7 (-An)TLZOa P; B)

the (Banach) space of all B-valued martingales M = {M,, | n > 0} that are
bounded in L,(B), equipped with the norm

[M]| = sup [[ My ||, (5)-
n>0
Remark 2.12. Note that, by Theorem 1.5, the mapping
f—=AE.(f) In=0}

defines an isometric embedding of

L,(9, Aso, P; B) into hy(Q, (An)n>0,P; B).
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Remark 2.13. Let 1 < p < co. With this notation, Theorem 2.5 says that B
has the RNP iff

ho(, (Ap)ns0,P; B) = Ly(Q, As, P; B).

We now turn to the identification of the dual of L,(B).
Let p’ be the conjugate exponent such that p~! —|—p’_1 =1.
Suppose that we are given a filtration A4y C ... A, C A,+1 C ... of finite
o-subalgebras and let us assume A = A. Let L,(B) = L,(Q, A,P; B) with
1 < p < oo. Let ¢ be a bounded linear form on L,(B). By restriction to
L,(9, A,,P; B), p defines a linear form ¢,, in L,(Q,A,,P; B)*. But, since A,
is finite, we have L,(Q, A,,,P; B)* = L, (2, A, P; B*) isometrically, hence ¢,
corresponds to an element M,, in L,(%,A,,P; B*). Moreover, since ¢,, is the
restriction of ,41 it is easy to see that M,, = E, (M,+1), i.e. that {M,} is a
B*-valued martingale. Moreover, we have

sup [Mnllz, 5+ = llellL, )
Proposition 2.14. In the above situation, the correspondence
© — (My)n>0
is an isometric isomorphism from L,(Q, A,P; B)* to the space
hyp (2, (An)n>0,P; B).

Proof. Indeed, it is easy to see conversely that given any martingale {M,,} in the
unit ball of h, (Q, (A )n>0,P; B*), M, defines an element ¢,, in L, (12, A,,, P; B)*
so that ¢,41 extends ¢,, and ||¢,|| < 1. Hence by density of the union of the
spaces L,(12, A, P; B) in L,,(B), we can extend the ¢,,’s to a (unique) functional
¢ in L,(B)* with ||¢] < 1. Thus, it is easy to check that the correspondence is
one-to-one and isometric. O

Remark 2.15. By Remark 2.12, we have an isometric embedding
Ly(Q,Ax,P;B*) C Lp(Q, As, P; B)™.

Theorem 2.16. A dual space B* has the RNP iff for any countably generated
measure space and any 1 < p < co we have (isometrically)

Ly(Q, A P; B)* = Ly (Q, A, P; B*).

Moreover for B* to have the RNP it suffices that this holds for some 1 < p < oo
and for the Lebesgue interval.

Proof. If A is countably generated we can assume A = A, with A, associated
to a filtration of finite o-algebras (A,,) as above. Then Theorem 2.16 follows
from Proposition 2.14 and Remark 2.13. The second assertion folllows from
Corollary 2.9. O
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Remark. Of course the preceding isometric duality holds for any dual space B*
when the measure space is discrete (i.e. atomic).

Remark. The preceding theorem does remain valid for p = 1. Note however
that, if dim(B) = oo, the B-valued step functions are, of course, not dense in
the space Lo (2, A,P; B). This is in sharp contrast with the finite dimensional
case. But if dim(B) = oo the unit ball is no longer compact, there is no finite
e net for small €, so, in general, we cannot uniformly approximate even the
nicest bounded continuous functions by step functions, i.e. functions taking only
finitely many values. Recall that instead, we defined the space Lo (92, A4, P; B)
(in Bochner’s sense) as the space of B-valued Bochner-measurable functions f
(see Appendix 2) such that ||f(.)||s is in Lo, equipped with its natural norm.
This definition makes sense for any measure space (2, 4,P), and, with it, the
preceding theorem is valid for p = 1.

A function f: Q — B* will be called weak* scalarly measurable if for every
b in B the scalar valued function {f(.),b) is measurable. Assume B separable.
Let us denote by A,(12, A, P; B*) the space of (equivalence classes of) scalarly
measurable functions f:  — B* such that the function w — || f(w)|| g~ (which
is measurable since B is separable) is in L,. We equip this space with the
obvious norm

By,

1l = ( / 1)l

We have then

Theorem 2.17. Assume B separable. Then for any countably generated mea-
sure space and any 1 < p < oo we have (isometrically)

Ly(Q, A,P; B)* = Ay (Q, A, P; BY).

Proof. We assume as before that A is generated by a filtration of finite algebras.
By Proposition 2.14, it suffices to show how to identify h, (2, (An)n>0,P; B*)
with Ay (2, A,P; B*). Consider a martingale (f,,) in by (Q, (A )n>0,P; B*). By
the maximal inequality, (f,,) is bounded a.s. and hence a.s. weak* compact. Let
f(w) be a weak™ cluster point of (f,,). Then for any fixed b € B, the scalar mar-
tingale (f,(.),b) converges a.s.. Its limit must necessarily be equal to (f(.), b).
This shows that f is weak™ scalarly measurable. Let D be a countable dense sub-
set of the unit ball of B. Since D is countable, and (f(.), b} = lim, oo (fn(.), )
for any b € D, we have a.s.

£l = sup [(f,0)] < lim | fn]|

and hence by Fatou’s lemma

[flla, < (), -

Conversely, consider now f € A, (2, A,P; B*). Fix n. Let A be an atom of
An. Then b — P(A)~! [, (b, f) is a continuous linear form on B with norm
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<P(A)~" [, Ifl B+ Let us denote it by fa. Let f, be the B*-valued function
that is equal to f4 on each atom A € A,,. We have clearly E,,((b, f)) = (b, fn)
and hence E,, ((b, fnt1)) = (b, fn) for any b in D. Since D separates points, this
shows that (f,,) is a martingale, and moreover || f,| = supyep [0, fn)| < Enllf]|-
It follows that

Il < LIS = 1l

This shows that the correspondence (f,,) — f is an isometric isomorphism from
hp/ to Ap/. O]

Remark 2.18. The notion of “quasi-martingale” is useful to work with random
sequences which are obtained by perturbation of a martingale. An adapted
sequence (F),)n>0 in L1(B) is said to be a quasi-martingale if

Z 1Epn—1(Fn — Fo1)llz,(B) < 0.
1

Given such a sequence, let

fo=Fo= Be1(Fx — Fia),

so that
df, = dF, — E,_1(dF},).

Clearly (f,) is then a martingale and for all m < n we have pointwise
[ = ) = Fu = Eadlls < 32 1Bia (B = Fi)
and hence

1(fn = ) = (Fo = Fon)ll Ly < [ Ex—1(Fk — Fi—1) ||, (B)-

m<k<n
Note that (F,) is bounded in L1 (B) (resp. uniformly integrable) iff the same is
true for (f,,). Therefore, if this holds and if B has the RNP, (F,,) converges a.s.
(resp. and in Lq(B)).

The following complements the panorama of the interplay between martin-
gale convergence and Radon-Nikodym theorems. This statement is valid for
general Banach spaces, but we should emphasize for the reader that the w-a.s.
convergence of the variables w — ||f,(w)]|| is considerably weaker than that of
the sequence (fy,(w)) itself. The latter requires the RNP by Theorem 2.5.

Proposition. Let B be an arbitrary Banach space. Consider p € M(Q2, A; B)
such that |u| = w - P where P is a probability measure on (Q, A) and w €
Li1(2, A,P). Let (An)n>0 be a filtration such that As, = A, and such that,
for each n, py4, admits a RN density f, in L1(Q2, A,P; B) (for instance this is
automatic if Ay is finite or atomic). Then || fu| — w a.s.
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Proof. By Proposition 2.1, for each fixed € > 0 we can find unit vectors £, ...,&n
in B* such that the vector measure

LN : A—>€]OVO

defined by pn(A) = (&(n(A)))j<n satisfies |pn](2) > [p|(Q) —e =1 —e.
Assume [p[(Q) = [w dP = 1 for simplicity. Note that |u4,| < |p|ja, = wn - P
where w,, = EA»w. Therefore ||f,|| < w,. By the martingale convergence
Theorem 1.5, w,, — w a.s. and in Ly, and hence

limsup ||fn]] S w ae.

and [limsup ||f,|| < [w =1. We claim that
/liminf 1fll = /liminf sup |6 ()l = [unl(@) > 1 —e.
J<N

Indeed, being finite dimensional, /¥ has the RNP and hence uy = oy - P for
some @y in L1(Q;A,P;¢Y). This implies (by (2.2)) |un| = ||en|| - P. Clearly
E4mon = (§(fa))j<n and hence

sup;<n [€(fn)| = llen |l as. and

in L;. Thus

Elim inf sup, < y |6 (fa)] = / low [P = un](Q) > 1 ¢,

proving the above claim.

Using this claim, we conclude easily: We have liminf || f,,|| < limsup || f, | <
w but [liminf | f,||dP > [w dP—¢, so we obtain liminf || f,|| = limsup || f»|| =
w a.e. O

2.2 The Krein Milman property

Recall that a point z in a convex set C' C B is called extreme in C' if whenever
x lies inside a segment S = {0y + (1 — )z | 0 < § < 1} with endpoints y, z in
C, then we must have y = z = z. Equivalently C\{z} is convex. See [16] and
[8] for more information.

Definition. We will say that a Banach space B has the Krein Milman property
(in short KMP) if every closed bounded convex set in B is the closed convex
hull of its extreme points.

We will show below that RNP = KMP.

The converse remains a well known important open problem (although it is
known that RNP is equivalent to a stronger form of the KMP, see below). We
will use the following beautiful fundamental result due to Bishop and Phelps,
but we will skip the proof (see e.g. [16, p. 189]).
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Theorem 2.19 (Bishop-Phelps). Let C C B be a closed bounded conver sub-
set of a Banach space B. Then the set of functionals in B* that attain their
supremum on C is dense in B*.

Remark 2.20. (i) Let x* € B* be a functional attaining its supremum on C,

(i)
(i)

so that if o = sup{z*(b) | b € C}, the set F' = {b | 2*(b) = «} is non-void.
We will say that F' is a face of C'. We need to observe that a face enjoys
the following property: If a point in F is inside the segment joining two
points in C', then this segment must entirely lie in F.

In particular, any extreme point of F' is an extreme point of C.

Now assume that we have been able to produce a decreasing sequence of
sets --- C F,, C F,,_1 C --- Fy = C such that F), is a face of F,,_; for any
n > 1 and the diameter of F}, tends to zero. Then, by the Cauchy criterion,
the intersection of the F},’s contains exactly one point xg in C'. We claim
that zy is an extreme point of C'. Indeed, if x( sits inside a segment S
joining two points in C, then by (i) we have S C Fi, hence (since F is a
face in F and z¢ € F3) S C F5 and so on. Hence S C NF,, = {z0}, which
shows that xg is extreme in C.

Assume that every closed bounded convex subset C' C B has at least one
extreme point. Then B has the KMP. Indeed, let C; C C be the closed
convex hull of the extreme points of C. We must have C; = C. Indeed,
otherwise there is z in C\Cy and by Hahn—Banach there is * in B* such
that z/, < (8 and z*(z) > §. Assume first that this functional achieves
its supremum « = sup{z*(b) | b € C}. This case is easier. Note a > (.
Then let FF = {b € C | z*(b) = a}, so that F is a face of C disjoint
from C7. But now F is another non-void closed bounded convex set that,
according to our assumption, must have an extreme point. By (ii) this
point is also extreme in C', but this contradicts the fact that F' is disjoint
from C1.

In general, £* may not achieve its norm, but we can use the Bishop—Phelps

Theorem 2.19 to replace * by a small perturbation of itself that will play
the same role in the preceding argument.

Indeed, by Theorem 2.19, for any £ > 0 there is y* in B* with ||a* —y*|| <
that achieves its sup on C. We may assume ||b]] < r for any b in C. Let
~v = sup{y*(b) | b € C} and note that v > a — re; and hence y*(b) =
implies £*(b) > o — 2re. Hence if € is chosen so that oo — 2re > (3, we are
sure that F = {b € C' | y*(b) =~} is included in {b | z*(b) > 5} hence is
disjoint from C7;. We now repeat the preceding argument: F must have
an extreme point, by (ii) it is extreme in C' hence must be in C7, but this
contradicts F' N Cy = 0.

The preceding argument establishes the following general fact: let S be a
slice of C, i.e. we assume given z* in B* and a number [ so that

S={beC|z"(b) >},
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then if S is non-void it must contain a (non-void) face of C.
Theorem 2.21. The RNP implies the KMP.

Proof. Assume B has the RNP. Let C' C B be a bounded closed convex subset.
Then by Theorem 2.5, C is dentable. So for any ¢ > 0, there is  in C' such
that « ¢ conv(C\B(x,¢)). By Hahn—Banach separation, there is 2* in B* and
a number § such that the slice S = {b € C | 2*(b) > B} contains = and is
disjoint from C\B(z,¢). In particular, we have ||b — z|| < € for any b in S, so
the diameter of S is < 2e. By Remark 2.20 (v), S must contain a face F; of C,
a fortiori of diameter < 2e.

Now we can repeat this procedure on F : we find that F; admits a face Iy
of arbitrary small diameter, then F5 also admits a face of small diameter, and so
on. Thus, adjusting € > 0, we find a sequence of (non-void) sets -+ C Fp,41 C
F, C---CFy C Fy = C such that F,; is a face of F,, and diam(F,,) < 27™.
Then, by Remark 2.20 (iii), the intersection of {F,} contains an extreme point
of C. By Remark 2.20 (iv), we conclude that B has the KMP. O

Let C' C B be a convex set. A point z in C' is called “exposed” if there is a
functional x* such that z*(z) = sup{z*(b) | b € C} and z is the only point of
C satisfying this. (Equivalently, if the singleton {z} is a face of C.) The point
x is called “strongly exposed” if the functional z* can be chosen such that, in
addition, the diameter of the slice

{beC|x*(b) >supz* —e}
c

tends to zero when € — 0. Clearly, the existence of such a point implies that C'
is dentable. More precisely, if C' is the closed convex hull of a bounded set D,
then D is dentable because every slice of C' contains a point in D (see Remark
2.2).

We will say that B has the “strong KMP” if every closed bounded convex
subset C' C B is the closed convex hull of its strongly exposed points. It is clear
(by (vi) = (i) in Theorem 2.5) that the strong KMP implies the RNP. That the
converse also holds is a very beautiful and deep result due to Bob Phelps [225]:

Theorem 2.22. The RNP is equivalent to the strong KMP.

2.3 Edgar’s Choquet Theorem
2.4 Notes and Remarks

For vector measures and Radon—Nikodym theorems, a basic reference is [16]. A
more recent, much more advanced, but highly recommended reading is Bour-
gain’s Lecture Notes on the RNP [81].

For the Banach space valued case, the first main reference is Chatterji’s
paper [112] where the equivalence of (i), (ii), (iii) and (iv) in Theorem 2.5 is
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proved. The statements numbered from 2.6 to 2.16 all follow from Chatterji’s
result but some of them were probably known before.

Rieffel introduced dentability and proved that it suffices for the RNP. The
converse is (based on work by Maynard) due to Davis—Phelps and Huff inde-
pendently. The Lewis—Stegall theorem in §?? comes from [188]. Theorem 2.21
is due to Joram Lindenstrauss and Theorem thm1l.31a to Phelps [225]. See [16]
for a more detailed history of the RNP and more precise references.

Our presentation of the RNP is limited to the basic facts. We will now
briefly survey additional material.

In §2.3 we present Edgar’s theorem (improving Theorem 2.21) that the RNP
implies a Choquet representation theorem. This is proved using the martingale
convergence theorem and a basic measure theoretic result (namely von Neumann
measurable lifting theorem). See also [183] for more illustrations of the use of
Banach valued martingales.

Charles Stegall [252] proved the following beautiful characterization of duals
with the RNP:

Stegall’s Theorem ([252])

Let B be a separable Banach space. Then B* has the RNP iff it is separable.
More generally, a dual space B* has the RNP iff for any separable subspace
X C B, the dual X™ s separable.

In the 80’s, a lot of work was devoted (notably at the impulse of H.P. Rosen-
thal and Bourgain) to “semi-embeddings”. A Banach space X is said to semi-
embed in another one Y if there is an injective linear mapping u: X — Y such
that the image of the closed unit ball of X is closed in B (and such a u is then
called a semi-embedding). The relevance of this notion lies in

Proposition 2.23. If X is separable and semi-embeds in a space Y with the
RNP, then X has the RNP.

Proof. One way to prove this is to consider a martingale (f,) with values in
the closed unit ball Bx of X. Let u: X — Y be a semi-embedding. If Y has
RNP then the martingale g, = u(f,) converges in Y to a limit g, such that
Joo (") € u(Bx) = u(Bx). Let now f(w) = u™(goo(w)). We will show that f
is Borel measurable. Let U be any open set in X. By separability, there is a
sequence {0, } of closed balls in X such that U = US,,. Then

{w| flw) €U} =Un{w | goo(w) € u(Bn)}

but since u(3,) is closed and g, measurable we find that f~1(U) is measurable.
This shows that f is Borel measurable. By Phillips’ theorem, f is Bochner
measurable. Now, since g, = E,,(goo) = E,(u(f)) = w(E,.(f)) we have

fr=u" (gn) = Ea(f),

and hence f,, converges to f a.s. This shows that X has the RNP (clearly one
could use a vector measure instead of a martingale and obtain the RNP a bit
more directly). O
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We refer to [90] for work on semi-embeddings. More generally, an injective
linear map u: X — Y is called a Gs-embedding if the image of any closed
bounded subset of X is a Gs-subset of Y.

We refer to [140, 141, 143, 144, 149] for Ghoussoub and Maurey’s work on
Gs-embeddings. To give the flavor of this work, let us quote the main result
of [141]: A separable Banach space X has the RNP iff there is a Gs-embedding
u: X — f3 such that u(Bx) is a countable intersection of open sets with convex
complements.

The proof of the above Proposition 2.23 shows that the RNP is stable under
Gs-embedding.

As mentioned in the text, it is a famous open problem whether KMP implies
RNP. It was proved for dual spaces by Huff and Morris using the above theorem
of Stegall [252], see [8, p. 91], and also for Banach lattices by Bourgain and
Talagrand ([8, p. 423]). See also Chu’s paper [113] for preduals of von Neu-
mann algebras. Schachermayer [245] proved that it is true for Banach spaces
isomorphic to their square. See also [246, 247, 248] for related work by the same
author.

We should mention that one can define the RNP for subsets of Banach spaces.
One can then show that weakly compact sets are RNP sets. See [8, 50] for more
on RNP sets.

A Banach space X is called an Asplund space if every continuous convex
function defined on a (non-empty) convex open subset D C E is Fréchet dif-
ferentiable on a dense Gs-subset of D. Stegall [253] proved that X is Asplund
iff X* has the RNP. We refer the reader to [50] for more information in this
direction.



Chapter 3

Super-reflexivity

3.1 Finite representability and Super-properties

The notion of “finite representability” is the basis for that of “super-property.”

Definition. A Banach space X is said to be finitely representable (f.r. in short)
in another Banach space Y if for any finite dimensional subspace ' C X and
for any € > 0 there is a subspace E C Y that is (1 + ¢)-isomorphic to E (i.e.
there is an isomorphism u: E — E with full[[u=t] <1+e¢).

In other words, X f.r. Y means that, although ¥ may not contain an isomor-
phic copy of the whole of X, it contains an almost isometric copy of any finite
dimensional subspace of X. In Appendix 1 to this chapter devoted to back-
ground on ultraproducts, we show that X is f.r. Y iff X embeds isometrically
in an ultraproduct of Y.

The following simple perturbation argument will be used repeatedly.

Lemma 3.1. Let X,Y be Banach spaces. Let By C --- C E,, C Epq41 C--- be
a sequence (or a family directed by inclusion) of finite dimensional subspaces of
X such that UE,, = X. Then for X to be f.r. in'Y it suffices that for any e >0
and any n there is a subspace E,, CY that is (1 + €)-isomorphic to E,,.

Proof. Consider E C X with dim(F) < oco. It suffices to show that for any
fixed £ > 0 there is n and E C B, such that E is (1 + ¢) isomorphic to E. Let
d > 0 to be specified later. Let z1,..., x4 be a linear basis of E. Choose n_and
#1,...,%q in E,, such that ||z; — Z,|| <dforall j=1,...,d. Let v: E — E be
the linear map determined by v(x;) = &;. For any (a;) € K% we have by the
triangle inequality

o0 (e[Sl [0S

but since all norms are equivalent on R¢ there is a constant Cg such that

> eyl < Cr HZ OéijjH :

o1
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Thus (3.1) implies

(1-46Cg) HZ x|l < HZ 0T

and hence E is Ad-isomorphic to E with A = (14 0Cg)(1—6Cg)~L. To conclude
we simply choose § small enough so that A < 1+ €. O

)

< (14 46Cg) HZozjxj

Remark. The preceding Lemma shows in particular that L, is f.r. in ¢, for any
1 < p < oo, and that L, is f.r. in ¢g.

Definition. Consider a property P for Banach spaces. We say that a Banach
space Y has “super-P” if every Banach space X that is f.r. in Y has P.

Remark. In particular Y is super-reflexive (resp. has the super-RNP) if every
X fr.in Y is reflexive (resp. has the RNP). The passage from P to super-P
is a fruitful way to associate to an infinite dimensional property (such as e.g.
reflexivity) its finite dimensional counterpart. If the property P is already stable
by finite representability, then P and super P are the same. Such properties are
usually called “local.” The “local theory” of Banach spaces designates the part
of the theory that studies infinite dimensional spaces through the collection of
their finite dimensional subspaces.

Remark 3.2. Let B be a complex Banach space. If B is super-reflexive as a real
Banach space then it is also super-reflexive as a complex space. Indeed, any
complex space X that is f.r. in B must be reflexive as a real space, but this is
the same as reflexive as a complex space. Conversely, if B is super-reflexive as a
complex space, it is also as a real space, but this is a bit less obvious. It follows
e.g. from (i) « (iii) in Theorem 3.22 below, since the notion of separated tree
is the same in the real or complex cases. It also follows from Proposition 3.8
below.

The following result called the “local reflexivity principle” is classical.

Theorem 3.3 ([191]). The bidual B** of an arbitrary Banach space B is f.r.
in B.

To study super-reflexivity, we will need the following elementary fact.

Lemma 3.4. Let B be a Banach space. Then for any b** in B** any e > 0
and any finite subset &1,...,&, in B* there is b in B with ||b|| < (1 4 &)||b*||
such that

(&, ") = (&, b) Vi=1,...,n.

Proof. Let K = R or C be the scalar field. We may clearly assume &; linearly
independent. Assume ||b**|| = 1 for simplicity. Let C' C K™ be the convex set
{({&,b))i<n | b € B ||b]| < 1}. Clearly, since b** is in the o(B**, B*) closure of
the unit ball of B, we know that ({¢;,b**));<, € C. But (since we assumed the
&;’s independent) C' has nonempty interior hence C' C (1 +¢)C for any & > 0.
Thus we conclude that ((&;,5**))i<, € (1 +¢)C. O
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The following result is classical. It combines several known facts, notably
(iv) = (iii) goes back to R.C. James [162].
Theorem 3.5. The following properties of a Banach space B are equivalent:
(i) Every Banach space is f.r. in B.
(ii) ¢ is f.r. in B.
i B satisfying

(ili) For any A > 1 and any n > 1 there are x¥,...,a]

(3.2) V(aj) € K® sup |oy| < HZT; ozjz?H < Asup oyl
(iv) For some A > 1, for any n > 1 there are x¥, ...,z in B satisfy (3.2).
(v) For some A > 1, for any n > 1 there are z7,...,x} in B with norm > 1

and such that

n n
(|57

Proof. (i) = (ii) = (iii) = (iv)= (v) are trivial. We will show that (iii) = (i)
and (v) = (iii). Assume (iii). Let F C Bj be a finite dimensional subspace
in an arbitrary Banach space By. Let S = {s1,...,5,} be an e-net in the unit
sphere of E. For each s; € S, choose {; € E* such that (§;,s;) =1 = ||&;]|. We
define u: E — (2 by setting u(z) = (§;(2))j<n. We have ||u| =1 and

e =+1} <A

Vs e S llu(s)]len, = 1.
Therefore by Lemma 3.47
VreFE (1 =g)llzll < fluls)llen, < [l]-

This shows that E embeds (1 — )~ !-isomorphically into ¢ . Thus (iii) implies
that By is fr. in B, or equivalently (iii) = (i).

The proof that (v) = (iii) is a well known “blocking trick” . Assume (v).
Let C(n) be the smallest constant C such that for any x1,...,x, in B we have

n
infj<p [|z;]| < C sup HZ €%,
gj=%1 1

A simple blocking argument shows that C(nk) < C(n)C(k) for all n, k. Since
we assume (v), we have inf,, C(n) > A~!, but by the submultiplicativity of C(n)
this implies C'(n) > 1 for all n. Therefore, for any n and any A > 1 we can
find z1, ..., 2, in B such that sup. _4, || > ejz;[| < A and inf;<,, ||z > 1. For
each k, choose §; € B* such that ||{|| = 1 and & (2x) > 1. Note that if ¢; is
the sign of &, (x;) we have

Z €k ()] = <€k,25jxj> < HZ Ejl'jH <.
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Consequently

(3.3) D le(z) <A-1.

J#k
Let C be the set of real scalars ai,...,a, with sup|a;| < 1. Note that the
maximum value on C of || >~ a;x;|| is attained on an extreme point of C' (of the
form «; = £1), so we have || > a;z;| < Asup|oy| for any (aq,..., ) in R™.
Let x = ) ajz;. Choose k so that |ax| = sup; |aj|. By (3.3) we have

sup lag| = lan| = (& (D aja5) = D agée(a)| < ol + (A = 1) sup|ay|

i#h
and hence we find (2 — ) sup |a;| < ||z||. Thus we conclude
sup o] < (2= A) 7zl < (2= A) 7 Asup oy,

and since (2 — A) "1\ is arbitrarily close to 1 this shows that (v) = (iii), at least
in the real case. To check the complex case, note that

sup HZ zjxjH <2 suri)1 HanﬂjH .
Ej=

z;€Clz;|=1

From this one sees that in (v) we may replace the choices of signs by unimodular
complex numbers and complete the proof of (v) = (iii) exactly as in the real
case.

O
Recall from §4.4:

Definition. We say that B contains £7 ’s uniformly if it satisfies (iii) in Theorem
3.5. We sometimes say A-uniformly if we wish to keep track of the constant.

A property P (of Banach spaces) is called a super-property if super — P < P.

Corollary 3.6. Let P be a non-universal super-property, meaning that there
1s at least one Banach space failing it. Then a Banach space with property P

s )
cannot contain L% °s uniformly.

The reader will find background on ultrafilters, ultraproducts and ultrapow-
ers in the appendix to this chapter.

Proposition 3.7. Let X,Y be Banach spaces. Then X is finitely representable
inY (in short X fr.Y ) iff X embeds isometrically into an ultrapower of Y.

Proof. Assume that X embeds isometrically into an ultrapower Y! /U of Y. By
Lemma 3.48, for any Y, Y /U, and hence a fortiori X, is f.r. in Y, proving
the “if” part. Conversely assume X f.r. in Y. Let I be the set of pairs (E,¢)
where £ C Y is a finite dimensional subspace and ¢ > 0. We equip I with the
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order defined by ¢ = (F1,e1) < j = (Ea,e1) if E1 C E3 and €2 < £1. Note that
obviously for any z in X there is i = (F,¢) in I such that z € E. Since X f.r.
Y, for any i = (F,¢) there is a linear map u;: E — Y such that

(3-4) Ve ek 2] < ui(@)I] < (1 +&)jl.

Then we define u: X — Y7 /U as follows: for any z in X we set u(x) = u;(2;)),¢;
where z(g ) = x whenever z € E and (say) z(g.) = 0 if v ¢ E. By the
observation after (3.48), this indeed defines a linear map u: X — Y!/U. Let
¢; denote the second coordinate of i so that i = (E, ;). Note that lime; = 0
and hence limy, €; = 0. Therefore, by (3.48) and (3.4) for any x in X

[[uz|| = Timg [Jus (2)]| = [|2[]-
This shows that u is an isometric embedding of X into Y/ /U. O

The following is an immediate consequence of Proposition 3.7:

Proposition 3.8. Let P be a Banach space property. A Banach space B has
super-P iff any space isometric to a subspace of an ultrapower of B has P.

Proposition 3.9. Let P be a Banach space property that is stable under iso-
morphism (for example reflexivity). Then super-P is also stable under isomor-
phisms.

Proof. Indeed, if By ~ B (isomorphically) then, for any (I,U), we have obvi-
ously Bf /U ~ B'/U (isomorphically). By Proposition 3.8, if B has super-P
then any subspace of B /U has P, and hence (by the stability under isomor-
phism) any subspace of Bf /U has P, so that B; has super-P. O

3.2 Super-reflexivity and inequalities for basic
sequences

We will make crucial use of the following beautiful theorem due to V. Ptak
[239]. This was later rediscovered by several authors, among which R.C. James
who made an extremely deep contribution ([163, 164, 165]) to the subject of
reflexivity and weak compactness.

Theorem 3.10. The following properties of a Banach space B are equivalent:
(i) B is not reflexive.

(ii) For any 0 < 0 < 1, there is a sequence (Ty,&n)n>1 tn B X B* with ||z,]| <
1, [|€x]] <1 for all n such that

(3.5) @) =0  Vi<j
(3.6) Gle)=0 Vi
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(i) For some 0 < 0 < 1, there is (xy,&n)n>1 as in (ii).

(iii) For any 0 < 0 < 1, there is a sequence (x,,) in B such that for any finitely
supported scalar sequence (a,) we have

<D lal.

(3.7) ¢ sup Zai < HZ ;T
T i>g

(iii) For some 0 < 6 < 1, the same as (i) holds.

(iv) For any 0 < 0 < 1, there is a sequence (y,) in B such that for any finitely
supported scalar sequence (3,) we have

(3.8) Osup 8] < || 3 Buy

S Z |ﬂn _Bn+1|~

n>0

(iv)" For some 0 < 6 < 1, the same as (iv) holds.

(v) The inclusion mapping v1 — loo (where vy denotes the space of scalar
sequences (Bn) with >, < |Bn — Bny1| < 00) factors through B.

Proof. (ii) = (ii)’ is trivial and (ii)’ = (i) is easy. Indeed, if (ii)’ holds and if
z** is a o(B**, B*) cluster point of (x,), we must have &;(z**) = 6 by (3.6).
Let £ € B* be a o(B*, B) cluster point of (§,). Then by (3.5) we must have
&(x;) = 0. If ** € B, on one hand this implies {(z**) = 0 but on the other
hand &;(2**) = 6 implies {(«**) = 6. This contradiction shows that «** ¢ B
and hence that B is not reflexive.

The main point is to show (i) = (ii). Assume (i). Fix 0 < 6§ < 1 and
e > 0. Pick ** € B** with ||z**|| = 1 such that dist(z**, B) > 6. (Obviously,
such an x** must exist, otherwise a simple iteration argument would show that
B* = B.)

Since ||z**|| = 1, there is & in B* with ||&|| < 1 such that z**(&) = 6.
Hence (see Lemma 3.4), for any € > 0, there is 1 in B with ||z1]] <1+ ¢ such
that 21(£1) = 6. We will now prove by induction the existence of a sequence as
in (ii) except that we will find ||z, || < 1+¢, but a posteriori we may renormalize
(2,), so this is unimportant.

Let E; be the subspace spanned by {z1}. Since dist(z**, E1) > 6 (and since
B**/E; = (B/E,)** = (E{)*), there is & in B* with ||&] < 1 such that
& € Bt and 2%%(&) = 0. Then, by Lemma 3.4, there is zo in B with ||z3] <
1+ € such that x9(&;) = 6 and 25(£3) = 6 and so on. To check the induction
step, assume we have constructed (x1,- -+ ,x,), (&1, ,&,) satisfying (3.5) and
(3.6). Let B, = span{z1,...,z,}, we find &, 1 € E;- with ||£,11] < 1such that
x**(&ny1) = 6, and (using Lemma 3.4) we find z,41 in B with ||2,11]] < 14¢
such that x,,11(&) = 0 Vi < n+ 1. This completes the induction step and also
the proof that (i) implies (ii).

It is an easy exercise to see that (ii) < (iii) and (ii)’ & (iii)’.
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The equivalences (iii)< (iv) and (iii)’ < (iv)’ are obvious : just note the
identity (“Abel summation”) Y «;x; =Y Bnyn where yo = x¢ and y,, = z,, —
Zn—1 (or equivalently @, = yo + -+ + Yn), @ = Bn — Bny1 (or equivalently
Bn = ZiZn ;).

Lastly, (iv)< (v) is easy: (iv) can be interpreted as a factorization v; —
Y — { of the inclusion v; — £ through the closed span Y of (y,) but using
Hahn-Banach extensions of the functionals Y 8,y, — B, we can extend the
second map Y — {,, to one from B to {,, and this gives the factorisation in
(v). Conversely if (v) holds i.e. we have a factorisation v; — B — { (with
bounded maps) then (iv)’ is immediate. O

Theorem 3.11. The super-RNP is equivalent to super-reflexivity.

Proof. From reflexive = RNP, we deduce trivially super-reflexive = super-RNP.
To show the converse, it suffices obviously to prove that super RNP = reflexive.
Equivalently it suffices to show that if B is a non-reflexive space then there is
a space X that is f.r. in B failing the RNP. Assume B non-reflexive. Then by
the preceding Theorem there is a sequence (z,) in B such that for any finitely

supported scalar sequence (a,,) we have & (> a;x;) =0 Y o, hence
i>j

<Dl

We will now construct a space X that will be f.r. in B and will contain a
0/2-separated dyadic tree, and hence will fail the RNP. The space X will be
defined as the completion of L; with respect to the norm ||| - ||| defined below.

The underlying model for the construction is this: When (z;) is the canonical
basis of ¢1 (which satisfies (3.9) with § = 1) then the construction produces Ly
as the space X.

Let (A,) be the dyadic filtration in Ly = Ly([0,1]). For any f in L; we
introduce the semi-norm

(3.9) ¢ sup Zai < HZ 0T
T |izg

(k4+1)2—™
1l =]l 3 / F(t)dt -z
o<k<2n 50,

Let U be a nontrivial ultrafilter on N, i.e. an ultrafilter adapted to N (see
Appendix 1). We set

=1 .
711 =t 1o

We have by (3.9) for all f in L,

(3.10) f sup
0<s<1

/Slf(@dt‘ <1l S/If(t)| dt

Indeed, (3.9) implies this on the left side with the supremum over s of the form
s = k27" hence (3.10) follows by continuity of s — fsl f(t)dt.
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Let X be the completion of (L1, |||-||]). By a routine argument one can check
that this space X embeds in an ultraproduct of copies of B and hence is f.r. in
B. By Lemma 3.12 below, the unit ball of X contains an infinite 6/2-separated
dyadic tree and hence fails the RNP. O

Lemma 3.12. Let X be a Banach space. Assume that there is a linear map
J: L1([0,1],dt) — X such that for some 6 > 0 we have for all f in L,

/ 1 f(t)dt' <1l < | )t

f sup
0<s<1

Then the unit ball of X contains a 0/2-separated dyadic tree and hence X fails
the RNP.

Proof. Fix n. To any (e1,...,&,) in {—1,1}"™ we associate the interval I(eq,...,
en) defined by induction as follows we set I(1) = [0, 5[, I(—1) = [4,1] and if
I(ey,...,e,) is given we define I(eq,...,&,,+1) as the left half of I'(eq,...,e,)
and I(e1,...,&,,—1) as its right half.

Note that |I(e1,...,e,)| = 27" Let then Q = {—~1,1}N. Let (M,),>0 be
the Li-valued martingale defined for ¢ = (¢,,),, € Q by My =1 and

Mn(€> =2". 1[(81,.4.7&‘”)'
Note that | M, (¢)|z: =1 for all € in Q and since
My () = Mp1(e) = 2" Ten(lr(er.ocnst) = ernosm1)

for all n > 1 we have

/1(Mn — M, _1)(t) dt| > 1/2.

sup
S

Hence the martingale (J(M,(-))) is a B-valued 6/2-separated dyadic martingale
with range in the unit ball of B. O

Remark 3.13. The proof of Theorem 3.11 shows that, if B is not reflexive, then,
for any 6 < 1 there is a space X fr. in B satisfying the condition in Lemma
3.12. In the case of real valued scalars, this will be refined in (3.36) below, but
the proof of this improvement is much more delicate.

Remark 3.14. By [89] (see also [82]), there are Banach spaces without RNP
that do not contain any J-separated infinite dyadic tree, whatever 6 > 0 may
be. This gives an example of a space X failing the RNP but also failing the
assumption of Lemma 3.12.

Definition. Fix a number A > 1. A finite sequence {z1,...,2yx} in a Banach
space B is called A-basic if for any N-tuple of scalars (aq,...,ay) we have

N
(3.11) sup Zajxj <)\Hzl ;T

1<n<N
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An infinite sequence () is called A-basic if {z1,...,xy} is A-basic forall N > 1.
The case A = 1 has already been distinguished in the preceding chapter: 1-basic
sequences are called “monotone basic” sequences.

Note that (3.11) trivially implies by the triangle inequality

(3.12) sup o[l < 20 | 37 ey

If span[z,,] = B, the sequence {x,} is said to be a basis (sometimes called a
Schauder basis) of B. Then any = in B has a unique representation as the sum
of a convergent series Y |~ a;z; with uniquely determined scalar coefficients.
Conversely any sequence (x,,) with this property must be A-basic for some A >
1 by the classical Banach—Steinhaus principle. Indeed, this property implies
that there are biorthogonal functionals z} in B* such that any b in B can be
written as b = 7" a7 (b)z,,. Let Py(b) = fo xk (b)x,, so that, for any b in B,

Py (b) — b and hence supy || Pn(b)|| < co. By the Banach-Steinhaus principle,
we must have sup || Py|| < oo, so that (x,) is A-basic with A\ = sup || Pn]||-
N

Obviously, a A-basic sequence is a basis for the closed subspace it spans.
This justifies the term “basic.”

The natural basis of ¢, (1 < p < o0) or ¢y is of course a basis in the
above sense. Let B be any Banach space. In the sequel we will use repeatedly
the observation that a sequence of martingale differences (df,,) in L,(B) is a
monotone (i.e. A-basic with A = 1) basic sequence in L,(B).

Definition 3.15. A basis (x,) is called boundedly complete if for any scalar
sequence (a;,) such that supy || Zf, any| < oo the sum Sy = Ziv Qn Ty,
converges in B.

Note that if Sy — b we have automatically z}(Sy) — 7 (b) for each n
and hence «,, = z}(b) for all n. Let Py: B — B be, as above, the projection
defined by Py (b) = 337 2% (b)zy.

n

Definition 3.16. A basis (x,) is called shrinking if for any «* in B* we have
|z* — Pka*|| — 0. Equivalently, this means that the biorthogonal functionals
(z) form a basis in B*.

The following classical theorem due to R.C. James characterizes reflexive
Banach spaces with a basis.

Theorem 3.17. Let B be a Banach space with a basis (x,,). Then B is reflexive
iff (xy) is both boundedly complete and shrinking.

Proof. We may assume that (x,,) is A-basic for some A > 1. Assume that B is
reflexive. Let Sy = Ziv anZn. I {Sn} is bounded, by weak compactness of the
closed balls, there is a subsequence weakly converging to a limit b in B. Then,
for any fixed n, z¥(Sy) — x(b) (along a subsequence), but «,, = =3 (Sy) for
all N > n, therefore o, = x5 (b) for any n and hence (see the remarks preceding
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Definition 3.15) Sy = Py(b) tends to b when N — oo. This shows that (z,,)
is boundedly complete. Since Py (b) — b for any b in B, we have z*(Py (b)) —
x*(b) for any z* in B* and hence Pjz* — z* with respect to o(B*,B). If B
is reflexive, o(B*, B) = o(B*, B**) is the weak topology on B*, and hence by
Mazur’s theorem z* lies in the norm closure of conv{Pyz* | N > 1}. This
yields: Ve > 0 3m 3¢ € conv{Piz* | 1 < N < m} with || —2*|| < e. Clearly
P& =¢ (since Py P, = P,,Py = Py YN < m) we have

11 = Po) @) < I(L = Pp) (" = O < (1 +XNe

and hence we conclude that (z,) is shrinking. Conversely, assume that (z,)
is boundedly complete and shrinking. Consider x** in B**. We can write
P (x*) = Ziv x** (x})xy,. We have

<sup||Pn| <A\

. N sk [ %k
5upHZl T (x) Ty

Since (z,,) is assumed boundedly complete, Ziv x** (x} )x, converges to an ele-
ment b in B. But now for any fixed n we have

x**(x}) =z, (Zl x**(x:)xn> — a7 (b) when N — oo

and hence x**(z}) = b(x) for any n. Finally, if (x,) is assumed shrinking,
{z}} is norm total in B*, so this last equality implies z**(z*) = b(z*) for any

*

2* in B* which means 2** = b. Thus we conclude that B is reflexive. O

Remark 3.18. Let p > 1 (resp. ¢ < o0). Let (e,) be a basic sequence in a
Banach space B. We say that (e, ) satisfies an upper p-estimate (resp. a lower
g-estimate) if there is a constant C such that for any finite sequence x1, ...,z N
of disjoint consecutive (finite) blocks on (e;,) we have

1/p 1/q
[ w] < o (3 esl) (p (X lheslr) " <Y
If this holds, then (e,) is shrinking (resp. is boundedly complete).

Indeed, let Py denote the projection onto spanfey, . . ., en]. Consider £ € B*.
Dualizing our hypothesis we find that for any increasing sequence 0 = n(0) <
n(1) < ... we have

N1/
(S 1Py = Pageny)el”) ™ < Cllel

This implies (P, — Ppk—1))"¢ — 0 when & — oo. But we may choose the
sequence n(k) inductively so that (say) [|(Pnk+1) — Pu)) €l > (1/2)|(1 —
Priy)*€|| so we conclude that || — Px&|| — 0 when N — oo. The boundedly
complete case is similar. We leave the details to the reader. O
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Remark 3.19. Fix 1 < p < oo. By Theorem 2.5, B has the RNP iff any
martingale difference sequence in L, (B) is boundedly complete when viewed as
a monotone basic sequence.

We will use two variants of Theorem 3.10 as follows.

Remark 3.20. If B is not reflexive then for any A > 1 there is a sequence (z,,, &)
satisfying (ii) in Theorem 3.10 but moreover such that the sequence (&) is A-
basic.

Indeed, choose numbers 1 < A, < A such that [T A, < A. It is easy to modify the
induction step to obtain this: at each step where we have produced (z;,£;)<n
we can find a finite subset F, of the unit ball of B such that for any £ in
span(&1,...,&,) we have ||£]| < Apsup{|{(x)| | = € F,}. Suppose we have
produced z1,...,2p, &1,...,&,. We then replace E,, by span(E,, F,) to find
&ny1 in EF N Fi- with otherwise the same properties, so we may continue and
find &1 with ||zp41]| < 1+ € such that z,41(&;) = 6 for all j < n+ 1. The

fact that &,.; € Fi- guarantees that for any ¢ € span|¢y,. .., &,] and any scalar
a, we have

Vo € F, {(@) = (£ + abns1) (@)

and hence

(3.13) €< A sup I6@)] < Al + ]

Now if we choose our sequence Aq,...,A,,... as announced so that [[ A, < A,

we clearly deduce from (3.13) that (&,) is A-basic.

Remark 3.21. By an analogous refinement, if B is not reflexive then for any
A > 4 there is a sequence (z,,&,) satisfying (ii) in Theorem 3.10 but moreover
such that the two sequences (z,) and (x1,22 — x1,23 — Z2,...) are A-basic.

Let ** be as in the proof of Theorem 3.10. Suppose given z1,...,x, and
E, = span(x1,...,x,). Since d(z**, E,) > 6, we have for any « in F,, and any
scalar

Olaf < |z + ax™|

and hence by the triangle inequality

(3.14) lzll < (1 +67Y)l|lz + az™||.
Let ¢ > 0. Let G, be a finite subset of Bg: such that
Vo € By ]| < (1 +¢)sup{|&(x)[ | € € Gn}.

By (3.14), each £ in Bg: (in particular each ¢ in G,,) extends to a linear form
é of norm < 1+ 0~! on the span of z** and E, that vanishes on x**. Then
we claim that £ extends to € € B* with ||€]| < (1+601)(1 +¢). Indeed, since
span[E,,z**] C B**, the Hahn-Banach theorem a priori gives us & in B***,
extending f to the whole of B**, but we can use Lemma 3.4, applied to B*
instead of B, to find £ in B*. In any case, note that £(**) = 0.
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Let G = {f | € € G,}. Then in the induction step, we may select z,41 so
that &(x,41) = 0 for all € in GyU---UG),. This guarantees that, for any k, all
the x;’s for ¢ > k vanish on G, so for any = in Ej, say © = 21 ojx; we have

2]l < (1 +e)sup{|¢(2)] | € € Gy}

(e g o)
i>k
x+Za X

>k

<(A+07H(1+e)?

Thus, if we choose # and ¢ so that (1+6~1)(1+¢)? < X, we obtain (z,,) \-basic
(so we can obtain it A'-basic for any A’ > 2). In addition, we will show that the
sequence (z;) defined by z; = 1 and 2; = x; — x;_1 is N(1 + 071(1 + €))-basic
(so we can obtain it A-basic for any A > 4). Indeed, consider scalars (f;) and

let ,
j n
SUZZI@‘% yzzj+15izi-

Note that x € E; but our problem is that z;41 = x;41 — ; involves ;. We
must show

lzll < N1+~ 1 +e)) e +yll-
We have by (3.9)
(3.15) 018j+1] < llz +yll,
and hence by the triangle inequality
o+ (y + Bjrrz)ll < Il +yll + 184111 +€) < A+ 0711 +¢))llz +y].
But now since (z;) is A'-basic and y + ;41 is in the span of {z;41, 242, -}
]l < Nl + (y + Bj12;) |
and hence the announced result
lzll < N1 +07H 1 +e))lz +yll.

O

To state the next result it will be convenient to introduce two sequences of
positive numbers attached to a Banach space B, as follows.
For each n > 1, we set

bioy (B) = inf § sup Zyg sup ¢ |-
1 n

i<n
B
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where the infimum runs over all biorthogonal systems (v;,&;)i<n in B x B*
(biorthogonal means here that &(y;) = 0if i # j and = 1 if i = j).

Note that obviously bio,(B) < bio,+1(B) for all n > 1. Let ¢ = sup||&;]|.
Replacing &; by ¢ 1¢; and y; by cy; we may assume ¢ = 1. By the Hahn-Banach

theorem, (y1,...,Yyn) admits a biorthogonal system (&;) with sup ||§;| g~ <1 iff
for any scalar n-tuple (aq,...,«,) we have
(3.16) sup lo] < |3 ).
Thus, we can equivalently define bio,, (B) as the infimum of sup ||}~ y;|| over all
i<n ||5<i
(y;) satisfying (3.16).
Equivalently, setting z; =03, y;, we have
(3.17) bio, (B) = inf{f~'}
where the infimum runs over all § < 1 for which there is an n-tuple (z1,...,z,)
in B satisfying for any scalar n-tuple (aq, ..., a,)

¢ sup Zai < HZamji §Z|ai|.
T li>g

Note that (3.17) clearly shows that if a space X is f.r. in B then necessarily
(3.18) bio,, (B) < bio,(X) Vn > 1.

In particular, this shows by Theorem 3.3, that bio,(B) < bio,(B**). The
converse is obvious: since B C B** we must have bio, (B**) < bio,(B). Thus
we obtain

(3.19) bio, (B**) = bio,(B)  Vn > 1.

Moreover, (3.17) also shows that for any quotient space, say B/S (with S C B
a closed subspace), we have

(3.20) bion (B) < bion(B/S).

Indeed, one verifies this by a trivial lifting of z; € B/S up in B.
Note one more equivalent definition of bio, (B):

(3.21) bio,(B) = inf{#~'} where € <1 runs over

all the numbers for which there is a n-tuple (x;,&;) ;< in B x B* with ||z;|| < 1,
1€;]] < 1 such that

(3.22) fj(l‘i) =60 Vi>j and fj(l‘i) =0 Vi<j.
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Indeed, if (y;,&;) is as in the original definition, if we set z; = 6 > y; with

Jj<i
0 = | sup
i

(3.22), if we set y; = 0~ (z; — x;_1), y1 = 6~ a1 we find sup

> Yj

-1
) and sup ||&;]] = 1, we obtain (3.22). Conversely, given
J<i

Syl <07t
Jj<i

From (3.21), it is immediate (replacing (y;,&;) by (§n+1—j, Ynt1—5), 1 < j <
n) that

bioy (B*) < bioy (B).

Hence also bio,(B**) < bio,(B*), and since we already saw bio, (B**) =
bio, (B), we conclude that bio,(B) is self-dual:

(3.23) bio, (B) = bio,(B*) Vn > 1.
We also introduce

ta(B) = inf{sup |11, ()] )

where the infimum runs over all dyadic martingales (My)x>0 such that || M (w)—
Mi_1(w)|| > 1 for all w and all 1 < k < n. Again we have obviously ¢,(B) <
tn+1(B) for all n. Note that ¢ = sup,, t,(B) < oo iff B contains for some § > 0
arbitrarily long d-separated finite dyadic trees in its unit ball.

Again we have ¢,(B) < t,(X) if X fr. B. Moreover, by an easy lifting
argument, this also holds when X is isometric to a quotient of B.

Theorem 3.22. The following properties of a Banach space B are equivalent:
(i) B is super-reflexive.
(i) B* is super-reflexive.
(ii) bioy(B) — oo when n — 0.
(iii) ¢,(B) — oo when n — oo.

(iv) For any X > 1, there is ¢ < 0o and a constant C' such that for any N and
any A-basic sequence (y1,...,yn) in B or in any quotient of B we have

(3.24) (S lasle) " < o[ ui]-

(iv)" For some A > 1, the same as (iv) holds.

(v) For any X\ > 1, there is p > 1 and a constant C such that for any N and
any A-basic sequence (y1,...,yn) in B we have

(3.25) [ w0 (X hwate) ™"
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(v)! For some X > 1, the same as (v) holds.

Proof. The proofs that (i) = (ii) or that (i) = (iili) are similar to the proof
of Theorem 3.11. Assume that bio,(B) (resp. t,(B)) remains bounded when
n — oo. We will show that there is a space X (resp. V) that is f.r. in B and
that is not reflexive (resp. fails the RNP). This will show that (i) = (ii) (resp.
(i) = (iil)). Let us outline the argument for (i) = (ii). Assume that (ii) fails
i.e. that bio, (B) < C for all n > 1. Then, for each n we have (by homogeneity)
a biorthogonal system (y!",&!");<, such that sgp H > y;LH < C and
i<n j<i

l&r| =1 for i=1,2,...,n.

We will define the Banach space X as the completion of K for the norm || -|| x
defined as follows. For each n we set for any finitely supported scalar sequence

o= (o)

ladln =1{| > ard yy

1<k<n 1<k

Then we fix a nontrivial ultrafilter 4/ on N and we set:
=1 .
ol x lim ]l

Let z = ) oax ) y?. We have clearly by biorthogonality {'(x) = > o
1<k<n i<k k>i

sup 3" | < ol < €3 o

L

and hence

sup Zak < |laflx < C’Z\ai\.

Yo k>d

By (i) < (iii) in Theorem 3.10 we see that X is not reflexive, but since X
manifestly embeds in an ultraproduct of subspaces of B, X is f.r. in B. This
completes the proof that (i) = (ii).

The proof that (i) = (iii) is similar: if ¢,(B) < C for all n we produce Y
f.r. in B and containing in its unit ball an infinite d-separated dyadic tree with
d = 1/C (see the proof of Theorem 3.11); we leave the details to the reader.
Note that (ii) = (i) follows from Theorem 3.10. Indeed, by the latter theorem if
B is not reflexive bio, (B) is bounded; therefore (ii) implies B reflexive. But by
(3.18), if B satisfies (ii) then any X f.r. in B also satisfies (ii) and hence must
be reflexive. This shows that (ii) = (i).

Similarly, we have (iii) = (i). Indeed, it suffices to show (iii) implies B
reflexive. But if B is not reflexive, Remark 3.13 (and ¢,(B) < t,(X) if X fr.
B) clearly shows that ¢, (B) remains bounded when n — oo; this shows (iii) =
(i). Thus we have proved (i) < (ii) < (iii), and hence by (3.23), (i) < (i)’
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We will now show that (ii) = (iv). Fix A > 1. We will show that if (iv) fails
for this A then (ii) also fails. We will argue as we did in the preceding section
for monotone basic sequences. Let b(N, A) be the smallest constant b such that
for any A-basic (y1,...,yn) in a quotient of B we have

N
i <
PR
Clearly (see the proof of Theorem 4.9)
(3.26) b(NK,\) <b(N,\b(K,\) foral N, K,

and also b(K,\) < Ab(N, A) for any K > N. Therefore, if b(N,\) < 1 for some
N > 1 we find r» < oo and C such that b(N,\) < CN~Y" for all N and this
leads to (see the proof of (4.10))

for g>r

(Slwl?) " <c | u

and some constant C'. This argument shows that if (iv) fails for some A > 1
we must have b(n,\) > 1 for all n > 1. Equivalently, for any ¢ > 0 there is
(Y1, - - -,Yn) A-basic in a quotient of B, say B/S for some subspace S C B, such
that [>T y;ll < 1+e but [jy;]| > 1 forall 1 < j < n. By (3.12), there are
functionals (&;) biorthogonal to y; with ||&|| < 2, and by (3.11) we have

n
sup | Syl < A|SS | < A1 +2)
Colas

hence we obtain bio, (B/S) < A(1+4¢)2), but by (3.20) we know that bio, (B) <
bio,, (B/S), therefore (ii) fails. This completes the proof that (ii) = (iv).

We now show (ii) = (v). Assume (ii). Then, as we already mentioned,
by (3.23), B* satisfies (ii) and hence, using the already proved implication (ii)
= (iv), B* satisfies (iv), and actually all quotient spaces of B* satisfy (iv).
Then let (z1,...,2,) be A-basic in B. Let E = span{zi,...,z,}. We have
E* = B*/E+ and the biorthogonal functionals (z%,...,z") are A\-basic in E*.
By (iv) applied in E*, we have for any scalar n-tuple (note that (a;x})<y is
also basic if a; # 0)

(X leuller 1) " < €[S e
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hence, by duality, if p > 1 is conjugate to ¢ we find
[l | () | €5~ 11
- {[ e | [t 1)
<su { (Llaillei?) " (L et )" | [ et
<o (X))
<o (X))

where for the last line we used 1 = 27 (z;) < ||zf||||:||. This completes the proof
that (i) = (v).

Note that (iv) = (iv)’ and (v) = (v)’ are trivial. Now, we prove (v)’ = (i):
Since (v)' is clearly a super-property, it suffices to show (v)’ implies B reflexive.
But if B is not reflexive, by Remark 3.20, for any A > 1, we can find a A-basic
sequence (&) with ||&,|| < 1 satisfying (3.6) for some (z,,) in the unit ball of B.

This implies
n = &(wn) < HZT ’fjH
i<n

but now (v)" implies H PRS] H < Cn'/P with p > 1 which is impossible when n —

:

00. This contradiction shows that (v)’ implies the reflexivity of B, concluding
the proof of (v)' = (i).

It only remains to show (iv)’ = (v)’. Since the finite dimensional subspaces
of B* are the duals of the finite dimensional quotients of B, by duality (iv)’
implies that B* satisfies (v)’. Applying the (just proved) implication (v)" = (i)
to the space B*, we conclude that B* must be super-reflexive, and hence (recall
(3.23)) B itself satisfies (ii), and we already proved (ii) = (v) = (v)’. So we
conclude (iv)’ = (v)". O

Remark. Returning to Remark 3.21, recall that the sequence (z;) (defined by
z1 = x1 and z; = x; — x;—1 for i > 1) can be found A-basic with A > 4, and also

l|2:]] > &i(2i) = 6. But then >} z; = x,, hence H -7 zi|| <1, which contradicts

1/q
any estimate of the form (Z |z Hq) <C ‘ 3" zi||. This shows that if B itself

(without its quotients) satisfies (iv) then B is super-reflexive.

Corollary 3.23. If B is super-reflexive then for any X > 1 there are p > 1
and q < oo and positive constants C' and C” such that any A-basic sequence
(z1,...,zN) is B satisfies

@ (Cleall)) ™ < || < 0 (S halir)

Proof. This is immediate from Theorem 3.22 since we can replace B by B* in
(v). O
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3.3 Uniformly non-square and J-convex spaces

We start this section by a remarkable result discovered by R.C. James [162].

Theorem 3.24. In any non-reflexive Banach space B, there is, for any § > 0,
a pair x,y in the unit sphere of B such that

lo+yl| >2—4.

Remark. Banach spaces that fail the conclusion of Theorem 3.24 are called
uniformly non-square. More precisely, B is “uniformly non-square” if there is
§ > 0 such that for any z,y in the unit ball we have either ||(z +y)/2|| <1—46
or ||[(z —y)/2|]] <1 —4. This is a weak form of uniform convexity. In fact, this
is the same as saying that the uniform convexity modulus d5(¢) is > 0 for some
g > 0 (while uniform convexity is the same but for all e > 0).

Remark. Let a, 8 € R such that || + |3] = 1. Assume ||z|,|lyl| < 1 and
|z £yl >2— 4. Then for some ¢ = +1 we have

laz + Byl = |l lelz +elBlyll = lz + eyl — (1 = )z + (1 — Byl
>2-6—(1—|a|+1—|8)=1-0.

Therefore by homogeneity we have
Va,B €R (1 =0)(|al +18]) < llax + Byl < lof + 5]

In particular, any non-reflexive Banach space contains for any § > 0 a 2-
dimensional subspace (1 + 0)-isometric to £§2).

In the real case, 652) is the same (isometrically) as Eg%). Explicitly: Given
x,y as above, let a = (z +y)/2 and b = (z — y)/2. Then

Va,f e R (1= 6)max{|el, 6]} < [laa + bl < max{|al,|5]}-

Note however that this is no longer valid in the complex case.

Thus we have

Corollary 3.25. The 2-dimensional space 652) (over the reals) is finitely rep-
resentable in every non-reflexive real Banach space.

Corollary 3.26. Any uniformly non-square Banach space is super-reflexive.

By Proposition 3.9 we can “automatically” strengthen the preceding state-
ment:

Corollary 3.27. Any Banach space isomorphic to a uniformly non-square one
18 super-reflexive.

Naturally the question was raised whether 652) could be replaced by Eg") for
n > 2 in particular for n = 3, but, in a 1973 tour de force, James himself gave
a counterexample ([166], see also [125, 168]). We will give different and simpler
examples of the same kind in Chapter 7. In the positive direction, one can
generalize Theorem 3.24 as follows. This is also due to James (see [162, 169]).
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Theorem 3.28. Let B be a non-reflexive space. Then for any n > 1 and any
6 > 0 there are x1,...,x, in the unit sphere of B such that for any choice of
signs €; = £1 where the + signs all precede the — signs (we call these “admis-
sible” choices of signs) we have

llerxs + -+ enznll = n— 4.
More explicitly we have for any j=1,...,n—1,
lo1 4+ 4+xj —2j41 ——ap]|>n—39 andalso |z1+-- 4z, >n—24

Definition. A Banach space B is called J-convex if there is an integer n > 1
and a number ¢ > 0 such that for any z1,...,z, in the unit ball of B

inf || kaﬂﬁkn <n(l-9)

where the infimum runs over all admissible choice of signs i.e. such that g, = +1
and all the 4 signs appear before the — signs (if any).

Note that if B is J-convex then any space f.r. in B is automatically J-convex.
Using this, Theorem 3.28 can then be rephrased as follows.

Corollary 3.29. Any J-convex Banach space is reflexive (and actually super-
reflexive).

The next result will be deduced rather easily from this last one.
Corollary 3.30. J-convezity and super-reflexivity are equivalent properties.

Remark 3.31. The girth of the unit ball of a real Banach space B is the infimum
of the lengths of centrally symmetric simple closed rectifiable curves on its sur-
face. Tt is proved in [169] (see also [249]) that a Banach space is super-reflexive if
and only if the girth of its unit ball is (strictly) more than 4. In sharp contrast,
the girth of ¢1, ¢y or £, is equal to 4. This is closely connected to the fact that
super-reflexivity is equivalent to J-convexity.

The original proofs of both Theorems 3.24 and 3.28 are rather delicate. We
follow a simpler approach due to Brunel and Sucheston [110].
We will need the following notion.

Definition. A sequence (&,) in a Banach space will be called subsymmetric if
for any integer N, for any (a1,...,ay) in RY and for any increasing sequence
n(l) < n(2) <--- <n(N) we have

N R N .
E L Q% E :1 @ Tn(5)

The sequence (Z,) will be called “additive” if for any finite sequence of real

is equal to:

scalars (¢;) and for any m > 1, the preceding term HZ{V 0y

a1 Z Zj/m+ g Z Zj/m+---+an Z &;/m|| .

0<j<m m<j<2m (N=1)m<j<Nm
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We will also need

Lemma 3.32. Let (z,) be a subsymmetric sequence such that 1 # x2 in a
Banach space B. Then the sequence d; = xoj_1 — x2; (j > 1) is an uncondi-
tional basic sequence with constant 2. More precisely, for any finitely supported
sequence of scalars (a;) and any subset B C N we have

(321) |32, < [

and hence

3.28 sup |3 ;| <23 agas ).

(3.28) WP Z 3 %) Z 3 %)

Proof. Clearly (3.27) implies (3.28) by considering the index sets 54 and (-
where the sign is + or —. By an elementary iteration, it suffices to prove (3.27)

when ( is the complement of a singleton {j}. Equivalently, it suffices to prove

lods + -+ ads + -+ + awdw]| < |3 ayd

where the hat marks the absence. But now by subsymmetry for any m and any
0<p<m

where Dji, = Ta(j-1)4+p = Ta(j—1)+p+1- Note m ™ (Djp1 + -+ Djim) — 0
when m — oo (telescoping sum). Averaging (3.29) over 0 < p < m and letting
m — oo we obtain (3.27). O

(3.29) HZ a;d;

j—1 oo
= ardy + o Dig,, + E agd
szzl k&k JHi+p kg1 k@k+m

Notation: Consider a bounded function f: I xI — R. For each fixed k € I, we

can define limy, f(k, ) but also limy, f(i, k) and of course these differ in general.

To avoid ambiguity we will denote by 1»“5} f(,7) the limit (relative to i) when j
(2

is kept fixed, and we denote by hI{{l f(,7) the limit (relative to j) when ¢ is kept
j

fixed. Similarly, given a function f: IN — R we can define the iterated limits

li lim ...( I i(1),...,i(N))...).
o (i - (limy G, -5 i(N))--)
Lemma 3.33. If B is non-reflexive then there is a subsymmetric and additive

sequence (x,) satisfying (3.7) for some 8 > 0 and such that the closed span of
[xn] is for. in B.

Proof. By Theorem 3.10, B contains a sequence (x,,) satisfying (3.7). Let (e,)
be the canonical basis in the space KV of finitely supported sequences of scalars
(K=TR or C). For any N and any (a;) in K we define

later + -+ +ayen]|| = l(lgnu(l(lgnu . (i(l]ifI)nM a1y + -+ + anzinl) - - ).
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Let B be the completion of K™ equipped with this norm. Since spanfeq, ..., en]
is (by definition) a subspace of an N-times iteration of ultrapowers starting with
one of B, it must be f.r. in B (see Lemma 3.48). Therefore B; itself is f.r. in
B. Clearly, if we replace (z,) by (7;(1), %i(2),...) with i(1) < i(2) < --- then
(3.7) remains valid, therefore (e,,) itself still satisfies (3.7). Lastly, it takes a mo-
ment of thought to check that (e, ) is subsymmetric. We will now modify (e,,)
to obtain a sequence that is also additive. Consider again a finitely supported

sequence of scalars (aq,...,an,0,0,...), we define
1 m _1 2m 1 Nm
@) lmy = [larm™ 3 e+ amm™ D 7 et aym™h 3T e
j=1 j=m+1 j=m(N—1)+1

We claim that ||(c;)|(m) converges when m — oco. By subsymmetry of (e,,) and
the triangle inequality, we have obviously

l)llom < @)y = [ 3 azes
More generally, for any pair of integer k, m we have

(3.30) (@)l mry < [1(e)ll(m)-

Thus for any n > m, dividing n by m we can write n = mk + p with p < m and
we easily check (again by the triangle inequality) that

mk P
1)l < ==l lgniy + = ll(@s)ll -
This gives us by (3.30)
Vim > 1 T 05y < @)l

and hence lim |[(a)[l(n) = inf|[(a;)|[(m)- This proves the announced claim.

We now define a norm ||| - ||| on R™ by setting
(3.31) Il = Tim_[[(e;)]lm)-
Let By be the completion of (K™ ||| - |||). Let us denote by (&,) the basis

(en) viewed as sitting in Bs. Then, an easy verification shows that (&) is
subsymmetric and still satisfies (3.7). Moreover, using (3.30) it is easy to see
that (Z,,) is additive. Lastly, note that (3.31) implies that Bs is f.r. in By and
a fortiori in B. O

Proof of Theorem 3.24. By Lemma 3.33, we may assume that B contains a
subsymmetric additive sequence (x,,) satisfying (3.7) for some 6 > 0. The idea
of the proof (going back to [162]) can be roughly outlined as follows: Consider
two long sequences of coeflicients equal to +1 as follows,

1P 0-1 0 10 -1 0 ...1 0 =1 0
o1 0 -1t 01 0 -1 ... 01 0 -1
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where the second sequence is obtained from the first one by a single right shift.
Then if these represent x and y we have ||z|| = |ly|| by subsymmetry and ||z +
yll = 2||z|| by additivity. But moreover (this needs more care) x — y is very
similar (up to 2 digits) to 2x so we also can get ||z — y|| =~ 2||z||. More precisely,
let (these depend on m but for the moment we deliberately keep m silent):

(332) 21=x1 —T3+2Ts—T7+ -+ Tam—3 — Tam—1
(333) zZ9 = T2 7I’4+I67$8+"'+I4m_27£€4m.
Let r(m) = ||z1]|. Note that ||z1]| = ||22]| = r(m). Observe that the sequence of
signs appearing in z; + 2z is (+ + — — + + — — - -+ ). Therefore, by additivity,
we have

21 + 22| = 2[|z1]| = 2r(m).

As for z; — z5 the sequence of signs is

This is as before except for the first and last sign. From this we easily deduce
21 = 22|l = 2[|z1]| = || — €1 + €2 = 2r(m) — [lez — ea]].

We then distinguish two cases.

Case 1. r(m) is unbounded when m — oco. Let & = z1/||21]] and y = 22/]|22]|.
We have ||z+y|| = 2 and ||z —y|| > 2—§(m) where §(m) = |lez —e1||r(m)~! — 0
when m — o0, so the proof is complete in this case.

Case 2. sup,, 7(m) < co. By Lemma 3.32, we have
Sip HZI :l:(l‘gj_l — 1‘2]‘)” S 2 Hzl Igj_l — ;EQjH = 27‘(771)
Thus we find for any (a;) in R™

m
Hzl aj(zoj—1 — acgj)H < 2r(m)sup |a;].

Moreover by (3.27) we have for any j

alller = 2ol < |32 ey — 27)|

and hence sup |o|||z1 — z2|| < || > oj(x2i—1 — x2;)||. Thus we conclude in this
case that Span[zq;_1 — x2;] is isomorphic to ¢y, and hence that B contains £7.’s
uniformly. By Theorem 3.5 any Banach space (in particular ¢;) is fr. in B.
Thus we obtain the desired conclusion in this case also. O

Proof of Theorem 3.28. The idea is similar to that of the preceding proof. We
keep the same notation. We define for k =1,2,...,n

Zk = Tk — Tntk T Tontk — L3n+k + * + T@m—2)n+k — T2m—1)n+k-
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Note that again, for any k£ = 1,...,n, we have by subsymmetry
26l = llzr — 22 + -+ + Tom—1 — T2m|| = 7(m),

and by additivity
21+ + zul = nllza]| = nr(m).

Consider now 21 +---+2; — (zj41 + -+ 2,) wWith 1 <j < n.
The ordered sequence of nonzero basis coefficients of that vector is

7 n n n n—j
—N —— —
4 == 4 e — e e e o

where in the middle we have 2m — 1 series of n equal signs. This implies by
additivity that

214+ 2 = (zj41 + -+ 2a) || 2 nr(m) — (0 — j)ler — ez|.
We may assume that we are in case 1, i.e. r(m) — oo. Let then
7 = 7/l1%ll-
We find ||2) +---+ 2/ || =n and

i ()l =2 n—d'(m)

with ¢'(m) = (n/m)|lex — ez]| — 0 when m — occ. O

Corollary 3.34. Let B be a non-reflevive or merely a non-J-convex Banach
space. Then there is a Banach space B f.r. in B that contains a sequence ()
such that (here we deliberately insist on real scalars)

(3.34)

V(e ) e RM sup Zai + Zai < HZaixi
' i<j i>j

J

<D lal.

Equivalently, there are &; in B* with €11 < 1 such that &(z;) =1 for alli < j
and &j(x;) = —1 for alli > j.

Proof. Choose a sequence §,, tending to 0, say §, = 1/n. By Theorem 3.28,

we may assume that B is not J-convex, so that for any n > 1, there are

;vg"), . 7x7(1") in the unit sphere of B such that

T )
P
for all the admissible choices of signs. Note that this implies obviously

k
(3.35) Vk <n HZI ij§”> >k—4,.
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For any (o, o, ...,an,0,0...) in KM we define
e - e
Let B be the completion of (K™ ||| - |||) and let x; = e; viewed as an element

of B. By Lemma 3.48 we know that B is fr. in B. Then by (3.35) we have
] 21 gjz;l|| > k (and hence this is = k) for any k and any admissible choice
of signs. For each n and j < n let fj(.n) in the unit sphere of B* be such that
53(-”) (x1+---+z; —xj41 — - —zp) = n. Clearly we must have 53(-”) (z;) =1 for
all i < j and = —1 for all ¢ such that j < i <n (if any). Let &; be a o(B*, B)
cluster point of {5;”) | n > 1} (or let & = }LIIZI/{I §J(»n)). Clearly, (&;) satisfies the
property in Corollary 3.34. Then (3.34) follows since (here we deliberately insist

on real scalars)
&n (Z ajmj) - ngn &5~ Zj>n &
ENt1 (Z ozjxj) Z o O

Proof of Corollary 3.30. By Corollary 3.29 we know that .J-convexity implies
super-reflexivity, and Corollary 3.34 implies the converse. Indeed, the space B
appearing in Corollary 3.34 satisfies (3.7) and hence is not reflexive. O

and also

Remark. We suspect that Corollary 3.34 fails in the complex case. More pre-
cisely, there might exist non-reflexive complex Banach spaces that do not contain
almost isometric copies of the complex version of “squares”, i.e. do not contain
almost isometrically the space C? equipped with the norm ||(z,y)| = |z| + |y|.

Corollary 3.35. Let B be a non-reflexive real Banach space. Then there is a
space X for. in B admitting a linear map J: L1([0,1],dt;R) — X such that for

any f (real valued) in Ly
1 1
[ swa] <wi< [ o
s 0

I f(f)dt‘ T

Proof. Let (z,) be the sequence in the preceding corollary and let X be the
associated space via the construction described in the proof of Theorem 3.11.
We clearly have the announced property. O

(3.36) sup
0<s<1

Corollary 3.36. Let B be a non-reflexive space. Then there is a space X f.r.
in B such that there is a dyadic martingale (f,) in Loo(X) satisfying for all
n>1and allwe {-1,1}"

[fa(@l <1, but  [|fo(w) = foa(w)] = 1.

In addition, for alln >1 and all w # W' € {—1,1}" we have

[fn(@) = (@) =2, [[fulw) = faa (@] = 2.
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In particular, the unit ball of X contains a 1-separated infinite dyadic tree.

Proof. We just repeat the argument for Lemma 3.12. Then the stronger prop-
erty (3.36) yields the announced result. O

See Remark 1.25 for concrete examples of infinite trees as described in the
preceding statement.

3.4 Super-reflexivity and uniform convexity

The main result of this section is the following.
Theorem 3.37. The following properties of a Banach space B are equivalent.
(i) B is super-reflexive.

(ii) There is an equivalent norm on B for which the associated modulus of
uniform convezity 0 satisfies for some 2 < q < 00

; a
ogelgz d(e)/e? > 0.

(if)" There is an equivalent norm on B for which the associated modulus of
uniform smoothness p satisfies for some 1 <p <2

sup p(t)/tP < oo.
>0

(iii) B is isomorphic to a uniformly convex space.
(iii)” B is isomorphic to a uniformly smooth space.
(iv) B is isomorphic to a uniformly nonsquare space.

The equivalence of (i),(iii),(iii)” and (iv) is a beautiful result due to Enflo
[131]. As in the preceding chapter, we will follow the martingale inequality
approach of [227] and prove directly that (i) = (ii) (or equivalently since super-
reflexivity is self-dual (i) = (ii)’).

The proof will use martingale inequalities in L2(B). So we first need to
replace B by Lg(B). This is the content of the next two statements.

Lemma 3.38. Let 1 < s < co. Then a Banach space B is J-convex iff there
aren > 1 and o < 1 such that for any x1,...,x, in B we have

1/s
aan (nt Y Sen] ) e (Sle)”

EEA(n)

where A(n) C {—1,1}" is the subset formed of the n admissible choices of signs.
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Proof. Assume B J-convex, so dn 3§ > 0 such that Vxq,...,z, € B

(3.38) inf
§€A(n)

> €| < n(1 - 6) max [

Fix 1 < s < co. We claim that there is ' > 0 such that Vxi,...,2, € B

St <nt (1-8) (Lheyl) "

Indeed, if not then 3x1,...,x, such that

(3.40) (1= (g l) " < in [| < 3 e

Moreover we may assume by homogeneity > ||z;|| = n. But (3.40) contains an
approximate reverse Holder inequality, so an elementary reasoning shows that
(3.40) implies

(3.39) inf
EEA(n)

max{[[lzi| — [l ]| | 1 <i,5 <n} < @n(d)

with ¢,,(6") — 0 when ¢’ — 0. Since > ||z;|| = n, we obtain
max [|z;]| <1+ ¢n(6") and  min[la;] = sup [|z;]] — n(6") 2 1 —pn ().
But then (3.38) and (3.40) together imply
n(1 = 0")(1 = pn(d") <n(l = 0)(1+ ¢n(0),

and here § > 0 is fixed while ¢’ and ¢, (") tend to zero, so this is impossible.
This establishes (3.39). Then we note that (3.39) trivially implies (3.37) with
a=Mn"Y1-8§)?°+(n~-1)"*and §' > 0 ensures a < 1.

Conversely if (3.37) holds then a fortiori infee 4(n) [| > &;25]| < ansup||z;|| and
hence B is J-convex. O

Proposition 3.39. Let 1 < s < oo and let (2, A, 1) be any measure space. If
B is super-reflexive, then L¢(u; B) also is.

Proof. By Corollary 3.30 it suffices to show that B is J-convex iff L;(u; B) also
is. By integration at the s-th power, it is clear that B satisfies (3.37) iff L, (u; B)
also does. 0

Corollary 3.40. Fizx 1 < s < oco. If B is super-reflexive, then there are 1 <
p <2< g < o0 (apriori depending on s) and positive constants C and C' such
that any B-valued martingale (f,,) satisfies:

(3.41)

00 S /
o (07 Ly <O (Xl )

Proof. By the preceding Proposition, we may apply Theorem 3.22 to L,(B).
Note that martingale difference sequences are monotone basic sequences in
L4(B). Thus the Corollary follows from (i) = (iv) and (v) in Theorem 3.22. O

q 1/q
LS(B)) §suprn|
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We can outline the proof of Theorem 3.37 like this: if B is super-reflexive,
so is Ly(B), so that all monotone basic sequences in Lo(B) satisfy a lower g¢-
estimate of the form (3.24). Applying this to B-valued martingales we find that
there is ¢ < oo and a constant C such that all B-valued martingales (fy,)n>0
satisfy (recall the convention dfy = fo and dfy, = fr — frx—1 for all k > 1)

N 1/‘1 N
(3.42) VYN >1 (ZO IIdfn|%2<B>) =< CHZO dfn

The technical problem that we solved in the preceding chapter is to pass from
(3.42) to an inequality of the form (4.8). By Theorem 4.51 and Remark 4.58,
(4.8) is equivalent to an estimate of the form

L2(B)

S d

The difficulty here is that when 2 < ¢ < co we have always

(3.49) (S alt) " < (S taralr) ™

but not conversely! So the inequality we need appears significantly stronger than
(3.42). However, in the context of martingales there are frequent situations
where a priori weak inequalities actually imply stronger ones. The proof of
Lemma 4.13 in the preceding chapter illustrates this principle.

(343) YN =1 H(Z ) H <
2

L2(B)

2

Proof of Theorem 3.37. We first prove the equivalence of (i)-(iv). The implica-
tions (ii) = (iii) = (iv) are trivial and (iv) = (i) is Corollary 3.27. Thus it
suffices to show (i) = (ii). Assume (i). By Proposition 3.39 Lo(B) is super-
reflexive. By Theorem 3.22, there is a constant C' and s < oo such that any
finite martingale (fy,) in L2(B) satisfies (4.8). By Lemma 4.12 and Corollary
4.7 we obtain (ii).

We now turn to (ii)” and (iii)’. Note that B satisfies (i)’ (resp. (iii)’) iff
B* satisfies (ii) (resp. (iii)) in Theorem 3.37. Thus since B is super-reflexive iff
B* also is (see Theorem 3.22) we can deduce (i) < (ii)’ < (iii)’ from the part
of Theorem 3.37 that we just proved above. However, the reader will surely
observe that a direct argument for the main point (i) = (ii)’ can alternatively
be obtained by combining together (i) = (v) in Theorem 3.22 applied to La(B),
Lemma 4.13 and Corollary 4.22. O

Corollary 3.41. If a Banach space B is super-reflexive, there are p > 1 and
q < oo and a single equivalent norm | - | satisfying both (4.1) and (4.24) for
some constants 6,C > 0.

Proof. Assume first that B is a complex Banach space. Then by the preceding
Proposition the complex interpolation method applied between the two norms
appearing respectively in (ii) and (ii)’ in Theorem 3.37 produces an interpolated
norm (of course still equivalent to the original one) that satisfies the desired
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property. Indeed, if the first norm, say || ||o, is g-uniformly convex and the
second one, say || ||1, is p-uniformly smooth, then, by the following Proposition
3.42, the interpolated norm || ||g, is both gg-uniformly convex and py-uniformly
smooth, where ¢, ' = (1 —0)g™! + oo ! and p,' = (1 —0)17' +6p~ L. If B
is a real space, its complexification (e.g. B(H, B) with H = C viewed as a two
dimensional real Hilbert space) inherits the super-reflexivity of B. Indeed, by
Proposition 3.39), it is isomorphic to a super-reflexive (real) space (namely the
ly-sense direct sum B @ B) and hence (see Remark 3.2) it is super-reflexive as
a complex space. Therefore the real case reduces to the complex one. O

Let 1 < p <2< g < o00. Recall that a Banach space is g-uniformly convex
(resp. p-uniformly smooth) with constant C' if for all z,y in B we have

(3.45) Iz +5)/2]" + C7[(z — y)/2/|7 < 27 (Il ]| + yl|7)

(resp. 27 ([l + y[I? + [l — y[|P) < [[z]|P + CPlly[|P).
Note that any Banach space is trivially 1-uniformly smooth and co-uniformly
convex with constant 1. The next result describes the stability of these notions
under complex interpolation.

Proposition 3.42. Let (Bg, B1) be a compatible couple of complex Banach
spaces. Let 0 < 6 < 1 and let By = (By, B1)g-

(1) Let 2 < qo,q1 < 0. If B; is gj-uniformly convex with constant C; (j =
0,1) then By is qp-uniformly convex with constant Cyp = Cé_GC’f where
gt = (1—0)qy" +0q7".

(i) Let 1 < po,p1 < 2. If Bj is pj-uniformly smooth with constant C; (j =
0,1) then By is pg-uniformly smooth with constant Cy = Cé_GCf where
ppt=(1—0)pyt +0prt.

Proof. Let Y (g;) denote the direct sum B;@®B; equipped with the norm ||(z, y)| =

((llz]|% + ||ly||%)/2) /9. Let X(q;) denote B; @ B; equipped with the norm
1

@, )l x(g,) = (2% + C;V [lyll%) %

By 77, we have both (Y (q0),Y (¢1))s = Y (gs) and (X (q0), X (q1))s = X(qp) iso-

metrically for any 1 < g, q; < oo.

Consider the operator T' defined by

Tty m—y)

T({E,y):( 9 ' 9

Note that by our assumption in (i) we have [|[T: Y (g;) — X(¢;)|| <1 both for
j =0 and j = 1. Therefore by the interpolation Theorem

1T Y(g9) — X(go)ll < 1.
This proves (i). The proof of (ii) is similar (or can be deduced by duality). O

Remark.
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Problem: If B is both isomorphic to a p-uniformly smooth space and iso-
morphic to a g-uniformly convex one, is B isomorphic to a space that is both
g-uniformly convex and p-uniformly smooth?

Note that the interpolation argument in Corollary 3.41 yields a norm that
is both gg-uniformly convex and pg-uniformly smooth but with “worse” values
go > q and pp < p and in such a way that gy — oo when py — p (and pg — 1
when gg — ¢q).

We now return to the strong law of large numbers, this time for (Banach
space valued) martingales.

Lemma 3.43. Fiz an integer n > 1. Let Q@ = {—1,1}", let e, Q — {-1,1}
denote as usual the k-th coordinate, let Ag = {¢, 2} be the trivial o-algebra and
let A = o(e1,...,ex) fork=1,2,...,n. Fiz an integer n > 1. The following
properties of a finite dimensional Banach space B are equivalent:

(i) There is a B-valued martingale (fo, ..., fn) adapted to (Ao, ..., A,) such
that for all 1 <k <n and all w € Q

ldfs (W) =1 and [|fn(w)] = 1.

(ii) There is a B*-valued martingale (go, . .., gn) adapted to (Ao, ..., Ay), with
go = 0 such that for all1 <k <n and all w € Q

lgn(@)l =n  and [ldgy(w)]| = 1.

Proof. We start by observing that for any B-valued dyadic martingale ( fo, ..., fn)
on (Ao, ..., A,) we have (pointwise):

ldfe (@)l < |Ifx(w)|| foral k =1,... n.
Indeed since dfy = ertpr—1 with ¢¥p_1 being Aj_1-measurable we have fi(w) =
fri—1(w) £ dfiy(w) if ep(w) = %1, so this observation follows from the triangle
inequality. A fortiori, we have

ldfell o) < Wfillzyz < fullzy o).

Note however that this is special to the dyadic filtration, the general case re-
quires an extra factor 2.
Assume (i). Since 1 < ||dfy(.)|| there is ¢k in the unit ball of Lo (A, B*) such
that 1 < (dfx(.), vx(.)) and a fortiori 1 < E(df%, ¢k)-
Let gn = > 7 (Ex — Ex_1)(¢x). We have

n < E(df, o1) = Elfas gn)

and hence n < E||g,|, but since (by the preceding observation for p = o)

ldgillzo5+) = [Br—Er-1)erllLo5+) < Ikl < 1wehave ||gnllr (5 <
n and hence El|/g,|| > n forces ||gn(w)|| = n for all w. Similarly, since 1 <

E(dfx, ox) = E{dfr,dgr) < E|dgx||, the fact that |dgx|lr._ () < 1 forces

lldgr (w)|| = 1 for all w.

Conversely, assume (ii). Since E|g,|| > n there is f,, in the unit ball of

Lo (A, B) such that E(f,, g,) > n, and hence Y | E(dfy,dgr) > n. The latter
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implies Y ] E||dfx|| > n but (by the preceding observation again with p = co)
we have

ldfillpcz) <1 and hence ) [ldfu(w)] < n

for all w. It follows that ||dfx(w)|| =1 for all k =1,...,n and all w. In addition,
since we have ||df,(w)|| < || fn(w)|l, we also obtain || f,,(w)]| =1 for all w. O

Lemma 3.44. If a Banach space B is not super-reflexive then for each n >
1 and any 0 < 0 < 1 there is a B-valued martingale (go,...,gn) adapted to
Ao, ..., A, with go = 0 such that

inf ||gn(w)|| > 60n and sup sup |dgr(w)| < 1.
weN 1<k<nwef

Proof. By Theorem 3.22 we may assume that B* is not super-reflexive. By
Corollary 3.36, for each n there is a finite dimensional space F f.r. in B* contain-
ing an E-valued martingale satisfying (i) in Lemma 3.43. Fix € > 0. Since F is
(14¢€)-isomorphic to a subspace of B*, E* is (14¢)-isomorphic to a quotient of B.
Thus, E* contains the range of a martingale (g,,) satisfying (ii) in Lemma 3.43.
We have dgi, = eptb—1 with ¢;_1 in the unit ball of Lo, (Ag—1, E*). Fix 6 so that
0 <6 < (14+¢)~ L. Let Up denote the unit ball of B. Let Q: B* — E* be asur-

jection c of norm 1 such that Q(Ug) D 0Ug~. Then there is wk 110 Loo(Ag—1,B)
with ||’(/}k 1||L By <0~ L lifting ,_1, i.e. such that Q(wk 1) = ¥g—1. Let then

Gn =057 exth—1. We have ||dfrllr. () = 01¥e—1llr. () < 1and Q(gn) = 09
therefore

On = [|6gn(W)[| < [|gn(w)]l
for all w in Q. O

The strong law of large numbers yields one more characterization of super-
reflexivity:

Theorem 3.45. Fiz 1 < s < co. The following properties of a Banach space
B are equivalent:

(i) B is super-reflexive.

(ii) For any martingale (f,) in Ls(B) such that sup, ||dfn||L, () < oo, we
have n=' f,, — 0 almost surely.

(iii) For any dyadic B-valued martingale such that sup ||df,| . (z) < oo we

have n=1 f,, — 0 almost surely.

(iv) For any dyadic B-valued martingale such that sup,, ||dfallz. 5y < 1 we
have limsup,, _, .o n~ | full < 1 almost surely.

Proof. Assume (i). By Corollary 3.40 there is p > 1 and C such that (3.41)
holds. If sup ||df,|/z,(B) < oo, this implies that S~ n~tdf, converges in Ly(B)
and hence (cf. Theorem 1.14) almost surely. By a classical (elementary) lemma
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due to Kronecker any sequence {r,} in B such that Y. n~'z, converges must
satisfy n=' > ]z — 0. Therefore we obtain (i) and (ii) = (iii)= (iv) are
trivial. Conversely, assume (iv). If B is not super-reflexive, we will construct a
dyadic B-valued martingale (Fy,)n>0 with |[[dF, ||z () < 1 for all n and such
that limsup,,_,. n t||F,|| = 1 a.s., thus contradicting (iv). This shows that
(iv) = (i). We now turn to the announced construction:

Our basic building block will be this: Let 0 < 6 < 1. By Lemma 3.44, for

any N there is a dyadic martingale giN), e ,g](VN) with g(()N) = 0 such that

g™ 11z () < 1 and inf, [lgy” (@)]] = 6N
Now let 0 < 0, < 1 and &, > 0 be sequences such that

limf, =1 and lim¢, =0.

Let N(1) < N(2) <--- < N(n) < --- be increasing sufficiently fast so that
N1)+---+N(n—-1)

(3.46) N <&, forall n>1.
Let S(n) = N(1)+---+N(n). Let ggn], e ,gg\r;](n) (with g([)n] = 0) be the product

of our basic building block, when we take N = N(n) and 6 = 60,,. We define a
martingale (Fg(,))n>1 adapted to (Ag(,)) as follows: we set Fg(1) = gE\lf](l), then

FS(Z) — FS(l) = gE\QZ]@) (65(1)+1, M ,65(1)+N(2)) ...and
(3.47) Fs(ny — Fg(n—1) = gmn) (ES(n—1)+1) - - ES(n—1)+N(n))-
Since Egng) = g(()N) = 0 for all N, (Fg(n))n>0 is indeed a martingale adapted

to (Ag(n))n>1. For any k < S(n) we set Fy, = EA%(Fg(,)). Then (Fy)g>1 is a
(dyadic) martingale adapted to (Ag)x>1 and of course Fy = Fg(y) if k = S(n).
Note that || Fi|lL.. () < SV [|dFj ||y < k for all k > 1. We have by (3.47)
for any w

[Esm) (@)l = 0nN(n)=[|Fsn-1)ll = 6nN(n)=S(n—1) > 0,5(n)—(146,)S(n—1)
and hence by (3.46)

||FS(n)(w)|| > S(n)(en - (1 + en)gn)
Thus, since 0, — (1 + 6,)&, — 1, for any w

limsup ||n " F,(w)|| > 1

n—oo

as announced. O

3.5 Notes and Remarks

The notion of “finitely representable” and “super-property” are due to R.C.
James [163]. The local reflexivity principle (Theorem 3.3) goes back to Lin-
denstrauss and Rosenthal [191]. As we mentioned in the text, Ptak’s paper
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[239] seems to be the earliest reference for Theorem 3.10 but it was indepen-
dently proved (slightly later) by D. Milman and V. Milman and by James.
The reformulations in terms of factorizations such as (v) in Theorem 3.10 were
emphasized in Lindenstrauss and Pelczyniski’s influential paper [190].

Theorem 3.11 was stated in [227]. Theorems 3.17 and 3.22 are due to R.C.
James as well as Corollary 3.23 and essentially all the results in §3.3. James first
proved in [162] that uniformly non-square implies reflexive. In the same paper,
he notes that the extension from pairs to triples of vectors leads to a proof that if
n = 3 for any € > 0 any J-(n, ) convex space is reflexive. Later on in [170], the
authors observe that the same proof works for any integer n > 2, thus showing
that J-convex implies reflexive. Since J-convex is a super-property, this shows
that J-convex implies super-reflexive. But the converse was an easy consequence
of James early ideas on reflexivity. Therefore this yielded the equivalence of “J-
convex” and “super-reflexive”. In the mean time, in [163], having observed
the implications (isomorphic to uniformly non-square) = super-reflexive and
(isomorphic to uniformly convex) = super-reflexive, James asked whether the
converses hold. In his remarkable paper [131], Enflo proved that indeed the
converses are true. In Theorem 3.37, this corresponds to the equivalence of (i),
(iii), (iii)" and (iv) which all come from [131]. The equivalence with (ii) and (ii)’
(i.e. the existence of moduli of power type) was proved later in [227].

We follow [227] throughout §3.4. The strong law of large numbers for super-
reflexive spaces given in Theorem 3.43 (essentially from [227]) is modeled on
Beck’s strong law of large numbers ([73]) for B-convex Banach spaces, that is
restricted to martingales with independent increments.

Appendix 1: Ultrafilters. Ultraproducts

Let I be a “directed set”. By this we mean that I is a partially ordered set such
that for any 4,j in I there exists k in I such that k > i and k > j.

If (x;)ier is a family in a metric space, we view (x;);esr as a “generalized
sequence” so that z; — = means that Ve > 0 35 such that Vi > j d(z;,z) < e.

Definition. Consider a linear form U € £, (I)* that is also a *-homomorphism

(i.e. Va,y € lo(I) U(zy) =U(x)U(y) and U(Z) =U(x)).

We will say that U is an ultrafilter adapted to I if for any (z;) in o (I) such
that z; — « we have U((z;)) = =.

Remark 3.46. The existence of ultrafilters adapted to I is easy to check: let
0; € loo(I)* be the evaluation homomorphism defined by §;(xz) = z;. Let Fj
be the pointwise closure of the set {d; | ¢ > j}. Since I is a directed index set,
the intersection of finitely many of the F}’s is non-empty. Thus, by the weak-x
compactness of the unit ball of £ (I)*, the intersection of the whole family of
sets {F};} is non void and it is formed of ultrafilters in the above sense.
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We will denote by convention
limy 2z = U((zi)ier)-

Given a family of Banach spaces (B;)icy, let B = (@ > Bl-) , 1.e. B is formed
iel /oo
of families b = (b;)ier with b; € B; for all i such that ||b||g = sup;¢; ||bs| < oc.
For any b in B we set
pu(b) = limy [[bi]| 5,

Then py is a semi-norm on B. The ultraproduct [] B;/U is defined as the
iel
Banach space quotient 5/ ker(py). Fix an element z in [ B;/U. It is important
i€l
to observe that for any representative (b;);cr of the equivalence class of x modulo
ker(py) we have

(3.48) 2/l 11 B/ =l [|i] 5, -
i€l
We will denote by b the element of [[ B;/U determined by b = (b;)ses s0 we
iel
can rewrite (3.48) as ||b]| = limg ||| B;- Another useful observation is that if

for some j we have b; = b} Vi > j then b = b'. Indeed, this implies ||b; — b;|| — 0
(relative to the directed set I) and hence limy, ||b; — b}]| = 0.
Remark. Let K be a compact subset of a locally convex space L. Let (y;):cr be
a family of elements of K. Clearly there is a unique y in K such that for any
linear form £ € L* we have £(y) = limy &(y;). In that case also we will denote
y = limy y;.

When B; = B for all i € I, we say that [[ B;/U is an ultrapower and we
denote it by B! /U.

The following elementary lemma will be useful

Lemma 3.47. Let E,Y be Banach spaces. let S be an e-net in the unit sphere
of E and let u: E —'Y be a linear operator such that

Vse S 1-60<|u(s)]| <1+0.
Then

1—6-2 146
vrcE (5225 tel < Il < (122 el
Proof. Assume dim(FE) < oo (this is the only case we will use). Consider z € F
with ||z]] = 1 and |Ju|| = |Juz||. Choose s € S such that ||z — s|| < e. Then
lull = [luzl| < [[us||+[lu(z—s)|| < (1+8)+eu]| and hence [[u]| < (1+d)(1—e)~*.
In the converse direction, if ||z|| = 1 we have

lu]| > flus|| = ellul >1 =61 +8)1—e)7" =1 -8-2)(1-e)".

The argument can be easily adapted to the infinite dimensional case. O
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Lemma 3.48. Assume that each space in the family (B;)ier is f.r. in a Ba-
nach space B. Then the ultraproduct [ B;/U is f.r. in B. In particular, any
ultrapower B /U of B is f.r. in B.

Proof. Let E C [] B;/U be a finite dimensional subspace. Note that since its
unit sphere is compact it admits a finite e-net S. Let (é1,...,é,) be a linear
basis of E with representatives (e1(7))icr,-- ., (en(i))icr. Any x € E can be
uniquely written as © = Y} a;é; (a; € K). We define u;: E — B; by setting

n
ui(x) = Y aje;(i) for each i in I. Note that Vo € E, (u;(x));c; = x. Therefore
by (3.48) we have

Vo e B tn s ()] = ]|
Fix 6 > 0. Since S is finite there is j such that

Vi>jVselS 1= <|u(s)|| <146

and hence by Lemma 3.47 we have

Vr ek (1= —2e)(1 =) ]| < [lui(z)] < (1 +8)(1 — &) |-

Thus we conclude that E is (1 + f(g,d))-isometric to u;(F) C B; for some
function (g,0) — f(e,d) tending to 0 when € and ¢ tend to 0. Since each B; is
fr. in B we conclude that [[ B;/U is f.r. in B. O



Chapter 4

Uniformly convex Banach
space valued martingales

4.1 Uniform convexity

This chapter is based mainly on [227]. The main result is:

Theorem 4.1. Any uniformly convex Banach space B admits an equivalent

norm | - | satisfying for some constant 6 > 0 and some 2 < g < 00
- q q
(4.1) Vr,y € B |$+y‘q+6|x y|q§|x| + |yl 7
2 2 2
or equivalently
x q x —yl?
(4.2) Va,y € B 2|7+ oyl < YT F T =yl

2

In other words, B with its new norm is at least as uniformly convex as L?
(for some 2 < ¢ < o0). The argument crucially uses martingale inequalities,
but the relevant inequalities (see Corollary 4.7 below) are “weaker” than those
expressing the UMD property.

We recall:

Definition 4.2. A Banach space B is called uniformly convex if for any 0 <
e < 2 there is a § > 0 such that for any pair z,y in B the following implication
holds

Tty
(el < Lyl < 1k =l 2 2) = |52 <15
The modulus of uniform convexity dg(e) is defined as the “best possible” ¢ i.e.

Tty
2

55() :inf{l—

| el < 1ol < 1= <.

85
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Note that uniform convexity obviously passes from B to any subspace (resp.
any quotient B/S) S C B with ds(e) > 0p(e) (resp. dp/s(e) > dp(e)) for all
0<e<2.

It is easy to see that if B = C or if B is a Hilbert space of R-dimension > 2,
we have 6p(c) = 1 — (1 — £2/4)"/2. Indeed, the parallelogram identity can be
equivalently written as

2
r—y
2

_ =l + lylP?
2

2
T +y
K

from which 6p(e) > 1 — (1 —£2/4)Y/? (> £2/8) can be deduced and this is
obviously optimal.

Since by Dvoretzky’s theorem (see Th. 4.38 below) any infinite dimensional
Banach space B contains ¢3’s almost isometrically (in particular for n = 2), we
must have 65 (g) < (1 —e2/4)Y/2 hence dg(g) € O(¢?) when £ — 0. Actually, by
[221], this already holds for any B with dim(B) > 1. We will show in §4.3 that

50 () Cpe? ifl<p<2
E) ~
br Cpe? if 2 <p < 0.

Moreover, it is easy to see that Ly and ¢; are not uniformly convex. Also (note
that ¢; isometrically embeds in Lo, or £ ) Loo and £, are not uniformly convex.
The following result (due to David Milman) is classical.

Theorem 4.3. Any uniformly convexr Banach space is reflexive.

Proof. Let Ug denote the unit ball of B. Fix z** € B** with ||**|| = 1. Let (z;)
be a generalized sequence in the unit ball of B converging to z** € B** for the
topology o(B**, B*), i.e. such that (x;,£) — (z**,&) for any £ in Ug«. Clearly
this implies ||z;|| — ||=**| (indeed, for € > 0 choose £ such that (z**,£) >1—¢
and note [{z;,&)| < ||o;]|), and similarly |27 (z; + z;)|| — [|#**]] = 1 when
i,j — oo. If B is assumed uniformly convex, this forces ||z; — z;|| — 0 when
1,7 — oo and hence by Cauchy’s criterion x; converges in norm to = € B.
Obviously we must have z** = x so we conclude B** = B. O

We will use below the following results due to Figiel ([133, 134]). Although
their proofs are elementary, the details are tedious so we skip them here.

Lemma 4.4. Let B be uniformly convex.
(i) The function € — 6p(g)/e is non-decreasing on [0, 2].

(ii) For any measure space (2, 1), and any 1 < r < oo the space L.(u; B) (in
particular La(u; B)) is uniformly conve.

Remark 4.5. With our definition of dp(e), it is obvious that ¢ — dp(e) is
non-decreasing. This is less obvious (but nevertheless true) for the function

e — dp(e) defined by

r+y
s 2 el = 1ot =1, 1 - = ¢}

o5(e) :inf{l—
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Indeed, it turns out that dp () = dp(e) if the (real) dimension of B is at least
2 (see e.g. [133]).

To illustrate the next statement by a concrete example, let us anticipate the
forthcoming § 4.3 and consider the case of B = L,. As we will show in § 4.3:
If 2 < g < oo we have

q
+
q

r+y
2

r—y
2

 _ llllg + Nyl

q 2

Vr,y € L,

which implies 67, (c) > 1 — (1 — (g/2)9)Y/1 ~ g~ (/2)1.

If 1 < ¢ <2, we will show :
2 1/2 1/
) . (IIxIZ + |y||z> "
q 2

from which we deduce 0z, () > 1~ (1~ (¢ — 1)(e/2)2)'/2 > (¢ — 1)£?/8.

2

+(g—1)

T+y
2

r—y
2

Va,y € Ly <

Theorem 4.6. Let 2 < g < oo and let o > 0 and C be fized positive constants.
The following two properties of a Banach space B are equivalent:

(i) There is a norm |-| on B such that for all x,y in B we have a||z|| < |z| <
]| and

|2]7 + |yl
5 :

(43 [ | 2 <
(ii) For all B-valued dyadic martingales (My,)n>0 in Ly(B) we have
(44)  aTEMpl| + D" " E[dM|? < sup, s El| M7,
Moreover, this implies:
(iii) All B-valued martingales (My,)n>0 in Ly(B) satisfy

Q|| Mo||? +2(20)71 ) " ElldM|? < sup, o El[My]|.

Proof. (i) = (ii) Consider a dyadic martingale on Q = {—1,1}+ associated
to A, = o(e1,...,&n), where ,: Q — {—1,1} denotes the n-th coordinate.
Then Vn > 1 dM,, = e, A,,—1 with A,,_1 (n—1)-measurable. Let x = M,,_; (w),
y = A,_1(w). Then (i) implies for any fixed w

maqu+cﬂWmews/maqwrmawmmﬂmmwww

Integrating this with respect to w, we find (since &,, and A,,_; are independent)

E|M, 1|7 + CE||dM,|* < E|M,|",
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which yields after a summation over n > 1

E[Mo|? + C™* Y "E[dM, || < sup E[M,|.

n>1

Finally, replacing | | by the equivalent norm || ||, we obtain (ii).

(i) = (iii) The proof is similar to the preceding. We take © = M,,_1,y = M,,.
This yields after integration of (4.3)

(4.5) E|M,_ 1 +2 'dM,|9 + CIE||27 dM,||? < 27 (EB|M,,_1|? + E|M,|?)
but also we have trivially (Jensen)

E|M, 1| <E|M,_1 + 2" dM,|?

hence plugging this into (4.5) we may subtract 27'E|M,,_1|? to both sides of
the resulting inequality and after multiplication by 2 we find

E|M,_1|9 4+ 2C~E| 27 dM,||? < E|M,|*

then the proof of (i) = (iii) is completed exactly as above for (i) = (ii).

i) = (1 Assume ii). We define the norm as follows: for any z in B we set
( ) () Y
9 =inf{E|M q_C—qE E||dM,||¢
\x| 1 || NH nel H nH

where the infimum runs over all N and all (finite) dyadic martingales (Mo, M,
..., My) which start at z, i.e. such that My = x.
By (4.4), we have for any x in B

oz < |z
and consideration of the trivial martingale M,, = x yields
(4.6) |z < =[],

so that | | is indeed equivalent to the original norm on B. Now consider z,y in
B and fix ¢ > 0. Let M’,M" be finite martingales with z = M} and y = M
such that (note that we may clearly increase N, by adding null increments, in
order to use the same N for both martingales)

N
re— o4 ar q
E[[Myll* =079 EldMy|* < |a|? +¢
N
E|My[1—C™1) EJdMy|? < [y|” +e.
Then, let (M,,) be the martingale that starts at (z +y)/2, i.e. My = (z+y)/2,

jumps with M; either to x or to y with equal probability 1/2 and then continues
along the paths of M’ or M" depending on M7 = xz or My = y. More precisely,
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we can write M,, as follows: (Since Mj, and M, depend only on 1,...,e, we
may denote them as M} (e1,...,ex) and M/ (e1,...,€x).)
Mo = (z +y)/2,

My =(z+y)/2+e(z—y)/2,...,
M, = ((14¢1)/2)M,_|(e2,...,en) + (1 —e1)/2)M"_ (g2, .., &n).

Finally, we clearly have
E| Myl = (Bl My[|? + E[ My||?)/2

and
N+1

_ N !/ N 1
> Bl = e~ )20 + () Bllansz o+ 3 Bllansge) 2
thus we find (recalling the original choice of M’ and M"")

N+1
| +9)/2/1 SE[Myya]|7 = C71) " E|ldM,||*
< (el +[yl")/2 = C7[(@ —y)/2]|* + &
so we obtain
(4.7) (@ +y) /2| + C7l(z — ) /2017 < (=" + |y[*)/2,
and hence by (4.6)
[ +y)/21" + C7(x —y)/2[* < (|lz|* + [y|*) /2.

It is not entirely evident that | - | is a norm, but (4.7) guarantees that for
any pair x,y in B the function f: R — R defined by f(t) = |z + ty|? satisfies
f(t1+12)/2) < (f(t1) + f(t2))/2 for any t1,t2 € R, and the latter implies (see
e.g. [53]) that f is a convex (and hence continuous) function on R. Knowing

this, it becomes obvious that {z | |x| < 1} is a convex set, so that | - | is indeed
a norm on B.
This completes the proof of (ii) = (i). O
Note that when ov = 1 we have ||z|| = |z| for all z, so that the original norm

coincides with the “new” one and hence is uniformly convex. The next result
corresponds to the case o < 1.

Corollary 4.7. Fiz 2 < q < co. The following properties of a Banach space B
are equivalent.

(i) There is an equivalent norm |-| on B such that (4.1) holds for some § > 0.

(ii) There is a constant C' such that all B-valued martingales (My)n>0 in
L,(B) satisfy (recall the convention dMy = M)

(48) > ElldM, |7 < C"sup B[[M, |

n>0 n
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(i) Same as (ii) for all dyadic martingales, i.e. all martingales based on the
dyadic filtration of [0,1], or the corresponding one on {—1,1}Y.

We now turn to the main point, i.e. the proof that any uniformly convex B
satisfies (4.8) for some p and C. We first place ourselves in a more “abstract”
setting, replacing martingales by monotone basic sequences, defined as follows.

Definition 4.8. A finite sequence {z1,...,2x} of elements in a Banach space
is called a monotone basic sequence if for any sequence of scalars A1,..., Ay we
have
n N
sup HZ )\kaH < E )\kak .
1<n<N 1 1
An infinite sequence (x,,)n>1 is called a monotone basic sequence if (x1,...,zN)

is one for any 1 < N < oc.

Independently of James’s work on basic sequences in super-reflexive spaces
analogous results (such as (4.9) below) were proved in the USSR by the Gurarii
brothers [155] for uniformly convex spaces.

Theorem 4.9. Let B be a uniformly convexr Banach space. Then for any mono-
tone basic sequence (x1,...,xN) in B, the following implication holds

(4.9) HZ? Ty

Consequently, there is a number 1 < g < oo and a constant C' such that any
monotone basic sequence (x1,...,xTN) satisfies

(4.10) > kanq)l/q <c HZlN zh

Proof. Let S, = Y] ). Assume ||Sy|| < 1. Fix 2 <k < N. Let a; = ||Sk]|.
Using x = a;lsk and y = a;lsk,l we find

N
<12 ol +) ) dn(lael) < 1.

a H|Sk—1 + @i /2] < 1= 0p(ay |z
and since (by monotone basicity) ax_1 < ||Sk—1 + x /2], we find
ar—1 < ag(l = dp(ay*zx )
or equivalently for all k£ > 2
ardp(ay ||zxl) < ax — ag—1.
But then, since a,;l > 1, by Lemma 4.4 (i)
5p([[zkl]) < ar — ar—

from which (4.9) follows immediately. We deduce from (4.9) that for all N > 2

N
xT
D,

= i < — 1)L
<1= inf () < (V- 1)
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Let e(IV) be the largest e > 0 such that d5(¢) < (N —1)~!. Note that e(N) — 0
since dp(g) > 0 for all € > 0 and dp is non-decreasing. Hence

N
x
>,

which we may rewrite by homogeneity

< 1= inf|jzg| <e(N)

N
(4.11) Jnt ] < e(V) HZ o)

We will now show that (4.11) implies the second assertion of Theorem 4.9. This
follows by a very general principle based on the fact that (4.11) automatically
holds for any sequence of N “blocks” built out of a longer monotone basic
sequence. More precisely, let us denote by b(N) the best constant b such that

for any monotone basic sequence (x1,...,zy) we have
] N
inf |kl <0 E Tkl -
1<k<N 1

It is easy to see that b(N) > b(N + 1) for all N > 1. Moreover, a moment of
thought shows that b is “submultiplicative” i.e. for all integers N, K we have

b(NK) < b(N)b(K).

(Hint: Given y1,...,ynk consider 1 = y; + -+ + Yk, T2 = Y41 + - + Y2k,
TN = Y(K—1)N+1 T T YNK-)

But now (4.11) ensures that b(N) < e(N) and hence that b(N) — 0 when
N — oo. Let us then choose an integer m such that b(m) < 1 and let 0 < r < o0
be determined by b(m) = m~1/".

Then, by submultiplicativity, we have b(m*) < (m*)=/" for any k > 1. If
n is arbitrary we choose k so that m* < n < m**! and hence, since b(-) is
non-increasing we find finally b(n) < m/"n=/" for all n > 1.

Let x1,...,zny be a monotone basic sequence with H Ziv ka < 1. Let

(T5(1), -+ To(n)) be a permutation chosen so that |[z,)|| > -+ > [Jzon)||-
Note that of course this is a priori no longer a monotone basic sequence. Fix
j. Let 1 < m(l) < m(2) < --- < m(j) < N be the places corresponding to
{c(1),...,0(j)}in[1,...,N]. Lety1:ZT(1)xk,y2: > Thy.ooyYj =
m(1)<k<m(2)
T -
m(j—1)<k<N
We have then
. < bii
(nf llyell < 0(5)

and moreover by the triangle inequality and the “monotony”

m(1)—1
femoll < Il + [ 57 | < 2
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and similarly

lzm)ll < 2llw2lls- - 1Tm | < 2l
so that we find
o)l = int.lom | < 20f el < 25().

We conclude ||z, ;|| < 2m!/7j=1/" and hence for any ¢ > r

Z 31" = Z o)1 < (2m'/") . Zj*q/r.

Thus, for any ¢ > r, setting C' = (2m1/r > j_‘Z/T)l/q, we obtain the announced
result (4.10) . O

Corollary 4.10. Let B be isomorphic to a uniformly convex Banach space. Fiz
1 < s < oo. Then there is a number 2 < q < oo and a constant C such that any
B-valued martingale (f,) in Ly(B) satisfies

q 1/q
LS(B)) < Csuwp || fullr.B)-

(4.12) (32 M = fuil

Proof. If B is uniformly convex, so is Lg(B) by Lemma 4.4. So this follows from
the preceding Theorem. O

We will need a very simple “dualization” of the preceding inequality:

Proposition 4.11. Let (A,),>0 be a filtration on a probability space (2, A, P)
with A = Ass. Let 1 < s < 00 andlﬁq’ﬁ?ﬁqgoowith%Jr%:l. The
following properties of a Banach space B are equivalent.

(i) There is a constant C such that for all B-valued martingales (fn)n>0
adapted to (A)n>0 we have (recall f_1 =0 by convention)

(320 1=

(ii) There is a constant C' such that for all B*-valued martingales (gn)n>0
adapted to (Ap)n>0 we have

q 1/q
LS(B)> < Csup||fullL.B)-

S / 1/4’
up g0l 5y < € (g llgw = g0l 50))
Moreover the best constants C and C' satisfy C/2 < C' < C.

Proof. Assume (i). Fix n. Let g, € Ly (B*). For any € > 0 there is f, with
| fullz.() = 1 such that

lgnllL, By < (L +)|(fn: gn)l;
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but (fn,gn) = > (dfk, dgr) and hence

lgnll, 5oy < (1+€) [S0 (i, do)|
1/4’

n 1/ n ’
<(+e) (S0 dls ) (30 ety )

so that by (i) we find

n / /q
hsa+eac (Y ||dgk||‘is,(B*))1 g

and (ii) follows immediately with C" < C. Conversely, assume (ii). Fix n and
let f, € Ly(B). For any ¢ > 0 there are ¢y,...,p, in Ly(Q, A P; B*) with

(>0 ||SDkHL (B) )l/q/ < 1+ ¢ such that

’ZZ(CMWQ‘ = (ZZ ”dfk”qu(B))l/q,

”gn

Note that
> dfesor) = D (dfes (B = Ego1)or) = (fs )

where g, = Zg(Ek —E;_ 1)(<pk) In addition since dgy = Egpr — Ex_10x we

have (> ||dgk|\L ()7 < 2. Thus

we obtain by (11)

n /
(S0 el )" = 1 g0d] < s

This shows that (i) = (i) with C < 2C". O

To prove Theorem 4.1 we apply Corollary 4.10 with B replaced by Lo(B). If
we wished, we could use L4(B) for some 1 < s < 0o, but the reader should note
that we have a priori no control over how ¢ depends on s so we cannot just set
g = s | Thus the main difficulty is to pass from (4.12) to (4.8). This is precisely
what the next crucial result achieves, with a slight loss on the exponent.

Lemma 4.12. Let 2 < s < oco. Let B be a Banach space. Assume that for
some constant x, all B-valued martingales (fn)n>0 satisfy

(4.13) VN >0 (N+1)78 > dfull o) < x(N+1) 72| fnllLo(s)
0<n<N

Then for each q > s there is a constant C = C(q, s) such that all dyadic B-valued
martingales, on {1, 1} with the usual filtration A,, = o(c;,j < n), satisfy (4.8).

Proof. By the dualization given by Proposition 4.11, this Lemma is equivalent
to the next one, which is proved below. O
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Lemma 4.13. Let 1 <r < 2. Let B be a Banach space. Assume that for some
constant X, all B-valued martingales (fn)n>0 satisfy

(4.14) VN >0 1Nl Ea(my < X(N +1)M7 sup ldfnllLo(B)-

Then for each 1 < p < r there is a constant C = C(p,r) such that all dyadic
B-valued martingales satisfy

S p p p p
S 1l < (O (Bl + 3, Eldhal”)

Proof. Step 1. We will first show that for any p < r there is a constant
C1 = Ci(p,r) such that all (finite) dyadic B-valued martingales (f,,) satisfy

(4.15) 152 (> )

Clearly this reduces to finite martingales so we will assume that there is N > 0
so that df, = 0 for all n > N and we let f = Y °df, = fny. By homogeneity
we may assume [[(3_,,5o lldfn|P)/?||so = 1. Then we let

<C;
L2(B)

In(w) = {n >0 2-®D/P < ||df, (w)|| < 2%/},

Note that since ||df,(w)]| is A,—1 measurable, the set {w | n € Ix(w)} is in
A, —1. Therefore we may enumerate the integers in I (w) using stopping times:
we define

Ték)(w) =inf{n € I;(w)} andfor m=1,2,...
TM (W) = inf{n > T (w),n € I(w)},

with the convention inf¢ = N 4+ 1 (we could choose equivalently inf ¢ = 00).
Let

AR = frm = frm ;-

Observe that if 7\ (w) = N + 1, then Afﬁ)(w) = 0, so that > Ag,]f)(w) =
2 onely(w) Un(w). Moreover, we have

1> > dfa@)|P > 27 FF |1 (w)]
n€l(w)
and hence
\Ik(w)| < 2k+1.
This implies AP — 0, Ym > 2*+1. Moerover, by definition of I;(w) we have

||A7(7’§)(w)|| < 27F/P for a.a. w. Therefore our hypothesis (4.14) implies that for
each fixed k

Soduw| =X a®|

nel,(w) La(B)

< X2(k+1)/r Sup,, ”Am HL2(B)

< X21/T2k(%*%)_
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We remind the reader (see Proposition 1.8 and the exercises following it) that
if Ty, Ty are stopping times and f,, converges (say) in L, (B) we have

le/\Tz = EATI fT2 = ]EATl fT27

therefore, if 77 < Ty < T3 are stopping times, we have

(416) ]EATl (fT3 - sz) =0.

Since, by an earlier observation, the sets {w | n € Iy(w)} are all in A,,_1, the
stopping times Tﬁf) are “predictable,” i.e. Tﬁf) — 1 is also a stopping time, and
hence, since Agf) = (frm — fpm_,) if we set By, = A, by (4.16) we have

EBmfl(Ag@C)) =0 (because Tffil < Tﬁf) —-1< Tff)). Thus we obtain

DR

< < X217 §T T k=)
Lz(B)_Z’fZO 2 () = X2 Zo 2 ’

n€l(w) La(B)

and Step 1 follows with Cy(p,r) = X2%(1 - 2%7%)_1.

Step 2. For all 1 < p < r there is a constant Co = Cy(p,r) such that all
B-valued dyadic martingales (f,)n>0 satisfy

00 1/p
(sup #*/P{sup | ol > 11)*/P < € (32 Elldrall?)

By Step 1 and Doob’s inequality (see Theorem 1.9) we have

00 1/p
2 1/2 p
(4.17) (sup PP {sup | 0] > 1)) szclH(Zo ldfall”) H

o0

Let Vi, = (3¢ [ldfx||P)Y/? for all n > 0 and Vo = (3°0° ||dfa|P)'/? = sup, V.
Fix s > 0. Let T = inf{n > 0 | V41 > s}. Note that, since V11 is A,-
measurable for all n > 0, T is a stopping time. We then repeat the trick used
for Lemma 8.20: We have 1750y Vr < s. By (4.17) applied to the martingale
(1750 faar) this implies

(4.18) t*P{sup || furr|| > t, T > 0} < (2C15)2.
Note {T < oo} = {V > s}. Therefore for any ¢t > 0

Pisup || fnll >t} <P{T < oo} + P{T = oo, sup || full >t}
<P{V, > s} +P{T >0, sup||farrll >t}
<P{Vo > s} + (2C18)%/12
< sTPEVE + (20,5)% /12,
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We may assume EV2 = 1 by homogeneity. Choosing (say) s = v/t we obtain
(we could use a better choice for s but it is of no consequence for the next step)

vt >1 P(sup || fn >t} < t7P/2 4 (201)%71 < (14 (2C,)2)t7P/?

and Step 2 follows with Cy = (1 + (2C1)?)?/P.

Step 3. For any p < r there is a constant C3 = C3(p, ) such that all B-valued
dyadic martingales (fy,)n>0 satisfy

sup #P{sup | > £} < (Co)” 32 Bl

We will use the reverse Holder principle from Appendix 2 in Chapter 8 (this
trick goes back to Burkholder [100]). Consider f in L,(An; B) with fo = 0 so
that f depends only on (e1,...,en) and assume that EY"° ||df,[[? = 1. We
introduce a sequence of independent copies of f on {—1,1}" as follows: Let
w = (en)nen. We set

f(l)(w) = f(elr"'aeN)
fPw) = flentr, .- ean)

We then consider g = m~V/?(f) +...+ (™). We have clearly E Yoo lldgn P =
E Y7 ldfn||P = 1. Therefore by Step 2

vt >0 tP2P{sup ||gn|| >t} < (Co)P/2.

Note sup [m~Y/?f®)| < 2sup|g,| and hence
1<k<m n>0

(4.19) P( sup m~YP|f®)|| > t/2) < (Cot™1)P/2,
1<k<m

so we may invoke the reverse Holder principle formulated in Proposition 8.53 to
deduce from (4.19) that for some constant C3 we have

vt >0 P{|fll >t} < (C3)Pt7?

and Step 3 follows by homogeneity.

We can now complete the proof by the Marcinkiewicz Theorem 8.51: indeed,
for any 1 < p < r, choose pg,p; such that 1 < pg < p < p; < r. Let D =
{—1,1}" equipped with its usual probability v. Let D, = {—1,1}" equipped
with the uniform probability v,,. Consider the space A, of all sequences (@5, )n>0
with ¢g € L,(Do,v0; B), ¢n € Lyp(Dp_1,Vp—1;B) for all n > 1 such that
Sllenl?, ) < 0. We set l(@n)la, = (5 lall, (5)/7. Note that we
may clearly identify isometrically A, with L,(Q, u; B) for a suitable measure
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space ({2, ) obtained as the disjoint union of (Do, vp) and (Dp—1,Vn—1)n>1-
We consider the operator

T: L,(Q,p;B) — Ly,(D,v; B)

defined by T'((¢n)n>0) = Do €nn. By Step 3 this operator is of weak type
(po,po) and (p1,p1) for any pg,p1 as above. Therefore by the Marcinkiewicz
theorem, T is of strong type (p,p) for any py < p < p; and this is exactly the
conclusion of the Lemma. O

Remark 4.14. Recall that the space BMO associated to (A,,) is defined in §8.9. Tt
is easy to deduce from (4.15) that ||(3> ||dfn|P)'/?||ec < oo implies f = 3 df,, €
BMO and that if fy = 0 we have

[fllBmo < C1

1/p
(> dralir)
Indeed, for any A atom of A,, let P4 be the probability defined on A by
P4(B) = P(A)"'P(AN B), for any B in A.. Note that for any fixed n > 1,

the sequence (14(fx — fn—1))k>n is a (dyadic) martingale on (A,P4). Applying
(4.15) to that martingale yields

o0

1/2

1
= A/ If— folPa® |  <cy

(5,0, 1)

oo

and hence

IEallf = fa-1l?) o0 < C

(1)

Proof of Theorem 4.1. If B is uniformly convex, Corollary 4.10 (with s = 2)
shows that B satisfies the assumption of Lemma 4.12. Therefore we conclude
by Corollary 4.7.

O

Theorem 4.1 admits the following refinement:

Theorem 4.15. Let 2 < gy < oo. If a uniformly convexr Banach space B
satisfies
0p(e)e™® — 00 when €—0

then there is an equivalent morm on B for which the associated modulus of
convexity 6 satisfies for some q < qo

inf d(e)e™? > 0.
0<e<2



98 CHAPTER 4. UNIFORMLY CONVEX VALUED MARTINGALES

Proof. By results due to Figiel, we may replace B by Lo(B). We can then argue
exactly as in the preceding proof of Theorem 4.1. Here is a slightly more direct
argument: Let a(N) be the smallest constant C' such that for all N-tuples of

B-valued martingale differences dy,--- ,dy we have
N7Y S dullas) < Clld + -+ + dn |l Lo() -
1<n<N

Then it is easy to check that a(NK) < a(N)a(K) for all N, K > 1. Applying
(4.9) in Ly(B) shows that a(N)N~1/% — 0 when N — co. Then the submulti-
plicativity implies that there is ¢; < qo such that a(N)N~'/% is bounded. Thus,
(4.13) holds with s = ¢, so the conclusion follows again, with ¢; < ¢ < g, from
Lemma 4.12 and Corollary 4.7. O

Definition 4.16. We will say that a Banach space B is g-uniformly convex if
there is a constant ¢ > 0 such that dg(e) > ce? for all 0 < e < 2.

With this terminology, let us recapitulate:
B is g-uniformly convex iff there is C' > 0 such that Vz,y € B || Z¥[7 +

ca|agt e < EHWIE 5ng the latter holds iff (4.4) holds with o = 1.
Moreover, B is isomorphic to a g-uniformly convex space iff it satisfies (4.8)
for some constant C.
Lastly, any uniflormly convex space is isomorphic to a g-uniformly convex
one for some ¢ < oo (see Theorem 4.1).

4.2 Uniform smoothness

Uniform smoothness is dual to uniform convexity: B is uniformly smooth (resp.
uniformly convex) iff B* is uniformly convex (resp. uniformly smooth). There-
fore many of its properties can be deduced from the corresponding properties
of uniform convexity. Nevertheless, the intrinsic geometric significance of uni-
form smoothness is of considerable interest in many questions involving e.g.
differentiability of functions on B.

Definition 4.17. A Banach space B is called uniformly smooth if there is a
function ¢t — p(t) on Ry that is o(t) when ¢ — 0 such that for any x,y in the
unit sphere of B we have

[z + tyll + [l — ty]|
2

The modulus of (uniform) smoothness pp(t) is defined as the “best possible” p,
ie.

<1+ p(1).

pr(t) =sup{27 |z + ty| + |lz —tyl) = 1| 2,y € B, |Jz] = [lyl| = 1}.
With this notation, B is uniformly smooth iff

lim pp(t)/t = 0.
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For example, for a Hilbert space H, we have py (t) = (14t2)/2 —1 ~¢2/2. By
Dvoretzky’s theorem (see Th. 4.38), for any infinite dimensional space B, we
must have pg(t) > (1 +t2)Y/2 — 1, since H = {5 is f.r. in B.

The following formula due to Lindenstrauss [189] (see also [126]) illustrates
the dual relationship between dp and ppg-.

Lemma 4.18. For any (real or complex) Banach space B
(4.20) pp+(t) =sup{te/2 —dp(c) | 0 < e < 2}

Proof. Let Up ={z € B|||z]| <1} and Sg = {x € B| ||| = 1}. By definition
we have in the real case

pp-(t) = sup{27(|l¢ + tnll + 1€ — tnl)—=1 | &,n € Sp-}
= Sup{271(<§ —|—t7’]71'> + <§ - t77731>)—1 | fﬂ? € SB*,JS,y S UB}

sup{Hx;yHth x_yul ‘ x,yEUB}

2
sup sup{Hx;ryH +te/2 -1 ‘ x,y € Ug, ||z — 1yl ZE}

0<e<2
= sup {te/2 —dp(e)}.
0<e<2
In the complex case, just use ||£ £ tn]| = sup{R({({ £ tn,z)) |z € Up}. O

It is natural to wonder whether conversely dg+« is in duality with pg. Un-
fortunately, this is not true because, unlike pp, the function g~ is in general
not convex (see [192]). Nevertheless, if we denote by dp the largest convex
function dominated by 0, we have a nice duality, and moreover, gB and g are
essentially equivalent. We refer to [136, 133] for more on this.

Lemma 4.19. For any (real or complex) Banach space B
(4.21) 6p-(e) = sup{te/2 — pp(t) | 0 < t < co}.
Moreover for any 0 < v <1 and & > 0 we have

(™! = 1)+ (1) < - (€) < 35+ (&),

Proof. The first formula is proved just like (4.20), and we find sup{te/2—pp(t) |
0 <t < oo} = sup,sq(infocs<2{dp(s) + t(e — s)/2} but note that being the
supremum of affine functions the right hand side of (4.21) is a convex function,
that majorizes any affine function f (say f(¢) = ae + b) such that f < dp-
because it is easy to see that

sup( inf {f(s) +t(c —s)/2} = f(e).

t>0 0<s<2

This establishes (4.21). The second assertion is more delicate, we refer the
reader to [133]. O
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As a consequence we have

Proposition 4.20. A Banach space B is uniformly convex (resp. uniformly
smooth) iff its dual B* is uniformly smooth (resp. uniformly convez).

Proof. If B is uniformly convex, the formula (4.20) clearly implies by elementary
calculus that B* is uniformly smooth (note that pp+ is essentially the Legendre
conjugate of §g). Conversely, if B is uniformly smooth, then Lemma 4.19 implies
that B* is uniformly convex. Note that by Theorem 4.3, B is reflexive if either
B or B* is uniformly convex. From this it is easy to complete the proof. O

In view of the preceding (almost perfect) duality, it is not surprising that
the results of §6.1 have analogues for uniform smoothness, so we will content
ourselves with a brief outline with mere indications of proofs.

Theorem 4.21. Let 1 < p < 2 and let « > 0 and C > 0 be fized constants.
The following two properties of a Banach space B are equivalent:

(i) There is a equivalent norm | | on B such that for all z,y in B we have
]l < |2 < a7 H|z]| and

(4.22) 27 (Jz + gyl + |z — yl) <ol + CPly|IP.
(ii) For any dyadic B-valued martingale (My)n>0 in L,(B) we have
(4.23) sup E|| M, ||P < o PE||My|? + CP Zjo E|ldM,||P.
Moreover, this implies:
(iii) All B-valued martingales in L,(B) satisfy

Sup B[ My ||? < o PE[[Mo|[” +2C7 3 " E[dM, |”.
Proof. (ii) = (i). Assume (ii). We define

N
2 p_ P p
K —sup{EMNn vy Efla, | }

where the supremum runs over all N > 1 and all dyadic martingales Mgy, M1, ...,
My such that My = 2. Note that we trivially have |z| > |z| (by choosing
My = z), and by (ii) we have |z| < a~!||z|, so that |- | and || - || are equivalent.
The same idea as in the previous section shows that

Va,y € B 27|z + [yP) < 27N @ +y) P+ 127 @ - )P
or equivalently (replace (z,y) by (z +y,z —vy))

27 (Jo + oyl + |2 —yl") < Jal” + CPlly|lP < |2 + CPlyl?
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so we obtain (i). Lastly, in case z — |z| is not a norm we define

jaly = inf {3 Jol }

over all the decompositions z = >z as a finite sum of elements of B. Note
that for any t > |z|; we can write © = > Agxp with Ay > 0, > Ax = 1 and
|xk| < t. Using this, it is then easy to check that (4.22) remains true when | |y
replaces | |, completing the proof that (ii) = (i).
(i) = (iii) and (i) = (ii). For any n > 1 and w we have
27 (| Moy -1 () +d M (@) P+ | M1 (@) =d My (@) P) < [ M1 (w)[P+CP || dMn (w) |7
and hence after integration
27N E[M,|P + E|Mp—1 — dM,|P) < E|M,—1|” + CPE||dM, |
but since E|M,,_1|P < E|M,,_1 — dM,|? we deduce
E|M,|? <E|M,_1|° + 2CPE||dM,|*

and hence (note the telescoping sum)

sup E|M,|? < E|Mo|? + 2CP Z;” E||dM,|?.

Since | - | is an equivalent norm, (iii) follows. To check (i) = (ii) just observe
that in the dyadic case E|M,,_1 — dM,|? = E|M,,_1 + dM,|? = E|M,|? (so the
factor 2 disappears in the prceding argument). O]

Corollary 4.22. Fiz 1 < p < 2. The following properties of a Banach space B
are equivalent

(i) There is an equivalent norm |- | on B such that for some constant C' we
have
(4.24) Vr,y € B 27 (Jo + gyl + o — ylP) < Jaf? + CPly|P.
(ii) There is a constant C such that all B-valued martingales (My)p>0 in
L,(B) satisfy (recall dMy = My by convention)
. PP N P,
(4.25) SpE[[M, [ < €7 3" B |

(iii) Same as (ii) for all dyadic martingales.

The next result is the dual analogue of Theorem 4.9, and although we prefer
to give a direct argument, it can be proved by duality.
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Theorem 4.23. Assume B uniformly smooth. Then for any (finite or infinite)
monotone basic sequence (x,,) in B, we have

oo
supy [|zal| +2)  pp(leall) < 1= sup, lor + - + @] < 2.

Consequently, there is a constant C and 1 < p < 2 such that for all N and all
monotone basic sequences (z,,) we have

N 1
1Y @l < CGQ llzal?)'.
Proof. Let S,, =21 +---+ x,. We have
18- 171 (I1Sn-1 + @l + [1Sn—1 = al)) = 2 < 2p5(l2all|Sn-1]7")
and also 1 < ||S,,—1]|71||Sn—1 — #n|| by monotony. Put together, this yields
1Sall < 1Sn-1ll +2[Sn—1llp5 (lzall| Sn-1] ).

Assume ||S,,—1|| > 1, then t — pp(¢)/t is non-decreasing (since pp is convex) so
that [|Sp-1llps(lznlll[Sn-17") < pp(lzn]) and we find

”SnH < ”Sn—l” +2pB(Han)'

This yields (telescoping sum) that if |[Sx|| > 1 we have for alln > N

ISull < ISl +2) - pullzall).

Let N be the first integer (if any) such that [|Sy|| > 1. Then ||Sy|| < 1+ ||zn]|
so we obtain sup ||Sy|| < 1+ |lzn]| +2) < n pB([l20]]) < 2. O

The analogue of Theorem 4.1 for smoothness is now immediate:

Theorem 4.24. Any uniformly smooth Banach space B admits an equivalent
norm | - | satisfying for some constant C' > 0 and some 1 < p < 2

[z +ylP + ]z -yl
2
Proof. Using Proposition 4.20, this can be easily deduced from Theorem 4.1 by

duality. Alternatively, a direct proof can be obtained by combining Theorem
4.9 with Lemma 4.13 and Corollary 4.22. O

(4.26) Vz,y € B <|z|” + C|y|".

Theorem 4.24 admits the following refinement:
Theorem 4.25. Let 1 < r < 2. If a uniformly smooth Banach space B satisfies
(4.27) pp(t)t™" — 0 when t—0

then there is an equivalent morm on B for which the associated modulus of
smoothness p satisfies for some p > r

sup p(t)t 7P < oo.
>0
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Proof. By the Lindenstrauss duality formula (see (4.18) and Lemma 4.19), this
can be immediately deduced from Theorem 4.15 by duality. O

Definition. We will say that B (its unit sphere or its norm) is smooth if for
any x,y in B with x # 0 the function ¢t — ||z + ty|| is differentiable at ¢ = 0.

Remark. Fix z,y € B. Let f(t) = ||x + ty|| (¢t € R). Assume that

(f@) + f(=1))/2=1—-0

when t — 0. Then f is differentiable at 0. Indeed, since f is a convex function,
it admits left and right derivatives everywhere, in particular at ¢ = 0 where
we denote them by f’ (0) and f/ (0) respectively, but our assumption implies
fL(0) = £1.(0) so f/(0) exists (and the converse is obvious). Let us denote
&:(y) = f/(0). We now assume that B is smooth, i.e. &, (y) exists for any y in
B. We will show that, if B is a real Banach space

(4.28) & €BY, &l

=1 and &(x)=|=z|.

Taking y = x, we immediately find £, (z) = ||z||. Note that &, (sy) = s&.(y) for
any s € R. Moreover, from ||z 4+ t(y1 + y2)/2|| < (||z + ty1]| + ||z + ty2]|)/2 we
deduce easily that if &, (y) exists for any y, then we must have &, (y1 + y2) =
Ex(y1) + &x(y2), so that y — &.(y) is a linear form on B. Moreover, from
1f@) = llzlll < [tlllyll we deduce |€:(y)| < [lyll so that (since & (x) = [|lz|])

1]l 5= = 1.
In addition, &, is the unique £ € B* satisfying (4.28). Indeed, for any such

& we have (when |t| — 0)
2]l + t€(y) < llz + tyll = [zl + € (y) + o([¢])

and hence & = ¢,. O

By the preceding remark, if B is uniformly smooth, a fortiori its unit sphere
Sp is “smooth,” and for any x # 0 in B there is a unique £, € Sp~ satisfying
(4.28). It is useful to observe that when B is uniformly smooth the map

x+—&: B—{0} — Sp-

is uniformly continuous when restricted to closed bounded subsets of B — {0}.
More precisely we have (here we reproduce a proof in [4]).

Proposition 4.26. Let B be a uniformly smooth Banach space. Then
(4.29)

Vr,y € B €z — &l < 2052 |zllz )™ = yllyl =MD/l llz ]~ = yllyl -

In particular, if ||z|| = |yl =1

1€ = &l < 2082z —yl)/llz -yl
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Proof. Recall that, by definition of £,, for all a,b in B with a # 0
lim ¢~ ([la + tb]] — [lal}) = (€a,b)-

[t|—0

By convexity of ¢ — 9(t) = ||la + tb|| — ||a||, the function ¢ — (t)/t must be
non-decreasing on R, and hence

(4.30) (€ar ) < lla+ bl — [la]-

Since &, = &;||z—1 it suffices to prove (4.29) when ||z|| = [ly|| = 1. In that case,
(4.29) becomes

(4.31) 2 = yllllée — &l < 2pB(2/lz —yl)).

Let z € B be such that ||z]| = || — y||. Assuming |z| = ||ly|| = 1, we have by
repeated use of (4.30) (note also ({;,z —y) =1— (&:,y) > 0)

(€y:2) = (€ 2) < Nly + 2l =1 = (&, 2)
<lly+zl =1+ &z -y —2)
Slly+zl—1+[22 -y —zf -1
=lle+@—w+2)|+llz—(y—-—z+2)|-2
<2p8(lly — = + 2[) < 2pBQ2[ly — =[]).

The last step because ||z|| = ||y — z||. Taking the supremum of the preceding
over all z with ||z|| = ||z — y||, we obtain (4.31). O

Corollary 4.27. For 0 < 6 < R < oo, let B(§,R) = {x € B | ¢ < ||z|| < R}.
The following properties of a Banach space B are equivalent.

(i) B is uniformly smooth.
(ii) B is smooth and x — &, is uniformly continuous on the unit sphere Sg.

(iii) B is smooth and x — &, is uniformly continuous on B(d,R) for any
0<d<1l<R<oo0.

Proof. (i) = (ii) follows from Proposition 4.26 and (ii) < (iii) is easy using &, =
Eallw) -1 If (iil) holds, then assuming ||z|| = [ly|| = 1 and [¢| < min(1 — 0, R — 1)
we have by the “calculus fundamental formula”

t
i+ ty]) — [l2l] = / (Eray 0)ds

and hence

t
27l + tyll + |z — tyl| - 2l|z]l) = /O (Sotsy = Eomsy,y)ds/2.
Therefore, we find
pp(t) < [t]sup{[|& — &Il | ,2" € B(6, R), |lz — 2'|| < t}/2,

from which (iii) = (i) is immediate. O
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Corollary 4.28. Let 1 < p < 2. Assume that pp(t) € O(t?) when t — 0.
Then, for any 0 < § < R < 0o, there is a constant C' = Cs r such that

Va,y € B(6, R) €2 = &ll < Cllz — y|P~".
In particular, if p =2, the map x — &, is Lipschitzian on B(d, R).
Proof. This is an immediate consequence of (4.29) by elementary calculus. [

We refer the reader to [14, 27] for supplementary information and more
references.

The property appearing in Corollary 4.28 was already considered in early
pioneering work by Fortet and Mourier on the strong law of large numbers for
Banach space valued random variables, cf. [137]. As we will show in the next
chapter (see Theorem 3.45), the validity of the strong law of large numbers for
B-valued martingales is equivalent to the super-reflexivity of B.

Definition 4.29. We will say that a Banach space B is p-uniformly smooth if
there is a constant ¢ > 0 such that pp(t) < ct? for all t > 0.

With this terminology, let us recapitulate:
B is p-uniformly smooth iff there is C' > 0 such that Vz,y € B [|Z£2|]P +

Cl1=F2P > w and the latter holds iff (4.23) holds with a = 1.
Moreover, B is isomorphic to a p-uniformly smooth space iff it satisfies (4.25)
for some constant C'.
Lastly, any uniflormly smooth space is isomorphic to a p-uniformly smooth
one for some p > 1 (see Theorem 4.24).

4.3 Uniform convexity and smoothness of L,

We should first note of course that any Hilbert space H is both uniformly convex
and uniformly smooth, by the “parallelogram identity”

Vo,y € H 27 (|l + gl + llz = yl1?) = [l + [yl
The latter implies
Su(e) =1 -1 —-e2/A)2~e2/8 and pu(t) = (1+)Y2 —1~1%/2

In this section, we denote simply by L,, the space L, (2, A, m) where (£2, .4, m)
is an arbitrary measure space. Our goal is to prove

Theorem 4.30. (i) If 1 < p <2, we have: ¥t > 0 Ve € [0, 2]
pr,(t) <t?/p and 6p,(c) > (p—1)e*/8
(i1) If 2 < p' < o0, we have ¥t > 0 Ve € [0, 2]

pLy(0) <0 =12 bu,(e) 2 (e/2) /o
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Remark. The constants in the preceding estimates are sharp, i.e. they give the
right order of magnitude when ¢ or ¢ are small. For instance, if 1 < p < 2, we
have pr (t) = t?/p + o(t?) when t — 0, and similarly for the other estimates.

Part of the preceding statement is very easy to prove by interpolation:

Lemma 4.31. Let 1 <p <2< p < oco. We have then:

(4.32) Va,y € Ly

(IIx +yllp +llz —yllp
2

1/p
< P p\1/p
< (lzlI5 + llyllz) ",

’ ’ 1/p,
p p
=+ gl + Il — yllp/>
9 .

(433) Ve,yeLy (el +lylp)" < <

Proof. Assume L, = L,(Q,p). Let Dy = {—1,1} equipped with v; = (61 +
0_1)/2. For (4.32), we consider the operator

T: €1(>2)(Lp) — Ly(D1, Vl?Lp)

defined by T(x,y) = x + e1y (here e1(w) = w Yw € Dy). Note that (1(,2) (Lp)
(resp. Ly(D1,v1;Ly)) can obviously be identified with the L,-space associated
to the disjoint union of two copies of (€, u) (resp. with L,(D1 x Q,v1 X p)).
Clearly T is a contraction both when p = 1 (triangle inequality) and when p = 2
(parallelogram inequality). Therefore by interpolation (cf. Corollary ??) (4.32)
is valid for any intermediate value: 1 < p < 2. The proof of (4.33) can be done
in a similar fashion by considering the operator

T*: Ly (D1, Ly) — €5 (Ly)

interpolating between p’ = 2 and p’ = oo. Alternatively, one can simply observe
that (4.33) follows from |T|| = ||T*|| when p~* 4+ p/~' = 1. 0

The other estimates follow from:

Lemma 4.32. If1 <p <2, then for all x,y in L,

1
|l + yl[2 + |l y||z) /o

(4.34) (I3 + (o = Dyl < < 5

or equivalently

(4.35) (

r+y 2

2

2\ 1/2 1/
_ (el Iyl
» - 2

p



4.4. TYPE, COTYPE AND UMD 107

Proof. By the 2-point hypercontractive inequality (see Theorem 8.3 with ¢ = 2)
we know that for any fixed w

(@ + y)(@)IP + Itz - y)(W)P”)l/p

(2(@)? + (0 — Dly(w)?)"/? < ( g

taking the L,-norm of both sides (and using the Holder—-Minkowski contractive
inclusion Ly, (¢2) C ¢2(L,)) we find (4.34) O

Proof of Theorem 4.30. (i) Assume 1 < p < 2. By (4.32) we have
27 (|l + tyllp + o = tyllp) < L+ )7 <1447 /p

and hence pr (1) < t?/p. By (4.35), if [|z[,,[|yll, < 1 and [z — y|[, > € then
H%Hp < (1—(p—1)e?/4)Y/2 <1—(p—1)e?/8, and hence 6, (¢) > (p—1)e?/8.

(ii) Now assume 2 < p’ < co. Replacing (z + y,z — y) by (x,y) in (4.33) we
obtain ) ) , ,
Y S [
o 2

r+vy
2

r—y
2

p/
and hence we find

8u,(6) = 1= (1= (e/2)" )/
> (e/2)" /1’
By duality, (4.34) implies

[ + yll + 1l =yl
2

(4.36) ( PP < (el + (0= 1)yl

and hence

pr, (1) <L+ @172 —1<?/(2p - 1)) = (0 — 1)£/2.

4.4 Type, cotype and UMD

The notions of type/cotype provide a classification of Banach spaces that par-
allels in many ways the one given by uniform smoothness/uniform convexity.
To give a more complete picture for the reader, we feel the need to describe the
basic results of that theory, but since it is only loosely related to martingales,
we limit ourselves to a survey without proofs (for more detailed information see
[207, 230, 46, 206] and also [37, Chapter 9] and [38, Chapter 4]).

Recall our notation D = {—1,1} equipped with the uniform probability
measure v. We denote by ¢,: D — {—1,1} the n-th coordinate on D, so
that the sequence (e,) is an i.i.d. sequence of symmetric {—1, 1}-valued random
variables. Let B be a Banach space. We will denote simply by || |z,p) the
“norm” in the space L,(D,v; B), for 0 < p < co.



108 CHAPTER 4. UNIFORMLY CONVEX VALUED MARTINGALES

Definitions. i) Let 1 < p < 2. A Banach space B is called of type p if there
is a constant C' such that, for all finite sequences (z;) in B

(4.37) HZQ%HLZ(B) <C (Z ”xj”p) 1/p'

We denote by T,(B) the smallest constant C' for which (4.37) holds.

ii) Let 2 < ¢ < co. A Banach space B is called of cotype ¢ if there is a
constant C' such that for all finite sequences (z;) in B

(4.38) (X lesle) " < 0[S

We denote by Cy(B) the smallest constant C' for which (4.38) holds. Clearly,
if p1 < po then type po = type p; while cotype p; = cotype ps. Let us
immediately observe that every Banach space is of type 1 and of cotype oo with
constants equal to 1. In some cases this cannot be improved, for instance if
B = ¢, it is easy to see that (4.37) holds for no p > 1. Similarly, if B = ¢, or
¢o, then (4.38) holds for no g < co. We make this more precise in Remark 4.41
below. At the other end of the classification, if B is a Hilbert space then

1/2
Vay,....z, € B | e, = (Chal?)

Therefore a Hilbert space is of type 2 and cotype 2 (with constants 1). More
generally, any space B that is isomorphic to a Hilbert space is of type 2 and
cotype 2. It is a striking result of Kwapien [184] that the converse is true: if B
is of type 2 and cotype 2, then B must be isomorphic to a Hilbert space.

Actually, by Kahane’s inequality (Theoem 8.1), the choice of the norm in
Ls(D, v; B) plays an inessential role in the above definitions. In the case B = R,
Kahane’s reduces to Khintchine’s inequality (8.7). These inequalities make it
very easy to analyze the type and cotype of the L,-spaces:

Lo(B)

Proposition 4.33. If 1 < p < 2, every L,-space is of type p and of cotype 2.
If 2 < p < oo, any Ly-space is of type 2 and of cotype p.

These are essentially best possible. The space L., contains isometrically
any separable Banach space, in particular the already mentioned ¢; and cg.
Therfore, L, is of type 1 and cotype oo and nothing more.

Using Kahane’s inequality, one can easily generalize the preceding observa-
tion.

Proposition 4.34. Let B be a Banach space of type p and of cotype q. Let
(Q,m) be any measure space. Then L.(2,m; B) is of type r Ap and of cotype
rVqg.

Similar ideas lead to the following result that shows how to use type and
cotype to study sums of independent random variables.
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Proposition 4.35. Let (2, A,P) be a probability space. Let (Yy,) be a sequence
of independent mean zero random variables with values in a Banach space B.
Assume that B is of type p and cotype q, and that the series Y Y, is a.s.
convergent. Then for 0 < r < oo, we have

oE (1)) < B[S < o8 (T var)”

where o and B are positive constants depending only on r,q and B.

Proof. Assume first that each Y, is symmetric. Consider the sequence (€,Y,)n>1
defined on (D x Q,v x IP). This sequence has the same distribution as (¥,)n>1.
It is therefore easy to deduce Proposition 4.35 in that case from (4.37), (4.38)
and Kahane’s inequality. The general case follows by an easy symmetrization
argument. O

In particular, taking » = p (resp. r = ¢) in Proposition 4.35 we find
b p
<BY E|Ya]
)
We now compare type and cotype with the notions introduced in Definitions
4.16 and 4.29.

(4.39) E HZYn
(4.40) {resp. o> E|Y, | <E HZ Y,

Proposition 4.36. Let B be a Banach space. If B is isomorphic to a p-
uniformly smooth (resp. q-uniformly convex) space then B is of type p (resp.

cotype q).

Proof. This is an immediate consequence of (4.25) (resp. (4.8)) applied to the
martingale M,, = > | &;z;. O

The converse to the preceding Proposition is not true in general. This is

obvious if we consider only cotype: Indeed L; or ¢; is of cotype 2 but being
non-reflexive has no equivalent uniformly convex (or smooth) norm.
For type, this is much less obvious, but we will present in Chapter 7 examples
of non-reflexive spaces of type 2 and cotype g > 2 (see Corollary 7.20). Again,
being non-reflexive, these necessarily admit no equivalent uniformly convex (or
smooth) norm.

The situation changes dramatically for the class of UMD spaces. In the
latter class, the notions we are comparing actually coincide:

Proposition 4.37. Assume B UMD. Then B is p-uniformly smooth (resp.
q-uniformly convex) iff B is of type p (resp. cotype q).

Proof. Assume B UMD, so that (8.18) holds. Then if B is of type p we find
that (8.18) implies (4.25). The proof for cotype is similar. O
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The notions of type and cotype have appeared in various problems involving
the analysis of vector valued functions or random variables. One of the great
advantages of the classification of Banach spaces in terms of type and cotype
is the existence of a rather satisfactory “geometric” characterization of these
notions. We first explain the characterization of spaces which have a nontrivial
type or a nontrivial cotype. The reader should compare this with the character-
izations of super-reflexivity in the next chapter, for instance (i) in Theorem 4.40
below is reminiscent of the equivalence between J-convexity and the existence
of p > 1 such that (4.25) holds.

Definition. Let 1 < p < co. Fix A > 1. We say that B contains E;}’s A-
uniformly if, for all n, there exist x1, - ,z, in B such that

Zn:ajf”j <A (Z |Oéj|p)1/p-
1

For future reference we recall here a fundamental result (see [135])

(441) Ve er" (3 |aj|1’)1/p <

Theorem 4.38 (Dvoretzky’s Theorem). For any € > 0, any infinite dimen-
sional Banach space contains €5’s (1 + €)-uniformly.

Remark 4.39. Krivine proved [181] that if a Banach space B contains £))’s (1+¢)-
uniformly for some € > 0 then it also contains them (1 + ¢)-uniformly for all
€ > 0. The cases p =1 and p = oo (see Theorem 3.5 for that one), go back to
James [162]. Therefore, from now on we simply say in that case that B contains
£3’s uniformly.

Theorem 4.40 ([207]). Let B be a Banach space.
i) B is of type p for some p > 1 iff B does not contain £} ’s uniformly.
i) B is of cotype q for some q < oo iff B does not contain €7 ’s uniformly.

Remark 4.41. In such results, the “only if” part is trivial. Indeed, assume (4.41).
Then we have
(1 e
n /P < €;x < An'P,
- Z 77 Lz(B) -

and e
< (M lln) < ant

Therefore B cannot be of type r > p or of cotype r < p. In particular if p =1
(resp. r = 0o) B cannot have a nontrivial type (resp. cotype).

Actually Theorem 4.40 can be extended as follows: Let 1 < py < 2 < gg < 00.
A space B is of type p for some p > pg iff B does not contain ¢} ’s uniformly.
The type and cotype indices are defined as follows:

(4.42) p(B) = sup{p | B is of type p}
(4.43) q(B) = inf{q | B is of cotype ¢}.
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Corollary 4.42. If p(B) > 1 then ¢(B) < co.
Moreover, p(B) > 1 iff p(B*) > 1.

Proof. These statements follow easily from Theorem 4.40. Indeed, if we note
that ¢} embeds isometrically (in the real case) into £2. , we immediately see that
B contains ¢7’s uniformly as soon as it contains £ ’s uniformly. This shows that
p(B) > 1 implies ¢(B) < oco. Similarly, it is easy to see that B contains ¢}’s
uniformly iff its dual B* also does. We leave this as an exercise to the reader
(use the fact that it is the same to embed ¢} in a quotient of B* or in B*
itself). O

Remark. In addition, it is rather easy to show that B is of type p (resp. cotype
q) iff its bidual B** has the same property.

The main theorem relating the type and cotype of B to the geometry of B
is

Theorem 4.43 ([207, 181]). Let B be an infinite dimensional Banach space.
Then for each € > 0, B contains £ ’s (1 + €)-uniformly both for p = p(B) and
p=q(B).

By Theorem 4.43 and Remark 4.41, we have

(4.44) p(B) = inf{p | B contains £;’s uniformly}
(4.45) q(B) = sup{p | B contains £;’s uniformly}.

For classical concrete spaces, the type and cotype has been completely elu-
cidated. For instance, the case of Banach lattices is completely clear, cf. [204].
Here are the main results in that case (which includes Orlicz spaces, Lorentz
spaces, etc.). Let us consider a Banach lattice B which is a sublattice of the
lattice of all measurable functions on a measure space (2,m). Then if z1,..., 2,
are elements of B and if 0 < p < oo, the function (3 |x;|?)!/? is well defined as
a measurable function and is also in B (by the lattice property).

Maurey proved a Banach lattice generalization of Khintchine’s inequality
which reduces the study of type and cotype for lattices to some very simple
“deterministic” inequalities:

Theorem 4.44 ([204]). Let B be a Banach lattice as above. Assume q(B) < co.
Then there is a constant 3 depending only on B such that for all z1,...,z, in
B we have

wio) 55| (Sh) | < S, <] (Sr)|

Note: The left side of (4.46) holds in any Banach lattice B; it follows from
Khintchine’s inequality, see (8.74).

1/2
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It follows immediately that B (as above) is of type p (resp. cotype q) iff there
is a constant C such that any finite sequence (x;) in B satisfies

|(Seik)| < 0 (Shesle)
. (S lalr) " < o (S

In the case p < 2 (or g > 2), one can even obtain a much simpler result as shown
by the following:

1/p

Theorem 4.45 ([204]). Let B be a Banach lattice as above.

(i) Let 2 < g < 0. Then B is of cotype q iff there is a constant C such that
any sequence (x;) of disjointly supported elements of B satisfies

(Slesle) " <o Sa

(ii) Assume q(B) < oo. Let 1 < p < 2. Then B is of type p iff there is a
constant C' such that any sequence (x;) of disjointly supported elements

satisfies X
[Sa] <o (S ler)”.

Remark. For ¢ = 2 (or p = 2) the preceding statement is false, the Lorentz
spaces L*! (or L% for 2 < q < o) provide counterexamples.

Note that for a disjointly supported sequence (z;) we have

IS tasl| = trsuw s 1 = | 3]

Remark. In the particular case of Banach lattices, type and cotype are closely
connected to the moduli of uniform smoothness or uniform convexity. This is
investigated in great detail in the paper [134].

We should mention that there are several relatively natural spaces for which
the type or cotype is not well understood. For instance, by [255] the projective
tensor product £o&0, is of cotype 2, but is unknown whether fo®05&05 is also
of cotype 2.

In the rest of this section we briefly review the notion of K-convexity that
is the key to the duality between type and cotype. More precisely, let B be a
Banach space. We will see below (Proposition 4.46) that if B is of type p, then
B* is of cotype p’ with %—i— 1% = 1, the converse fails in general, but it is true if B
is a K-convex space. The real meaning of K-convexity was elucidated in [228],
where it is proved that a Banach space B is K-convex if (and only if) B does
not contain ¢7’s uniformly. The spaces that do not contain ¢7’s uniformly are
sometimes called B-convex; so that with this terminology B- and K-convexity
are equivalent properties.
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We now define K-convexity. We need some notation. We denote by Ip the
identity operator on a Banach space B. Let us denote by R; the orthogonal
projection from Ly (D, v) onto the closed span of the sequence {e, | n € N}. A
Banach space B is called K-convex if the operator Ry ® Iz (defined a priori only
on Ly(D,v) ® B) extends to a bounded operator from Lo(D,v; B) into itself.
We will denote by K (B) the norm on R; ® Ip considered as an operator acting
on Ly(D,v; B). Clearly Ry ® Ip is bounded on Lo(B) iff Ry ® I+ is bounded on
Ly (B*). Let us first treat a simple example, the case when B = ¢} with k = 2.
Then, we may isometrically identify B with L,(D,) where D,, = {-1,+1}",
equipped with its normalized Haar measure. Let us denote by b; the j-th
coordinate on {—1,41}"™ considered as an element of L;(D,,). Consider then

the B-valued function F': D — B defined by F(w) = [] (1+¢€;(w)b;). We have
j=1
| F'(w)||z =1 hence || F||1,(z) = 1. But on the other hand, we have clearly

(.47 (R @ In)F)() = 3 ()b
so that

n

2.4

1

(4.48) ||(R1 ® IB)(F)HL2(B) =K > A1n1/2

for some positive numerical constant A;. Returning the definition of K(B), we
find
K(2") > An*/2,

In particular, K (¢}) is unbounded when n — co. From this (and the observation
that if S is a closed subspace of B than K(S) < K(B)) we deduce immediately.

Proposition 4.46. A K-convex Banach space cannot contain £7’s uniformly.

We now turn to the duality between type and cotype. We first state some
simple observations.

Proposition 4.47. Let B be a Banach space. Let 1 < p <2 < p’ < oo be such
that © + ;= 1.

(i) If B is of type p, then B* is of cotype p'.
(ii) If B is K-convezx, and if B* is of cotype p’ then B is of type p.
To clarify the proof we state the following
Lemma 4.48. Consider z1,...,T, in an arbitrary Banach space B. Define
n

*
2

1

<1

(449)  [[[(zy)lll = sup | Y (x5,25)| | &} € B*
1 Ly(B*)
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Then

(4.50) ()l = inf

ZEJ'.I]‘ + &
1

where the infimum is over all ® in Lo(B) such that E(¢;®) = 0 for all j =
1,2,...,n (or equivalently over all ® in Ly ® B such that (R4 ® Ig)(®) =0).

L2 (B)

Proof of Lemma 4.48. We consider the natural duality between Lo(B) and Lo(B*).
Let S C Ly(B*) be the subspace

n
S = {Zeﬂ:}k | 5 EB*}.
1

The norm that appears on the right side of (4.50) is the norm of the space
X = Ly(B)/St. Clearly X* = S+t = S. Therefore, the identity (4.50) is
nothing but the familiar equality

Ve X sup{[(z,27)[ | z* € &%, [[2"]| < 1} = ||=[|. N

Proof of Proposition 4.47. We leave part (i) as an exercise for the reader. Let
us prove (ii). Assume B* of cotype p’ so that 3C' Vn Vz} € B*

N /P
(Sls1P) " <o |C o

This implies for all z; in B

i@l < e (X))

Assume ) ||z;||” < 1. By (4.50) there is a ® in Ly(B) such that E(e;®) = 0 for

all 5 and such that
€;x; + <I>H < C.
HZ 7 La(B)

Zﬁjxj = (R, ®1Ip) (Zej:rj +<I>)
o

By homogeneity, this proves that B is of type p with constant not more than
K(B)C. O

L2(B*) ’

We have

hence

< K(B)C.
L2 (B)

We come now to the main result of this section which is the converse to
Proposition 4.46.

Theorem 4.49. A Banach space B is K-convex if (and only if) it does not
contain €1 ’s uniformly.
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The projection Ry can be replaced by all kinds of projections which behave

similarly in the preceding statement. For instance, let (g,) be an i.i.d. sequence
of normal Gaussian r.v.’s on some probability space (Q,4,P), and let G; be
the orthogonal projection from Ls(€2, A, P) onto the closed span of {g, | n €
N}. Then a space B is K-convex iff G; ® Ip is a bounded operator from
L2(9Q, A, P; B) into itself.
We can proceed similarly in the context of Proposition 4.35, by introducing a
projection @ as follows. Let (2, .4, P) be a probability space. We write simply
Ly for Lo(92, A,P). Let (Cy)n>1 be a sequence of independent o-subalgebras
of A. Let Sp be the (one dimensional) subspace of Ly formed by the constant
functions. Let S; be the subspace formed by all the functions of the form

Zil Yn

with v, € Ly(C,) for all n, Ey, = 0 and > E|y,|? < co. We denote by Q; the
orthogonal projection from Lo onto S;. One can then show (see Theorem 4.50
below) that if B is K-convex then )1 ® Ip is bounded on Lo(B). Note that, in
the case (Q,P) = (D,v), if we take for C,, the o-algebra generated by e, then
()1 coincides with R;.

Let us return to our probability space (£2,.4,P). We may as well assume
that |JC,, generates the o-algebra A. Actually we can define a sequence of

projections (Qx)r>0 as follows. Let us denote by Fj, the closed subspace of Lo
spanned by all the functions f for which there are n; < ng < --- < ny such that
f is measurable with respect to the o-algebra generated by C,, U---UC,,.

{Consider the following special case: let (6,) be a sequence of independent
r.v.’s and let C,, be the o-algebra generated by 6,,. Then F}, is the subspace of all
the functions in Ly which depend on at most k of the functions {6,, | n > 1}.}

Note that Fy, C Fy41 and UF} is dense in Ly. Let then S, = Fj ﬁFk,l_17 and
let @ be the orthogonal projection from Lo onto Si. When k& = 0, we denote
by Qg the orthogonal projection onto the subspace of constant functions.

{Note: In the special case considered above, let us denote by A,, the law of 8,,.
Then Sy is the subspace spanned by all the functions of the form F(6,,,,...,0y,,)
such that

/F(xl,...,a:j,...,xk)d)\nj(a:j) —0

forall j=1,2,...,k.}
We can now formulate a strengthening of Theorem 4.49.

Theorem 4.50. Let (Qr)r>0 be as above. If a Banach space B does not contain
07’s uniformly then Q @ Ip defines a bounded operator on L,(Q2, A,P; B) for
1< p<ooand any k > 0. Moreover there is a constant C = C(p, B) such that
the norm of Qr ® I on L,(B) satisfies

|Qr®Ip: Ly(B) — L,(B)|| <C* forall k>0.

Clearly Theorem 4.49 is a consequence of Theorem 4.50. The proofs of these
results are intimately connected with the theory of holomorphic semi-groups.
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Since this would take us too far from our main theme, we refer the reader to
[228, 229] (or to [206]) for complete proofs and details.

4.5 Square function inequalities in g-uniformly
convex and p-uniformly smooth spaces

Let (fn)n>0 be a B-valued martingale in L, (B). We denote (with the convention
dfo = fo)

00 1/p
$p(N@) = (D0 dfa@)ll) " and f5(@) = sup,sg [l falw) -
Recall that by Doob’s inequality (1.20) we have

(4.51) sup,, | fullz, ) < 1f*[lr < 7"sup, [ fnllL, 5)-

When p = 2 and B is either R, C or a Hilbert space, we recover the classical
square function, see §8.1. In that case, we already know that, for any 1 < r < oo,
1S2(f)||- and || f*||- are equivalent, see (8.29) and (8.36). Our main result in
this section is an analogue of this for S, (f) (resp. S¢(f)) in case B is p-uniformly
smooth (resp. g-uniformly convex). Unfortunately however, we cannot take p =
q in general (unless B is a Hilbert space) and hence the analogous inequalities
are only one sided, as in the next two statements.

Theorem 4.51. Let B be a Banach space. Fiz 2 < q < oo. The properties in
Corollary 4.7 are equivalent to:

(iv) For any 1 <r < oo, there is a constant C = C(q,r) such that all B-valued
martingales (frn)n>0 n L.(B) satisfy

(4.52) 1S (N)llr < ClLF -

Theorem 4.52. Let B be a Banach space. Fizx 1 < p < 2. The properties in
Corollary 4.22 are equivalent to:

(iv) Foranyl <r < oo there is a constant C' = C'(p, r) such that all B-valued
martingales (frn)n>0 in L.(B) satisfy
(4.53) 1Ml < CTNSp(£) -

To clarify the duality between (4.52) and (4.53) the following Lemma will
be used.

Lemma 4.53. Let 1 < r,p < 0o, let (An)n>0 be any filtration and set as usual
E, = EA~. Then for any sequence (pn)n>0 i Lr(Q, A,P) we have for any
l<p<oo

asy (i)

where C(1/p) = r(r — 1)%71.

)
T

<cum|(Ser)”
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Proof. By Doob’s inequality (1.14) (resp. the dual Doob inequality (1.15)) (4.54)
holds for p = oo (resp. p = 1) with C(0) = ' = r(r — 1)~ (resp. C( ) =
r). Therefore by the complex interpolation of “mixed normed spaces” (se
Theorem ??), (4.54) holds for a general 1 < p < oo with C(1/p) = C(0)'~C(1 )
where § = 1/p. This yields C(1/p) = (+')'/? (r)V/? = p(r — 1)~ 1/¢'.

< D

Pr0p051t10n454 Fizl<rr <ooandl <p,p < oo with * —I— - =1 and
—|— L = 1. For a Banach space B and a given filtration (An)nzo on (Q, A P)
the following are equivalent:

(i) There is a constant C' such that all B-valued martingales (fn)n>0 in
L. (B), adapted to (A,)n>0, satisfy

(4.55) sup [ fullr < ClISp(f)lr-

(ii) There is a constant C' such that all B*-valued martingales (gn)n>0 in
L,/(B*), adapted to (A,)n>0, satisfy

(4.56) [[Spr (@)l < C’ sup [
Moreover, we may exchange the roles of B and B* if we wish.

Proof. The proof that (ii) = (i) is very easy: assuming (ii), for € > 0, choose
g in the unit ball of L, (B*) so that | fu|lz,(8) < (1 +¢€){g, fu). Let g, =
Eng. Then note (g, fn) = (gn, fn) = >0 (dgr,dfy), it follows ||fullL,(5) <
(15 B S0 dgrs dfn)| < (14 RSy (9)S0() < (1+ ISy (@)l 1S, (Dl <
(1+e)C"||S,(f)]l» so we obtain (i) with C' < C’. Conversely, assume (i). To
prove (4.56) we may assume (g )n>0 is a finite martingale so that g, = g, for
all k > n. Fix e > 0. Let ¢, ..., ¢, € L-(B) be such that

asn | (Soter)”|

<1 and ]EZ (or,dgr) > (14 €)||1Sp (9)]] -

Note that
(4.58)
n
EZ (Pr: dgr) EZO (dfi, dgr) = E(fns gn) < [[fullz,B)llgnllL,. (B),
where dfy, = (Er — Ex—1)pr and f, = Y g dfy. Moreover, by the triangle

inequality and (4.54), we have

<20(1/p).

T

s IS0l <200 |(Sher)”

Thus we obtain by (4.57), (4.58), (4.55) and (4.59)

A+ )Sp (@l < N fnllz.)llgnllz,.5+) < 2CCA/D)lIgnllL,. B+
so we obtain (ii) with C' < 2CC(1/p). O
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It will be convenient to break the proofs of Theorems 4.51 and 4.52 in two.
The first parts are formulated in the next two Lemmas.

Lemma 4.55. Let us denote by (iv), the assertion (iv) in Theorem 4.51 for a
fized value 1 <1 < oo. Then (iv)s = (iv), for any 1 <r < s.

Proof. We will use the “extrapolation method” described in Lemma 8.20 and the
B. Davis decomposition in Lemma 8.22. By Lemma 8.22, we have f, = g, + h,
with hg = 0, ||dgn|lp < 6f5_; for all n > 1 and H > Hdhn”HT < 6] f*|, for
any 1 <7 < oo. We set v,(w) = (3 [dgr(w)[|%)Y? and wy,(w) = [|gn(w)]| 5.
Applying (iv), to the martingale (1750} gnAT)n>0, We find

(4.60) I1irsoyvrlls < C(g, 8) I 1irsoywrs.

Fix r such that 1 < r < s. By Lemma 8.20

(4.61) 154 (9l < ((s/(s =r)Y" + Dllg"llr + 6I1F* I

But since g is essentially a “perturbation of f by h” we have S;(f) < Sq(9) +
>_ lldhy || and g < f* + 3 |dhy||, and hence ||Sq(f)llr < [1Sq(9)[lr + 67(/ |-
and ||g*||, < (14 67)||f*|-, so that (4.61) yields (4.52) with C(q,r) < (s((s —
)7 (1 + 6r) + 6 + 6r. O

Lemma 4.56. Assume B p-uniformly smooth (actually we use only type p).
Then there is a constant t, such that for any 1 < r < oo and any martingale
(fn)n>0 in L.(B), there is a choice of sign &, £ 1 such that the transformed

martingale f, = > o &xdfy satisfies

(4.62) 17 < tpllSp (D)l

Proof. Since B is p-uniformly smooth, a fortiori by Proposition 4.36, it is of
type p, i.e. there is a constant C' such that for any finite sequence (z;) in B we

have y
2
HzgjxjHLT(z/;B) S ¢ <Z ||.’E]||p) '
By (1.22) we have
n r - » r/p
> o em||| <20 (X lalr)

Replacing x; by df;(w) and integrating in w we find T < 2Y/7C||S,(f)||, where

" r 1/r
I= <//supn > 5jdfjH dudIP’) .

Thus to conclude it suffices to choose &; = £;(wo) so that ||f*[|, < I (the latter

because the infimum over w is not more than the average). 0

Hsupn
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Lemma 4.57. Let us denote by (iv)" the assertion (iv) in Theorem 4.52 for a
fized value of 1 <r < oco. Then (iv)* = (iv)" for all1 <r <s.

Proof. The idea is the same as for Lemma 4.55 but there is an extra difficulty
which is overcome by using Lemma 4.56 above. As earlier, we use the decom-
position in Lemma 8.22: we have f = g + h with hg = 0, ||dg,| < 6f7_, for
all n > 1 and || Y ||dhnllBll» < 6r]f*||- for all 1 <r < co. Let &, = +1 be an
arbitrary choice of signs. Again we denote

Gn =D g and fo= Y Gudf.

We set v, (w) = §(w) and wy,(w) = (34 [|dgn(w)||P)Y/P. Assuming (iv)*, we
find for any stopping time T'

Igrsoyorlls < C'(p, ) 1ir>oywrls.

Fix r such that 1 < r < s. By (8.32) (applied with ¢,, = 6f%) there is a constant
C' (depending on r and s) such that

(4.63) 1571 < ClISp(9) I + 611 £l

Since || f*[l; < 15" [r + | 3 ldhall]], and [[Sp(e)ll- < [Sp(Hllr + 1| 3 lldhn]l]],
we deduce from (4.63)

17 [l < CUSp ()l + (6r(C + 1) + D) f* |-

Since this holds for any choice of signs §, = +1 we may exchange the roles of f
and f (note that f = f!) and we find

£l < ClSp (Al + (6r(C + 1) + DLl

If we now choose &, according to Lemma 4.56 we obtain (4.53) with C" <
C+ (6r(C +1) + 1)t O

Proof of Theorem 4.51. The case 1 < r < ¢ is covered by Lemma 4.55. Recall
Ilf*[l- < r"sup,, || fnll- by Doob’s inequality. Let p = ¢’ so that p~! + ¢~ ! = 1.
If g <1’ < oo then 1 < r < p, and, by Proposition 4.54, (4.55) holds at least
with 7 = p. By Lemma 4.57, (4.55) holds for all 1 < r < p, therefore by
Proposition 4.54 again, (4.56) (and a fortiori also (4.52)) holds for all " with
g=p <r' <. O

Proof of Theorem 4.52. The argument is the same as for Theorem 4.51: The
case 1 < r < p is covered by Lemma 4.57 and the case p < r < oo (i.e.
1 < " < p') can be deduced from Lemma 4.55 (applied to ¢ = p’) by duality
using Proposition 4.54. O

Remark 4.58. The preceding two proofs actually show that if (4.52) (resp. (4.53)
holds for some 1 < r < oo (for some constant C) then it also holds for all
1 < r < oo (with a different constant). In other words, the assertions denoted
above by (iv), (resp.(iv)") are actually independent of 1 < r < oo.
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4.6 Strong p-variation, uniform convexity and
smoothness

We will now extend the method presented in Chapter 6 to the Banach space val-
ued case. The extension to the Hilbert space valued case is straightforward, but
the martingale inequalities (4.8) (resp. (4.25)) satisfied by g-uniformly convex
(resp. p-uniformly smooth) spaces allow us to go much further:

Theorem 4.59. Let 1 <p; <2< gy < o0

(i) Assume that B is isomorphic to a pi-uniformly smooth space. Then for
all 1 < p < p; there is a constant C = C(p,p1) such that all B-valued
martingales f = (fn)n>0 in Ly(B) satisfy

EV,(f) <CEY " l[dfall}-

(ii) Assume that B is isomorphic to a go-uniformly convex space. Then for all
q > qo there is a constant C = C(q, qo) such that all B-valued martingales
in Lq(B) satisfy

EV,(f)* < Csup, E[ f,|”.

The proof is based on the following key fact:

Lemma 4.60. Let 1 < r < oo and let 0 < 6 < 1 be such that 1 — 60 = %
Let (fn)n>0 be a B-valued martingale converging in L,(B). Assume that for all
increasing sequences of stopping times 0 < Ty < Ty < Ty < ... we have

Elfrll"+ ), Elfn = fr. " <L

E>1
Then
IS (2101 (B)) Loo (oo (B)))g 00 = 2

Proof. This can be proved by an obvious adaptation of the argument for Lemma 6.3.
One just chooses Ty = inf{n > Tj_1 | |fn — fr._, || > "1} O

We will use repeatedly the identity (see Theorem 5.7)

(4.64) Ly((Bo, B1)o.p) = (L1(Bo), Loc(B1))e,p
valid for any 0 < 6 < 1 provided p is linked to § by 1 — 0 = 1/p.

Proof of Theorem 4.59. Here again we can adapt the proof of Theorem 6.2.

(i) Assume B pp-uniformly smooth. Then by (4.8) applied (with p replaced by
p1) to the martingale M,, = fr, an — f1,_,an (here k is fixed) we have (for some
constant C1)

EHka - ka71||p1 <Ci Z ]E”fn - fn—l”p1

Tp—1<n<Ty
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and hence

>, Ellfn = fr P < Co ) ElldfallP.

1/p
Let || fllpg,) = (Zgo E||dfn\|p1) " Let 61 be such that 1 —60; = 1/p;. On
one hand, by the preceding Lemma we have a bounded inclusion

(4.65) D(p1) C (L1 (v1(B)), Lo (£oo(B)))y 00

and on the other hand we have trivially (actually this is an equality)

By the same argument as in Chapter 6 we know (see (6.14)) that D(p;) =
(D(1), D(00))g,,p, Where we set D(00) = loo(Loo(B)). Therefore, by the reiter-
ation Theorem, (4.65) and (4.66) imply that, for any  with 0 < § < 6; and any
1 <p < o0, we have

(D(1), D(0))o,p C (L1 (v1(B)); Loo(Loo(B)))o,p-

We now choose p so that 1 — ¢ = 1/p. This gives us (D(1), D(00))g,, = D(p)
and also by (4.64) (see (6.3))

(L1(v1(B)); Lo (Loo(B)))o,p = Lyp((v1(B), Loo(B))0,p)

but by Lemma 6.1
(v1(B), £oo(B))o.p C vp(B).

Thus we obtain that the inclusion
D(p) C Ly(vp(B))

is bounded, and this is precisely (i).

To prove (ii) assume B gp-uniformly convex. Let 8y be such that 1 — 6y =
1/qo. By (4.25) applied to the martingale (fr, )x>0 we have for some constant
Co

> Ellfr, = fr_ 1% < CosupEl| £ ™.

Let Ly, (B) — £oo(Lg, (B)) be defined by T (M) = (E,M —E,,_1M),,>0. By the
preceding Lemma we have (boundedly)

(4.67) T(Lgo(B)) C (L1(v1), Loo(foo(B)))60,00
and trivially
(4.68) T(Loo(B)) C loo(Loo(B))-

Observe that Ly, (B) = (Li(B), Loo(B))ey,q0 (see (4.64)). Therefore, by the
reiteration Theorem, (4.67) and (4.68) imply

T((L1(B); Loo(B))e,q) C (L1 (v1), Loo(Loo(B)))a,g
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for any 6 with 0y < 8 < 1 and any 1 < g < co. If we choose ¢ so that 1—0 = 1/q
we find by (4.64)
T(Lg(B)) C Lq((v1(B),£oo(B))o,q)

and again (v1(B), loo(B))s,q C vq(B) so we obtain
T(Lq(B)) C Lg(ve(B))
which is exactly (ii). O

Remark. In the situation of Theorem 4.59, fix 1 < p < p; (resp. ¢ > ¢p). Then
for each 1 <r <p (resp. 1 <r < q) there is a constant C such that

IVu(H)ll < € H (> dfn“%)l/pHr

(resp. [[Vo(f)ll» < Clisup [ fullBllr and [[V(f)]l1,00 < Csup||fullz, () )- Indeed,
this can be proved exactly as above in the proofs of part (ii) in Theorems 6.2

and 6.5.

4.7 Notes and Remarks

The source of this chapter is mainly [227], but the latter paper was inspired
by Enflo’s fundamental results on super-reflexivity that are described in detail
in the next chapter. Enflo’s main result from [131] was that “super-reflexive”
implies “isomorphic to uniformly convex,” thus completing a program initiated
by R.C. James ([162, 163]), that we describe in the notes and remarks of the
next chapter. While Enflo and James work with “trees,” in [227] the relevance
of martingales was recognized and a new proof, was given of Enflo’s theorem
with an improvement: the modulus of convexity can always be found of power
type, or equivalently we can always find a renorming satisfying (4.1).

In our presentation, we find it preferable to separate the two steps: in this
chapter we show that any uniformly convex is isomorphic to a space with a
modulus “of power type” (i.e. satisfying (4.1)) and only in the next one do
we show Enflo’s result that “super-reflexive” implies “isomorphic to uniformly
convex”.

In both chapters, we replace the Banach space B by L,(B) with 1 < ¢ < oo
and we treat martingale difference sequences simply as monotone basic se-
quences in L,(B). The corresponding inequalities for basic sequences in uni-
formly convex (resp. smooth) spaces are due to the Gurarii brothers [155] (resp.
to Lindenstrauss [189]).

We learnt about the work of Fortet—Mourier through unpublished work by
J. Hoffmann—Jgrgensen. The presentation in §4.2 was strongly influenced by [4],
to which we refer the reader interested in non-linear aspects of Banach space
theory. The estimates for the modulus of convexity (and of smoothness) of L, in
§4.3 are due to O. Hanner [158]. See also [71] for more recent results including
the non-commutative case. The results of §4.6 come essentially from [227], while
those of §4.5 come from [236].



Chapter 5

The Real Interpolation
method

We assume in this chapter that the reader has some familiarity with the com-
plex method of interpolation, or at least with the famous Riesz interpolation
theorem. We will mainly use the real method of interpolation in our later ex-
position to analyze the type and cotype of the spaces of sequences that are in
the interpolated space between “bounded variation” and “bounded”.

Roughly the common interpolation methods produce a family of “interpo-
lated” Banach spaces (Bg)ge(o,1] starting from a pair (By, B1). We will need to
assume that the initial pair (B, B1) is “compatible”. This means that we are
given a topological vector space V' and continuous injections

jo: Bo—V and ji: By — W

This very rudimentary structure is just what is needed to define the intersection
Bo N By and the sum By + Bj.
The space By N By is defined as jo(Bo) N j1(B1) equipped with the norm

] = max{[ljg * (@) o, 137" (@)1l 5, }-
The space By + By is defined as the setwise sum jo(Bg) + j1(B1) equipped with
the norm
12/l Bo+ B, = nf{[|zoll B, + 1]l B, | # = Jo(wo) + J1(z1)}-

It is an easy exercise to check that By N By and By + B; are Banach spaces. It
is a well established tradition to identify By and By with jo(Bg) and j1(B1), so
that jo and j; become the inclusion mappings By C V and B; C V. We then
have Vi = 0,1

BoNBy CB; C Bp+ By

and these inclusions have norm < 1. Note that if we wish we may now replace
V by By + Bi, so that we may as well assume that V' is a Banach space.

123
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5.1 The real interpolation method

Let (B, B1) be a compatible couple. For any ¢ > 0 and any x in By + By, we
define
Kt(l‘; Bo,Bl) = inf{”bo”BO + tHbl”Bl | T =by+ b1}

We will often abbreviate and write simply K;(z) instead of K(z; By, B1) when
the context leaves no room for ambiguity. Let 0 < 8 < 1 and 1 < p < co. We
define

> dt
(Bo, B1)o,q = {x € By + B ‘ / (tiaKt(m))q7 < oo}
0

and we equip it with the norm

<, dt\
i, = ([ €m0 )

Of course, when g = oo, this should be understood as meaning sup t_gKt(x).
t

Note
Ky(x; By, B1) = tK;-1(x; By, Bo)

and hence

(5.1) (Bo, Bi1)g,q = (B1,Bo)1-9,4 isometrically.

Remark 5.1. Obviously we have inclusions (with norms at most 1)
ByN By C (By,B1)g,q C By + Bs.

Moreover, it is easy to show that if ¢ < co By N By is dense in (By, B1)g,q4-

Note that ¢ — K;(z) is by definition the infimum of a family of affine func-
tions, hence it is concave on R, nonnegative and nondecreasing.
Since K; is nondecreasing

0~ K, (x) = Kt(x)/ s %ds/s < / s 9K, (z)ds/s,
t t
and hence
(5.2) (Bo, B1)g.1 C (Bo, B1)g,00-
More generally, for any gy < ¢; we have

(53) (30781)9»(]0 C (BO’Bl)oﬂh'

If we assume By C Bj, then it is easy to check that, when 0 < 6y < 67 < 1, for
arbitrary 1 < qg, ¢1 < 0o, we have bounded inclusions

(5.4) By C (Bo, B1)6y,q0 C (Bo, B1)e,,q: C Bi.

Just as for the complex case, the fundamental interpolation property holds:
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Theorem 5.2. Let (By, B1) and (Cy, C1) be two compatible couples. Let To: By —
Cy and Ty: By — C1 be bounded operators that are “essentially the same”.
Then the resulting operator T: By + By — Co + C1 maps (Bo, B1)a,q to
(Co,Ch)o,q for any 0 < 6 < 1 and 1 < p < oo, and moreover, if we denote
its restriction by Ty q: (Bo, B1)a,q — (Co,C1)g.q, have

ITo.qll < 1T ~* NI T3 |°.

Proof. We obviously can write for any = in By + By, say * = xg + 1 with
Tj € Bj
Tx =Toxg + 1121

and hence

[Tozoll + I To |1 T1 |~ Tazs || < 1 Toll (ol B, + tllz1ll5,)
so that
(5.5) Ky (T) < || Tol| K¢ ().

Let A = ||Ty||||T1]|*. Since % is a Haar measure over the multiplicative group

(0,00), we have by (5.5)
[t Ko (T) | o aey = I(EN) P Ko (T2) | o e
<A Toll K)o e
S NTol ANt K (@) o ary

and hence
[ To.qll < [TolA™" = I Toll " 172 ]1°.

O

The fundamental example is the case of L,-spaces: Let (€2, .A4,m) be a mea-
sure space, and let f: € — R be a measurable function. We define its decreasing
rearrangement f*: (0,00) — R by setting

fr(t) = inf{c > 0 | m({|f] > ¢}) < t}.

Then f* > 0 is non-increasing, right continuous and such that

(5.6) {f* > e}l =m({lf] > c}).

The latter equality shows that f* and |f| have the same distribution relative
respectively to Lebesgue measure on (0,00) and m. Recall that

/|f|pdm = /Ooopcp‘lm({lfl > ¢}) de.
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As an immediate consequence of (5.6) we have in particular

Wp > 0 /f tyPdt = /|f|”dm

More generally, the Lorentz spaces Ly, ,(Q2, m) (or simply L, ,) are defined (0
p,q < 00) as formed of the functions f such that

JRGEROE

0

equipped with the quasi-norm

6.7 o= ([ op )"

Note that L, , = L, isometrically. When ¢ = oo, the above should be under-
stood as

1fllp.oc = sup /2 () = (sup Pm({|f| > })V/7.
t>0 c>0
The space Ly, is usually called “weak L,”.

Theorem 5.3. Let L, = L,(Q, A,m) on an arbitrary measure space. Consider
fe€Li+ Lo (0<p<o0). Then

K(f L1, T /f

Consequently, for any 1 < g < o0
(Ll»Loo)O,q = Lpq

where % = % + %, with equivalent quasi-norms. This shows that (5.7) is
equivalent to a norm. In particular (L1, Loo)o,p = Lyp.

Proof. Let w(z) = f(z)|f(z)|~! (sign of f(x)). Fix t > 0. Let

fo=1qp>p-en(f — FF)w) = wlgps @y (1 f1 = 5 (#)
fi=f~-fo

Note |fi]| = |f| A f*(t). Then let Q, = {|f| > f*(t)}. We have
Ki(f; L1, Loo) < || foll1 + tl| f1lloo
< [Us1= £7®) dm+ 257

Q4

m(Q)
- [ e - ray st
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and hence since m(Q;) <t and f*(s) = f*(t) on [m(Q;), ], we obtain

/f

Conversely, assume that f = fo + f1, fo € L1, fi € Lo. Clearly m({|f] >
co+c1}) <m{{|fol > co}) + m({|f1| > c1}), and hence for any 0 <e < 1

F(s) < fo((L=¢)s) + fi(es),

so that

/Ot f*(s)ds < /Ot fi((1—2)s) ds+/0t F(es)ds

< / f3((1 = €)s)ds + t££(0)
0
<= Yflh + e = (=) foll + £l filc.

Taking the limit when € — 0 and the infimum over fy, f1 yields

t
[ 1) ds < Ku(i Lo Lo,
0
To complete the proof it suffices to prove

(5.8) 1Fllp.a < 11l c2azras < 07 1F llpuas

where 1 — 0 =p~! (and hence 6~1 = p').
Let f**(t) =t"1! fo s)ds. Note that f*(t) < f**(t), and hence

1£llp.q = 170 ey < NE 0 F g e-1ary-

For the converse direction, we write fot f*(s)ds = fo (st)t ds, so that f**(t) =
fo (st)ds. Then by Jensen’s inequality (since g > 1) we have

1
[ A PR S/ 1= F* ()| Ly (1 rary ds
0

1
= Htl_af*(t)lqu(fldw/o s'tds = 07 fllp.gs

which proves (5.8).
O

Remark. With the preceding notation, since (5.7) is equivalent to a norm, for
some constant C = C(p, ¢) we have:

(5.9) 1 o < L Nlpg < ClU Mg s

where || ||p,4 denotes the quasi-norm in L, ,((0,00),dt). Indeed, this can be
verified by Jensen’s inequality as we just did to prove (5.8).
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Lemma 5.4. If p is non-atomic, for any f in L1 + Lo, we have

[ s = s [ 1 i) =
E

Proof. Tt is easy to check that (1gf)*(s) = 0 for all s > u(FE) and also that
(1ef)*(s) < f*(s) for all s > 0. Therefore,

/Ifldu [Tt < [ 5
0
This yields

(5.10) sup /\fldu</ f(

w(E)=t

If p{|f| = f*(t)} = 0, the converse inequality is easy: we have |[{f* > f*(¢t)}| =
p({|f] > f*(t)}) = t and hence the choice of E = {|f| > f*(¢)} shows that
(5.10) is an equality. If p{|f| = f*(t)} > 0, a little more care is needed. We
have pu({|f| > f*()}) <t < u({|f] > f*(t)}). We will use the assumption that
w is non-atomic to select a set E such that {|f| > f*(t)} C E C {|f] > f*(t)},
with w(E) =t. Let t' = p{|f] > f*(t)}. Since |f| and f* have the same
distribution and {f* > f*(¢)} = [0,¢'), we have then

t/
/ Sldn= [ fds
{IfI>F*@®)} 0
and hence

dp < dp+(t—t") f*(t ds+(t—t") f
E/Iflu L H 0570 = /Of . 0= [ e

O

More generally, using a suitable version of the reiteration theorem for the
real method we have

Theorem 5.5. Consider 0 < pg,qo,p1,q1 < 00. Assume pg # p1. Then, for
any 0 <0 <1 and0 < q < oo,

(Lposaor Lp1,a1)0.0 = Lpgq
with equivalent norms, where

1/pe = (1 =0)/po+0/p1.

In particular, (Lpy, Lp,)o.q = Lpy.q, and the latter space coincides with Ly, if
q = pg- Moreover, if pg = p1 = p then we have

(Lp,qoa Lp,q1)9 = Lypqp

with equivalent norms where 1/q9 = (1 —60)/qo +0/q1.
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Remark. Historically, the preceding result was inspired by, and appears as an
abstract version of the Marcinkiewicz interpolation Theorem (see Theorem 8.51
above). It implies it as an easy corollary: if an operator is bounded both
from Ly, to Lpy e and from Ly, to Ly, o (Po # p1), then it is bounded from
(Lpos Lpy )o,p 10 (Lpy.oos Lpy ,00)6,p, and hence, choosing p = pg, we conclude, by
the preceding Theorem that it is bounded from L,, to itself.

Remark 5.6. Let (Bg, B1) be a compatible pair. Let 0 < 6 < 1,1 < ¢ < o0
and let p be determined by p~! = 1 — 0. Consider x € By + B; and let
fo(t) = t7 1Ky (x; Bo, By). It is not difficult to check that there is a positive
constant C' = C(p, ¢q) such that for any = in By + B; we have

C N allLyat0,00) < N2ll(Bo.B1Ys . < CllfellLy o(i0,00))-

Indeed, assume for simplicity that ¢ — K;(x) is differentiable with derivative
Kj(x). Then since t — K;(z) is concave, K;(x) is non-increasing, so this equiv-
alence follows from (5.9) with ¢ — Kj(x) in place of f*.

We will use several times the following result.

Theorem 5.7. Let 1 < p < 0o and 0 < 0§ < 1. Let (By, By1) be a compatible
pair and let (Q, 1) be any measure space.

(i) Then
(5.11) (Lp (5 Bo)s Ly B1))o,p = Lp(11; (Bo, B1)a,p)

with equivalent norms.

(ii) More generally, if 1 < pg # p1 < 0o are such that 1p;00 + 1% = %, then
(5.12) (Lo (15 Bo) Lp, (45 B1))o.p = Lp(p; (Bo, B)o.p)

with equivalent norms.

Proof. The proof of (i) is rather easy. For simplicity we write L,(B) instead of
L,(u; B). Let f € L,(By) + Lp(B1). We will show

613 LB L) < ( [ Kt<f<w>;Bo,Bl>Pdu<w>)1/p
< Ki(f; Lp(Bo), Lp(B1)).
Indeed, if f = fo + f1 with f; € L,(B;) (j = 0,1) then
Kilf(@): Bo, B) < o)l + /1) s,

from which the second inequality in (5.13) is immediate. To prove the first
inequality, fix € > 0, and let f(w) = fo(w)+ f1(w) be such that fy, f1 are Bochner
measurable and such that || fo(w)|| B, + t||fi(w)lls, < (14 ¢)Ki(f(w);Bo,B1).
We have then

Hfo() 5o + LA ], < (1 +)IE(f(-); Bo, Bi)llp,
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and then using

1foll 2, (o) + tl ALy < 2% I Fo (B, + LA O
< 2" (1 fo() 3o + 1A L),

the first inequality in (5.13) follows immediately. Clearly, (5.13) implies (5.11)
by integration. O

Remark. More generally, the same argument yields that for any ¢ > p (resp.
g < p) we have a bounded inclusion

(LP(BO)aLp(Bl))ﬁyq 2 Lp((BO,Bl)é',q)
(resp. (Lp(Bo), Lp(B1))o,q C Lp((Bos Bi)e,g))-

This follows again by integration but using the fact (“Holder—Minkowski”) that
Lq(%,Lp) D LP(LQ(%)) (resp. Lq(%,LP) C Lp(Lq(%))). See [119] for more on
this.

Remark 5.8. When p; = 0o, (5.12) becomes

(5.14) (Lpo (Bo), Loo(B1))a,p = Lp((Bo, B1)ap)-

Recall however that L..(B;) is defined as the space of essentially bounded
Bochner measurable Bj-valued functions. This is rather restrictive in certain
“concrete” situations. To extend the scope of (5.14) we record here a simple
observation: Assume L., (B1) isometrically embedded in an priori larger space
L of Bj-valued functions (or classes of functions), for instance £ = A (B).
Intuitively, £ is formed of bounded Bj-valued functions but measurable in a
broader sense, and we assume that Lo (B1) C L is formed of those elements in
L that are Bochner measurable. Assume By C Bj. Then, for any = that is a
Bochner measurable Bi-valued function we have

Vt > 0 Kt(-r;LpO(BO)7Loo(Bl)) = Kt(x;Lpo(B0)7£>'

Indeed, if = 29 + 21 with 29 € Ly, (By) and 1 € L, then a fortiori 2y €
L,,(B1), so that 1 = x — z¢ is Bochner-measurable as a Bj-valued function
and hence automatically in Lo, (B1). Consequently, the norms of such an x in
the (0, ¢) interpolated spaces is the same for the two pairs (L, (By), Leo(B1))
and (L, (Bo), £). We will use this for the following example: By = Loo({oo(B))
and £ =l (Loo(B)). Note that with our (Bochner sense) definition of L. (B),
when we take as measure space N equipped with the counting measure, the
space Lo (B) is in general smaller than £ (B), but the latter coincides in that
case with A (B).

We will use later (especially in Chapter 6) the real interpolation analogue of
the reiteration theorem, as follows (cf. [5, p. 50]).
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Theorem 5.9. Let (B, B1) be a compatible couple of Banach spaces. Let 0 <
Op 61 <1 and 1 < qg,q1 < oo. Consider the couple Xo, X1 where

X; = (Bo, B1)s 7 =0,1.

3295
Then for any 0 < 6 <1 and 1 < g < oo we have

(XO, Xl)exq = (B0>Bl)7',q
(with equivalent norms) where 0 < 7 < 1 is determined by (1 — 0)0y + 001 = 7.

Remark 5.10. The reiteration theorem can be viewed as an “abstract” version
of the Marcinkiewicz theorem: Indeed this implies that if 1 < pg < p; < oo and
1 < g < oo we have

(Lpooo’LploO)G,q = (Lpo,laLpll)Q,q = (Lpoval)&q'

Therefore, if T: L, — Ly, is bounded for j = 0,1, it must be also bounded
from (L, Ly, )o,q to itself for any 0 < 8 < 1 and any 1 < ¢ < co. Choosing ¢

so that % = 1}:09 + 1% we find that 7" is bounded on L, for any pg < g < p;.

Remark. The “Holmstedt formula” expresses the K-functional for the reiterated
pair (Xo, X1) in terms of the K-functional for the original pair (Bg, By). See
[5] for details on this very useful formula.

Note that it is crucial that €y # 6, in order to obtain that (Xo, X1)g 4 does
not depend on ¢g or ¢q;. In case 6y = 61, the result is as follows (see [5, p. 51
and p. 112].

Theorem 5.11. With the notation of Theorem 5.9, assume now that 0 < 6y =
01 < 1. In that case, we have

(XO’Xl)GJI = B- q

)

(with equivalent norms) where T is as before, but q is now restricted to satisfy

1_1-0 6
q qo +ql'

The extremal endspaces (By, B1)g1 and (Bo, B1)g,co (recall (5.3)) play a
very important role in real interpolation. The next Lemma helps to recognize
when a space is intermediate between them.

Lemma 5.12. Let B be any Banach space. Consider an operator T: ByNB; —
B. Fix 0 <0 < 1. If, for any x € By N By, we have

-0
ITzl|5 < |5, =%,
then T extends to a bounded operator from (By, B1)g1 to B with
IT: (Bo,B1)es — Bl < C,

where C' is a constant depending only on 6.
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The duality for the real method is given by the following.

Theorem 5.13. Let (By, B1) be a compatible couple of Banach spaces. Assume
that By N By is dense in both By and By, so that the pair (Bf, BY) is naturally
compatible. Then, for any 0 < 6 < 1 and 1 < ¢ < oo, setting as usual ¢ =
q/(qg — 1), we have

(Bo, B1)a,q = (Bg, Bi)o,q's

with equivalent norms.

The next result gives the main general known connection between the two
methods.

Theorem 5.14. Let (By, B1) be a compatible couple of complex Banach spaces.
Then, for any 0 < 0 < 1, the following bounded inclusions hold

(Bo, B1)e,1 C (Bo,B1)e C (Bo, B1)o,00-

5.2 Dual and self-dual interpolation pairs

Let B be a reflexive Banach space. Assume given a continuous injection

T: B— B*
that is self-dual, i.e. such that
(5.15) Ve,y € B T(z)(y) =T(y)(x).
For any x in B, we set
[zllo = llzllz  and [zl = [Tz 5,

and we denote by B the completion of the normed space (B, || - ||1). We have
a canonical inclusion By C Bj that allows us to view (By, B1) as a compatible
pair of Banach spaces.

Note that, since B is reflexive and T'= T* by (5.15), T injective implies that
T has dense range. We have an isometric isomorphism

®: By — B*

defined by first setting ®(z) = Tz for x € B, observing that this is isometric
(with B equipped with || - ||;) and then noting that B and T'(B) are dense
respectively in By and B*.

Theorem 5.15. In the above situation, let 0 <0 <1 and 1 < q < oo.
(i) In the complex case, we have isometrically
(Bo, B1)g =~ (Bo, B1)1-¢-

In particular, (Bo, B1)1 /2 is isometric to its dual.
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(ii) In the real case, we have isomorphically
(Bo, B1)g,q =~ (Bo, B1)1-6,q'-
In particular By /o9 is isomorphic to its dual.

Proof. The key is simply to observe that the pair (B, Bf) can be identified
with (B, Bp). Indeed, consider ¢ € (By N B1)* = B*. Obviously

(5.16) lellz; = llell -

Also ¢ € B} with norm c iff we have |p(y)| < c|lyllp, = ¢[|T(y)| B~ for any y in
B, or equivalently by Hahn-Banach, iff there is b in B with ||b]] < ¢ such that
©(y) = T(y)(b) for any y in B. In other words, we have ¢ = T*b with ||b|| < c.
Since we assume (5.15) we have T'= T* and hence we find B} = T(B) with

(5.17) lells; =17~ ¢l 5.

From (5.16) (resp. (5.17)) we see that the mapping T: B — B* extends (si-
multaneously) to an isometric isomorphism from B; to B (resp. Bo — BY).
From this it is clear that T defines an isometric isomorphism from (By, By)g to
(B}, B§)e and by Theorem ?? we have (BY, B§)s = (B1,Bo)j = (Bo, B1)i_,-
This completes the proof of (i). In the real case, the proof is the same but now
we use Theorem 5.13. O

Remark 5.16. A slightly different but equivalent viewpoint consists in using
the map T: B — B* to define the compatibility of the couple (B, B*). Let
(8o, B1) be the resulting interpolation pair. It is easy to check that T extends
(by density) to an isometric isomorphism from (Bg, B1)g to (8o, 51)e and also
from (By, B1)a,q t0 (B0, 81)e,q forall 0 <8 <1 and 1 < g < oo.

Remark 5.17. Let v: B* — a3 be an isometric (resp. isomorphic) isomorphism
from B* onto another Banach space «7. Note that if we replace T by vT
then the pair (By, By) is unchanged (resp. except for an equivalent norm on
By). Therefore, the resulting complex (real) interpolation spaces are identical
(resp. isomorphic). Moreover, since the symmetry of 7' was not used there, the
preceding remark remains valid: If we set cg = B and use vT': g — a1 to define
compatibility, then vT extends to an isometric isomorphism from (By, Bi)g
to (o, 1)e and also from (B, B1)s,q to (ag,a1)e,q for all 0 < 6 < 1 and
1<g< o0

The Hilbert space self-duality is the classical illustration of the preceding
principle:

Proposition 5.18. Let B and T be as above.

(i) In the real case, assume T'(xz)(x) > 0 for all x in B. Then By is iso-
morphic to a Hilbert space and, when restricted to B, its norm s equivalent
to x> T(z)(z)1/2.
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(ii) In the complex case, assume there is an isometric antilinear involution
J: B* — B* such that T'(x)(Jx) > 0 for all x in B. Then By, is
isometric to a Hilbert space and

Vo€ B lalg, . = (T(@)(T2) 2.

Proof. Recall that since T is injective and symmetric its range is dense. We will
prove the complex case. We have a bilinear map ®: (z,y) — T'(x)(y) that is of
norm < 1 both on By x By and on By X By. By the fundamental interpolation
property (see Theorem ?7), we have ||®: By x B1_y — C|| < 1 and in particular

Yo,y € B T (z)(y)| < |lzllB, ¥l By )
and if y = Jx

T(z)(Ja)| < ||zl ,-
Thus we find
(5.18) 2l < llzllB,

where, by definition, we set ||z||g = T(x)(Jx). Let H be the completion of
(B, || - |lg)- By the duality (5.18) implies

(5.19) el B;,, < /e

1/2 —

and since, by (i) in Theorem 5.15, Bf/z = By, we conclude from (5.18) and
(5.19) that equality holds in (5.18). This shows that B/, = H. The proof of
the real case is entirely similar. 0

For example, the preceding statement applies to the pair

(4, 05)

15%00

with T': £7 — €2, the identity map. We recover the identity (¢7,£2 )12 = €5
and (uniformly over n)
((?,£&>1/2’2 ~ gg

Note however that Theorem 5.15 is quite interesting also when there is no
Hilbert space in the picture (we will use the next example in Chapter 7):

Example 5.19. Let v denote K™ equipped with the norm
||T/va = |z1| + w2 — 21|+ -+ X0 — Tpo1]-

We consider the interpolation spaces (v}, % )g.q and (v}, €2 ) (0 <6 < 1,1 <
q < 00). Let p=(1—6)"1. We denote

Wz?,q = (v, €5 )p,g and W;L =Wpp-
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Note that |z|[,r = [[Tx|le» where
(520) Tx = (mn —Tp—1,Tn-1 — Tp-2,.-..,L2 *mlaxl)'

Note that T satisfies (5.15) with respect to the canonical duality on K™ (equiv-
alently the matrix of T' is symmetric). Note that by (5.1) we have isometrically
Wy = (Lo 07 )1-0.4-

Therefore (exchanging the réles of v} and ¢ for convenience) Theorem 5.15

yields:
Corollary 5.20. In the complex case we have isometrically (v, 0%)5 =
(1", €5 )16 and in particular (v7, £,)1/2 is isometric to its dual, via the map-
ping T: (v}, €2 )1—9 — (v], €% )} defined in (5.20).

Let (e1,...,e,) denote the canonical basis in K” and let (ef,...,e!) be the
biorthogonal functionals in (K™)*.

Corollary 5.21. For all 1 < p < 0o and 1 < q < oo there is a constant C
(independent of n) such that

IT: W — VR <C and |T7': (W5 )" — <cC.

n
p’,q'|

Moreover, if we let o = Zjl er (1 <j < n) then for all z in K" we have

1 n n n
5.21) — H riel < H Ti0; <20 H x»e*-”
( ) 20 Zl 7= (W;,q)* - Zl e W;L/‘ql - Zl ] (qu)*

Proof. The first part is but a particular case of Theorem 5.15. Let x = Ty,
y € K”. We have

1
5.22 *H e <H o <CH o
62 L[Suel,, <[Sudl,, . <clSue

Let V: K® — K" be defined by V(z1,...,2n) = (2n,-..,21). Note that
|Vz]lon < 2[|z]lor, V is an isometry on €2, and V = V!, therefore we have

wr,
' q’

1
vz e K" 27 lzlbwen, |, < IVzlbwe, <202l

But then we have
n
y=T 0= (Tp,Tp +Tp_1,..., Ty + - +x1)= VZ1 xj0;.

Therefore

21 HZnIJH < ||yHWn <2 Hznxo'H
L i W, = WIS 1 %% ||

p’.q’

and (5.21) follows from (5.22). O
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5.3 Notes and Remarks

The material in this chapter is classical. The basic reference is [5] and also [35].
For real interpolation, see [10] and also [6].

The complex interpolation method was introduced independently by A.
Calderén and J.L. Lions around 1960. While Lions wrote nothing but the
Comptes Rendus note [193], Calderén published a very detailed, very thorough
account of all aspects of his theory. His memoir [111] remains must reading for
anyone interested in the subject.

In turn, J.L. Lions concentrated his efforts on the real interpolation in col-
laboration with J. Peetre, see notably [194]. Later on, Peetre introduced the
K- and J-method that replaced advantageously the Lions—Peetre methods and
have been tremendously successful in analysis and approximation theory.

The self-duality results in §5.2 go back to the early days of interpolation, both
real and complex. However, the original versions required extra assumptions
such as e.g. reflexivity, that were lifted later on. See [256] and the references
there for the state of the art in that direction. Corollaries 5.20 and 5.21 go back
to some 1974 discussions with Bernard Maurey.



Chapter 6

The strong p-variation of
scalar valued martingales

This chapter is based on [236].
Let 0 < p < oo and let = (x,) be a sequence in a Banach space B. The
strong p-variation of x = (z,,), denoted by V,,(z), is defined as follows

1/p

V(@) = sup | [lzoll” + Y lan) = Eng-lIP

Jj=1

<

)
Tp)

where the supremum runs over all increasing sequences of integers 0 = n(0
n(l) < n(2) < .... We denote by v,(B) the space of all sequences z = (
such that V,(z) < co. When B =R, we set v, = v,(R).

Note that for all 0 < p < ¢ < co we have

(6.1) Vo(z) < Vp(x).

Clearly, when p > 1, the spaces v,(B) and v, are Banach spaces. The
extreme cases p = oo and p = 1 are especially simple. Indeed, the analogue of
Vp(z) for p = oo is equivalent to sup,~g |||, so it is natural to set vo(B) =
lso(B). As for p = 1, the triangle inequality shows that

Vi(z) = [lzoll + llz1 = woll + [lw2 — 2afl + - -

so that vy (B) is just the space of sequences in B with bounded variation.

We will make crucial use of real interpolation. Consider a measure space
(Q, A, 1) and a Banach space B. For simplicity of notation we set L,(B) =
L,(, pn, A; B). Let (By, B1) be an interpolation pair of Banach spaces. Consider
the interpolation pair (Lyp,(Bo), Lp, (B1)) where 1 < pg # p1 < o00. Let 0 <0 <

1_1-0 , 0
lLand ; = —= + - By (5.12) we have

(6'2) LP((B()vBl)Q,P) = (LPO(BO)7LP1 (Bl))eyp’

137
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with equivalent norms.
In this chapter the couple (vi(B), £ (B)) plays the central role. Let 1 <
p<ooand § =1-—1/p. We denote

Whp.q(B) = (11(B),4x(B))e,y (0<8<1, 1< g<00).

We also set
Wp(B) = Wyp(B).
We now apply (6.2) to the couple (vi(B),fs(B)). This gives us assuming

p=(1-0)"(ie 1 =232+ L)
(6.3) Ly(Wy(B)) = (L1 (v1(B)), Lo (£ (B)))e.p

with equivalent norms. The connection between W,(B) and the strong p-
variation lies in the following.

Lemma 6.1. If 1 < p < co and 1 — 6 = L, then W,(B) C v,(B) and this

p7
inclusion has norm bounded by a constant K (p) depending only on p.

Proof. This is easy to prove. Indeed for any fixed sequence 0 = n(0) < n(1) <
... we introduce the operator T': v1(B) — ¢1(B) defined by

T(.’L‘) = (l‘o,xn(l) — X0y~ ,S(}n(k) — xn(k71)7 .. )

This has clearly norm < 1. On the other hand, considered as operator from
loo(B) into Lo (B), T has norm < 2. Therefore it follows from the interpolation
theorem (cf. Theorem 5.2 above), that T has norm < 2 as an operator from
W,(B) into (¢1(B),le0(B))s,p- By Theorem 5.7, this space can be identified
with £,(B) with an equivalent norm. This yields (for some constant K (p))

1/p
(lolt” + 3~ Iangy = a1 I7) < K@) 2llw, s,
and the announced result clearly follows from this. O

In this chapter we study the strong p-variation of scalar martingales. We will
return to the B-valued case in a later chapter. Our main result is the following

Theorem 6.2. Assume 1 < p < 2.

(i) There is a constant Cp, such that every martingale M = (My)p>0 in Ly,
satisfies (with the convention M_1 =0)

IEV;U(M)p < (Cp)pz O]E‘Mn - Mn—1|p-

n>

(ii) More generally, if 1 < r < p, there is a constant Cp, such that every
martingale M = (My)n>0 in L, satisfies

1/p

Vo (M)[[» < Cor ([ | D 1My — My [?

n>0
r
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Throughout the sequel, we will set by convention M_; = 0 whenever M =
(M,)n>0 is a martingale. All the r.v.’s are assumed to be defined on a given
probability space (£2,.4,P). We will need the following key lemma.

Lemma 6.3. For any martingale M in Lo, we have

1/2
IMI(Ly (01), Lo (b)) 1 . < 2 ZE\Mn — M, 1|
2 n>0
Note that by orthogonality we have
(6.4) > EIMy — M, |* = stipOIE|Mn|2.

n>0

Proof of Lemma 6.3. Given a sequence of r.v.’s X = (X, )n>0, we denote simply
by K:(X) the Ki;-norm of X with respect to the couple (L1(v1), Loo(Yxo))-
Explicitly, assuming that (X,,) converges a.s., we have

(6.5) Ki(X) = inf ¢ [| X0l + Z X9 — X0 |li +tsup | X oo

n>1

where the infimum runs over sequences of r.v.’s X° and X' such that X,, =
X9+ X} for all n > 0. Note that the assumed a.s. convergence allows us to
invoke Remark 5.8 with A1 = oo (Loo).

Let (M,) be a martingale, relative to an increasing sequence of o-algebras
(An)n>0, and let 0 < Ty < T; < ... be a sequence of stopping times (relative
to (Ap)n>0) with values in N U {oo}. We assume that (M,,) is bounded in
Lo, hence M,, converges a.s. (and in Ls) to a limit denoted by M., which is
in Ly. Moreover, we have M,, = E(My|A,) and My = E(Mu|Ar) for any
stopping time T" with values in NU {oo}. Therefore, the sequence (Mr, )r>0 is
a martingale, and (6.4) implies

(6.6) E||Mg|*+ > [Mp, — Mp,_,* | <supE|Mg,|*
k>1

< E[Mocf? = 3 BIMy = Myaf?,
n>0

To prove Lemma 6.3, we may assume for simplicity that |[Ms|l2 < 1. Then we
define by induction starting with Ty = inf{n > 0, |M,,| > t~/2},

T, = inf{n > Ty, |M,, — Mg,| > t~/?}

Ty = inf{n > Ty_1,|M, — Mq,_ | >t /%)
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and so on. As usual, we make the convention inf § = +c0, i.e., we set T, = +oo
on the set where

sup | M, — Mqp,_ | <t1/2
n>Tk_1

Clearly {T}} is increasing sequence of stopping times so that (6.6) holds. We
note that if Ty (w) < oo then |Mr, () (w)| > ¢~/% and

(6.7) if Tp(w)<oo and k>1 then (Mp, — Mg, )(w)>t"2
Moreover, we have for all k> 0

(6.8) sup | M, — Mgy | <t7Y? as. and sup [M,| <t7Y? as.
T <n<Tgi41 n<Ty

Hence, we can write M,, = X0 + X}, with X° X! defined as follows
X'rOL = ZkZO 1{TkSn<Tk+1}MTk
X% = Zk>0 1{TkSn<Tk+1}(Mn — Mg, ) + 1{"<T0}M”'
By (6.8), on one hand we have

(6.9) Isup | X5 oo < 7172,

On the other hand, let Ag = |Mp,| and Ay = |Mg, — Mp,_,| for k> 1.
‘We have

0 0 0
(610) |XO‘ + ZnZl |Xn - Xn—l‘ = 1{T0<00}A0 + Zk21 Akl{Tk<oo}
This can be estimated as follows. We have by (6.7)
(6.11) ¢~/ (1{TO<OO} + ZM 1{Tk<oo}) < Aol{To<oo}+Zk21 Arl{r, <ooy-

Let N = 11, <o0} + 2 147, <oc}- By Cauchy-Schwarz, (6.11) implies
E>1

1/2
—1/2 1/2 2 2
(6.12) Nt=Y2 <N (\AO| 3, 14 ) .
Clearly N is finite a.s. (since M,, converges a.s.), (6.12) implies
1/2
N2 < 41/2 <|A0|2 n Z |Ak|2)

and hence by (6.6)

(6.13) (EN)Y2 < M2 Moo || < V2.
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Now going back to (6.10) we find again by Cauchy—Schwarz and (6.13)

1/2
(10 + 1) |

E(1X01+ Y 1X0 - X3,]) < (BN)Y/2

< 172,
By (6.9) and (6.5), this yields K;(M) < 2t'/2 so that

MLy (01). Loo (e 2.0 < 2
By homogeneity, this completes the proof of Lemma 6.3. O

Proof of Theorem 6.2. Let (Ay)n>0 be a fixed increasing sequence of o-sub-
algebras of A. All martingales below will be with respect to (A, ),>0. For 1 <
p < 0o, we will denote by D,, the subspace of £,(L,) formed of all the sequences
© = (pn)n>0 such that ¢, is A,-measurable for all n > 0 and E(¢,|A,—1) =0

for all n > 1. We first claim that if 1 < pg, p1 < oo and if % = 1p;09 + 1% then

(6-14) Dp = (DPO’DPI)97P'

This follows from an argument well known to interpolation theorists. Indeed,
to check this, we first note that by (6.2) we have

(6.15) (Lpo (€p0)7Lp1 (El))é,p = Lp(ép),

with equivalent norms.
We may clearly identify isometrically L,(¢,) and €,(L,). There is a projection
P: L,(¢,) — D, defined by

VX = (Xn)nzo € Ly(lp)  P(X) = (¥n)nz0

with
o = E(Xo|Ao) and ¢, =E(X,|An) — E(X,[An_1).

Clearly, P is a bounded projection onto D, and
I1P(X)lp, < 2X]|L, )

and consequently HP(X)H(meDpl)e,p < 2HX||(LPO(€P0)7LP1(‘el’l))S,P. By (6.15),
this implies that for some constant C' = C(py, p1, 6)

1P (D Dy )0 < ClIX L8,
Applying this for X in D,, we find
(6.16) XDy Dy e < ClIXIID,-
On the other hand, we have trivially

||X|‘Lpr5(epi) < ||X||DPz fori=0,1
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and hence by interpolation

(6.17) 1XNz,e,) < C'IXlp

p0:DPp1)o.p

for some constant C' = C’(po, p1, ).

Combining (6.16) and (6.17), we find the above claim (6.14).

We can now complete the proof of Theorem 6.2 (i).

Let us denote by 7' the operator which associates to any ¢ in D; the martin-
gale (Mn)nzo defined by M,, = ; w;i. Clearly HT(<)0)HL1(U1) < H‘)OHDl' On the
other hand, Lemma 6.3 implies that T is bounded from Dy into By = (L1 (vy),
Loo(éoo))%oo, with norm < 2. Therefore if 1 < p < 2 the interpolation The-
orem 5.2 implies that T is bounded from (D1, Ds)g, into (L1(v1), B1)ep- By
the reiteration Theorem 5.9 we have (L1 (v1), B1)g,p = (L1(v1); Loo (leo))s,p With
0 = 6/2. Now if 6 is chosen so that 1% =1— 4, we have by (6.3) and Lemma 6.1

(L1(v1); Loo(bes))s,p = Lp(Wp) C Lp(vyp).

On the other hand, by (6.14) we have (since 172 + & = %) (D1,D3)p,p = Dp.
Recapitulating, we find a constant C' = C(p) depending only on 1 < p < 2 such
that for all ¢ in D, we have

1T()lz, 0, < Cliellp,-

This establishes the first part of Theorem 6.2.

The second part follows from the standard arguments used to prove the
Burkholder—-Davis-Gundy inequalities. We use the general method described in
Lemma 8.20. Let g(w) = (gn(w))n>0 be a martingale in L,. We set voo(w) =
Vp(g(w)) and for any N > 1 we denote by vy(w) the strong p-variation of
{go(w),...,gn(w)} i.e. the strong p-variation of the restriction of our martingale
to [0,1,..., N]. Equivalently,vy(w) is the strong p-variation of (gnan(w))n>0 -
We set wy = (Zév |dgi|P)'/P. Applying (i) to the martingale (1{750}naT)n>0,
we find that (8.30) holds for any stopping time T'. If we assume |dg,+1| < ¥,
for all n > 0 with (¢,,) adapted then Lemma 8.20 yields that for any 0 < r < p
we have for some constant C; = C(p,r)

(6.18) [voolr < Cr([lwoollr + [[97[r)-

We now invoke Lemma 8.22 (B. Davis decomposition) with r replacing p. This
gives us a decomposition M,, = h,, + g, with hg = 0, |dg,| < 6M;_; and
1>° |dhnl|- < 6r||M*|,. By (6.18) we have

< V@)l < €’ (H (3 tagu)

and since V,(M) < Vy(g) + 3 [dhnl, (3 |dgal?)"/? < (1AM [P)! /P + 3 |dhi]
and also || Y |dhy||l» < 6r||M*|, this implies that for some constant Cy =
Co(p, r) we have

Vo(M)] < Co (H (Z |dMn|,,)1/p

\ +6||M*||r) ,

4 ||M*|T) .
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By the classical Burkholder-Gundy—Davis martingale inequalities (see (8.29)
and (8.36)) and Doob’s inequality (cf. (1.12)) we have for some constant C5 =

Cs(r)
(S|

and hence, since (3 |dM,,|?)*/? < (32 |dM,|P)*/?, we obtain

(o)

M7 < Cy

[Va(M)l» < C2(1+ C3) O

T

The next result is an immediate consequence of Theorem 6.2.

Corollary 6.4. Let 1 < p < 2. Let M = (M;);>0 be a martingale in L,.
Assume that the paths of M are right continuous and admit left limits and that
the continuous part of M is 0. Let

1/p
VP(M) = sup ‘M0|p+Z|Mti — My, P
0=to<t:<... i>1
and
1/p
Sp(M)={ > M, — M-
te[0,00[

Then, for all 1 <1 < 0o, we have for any martingale M in L,
(6.19) VoMl < Cprl[Sp(M) |-

Remark. There are also inequalities similar to Theorem 6.2 (ii) or (6.19) with
a “moderate” Orlicz function space instead of L, cf. [101, 108].

Our method gives (with almost no extra effort) a new proof of the following
results of Lépingle [187].

Theorem 6.5. Assume 2 < p < oo and 1 < r < p. Then there is a constant
Cpr such that every martingale M = (My)n>0 in L, satisfies

||V;,(M)||T < Cer sup,, [ M| |-

Moreover, there is a constant C,, such that every martingale M = (M, )n>0 in
L1 satisfies

(6.20) Vo (M) 1,00 < Cpsupy, || My, []1.
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Proof. We first consider the particular case r = p. With the above notation,
consider the operator S: Lo, — Loo(fso) defined for ¢ in L by

S(p) = (E(¢]An))nzo-

Clearly ||S|| < 1. Let By = (L1(v1), Loc(fx0))1/2,00- By Lemma 6.3, S is
bounded from Ly into By. By the interpolation Theorem S must be bounded
from (L2, Loo)s,p into (Bo, Loo(foc))ep (0 < 6 < 1,1 < p < 00). Now assume
that % = 1;29 + %. Then, by (6.2), (Ls, Loc)e,p = Lp. Moreover, by the
reiteration Theorem 5.9

(BO, L (zoo))G,p = (Ll (Ul)a Ly (EOO))wp

for w = 1;29+9 = 1%9. Note that PTer& = ]%, hence by (6.2), the last equality
implies (B, Loo(¢s0))g.p = Lp(W,). Recapitulating, we find that S is bounded
from L, into L,(W,) with norm < Ci(p) for some constant C;(p) depending
only on p. Let ¢ € L, and let M,, = E(p|A,). Applying Lemma 6.1 again we
conclude that

M|z, w,) < K®IIMlL,om,) < K@)Ci®)lell,-

This proves Theorem 6.5 in the case r = p.

We now turn to the case 1 < r < p. We will argue as above for Theo-
rem 6.2. Consider a martingale (M,,) in L,.. We apply the B. Davis decomposi-
tion (Lemma 8.22) in L,, i.e. we have M = g+h with hg = 0, |dg, | < 6M_; and
| >° |dhay||lr < 67||M*||,. We define v,, and v as in the proof of Theorem 6.2,
but we set

Wn = SUPg<y |gn| and  weo = Supy, ‘gn‘

Then applying the first part of the proof (i.e. the case r = p) to the martingale
(1y7>0}gnaT), we find that (8.30) holds for any stopping time T". Therefore, by
Lemma 8.20 (note that in our case ¥* = 6 M*) there is a constant Cy = Cy(p, )
such that

[voo[lr < Ca(llwoollr + [I1M7]),
or equivalently

Vo (@)llr < Calllg™ll- + 1M7]])-

But since V,(M) < V(g9) + X2 |dhal, g < M* + 3 |dhy| and || 3 [dha|[l, <
6r||M*||, we obtain finally

(6.21) Vo (M)| < (6r +6rCy + Ca) [ M7,

The weak type 1-1 inequality (6.20) is now an easy application of Theorem 8.13
(Gundy’s decomposition). We leave the details as an exercise. 0
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Remark. Of course, there is also a version of Theorem 6.5 in the case of a
continuous parameter martingale (M;)¢so.

One can easily derive from Theorems 6.2 and 6.5 (by a classical stopping
time argument) the following analogous “almost sure” statements.

Proposition 6.6. Let M = (M,,) be a martingale with Esup | M, — M, 1| < co.
n>1

If1<p<2, then {V,(M) < 0o} = {3 |M,, — M,,_1|P < o0}.
n>1
Moreover if 2 < p < oo, then {V,(M) < co} = {sup|M,| < oc}.

Proof. Let B, = {V,(M) < oo}, Ay = {30 |dM,|P < oo}, and Ap(t) =
{35 [dM,|P < t}. To prove the first assertion it suffices to show that Ay (t) C
By forall0 < ¢ < oco. Fix0 < ¢ < co. Let T =inf{n | >y |[dM, [P > t}. We may
assume My = 0 and hence T' > 0 and A, (t) = {T = oo}. Let f,, = Myar. Then
S |dful? = 3, <q |[dM,|P < t + sup [dM,,|P. Therefore (3" |df,[?)'/? € L. By
(ii) (case r = 1) in Theorem 6.2 V,,((f»)) € L1 and hence V,((f,)) < oo a.s., but
on {T = oo} we have (f,,) = (M,,) so A,(t) C B,. To prove the second assertion
in case 2 < p < oo, we set T = inf{n | |M,| >t} and again f, = M,sr. Then
{T = oo} = {sup|fn| < t}, sup|fn| < t + sup|dM,| and hence sup |f,| € L.
By Theorem 6.5 (case r = 1), V,,((fn)) € L1 and hence V,((fn)) < oo a.s. and
since (f,) = (M,) on {T'" = oo} we conclude that V(M) < oo a.s. on the set
{sup |fn| < t}. This proves the second assertion. O

6.1 Notes and Remarks

This chapter closely follows [236]. Theorem 6.5 was obtained first by Lépingle
using the Skorokhod embedding of martingales into Brownian motion. Our
proof is very different. Indeed we prove both Theorem 6.5 and Theorem 6.2
using the same idea, combining Lemma 6.3 and reiteration.

There is an extensive literature on the strong p-variation both in probability
theory, function theory and harmonic analysis. We will only give below a few
sample references.

Prior to [236], analogous questions had been considered mainly for sequences
or processes with independent increments (cf. e.g. [92, 209, 210]). For a more
recent approach to Corollary 6.4, see [226]. See [197] for a study of the strong
p-variation of (strong) Markov processes.

See [251] for a more recent result on the strong p-variation of a-stable pro-
cesses for 0 < a <2 and p > a.

See [18] for more information on the relations between p-variation, differen-
tiability and empirical processes.

See [87, 174, 127] for inequalities analogous to those of this chapter in ergodic
theory.

Note that our subsequent Chapter 7 contains a detailed study of the in-
terpolation spaces (v1,%x)s,q that is quite useful to understand the spaces of
functions with strong p-variation finite.
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Chapter 7

Interpolation between
strong p-variation spaces

In chapter 6 we already used interpolation to establish several martingale in-
equalities involving the space v, of scalar sequences with finite “strong p-variation”.
When p = 1 the latter is just the space of sequences with bounded variation. In
this chapter we will focus on the real interpolation space, defined, for 0 < 6 < 1,
p=(1-0)"tand 1< q< oo, by

(71) Wp,q = (Ul,goc)gﬂ.

In words, we are interested in interpolating between the properties bounded
variation and boundedness. Clearly

v C Wp,q Cls.

Remark 7.1. Note that by Theorem 3.10 any intermediate Banach space between
vy and fo, is necessarily non-reflexive. Actually, the argument for (iv) = (i) in
Theorem 3.10 shows that the inclusion map v; — £, is not weakly compact.

7.1 Strong p-variation: The spaces v, and W,

If we replace vy by ¢1 in (7.1) we obtain the Lorentz space ¢, ; and in particular
if ¢ = p we find the space ¢,. We will show that although (7.1) is non-reflexive
it behaves in many ways like the spaces £, and like ¢, when ¢ = p.

When ¢ = p we write simply

(7.2) Wy = Wpp.

More generally, for any auxiliary Banach space B we define, again with p =

Q-0
(7.3) Wp.a(B) = (v1(B), Lo (B))s.q;

)

(7.4) WP(B) =W, p(B = (UI(B)aEOO(B»t‘LP'

147
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A simple application of interpolation yields:
Lemma 7.2. For any increasing sequence 0 = n(0) < n(l) < n(2) < ... of
integers and any x in W, 4(B)
(7.5) (0, Tngty — Tos > Ty — Tugiee1ys e, o3y < 2P|z, (B)-

Proof. Indeed, we just apply the fundamental interpolation property (Theorem
5.2) to the operator T defined by T'(x) = (x0, Zn(1) =0, * » Tn(k) = Tn(k—=1)> """ )-
This is clearly bounded simultaneously from vy (B) to ¢1(B) (with norm < 1)
and from (o (B) to loo(B) (with norm < 2), and hence from W, ,(B) =
(v1(B), €00 (B))g.q t0 pq(B) = (£1(B),loo(B))g.q (With norm < 2171/, O

By general interpolation theory (see (5.3) and (5.4)), for all 1 < p < r and
arbitrary 1 < qp,q1 < oo we have bounded inclusions

(7.6) Wy.qo(B) C Wy g, (B).

This also holds in case p = r, but then only if ¢; > qq.
We denote as usual by cg (resp. co(B)) the subspace of ls (resp. £oo(B))

formed of all sequences that tend to zero. Similarly we will denote by v{ (resp.

v9(B)) the subspace of vy (resp. v1(B)) formed of all sequences that tend to

zero. Recall that K denotes the sclars i.e. K = R or K = C. Note that, by
subtracting its limit from a sequence in v; or in vy (B) we find

(7.7) v ~K@®v? and v (B)~ B®v)(B).

The pair (v1, £o) has a self-dual character that will be crucial in the sequel. Let
us describe this duality. For z € vy, y € £ we set

(7.8) (z,y) = zoyo + Z — Zn—1)Yn.
Note that [(z,y)| < ||Z||v, [|¥]lco- Moreover, with this duality we have
(W)* ~ly and  (co)* = 1.
More generally, we have
(7.9) W(B)* ~ loo(B*) and co(B)* = v (B¥)

with respect to the duality defined either for « € vy (B*) and y € ¢o(B), or for
z € loo(B*) and y € v{(B), by

(710) (x,y) = <:EOa y0> + Z:o<xn - xn—lyyn>

(711) = nlLH;o«anyO - y1> +o 4+ <$n_1, Yn—1 — yn> + <xna yn>)
(7.12) = {@n-1,9n-1— Ya).

More precisely, we have

(713) 27 Y|zller B+) < N2lwomys < N2l sy and [[2]lco(m))s = %]lv, (5+)-
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Remark. For any sequence z = (z,,), let & be the shifted sequence defined by
o =0and &, = x,_1 for all n > 1. If x = (x,) and y = (y,) are both finitely
supported, then, taking B = K for simplicity, Abel summation (or integration
by parts) shows (x,y) = —(y,&). A similar identity holds if y (resp. z) is a
B-(resp. B*)-valued sequence (but this requires exchanging the roles of B and
B*).

We will now introduce preduals uy, and uj respectively for the spaces v, or
vy when (we keep this notation throughout)

1 1

l1<pp <oo and -+ = =1
p P

Recall that for any z in BY, its strong p-variation Vp(z) is defined by

1/p
Vi) = sup{ (Il + 3 sy — ooy 7))

where the supremum runs over all 0 = n(0) < n(l) <--- . We set
vp(B) ={z € BY | Vp(x) < oo} and Hvap(B) = Vp(2).

When B = K we denote simply v, = v,(K).
Note that, by the Cauchy criterion, V, () < oo implies that x,, converges to a
limit xo, € B when n — oo.

Let

vp(B) = vp(B)Nco(B) and v = v, Nco.
Note that
(7.14) Vz € v,(B) (Tn, — Too)n>0 € vg(B).

Let B™ denote the space of finitely supported functions b = (b(n)),en with
b(n) € B for all n. It is easy to see that B! is dense in v9(B) for any 1 < p < 0o
(see the proof of Lemma 7.6 below).

For any b = (b(n)) € BM™ there is a finite partition of N into disjoint intervals
Iy, I, ..., Iy with Iy = [0,n(0)], I; =]n(0),n(1)],...,In =Jn(N—1),n(N)] and
there are &g,...,&x € B such that

(7.15) Vn € N bn) = Y €l (n).

We require that £ # 0 and & # &1 for all 0 < k < N and we set

oy = () ||sk||p’)1/p,.

Note that the preceding requirement minimizes S ||&; [P’
For any = € (B*)Y we have

(z,b) = (Tn(0), o) + Zf(ﬂcn(k) — Tn(k—1), k)



150 CHAPTER 7. INTERPOLATION AND STRONG P-VARIATION

and hence we have

(7.16) sup{|(z,b)| | b€ BM, [b], <1} =V, ()
where
V@)= sup Azl + [Zaq) = TalP + )7}
0<n(0)<n(1)<--
Note that
(7.17) Vo(x) < Vpl(a) < 27V, (2).

Note also that if Iy = [0,7(0)] we have
(7.18) (,&011,) = (Tn(0): 0)-

We then set for any b € B™

1600,y = im {3 3]}

where the infimum runs over all decompositions b = >7"b; (b; € BM™). In
other words, [| - [|,0 () is the gauge of the convex hull of {b | [b],; < 1}. Then

we define the Banach space ug, (B) as the completion of B equipped with
this norm. Note that sup ||b(n)|| < [b],» and hence lim,,_. b(n) = 0 for any b in
0

uy, (B) so that we have a bounded inclusion

u®,(B) C ¢o(B).

p/

In fact, b € ug, (B) iff b can be written as b = 37°b; with b; € B™ such that
> 1[bjly < co. Moreover (the inf being over all such decompositions):

[bllus, ) = inf 3 loglyr

When B = K, we denote simply

From (7.16) it is immediate that, with respect to the duality (7.10) we have

(7.19) vp(B*) = u) (B)*

with equivalent norms. More explicitly, any = € v,(B*) defines a linear form
fo on u), (B)* by setting f,(b) = (x,b) for any b € BM™. By (7.16) and (7.17),
the latter form admits a unique bounded extension to an element of ug,(B)*
satisfying

o, 54y = Vol@) < I falluo, )+ < 27 |2, (5)-
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Conversely, to any linear form f € ug, (B)*, we associate the sequence (z,) €
B*N defined by F(€ljo.n)) = 2,(§) (for all § € B, n > 0). Then, recalling (7.18),
we have f(b) = f(b) for any b € B™ and (7.16) again shows that = € v,(B*)
and of course f = f,. Thus we conclude that the correspondence = +— f,
is a surjective isomorphism from v,(B*) onto ug, (B)*. In this way, we avoid
discussing the possible types of convergence of the series (7.10).

Remark 7.3. By an abuse of notation we will continue to denote by (z,y) the
duality just established for z € v,(B*) and y € ug, (B). (We adopt that notation
also for € u),(B*) and y € vp(B).) Note however, that this is really defined
only when y is finitely supported and extended by density and continuity to the
whole of uy, (B).

In particular, v, = (u),)*. Thus there is a constant C' = C(p) such that for
all z in v,(B*) we have

1
(7.20) Sz, sy < sup{l@, v)l 1y € wy (B), llyllug, 5y < 1} < Cllzllo, 5+)-

Moreover, since uy, (B)* norms ug, (B), there is a constant C" = C’(p) such that

for any y in ug, (B) we have

1 *
(7.21) =yl 5 < sup{l(,y)] | 2 € 0O(B*), Vp(w) < 1} < Cllylus, 5)-
C » »

Indeed, the last equivalence is clear if we replace vJ(B*) by v,(B*) = ug, (B)*,
but if y is supported say in [0, ..., N] then for any z in v,(B*)

<$,y> = <PN(x)7y>
where Py (z) = (zo,21,...,2Zn,0...) and we have obviously
(7.22) Vo(Pn(2)) < 2Vp ().

From this (7.21) follows easily for all y in ug,(B).
Let us denote g, (z) = (x,y). Then (7.21) can be rewritten

1
(7.23) 5llyllug,(3> < llgyllog(me)- < C,HZ/Hug,(By

Remark 7.4. Using the ¢, , norm in place of the £, norm in the definition of
[. ], we can define analogously the space u (B) and if 1 < p, ¢ < oo the same

Py
argument leads to u ,(B)* = vy o (B*).

By Theorem 3.10 we already know that v) (and a fortiori v,) is non-reflexive,
but it is much less obvious that, if 1 < p < oo, it is quasi-reflexive, i.e. of finite
codimension in its bidual. This phenomenon was discovered by James. For that
reason, the space v§ is usually denoted by J and called the James space. In fact

we have
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Theorem 7.5. Let 1 < p < co with % + 1% = 1. By Remark 7.3, the duality
(7.8) (or (7.10) in the B valued case) is well defined for x € vy, y € uy,, and

O With respect to that duality, we have

also for x € ug,,y € vy.

(vg)* = ug, and (ug,)* =

with equivalent norms. More explicitly, the mapping y — gy (resp. © — fz)

extends to an isomorphism from u, to (v))* (resp. from v, to (u,)*). In

particular if X is either ug,, vp or v, we have dim(X**/X) = 1. More generally,
if dim(B) = n then if X = vy(B) or if X = u)(B) we have dim(X**/X) = n.

Lemma 7.6. The canonical basis (ey,) is a basis of vg satisfying an upper p-
estimate in the sense of Remark 3.18. In particular, it is a shrinking basis of
vy (1 <p<o0).

Proof. By (7.22) we already know that (e, ) is a basic sequence in v). Let Pyx =
(%0, 21,.-.,2N,0,...). Assume V,(x) < co. We will show that V,,(x — Pyz) — 0
when N — oo for any 2 € v). Choose 0 =n(0) < n(1) < --- < n(K) such that

Vo(@)? — & <|zol’ + |Zn) — o’ +++ + |[Tn(x) — Tux—1) [P

We have then for any n(K) < n(K +1) < ---

Zj>K [Ty = Tng-n)lP <€
and hence if N = n(K)

Vp(z — Pyx)P < sup |z;]P + ¢,
i=N

and since we may assume that N = n(K) is as large as we wish we conclude
that Vj,(z — Pyxz) — 0 when N — oo for any z € v).
Note that by (7.17) we have

sup |z;] < 27"V, (x)

and hence
Vo (Pyz) < (Vy(@)P + sup |2 [P) /P < 3V, ().

Thus we conclude that (e,) is a basis of v). Note that by (7.17) the norm in v,
is equivalent to

1/p
max {sup |51, sup (Z | T (k) — xn(k—1)|p) } .
n(0)<n(1)<---

From this it is easy to see that there is a constant C' so that for any sum of
disjoint consecutive blocks by, ...,by on (e,) we have

b1+ b l| < C(IBall? + -+ flow )17
By Remark 3.18 the basis (e,) must be shrinking. O
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Proof of Theorem 7.5. In the duality (7.8) (recall (7.18)), the vectors o, =
>4 e are biorthogonal to ey, i.e. we have (eg,0,) = 0 for all k # n and =1 if
k =n. By Lemma 7.6, (ey,) is a shrinking basis for v). Therefore (0y,) is a basis
for (v9)*. Note that span(oy,...,0n) = span(eq,...,e,). By (7.23) we find

(vp)* = uy,. We already know by (7.19) that v, = (u),)*. Thus if X = vp we
have X** = v, and hence by (7.14) dim(X**/X) = 1. If X = v, (resp. X = u),)

then X ~ v) &K (resp. X* ~ v, ~ v) ®K) and hence X** ~ (v))* @K ~ X K
(resp. X** ~ (v))* @K ~ X ®K). The other assertions are proved similarly. [

We will now identify the dual of W, 4. Let W) , = (v}, ¢o)a,q with 1-60 = 1/p.
Note that

(7.24) Wy =WpqNeco.
Indeed, since (see (7.7))

v~ @K and c~cy@K.
we obviously have
(7.25) Wh.a = (09, ¢c0)aq DK

where the second coordinate is  — limz,. Therefore (7.24) follows immedi-
ately.

By general interpolation (see Remark 5.1) v9Ncg is dense in W), = (v, ¢o)g,q
(0 <6< 1,1 <g < oc0), from which it is easy to see that finitely supported
sequences form a dense subspace of Wg,q. Thus by (7.25) Wg 4 can be identified
with the closure in W, 4 of the space of finitely supported sequences.

Theorem 7.7. Let (e,) denote the canonical basis of K&, let (eX) be the

n

biorthogonal functionals and let o,, = > [ ej. Let 1 <p < o0 and 1 < g < co.
Then (en) and (0,) each form a basis in Wy .. If moreover ¢ > 1, (e},) is
a basis of (Wqu)*. The linear mapping T defined on spanfo,]| by To, = e,
(n > 0) extends to an isomorphism from Wg/7q, onto W) )*. In particular,
W]?, is isomorphic to (W3)*.
Proof. Each of (e,,) and (0,,) is a basis for both spaces ¢y and v{. By interpo-
lation applied to the partial sum operators, it follows that each is also a basis
in Wg,q for any 1 < p < 00, 1 < ¢ < co. Recall the notion of upper p-estimate
from Remark 3.18. Obviously, (e,,) satisfies an upper r-estimate in v{ for r = 1,
but it also satisfies one in ¢g for any r (or say for r = o0o). Therefore, by an
interpolation argument based on Theorem 5.7, it follows that (e, ) satisfies an
upper r-estimate in Wgﬁq for 1 < r < min(p,q). It follows (see Remark 3.18)
that (e,) is shrinking in W9 . Equivalently this means that (e};) is a basis in
(W) ,)*. Define T: spanlo,] — (W),)* by T(0,) = e},. By Corollary 5.21
there is a constant C (independent of n) such that for any n and any x in
span(oy, . .., 0,) we have

R

C M alhws, < IT@)owg,- < Cllzle,

/g’
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but since span(o,,) and span(e}) are dense respectively in Wg,ﬂ, and (W) )5, T
extends to an isomorphism from Wg/, g b0 W2, O

Remark 7.8. One can check, arguing as for Theorem 7.5, that dim(X**/X) =1
when X is any of the spaces Wg,q or Wy, with 1 <p<ooand1<gqg<oo.

Remark 7.9. Moreover, the B-valued analogue of Theorem 7.7 also holds with
the obvious adjustments: the dual space (W, ,(B))* is isomorphic to W), .. (B*).
The following result will be crucial in the sequel ([75, 235]).

Lemma 7.10. Let 0 <0 <1, p= (1—0)"! and let B be an arbitrary Banach
space. We have bounded inclusions

(7.26) (01(B), Loo(B)a,1 C vp(B) C (v1(B), £oo(B))o,00
(7.27) (v} (B), co(B))s,1 € up(B) C vp(B) C (v7(B), co(B))g.cc-

Consequently, for any 1 <r < p < s < co we have bounded inclusions
(7.28) W, (B) C v,(B) C W4(B).

Proof. The second inclusion in (7.27), namely u)(B) C vp(B) is clear from
the definition of u)(B), since for any b as in (7.15) we have obviously V,,(b) <
2[b],. Let us show v,(B) C Whoo = (v1(B),lo(B))s.0o- Let x € BY with
Vy(r) < 1. Fix t > 1. Then let n(1) = inf{n > 0 | ||z, — xo| > ==},
and let n(2) < n(3) < --- be defined similarly by n(k) = inf{n > n(k — 1) |
20 — Zp—1)|| >t~ =9}, Whenever the preceding infimum runs over the void
set we set n(k) = oo and we stop the process. Since V,(z) < 1, the process has
to stop at a certain stage k (so that n(k) < oo but n(k + 1) = co0). We have
then on one hand

4~ (1=0).1/p < (||$n(1) —xolP + -+ ||$n(k:) _ xn(kfl)”p)l/p <1

and hence k < t. But on the other hand we can decompose z as x = 20 + 2!
with ' = 2 — 2" and z° defined by

xgzxn(j) if n(j)<n<n(j+1)

where we set by convention n(0) = 0 and n(k + 1) = co. By definition of
n(0) < n(1) < --- we have [|[2t]|,_(5) <t~ and also (recall k < t)

2%, 8) <lloll + |zna)y = oll + -+ + Zn@) = Tngs-1)
<(k+1)YPV(x) < 26M7 < 267 =21,

so we find Ky(2;v1(B), los(B)) < |20, () + tl|2 e (5) < 3t?. Thus we con-
clude

121w, oe(B) < 3ll2ll0,,(5)-
Note that if z € co(B) Nwvy(B) we find 2° and z' in ¢o(B) also, so the same
argument gives ||zl (,0(B).co(B))s... < 3llZllg(m). That yields the third inclusion
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n (7.27). The inclusion Wy 1(B) C vp(B) is an immediate consequence of the
following simple Hélder type inequality

1l (3) < lllly; ) 2llelles 2)°

once one recalls Lemma 5.12. Thus we have established (7.26). It only remains

to prove the first inclusion in (7.27). But by duality the latter is equivalent to
up(B)* € (1}(B), co(B))5 1

and by the duality for real interpolation spaces (Theorem 5.13) and by (7.13)

this boils down to

Up(B)* C (loo(B*),v1(B"))g,00 = (01(B"), loo(B*))1-0,00-
Equivalently, since u(B)* = v, (B*) this reduces to
vp (B¥) C (v1(B"), Lo (B"))1-6,

and this is but the second part of (7.26) with B*,p’,1 — 6 in place of B,p, 6.
The last assertion follows from the general fact (see (5.4)) that for an inter-

polation pair (Ag, A1) with A9 C Ay, for any 0 < o < 6 < 3 we have bounded

inclusions (Ao, A1)a,r C (Ao, A1)g1 and (Ao, A1)o,00 C (Ao, A1)g,s- O

We will denote by ¢(B) C £ (B) the subspace formed of all convergent
sequences, equipped with the norm induced by (. (B).
Note that forany 0 <0 < 1,1 < ¢ < o0

(7.29) (v1(B), loo(B))o,q = (v1(B),¢(B)),q:

with identical norms. To check this, we first claim that
(v1(B),€oo(B)),q C c(B).

Indeed, a basic fact in interpolation theory asserts that Ay N A; is dense in
(Ap, A1)pq when ¢ < oo (see Remark 5.1). Applying this to (Ao, 41) =
(v1(B),4x(B)), we find that Ay = v1(B) is dense in (Ao, A1)g,q, but in our
specific case Ay C A1, and hence (Ag, A1)g,q is included in the closure of
Ap in A and since v1(B) C ¢(B), and ¢(B) is closed in lo(B), the lat-
ter closure is included in ¢(B). This proves our claim for ¢ < oo. But if
q = oo, we may choose any 0’ with § < 6’ < 1, then for any finite Q we have
(Ao, A1)g.00 C (Ao, A1)e,0 C c(B) and we obtain the claim also for ¢ = oo
Obviously, since v1(B) C ¢(B), for any x € ¢(B) that is also in v1(B) 4 £oo(B)
we have

Ki(z;01(B), loo(B)) = Ki(w;01(B), ¢(B))

and hence the norms of z in (v1(B), oo (B))s, q and in (v1(B), c¢(B))g,q coincide.
Now, from our claim that (v1(B), e (B))g,q C ¢(B), (7.29) becomes clear.



156 CHAPTER 7. INTERPOLATION AND STRONG P-VARIATION

Definition. For b = (b(n)) € ¢(B), let b(co) = limb(n) € B. We denote by
up,(B) the subspace of ¢(B) formed of all b = (b(n)) such that

(b(n) — b(00))nen € up.
We equip u,(B) with the norm
16l (B) = lI6(00) || + [[(b(r) — b(00)) [lug()-

Remark 7.11. Thus u,(B) ~ B @ u)(B). In the same decomposition we have
v1(B) ~ B®v}(B) and ¢(B) ~ B @ co(B). Therefore we must have also

«(B

1 <

(v1(B),¢(B))o,q = B ® (v1(B), co(B))o.q

for any 0 < § < 1 and 1 < ¢ < 0. In particular (7.27) and (7.29) imply
obviously
(7.30) (v1(B), €oo(B))o,1 C up(B) C vp(B) C (v1(B), Lo (B))o,00-

)

We recall the notation

with p=(1—-6)"1.

Lemma 7 12. Let 1 <r <p < < o00. 0 < a,B <1 be determined by the
1_ ﬁ
P

equalities 5= 1TO‘ + < and + g Then
(7.31) Wp(B) = (vr(B), loo(B))a.p
(7.32) Wp(B) = (vi(B), us(B))g,p

with equivalent norms. More generally, for any 1 < ¢ < oo, we have
Wi.q(B) = (v7(B), lc(B))a,g and Wpq(B) = (v1(B), us(B))s,q -

Proof. The key is to use “reiteration”. By Lemma 7.10 the reiteration Theo-
rem 5.9 implies (7.31) and (7.32). O

For simplicity, the following definition was kept implicit until now, but we
will need to refer to it.

Let 0 < p < 00,1 < ¢ < co. We denote by v, 4(B) the space of sequences
x = (z,) in BY such that

Vi,q(x) = sup{[|[(z0, Tn(1) = Tn(0), Tn(2) = Tn(1), - - )lle, ,(B)} < 00

where the supremum runs over all sequences 0 = n(0) < n(l) < n(2) < ... of
integers, and we equip it with the quasi-norm = — V,, ;(z). Recall here that by
(7.5) (easily extended to p < 1) we have

Voa(2) < llzllw, .-

The space vp oo (B) corresponds to the sequences with variation in weak-£,. It
corresponds to an “intersection” between the scales v, ;, and W, 4 as formulated
in the following lemma:
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Lemma 7.13. For any 1 < p < oo and any B we have
Up,00(B) = Wy, (B)
with equivalent norms.

Proof. By (7.5) we already observed W), o (B) C vp o0 (B). Conversely, the proof
of (7.26) actually shows v, o (B) C (v1(B), s (B))g,00 Where % =1-0. O

Let 0 < p < 00, 0 < ¢ < co. Let us denote by 9, 4(B) the space of sequences
r = (v,) € BY such that the sequence y = (y,), defined by yy = z¢ and
Yn = Ty, — Tp_1 for all n > 1, is in £, 4(B). We equip it with the quasi-norm

Hx||5p,q(B) = ||y||ep,q(B)'

When 0 < r < 1, the spaces v, behave slightly surprisingly with respect to
interpolation, as the next statement shows.

Theorem 7.14. Let B be any Banach space. Fix 0 <r < 1. Let 0 < 6 < 1,
1 < q<oo. Let p be determined by % =120 Then (v,(B),lx(B))g,q can be
described as follows:

(i) Ifr<p<1 (i.e. 0 <0 < ) we have
(vr(B), oo (B))o,q = Ip,q(B)
with equivalent norms.
(i) Ifl1<p<oo (ie. a <O <1)we have
(0r(B), oo (B))o,g = Wp,q(B)
with equivalent norms.

Proof. Let X(a,q) = (vp(B),lsc(B))a,q- Since the operator T' taking (z,) to
(xo, 21— X0, y &y —Tp—1,- ) is bounded simultaneously from v, (B) to ¢,.(B)
and from /o (B) to itself, it is also bounded (by Theorem 5.2) from X (a, 1) to
(4r(B),oo(B))a1 = £1(B). Therefore X(a,1) C v1(B). Then, by the same
argument as for Lemma 7.10 we obtain

X(a,1) Cvi(B) C X(a,0)

Therefore, by the reiteration Theorem 5.9 (extended to the quasi-normed case
see [5, p. 67]) forany 0 < v < 1,0 < d <1 and 1 < g < oo, we have

(7.33) (vr(B), 01(B))y,q = (0r(B), £oo(B))eq

where 6 = ya, and

(7.34) (01(B), loo(B))s,q = (vr(B), £oc(B))o.q
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where § = (1 —d)a+ 0 = a+ §(1 — a). As before, define y = (y,) by yo = o
and y, = ¥, — x,_1 for all n > 1. Since ||z, 5y = l|ylls, () for any 0 < r <
1, we may identify v,(B) with 4,(B), or equivalently with ¢.(B), so that by
Theorem 5.7 we have

(vr(B),v1(B))~,q = 0p,q(B).

Thus (7.33) implies (i). By definition of W), 4(B), (7.34) is the same as (ii). O

7.2 Type and cotype of W,

In this section, we will show that the spaces W, satisfy an analogue of the
Holder-Minkowski inequality (see Appendix 2 in Chapter 8). The latter refers
to the fact that, assuming 1 < r < p < oo, for any measure spaces (€1, 1),
(Qa, p12) we have a norm 1 inclusion

(7.35) LT(NIQLP(/Q)) c LP(M%LT(MI))'

Note that the reverse inclusion holds when p < r and when p = r, Fubini’s
theorem gives us isometrically

Ly(pa; Lp(pa)) = Lyp(p2; Lyp(pa)) = Lp(pn X pa).

Although this is very special to (and in some sense characteristic of) L,-spaces,
it turns out that the space W, satisfies an analogous property: If r < p we
have a bounded inclusion L,(W,) C W,(L,), while if p < r we have the reverse
Wyp(Ly) C Lr(W,). There is however (necessarily) a singularity when r = p
that reflects the non-reflexivity of W,.

Theorem 7.15. Let (2, 1) be any measure space and B any Banach space.
For simplicity, we write L,(B) instead of L,(Q, p; B). Let 1 < p < co. For any
r < p < s we have the following bounded natural inclusions:

(7.36) Ly(Wp(B)) € Wy (L (B))
(7.37) Wp(Ls(B)) C Ls(Wp(B)).
Proof. We first observe that this can be easily reduced to the case of an atomic
measure space with finitely many atoms, and this allows us to ignore all mea-
surability considerations since we may as well assume L, = ¢}’ and Ly = {7. Let

0 < a,0 < 1 be as in Lemma 7.12. Now observe that the following inclusions
both hold with norm <1

L,.(v.(B)) Cv.(L.(B)) and L,({s(B)) C lx(L.(B)).
Therefore by interpolation we have

(Lr(vr(B)), LT(EOO(B)))QW C (vr(Lr(B)), loo (LT(B)))OMD
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but by (7.31) the last space coincides with W, (L,(B)) and by Remark 5.7 since
p > r we have
L.(Wy(B)) C (Lr(v(B)), Lr(€(B)))ap

and hence (7.36) follows.
The proof of (7.37) is entirely similar but with the inclusions reversed. By
the duality between v,(B*) and u),(B) we have

ud(Ls(B)) C Ly(ul(B)),

S

or equivalently (see Remark 7.11) us(Ls(B)) C Ls(us(B)), and obviously also
01(Lo(B)) € L(1(B)).
Therefore by Remark 5.7 again since s > p

(01 (Ls(B)), us(Ls(B)))pp C Ls((01(B), us(B)) g p) = Ls(Wp(B)),
and by (7.32) we obtain (7.37). O

Remark. By Remark 7.9, it is easy to see that (7.36) and (7.37) are actually
equivalent by duality.

The next Corollary shows how to apply our study of the spaces W, 4 to the
more classical spaces v,. The main point is the fact that the two scales are
intertwined in the form expressed by Lemma 7.10.

Corollary 7.16. In the situation of Theorem 7.15, let 1 < pg < p1 < co. Then
for any r,;s such that 1 <r < pg < p1 < s < 0o we have the following bounded
inclusions:

Upo (LS(B)) C LS(UIH (B))
Ly (vpy(B)) C vp, (Lr(B)).

Proof. Pick p such that pg < p < p;. We have (by (7.6) and Lemma 7.10)
bounded inclusions vy, (B) C W,(B) C v1(B). Moreover, this holds for any B
(and hence also with L,.(B) or Lg(B) in place of B). Therefore the result follows
immediately from Theorem 7.15. O

Lemma 7.17. Let T: By — By be a bounded operator between Banach spaces.
Then, for any 1 < p < oo, T extends “naturally” to a bounded operator T':

Wyp(B1) — Wy (Bs) taking © = (xn)n>0 € Wp(B1) to (Txy)n>0, and moreover
1T = {177

Proof. This is a direct application of the fundamental interpolation principle
(cf. Theorem 5.2): indeed we have clearly |T: v1(B1) — v1(B2)| < ||T|| and
1T Loo(B1) — Loo(B2)|| < [ITY], therefore ||T: Wy(B1) — Wy(Ba)|| < [|T.

The converse is obvious by considering the action of T on sequences (x,,) such
that xg € By and x,, = 0 for all n > 0. O
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Corollary 7.18. Let (Q1, p1), (22, u2) be two measure spaces. With the nota-
tion of Theorem 7.15, any bounded linear operator T: L,(p1) — Ls(u2) extends
to a bounded operator

T: L, (113 Wp) — Ls(p2; W)
such that T(f@z)=T(f)Qx (f € Lo(p1),x € Wp).

Proof. By Theorem 7.15, it suffices to show that T is bounded from Wy (L) to
Wy (Ls), and this follows from the preceding Lemma. O

Corollary 7.19. Let 1 <r < p < s < oo. Then W, is of type r A2 and of
cotype sV 2 for any 1 < p < 0.

Proof. Let Q = {—1,1} equipped with its usual probability p. Consider the
operator

T ET'/\Q N LSV2
defined by T'((a)) = >~ anén. By the Khintchine inequalities (cf. (8.7)), T"is
bounded, and hence so is T" by the preceding Corollary, and that means W, is of

type 7 A 2. We may argue similarly with the operator T': L, — f4y2 defined
by T(f) = ([ fen dp)n>o and this shows that W, is of cotype sV 2. O

Note that, by the classical Kwapien theorem, a Banach space is of type 2
and cotype 2 iff it is isomorphic to a Hilbert space. In particular, type 2 and
cotype 2 forces reflexivity. However, we now can state:

Corollary 7.20. For any € > 0, there are non-reflexive Banach spaces of type
2 and of cotype 2 + €.

Recall that the Banach-Mazur d(E, F') between two (isomorphic) Banach
spaces is defined by
d(E, F) = inf{]|ull[[u="]}

where the infimum runs over all possible isomorphisms u: E — F.

Remark 7.21. The space W, has several remarkable properties reminiscent
of Hilbert space: it is isomorphic to its dual and moreover there is a con-
stant C such that any n-dimensional subspace (n > 1) E C W, satisfies
d(E,¢%) < CLog n. This logarithmic growth is sharp. Indeed W, is of course
non-reflexive (see Remark 7.1) but any Banach space X for which the function
f(n) =sup{d(E,¢3) | E C X} is o(Log(n)) must be reflexivel We refer to [235]
for more details.

7.3 Strong p-variation in approximation theory

For any = € BY we denote

Vo (@) = sup{([|zoll” + lznq) — zoll? + -+ + [|Zn(n) = Tuv—1)|I?)/7}
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where N is fixed and the supremum runs over all increasing N-tuples of integers
n(l) < n(2) <--- <n(N). Note that

(7.38) Vo (7) < 201+ N)MP|2]| .

Lemma 7.22 ([75]). Let 1 <r < co. For any x in v,.(B) + {x(B) we have for
any N > 1

27TV, () < Ky (2,00(B), Lo (B)) < 2V; i (2).

Proof. For simplicity we set K;(z) = K¢(z,v.(B), s (B)). We have obviously
Ven(z) < Vi(z) and V, n(z) < 2(N + 1)Y/"||2||se- Therefore if x = zo + x1 we
can write

Vin (@) < Viow (@) + Viw (@1) < zollu(m) + 2N + DV a1 [lo

and hence V,. y(z) < 2"V K y1/0 (10).

For the converse inequality, we use the same idea as in the above proof
of Lemma 7.10. By homogeneity we may assume V,. y(z) = 1. We let n(1) =
inf{n | ||z, —zol| > N~} n(2) = inf{n > n(1) | [|2n—2,()|| > N2/} and so
on. The process will stop at some integer k. Note that N~1/7kY/" < Vin(z)=1
and hence k < N. We then define z9) = z on [0,n(1)], 28 = .1y if
n €ln(k —1),n(k)] and 2' = x — 2°. Then ||z'| s < N~Y7 and, since k < N,
|2°l,.(B)y < Vi,n(x) = 1. Thus we obtain

Ky (@) < 2o,y + N7 ]2 |0 < 2. O

Remark. Actually the preceding Lemma remains valid for 0 < r < 1 with
possibly different constants, with the same proof. In that case, the space v, is
only a quasi-normed space.

Now that we have a more concrete description of the K-functional, we can
give a rather nice one for the interpolation spaces W, 4(B):

Theorem 7.23. Assume 1 <r <p<oo, 1< qg<oo. 4 sequence x = (x,) in
BN belongs to W, 4(B) iff the sequence (N~Y/"V, n(x))n>1 is in £, , and the
corresponding norms (or quasi-norms) are equivalent.

Proof. We use Lemma 7.12. Let ay(x) = N~/"V, y(x). Simply observe that
if le =1-24 2 and 1 < ¢ < oo, by “change of variable” (we replace ¢ by N/

T

dt

/oc(tiaKt(l'/Ur(B%EOO(B)) - ZNEl(Nia/TKNl/T(Ia v?"(B)aéoo(B)))qul

0 t
~ 1/p an-—1
3 (N Pay ()TN,
and the result follows by Remark 5.6. O

Remark 7.24. The preceding result shows that, for any B and any closed sub-
space S C B, W, ,(S) is a closed subspace of W, ,(B) and its norm is equivalent
to the one induced on it by W, 4(B).
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Remark 7.25. One can derive an alternate proof of (7.36) from Theorem 7.23
(or from Lemma 7.22). Then (7.37) follows by a duality argument.

Another useful description of the space W, can be given in terms of approx-
imation theory. Actually, it would be more natural (as is done in [75]) to work
with functions on [0, 1] and to consider approximation by splines, but we prefer
to stick to our “discrete” setting.

Let Sy C 4o (B) be the subset formed of all b = (b(n)),>o such that N can
be partitioned into IV intervals on each of which b is constant. Note Sy C Sy41.
Then let

Vi € loo(B) Sy (@) = inf{ ||z — bl|oc | b € Sn}.

This is simply the distance of x in o (B) to Sy.
For any = € Sy we have obviously

(7.39) Vi(z) = sup, Vik(z) = Vin(z) < (14 2N) |20

Theorem 7.26. Let 1 < p < oo. The following properties of a sequence x € BN
are equivalent:

(i) © € W,(B).
(ii) S n Sn(@)P < 0.

Moreover the corresponding quasi-norm z +— ([|zo||P + 3. n=q Sy (@)P)M/P is
equivalent to the norm (namely V,(x)) in the space Wy(B).

Proof. The proof of Lemma 7.22 actually shows that Sy (z) < N*I/TV},N (in-
deed in that proof z° € Sy). Therefore by Theorem 7.23, (i) implies (ii).
Conversely, assume (ii). Note that S, + Sy C Sp4 for any n,k > 1, and also
SIS (x)P = 3227Son ()P < 0o. Let (™ € S, be such that ||z — 2|, <
2800 (z). Let A, = (™ — 2D and 2O = 0. Note z = Y ;°A, and
Ay € Sonjont1 C Sonta. Therefore, by (7.39), we have V) 5 (A,) < 23] A ||oo
that we will use when 2% > 27"+2_ while, for any k, we already saw in (7.38) that
Vior(Ay) < (2571 +1)]| Ay ||l so. We have

Viok () < Vpon Z Ap | + Vion < Z An) ;

n<k—2 n>k—2

< Z Vl,z’“(An)+ Z (2k+1+1)HAnHoo

n<k—2 n>k—2
< D 2P Ao + 2T 1) DT AL ee-
n<k—2 n>k—2

But |Anllee < |70 — 2)|ee + |lz — 2TV < 4S9 (2) so we find for some
constant ¢ an estimate of the form

2RV, () < c (2* > 2@ Y S (x)) ,
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or equivalently for any N > 1 (with a different c)

NWin(@) <e(NTIY S+ Y nTiS(@).

From this, elementary arguments show that

D Sn(@)P <oo= Y (N'Win(x)P < oo

Indeed, by Hardy’s classical inequality, for any 1 < p < co and for any scalar
sequence (a1, as, -+ ), we have

N7 ezl < pll(an)le,

and therefore by duality also for any 1 < p’ < co and any sequence (by,bo, )

| (ZNZ” bn/Nnz1lle, < P'I0N) e,

and hence >~ Sy(z)P < 0o = & € W, by Theorem 7.23. O

Remark 7.27. The preceding proof shows that the properties in Theorem 7.26
are also equivalent to

(iii) For each integer n > 1, there are A, € Sy» such that x = ) A, and
22”’ sukaQn Ak”gm(B) < 0Q.

Remark 7.28. Let B, B; be arbitrary Banach spaces. Let Q: B — Bj be a
bounded surjection onto By so that B; ~ B/ker(Q). Then for any 1 < p < o0
the associated map I ® @ is a surjection from W,(B) onto W,(Bi). Indeed, this
is an easy consequence of the preceding remark. This lifting (or “projective”)
property can also be proved by duality using Remarks 7.24 and 7.9.

Throughout this chapter we have collected a wealth of information on the
real interpolation spaces W,, ;. In sharp contrast, the complex analogue remains
a long standing open question:

Problem: Describe the complex interpolation spaces between the complex val-
ued versions of v1 and £,

7.4 Notes and Remarks

This chapter is mainly based on [235]. A key idea comes from Bergh and Peetre’s
[75]: There they prove Lemma 7.22 and (7.26) in the scalar case but the Banach
valued case is identical. As mentioned in the text, the classical James space J
is the one that we denote by v9. Theorem 7.5 and Lemma 7.6 are due to James.
See [231] for a proof that J* is of cotype 2.

Our approach can be applied equally well to the couple of function spaces
(Vi(I; B),£so(I; B)) when I C R is an interval (in particular when I = R). Here
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the definition of V,,(I; B) (0 < p < o0) is exactly the same as for sequences, or
equivalently a function f: I — B isin V,(I; B) iff for any increasing mapping
T: N — I, the composition foT: n f(T(n)) is in v,(B) and | f|lv, ;5
is equivalent to sup{||f o T'l|,,(p)} where the sup runs over all possible such
increasing mappings 7. In case I = R, it is natural to define V;)(I; B) as the
closure of the subset of compactly supported infinitely differentiable functions,
and to replace (as we did for sequence spaces) V,(I; B) by V(I; B). See [75]
for connections with approximation by splines.

We then define exactly as before W, ,(I; B) = (V1(I; B), 4o (I; B))g,q- Many
results of this chapter remain valid, for instance this is the case for Theorem 7.15,
Corollaries 7.16 to 7.19 and those in §7?7. Among the few references we know
(besides [231]) that study the Banach spaces of functions with finite strong
p-variation, we should mention [11] and [180].



Chapter 8

The UMD property for
Banach spaces

8.1 Martingale transforms (scalar case)
Burkholder’s inequalities

Let (M,)n>0 be a scalar valued martingale on a filtration (Ay,),>0. We will
always set dMy = My (or we make the convention that M_; = 0) and

Vn>1 dM, =M, — M,_1.

When there is no ambiguity, we will often denote by E,, the conditional expec-
tation relative to 4,,. Moreover we will sometimes say n-measurable instead of
A,-measurable.

Let (¢n)n>0 be an arbitrary sequence of random variables, that we merely
assume to be adapted to (A,)n>0, i.e. we assume that ¢, is A,-measurable for
eachn >0.

Let then MO = (,OOMO and

Vn >1 Mn = poMp + ZZL Pn—1 dM,.

Clearly Misa martingale and the correspondence M — M is called a martingale
transform.

An adapted sequence (1) is called predictable if 1, is A, _i-measurable
for each n > 0. In the above, we crucially used the fact that (¢,,) defined by
Yn = pp—1 (and say ¥y = 0) is predictable.

The key property about these transforms is that, if sup||¢n|ec < 00, then

n

M — M is bounded on L, for all 1 < p < oo and is of weak type (1-1). This is
due to Burkholder as well as the corresponding inequalities: for each 1 < p < 0o
there is a constant 3, such that if 1 < p < oo

(8.1) SUPHMTLHP < ﬁpSUPH@nHOOSUPHMnHP

165
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andifp=1
(8.2) sup AP(sup | M| > A) < By sup [ @nlloc sup | M1
For the proof, see Theorem 8.18 and Corollary 8.14 below.
By Doob’s maximal inequality, (8.1) implies that, if sup ||on||co < 1, we have
(8.3) (Esup [M,[")"/? < 3, (Esup | My [?)'/7,

where 3, = p'3,. In this form, (8.3) remains valid when p = 1. Namely, there
is a constant 31 such that

(8.4) Esup | M,| < B,Esup |M,|.

This and (8.10) below are known as B. Davis’s inequality. See Corollary 8.26
below.

This is already of interest when each of the variables ¢, is constant and
in that special case (8.1) expresses the fact that the sequence (dM,)n>0 is an
unconditional basic sequence in L, i.e. the convergence in L, of the series
>~ dM,, is automatically unconditional. Let € = (&,), be a fixed choice of signs,
i.e. ¢, = £1. Then (8.1) implies for any (M,,) converging in L,

(8.5) H 3 e dM, 3 am,
Replacing dM,, by €, dM,, in (8.5) we find the reverse inequality
(8.6) IS an, <8 I3 en an,

Let us now introduce the uniform probability # on {—1,1} and recall the
classical Khintchine inequalities: For any 0 < p < oo there are constants A, > 0
and B, > 0 such that for any sequence « = (z,,) in ¢, we have

1/2

67 4, (D) < (/ e pdu(6)>1/p < B, (Y lal?) "

Then if we integrate (8.5) and (8.6) (after raising to the p-th power) we find
4,818, < || S dba| < 8B, 1S,

where S is the so-called “square function” defined by

< 0By
p

p

P

oo 1/2
_ 2 2
(8.8) S = (|MO| +3 0 My ) .
A similar argument can be applied to (8.2) and it yields a constant /3] such that
(8.9) sup AP(S > \) < 1 sup || My]|1.

A>0

Moreover, using the Khintchine inequality (8.7) for p = 1, and also (1.23),
we find

(8.10) Ay (B)'ES < Esup |M,| < 23{ES.
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8.2 Kahane’s inequalities

In the Banach space, the square function sup (3 |dk|2)1/ ? must be replaced by
n

1/2

(8.11) 3171lp /szgkdkHldy
D

where D = {—1, 1} equipped with its usual probability v and where ¢,, = D —
{—1,1} denotes the n-th coordinate.
When B is a Hilbert space, for all z in B we have

n 2 n 2
SIS0 ]| =320 o

and hence we recover the square function, but in general this is not possible and
we must work with (8.11). We will show in the next section that for the Banach
spaces with the UMD property, the Burkholder inequality remains valid when
the square function is replaced by (8.11).

This motivates a preliminary study of averages such as (8.11) in a general
Banach space when dj, are constant.

Theorem 8.1 (Kahane). For any 0 < p < q < oo there is a constant K(p, q)
such that for any Banach space B and any finite subset x1,...,x, in B we have

<Ko S, -
HzgkkaLq(B)* (p,q) ngxk Ly(B)

In particular H > EkmkHLQ(B) 1$ equivalent to H EEkkaLp(B) forany0 < p < oo.
Remark 8.2. Consider the Banach space B formed of all sequences z = (,,) of
elements of B such that sup,, || > zx|| < oo, equipped with the norm

n

D

k=0

]|z = sup
n

Then applying Kahane’s inequality to the Banach space B we immediately get
that, if we denote S* = sup,, || >_j_ €xzk|, then for any sequence (z,,) in B we

have
15y < K(p, @) IS™]]-

We will base the proof of Kahane’s Theorem on the classical hypercontractive
inequality on 2-point space made famous by Nelson and Beckner [72] (but first
proved in [80]), as follows.

Theorem 8.3. Let 1 <p < q<oo. Let £ =((p—1)/(q—1))"/2. Let B be an

arbitrary Banach space. Then

1 1
= + €yll* + ||x—£y||q> ln_ <||x+y||p+ ||x—y||P) &
2 - 2 ’

Vr,y € B (
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Proof. Let Q = {—1,1},P = (01 +0-1)/2. Let e1: Q — {—1,1} be the identity
map. The proof actually reduces to the case B = R. Indeed, let T': L,(Q2,P) —
L,(2,P) be the operator defined by T1 = 1, Teq; = £ey. Then T > 0 (T =
convolution by 1+ &gy and 1+ &y > 0!). Thus the passage from R to a general
B follows from Proposition 1.4. For the proof in the scalar case, we refer to the
appendix (still to be written). O

Consider now D = {—1,1}" equipped with v as before, let (¢,,),>0 denote
the coordinates and moreover for any finite subset S C N, let

ws = H En-
nes

Corollary 8.4. Let 1 <p < q < oo and let £ = ((p—1)/(q — 1))*/? as before
with B arbitrary. Then for any family {xs | S C {1,...,n}} in B we have

812 [ etusas ], <[ Swsrs], -

(8.12) > Pluges L) S > wsws B

In particular for any x1,...,x, in B

8.13 H ‘ <((q-1)/(p—1 WH ’ .
(8.13) > eran . ((@=1)/( =) e )

Proof. The proof is based on the following elementary observation: let
Ti: Lyp(Qu,pa; B) — Le(Q, 1y B)

and
Ty: Lp(Qa, p2; B) — Le(Q, po; B)

be s (i.e. with norms < 1). Then, if ¢ > p, the operator 71 ® To: L,(p1 X
po; B) — Lg(py x ph; B) also has norm < 1. (To check this one uses the
classical Holder—-Minkowski inequality that says that we have a norm 1 inclusion

Ly L)) © Ly(p's L()), see (8.79).)

It follows from this observation by iteration that T @ T ® --- ® T (n times)
is a contraction from L, (B) to L,(B), and since this operator multiplies wgzg
by €151 we obtain (8.12) and hence (8.13). 0

Proof of Kahane’s Theorem. The preceding corollary already covers the case
1 <p<q<oowith K(p,q) = ((¢ —1)/(p — 1))*/2. In particular if we set
F() = X er(-)xkll, we have proved for 1 < p < g < oo

£l < K@, )l £l

Let 0<r<1l<p<yg. DeﬁneO<9<1bytheidentity%:%+g. Then by
Holder we find

171l < K, )1l ILF17

hence after division by || f]|17%, we obtain

Ifllq < K@) ° £l
which yields K(r,q) < K(p,q)'/?. O
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We might as well record here an elementary “contraction principle”: Assume
1 < p < oco. Let B be an arbitrary Banach space. Then Vxy,...,2, € B
Vai,...,a, €R

(8.14) HZ akskkaLp(B) < sup |ay]| HZekxk‘ ) ;
moreover V3,...,08, € C

8.15 H BrerT H < 2sup|f H ERT H .
(8.15) 2 Bl el || 2],

To verify this, note that by convexity the supremum of the left side of (8.14)
over all (o) in R™ with sup |ag| < 1 is attained on an extreme point, i.e. an
element of {—1,1}", for which (8.14) becomes an equality. This proves (8.14).
To verify (8.15), simply write B; = a, + ta}, and use the triangle inequality.

Lemma 8.5. Let 0 < p < ¢ < co. Let F be a subset of Ly(Q, A,P). Assume
that there is C > 0 such that

VfeF 1 £llq < Cll fllp-
Then there are 6 > 0 and R > 0 such that
VfeF P([f| > R| fllq) = 0.

Proof. Let r be such that p~* = ¢~' + 7', Replacing f by f||f||;! we may
assume that ||f|l; =1 for all f in F. By Holder’s inequality for any R > 0 we
have

1115yl < @(F] > R)YT.

Hence we can write

L=fllg < Clflly < ClfLgs<rylly + Cllf L5 rylp
< CR+C(P(|f| > R))Y".

Thus if we choose R = (2C)~! and § = (2C)~" we obtain the announced
result. O

Let f, and f be B-valued random variables. Recall that, by definition, f,
converges to f in probability if

Ve >0 P(||fn — fll >€) = 0 when n — oc.

This convergence is in general strictly weaker than a.s. convergence. However,
by Corollary 1.24, it is equivalent for sums of independent random variables, in
particular for the sums considered in Theorem 8.6 below.

The corresponding topology is the natural one on the topological vector
space Lo(B) of B-valued Bochner measurable functions. The preceding Lemma
is an extrapolation principle: If the Lg-topology on a linear space F coincides
with the L,-topology for some p < g, then it also coincides with the topology
of convergence in probability (i.e. the Lo-topology).

In particular, we obtain
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Theorem 8.6. (i) Let (o) be a scalar sequence. Then Y " epa, converges

(ii)

in probability iff Y |an|* < oo, and then it converges a.s. and in L, for
all p < oo.

Let (x,,) be a sequence in a Banach space B. Then the series Zgo Enln
converges in probability iff it converges in Ly(B) for some 0 < p < oo.
Then it converges a.s. and in Ly(B) for all 0 < p < cc.

Proof. (i) By the Khintchine inequalities and the preceding Lemma, the L,-

(i)

and Lo-topologies coincide on the span of {e,} for any 0 < p < oo.
Then the a.s. convergence follows either from Theorem 1.22 or from the
martingale convergence theorem since f,, = Zg eray is a martingale and
we may choose p > 1.

Same argument as for (i) but using the Kahane inequalities instead of the

Khintchine ones.
O

Applications

(i)

(iii)

Let 0 < r < co. Let (x,) be a sequence in the Banach (or quasi-Banach)
space B = L, (T, u) over a measure space. Then the series Y e,z, con-

verges a.s. in B iff
[ leal?y 2du < oo

or equivalently iff (3> |2,|?)'/? € B. Indeed, choosing p = r in the last
Theorem this is an easy consequence.

In particular, if B = ¢,., with canonical basis (e) and if for each n, we set
Tn =Y. xn(k)eg, then Y ey, converges a.s. in B iff

S B2 < .
k n

Let (a,) be a scalar sequence indexed by Z. Consider the formal Fourier
series ) a,e™. Let B be a Banach space of functions over the circle
group T, such as for instance the space of continuous functions C(T) or
the space L, (T, ) with respect to the normalized Haar measure p. Note
that in both cases the Fourier transform of an element of B determines
the element. By convention, we will write Y, a,e'™ € B if there is
an element f € B with Fourier transform equal to (a,), i.e. such that
Vn € Z f(n) = a,. Then, > ez Enane™ € Ly (T, p) for almost all choice
of signs () iff 3" |a,|? < co. Note that the condition we find does not
depend on 7, which is surprising at first glance.

With the same notation, f =3, ., enane™ € C(T) for almost all choice
of signs (g,,) iff a.s. the partial sums of the random Fourier series
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converge uniformly over T when N — oo; moreover, this holds iff both
(unilateral) series Zév Enane™ and 2:11\] enane™ converge uniformly
over T. By the preceding theorem, we then have for any p < oo

P

t

E sup Z enane’™| — 0.

€T >N

Let fy =Y, ~oenane™ and f_ =Y _ epane™. Observe that f = fi + f-
has the same distribution as f = f; — f_, and hence: f € B a.s. iff both f, € B
a.s. and f_ € B a.s. . Then, the last point (iv) follows from (the Ito-Nisio)
Theorem 77, taking for D the countable collection of all measures p such that
|1|(T) < 1 with finitely supported Fourier transform taking values in any fixed
dense countable subset of C, say in Q + iQ.

8.3 Extrapolation. Gundy’s decomposition. UMD

The central idea to prove the Burkholder inequalities is usually described as
“extrapolation”. Schematically, the main point in the scalar case is:

- the Lo-case is obvious by the orthogonality of martingale differences,

-the L,-case can be deduced from the Li-one by extrapolation. The basic
principles of extrapolation go back to [108]. there are several ways to implement
the extrapolation technique. We use the Gundy decomposition because it will
be adaptable easily to all the other situations of interest to us in these notes.
We will use similar ideas in the vector-valued case. However, although we use
classical ideas we will need to be careful about certain details because we are
interested in the precise relations between certain constants, such as the UMD
constants of a Banach space.

Definition 8.7. Let 1 < p < co. A Banach space B is called UMD,, if there
is a constant C such that for any martingale (f,,) converging in L,(B) we have
for any choice of signs €,, = £1

8.16 , H " end H <Cs .
(8.16) sup >, ckdfi L S Sup | fullz, )

We will denote the best C' in (8.16) by C,(B). We will say that B is UMD
if this holds for some 1 < p < oo (we will see below that it then holds for all
1<p<o0).

Clearly, any Hilbert space is UMDs.

Remark. Equivalently, we may restrict (8.16) to “finite” martingales, i.e. one
for which there is an integer n such that dfy = 0 for all k£ > n.

By an elementary duality argument one easily checks:
Proposition 8.8. B is UMD, iff B* is UMD, with %+ 1% = 1. Moreover, we

have

(8.17) C, (B*) = Cy(B).
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Let = {x,} be a sequence in a Banach space B. We define

n
ELT
DIEES

Let (fn) be any martingale on (,A,P) that is bounded in L,(B). For any
w € Q, we define

R(z) = sup (D)
n 2(, V5

Ryp(w) = R({dfn(w) [ n = 0})
or equivalently

Ry (w) = sup HZZ 5kdfk(w)‘

where the Lo-norm is with respect to the variables (e,) defined on (D, v).
The B-valued version of Burkholder’s inequalities reads as follows:

L2 (D,v;B)

Proposition 8.9. B is UMD, iff there are positive constants Cq,Co such that
for any martingale (fy,) converging in L,(B) we have

(8.18) Cr M IRasllp < sup || fullr, () < Coll Ralp-

Proof. Fix a choice of signs €, = 1. Let g, = Y g exdfx. Note the pointwise
equality (recall the proof of (8.14))
Rag = Ryr.

The latter immediately implies the “if-part”. Conversely, assume B UMD,.
Then we have (8.16). But actually, applying (8.16) to g in place of f, we also
find the converse inequality

sup [l fulz,(m) < Csup |2 erdfi|

L,(B)

Assume for simplicity that (f,,) is a finite martingale. Then if we elevate to the
p-th power and average both (8.16) and its converse over all choices of signs, we
obtain (8.18); note that we use Kahane’s inequalities (Theorem 8.1) to replace
the Ly-norm over the signs by the Lo-norm, i.e. by Rgyy. O

As before, let (¢n)n>0 be a sequence of scalar valued r.v.’s, adapted to a
filtration (Ay)n>0. Let (fn)n>0 be a B-valued martingale relative to (A, )n>o0-
Just as in the scalar case, the sequence defined by

n
fn = e0fo+ Zl r—1(fk — fr—1)
forms a martingale, called a “martingale transform” of (fy,)n>0-

Proposition 8.10. If B is UM D,, and (¢,,) real valued, then with the preceding
notation we have

sup | fullr, (5) < C1Casup [lon o sup || fullz, (5)-
n>0 n>0 n>0

If the (pn)’s are complex valued, this holds with 2C1Cy instead of C1Cs.
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Proof. By (8.14) we have for a.a. w

Ryp(w) < sup [|on oo Rar (),

so the announced inequality follows from (8.18). In the complex case, we use
(8.15) instead. O

Remark 8.11. Consider the dyadic case, i.e. we take Q = {—1,1}"~ with
er: Q — {—1,1} the k-th coordinate for k = 1,2,... and we set Ay = {¢, 2}
and A, = o(e1,...,e,) for all n > 1. We claim that, in that case, Proposition
8.10 holds (for real multipliers) with C1C5 replaced by the UMD,, constant of
B. For notational convenience, we will use the Rademacher functions defined in
§1.3 i.e. we take Q =[0,1] and &, = r,,. In that case we have A,, = Ban where
(Bg) is the Haar filtration (see §1.3). Consider then a martingale transform
fn = wofo+ 27 ¢r—1(fx — fu—1) associated to the predictable family (px_1)
with respect to the filtration (A,). Let then Fy = E(f,|Bg) for k =1,---,2",
in particular so that Fy» = f,,. We have then

fo—fna = 22n71<k<2n On—-1(Fr — Fr-1)-

But now ¢,,_; is constant on the support of Fj, — Fj,_; for each 277! < k < 2",
Indeed, by (1.8), Fx — Fx—1 and hj have the same support and the functions
r1,-+- ,Tn—1 are all constant on that support if 2" ! < k < 2". Therefore, with
respect to the filtration (Bg), fn appears as a martingale transform relative to
constant multipliers (and not only predictable ones). This shows that, in the
dyadic case, Proposition 8.10 holds with C'yC5 replaced by the UMD,, constant
of B.

Then we will prove:

Theorem 8.12. Consider a Banach space B. Then for any 1 < p,q < o0, B
is UMD, iff it is UMD, and we have positive constants a(p,q) and B(p,q)
depending only on p and q such that

a(p, q)Cp(B) < Cy(B) < B(p,q)Cq(B).

To prove Theorem 8.12 we will use Gundy’s decomposition of martingales.
This is a martingale analogue of the classical Calderén—Zygmund decomposition
(see the next section and also [57]).

Theorem 8.13. Let B be a Banach space. Let (fn)n>0 be a martingale adapted
to (An)n>0, and converging in Li(B) to a limit f with || f||1, 5y < 1. Then for
any A > 0 there is a decomposition

f=a+b+c

with a,b,c € L1(B) such that:
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() llallz,s) < 2 and
P(sup ||day || # 0) < 3A~!
n

(i) || bl < 4
(iii) [lellz(m) < 2A and ||c||z, By < 5.
Note that (i) implies for any 1 < p < oo
(8.19) llellz, ) < 5YPA)HP.

Proof. We follow Gundy’s original proof closely. Recall that by convention we
denote E,, instead of EA», so that f, = E,f and df, = f — fn_1 Vn > 1 and
dfo = fo. Let » =inf{n | || f|| > A}. Let v, = ||dfn|| - 1{r—pn}. Then let

s = inf {n | ZEk(karl) > )\} .
k=0

Finally let
T=rAs.

Clearly r,s and T are stopping times. Let a = f — fr so that a, = f, — frAn-
We have clearly (since fr =EAT f) |lal|r,5) < 2.
Moreover, obviously 1" = oo implies da,, = 0 so

{sup ||da,|| # 0} = U{dan #0} C{T < oo} ={s < o0} U{r < oo}

and hence
(8.20) P{sup ||day| # 0} < P(r < 00) + P(s < 00).

Now by Doob’s inequality (see Theorem 1.9)

(8.21) P(r < o0) = P(sup || ful| > A) < A1

and also

P(s<o0)=P (kZOEk(Uk_H) > /\) <At ZO E(Ek(vkt1)) = AL Zl Evg.
But now

Evy, = E([|dfx [ 1{r=x})

and r = k implies |[fy—1]| < A <[|fxll hence [|dfe || < [|fxll + [[fe-1ll < 2| /|-
This implies
Evr <EQ@[felllr=xy) = 2E[[Ex(fLgr=r)ll
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hence since by Jensen [|Ex(f17—xy)|| < Ex(||f[|1{r=x}), we have

(8.22) Ev, < 2E(|| fl1gr=x})
and hence

<A1y <o)\~ <o)\t
(8.23) P(s < 00) < A ZO Eve < 207 fllz, 3y < 2271

Thus combining (8.20), (8.21) and (8.23) we obtain (i).
Note that f — a = fr so we must have a priori

bn +cn = fran,
which will guarantee that
(8:24) b+ cll, ) < 1.

Also

Jran = fram—1) = dfalin<ry = dfn - Lin<ry - Lin<sy = Yn + 0
where
Vn = dfn - Lin<rylin<s)
On = dfpn - 1 n=r1lin<sy-
Obviously since (fran) is a martingale we have
En—1(yn +0,) =0 Vn >1
so we can define dby = dy, dcg = 7y and for all n > 1

db, =6, — Epn—1(0,)
dcn = Tn + En—1(5n)~

Since E,,—1(0,) = —E,,—1(75) these are indeed martingale differences.
Note that by Jensen

EY |ldbal < 2B [16a]l < 2B |on]

hence by (8.23) we have (ii).
We now turn to (iii). First note that by (8.24), (ii) and the triangle inequality
we have

lellz, ) <5
Finally, > v = > dfulfnery = fr—i)as if 7 > 1 and > 7y, = 0if r = 0, so

n<s

that by definition of r

(8.25) 152

<A\

Leo(B)
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Moreover, since {n < s} is (n — 1)-measurable
Z En—l(én) - Z ]En—l(dfnl{n:r})
n>1 n<s

hence by Jensen

<> Ena(lldfall - Lin=ry)

n<s

= En(ldfssrlllgr—rr1y)

k<s
which by definition of s is < A.
Thus we conclude H > En_1(dn) : < A and (iii) follows from (8.25) by
n>1 oo
the triangle inequality. O

Corollary 8.14. Assume that B is UMD, for some 1 < p < oco. Then all
martingale transforms are of weak-type (1-1). More precisely there is a constant
C' such that for all martingales (fy)n>0 bounded in L1(B) and for all choices of
signs e, = £1 the transformed martingale f,, = >0 erdfi satisfies

(8.26) up AP(sup || fo]| > A) < Csup | fnllzym)-

S
A>0 n>0

More generally, the same holds when

~ n

fn= Zo POk—10fk
and (pn)n>0 s an adapted sequence of scalar valued variables such that
Vn >0 lenlloe <1,
with the usual convention p_1 = 0.

Proof. By homogeneity, we may assume || f||z, gy < 1. We have fr = Gn+bp+éy
and
827) )

P(sup [[fnll > 3A) < P(sup [|an]| > A) +P(sup [[bn]| > A) +P(sup [[én ]| > A).

We estimate each term on the right side separately: since sup ||G,| > A implies
sup ||da, || # 0 we have by (i)
n

P(sup ||, | > A) <371,
By Chebyshev’s inequality, since sup ||, || < 32 [|dby||

P(sup [[by | > A) < A7) Elldby || < 4X71
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Finally, by (8.19), UMD,, and Doob’s inequality, we have

H sup Hén” ‘p < plcp(B)51/PA171/p

hence by Chebyshev again
P(sup [, > A) < (9'Cy(B)5'/P)PA

so by (8.27) we obtain (8.26) with the constant C' < 3(7 + 5(p'C,(B))P).
For the more general case of predictable multipliers (i, ), the same argument
works using Proposition 8.10. O

Remark 8.15. Note that the preceding argument also shows
supsup AP([[ fo|| > X) < C"sup || full £, ()
n>0A>0 n>0

with € < 3(7 + 5C,(B)?).

Corollary 8.16. In the scalar case (i.e. B = R or C) we find (8.26) with
C < 81. Moreover, for any martingale (fn)n>0 bounded in L1 we have

1/2
supAIF’((Z|dfn|2) > )\) < 81sup | fnll1-
A>0 n>0
More generally, if B is a Hilbert space we find
1/2
528 s ((SalP) " > 2) < stsw o
>

Proof. The first assertion is clear since C3(R) = C3(C) = 1. To prove the second
one, one simply observes that

()| =1ste

so that the same argument applies when we substitute S(f) = (3 |df,|?) Y2 ¢
sup | fnl- O
n>1

Remark 8.17. Note that (8.28) only requires that B is UMD and of cotype 2.

Theorem 8.18 (Burkholder’s inequalities). For any 1 < p < oo, there is a
positive constant (8, such that, for any scalar martingale (M,) in L, and for
any predictable uniformly bounded scalar sequence (), we have

n

sup|| Y ordMglly < By sup || Mallp sup |on | oo
n 0 n n

Let S be the square function defined by (8.8). There are positive constants a,
and by, such that any scalar martingale (M) in L, satisfies

(8.29) a, |Sllp < sup [|Mallp < byl S]lp-
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Proof. By homogeneity we may assume sup,, ||¢n|lcc < 1. Let T, be the trans-
formation taking f € Ly to Y pndfy,. Clearly, by Parseval, [|[T,: Lo — Lof| < 1.
A fortiori, T, is of weak type (2-2). By Corollary 8.14 applied to B = C, T, is
of weak type (1-1), hence by Marcinkiewicz Theorem 8.51, for any 1 < p < 2,
there is B, so that ||T,: L, — Lp|| < B,. By duality, since T, is (essen-
tially) self-adjoint we have ||T,: L, — Ly | < 8, for any p’ > 2. This estab-
lishes the first assertion. To prove the second one, we first fix a choice of signs
e = () and we use ¢, = &,. Let T.M,, = > [ exdMj. The first assertion
gives us ||Te M, ||, < Bpl|Myllp but since T, (T:M,) = M, we have by iteration
| M lp < Bpl|T-M,||,. Therefore,

Bp) THNTMllp < 1 Mallp < Bpll Te M-

But if we now integrate with respect to € and use the Khintchine inequalities
(8.7), letting S, = (31 |[dMy|?)'/? we find

Ap(Bp) ™ 18ullp < 1Mallp < BpByl|Sullp,

and we conclude by taking the supremum over n.

Note that, for 1 < p < 2, we can also deduce the square function inequal-
ity ||S|l, < bpsup, | Myl|l, from Corollary 8.16 by the sublinear version of
Marcinkiewicz Theorem (see Remark 8.52). O

Proof of Theorem 8.12. Assume B UMD, Then by Corollary 8.14 and by the
Marcinkiewicz interpolation Theorem 8.51, B is UMD, for all 1 < ¢ < p. But
now, by (8.17) B* is UMD,,, and hence we may repeat the preceding argument
for B*, and obtain that B* is UMD, for any 1 < ¢’ < p’. By (8.17) again, this
means that B is UMD, for all ¢ > p, and hence finally for all 1 < ¢ < oco. O

We now give the basic examples of UMD spaces.

Corollary 8.19. Let (S, 3, m) be an arbitrary measure space and let 1 < p < co.
Then the Banach space B = L(S,3,m) is UMD. More generally, if B is any
UMD space, then the space L, (S, X, m; B) is UMD.

Proof. By Fubini’s theorem, it is easy to see that, if B is UMD),, then the space
L,(S,%,m;B) is UMD,,. The case B = C corresponds to the first assertion.
Since UMD,, does not depend on p, this proves these two assertions. O

We will now give a different approach to Theorem 8.12 based on “extrap-
olation”. This is particularly efficient in the dyadic case: Indeed, the dyadic
filtration has the advantage that ||df,+1(w)|p is actually A,-measurable for
each n > 0. In other words the lengths of the increments are “predictable”.

We start by a rather general version of the extrapolation principle.

Lemma 8.20. Let (v,)n>0 and (wy)n>0 be adapted sequences of non-negative
random variables, converging a.s. to limits denoted by v and weo. Fizx p > 0.
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Let C > 0 be a constant. Assume that for any stopping time T: Q — NU {oco}
we have

(8.30) I1irsoyvrlly < yrsoywrllp-

Moreover, assume that there is an adapted non-negative sequence (¢¥n)n>0 such
that

Yn >0 Wpt1 — Wy < Uy

Let w* = sup,, wy, and Y* = sup,, Y. Then for anyt >0

(8.31) P{ve >t} <t PE(? A w™) + P{w™ +¢* > t},

and hence for any 0 < g <p

(3.32) Evl, < (p/(p — ) B + B(w* + )1,

Proof. Let T = inf{n | w,, + ¢, > t}. Note that on {T" > 0} we have
wr <wr-1+Pr-1 <,

and hence

(8.33) Lirsoywr <t Aw”,

We have obviously

(vp >, T =00) + P(voo > t, T < 0)
(vp >t, T >0)+P(T < o0)
tip]E(l{T>0}vg“) + P(Sup(wn + ¢n) > t)

and hence by (8.30) and (8.33)

<tPE(lgpsoywh) + P(w™ + 4% > 1)
<ETPE(P Aw*P) + P(w™ + 9" > 1),
which proves (8.31). Then, using Evl, = [ ¢t '"P{vee > t}dt and 1 A

(w*/t)P = Lgyesgy + (w*/t)P1i,- <4 we obtain (8.32) by an elementary compu-
tation.

O

Remark. Note that actually we only use |[1;r—syvrllp, < [[1f7soywr|, which
is a priori weaker than (8.30)
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Second Proof of Theorem 8.12. Let 1 < g < p < co. Assume B UMD,,. Con-
sider a finite dyadic martingale (f,) and a fixed choice of signs (e,). We will
apply Lemma 8.20. Let foo = > endfn, fn = En(fs) and let T be a stopping
time. We set v, = ||fn|lp and w,, = C,(B)| fnllz- By (8.16) applied to the
martingale (1{7>0} fnar), we have

ILrsoyorlly = Ilgrsoy frlie, ) < CoB)lirsoy frile, ) = Iirsowrl,

and hence (8.30) holds.

For dyadic martingales, ||df,+1]|p is n-measurable, so we can take simply
Yn, = Cp(B)||dfn+1l| 5. Note that w*+1* < 3f*. By Doob’s maximal inequality,
if 1 < ¢ < p, (8.32) implies

1l = lvmolla < Co(B) (34 0/ (0 = 0)"/*) Il -

This shows B is UMD,. By duality (see (8.17)), the preceding argument applied
to B* shows B* is UMDy for 1 < ¢’ < p’ < oo, and hence that B also is UMDy
for any 1 < p < g < co. All this is restricted to the dyadic filtration, but it is
known ([202], see section 8.6 below), that it suffices. O

Remark 8.21. Assume B UMD, again. The preceding argument shows that,
for any ¢ with 0 < ¢ < p, there is a constant D(q,p) such that for any dyadic
B-valued martingale we have

[sup || fullBlla < D(g,p)Cp(B)llsup | full5ll4-
n n

Indeed, this follows easily from Lemma 8.20 setting v, = sup;<, | /x5 and
Wn = SUPg<n ||fk||B

8.4 The UMD property for p=1
Burgess Davis decomposition

The following classical decomposition due to Burgess Davis is very useful to
control the “jumps” of a martingale when a priori their length is not predictable.

Lemma 8.22. A general B-valued martingale (fn)n>0 with Esup,, || fn] < oo
can be decomposed as a sum

with hog = 0, >_° E||dh,|| < 6 Esup,, || fx|l and where almost surely for alln > 1

ldgnll < 6 f’:;—la

with the notation [ = sup || fx||. More generally, for any p > 1 we have
k<n

(8.34) |2 il

| <6plsup ],
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and hence

(8.35) l[sup [lgnllll, < (1 + 6p) [lsup [[falll, -

Proof. We define h and g via their increments by setting hg = 0, go = fo and
dhn = dfn - Vigesopz 3 = Bnoa(dfn - Ligzsopr 1y)

n—1
and
dgn = dfn - 1isp<op: )y = Enoa(dfn - Ligp<ap; 3)-

n—1

Note that when f* > 2f*_; then f <2(f* — f*_;) hence we must have

n—1

ldfulllisssarz 3 < (Fatfa)ligms2n iy < B/ prs2p: oy < 3(f—faoa)-

n—1 n—1
Hence

> lldhnll iy <Y 6E(f; = fi-1) < 6Esup | full-
On the other hand, we have
Ndfn - Lipr<ops A < (fn + fac1)  Lprzops 3 <3faq

hence ||dg,|| < 6f_,. Finally, (8.34) follows from the dual to Doob’s inequality
(namely Theorem 1.10), since we have

D ldhnll <35 = fio) + Y EaaB(fr = £ro)),

and (8.35) follows from the triangle inequality. O

Theorem 8.23. Let B be a UMD Banach space. Let C = 54 Cy(B). Then
for all filtrations (Ayn)n>0 and all choices of signs €, = £1 we have for all
martingales (fn)n>0

(8.36) E sup

> erdfy
0

Proof. We will use Lemma 8.22. Let f,, = > k<n Ekdfi and let fr= SUPj <,y KA
and f* = sup,, fn*, and similarly for (g,) and (h,). By the UMD property
and Doob’s maximal inequality, we have for any stopping time 7' (note that
(14750} gnaT) is a martingale)

< CEsup || ful|-

1971 ¢r>03ll2 < 2/|gr1{r>01 o) <2 Co(B)llgrlirsoylr.(m)-
By the triangle inequality we have on one hand
1751 <Y ldhall sy + 1571 < 6110 + 1571

On the other hand, by (8.32), applied with v, = g%, w, = 2 C2(B)g}, and
¥, =2 Co(B)6f, we have

197111 <12 Ca(B)[[f*[l1 + 6 C2(B)llg™[|x

hence, using ||g*[|1 < [|/*|l1 + [|R*||1 < 7||f*||1, we obtain the announced result
after some arithmetic. O
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Remark 8.24. Conversely, any space B satisfying (8.36) for some C' must be
UMD. More generally, for ¢ = (¢,) € D, let us denote T.(f) = > endfn. If
we have for any e

ITe(F)llx < Cllf e s),

then B is UMD. Actually even if an inequality of the form ||T.(f)||» < C|f|lL_(B)
holds for some 0 < r < 1 then B is UMD. This follows from the type/cotype the-
ory (see [207, 206]). Let us briefly sketch the argument. Indeed, this inequality
implies that B is of type p > 1 and of cotype ¢ < co. The cotype < oo implies
that for some ¢ < co and some Cy we have ||T.(f)|l. < Ci|flz,B), then by
Gundy’s decomposition (Theorem 8.13) we find for some 0 < ¢ < 1 an inequality
of the form ||T.(f)||; < Cal|f|L,(B)- A fortiori we have ||T.(f)|l: < Ca|fllz,B)
for p > 1. Therefore using the type > 1, we conclude that, for a suitable p > 1,
we have ||T.(f)|l, < Csl/fllz,(B), and hence B is UMD.

Third Proof of Theorem 8.12. This is merely a variant of the second proof that
avoids the restriction to dyadic martingales by making use of the B. Davis
decomposition. Let 1 < ¢ < co. Assume B UMD,,. Consider a finite martingale
(fn) in Ly(B) and let (g,) be as in Lemma 8.22. Note that (g,) is also a
finite martingale. We may assume for simplicity fo = go = 0. Fix a choice of
signs € = (g,). Let goo = Y1 €kdgk, Gn = Y1 ekdgr and let §* = sup ||gn|l,
g: = sup ||gx]| and g} = sup||gk||. Since B is UMD,, by (8.16) and Doob’s
k<n k<n

inequality, we have
15" 1lp < P'Co(B)llgoc|lz,(5)-

Since this also holds for all the stopped martingales (1{70}9na7) for any stop-
ping time T', we have

11750397 lp < P'Cp(B) L1097 |1, (B)
and a fortiori if we set v, = g, we have
ILirsoyvrlly < p'Co(B)lirs0ygrliL,s)-

We will use Lemma 8.20 with w,, = p'C,(B)g;; and ¢, = p'Cp(B)6f;:. Therefore
by (8.32), we have for any 1 < ¢ <p

15°llg < P Co(B)6If*llg + (L + (p/ (2 = 2)) /)l g"lo]
and hence by (8.35)
1571l < P'Cp(B)(6 + (1 + (p/(p = a)) /) (1 +60))| f*]lg = Co(B)C(p, )" l4

Finally, since we have trivially

F<a+> ] ldhal,
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recalling (8.34) and assuming 1 < ¢ < p we obtain

17 e < 1"l + |3 ol

< (Cp(B)C(p, ) +60)[1 f*[l-
Now, when 1 < g < p, Doob’s maximal inequality yields

£,z < 1 llq < d'(Co(B)C(p,0) + 6a)lIf I, ()

and hence

Cq(B) < ¢'Cy(B)C(p, q) + 6.
This shows that UMD,, = UMD,. The converse is proved by duality as in the
second proof. O

Definition. A Banach space B is called UMD; if there is a constant C such
that for any martingale in L (B) we have for any choice of signs e, = +1

(8:37) Esup |30 cudfi| , < CEsup | £ulls.

We will denote the best C' in (8.37) by C1(B).

The preceding (or Theorem 8.23) shows that for any p # 1 UMD,, = UMD;.
(Just take ¢ = 1 in the preceding “third” proof, and stop the proof before the
last step.) The converse, namely UMD; = UMD is also true by the preceding
Remark 8.24.

Here is the analogue of Proposition 8.9 for the case p = 1:

Proposition 8.25. A Banach space B is UMD, (or equivalently UMD) iff there
are constants C1 and CY such that for any martingale (fy,) in L1(B) we have

(C1)'ERg < Esup||fuls < C3ERq.

Here we recall that

Ry (w) = Slrlzp HZZ 5kdfk(w)‘ )

Proof. Since f: f, we may apply (8.37) with f in place of f and we obtain

C'Esup || f,| < Esup HZZ Ekdka < CEsup || full-
After averaging over the choices of signs € = (g,,), this becomes
(8.38) CT'Esup || foll < E® < CEsup | |
where ®(w) = [sup || > exdf(w)| pdu. By Kahane’s inequality (see Remark

8.2) and by Doob’s inequality (or Corollary 1.23 with an extra /2 factor), we
have
Ry <& < 2K (2, 1)Rdf

and hence the Proposition follows from (8.38) O
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Corollary 8.26. In the scalar (or Hilbert space) valued case there is a posi-
tive constant By such that for any scalar martingale (M) and any predictable
sequence (¢pn) with ||¢nlleo < 1 we have

! <A .
Esgp Zo «pde;c‘ < B1Esup | M,|
Let S be the square function defined by (8.8). There are constants a},b] such
that for any martingale (My,) in L1 we have

(8.39) (a1) "M ISl < Esup | M| < 04[1S])s.-

8.5 Examples

Consider again the martingale M,, = [[{ (1 +¢x) on D = {—1, 1} with respect
to the filtration A,, = o(e1,...,e,). We set My = 1 and let A4y be the trivial
o-algebra. Note that M, = 2’“1{51:“;%:1} and dMj, = e My_1 for all kK > 1.
Let Qo ={e1=-1}, Qpy={e1=...=¢p = lL,gpp1 = -1} forall 0 < k <n
and finally

Q,={e1=e1=...=¢, =1}

Note that ¢, 4, ...,Q, form a partition of our probability space D. We have
for any n > 1

sup |My| =1, + > 19,2" +1q,2"
<n

o<k<n
and hence
E sup | M| = Z 27k 1ok L1 = (n+1)/2.

k<n

= o<k<n
Let

S, = (|Mo|? + |[dM|? + - - - + |dM,|>)1/?

= (14| Mof* + -+ [M, 1)/

‘We have

Su=10,2"24 Y 1o, (1414224422241 (1414224 422n72)1/2

0<k<n
and hence
92k+2 _ 1 1/2 92n _ 1 1/2
s (Y ()
0<k<n

which shows that there is a > 0 independent of n such that

n/a <ES, < an.
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As a consequence, we may infer that

n
8.40 nAy/a < sup H §;€dM;€H .
(8.40) / S >, )
Indeed, by Khintchine’s inequality we have for any w

4i8,(0) < [ 30 (o) dute)

and hence after integration in w

< n
w158, < [ |32 e aute
which obviously implies (8.40).
In particular this shows that the inequality ||S||, < apsup ||My]|, (see The-

orem 8.18), as well as Doob’s maximal inequality do not remain valid for p = 1.
We will now show that the spaces ¢1, co, L1, Cjo,1] and L all fail UMD.
The proof is based on the following

Proposition 8.27. For each 1 < p < oo, there is 6 > 0 such that the UMD,,-
constant of 1YY satisfies

VN > 1 C, (1Y) > §Log(N).

Proof. Tt suffices to show this for N = 2". Consider B = L1 (D, p1) and let (f,)
be the B-valued martingale defined by f,(w) = [[}(1 4 ex(w)ex). Note that by
the translation invariance of p (indeed y is the Haar measure on {—1,1}) we
have for any w

(8.41) [fn(w)llB = | M1

where (M,,) is the scalar valued martingale in the previous paragraph. Similarly,
for any choice of signs £ = (£,,),, we have for any w

s [ s, - [ ]

Now observing that (fi,..., f») actually takes values in a subspace of B that is
isometric to /3", we have

1> e

and hence by (8.41) and (8.42)

< G |32, dri]

Lp(B) Lp(B)

|30 qanti|| < @Ml < CHE").

which implies by (8.40)
nAl/a < Cp(ﬁ )
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Remark. Note that by (8.42) we have for any fixed w €

Rap(w) = /

and hence by Jensen’s inequality and by (8.7)

1/2

2
du(§) ,
1

> &rdMy,
0

AlESn S Rdf(w) S IESn
Thus, we obtain for any w
(A1/a)n < Ry (w) < am.

We say that a Banach space B contains ¢1’s uniformly (equivalently in the
terminology of §3.1), ¢; is finitely representable in B) if for any € > 0 there is a
subspace E C B that is (1 + ¢)-isomorphic to ¢f. We then have

Corollary 8.28. The spaces {1, Ly (and also cy, s, C[0, 1] and Loo[0,1]) all fail
the UMD property. More generally, any space B that contains (7 ’s uniformly
must fail UMD.

Proof. The last assertion is an obvious consequence of the Proposition. Then the
other assertions all follow since each of the spaces listed contains ¢7’s uniformly.
Indeed, note that (7 C @Z isometrically. Alternatively, one can use duality (we
have C,, (1) = Cpy (¢X.)) to deduce from the Proposition that cg, o0, C[0, 1] and
L ([0,1]) fail UMD,y . O

8.6 Dyadic UMD implies UMD

We wish to show that we may restrict ourselves to the dyadic filtration in the
definition of UMD spaces. For that purpose, the following Lemmas will be
convenient.

Lemma 8.29. Let (fn)n>0 be a martingale in L,(Q, A;B) (1 <p < c0). Let
€ > 0. Then there is a martingale (f],)n>0 formed of step functions such that

Vn >0 ||f7l_f7ll||Lp(B) <E.

Proof. Fix 6, > 0 with > 6, <. Let A, = o(fo,..., fn). For each n > 0, let
F,, be an A,-measurable step function such that

dfn — FnHLp(B) < 0.

Let B, = o(Fy,...,F,). Note B, C A, and B,, is finite since the F}’s are step
functions. Let f), = Fo+ Y1 Fr — EBx-1F,. Note that for all n > 1

ldfn = df) o, 5) < lldfn — Full,B) + | EBr= (F, — dfu)ll, By < 20,
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and hence

1fn = FallL, ) < 220 O < 26.

Since B, is finite, f,, is a step function and finally (f},),>0 is clearly a martingale,
so the result follows with § = £/2. O

Recall that the dyadic filtration on ([0, 1[, d¢) is defined by Ay = (0, [0, 1])
and A,, is generated by the partition into the 2™ intervals

[(G—1)27™, 427"  j=1,2,...,2™

Given (Q, A4,P) and C € A with P(C) > 0, We will denote by P¢ the conditional
probability on C' i.e.

VAe A Po(A) =P(C)'P(ANC).

Note that if I; is a finite (measurable) partition of C,

Po(A) = Z Pc(I;)Pr, (A).

For simplicity, we use the notation P(F = x) instead of P({F = z}).

Lemma 8.30. Let f be a B-valued variable on (2, A, P) taking values in a finite
set V.C B. We assume P(f = x) > 0 for all x in V. Then for any e > 0 we
can find positive integers m and {ky | x € V'} with >, 27"k, =1 such that

Ve eV |P(f =) —27"ky| < e.

Moreover, if this holds, then, denoting by P’ the Lebesgue (probability) measure
on [0,1]

(i) There is an A,,-measurable variable ¢ on ([0, 1],"), taking the same val-
ues as f, such that, for allx in V, P'(p =) = 27™k,.

(ii) Let m’ > 1 be any integer and let C be any set in An/. Then there is a
A 1m-measurable variable ¢ on C such that for any non-negligible I C C
with I € A,/

Pi(p=x)=2""k,
and hence

IP(f =2) - P(p =2)| <e.

Proof. The first assertion as well as (i) are essentially obvious. For (ii), assume
that |C| = 2™ K, so that C is a disjoint union of (atomic) intervals of A,
say {I; | 7 < K} with |I;| = 2=™". Then on each I;, by (i) transported on I,
we can find an A,/ n,-measurable variable ¢; such that

Plfj (pj=2)=2""k,
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so it suffices to set

Y= Zj 11,05

Po(p=12) = Zj Pe(Ij)Py, (95 = x) = 27"k,

and the same with C replaced by any I C C (I € A, |I] > 0). O

to obtain

Lemma 8.31. Let (fn)n>0 be a B-valued martingale formed of step functions,
so that for each N >0, (fo,..., fn) takes values in a finite subset Viy C BNT!
and fo is constant. Let 6, > 0 and § > 0 be such that >0, < §. Then there
are integers

0=m(0) <m(1) < <m(N) <"

and a sequence (f;)n>0 on [0,1] adapted to (Ap(n))n>0 such that for each N,
Fy = (f5,---, [n) takes the same values Vy as Fn = (fo,..., fn) and such
that

Vz e Vy P((fo,.--, fn)=2) =P ((fos---  fny) =) <+ +n

and
VYn>1  |fo_y —EA-0 L gy < 6

Proof. We prove this by induction on N. The case N = 0 is obvious (since fy
is constant). Assume this proved up to N for a given § > 0 and let us produce
m(N +1) and fy ;. Fix a value z in Viy. Consider A(x) = {(fo,..., fn) =}
Then fn1 is a step function on (A(z),P4(s)). Applying Lemma 8.30 to it, we
find an integer m as in Lemma 8.30. Since we have only finitely many «’s to
consider, we choose m large enough so it is suitable for all z’s simultaneously.
Consider A'(z) = {(f§,-.-,fy) = =} C [0,1]. By Lemma 8.29 (ii) applied
to fyi1ja@) With (2, P) = (A(z),P4)) and m’ = m(N), we can find an
m(N)+m-measurable variable ¢, on A’(x) such that

Vy € B |]P)i4/(:c)(s0$ =y) — IP)A(oc)(fNﬂ =y)| <e.
We then define fy; on A’(z) by

frIL+1|A’(m) = Pz

Then
P((Fn, fn+1) = (2,9)) = P(A(2))Pa) (fn+1 = y)

and similarly for (Fy, fy,1). Recall
IP(A(z)) —P/(A"(2))| < b1+ + 6y
Pa)(fvi1 =y) = Py (fvn =yl <e

hence

P((Fn, 1) = (2,9) = P((F', fy 1) = (@,9)] <61+ +0n + ¢
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Finally, the martingale condition for (Fi, fy+1) means that if ¢ = (xo,- - ,znN)
TN = Zy Pa@) (fNv+1=9)y,
so that
HLCN - Zy P /(m)(lev+1 = y)yH < Ke

where K = sup Y ||y|| with the sum running over all the (finitely many) values
of fny1 on A(z) (i.e. those y’s such that Py, (fv41 = y) > 0) and the sup is
over all 2’s. Since (see Lemma 8.30) we actually can obtain the same with A(x)
replaced by any A,,ny-atom I C A(z), this implies

Ifx — EAm(N)fI/\/JrlHOO < Ke.

Thus it suffices to choose € > 0 small enough to obtain the (N + 1)-th step of
the induction. O

Theorem 8.32. Let 1 < p < oo. To compute the UMD,, constant of a Ba-
nach space B, we may restrict ourselves to martingale differences relative to the
dyadic filtration on [0,1] i.e. their unconditionality constant dominates that of
any martingale difference sequence.

Proof. Assume, we know that

(8.43) HZendgn

Lr(B) =¢ szg"

Lr(B)
for any e, = +1 and any finite dyadic martingale (go,...,gn) relative to
Ao, A1,..., An. Then, by an obvious blocking argument, the same still holds
for martingales relative to a subsequence Ao, Ay, (1), Am(2),--- of the dyadic

filtration.

Now fix ¢ > 0. Consider an arbitrary martingale (fo,..., fx) in L,(B).
We claim that it satisfies (8.43). By Lemma 8.29, we may assume that F =
(fos---, fn) are step functions. Let then F' = (f},..., fy) be as in Lemma
8.31. Note that we have

E|fnlP = Elfal? =D l2lP(®(fn = 2) = P(fi = z))
where the sum runs over the range Ry of fy, hence
(8.44) B fn]? —Ell f|P| < Cre

with C; = ZxERN Il ||P-
For any x € BN*! let T(x) = (yo,...,yn) where yo = ¢ and y,, — Yn_1 =
en(Zyp — Tp—1). Note that T is its own inverse. Then

P(T(F)=z)=P(F =T '(z))

hence
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which implies by the same reasoning as above for (8.44) that

(8.45) ’EH S endfa| - EH > endf,

Thus we are essentially reduced to proving (8.43) for (f)). But since (f})
satisfies the quasi-martingale estimate:

p
< Cse.

N
> Iy — EAmeo f] < Ne,
1

we know by Remark 2.18 that there is a bona fide dyadic martingale g, such
that for k=1,..., N

I f5 = 9mllL, By < Cae.
Therefore, we deduce from (8.43)

N
1D endfille, ) < Cllixl, ) + Cas,
0

and from (8.44) and (8.45) we get finally

N
I ZendanLp(B) <C|fnllz,B) + Cse.
0

Letting € — 0 proves our claim. O

8.7 The Burkholder—Rosenthal inequality

We now turn to what we call the Burkholder-Rosenthal inequality, because
Burkholder apparently was inspired by Rosenthal’s discovery of this inequality
for sums of independent random variables.

Let (fn)n>o0 be a scalar (or Hilbert space valued) martingale in Ly. We will
denote by o(f) the “conditioned square function”, namely

1/2

(8.46) (1) = (1ol + 3 Encalldfull?)

We will also denote

d*(f) = sup |dfn|.
n>0

We have then

Theorem 8.33 (Burkholder-Rosenthal inequality). For any 2 < p < oo, there
are positive constants oc;,, ﬁz’] such that any scalar or Hilbert space valued mar-
tingale (frn)n>o0 in Ly satisfies

ap(lo(Hllp + 14" (Hllp) < sup | fullp < Bolllo(Hllp + ld™(A)1l,]
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Proof. We will prove this in the scalar case only. The Hilbert space case is
identical. For short, we will write o and d* instead of o(f) and d*(f). By
convention, we set E_1|dg|? = |dg|>. Recall that we have

(8.47) ap||Sllp < sup || fullp < BpllSllp-
Since p/2 > 1, by Theorem 1.10 (the dual to Doob’s inequality) we have on one
hand
oot < [t
| Enianl| < w2 [X1anr|
therefore

lolly < (p/2)"2]|S ],
On the other hand, by Doob we have

11 < p"sup [ fullp;

since d* < 2f*, this last inequality implies

1] < 2p"sup || fullp-

Therefore we obtain
lolly + 14", < ((p/2)"2a, ™ +20") sup || fullp-
For the other side, we will estimate
[oe]
e Zl |dn|? = Epq|dn)?.

Since d!, = |d,|*> — E,_1|d,|?* are martingale differences, we have

(Z|d;|2)1/2H < Bpy2(I+10),

157 = 02|lp2 < B2

P/2
where
1/2
I= |dn‘4
H(Z ) p/2

and

= (@) <[ SEaar], =2
But now

(S 1aatt) " < (s
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hence

< (ISl lld*[1,)*
p

()

so that

/ 2
= ()| < 1St

hence by the arithmetic/geometric mean inequality for any ¢ > 0
VI 27t + ¢ ld" ).
Recapitulating, this gives us since I+ II < I+ V/II
1152 =021l < (Byy2) 2 (VI+VID) < (B,2) @7 IS+ ||+ llol]p)-

But now

S=vVS52<|8? - 40

therefore
1515 < (Bpy2) /227 1Sl + 27 ¢ [ [l + llollp) + llo -
Finally, if we choose ¢ so that (83,/2)!/?t = 1 we find

HS“P < 2_1||S||p + 2_1ﬁp/2“d*“p + (ﬂp/2)1/2||0||P + ||(7||p
= 181l < Bps2lld*llp + 2(8p2) *llolly + 2ol

so that we obtain the desired inequality with 3, = max{$, 2, 2(ﬁp/2)1/2+2}. O

Lemma 8.34. Let 2 < p < oo. Any scalar (or Hilbert space) valued martingale
(fn)nzo satisﬁes

oo 1/p
(Z IIdfn|§> <27 £,
0
Proof. Consider f in L. Let f,, = E, f. We have trivially both

S /
()™ < 171

and
sup [|dfnlloc < 2[[f|lo0-

Therefore the inequality follows by complex interpolation. O
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Let us denote for (f,,) as in (8.46)

e 1/p
on(F) = (Il + 2 " llafal?)
Note that y
low ()l = (3, lafalls) ™

Then the following variant of the Burkholder—-Rosenthal inequality is particu-
larly useful:

Theorem 8.35. Let 2 < p < oo. Let o)) = 27" min(a}, 2-1/P") . Any scalar (or
Hilbert space) valued martingale (fn)n>0 satisfies

®.48) oy (llo(Hllp + llop(Hllp) < sup [ fally < Bpllo(Hllp + lop(fllp)-

Proof. The first inequality follows from Lemma 8.34. Moreover, we have trivially
d*(f) < op(f) and hence

1" (N)llp < llow(f)lp-
Thus we obtain the second inequality. O

Corollary 8.36. Let (Y;,) be independent random variables in L,, 2 < p < 00,
with mean zero, i.e. EY, =0 for all n. Then the series .Y, converges in L,

iff both 3 ||[Yn||3 < oo and Y ||Ya ||} < co. Moreover, we have

ap [ IVl 2+ Qo IYall) 71 < 1D Yally < Bl Q0 I1Yall3) 2+ IYalR) /7).

Proof. Let A,, = 0(Yo,Y1,---,Y,). Clearly, since the (Y,,)’s are independent,
we have EA»-1|Y,|> = E|Y,|?> hence if f = 3.V, (ie. df, = Y,), we have
o(f) = (X 1Yall3)? and |lop(f)ll, = O IYal)Y/P. Thus the result follows
from (8.48). O

Corollary 8.37. Let (2, A,P) be a probability space. Let (Cp,) be a sequence
of independent o-subalgebras of A. Let ¥, C L,(Q, A,P) be the closure of the
linear space of all the finite sums ) Y, with Y, € L,, C,-measurable and with
EY,, =0 for all n. Then the orthogonal projection Q: Lo — Yo, defined by

V€L Q) =) (E™(f) - E(f)
is bounded on Ly, for all 1 < p < oo.

Proof. By duality, it suffices to show this for 2 < p < co. Let f € L, and let
An, = 0(Co,Cq,---,Cp). As usual we set df,, = E,f —E,_1f. We may as well
assume A = A,. Then X, clearly coincides with the set of all f in L, such
that df, is C,,-measurable for all n, and we have Qf = 3 EC~df, for all f in Lo.
Assuming p > 2, we have

O B dfal3)2 < O dfall3)? = 1 fll2 < 11£]lp:
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and by interpolation between the cases p = oo and p = 2 (as in Lemma 8.34
above) we have

(8.49) (D IESdfalp)/ < 2Y/7') £,
Therefore, by Corollary 8.36 we find

1QF1lp < B[O NESdfall3)? + O IESdfn[2)/7] < By(1+ 22| £,

which means ||Q: L, — L,| < 8,(1 + 21/%"). 0

Corollary 8.38. Let p > 2. Let (Y,,) be a sequence of independent mean zero
random variables in L, (2, A, P) with ||V, |, = 1. Let w, = ||Y,|l2 and w = (wy,).
Let © = (x,,) be a scalar sequence. Then the series Y x,Y, converges in Ly, iff
both S w2|z,|? < oo and Y |x,P < oo. Let X, be the space of all such
sequences with norm ||z p.m = (3 w2|x,|*)Y2 + (3 |za[P)/P. We have then

OéZHxllp,w < anYan < Bpll®llp,uw-
Therefore, as a Banach space, the span in L, of (Y,) depends only on w = (wy,).
Proof. This is immediate from (8.48) (see Corollary 8.36). O

Corollary 8.39. Let p > 2. Let w, > 0. Let (Y,,) be a sequence of independent
symmetric random variables with |Yy|l2 = wn, |Yallp, = 1 and such that, for
each n, |Y,| has only one non-zero value. Then the orthogonal projection P
onto the closed span of (Y,,) in Lo is bounded on L,. Consequently, the space
Xp,w 5 isomorphic to a complemented subspace of L.

Proof. An elementary calculation shows that, since |Y,| is a multiple of an
indicator function we have

¥allollYallyr = Va3,

and hence, since ||Y,||, = 1, | Yall,r = [|[Yall3- Let C,, be the o-algebra generated
by Y,,. Let Q be as in Corollary 8.37. Note that (f,Y,) = (ES(f) — E(f), Yn)
for all n. We have

VfeLls  Pf=) Valz™(f,Ya)Yo = IVall2*(QF Ya)Ya
We have on one hand clearly |Pf|l2 < ||f|l2 < || fllp, and on the other one
Yo lIYallz (1Y, :ZIIYnHEQ”I(EC"(f)*]E(f),YnH”
< Y (Yallz 1 Yallp )P IES (F) =E(IE = D IES () -EW)IE < @7 I1f 1),

where at the last step we used (8.49); therefore Corollary 8.38 yields

1P£llp < Bp(L+27)] £lp-
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Remark 8.40. In the preceding statement, the dual of the space X, ., can be
identified with the closed span in L, of the variables (Y,,). Since X, is the
intersection of ¢, with a weighted fs-space, its dual is the sum of the respec-
tive duals. It follows that, the series EannHYnH;,l converges in L, iff (x,)

admits a decomposition of the form x, = a, + b, with both 3" |a, [’ < oo and
> lw, b, |? < 0o, and the corresponding norms are equivalent.

Remark 8.41. Fix p > 2. Let ¢ = 2p/(p — 2) so that 1/2 = 1/p+ 1/q. By
Holder, we have

Zw2‘x ) 1/2 Z|x ”) 1/p Z|w |9 1/q

so that, on one hand, if )" |w,|? < oo, then X (p, w) = ¢, and on the other hand,
if inf w,, > 0, obviously X (p,w) = ¢5. Now if w = (w,) splits as the disjoint
union of a sequence such that " |w,|? < co and one such that infw, > 0, then
X (p, w) is isomorphic to £, & {s.

If none of these three cases happens, w must satisfy both lim inf w, = 0 and
Y niw, <e |Wn|? = oo for any € > 0. Rosenthal proved that the resulting space
X (p,w) is actually independent of w up to isomorphism. More precisely, if w
and w’ are two sequences both satisfying this, then X (p,w) and X (p,w’) are
isomorphic to the same Banach space, which therefore can be denoted simply by
X,. Historically, this space was the first example of a genuinely new L,-space,
one that was not obtained by direct sums from the classical examples ¢3, £, or
L,. Shortly after that breakthrough, uncountably many examples of £,-spaces
were produced in [91].

8.8 Stein Inequalities in UMD spaces

Bourgain [83] observed that the UMD property of a Banach space B implies a
certain B-valued version of Stein’s inequality. In its most classical form, Stein’s
inequality is as follows. Consider a filtration (A,,),>0 on a probability space
(Q, P) and let 1 < p < co. Then for any sequence (F),),>o in L, we have

e e et

where C(p) is a constant depending only on p.
When p = 1 this is no longer valid.

As usual in the B-valued case, the “square function” (3 |Fn\2)1/2 must be
replaced by an average of ||>"e,F,| 5 over all signs ¢ = (). In particular,
Bourgain proved that, if B is UMD, if F' = (F,,),>0 is an arbitrary sequence in
L,(2, P; B) and if we define as before

1/2
dv(e ) ,

(8.51) RUF,)) = (/HZen )
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then we have

(8.52) IR{E.EuDllp < Cp, B)IIR{FR )l

where C(p, B) depends only on p and B (see Theorem 8.42 below).
When B =R or C or when B is Hilbertian, we recover Stein’s inequality.

Theorem 8.42. Let F = (F),),>0 be an arbitrary sequence in L, (2, P; B). We

have for any 1 < p < oo
» 1/p
<C,(B H B avap)
Ly(dvxdP;B) — ( )(/ ZE Y )

Proof. Consider as usual D = {—1,+1}" equipped with the filtration

(8.53) HZ enEn(F)

Bn = 7(60751, e ,En).
Then we define a filtration (C,,),>0 on Q x D by setting
Coj = A; © Bj
Cojr1 = Ajr1 @ B;.

Note that this is an increasing filtration. Now consider f € L, (2 x D; B) defined

by
f= Z F,e,.

n>0

We will apply the preceding results to the martingale
fn = ]Ecn (f)

Note that we have
f2j = ZEj(Fn)En

n<j

and

f2j+1 = Z Ej+1(Fn)5n~

n<j
This implies that the increments are of two kinds: on one hand
dfzjt1 = Z d(Fn)j+18n
n<y

and on the other
dfa; = E;(F}j)e;-
Thus, by the definition of UMD,,, we find

@50 [ CEEE], =[], < GO,
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When B is isomorphic to a Hilbert space (and in some sense only then, see
[184]), then R({z,}) is equivalent to

(3 )

but in a general Banach space these two ways to measure the “quadratic varia-
tion” of a sequence are quite different.

8.9 H! spaces. Atoms. BMO

The Hardy space H' has many analogues in martingale theory. The main
one is probably as follows: we define the space “martingale-H'” relative to
a filtration (A,)n>0 to be the space of scalar valued martingales (f,)n>0 such

that the maximal function f* = sup|f,| is in L'. By convention, we always set
n>0

A_1 ={Q,¢}. The space “martingale-BMO” is then defined as the space of all
martingales (f,)n>0 converging in L; such that

sup ||En|foo - fn71|Hoo < 0.
n>1

Equivalently, let us assume A = A.,. For any f in L, we set

| fllBaro = sup [Eq|f — frn-1llleo < 00
n>1

We will identify BMO with the space of all A..-measurable f’s for which this
is finite. Note that, strictly speaking this is not a norm, only one “modulo
the constants”, i.e. it becomes one if we pass to the quotient modulo the (one
dimensional) subspace spanned by the constant functions.

We will need to work with “regular” filtrations

Definition 8.43. A filtration (A,),>0 is called regular if there is a constant
C > 1 such that, for all n > 1 and for all f > 0 in L;(Q2, A4, P), we have

(8.55) En(f) < CEn1(f).
We will also assume for convenience that the initial o-field Agq is trivial.

For example it is easy to see that the dyadic filtration is regular. More generally,
if A,, is finite for all n and there is 6 > 0 such that, for all n > 1, for all atoms
a of A,_; and all atoms o/ C « of A,, we have P(o/)P(a)~! > 4, then the
filtration is regular (the dyadic case corresponds to 6 = 1/2).

If the filtration is regular and (8.55) holds, then

(8.56) CHIflBaro < sup [Enlf = falllo < 2[[flBan0-

Indeed, we have

En|f_ fnfl‘ < C’Enfl|f_ fn71| < CSg}gHEnlfoo - fnmoo»
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whence the first inequality. Also |fn, — fu-1]| < Enlf — fu-1] < | fllBMo and
since |f — fol <|f = fa—1| + |fn — fn—1], we obtain the other side.

The martingale version of the Fefferman duality theorem then says that, in
the regular case, the space BMO can be identified with the dual of H', the
duality being:

(9.1) = lim E(g.fy).

It is well known that all this can be extended rather easily to the Banach space
valued case, as follows (cf. [78], see also [79]).

Let (Ay)n>0 be a fixed filtration on a probability space (2, A, P). Let B be a
Banach space. We will denote by H},,.(B) the space of all B-valued martingales

(fr)n>o converging in L;(B) and such that

Esup || full5 < oo,
n>0

equipped with the norm || f|| g1

max

() = Esup|| ful[p. We will again denote by
n>0

f* the maximal function, i.e. we set
f() =sup [ fu()ll5-
n>0

Remark. Note that, if p > 1, we could also define more generally the Ba-
nach space H?, . (B) as the space of all B-valued martingales (f,)n>0 such that

Esup,,> || fnllls < 00, equipped with the norm ||| gz, (5) = (Esup, g | fal)"/7-
But then, by Doob’s maximal inequality (1.20), this simply would coincide with
the space of L,-bounded martingales denoted earlier by h,(£, (An)n>0, P; B);
moreover, if B has the RNP, this can be identified (see Remark 2.12) with the

space L,(Q, A, P; B).

The duality between H' and BMO can be reformulated nicely using “atoms”,
as follows. A function a: Q — B in L'(Q,P; B) is called an atom (relative to
our fixed filtration (A, ),>0) if there is an integer n > 0 and a set A € A,, such
that

{a#£0}C A

En(a) = 0 and |la| () < 1/P(A). The space Hy,(B) (relative to our fixed
filtration) is then defined as the space of all functions f in L;(B) which can be
written as an absolutely convergent series of the form

n=1

where a,, are atoms and Y |\,| < co. We define

£ i3, c) = IEo ()] + inf {37 1Al }

where the infimum runs over all possible such representations of f.
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Theorem 8.44. In the reqular case (for example in the dyadic case), the spaces

H} ..(B) and HL,(B) are identical and their norms are equivalent, with equiv-

alence constants independent of B.

Proof. 1f a is an atom, we have clearly |lal/z, ) < |lal/z,(8) < 1 hence Doob’s
inequality yields |la*[|2 <2 and hence [|a| g1 () < 2, so that we find

(Al

max

) <2 flla2,B)-

To prove the converse we will use the following consequence of (8.55): for any
A, -measurable f > 0 we have

(8.57) En1(f) < C3 (B (f1/%))%
Indeed, (8.55) obviously implies f2 < C?E,_;(f)? and hence (E,_;f%)'/? <
CE, —1(f). But now by Hoélder’s inequality we have if 1 = 1779 + %
1—-0
En 1(f) < (En 1 )7 (Bnaf1)s
hence choosing p =1/2, ¢ = 2, § = 2/3 we find

(Ep_1 )2 < CEp_y1 (f) < CEp_1v/ )3 (Epy f2)V/3,

which implies (8.57) (once we divide by (E,,_; f?)/3, raise to the power 3 and
note that E,,_1(f) < (B,_1f)'/?).
Consider now f with

I fllzy By =Ef* <1

max

We will prove that
(8.58) £z, 5y < IB(F)]| +9C + 64C* <14 9C 4 64C*.

Clearly (replacing f by f — Eof) we may assume fo = Ef = 0. As usual we let
dyp = fn — fn—1. Then for any m > 0 we introduce the stopping time

T = inf{n > 0 [ [fall + Enl/dnal > 2™}
Note that T}, > 0 since fo = 0 and Eq||d;|| = E||f1]] < 1. We claim that
(8.59) I fr.|| < C2™.

Indeed, if T}, = n > 0 we have || fo—1|| + En—1]|dn|| < 2™ and hence by (8.55)
Ifull < Nfn=1ll + lldn]l < C2™. We can now conclude: since T;,, T 0o we can
write

f=In+> fr. = I

m>1
Let ap = C~1fr,. Then |lap|lec < 1, Eg(ag) = Ef = 0, therefore ag is an atom
relative to Ay (with support included in Q). For any m > 1 and n > 0 we set

Amn = (me - me71) ' 1{Tm71:n} (02m+1P{Tm—1 = n})_l'
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Then ay, , is an atom: indeed it is supported on {T},—1 = n} and (8.59) implies
lammnlleo < P{Tyn—1 = n}~!. Here we assume P{T},,_1 = n} > 0 otherwise
we set for notational convenience a,,, = 0. Finally E,(ay, ) = 0. Indeed,
we have T,,_1 < T,,, so that T,,, An = T,,_1 An when T,,_1 = n, and since
{Tyn—1 =n} € A,, by (1.10) we may write

En(l{Tm,lzn} (me - me_l)) = 1{Tm,1:n}(me/\n - me_l/\n) =0.

We can now complete the proof of (8.58). We have

f=Cag+ Z C2™HP{T, | = N}am,n

m,n>0
therefore
| fllz, 3y <C+C Z 2mHIPIT,, 1 =n}
m,n>0
=C+C Y 2"P{T, 1 < oo}
m>0
Note that

P(T—1 < 00) < P{f* +supEp||dp ]| > 27"}

and hence if we set Z = f* + supE,||dp+1||

Y 2" HP(Tno1 < 0) <E (Z 2m+11{2m1<2}> < 8BZ.

Finally, since ||dp41|| < 2f*, by (8.57) we have
Eann-H” < CS(E7L(||dn+1”1/2))2 < 203(]En f*)2
therefore by Doob’s inequality (i.e. (1.12) with p = 2)

EsupE,||dps1] < 2C°E(supE,+/f*)? < 8C3Ef* < 8C3.

Thus we finally obtain as announced
£l 5y < C +8CEZ < C +8C(148C%) = 9C + 64C*.
O

Let us now assume that each A, is finite and the o-algebra A is generated
by the A,’s (so that A = Ay).

Assume 1 < p < oo, and p~! + (p/)~! = 1. Recall that the dual of L,(B)
can be identified with the space h, (Q, (Ay)n>0, P; B*) formed of all the B*-
valued martingales which are bounded in L, (B*), equipped with the norm
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ll¢ll = sup ||¢nllz,, B+ Forall fin L,(B) and all such ¢, the duality is defined
n>0 i

by setting
<907 f> = nhil;o]E“Dna fn> = nlggo E<90n7 f>

It is easy to see (by the density of |J L,(Q2, A,,P; B) in L,(B)) that the pre-
n>0
ceding limits exist. Then, by the above Proposition 2.14, we have isometrically

Ly(B)* = hy(Q, (An)nzo, Py BY).

The B*-valued analogue of BMO can then be defined. We will denote by
BMO,(B*) the space of all martingales ¢ = (¢n)n>0 in L1(B*) such that

sup sup | Ep||[¢om — ©nllB*llec < 00 and we equip it with the “norm” (modulo
n>0m>n

constants)

B*

Il = sup sup [[En[lom — @nll B[l
n>0m>n

We have then the following easy result:

Theorem 8.45. In the same duality as above, in the regular case, we have
HL(B)* = BMO,(B*). More precisely if we let

lell« = sup{l{p, /) | f € Har(B)  f a5y < 1},

then, assuming po = 0, we have

(8.60) lell« < llellBaro, ey < 2lllls-

Sketch. The preceding supremum can be restricted to the set of atoms. More-
over we can restrict the atoms (by martingale convergence) to be in

U L1(, A P; B).

m>0

Let
lell« = sup{|(e, )] | f € Hae(B) |1 fll 2,5y < 1}-

If an atom a is A,,-measurable with {a # 0} C A, A € A,, E,(a) = 0 and
lallL. 5y <P(A)~!, we have

<90a a> = khiloloE«pk’ ak> = E“Dma a>
= ]E<S0m —En(om),a)

hence
1
[(p,a)| < m " lom — En(@m)llp=dP < ess sup Ey[|0n — Eyn(om)l B~

(where the last inequality uses A € A,,).
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Thus we obtain for all atoms a

(8.61) (e, a)| < llellBrro, B+)-

Conversely, it is easy to check that

(8.62) el Baro, (8+) < 2sup{[{w,a)| | a atom}.

Indeed, if |{¢,a)| < 1 for all a, then we deduce that, for all A in A, and all
functions b in the unit ball of Lo, (A, P; B), since 271P(A)~114(b —E, (b)) is an
atom, we have

P(A) ™" [{om, 1a(b = En(b)))] < 2
or equivalently

P(4)~

/<§0m —En(pm),b)| <2
A

which implies (taking the sup over all b’s) that

B*S27

P(4)~! /A lom — En(om)|

completing the proof of (8.62). O

By a famous theorem of John and Nirenberg, any ¢ in BMO,(B*) auto-
matically is in Lg (B*) for all ¢ < co. More precisely if we define

el = Sup sup [(Enllem — En-10ml|o

then we have ||¢l|jg < oo for any ¢ < oo and there is a numerical constant K
such that for all 1 < ¢ < oo

lellsaro, 8+ < llelliq < Kdllellsaro, (B+)-

8.10 Burkholder’s geometric characterization of
UMD space

In [103], Burkholder found a somewhat geometric condition, that he called (-
convexity that is equivalent to the UMD property.

Definition 8.46. A Banach space B is called (-convex if there is a function
¢: B x B — R that is symmetric (i.e. {(x,y) = ((y,x)), separately concave in
each of the two variables, satisfying ¢(0,0) > 0 and such that

Ve,ye B ((z,y) <[z +yll whenever [z]] <1 <{ly[|.

Theorem 8.47. A Banach space B is UMD iff it is {-convez.
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The following result from [178] is closely connected to Burkholder’s charac-
terization but the meaning of the condition is somewhat easier to grasp, since
it involves only the rather standard class of (differences of) convex continuous
functions.

Theorem 8.48. Let B be a real Banach space. We set X = B @& B*. Then B
is UMD iff the function p: X — R defined by

p(z,z%) = z™(x)
1s the difference of two convexr continuous functions on X.

Remark 8.49. Let X be a Banach space. Then ¢: X — R is the difference of two
convex continuous functions on X iff there is a convex continuous ¥: X — R
such that ¢ 4 are both convex and continuous. Indeed, if 14 are convex and
continuous then ¢ = p1 — s with 1 = (¥ + ) /2, p2 = (Y —¢)/2. Conversely,
if p = 1 — @2 with @1, s convex continuous then if ¥ = @1 + s, is convex
continuous and both ¥ + ¢ and ) — ¢ are also convex and continuous. ]

In the rest of this section we set Q = {—1, 1} denote by e,: Q — {—1,1}
the k-th coordinate for k = 1,2,.... Weset Ay = {4, Q} and A, = a(e1,...,en)
for all n > 1.

We will use the following.

Lemma 8.50. Let V: X — X* be a bounded linear operator. Assume that
there is a constant C such that for all finite X -valued dyadic martingales with
fo =0 we have

(8.63) > EIVAR) ()] < OIS v

Then there is a constant C' such that for all such (f,) we actually have

(8.64) Y, EIV(dfa)(df)] < CEIfI%-
Proof. Fix k > 0. For simplicity we set d,, = df,,. We first claim that
(8.65) Ex Y [V(dn)(dn)| < 4CIFII7 5y

n>k

Indeed, consider f — fi fix (e1,...,&x), and let
Vw € {71, 1}N F(w) - f(gla v 7€kaw) - fk(517 s ,Ek)'
Applying (8.63) to F with (e1,...,ex) fixed we find

Zn>k Eo |V (dn)(dn)|(e1s - sen,w) < Csupy, |f(e1, -y er,w)—fr(Ers - sen)|?

and hence for any stopping time T

/{T =k} Zn>T0 |V(dn)(dn)| < CP{TO = k}”f - fTOH%OO(X)a
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so that summing over k we find

(8:66)  E(Lincor D, IVda)(d)]) < CPATy < 00}If = f1, . x,

Now let Ty > Tp be another stopping time. Replacing f by fr, in (8.66) we find

(3:67) E (Imcos Yoy, o V() (dn)]) < CP{To < o}l f1, — fr3 13-

We will now prove (8.64). We may assume by homogeneity that E||f||3% = 1.
We define Ty = inf{n > 0 | || fn|| + ||dn+1]| > 1} and for all m > 1

T =inf{n > T 1 | [[fn — fr. o | + dnsa ]l > 27}

‘We have then -
EZI [V (dn)(dpn)| =T+ 11

where T = ]EanTO [V (dn)(dn)| and II = Zle]EZTm_1<n§Tm [V (dn)(dn)]-
But by (8.67) we have

(8.68) n<y OP{Tuor < oo}lfr, = frilli (x)-

Since Hme - me,l || < 2m if T’rn > TnL—l (because ||me—1 - me—l H + ||dTmH <
2™) and also fr,, — fr,,_, = 0if T, = T;,_1, we have || fr,, — fr,,_, [ (x) < 2™
Moreover

P{Tm—1 < oo} <P{2sup,,

[fn = fill + lldngall > 2™} < P{dsup [ ful| > 2™}

so (8.68) implies (setting f* = sup || ful|)

* m 2m
IIgC’ZleP{Zlf > 2m}2
< C'Ef*2 <AC'E|f|% < 4C,

where at the last step we used Doob’s inequality. Moreover by (8.63) applied
with fr, in place of f we have I < C'||fT0||2Lm(X) and if Ty > 1 we again have
ol < lfro—1ll + |ldz || < 1 while if Ty = 0 we have fr, = 0. Therefore we
find I < C and we conclude E>"° |V (d,,)(dy,)| < 14 4C’. By homogeneity this
proves the announced result. O

Proof of Theorem 8.48. Let V: X — X* be the unique self-adjoint linear map
such that V(z)(x) = p(z) for all z in X. Equivalently, this means

(8.69) Ve,ye X V(x)(y) = V(y)(z) = (p(z +y) —elz—y))/4

If © = (b,b*) and y = (¢,c*), we have V(z)(y) = (b*(c) + ¢*(b))/2. Note that
IVl <1 (actually < 1/2). Assume that B and hence X is UMD. We claim
that if C' is the UMDs constant of X then any finite X-valued martingale (f,)
in Lo(X) satisfies

S UEV(da)(dn)] < CE| £
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Indeed, since V(d,)(d,) is predictable (recall that in the dyadic case d,, =
EnPn—1 with ¢, _1 A, _1-measurable), the random variable &, = sign(V (d,,)(d,))
is A,,_1-measurable (“predictable”) so that we can write

> EIV () () =BT 6V (d)(d) =E(V (307 €adn) (3, du))

and hence recalling Remark 8.11

<IVIE[Y] éudn
<X €nda
<O, x)-

This proves our claim.
Using this claim we define for any x in X

|35 dn
La(X) Hzo d”‘

L2 (X)

b(@) = inf {CEIfI% =D [EV(dfa)(df)l }

where the infimum runs over all finite dyadic martingales (f,,) with fo = «.
We will now show that for any y in X

(8.70) V() ()] <27 (W +y) + ¢z —y) - y().

Let € > 0 and let (fy), (gn) be such that fo = x4y, go =« — y and

CE| £ = 3" EIV(dfa)(dfa)| < ¥z +y) +e
CE|lg|* = 3" " EIV(dga) (dgn)] < ¥(z —y) +=.

We then define a dyadic martingale F,, by setting Fy = x, F; = = + €1y and
then for n > 1 F,(e1,e2,...,en) = f(€2,...,6,) if 61 =1 and = g(ea,...,e,) if
g1 = —1. We then find since |V (dFy)(dFy)| = |V (y)(y)|

W(w) < CEIIF|? = > " E|V(dF,)(dF)]
<27 Wz +y) + (@ —y) +e— [V(y) ()|

and hence we obtain (8.70). But then (8.70) can be rewritten as
(8.71)
V)W)l =127 (e(z+y) +e(z—y) —p@)] < 27 (Y@ +y) + ¥z —y) — ()

so by Remark 8.49 this implies that ¥ + ¢ is convex, or more precisely mid-
convex, but since we obviously have (consider f,, = z Vn > 1) ¥ (z) < C|z|?, it
follows that 1 £ ¢ are bounded on bounded sets and hence by classical results
(cf. [53, p. 215]) they are actually both convex and continuous. This completes
the proof of the “only if” part.
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Conversely, assume that ¢ is the difference of two convex continuous func-
tions. By Remark 8.49 there is ¥ convex continuous such that ¢ £ ¢ is convex
and hence (8.71) holds. Let (f,) be a finite X-valued dyadic martingale, and
let d,, = df,,. Applying (8.71) with = f,,_1, y = d,, we find for all n > 1

|V(dn)(dn)| < Enfl(w(fn) - @[’(fnfl))
and hence after integration
Z E[V(dn)(dn)| < E(¥(f) — (0)).
Assume fo = 0. Since 9 is continuous, there is r > 0 such that ||z|| < r implies

|¥(z) —(0)] < 1. Therefore if || f]|1_(x) < 7 we find S UUEV(dy)(dy)| < 1.
By homogeneity, this implies that

(8.72) Z E|V (dn)(dn)] < (1/rIIfII )

and hence, by Lemma 8.50, we obtain (8.64). Let (g,) be another finite dyadic
X-valued martingale. Let d], = dg,,. Clearly by polarization

V(dn)(d;z) = 4_1(V(dn + d%)(dn + d;m) - V(dn - d;)(dn - d;z))
and hence (8.64) implies
(8.73) Z:o E|V (dn)(d)] < (C/DUIf +9ll7,00 + I1f = 9ll,x)-

Now let &, = +1 be arbitrary signs. Let f = > &ndy. Since V: X — X* is
isometric, we have

1oy = IV (D) laxeys
=sup{EV(f)(9) | g € Br,(x)}-

But for g € By, (x) we have
EV(f) IEZ V(df,)(dg) EZ €.V (dn)(dgn)
and hence by (8.73) if g, f € Br,(x)
EV(f \<EZ )(dgn)| < 2C".

Thus we obtain ||f\|L2(X < 2C’. By homogeneity, ||f||L2 )y < 20" fllpo(x)- In
other words, UMDy (X) < 2C". O
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8.11 Notes and Remarks

The inequalities (8.1) and (8.2) were obtained in a 1966 paper by Burkholder.
We refer the reader to the classical papers [101] and [108] for more on this. See
also the book [25].

The best constants in the Khintchine inequalities are known: see [254, 156].
Szarek [254] proved that A; = 271/2. More generally, let 7p be the L,-norm of
a standard Gaussian distribution (with mean zero and variance 1). It is well
known that

v =22 (T((p+1)/2)/v/7) " 0<p< oo

Let po = 1.87... be the unique solution in the interval ]1,2[ of the equation
21/2=1/p = ~, (or explicitly T'((p + 1)/2) = /7/2), then Haagerup (see [156])
proved :

(8.74) A, =227 0 < p < py,

(875) Ap == "Yp Po S p S 27

8.76 B,=7v, 2<p<oo.
P p

The lower bounds A, > max{~y,,2}/27/?} for p < 2 and B, > v, for p > 2
are easy exercises (by the Central Limit Theorem).

For Kahane’s inequalities, some of the optimal constants are also known, in
particular (see [185]), if 0 < p <1 < ¢ <2, we have K(p,q) = 25 .

Kahane’s inequalities follow from the results in the first edition of [31].
The idea to derive them from the 2-point hypercontractive inequality is due
to C. Borell.

The property UMD was introduced by B. Maurey and the author (see [202]),
together with the observations that Burkholder’s ideas could be extended to
show that UMD,, & UMD, for any 1 < p,q < co. It was also noted that UMD,
implies reflexivity (and even super-reflexivity), see Chapter 3 below for more on
this. The Gundy decomposition appearing in Theorem 8.13 comes from [154].

The extrapolation principle appearing in Lemma 8.20 (sometimes called
“good A-inequality”) is based on the early ideas of Burkholder and Gundy
([108]), but our presentation was influenced by the refinements from [186].

§8.4 is a simple adaptation to the B-valued case of Burgess Davis classical
results from [123]. §8.5 is “folkloric”. §8.6 is due to B. Maurey [202]. The
Burkholder—Rosenthal inequality in Theorem 8.33 appears in [101]. It was pre-
ceded by Rosenthal’s paper [242] from which Corollaries 8.36 to 8.38 are ex-
tracted. §8.8 is due to Bourgain [83], but the original Stein inequality comes
from [56]. The extension to the Banach valued case of the atomic decomposi-
tion of functions in H'(R) or H*(T) (related to §8.9) is due independently to
Garcia—Cuerva and Bourgain ([83]). We refer to O. Blasco’s [78] for a detailed
account of the H'-BMO duality in the B-valued case but in the classical setting
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of functions on T or R. Our §8.9 is just the martingale analogue of his main
result (see also [79]).

In §?7, the main inequality (??) is due to Azuma [68]. §8.10 is motivated by
Burkholder’s characterization of UMD spaces in terms of (-convexity, for which
we refer to [103, 104, 105, 107]. For Theorem 8.48, we refer to [178].

Appendix 1: Marcinkiewicz theorem

In the next statement, it will be convenient to use the following terminology.
Let X,Y be Banach spaces, let (2, u), ((€,') be measure spaces and let
T: L,(u; X) — Lo(p';Y) be a linear operator. We say that T is of weak
type (p, p) with constant C' if we have for any f in L,(u; X)

(sup Wi/ (ITf1| > AP < Cllf iy (x)-

A>0
We say that T is of strong type (p,p) if it bounded from L,(X) to L,(Y). We
invoke repeatedly the following famous classical result due to Marcinkiewicz.

Theorem 8.51 (Marcinkiewicz). Let 0 < pg < p1 < oo in the above situation,
assume that T is both of weak type (po,po) with constant Cy and of weak type
(p1,p1) with constant C1. Then for any 0 < 0 < 1, T is of strong type (pa, o)
with p; ' = (1 —0)py* + 0py ', and moreover we have

T Ly, (X) = Ly (V)| < K (po, p1.0)Co " CF
where K (po,p1,p) is a constant depending only on po, p1, p-
Proof. Let f € L,,(X)N Ly, (X). Consider a decomposition
f=fo+fi with

Jo=F 1>y and
fr=1T 1<

where v > 0 and A > 0 are fixed. We have by our assumptions
WA >N < @ [P da
{IF >y A}

W ITF)I > A) < (Cia ™ / L7 dp
{IFlI<yA}

hence since ||T(f)|| < |T(fo)ll + 1T (f1)l

B.77) W (IT(N] > 2X) < CgeA™ / IflIPodu+ CT AT / [F(7* dpa.

7 I1>A I FII<yA
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Let p = pp. If we now multiply (8.77) by 2PpAP~! and integrate with respect to
A, using

/ A==t = (p = po) T (IF I /)PP
{17172}

and

o = )
HIFI<yA}

we find
ST dw <2608 o - poy - [P o
+2"pCY (p1 —p)’lv’“”’/ LFIP dp.
Hence, we obtain the estimate

17 Ly(X) = Ly(Y)]| < 265" (p — po) = /75070l
+ 2077 (py — p) AP,
so that choosing 7 so that
Cpoapop = O 7
we finally find the announced result with
K =2(p—po) " +2(p1 —p) /7. O
Remark 8.52. Tt is fairly obvious and well known that the preceding proof re-

mains valid for “sublinear” operators. Indeed, all that we need for the operator
T is the pointwise inequalities

1T(fo + f)llB < IT(fo)lls + IT(f1)5
for any pair fo, f1 in L, (X) N Ly, (X), and also the positive homogeneity, i.e.

YA =0, Vf € Ly (X) N Ly, (X) (I T(Af)l5 = AT (f)ll5-

Appendix 2: Holder-Minkowski inequality
For further reference, we wish to review here a classical set of inequalities usually

referred to as “the Holder—Minkowski inequality”. Let 0 < ¢ < p < oo and let
(Q, A, 1) be any measure space. Consider a sequence (z,,) in L, (9, A, ). Then

879 || < (Stmai)™
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Indeed, this is an easy consequence of the fact (since p/q > 1) that L,/ is a
normed space. In particular, when ¢ = 1 we find

| teal| < 3 llzall

that is but the triangle inequality in L,. If 0 < p < g < oo, the inequality is
reversed: we have

(579 = W)”qu > (Y heal) "

In particular, when ¢ = 0o, we find simply the obvious inequality

|| Supy, ‘xn|||p > sup,, |-

One way to check (8.79) is to set r = ¢/p, ' = r(r—1)~! and y,, = |2,|P. Then
(8.79) is the same as

()] = (i)™

that is easy to derive from

(X |yn\7")1/r = sup { " anlynl [ an =0 Jan " <1}

Indeed, we find

J(Ewl) "= s Sl = (S ll)

an>3" ‘O‘n‘r,él

In its simplest form (8.78) and (8.79) reduce to: Vz,y € L,

Il + 191l < (lelig + Iyl i p>q
Il + 1)l > (2l + Iyl if p<q.

It is easy to see that actually the preceding inequalities imply conversely (8.78)
and (8.79).

In the opposite direction, one can easily deduce from (8.78) and (8.79) the
following refinements of (8.78) and (8.79). Let (£, A", 1) be another measure
space. Consider a measurable function F': Qx Q' — R. Then (8.78) and (8.79)
become

(8.80) I Ly usgury) 2 M |2 sz 1 P >4
(8.81) I Ly uizgw) < 1E gL,y i P<gq

Essentially the same proof as for (8.78) and (8.79) establishes (8.80) and (8.81).
Note that (8.78) and (8.79) correspond to ' = N equipped with the counting
measure p' = > 0.
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Appendix 3: Reverse Holder principle

The classical Holder inequality implies that for any measurable function Z > 0
on a probability space and any 0 < ¢ < p < oo we have ||Z]|; < || Z]|,- By the
“reverse Holder principle” we mean the following two statements (closely related
to [100]) in which the behaviour of Z in L, controls conversely its belonging to
L,. We will use the notation

1/p
nmnwzewwm2>ﬂ> |
A>0

Our first principle corresponds roughly to the case ¢ = 0.

Proposition 8.53. Let 0 <p < oco. For any 0 < § <1 and any R > 0 there is
a constant Cp(e, R) such that the following holds. Consider a random variable
Z >0 and a sequence (Z(n))nzo of independent copies of Z. We have then

(8.82) supys>; P { sup N~1/Pzm > R} <6 = [|Z]lpoo < Cp(d, R).

n<N
Proof. Assume ]P’{N‘l/p sup VAN R} <4 for all N > 1. By independence of

n<N
ZW 7@ . we have

P { sup Z" < RNl/P} = (P{Z < RNY/PHN,

n<N
therefore P{Z < RN'/P} > (1 — §)*/N and hence
P{Z > RNYP} <1—(1-68)N <Cy(6, R)N"L.
Consider t > 0 such that RNY? < ¢t < R(N + 1)1/P. We have
P{Z >t} < C1(6, RN~ < Cy(5, R)tP.
Since we trivially have P{Z > ¢} < 1if ¢t < R, we obtain as announced
|1 Zlp.0o < (max{R, Ca(, R)})*P. O

Corollary 8.54. For any 0 < ¢ < p < oo there is a constant R(p, q) such that
for any Z as in Proposition 8.53 we have

1 n
(8.83) 1Z1lp,00 < R(p,q) sup [IN"7 sup Z(V]l,.

N>1 n<N
Proof. By homogeneity we may assume supys [|[N ™7 sup, <y zZM|, < 1.

Then P{N~1/P SUp,,< 7z > §=1/4} < §, so by Proposition 8.53 with R =
6~1/4 and (say) 6 = 1/2 we obtain (8.83). O
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The following Banach space valued version of the “principle” will be used
several times in the sequel. Let B be an arbitrary Banach space and let f: Q —
B be a B-valued random variable. Regardless whether these are finite, let us
denote

1/p
11y ) = (suptp]P’{IfllB > t})
t>0

and || f[|z,(5) = (E[lf|I;)"/?. We will denote again by f), f?) ... a sequence
of independent copies of the variable f.

Proposition 8.55. For any 1 < ¢ < p < oo there is a constant R'(p,q) such
that any f in Ly(B) with E(f) = 0 satisfies

£l e my < R (poq)supysy N7VP|fO oo g .

Proof. Assume N=VP| ) ... fMN|, 5 <1 for all N > 1. By Corol-
lary 1.23 we have

sup N=VP|f0 4o fM) 5] < 21F1/a
1<n<N .
and hence by the triangle inequality
sup N~VP| 0|5 < 22+V/a,
1<n<N

q

Therefore we conclude by Corollary 8.54 applied to Z(-) = || f()|l5- O



Chapter 9

Martingales and metric
spaces

9.1 Metric characterization of super-reflexivity:
Trees

This section is based on Bourgain’s [86]. By general arguments (see [4]) it was
known that super-reflexivity is preserved under Lipschitz isomorphism. There-
fore knowing this, one would expect there should be a characterization of super-
reflexive Banach spaces using only their structure as metric spaces. This is
precisely the content of Bourgain’s characterization in Theorem 9.1 below.

Definition. Let (71, d;), (T2, d2) be metric spaces. A map F': Ty — Ty is called
Lipschitz (or Lipschitzian) if there is a constant C' such that

Vs, t € Ty do(F(s), F(t)) < Cdy(s,t).
The smallest such constant C' will be denoted by || F||vip, i.e.
[Eeip = Sl;lg{dz(F(S)’ F(#))/d(s, 1)}

Definition. Let (T),,d,) be a sequence of metric spaces. We say that a metric
space (T,d) contains {7} Lipschitz uniformly if for any n there are injective
Lipschitz mappings F;,: T, — T such that

Lip} < 0.

SUP{HFn”Lip”Fy:\%«“n(Tn)
n

In other words, there is A > 1 and positive constants a,,, b, with a,b, < A such
that for all n

Vs, t > T), (1/an)d(s,t) < d(Fa(s), Fn(t)) < bnd(s, t).

In the latter case we say that (T, d) (or simply T') contains the sequence {T,,}
A-uniformly.

213
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Let 7, be a finite dyadic tree with 1 +2 4 --- 4+ 27 = 271 — 1 vertices (or
nodes). We will label these points as 7(1...¢;), 1 <j < n, ¢; € {—1,1} and
we denote by 74 the “root” of the tree.

We equip 7,, with its natural “geodesic” distance as a graph, i.e. we set

d(r(e}...e5),7(e)...ep)) =j+k—-N
where N = N(¢’,€") is the largest NV such that (&f,...,¢ely) = (¢f,...,%).

Theorem 9.1. A Banach space B is super-reflexive iff B does not contain the
sequence {7} Lipschitz uniformly.

The if part follows from:

Lemma 9.2. If B is not super-reflexive then B contains the sequence {7}
Lipschitz uniformly.

Proof. By Theorem 3.10 if B is not super-reflexive, for any 0 < # < 1 and any
n > 1 there are g, ..., %2~ in B such that for any scalars a; we have

O 02w, (|30, a [ aif) < [ < 3 jasl.

i<j
There is a natural partial order on 7,: we say that s < ¢ (s,t € 7,) if s,t lie
on the same branch with s closer to the root. This can also be reformulated by
saying s,t are of the form s = 7(e1...¢;) and t = 7(e1...¢y) for some k > j
and (eq,...,e5) € {—1,1}*.

We write s < t if either s < t or s = t. Note that there is a bijective
mapping ¢: 7, — [1,...,2"1 —1] such that ¢ maps disjoint intervals starting
at different levels in 7, to disjoint ones in [1,...,2" "1 —1]. The existence of ¢
can be proved either by looking at a picture of a tree or using the expansion of
numbers in “base 2”: Just set ¥(74) = 0 and Y(7(e1...€x)) = Z’f 279¢; and,

to obtain ¢, just relabel the range of 9 in increasing order as [1,...,2"t! —1].
We can then define an “embedding” F,,: 7, — B by setting
Vvt e T, Fn(t) = Z$¢(w).

w<t

We claim that for all s, ¢
(9.2) (0/2)d(s,) < |1Fuls) — Fa®)] < d(s,).
Indeed, assume d(s,t) = j + k with
s=7(e1...eneNp1---EN4j) and t = T(e1 ... ENENL1 - ENt)s

with €y ) # ey Let 7 =7(e1...en). Then

B~ Et) = Xy -
where A’ C I, A” C I'" are disjoint subsets included in disjoint subintervals
I 1"of[0,....;2"], with |[I'| = {w |r<w <s}{=jand |[I"|={w|r <w <
t}| = k, and hence (9.1) yields (9.2). O
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The only if part of Theorem 9.1 will be deduced from:

Lemma 9.3. If B is super-reflexive then there is a constant C' and g < oo such
that:

(i) For any m > 1 and any family (zo, ..., %m) in B we have
. —1 _1
(9-3) _ dnf K7 llwj + 2ok — 22j4k]] < C(Log m) 77 S [ — x5l

(ii) For any n > 1 and any F: T, — B we have

(9.4)

%S]i\%fkgn E'E|F(T(e1...enelyin - Engn)) — F(r(e1 - cenefgr - X))l

(9.5) < C(Log(n)) || F||Lip,

where the expectation sign denotes the (triple) average with respect to
e, e e in {—1,1}N.

Proof. Tf B (and hence Lo(B)) is super-reflexive, we know (see (3.42)) that there
is 2 < ¢ < 0o and C such that for all B-valued dyadic martingales (f;) we have

n 1/q
(o Narle, ) < Cllfallzam):

A fortiori we have

(9.6) inf1<i<n 1dfellz, 5y < Cn ™Y full L ()-

Let (Ag)r>0 denote the dyadic filtration on [0, 1[. Recall that A,, is generated by
the 2™ atoms I, (k) = [(k—1)27",k27"[. Let m = 2" +1 and let f,,: [0,1] — B
be the A,-measurable function equal to

xp — Tp—1 on I,(k).

It is easy to check that all the values of the increments dfy (w) = fi(w) — fr—1(w)
are of the form (2k)~!(z; + xj4ok — 22j4) for some 0 < j,5 + 2k < m. Thus,
from (9.6), we obtain (9.3) for m of the form m = 2" 4+ 1. For the general
case, just choose n such that 2" + 1 < m < 2"+! + 1 and note that Log m ~
Log(2™ + 1) ~ n. This completes the proof of (i).

To prove (ii), we apply (i) to L2(B) in place of B. Set (for j =1,--- ,n)

z;=F(1(e1...€5))

and we view z; as an A;-measurable function of (e1,¢2,...) in Lo({—1,1}Y, B).
Let N = j+ k. Let us denote { = (e1...en), 7' = (ehyy1---Enpr), and
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0" = (%41 -ENyr)- Note that 2, and z; (and hence x; — 2x;,4) both

depend only on £ = (g1 ...ex) so that by the triangle inequality

lzn4(&n') — 2N (&0, B)

< enn(€n) + 25 = 22540l L.8) + lonv+k(0") + 25 — 2051k L2 ()
= 2len s + 25 = 225k Lo (8) -
Note that |lz; — z;-1llL,B) < llz; — 2j—1ll..(B) < [|F||Lip, and also that the

condition 2k < N +k < n is equivalent to 0 < j, j 4+ 2k < n. Therefore a fortiori
we obtain (ii) from (9.3) applied to Ly(B), but this time with m = n. O

Remark 9.4. Let F: 7T, — B be an injective map. If B satisfies (ii) in
Lemma 9.3, for some constant C’ > 0 independent of n we have

(9.7) I Flliol Fptg lip = €' (Log m)1/e.

Indeed, we may assume that ”F\;«“%Tn) llLip = 1. Then we have
d(F(s), F(t)) > d(s,t)

for all s,¢. From this it is easy to check that 7,, satisfies

k™'Ed(T(e1 .. enengy - Enar)s T(E1 - ENERyr - Egn)) = 1

(because e’y | # €74, implies that the above distance is equal to 2k and this
event occurs with probability 1/2). Therefore (9.4) immediately implies (9.7).00

Proof of Theorem 9.1. The if part follows from Lemma 9.2 and the converse
from the preceding remark. U

Remark 9.5. Bourgain observed in [86] that already in Hilbert space the estimate
of (9.7) is sharp. See also Matousek’s [201] for more on this.

9.2 Another metric characterization of super-
reflexivity: Diamonds

This section is based on [173]. Here the sequence {7} is replaced by the se-
quence {A,} of the diamond graphs defined as follows. It will be convenient to
view A, as embedded in the Hamming cube, i.e. the set {0, 1}2n equipped with
the Hamming distance d(s,t) = Z?n |sj...t;| = [{j | s; # tj}|. The embed-
ding is realized by induction as follows. We set Ag = {0,1}. Then assuming
An_1 € {0,1}2"7", we define A/, € {0,1}%" simply by doubling each clement
in A,_1, ie weset A = {(t,t) |t € A,_1} € {0,1}*". Then if (s,t) € A,y
is a pair of neighbours, i.e. s,t differ just by one digit say s; # ¢; then there are
exactly two points s’ and ' in {0,1}?" such that d(s', (s,s)) = d(s', (,1)) = 1
and similarly d(t', (s, s)) = d(¥, (t,t)) = 1. We let A denote the collection of
all the points ', ¢ obtained in this way and we then define A,, = A} U A,
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Note that if V(A,,) (resp. E(A,)) denotes the set of vertices (resp. edges)
in A,, we have by an elementary induction

n—1 . qn — 1
(9.8) |E(A,)| =4"  and \V(An)|:2+220 A =242——.

Theorem 9.6. A Banach space B is super-reflexive iff B does not contain the
sequence {A,} Lipschitz uniformly.

The if part will follow from:

Lemma 9.7. Fiz 0 >0 and A > 1. Let (x1...,z2n) be a A-basic sequence in
the unit ball of B such that

HZ].GAIJ'H29|A| forany AcC{l,...,2"}.

Then the function F: A, — B defined (viewing A, as a subset of {0,1}2") by
F(t) = Y] tjz; satisfies

Vs, t € A, (0/8N)d(s,t) < d(F(s), F(t)) <d(s,t).
For the only if part we will use:

Lemma 9.8. Assume that B is uniformly convexr. Then for any F: Ay — B
such that d(s,t) < ||[F(s) — F(t)|| < Md(s,t) for any s,t in Ay we have

|F(11) = F(00)]| < 2M(1 — 85(2/M)).

Proof. Let
x1 = F(11) — F(10)
x92 = F(10) — F(00)
x3 = F(11) — F(01)
x4 = F(01) — F(00)

so that 1 +ze+x3+z4 = 2(F(11)—F(00)). Note 1 < ||z;|| < M forj=1,...,4
and also 2 < ||z; — z3|| < M and 2 < ||zg — z4]| < M. Therefore

[(z1 +a3)/2M| <1-6p(2/M) and |[[(z2+z4)/2M|| <1 —65(2/M),
and hence
IF(11) — FOO)[| = [[a1 + 5 + 22 + 2] /2 < 2M(1 — 65(2/M)). D

Proof of Theorem 9.6. If B is not super-reflexive then by Remark 3.20 for any
0 <60 <1, for any A\ > 1 and for any n there is a sequence x1,...,x9n in B
satisfying the assumption of Lemma 9.7 (indeed any such finite sequence in a
space f.r. in B can obviously be “copied” back in B). Thus Lemma 9.7 estab-
lishes the if part. Conversely assume B super-reflexive. Then by Theorem 3.37
we may as well assume B uniformly convex.



218 CHAPTER 9. MARTINGALES AND METRIC SPACES

Let M, = inf{||F|Lip ||F|;1(An) |lLip } where the infimum runs over all injective
F: A, — B. We claim that
(9.9) M1 < M,(1—05(2/M,)).
Fix a number M > M,. Let F: A, — B be such that ||F‘I,1(AW)||Up <1
and ||F||Lip < M. We will use the observation that Al C A,, is metrically a
copy of A,_; inside A,, with double distance: more precisely we have obviously
da,((s s),(t t)) =2da,_,(s,t) for any pair (s s),(¢t t) in Al. Moreover, if
s and t are neighbours in A,_; then (s s),(¢ ¢) and the “new points” s', ¢’
appearing in the definition of A! form an isometric copy of D; with (s s)(¢ )
sitting on opposite vertices. Thus for any pair of the form (s s)(¢t t) in A/,
with da,_, (s,t) = 1 we must have by Lemma 9.8

[F(s s) = F(t t)]] <2M(-0p(2/M)).
Let F(t) = F(t t)/2. We have
1E(s) — F(t)]| < M(1 — 65(2/M))

for any pair of neighbours s,¢ in A,,_;. By the triangle inequality (consider a
minimal path s = to, t1,...,tx = ¢ with d(¢;,¢;-1) = 1 for all j) this implies

Vs, t € Ap_y |F(s) — F(t)|| < M(1 = 6p(2/M))da, _, (s,1).

Moreover by our assumption on F, ||[F(s) — F(t)|| > da,((s s),(t 1))/2 =
da,_,(s,t). Therefore we conclude M,,_1 < M(1 —ép(2/M)). This proves our
claim (9.9). Given this, it is easy to deduce that M, — oo if B is uniformly
convex. Indeed, if M, < M for all n, let § = dp(2/M), then (9.9) implies
M, > My(1 —6)~™ and hence M,, — oco. This completes the proof of the only
if part. O

9.3 Markov type p and uniform smoothness

The notion of Markov type p was introduced by K. Ball using Markov chains
on (finite subsets of) the Banach space under consideration.

Let E be an arbitrary finite space and let Xy, X7,...,X,, be a stationary
symmetric Markov chain on F with invariant probability measure y on E. This
means that Xo,..., X, are F-valued random variables on a probability space
(Q2, A, P) for which there is a symmetric kernel P: EF x E — R, (“transition
probability”) such that for any function f: E — V with values in (say) a vector
space V we have for any 0 < k <n

(9.10) B (Ko X0) f(X,) = /P”"“(Xk,w)f(w)du(w)-
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Note in particular that, since this last expression depends only on Xy, this
encodes the “Markov property”

Eo Yo X0) £(X,) = B2 £(X,,).

The symmetry of the transition probability P implies that the chain is reversible,
i.e. that Xy, X1,...,X,, have the same joint distribution as X,, X,,_1,..., Xp.

Definition 9.9. A Banach space B is called of Markov type p (1 < p < 2)
if there is a constant C' such that, for any n for any finite set £ and any
(Xo,...,X,) as above we have

1£(Xn) = F(Xo)l 1, (m) < Cn'P|lf(X1) = F(Xo)llL,5)-
The smallest such C' is called the Markov type p constant of B.
The next result from [212] answers a question left open by K. Ball in [70].

Theorem 9.10 ([70]). Let 1 < p < 2. If a Banach space B is isomorphic to a
p-uniformly smooth, then B is of Markov type p.

Proof. By our assumption on B, we know that all B-valued martingales in
L,(B) satisty (4.25). The idea of the proof is to show that f(X,) — f(Xo) can

be rewritten as a sum
SIS AT

where (d}) and (d}}) are martingale differences and we have for all k =1,...,n

max{||dy||z,5), Ikl 2,8y 16l )} < 21f(X1) — fF(Xo)llz,(B)-

Let Ay = 0(Xo,...,Xg) and B, = 0(X,,,..., Xk). Let f, = f(X,) and & =
fr — fr—1. We have obviously

(9.11) fo—fo=d"" 0k ="+ > EA g,

where d}, = (EA* — EAx=1)(4y,).
We thus obtain f,, — fo written as a sum of martingale differences " dj, up
to another term that we will now estimate. We have

n+1 n+1 n+1
(912) fn - fO = 22 5k—1 = 22 dg + ZQ EBk*l((Sk_l)

where df} = (EP+-2 — EBx-1)(§,_1). Here again (d}) are martingale differences.
We now claim that for any k =2,....n

(9.13) EBr-1(6,_1) = —EAk-14.

This is a simple consequence of the reversibility of the chain. Indeed, on one
hand we have EA#-16§, = E4%~1 f; — fr_; and hence by (9.10)

AR 16, = / P(X1, ) f(£)dpa(t) — [(Xi1).
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On the other hand, since (X,,...,Xo) and (Xo, ..., X, ) have the same distri-
bution, we have

BBkt (8q) = EXnmoXam i X Xemnfy o = fk71—/ P(Xj—1,t) f(t)du(t),
and this proves our claim (9.13). Thus, adding (9.11) and (9.12) yields
n n+1
(9.14) 2fn — fo) = Zl dy, + ZQ "+ EAG, + BB,
We now observe that by the triangle inequality

ldillz, ) < 2l10kllz,(B)

and since (X, X—1) and (X1, Xo) have the same distribution, we have ||6x ||z, (5) =
If1 = follz, )y for all k, so that ||dy|[z, 8y < 2|lfi — follz,(m) and similarly
dillz,B) < 2[lf1 — follz,B)- Thus we obtain finally from (9.14)

n+1
d//
L) HZ2 ¥

and since by our assumption on B all B-valued martingales satisfy (4.25) we
conclude that

+2|lf1 = follz, (B
Ly(B)

n
|fr = follz,B) < HZ1 dy,

I fa = follz, ) < (CnYP +CnM? +2)| f1 — follo,(m)- O
Remark. The converse to Theorem 9.10 remains an open problem: It is rather

easy to show that Markov type p > 1 implies type p, but it is unclear whether
it implies super-reflexivity.

9.4 Notes and Remarks
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