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1 Introduction

1.1 Background

Mukai [Muk81, Sec. 2] introduces an analog of the Fourier transform for sheaves
of modules on abelian varieties, known as the Fourier-Mukai transform. Laumon
[Lau96] and Rothstein [Rot96] study independently its lift to sheaves with
connection (integrable or not). They both prove the Fourier inversion formula
for the lift. Laumon [Lau96, Thm. 6.3.3] applies it to investigate generalized
1-motives. Meanwhile, as an application, Rothstein [Rot96, Thm. 3.2] recovers
Matsushima’s theorem ([Mat59]): every vector bundle on an abelian variety
admitting a connection is translation invariant. Schnell’s work [Sch15] about
holonomic D-modules on abelian varieties relies upon the lift of the Fourier-
Mukai transform.

Let k be an algebraically closed field. Let A,B be abelian varieties over k
dual to each other. Set g = dimA. Let pA (resp. pB) denote the projection
from A × B to A (resp. B). Let P be the normalized Poincaré line bundle on
A×B. We adopt the following sign convention for the Fourier-Mukai transform:

RS1 = RpA∗(P ⊗L p∗B ·) : D(OB) → D(OA);

RS2 = RpB∗(P−1 ⊗L p∗A·) : D(OA) → D(OB),
(1)

For a triangulated category, let T denote the degree shift automorphism. For
an algebraic variety V over k, denote by Dqc(OV ) ⊂ D(OV ) (resp. D

b
c(OV ) ⊂

Db(OV )) the full subcategory of objects whose cohomologies are quasi-coherent
(resp. coherent) OV -modules. Mukai establishes an analog of the Fourier
inversion formula for this triangulated subcategory.

Fact 1.1.1 (Mukai, [Muk81, Thm. 2.2], [Rot96, p.569]). 1. There are natural
isomorphisms of functors RS1 ◦ RS2

∼= T−g on Dqc(OA) and RS2 ◦
RS1

∼= T−g on Dqc(OB). In particular, RS1 : Dqc(OB) → Dqc(OA) is
an equivalence of triangulated categories, with a quasi-inverse T gRS2.

2. The functor RS1 : D(OB) → D(OA) restricts to an equivalence Db
c(OB) →

Db
c(OA).

Let 0 → H0(A,Ω1
A) → B♮

p→ B → 0 be the universal vectorial extension
of B (constructed in [Ros58, Prop. 11]). For an algebraic variety V , denote
the forgetful functor D(DV ) → D(OV ) by forV . Let Dqc(DA) ⊂ D(DA) (resp.
Db
c(DA) ⊂ Db(DA)) be the full subcategory of objects whose cohomologies

are quasi-coherent OA-modules (resp. coherent DA-modules). Laumon and
Rothstein lift the Fourier-transform to D-modules and establish a duality result
similar to Fact 1.1.1.
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Fact 1.1.2 (Laumon, Rothstein).

1. There are functors RS1 : D(OB♮) → D(DA) and RS2 : D(DA) → D(OB♮)
fitting into commutative squares

Dqc(OB♮) Dqc(DA)

Dqc(OB) Dqc(OA),

RS1

Rp∗ forA

RS1

Dqc(OB♮) Dqc(DA)

Dqc(OB) Dqc(OA).

Rp∗

RS2

forA

RS2

2. ([Lau96, Thm. 3.2.1], [Rot96, Thm. 4.5], [Rot97], [Vig21, Thm. 2.2.21])
There are natural isomorphisms of functors RS1RS2

∼= T−g on Dqc(DA)
and RS2RS1

∼= T−g on Dqc(OB♮), hence an equivalence RS1 : Dqc(OB♮) →
Dqc(DA).

3. ([Lau96, Cor. 3.1.3], [Rot96, Thm. 6.2]) The functor RS1 : D(OB♮) →
D(DA) restricts to an equivalence RS1 : Db

c(OB♮) → Db
c(DA).

1.2 Extension to complex tori

Let X,Y be complex tori dual to each other and of dimension g. Define
the analytic Fourier-Mukai transform RS1 : D(OX) → D(OY ) and RS2 :
D(OY ) → D(OX) by formulae similar to (1). For a complex manifold Z, let
Dgood(OZ) ⊂ D(OZ) be the full subcategory of objects whose cohomologies are
good OZ-modules (in the sense of [Kas03, Def. 4.22]). In [BBBP07, Thm. 2.1],
a result similar to Fact 1.1.1 is established for complex tori.

Fact 1.2.1 (Mukai, Ben-Bassat, Block, Pantev).

1. ([Liu23a, Thm. 4.1.1]) There are natural isomorphisms of functors

RS1RS2
∼= T−g : Dgood(OY ) → Dgood(OY ),

RS2RS1
∼= T−g : Dgood(OX) → Dgood(OX).

In particular, RS1 : Dgood(OX) → Dgood(OY ) is an equivalence of categories
with a quasi-inverse T gRS2.

2. ([PPS17, Thm. 13.1]) The functor RS1 : D(OX) → D(OY ) restricts to
an equivalence Db

c(OX) → Db
c(OY ).

We lift the analytic Fourier-Mukai transform to D-modules, and give an
analog of Fact 1.1.2. Good D-modules are reviewed in Section 6.1. For a
complex manifold Z and an OZ-algebra R, let DO−good(R) ⊂ D(R) (resp.
Db

good(R) ⊂ Db(R)) be the full subcategory of objects whose cohomologies are
good over OZ (resp. R).

Theorem 1.2.2.
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� (Prop. 5.1.2) There is a canonical commutative OX-algebra AX , such that
the functors RS1 and RS2 lift naturally to triangulated functors RS1 :
D(AX) → D(DY ) and RS2 : D(DY ) → D(AX) respectively.

� (Thm. 5.1.3) The functors RSi restrict to equivalences RS1 : DO−good(AX) →
DO−good(DY ) and RS2 : DO−good(DY ) → DO−good(AX).

� (Thm. 6.3.1) The functors RSi restricts to equivalences RS1 : Db
good(AX) →

Db
good(DY ) and RS2 : Db

good(DY ) → Db
good(AX).

Notation and convention

For a sheaf F on a topological space, let SuppF be its support. For a (not
necessarily commutative) ringed space (X,R), let Mod(R) be the category of
left R-modules. Let Coh(R) ⊂ Mod(R) be the full subcategory of coherent
R-modules. Given a symbol ∗ ∈ {∅,+,−, b}, the notation D∗(R) refers to the
unbounded/bounded below/bounded above/bounded derived category of the
abelian category Mod(R) in order. Let D∗

c (R) ⊂ D∗(R) be the full subcategory
of objects whose cohomologies are coherent R-modules (in the sense of [Sta23,
Tag 01BV]).

Let k be an algebraically closed field. An algebraic variety refers to an
integral scheme of finite type and separated over k. For a complex manifold
Z and z ∈ Z, let iz : (z,C) → (Z,OZ) be the closed embedding of complex
manifolds. Set Cz := (iz)∗C, which is a coherent OZ-module. Let X,Y be
complex tori dual to each other and of dimension g.

2 Preliminaries

For the convenience of the reader, we recall the notation of [Rot97, Sec. 2.1].

2.1 Categories of splittings

For a complex manifold Z and a (holomorphic) vector bundle M → Z, by
[Har77, III, Prop. 6.3 (c)], one has H1(Z,M) = Ext1(OZ ,M). Thus, every
α ∈ H1(Z,M) determines a short exact sequence in Mod(OZ)

0 →M → Eα
µα→ OZ → 0. (2)

Since OZ is a flat OZ-module, by [Sta23, Tag 05NJ], for every F ∈ Mod(OZ),
the sequence (2) remains exact after tensored with F :

0 →M ⊗OZ
F → Eα ⊗OZ

F
µα⊗IdF→ F → 0. (3)

Definition 2.1.1. Define a category Mod(OZ)α−sp as follows: the objects are
pairs (F,ψ), where F ∈ Mod(OZ) and ψ : F → Eα ⊗OZ

F is an α-splitting on
F , i.e., an OZ-linear splitting of µα⊗ IdF . The morphisms in Mod(OZ)α−sp are
required to be compatible with the splittings.
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Example 2.1.2. When α = 0, the sequence (2) identifies E0 with M ⊕ OZ .
There is a natural functor Mod(OZ) → Mod(OZ)0−sp defined by F 7→ (F,ψ),
where ψ : F → E0⊗F = (M⊗OZ

F )⊕F is the canonical injection to the second
factor. If further M = Ω1

Z , then an α-splitting ϕ on a vector bundle E → Z is
exactly a holomorphic 1-form on Z with values in End(E). The pair (E, ϕ) is a
Higgs bundle (in the sense of [Sim92, p.6]) if and only if [ϕ, ϕ] = 0.

Lemma 2.1.3. For an OZ-module F , there is an α-splitting on F if and only
if the map i∗ : H1(Z,M) → H1(Z,M ⊗OZ

End(F )) (induced by the natural
morphism OZ → End(F )) sends α to 0. In that case, the set of α-splittings on F
has a natural simple transitive action of the abelian group HomOZ

(F,M⊗OZ
F ).

Proof. The natural morphism OZ → End(F ) induces a morphism i : M →
HomOZ

(F,M ⊗OZ
F ), i(m)(f) = m ⊗ f . There is a canonical evaluation

morphism ev : HomOZ
(F,M ⊗OZ

F )⊗F →M ⊗OZ
F, ev(ϕ⊗f) = ϕ(f). The

five-term exact sequence of the spectral sequence

Ei,j2 = Exti(OZ , Extj(F,M ⊗OZ
F )) ⇒ Exti+j(F,M ⊗OZ

F )

gives an injection ι : Ext1(OZ ,Hom(F,M⊗OZ
F )) → Ext1(F,M⊗OZ

F ), which
is Ext1(F, ev) ◦ (· ⊗ F ):

Ext1(F,M ⊗OZ
F )

Ext1(OZ ,M) Ext1(F,M ⊗OZ
F ) Ext1(F,Hom(F,M ⊗OZ

F )⊗ F )

Ext1(OZ ,Hom(F,M ⊗OZ
F )).

(i⊗IdF )∗
=

·⊗F

i∗

Ext1(F,ev)

·⊗F
ι

One has

ev ◦ (i⊗ IdF )(m⊗ f) = ev(i(m)⊗ f) = i(m)(f) = m⊗ f,

so ev◦(i⊗IdF ) = IdM⊗OZ
F as morphismsM⊗OZ

F →M⊗OZ
F . Therefore, the

diagram is commutative. Then F admits an α-splitting if and only if α⊗F = 0
if and only if i∗(α) = 0. Any two α-splittings on F differ by a unique element
of Hom(F,M ⊗OZ

F ).

To each object (F,ψ) ∈ Mod(OZ)α−sp, we assign an element

[ψ,ψ] ∈ Γ(Z, (∧2M)⊗OZ
End(F )) (4)

as follows. The sequence (2) induces a short exact sequence

0 → ∧2M → ∧2Eα
ωα→M → 0,

where
ωα(ρ1 ∧ ρ2) = µα(ρ1)ρ2 − µα(ρ2)ρ1.
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The flatness of M ensures the exactness when tensoring with F :

0 → (∧2M)⊗ F → (∧2Eα)⊗ F
ωα⊗IdF→ M ⊗OZ

F → 0. (5)

Let a : Eα ⊗ Eα → ∧2Eα be the morphism defined by e⊗ e′ 7→ e ∧ e′. Let ψ1 be
the composition

Eα ⊗ F
IdEα⊗ψ→ Eα ⊗ (Eα ⊗ F )

∼−→ (Eα ⊗ Eα)⊗ F
a⊗IdF→ (∧2Eα)⊗ F,

where the isomorphism in the middle is from the associativity of tensor product.

Lemma 2.1.4. One has (ωα ⊗ IdF )ψ
1ψ = 0.

Proof. Locally, the vector bundle Eα has a (holomorphic) frame {e1, . . . , er}.
For a local section f ∈ F , write ψ(f) =

∑r
i=1 ei⊗ fi, where fi are local sections

of F . For every 1 ≤ i ≤ r, write ψ(fi) =
∑r
j=1 ej ⊗ f

(i)
j , where f

(i)
j are local

sections of F . As ψ is a section to µα ⊗ IdF , one has

f = (µα ⊗ IdF )ψ(f) =

r∑
i=1

µα(ei)fi; (6)

fi = (µα ⊗ IdF )ψ(fi) =

r∑
j=1

µα(ej)f
(i)
j . (7)

Thus,

ψ(f)
(6)
=

r∑
i=1

µα(ei)ψ(fi). (8)

By construction, ψ1ψ(f) =
∑r
i,j=1(ei ∧ ej)⊗ f

(i)
j . Then

(ωα ⊗ IdF )ψ
1ψ(f) =

r∑
i,j=1

[µα(ei)ej − µα(ej)ei]⊗ f
(i)
j

=

r∑
i=1

µα(ei)

r∑
j=1

ej ⊗ f
(i)
j −

r∑
i=1

ei ⊗ [

r∑
j=1

µα(ej)f
(i)
j ]

(7)
=

r∑
i=1

µα(ei)ψ(fi)−
r∑
i=1

ei ⊗ fi

(8)
=ψ(f)− ψ(f) = 0.

From Lemma 2.1.4 and (5), one has ψ1ψ(F ) ⊂ (∧2M)⊗ F . The morphism
ψ1ψ : F → (∧2M)⊗ F gives an element [ψ,ψ] ∈ Γ(Z, (∧2M)⊗OZ

End(F )).
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Example 2.1.5. For the complex torus X, set g = H1(X,OX). Then

H1(X, g∗ ⊗C OX) = g∗ ⊗C g = End(g).

Hence a category Mod(OX)T−sp for each T ∈ End(g). The identity element
1 ∈ End(g) corresponds to the tautological exact sequence [Rot96, (1.3)]:

0 → g∗ ⊗C OX → E → OX → 0. (9)

We also write Mod(OX)sp for Mod(OX)1−sp. For (F,ψ) ∈ Mod(OX)sp, the
element [ψ,ψ] lies in

Γ(X,∧2g∗ ⊗C OX ⊗OX
End(F )) = ∧2g∗ ⊗C End(F ),

and we recover [Rot96, (4.8)]. Similarly, H1(X × X, g∗ ⊗ OX×X) = End(g) ⊕
End(g), so for every pair T1, T2 ∈ End(g), the category Mod(OX×X)(T1,T2)−sp

is defined.

2.2 Categories of twisted connection

We continue to review the twisted (relative) connection introduced in [Rot97,
p.206]. Consider a smooth morphism of complex manifolds f : Z → S, with
relative cotangent sheaf Ω1

f . As f is smooth, Ω1
f is a vector bundle on Z. Let

df : OZ → Ω1
f denote the differential relative to f . An element α ∈ H1(Z,Ω1

f )
determines an extension

0 → Ω1
f → Eα

µα→ OZ → 0. (10)

Definition 2.2.1. On an OZ-module F , an α-connection is an f−1(OS)-linear
splitting ∇ : F → Eα ⊗OZ

F to µα ⊗ IdF , satisfying the Leibniz rule

∇(hϕ) = h∇(ϕ) + df (h)⊗ ϕ, (11)

where h and ϕ are local sections of OZ and F respectively. Let Mod(OZ)f,α−cxn

be the category of pairs (F,∇), where F ∈ Mod(OZ) and ∇ is an α-connection
on F .

Example 2.2.2. If α = 0, then α-connection are exactly f -relative connection.
Define a sheaf D̃Z/S of noncommutative OZ-algebras by gluing the following
local data. If {ξ1, . . . , ξn} is a local frame of (Ω1

f )
∨ (the vector bundle dual to

Ω1
f ) on an open subset U ⊂ Z, then a multiplication law on OU{ξ1, . . . , ξn}

is introduced by imposing the commutation relation [ξi, h] = ξi(h) for local
sections h of OZ . Let it be D̃Z/S |U . Then Mod(Z)f,0−cxn = Mod(D̃Z/S). The
category Mod(OZ)f,0−cxn is denoted by Mod(OZ)cxn when f is the structure
morphism Z → Specan(C).

Remark 2.2.3. In fact, a twisted connection is a particular splitting. Define
another extension

0 → Ω1
f → Eα′ → OZ → 0 (12)
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in Mod(OZ) as follows. As an extension of abelian sheaves, (12) is same as (10).
Let h (resp. s′) be a local section of OZ (resp. Eα′) and s denote the local
section of Eα induced by s′. The OZ-module structure on Eα′ is defined such
that the local section hs+ µα(s)dfh of Eα induces the local section hs′ of Eα′ .

We claim this indeed defines an OZ-module structure on Eα′ . For local
sections h1, h2 of OZ , let t be the local section of Eα induced by h2s

′. Then t =
h2s+µα(s)dfh2, so µα(t) = h2µα(s). Thus, the local section of Eα corresponding
to h1(h2s

′) is

h1t+µα(t)dfh1 = h1h2s+h1µα(s)dfh2+h2µα(s)dfh1 = (h1h2)s+µα(s)df (h1h2).

Therefore, h1(h2s
′) = (h1h2)s

′. The claim is proved.
By construction, the morphisms in (12) are OZ-linear. Then (12) is indeed

an extension in Mod(OZ), hence a new extension class α′ ∈ Ext(OZ ,Ω
1
f ). An

α-connection on F ∈ Mod(OZ) is equivalent to an α′-splitting on F . Hence an
equivalence of categories

Mod(OZ)f,α−cxn → Mod(OZ)α′−sp.

There is a notion of integrable α-connection ([Rot97, Remark, p.206]). Let
Mod(OZ)f,α−cxn,fl be the full subcategory of Mod(OZ)f,α−cxn comprised of
objects whose connection are integrable. Then Mod(OZ)f,0−cxn,fl coincides with
MIC(f) defined in [ABC20, 4.3.7], which is further equivalent to Mod(DZ/S).
Here DZ/S is the sheaf of ring of relative differential operators on Z/S defined
in [SS94, p.9].

Example 2.2.4. For the dual complex tori X,Y , consider the projection pX :
X × Y → X. Since Ω1

pX = p∗X(g∗ ⊗C OX), there is a natural morphism

p∗X : End(g) = H1(X, g∗ ⊗C OX) → H1(X × Y,Ω1
pX ).

For every T ∈ End(g), the category Mod(OX×Y )pX ,p∗XT−cxn (resp. Mod(OX×Y )pX ,p∗XT−cxn,fl)
is also written as Mod(OX×Y )T−cxn (resp. Mod(OX×Y )T−cxn,fl).

Fact 2.2.5 is taken from the two remarks in [Rot97, pp.206–207].

Fact 2.2.5. The Poincaré bundle P is naturally an object of Mod(OX×Y )−1−cxn,fl.

In local coordinates, the p∗X(−1)-connection on P is explained in [Rot96,
(1.10) and p.575ff.] (except that we use a Stein open cover of X instead of
Rothestein’s affine open cover).

2.3 Functors between them

Recall that the Fourier-Mukai transform (1) is the composition of the pullback,
the tensor product with P as well as the derived direct image. Rothstein’s lift to
modules with connection keeps an extra track of the splittings and connection.
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Remark 2.3.1. Combining [Rot97, (2.21)] with the fact that twisted relative
connection are kinds of splittings (Remark 2.2.3), the categories under consideration
(Mod(OX)sp, Mod(OX×Y )T−cxn, etc.) are equivalent to categories of modules
over sheaves of certain noncommutative flat O-algebras. In particular, each of
them is a Grothendieck abelian category. Each has enough K-injectives ([Sta23,
Tag 079P]) and enough objects flat over O ([HT07, Lem. 1.5.2 (ii)]), cf. [Rot97,
Cor. 2.3]. Thus, all the (left exact) direct image functors involved below admit
right derived functors on the unbounded derived categories (see [Sta23, Tag
070K] and [Sta23, Tag 079P]).

From splittings to connection

Given T ∈ End(g) and (F,ψ) ∈ Mod(OX)T−sp, the induced morphism

p−1
X ψ : p−1

X F → p−1
X E ⊗p−1

X OX
p−1
X F

is p−1
X OX -linear. By Example 2.2.4, the sequence (9) induces a short exact

sequence in Mod(OX×Y )

0 → Ω1
pX → p∗XE → OX×Y → 0.

Its extension class is p∗XT ∈ H1(X × Y,Ω1
pX ). Define another p−1

X OX -linear
morphism

∇ψ : p∗XF = (OX×Y ⊗p−1
X OX

p−1
X F ) → p∗XE ⊗OX×Y

p∗XF (=

p∗XE ⊗p−1
X OX

p−1
X F = OX×Y ⊗p−1

X OX
p−1
X E ⊗p−1

X OX
p−1
X F )

by
∇ψ(h⊗ s) = dpX (h)⊗ s+ h⊗ [(p−1

X ψ)(s)],

where h (resp. s) is a local section of OX×Y (resp. p−1
X F ). By construction,

∇ψ satisfies the Leibniz rule (11). So it is a p∗XT -connection on p∗XF . Thus, we
get the exact functor in [Rot97, (2.5)]:

p∗X : Mod(OX)T−sp → Mod(OX×Y )T−cxn. (13)

Tensoring with Poincaré bundle

By Fact 2.2.5 and [Rot97, (2.10)], the functor

· ⊗OX×Y
P : Mod(OX×Y )1−cxn → Mod(OX×Y )0−cxn (14)

restricts to a functor Mod(OX×Y )1−cxn,fl → Mod(OX×Y )0−cxn,fl(∼= Mod(DX×Y/X)).
The functor (14) is an equivalence of abelian categories, with a quasi-inverse
· ⊗OX×Y

P−1.
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From connection to splittings

For every (F,∇) ∈ Mod(OX×Y )1−cxn, the morphism

∇ : F → p∗XE ⊗OX×Y
F (= p−1

X E ⊗p−1
X OX

F )

is a p−1
X OX -splitting to (p−1

X µ1) ⊗ IdF . By projection formula (see e.g, [KS13,
Prop. 2.6.6]), the induced morphism

pX∗∇ : pX∗F → E ⊗OX
pX∗F

is an OX -linear splitting to µ1⊗OX
IdpX∗F . Hence (pX∗F, pX∗∇) ∈ Mod(OX)sp.

Thus, we get a left exact functor (a special case of [Rot97, (2.13)]):

pX∗ : Mod(OX×Y )1−cxn → Mod(OX)sp. (15)

If (F,∇) is integrable, then [pX∗∇, pX∗∇] defined in (4) is zero.

Between connection

We define the inverse image and the direct image of relative connection on
changing bases. Consider a cartesian square of complex manifolds

W Z

T S,

g′

f ′ □ f

g

(16)

where f is smooth. For every (F,∇) ∈ Mod(OZ)f,0−cxn, by [ABC20, Sec. 4.2],
the relative connection ∇ is equivalent to an OZ-linear splitting to the natural
projection P 1

f ⊗OZ
F → F , where P 1

• denotes the sheaf of first order jets
(defined in [ABC20, Sec. 4.1.2]). Applying g′∗ to the induced splitting, we
get an OW -linear splitting to the natural projection P 1

f ′ ⊗OW
g′∗F → g′∗F .

This is equivalent to an f ′-connection on g′∗F . Hence an inverse image functor

g′∗ : Mod(OZ)f,0−cxn → Mod(OW )f ′,0−cxn. (17)

It is right exact. By [ABC20, Sec. 5.1], the connection induced by∇ is integrable
if ∇ is so.

Now for direct image. Fix α ∈ F 1(Z,Ω1
f ). For every

(F,∇) ∈ Mod(OW )f ′,g′∗α−cxn,

by projection formula (see e.g, [Har77, II, Ex. 5.1 (d)]), one has

g′∗(F ⊗OW
g′∗Eα) = (g′∗F )⊗OZ

Eα.

Then the induced morphism

g′∗∇ : g′∗F → (g′∗F )⊗OZ
Eα

10



is f−1(OS)-linear. Since df ′ : OW → Ω1
f ′ and df : OZ → Ω1

f are related by
g′∗df = df ′ , the induced map g′∗∇ satisfies the Leibniz rule (11). Hence, the
pair (g′∗F, g

′
∗∇) ∈ Mod(OZ)f,α−cxn. In this manner, we get a left exact functor

g′∗ : Mod(OW )f ′,g′∗α−cxn → Mod(OZ)f,α−cxn. (18)

When α = 0, the functor (18) sends MIC(f ′) to MIC(f).

Example 2.3.2. Take (16) to be

X × Y Y

X Specan(C),

pY

pX □

then p∗Y : Mod(OY )cxn → Mod(OX×Y )0−cxn sits on the left of the diagram
[Rot97, (2.15)] and

pY ∗ : Mod(OX×Y )0−cxn → Mod(Y )cxn (19)

is [Rot97, (2.12)]. They restrict respectively to functors

pY ∗ : MIC(pX) → Mod(DY ); (20)

p∗Y : Mod(DY ) → MIC(pX). (21)

Remark 2.3.3. Take α = 0 ∈ H1(Z,Ω1
f ). From another point of view, the

morphismOZ → g′∗OW between sheaves of rings extends to a morphism D̃Z/S →
g′∗D̃W/T . Then (17) and (18) are respectively the pullback and the pushout

along the induced morphism (W, D̃W/T ) → (Z, D̃Z/S) of ringed spaces. By
[Sta23, Tag 0096], the functor (17) is the left adjoint to (18). Then from [Sta23,
Tag 09T5], the derived functor

Lg′∗ : D(Mod(Z)f,0−cxn) → D(Mod(W )f ′,0−cxn)

is the left adjoint to

Rg′∗ : D(Mod(W )f ′,0−cxn) → D(Mod(Z)f,0−cxn).

3 Rothstein transform on modules with connection

3.1 Construction

Definition 3.1.1. Define functors RS1 : D(Mod(OX)sp) → D(Mod(OY )cxn)
and RS2 : D(Mod(OY )cxn) → D(Mod(OX)sp) by

RS1 = RpY ∗(P ⊗OX×Y
p∗X ·),

RS2 = RpX∗(P−1 ⊗OX×Y
p∗Y ·).

Here RpY ∗ (resp. RpX∗) is the right derived functor of (19) (resp. (15)). The
pair (RS1, RS2) is called the Rothstein transform.
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LetDO−good(Mod(OY )cxn) ⊂ D(Mod(OY )cxn) (resp. DO−good(Mod(OX)sp) ⊂
D(Mod(OX)sp)) be the full subcategory of objects whose cohomologies are good
O-modules (in the sense of [Kas03, Def. 4.22]). In view of Proposition 3.1.2,
Rothstein transform is compatible with Fourier-Mukai transform.

Proposition 3.1.2. There are commutative squares

D(Mod(OX)sp) D(Mod(OY )cxn)

D(OX) D(OY ),

RS1

RS1

D(Mod(OY )cxn) D(Mod(OX)sp)

D(OY ) D(OX),

RS2

RS2

where the vertical functors are forgetful. In particular, RS1 and RS2 restrict to
functors DO−good(Mod(OX)sp) → DO−good(Mod(OY )cxn) and DO−good(Mod(OY )cxn) →
DO−good(Mod(OX)sp)).

Proof. All the functors p∗X : Mod(OX) → Mod(OX×Y ), (13), (14) and

P ⊗OX×Y
· : Mod(OX×Y ) → Mod(OX×Y )

are exact. To prove the commutativity of the first square, it remains to do so
for the square

D(Mod(OX×Y )0−cxn) D(Mod(OY )cxn)

D(OX×Y ) D(OY ).

RpY ∗

forX×Y forY

RpY ∗

(22)

Since the forgetful functor forY : Mod(OY )cxn → Mod(OY ) is exact, the composition
forYRpY ∗ : D(Mod(OX×Y )0−cxn) → D(OY ) is the right derived functor of

forY ◦ pY ∗ : Mod(OX×Y )0−cxn → Mod(OY ).

From Remark 2.3.1, [Sta23, Tag 0096] and [Sta23, Tag 08BJ], the functor
forX×Y : Mod(OX×Y )0−cxn → Mod(OX×Y ) preserves K-injective complexes.
By Lemma A.0.9, the composition RpY ∗forX×Y : D(Mod(OX×Y )0−cxn) →
D(OY ) is the right derived functor of

pY ∗forX×Y : Mod(OX×Y )0−cxn → Mod(OY ).

Since forY ◦ pY ∗ = pY ∗ ◦ forX×Y , the first square is indeed commutative.
By the commutativity of the first square and [Liu23a, Cor. 3.1.14], the

transform RS1 preserves O-goodness. The other half about RS2 is similar.

3.2 Rothstein’s theorem

Theorem 3.2.1 (Rothstein). There are natural isomorphisms RS1RS2
∼= T−g

on DO−good(Mod(OY )cxn) and RS2RS1
∼= T−g on DO−good(Mod(OX)sp).
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We begin the proof of Theorem 3.2.1 with Lemma 3.2.2, a direct adaption
of [Rot97, Prop. 2.4] for complex tori.

Lemma 3.2.2. Let ∆ ⊂ X×X be the diagonal. Define a morphism of complex
tori ϵX : X ×X → X, (x1, x2) 7→ x2 − x1. Then

Rp12∗(ϵX × 1Y )
∗P ∼= O∆[−g]

in Db(Mod(OX×X)(1,−1)−sp), where p12 : X×X×Y → X×X is the projection.

Proof. The identification RpX∗P ∼= C0[−g] inDb(OX) from [Kem91, Thm. 3.15]
can be lifted to an isomorphism in Db(Mod(OX)−1−sp). As stated in the last
sentence of the proof of [Vig21, Prop. 2.1.21], a morphism of modules with
splittings (or connection) is an isomorphism whenever the underlying morphism
of O-modules is so. Then apply [Liu23a, Thm. 3.2.3] to the cartesian square

X ×X × Y X × Y

X ×X X.

ϵX×1Y

p12 pX

ϵX

Arguing as in Lemma 3.2.2, we can prove the analytic version of [Rot97,
Prop. 2.5; Prop. 3.1]. These three results are used in the proof of Theorem
3.2.1 below.

Proof of Theorem 3.2.1. Repeat the proof of [Rot97, Thm. 3.2], which requires
the projection formula and smooth base change theorem for modules with
connection. For this, we first construct the corresponding comparison morphism
that is compatible with the underlying O-module comparison morphism. The
construction reduces to the adjunction between derived inverse image and derived
direct image of relative connection in Remark 2.3.3.

The compatibility with O-module comparison morphism can be proved in a
way similar to Proposition 3.1.2. On the level of O-modules, the comparison
morphism is an isomorphism by [Liu23a, Fact 3.2.13; Thm. 3.2.3]. (This type of
arguments can also be found in the proof of [Vig21, Prop. 2.1.21; Thm. 2.1.33].)

3.3 Matsushima’s theorem

A holomorphic vector bundleH → Y is called homogeneous if T ∗
yH is isomorphic

to H for all y ∈ Y , where Ty : Y → Y is the translation by y. The first half of
Theorem 3.3.1 is a special case of [Mat59, Thm. 1].

Theorem 3.3.1 (Matsushima). Let E be a coherent OY -module with a connection
∇. Then E is a homogeneous vector bundle and the pair (E,∇) is translation
invariant.
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Proof. By Proposition 3.1.2, for every integer i, the coherentOX -moduleHiRS2(E)
admits a 1-splitting. By Lemma 3.3.2, the support of HiRS2(E) is finite.
Consequently, inDb

c(OX) there is an isomorphismRS2(E) ∼= ⊕i∈ZT
−iHiRS2(E).

From [Liu23a, Prop. 5.3.2 3] and Fact 1.2.1 2, it induces an isomorphism in
Db
c(OY )

T−gE → ⊕i∈ZT
−iH0RS1(H

iRS2(E)),

and each H0RS1(H
iRS2(E)) is a homogeneous vector bundle on Y . Then E is

isomorphic to H0RS1(H
gRS2(E)), hence a homogeneous vector bundle.

We adopt the argument in [BK09, Footnote (6), p.388]. For every y ∈ Y ,
T ∗
y∇ is a connection on T ∗

yE
∼−→ E and T ∗

0∇ = ∇. The map

Y → H0(Y,Ω1
Y ⊗ End(E)), y 7→ T ∗

y∇−∇

is holomorphic. It is constantly 0 since Y is compact and H0(Y,Ω1
Y ⊗End(E)) is

a finite-dimensional vector space (Cartan-Serre’s theorem). Hence T ∗
y (E,∇) =

(E,∇) for all y ∈ Y .

Lemma 3.3.2 ([Rot96, Lem. 3.1]). Let F be a coherent module with a 1-splitting
on the complex torus X, then F is finitely supported.

Proof. Suppose to the contrary that Supp(F ) is infinite. By [GR84, p.76],
Supp(F ) is an analytic set in X. Then dimSupp(F ) ≥ 1. Let C be an
irreducible component of Supp(F ) of maximal dimension. Write i : C → X for
the inclusion. Take a morphism h : Z → X provided by [Liu23a, Lem. 5.3.3].
Then h(Z) = C and F ′′ := F ′/T (F ′) is a vector bundle on Z of positive rank
r, where F ′ = h∗F and T (∗) denotes the torsion part of a sheaf of modules. In
consequence, the morphism of complex tori h∗ : Pic0(X) → Pic0(Z) is nonzero.
However, we claim that its tangent map at origin h∗ : g → H1(Z,OZ) is zero.

Let E ′ = h∗E . Because OX is flat over itself, pulling back (9) to Y and
tensoring with F ′′, by [Sta23, Tag 05NJ] we get a short exact sequence

0 → g∗ ⊗C F
′′ → E ′ ⊗OZ

F ′′ → F ′′ → 0. (23)

Since E ′ is a vector bundle on Z, one has

E ′ ⊗ F ′

T (E ′ ⊗ F ′)
= E ′ ⊗ F ′′.

Then the splitting on F induces a splitting F ′′ ψ
′

→ E ′ ⊗F ′′ of (23). Let β be the
natural morphism β : OZ → End(F ′′). By Lemma 2.1.3, the composition

End(g)
Idg∗⊗h∗

→ g∗ ⊗C H
1(Z,OZ)

Idg∗⊗H1(Z,β)
→ g∗ ⊗C H

1(Z, End(F ′′))

sends 1 ∈ End(g) to 0. Therefore, the map H1(Z, β)h∗ : g → H1(Z, End(F ′′))
is zero. Taking trace, we get a morphism τ : End(F ′′) → OZ with τβ = r · IdOZ

.
Then h∗ = 1

r τ∗H
1(Z, β)h∗ = 0 as a map g → H1(Z,OZ). The claim follows.

The claim gives a contradiction.
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Corollary 3.3.3. Every local system (of finite dimensional C-vector spaces) on
a complex torus is translation invariant.

Proof. Let L be a local system on Y . By Theorem 3.3.1, the pair (L ⊗C
OY , IdL ⊗ d) is translation invariant. The result follows from the Riemann-
Hilbert correspondence [Del70, I, Thm. 2.17].

4 Laumon-Rothstein sheaf of algebras

4.1 Construction

To lift the Fourier-Mukai transform to D-modules, we recall (in Definition
4.1.1) the sheaf AX from [Rot96, p.576]. In the notation of (9), fix a C-basis
{ω1, . . . , ωg} of the C-vector space

H0(Y,Ω1
Y ) = g∗ = Γ(X, g∗ ⊗C OX) ⊂ Γ(X, E).

For each Stein open subset U ⊂ X, by Cartan’s Theorem B (see, e.g., [KK11,
Sec. 52, Thm. B]) one has H1(U, g∗ ⊗C OX) = 0. Thence (9) induces a short
exact sequence

0 → g∗ ⊗C OX(U) → E(U)
µ→ OX(U) → 0.

Whence, there is ρ ∈ E(U) with µ(ρ) = 1 ∈ OX(U). For two such pairs
(U, ρ) and (Ũ , ρ̃) with U ∩ Ũ ̸= ∅, one has µ(ρ̃ − ρ) = 0 ∈ OX(U ∩ Ũ), so
ρ̃− ρ ∈ g∗ ⊗C OX(U ∩ Ũ). There exists a unique tuple f1, . . . , fg ∈ OX(U ∩ Ũ)
such that

ρ̃− ρ =

g∑
i=1

ωi ⊗ fi

in E(U ∩ Ũ).

Definition 4.1.1. For each chosen pair (U, ρ) as above, introduce independent
variables xρ1, . . . , x

g
ρ and put

AX |U = OU [x
ρ
1, . . . , x

ρ
g].

For another choice (Ũ , ρ̃) with the tuple (f1, . . . , fg) as above, we glue AX |U
and AX |Ũ by the rule

xρi − xρ̃i |U∩Ũ = fi. (24)

The resulting sheaf AX is a sheaf of commutative OX -algebra.

Let
0 → g∗ → X♮ π→ X → 0 (25)

be the universal vectorial extension of X constructed in [Liu23b, (22)]. In
coordinate-free terms, AX is the OX -subalgebra of π∗OX♮ of sections whose
restriction to each fiber of π is a polynomial on g∗. For every integer m ≥ 0, let

15



OX♮(m) ⊂ OX♮ denote the subsheaf of sections whose restriction to the fibers
of π are homogeneous polynomials of degree m. Similar to [Bjö93, Def 1.6.1],
there exists a sheaf of graded rings O[X♮] := ⊕m≥0OX♮(m)(⊂ OX♮) onX♮. Then
AX = π∗O[X♮] and Γ(X,AX) = C.
Remark 4.1.2. Unlike the analytic case, if X is an abelian variety, then the
notationAX in [Rot96, p.576] is the algebraic direct image π∗OX♮ . Morally, such
difference also lies between algebraic and analytic D-modules. For a complex
manifold or a smooth algebraic variety V , let p : T ∗V → V be the natural
projection of the cotangent bundle. Denote by GDV the associated graded ring
of the degree filtration on DV . Then GDV = p∗OT∗V in the algebraic case
([HT07, p.57]). By contrast, in the analytic case, GDV is the OV -submodule of
p∗OT∗V of sections whose restriction to each fiber of p is a polynomial.

Remark 4.1.3. The sheaf of rings AX is functorial in X in the following sense.
Let ϕ : X ′ → X be a morphism of complex tori. Let ϕ̂ : Y → Y ′ be the
morphism dual to ϕ. By [Liu23b, Prop. 5.4.7], it induces a morphism ϕ♮ :
X ′♮ → X♮ of complex Lie groups fitting into a commutative diagram

0 H0(Y ′,Ω1
Y ′) X ′♮ X ′ 0

0 H0(Y,Ω1
Y ) X♮ X 0.

ϕ̂∗

π′

ϕ♮ ϕ

π

For each local section of O[X♮], its ϕ
♮-pullback (a local section of OX′♮) restricts

to a polynomial on each fiber of π′. Indeed, this restriction is the ϕ̂∗-pullback
of a restriction to a fiber of π. Therefore, the natural morphism OX♮ → ϕ♮∗OX′♮

restricts to a morphism O[X♮] → ϕ♮∗O[X′♮]. The resulting morphism of ringed

spaces (X ′♮, O[X′♮]) → (X♮, O[X♮]) descends to another morphism of ringed
spaces

ϕ̃ : (X ′,AX′) → (X,AX), (26)

which is compatible with ϕ. In particular, the following square

D(AX′) D(AX)

D(OX′) D(OX)

Rϕ̃∗

Rϕ∗

(27)

is commutative, where the vertical functors are forgetful. IfM is an OX -module,
then

Lϕ̃∗(AX ⊗OX
M) = AX′ ⊗OX′ Lϕ

∗M. (28)

4.2 Basic properties

Notice that AX has a natural degree filtration {AX(m)}m∈Z, where

AX(m) = π∗(⊕mj=0OX♮(j))
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is the OX -submodule of AX of polynomials of degree at most m. See also
[Rot96, Sec. 5.3] and the end of [Lau96, p.10]. Then AX(0) = OX , AX(1) = E∨

(cf. the start of [Lau96, p.10]), and every AX(m) is a locally free OX -module
of finite rank. Moreover, for any integers m,n ≥ 0, one has

AX(n)AX(m) = AX(n+m). (29)

Thus, AX is a sheaf of positively filtered rings (in the sense of [Bjö93, p.459;
p.464]) on the complex torus X.

We review some terminology from [Bjö93, A:III]. A coherent sheaf of rings
on a locally compact Hausdorff space is called noetherian if every increasing
sequence of ideal sheaves is stationary over relatively compact subsets ([Bjö93,
2.24, p.470]). Let R be a commutative filtered ring. If the subring ⊕v∈ZRvT

v

of R[T, T−1] is a noetherian ring, then R is called a noetherian filtered ring.

Definition 4.2.1 ([Bjö93, A.III, 1.7; Def. 1.11; 1.19]). A filtration on an R-
module M is a family of additive subgroups {Mv}v∈Z such that

Mv ⊂Mv+1; RkMv ⊂Mk+v; ∪vMv =M.

This filtration is called separated if ∩v∈ZMv = 0, and called good if ⊕v∈ZMvT
v

is a finitely generated ⊕v∈ZRvT
v-module.

A zariskian filtered ring is a noetherian filtered ring such that all the good
filtrations on every finitely generated module are separated. A filtered sheaf
of rings is called stalkwise zariskian if every stalk is a zariskian filtered ring
([Bjö93, Def. 2.6, p.465]).

Lemma 4.2.2. The sheaf of rings AX is coherent and noetherian. The sheaf
of filtered rings AX is stalkwise zariskian.

Proof. By (24), the graded ring associated to the degree filtration of AX is

GAX := ⊕m≥0AX(m)/AX(m− 1) = Sym(g)⊗C OX = OX [x1, . . . , xg]. (30)

Here for each chosen pair (U, ρ) as above, xi|U ∈ Γ(U,AX(1)/AX(0)) ⊂ Γ(U,GAX)
is the image of xρi ∈ Γ(U,AX(1)). From [Bjö79, Thm. 1.26, p.460], AX is
stalkwise zariskian. The other part follows from [Bjö79, Prop. 1.27, p.460;
Thm. 2.7, p.465]. (See also the proof of [Bjö93, Thm. 1.2.5].)

In view of the difference mentioned in Remark 4.1.2, the statement of [Rot96,
Prop. 4.4] is slightly modified as Fact 4.2.3. For every AX -module F and every
chosen pair (U, ρ) as above, define ψρU : F (U) → E(U)⊗OX(U) F (U) by

ψρU (s) = ρ⊗ s+

g∑
i=1

ωi|U ⊗ (xρi s).

Then (µ1 ⊗ IdF )(ψ
ρ
U (s)) = s. In light of (24), the family {ψρU}(U,ρ) glue to a

1-splitting ψ on F . By the commutativity of AX and [Rot96, (4.9)], one has
[ψ,ψ] = 0.
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Fact 4.2.3. The resulting functor Mod(AX) → Mod(OX)sp, F 7→ (F,ψ)
induces an equivalence from Mod(AX) to the full subcategory of Mod(OX)sp
comprised of objects (F,ψ) with [ψ,ψ] = 0.

From Fact 4.2.3 and the proof of [Rot96, Prop. 4.1], the functor (13) restricts
to an exact functor p∗X : Mod(AX) → Mod(OX×Y )1−cxn,fl. Similarly by [Rot96,
Prop. 4.2], the functor (15) restricts to a functor

pX∗ : Mod(OX×Y )1−cxn,fl → Mod(AX). (31)

5 Laumon-Rothstein transform

5.1 Construction and properties

Definition 5.1.1. Define functors

RS1 = RpY ∗(P ⊗LOX×Y
p∗X ·) : D(AX) → D(DY ); (32)

RS2 = RpX∗(P−1 ⊗LOX×Y
p∗Y ·) : D(DY ) → D(AX), (33)

where RpY ∗ : D(MIC(pX)) → D(DY ) (resp. RpX∗ : D(Mod(OX×Y )1−cxn,fl) →
D(AX)) is the right derived functor of (20) (resp. (31)). The pair is called the
Laumon-Rothstein transform.

The situation is depicted below.

Mod(AX) Mod(DY )

Mod(OX×Y )1−cxn,fl Mod(OX×Y )0−cxn,fl;

p∗X

H0RS1

P⊗·

pY ∗

Mod(DY ) Mod(AX)

Mod(OX×Y )0−cxn,fl Mod(OX×Y )1−cxn,fl.

p∗Y

H0RS2

P−1⊗·

pX∗

Proposition 5.1.2. There are commutative squares

D(AX) D(DY )

D(OX) D(OY );

RS1

RS1

D(DY ) D(AX)

D(OY ) D(OX),

RS2

RS2

where the vertical functors are forgetful. In particular, RS1 (resp. RS2) sends
DO−good(AX) (resp. DO−good(DY )) to DO−good(DY ) (resp. DO−good(AX)).

Proof. The proof is similar to that of Proposition 3.1.2, as AX (resp. DY ) is
flat over OX (resp. OY ).

With Proposition 5.1.2, the proof of Theorem 5.1.3 is similar to that of
Theorem 3.2.1.

Theorem 5.1.3 (Laumon, Rothstein). There are natural isomorphisms of functors
RS1RS2

∼= T−g on DO−good(DY ) and RS2RS1
∼= T−g on DO−good(AX).
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Proposition 5.1.4 follows from Proposition 5.1.2, Theorem 5.1.3 and Fact
1.1.1 1 as in the proof of [Rot96, Thm. 6.1], cf. [Lau96, Prop. 3.1.2; Cor. 3.2.4].

Proposition 5.1.4. There are natural isomorphisms of functors

RS2(DY ⊗LOY
·) ∼= AX ⊗LOX

RS2(·) : Dgood(OY ) → DO−good(AX);

RS1(AX ⊗LOX
·) ∼= DY ⊗LOY

RS1(·) : Dgood(OX) → DO−good(DY ).

For x ∈ X (resp. y ∈ Y ), let Px = P|x×Y (resp. Py = P|X×y) be the
pullback line bundle on Y (resp. X). For a closed analytic subset S of a
complex manifold Z, [Kas03, (3.30), p.51] defines a DZ-module BS|Z .

Corollary 5.1.5. For any x ∈ X and y ∈ Y , one has

RS2(DY ⊗OY
Cy) = AX ⊗OX

P−y;

T gRS1(AX ⊗OX
P−y) = DY ⊗OY

Cy = iy+C = B{y}|Y ;

RS1(AX ⊗OX
Cx) = DY ⊗OY

Px;

T gRS2(DY ⊗OY
Px) = AX ⊗OX

Cx.

Proof. By [HT07, Example 1.6.4], one has DY ⊗OY
Cy = B{y}|Y . The result

follows from Theorem 5.1.3, Proposition 5.1.4, Fact 1.2.1 and [Liu23a, Lem. 2.0.8].

5.2 Matsushima-Morimoto theorem

Proposition 5.2.1, due to Matsushima [Mat59, Thm. 1] and Morimoto [Mor59,
Thm. 2], is a converse to Theorem 3.3.1. For abelian varieties, Nakayashiki
[Nak94, Prop. 5.9] gives a proof using the Fourier-Mukai transform.

Proposition 5.2.1. A homogeneous vector bundle on a complex torus admits
an integrable connection.

Proof. Let E → Y be a homogeneous vector bundle. Set Ê = HgRS2(E).
According to [Liu23a, Prop. 5.3.2] and Fact 1.1.1, one has E = H0RS1(Ê)
and Supp(Ê) is finite. By Lemma 5.2.2, Ê has an AX -module structure. By
Proposition 5.1.2, the OY -module underlying H0RS1(Ê) is E. The DY -module
H0RS1(Ê) carries naturally an integrable connection.

The proof of Proposition 5.2.1 needs Lemma 5.2.2, a converse to Lemma
3.3.2.

Lemma 5.2.2. If F is an OX-module with finite support on the complex torus
X, then F admits a 1-splitting ψ with [ψ,ψ] = 0.

Proof. There is a decomposition F = ⊕mi=1Fi, where Supp(Fi) is a singleton
for each i. Thus, one may assume that Supp(F ) is a singleton. Then there
exists an open neighborhood U ⊂ X of Supp(F ) and a morphism of complex
manifolds s : U → X♮ that is a local section to (25). Let ι : U → X be
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the inclusion. Applying π∗ to the morphism of sheaves of rings OX♮ → s∗OU ,
one gets a morphism π∗OX♮ → ι∗OU . As AX is an OX -subalgebra of π∗OX♮ ,
this endows ι∗OU an AX -module structure.1 Since the canonical OX -morphism
IdF ⊗ ι# : F → F ⊗OX

ι∗U is an isomorphism, F also obtains an AX -module
structure. This induces such a splitting by Fact 4.2.3.

Proposition 5.2.1, together with Theorem 3.3.1, yields (a slight generalization
of) Morimoto’s theorem [Mor59, Thm. 2, p.91].

Corollary 5.2.3 (Morimoto). A coherent module admitting a connection on a
complex torus is a vector bundle admitting an integrable connection.

6 Good modules

6.1 Definition

We define good AX -modules. We also review several definitions of good D-
modules in the literature, and show that they are equivalent.

Let Z be a complex manifold.

Definition 6.1.1. [Bjö93, 2.5, p.465] LetR be a positively filtered sheaf of rings
on Z such that the associated graded ring GR is coherent. LetM be a coherent
left R-module. A filtration on M is an increasing sequence of subsheaves
{Mv}v∈Z satisfying ∪v∈ZMv = M and RkMv ⊂ Mk+v for all integers k ≥ 0
and v. This filtration is called

� B-good ([Bjö93, Remark 2.16, p.467]) if for every x ∈ Z, there exists an
open neighborhood U , a finite set {m1, . . . ,ms} ⊂ Γ(U,M) and integers
k1, . . . , ks such that Mv|U =

∑s
i=1 Rv−kimi for all integers v.

� locally good ([Meb89, Prop. 2.1.12 (i)]) if every Mv is coherent over OZ ,
and if for every x ∈ Z, there is an open neighborhood U of x and an
integer k0 ≥ 0 such that RmMk0 =Mm+k0 on U for all integers m ≥ 0.

The proof of Lemma 6.1.2 is similar to that of [HT07, Prop. 2.1.1; Def.
2.1.2].

Lemma 6.1.2. Let M· = (Mv)v∈Z be a filtration on a coherent AX-module M .
Then M· is B-good if and only if M· is locally good. (In that case, we call M· a
good filtration on M .)

Proof. � Assume thatM· is B-good. By Lemma 4.2.2 and [Bjö93, Thm. 2.17,
p.467], the GAX -module ⊕v∈ZMv/Mv−1 is coherent. Because of (30)
and the proof of [Bjö93, Prop. 1.4.5], for every integer v, the OX -module
Mv/Mv−1 is coherent. From [Bjö93, Prop. 2.23, p.470], the filtration M·
is locally bounded blow. Then by induction on v ∈ Z, one proves that the
OX -module Mv is coherent.

1This example shows that Lemma 3.3.2 fails without coherent condition.
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For every x ∈ X, by definition, there is an open neighborhood U ⊂ X
of x, sections m1, . . . ,ms ∈ Γ(U,M) and integers k1, . . . , ks such that
Mv|U =

∑s
i=1 AX(v − ki)mi for all integers v. Put k0 = maxsj=1 kj . For

every integer k ≥ 0, one has AX(k)Mk0 ⊂Mk+k0 . Moreover,

Mk+k0 |U =

s∑
i=1

AX(k+k0−ki)mi

(a)

⊂
s∑
i=1

AX(k)AX(k0−ki)mi ⊂ AX(k)Mk0 ,

where (a) uses (29). Hence AX(k)Mk0 =Mk+k0 on U .

� Conversely, assume that M· is locally good. For a fixed x ∈ X, take U
and k0 provided by the definition of local goodness. SinceMk0 is coherent
over OX , by shrinking U , one may assume that the OU -module Mk0 |U
is generated by sections s1, . . . , sm ∈ Γ(U,Mk0). Define a morphism of
AX -modules ϕ : Am

X |U → M |U , (f1, . . . , fm) 7→
∑m
j=1 fjsj . Since M· is

a filtration, for every integer v, one has AX(v − k0)Mk0 ⊂ Mv. Hence
ϕ(AX(v − k0)

m) ⊂ Mv. By construction, one has ϕ(AX(0)m) = Mk0 |U .
For every integer k ≥ k0, on U one has

Mk = AX(k − k0)Mk0 = AX(k − k0)ϕ(AX(0)m) ⊂ ϕ(AX(k − k0)
m).

Therefore, the filtration M· is B-good.

From [HT07, Thm. 2.1.3 (i)], a coherent DV -module on a smooth algebraic
variety V admits a globally defined good filtration. By contrast, Malgrange
[Mal04, p.405] gives a coherent D-module on the complex manifold C∗ × CP1

that does not admit any global good filtration.

Definition 6.1.3. An OZ-module F is called

� countably quasi-good ([KS97, p.942]) if every compact subset of Z has an
open neighborhood U such that F |U is the union of an increasing sequence
of coherent OU -submodules.

� quasi-good ([KS16, p.12]) if for every relatively compact open subset U ⊂
Z, the restriction F |U is a sum of coherent OU -submodules.

A DZ-module M is called

� good coherent if for every relatively compact open subset U of Z, there is
a finite filtration {Mk}k∈Z of M |U such that each quotient Mk/Mk−1 is a
coherent DU -modules admitting a good filtration. ([Sai89, p.369], [SS94,
p.10] and [KS96, p.43].)

� S-quasi-good ([KS96, p.43]) if for every relatively compact open subset
U ⊂ Z, the restriction M |U admits a filtration {Mv}v∈Z by coherent DU -
submodule such that each quotientMv/Mv−1 admits a good filtration and
Mv = 0 for v ≪ 0.
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Proposition 6.1.4. Let M be a coherent DZ-module. Then the following are
equivalent.

1. For every relatively compact open subset U of Z, there is a coherent OU -
submodule F ⊂M |U with DU · F =M |U .

2. For every relatively compact open subset U of Z, the DU -module M |U
admits a good filtration.

3. The DZ-module M is good coherent.

4. The DZ-module M is S-quasi-good.

5. The OZ-module M is countably quasi-good.

6. The OZ-module M is good.

7. The OZ-module M is quasi-good.

Proof. We follow the circular chain.

1 implies 2 See [Bjö93, 1.4.10].

2 implies 3 For every relatively compact open subset U of Z, define a finite filtration
ofM |U byM0 = 0 andM1 =M |U . Then the graded pieceM1/M0 admits
a good filtration over U .

3 implies 4 For every relatively compact open subset U of Z, consider the filtration
{Mk} in the definition. By induction on k, one proves that each Mk is
DU -coherent.

4 implies 5 Every quotient Mv/Mv−1 admits a good filtration, then by [Bjö93, Cor.
1.4.6], it is countably quasi-good. By induction on v and using [KS97,
Lem. 2.1.1], one proves that everyMv is countably quasi-good. Therefore,
for every integer v, there is an increasing sequence {Mk

v }k≥1 of coherent
OU -submodules of Mv with Mv = ∪k≥1M

k
v . For every integer k ≥ 1,

let Mk :=
∑
i≤k,v≤kM

i
v. By [Sta23, Tag 01BY], Mk is a coherent OU -

submodule of Mk. Then

M = ∪v∈ZMv = ∪v∈Z ∪i≥1 M
i
v = ∪k≥1M

k,

so M is countably quasi-good.

5 implies 6 An increasing sequence forms a directed family.

6 implies 7 By definition.

7 implies 1 Let U be a relatively compact open subset of Z. Because M is a finite
type DZ-module, for every x ∈ Ū , there is a relatively compact open
neighborhood U(x) ⊂ Z of x, an integer n(x) ≥ 1 and sections

{sxi }1≤i≤n(x) ⊂ Γ(U(x),M)
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generating the DU(x)-module M |U(x). By compactness of Ū , the open
cover {U(x)}x∈Ū of Ū has a finite subcover {U(xj)}1≤j≤r. Then V =
∪rj=1U(xj) is a relatively compact open subset of Z containing U . By
Condition 7, one may write M |V =

∑
α∈I Gα, where I is an index set,

and each Gα is a coherent OV -submodule of M |V .
For every x ∈ Ū , there is an open neighborhood V (x) ⊂ U(x) of x, such
that for each 1 ≤ i ≤ n(x), the restriction sxi |V (x) ∈ Γ(V (x), Gα(x,i))
for some index α(x, i) ∈ I. By compactness of Ū again, the open cover
{V (x)}x∈Ū has a finite subcover {V (x′k)}1≤k≤m. Then

F :=
∑

1≤k≤m,1≤i≤n(x′
k)

Gα(x′
k,i)

is a finite type OV -submodule of M |V . By Lemma 6.2.7, it is coherent
over OV . Moreover, DU · F |U =M |U .

The proof of Proposition 6.1.5 is similar to that of Proposition 6.1.4.

Proposition 6.1.5. Let M be a coherent AX-module on the complex torus X.
Then the OX-module M is good if and only if there is a coherent OX-submodule
F ⊂M with AX · F =M .

Let the sheaf of rings R be either DZ or AX on the fixed complex torus X.

Definition 6.1.6. [Kas03, Def. 4.24] A coherentR-module is good if the underlying
O-module is good.

For example, by Lemma 4.2.2 and [Bjö93, Thm. 1.2.5], the left R-module R
is good. Let Good(R) ⊂ Coh(R) (resp. Db

good(R) ⊂ Db
O−good(R)) be the full

subcategory of good R-modules (resp. objects whose cohomologies are good R-
modules). By Proposition 6.1.4, the category Db

good(DZ) is what Björk denotes

by Db
coh(DZ)f in [Bjö93, p.119].

A coherent DZ-module is called holonomic if its characteristic variety is of
(minimal) dimension dimZ ([Bjö93, Def. 3.1.1]). Malgrange ([Mal94, p.35],
[Mal96, p.367], see also [Sab11, Thm. 4.3.4 (2)]) claims to have proved that
every holonomic DZ-module is generated by a coherent OZ-submodule, so it is
a good DZ-module. Let Db

h(DZ) ⊂ Db(DZ) be the full subcategory of objects
with holonomic cohomologies.

6.2 Basic properties

Let R be either DZ on a complex manifold Z or AX on the fixed complex torus
X.

Lemma 6.2.1 (Induced modules). The functor R⊗OZ
· : Mod(OZ) → Mod(R)

is exact. It restricts to a functor R⊗OZ
· : Coh(Z) → Good(R), and induces a

t-exact functor R⊗LOZ
· : Db

c(OZ) → Db
good(R).

23



Proof. As R is flat over OZ , the functor is exact. Consider the degree filtration
{R(m)}m≥0 of R, where R(m) ⊂ R is the OZ-submodule of polynomials of
degree at most m. Each R(m) is vector bundle on Z and R = colimmR(m).
Therefore, the O-module R is good. By [Liu23a, Prop. 3.1.5 2], for every
coherent OZ-module F , the O-module R⊗OZ

F is good. Because F is an OZ-
module of finite presentation, R ⊗OZ

F is an R-module of finite presentation.
Then it is R-coherent by [Bjö93, Thm. 1.2.5] and Lemma 4.2.2. The other part
follows.

Lemma 6.2.2. The category Good(R) is a weak Serre subcategory of Mod(R).
In particular, Db

good(R) is a triangulated subcategory of Db(R).

Proof. The first half is a combination of [Kas03, Prop. 4.23], [Sta23, Tag 01BY]
and [Sta23, Tag 0754]. The second half follows from [Yek19, Prop. 7.4.5].

For a morphism of complex manifolds f : M → N , the direct image of
D-modules f+ : D(DM ) → D(DN ) is constructed in [Bjö93, 2.3.12].

Fact 6.2.3 ([Bjö93, Thm. 2.8.1, 2.8.7]). Let f : W → Z be a morphism of
complex manifolds. For every M ∈ Db

good(DW ), if f |Supp(M) : Supp(M) → Z

is proper, then f+M ∈ Db
good(DZ).

Lemma 6.2.4. Let f : W → Z be a proper morphism of complex manifolds.
Then the direct image functor f+ : D(DW ) → D(DZ) restricts to a functor
DO−good(DW ) → DO−good(DZ).

Proof. Take M ∈ DO−good(DW ). By [Sab11, Remark 3.3.4 (4)], the functor
f+ has finite cohomological dimension. So to prove f+M ∈ DO−good(DZ), by
[Har66, I, Prop. 7.3 (iii)], one may assume that M ∈ Mod(DW ). Define a
morphism i : W → W × Z, w 7→ (w, f(w)), which is a closed embedding.
Let q : W × Z → Z be the projection. By [Sab11, Thm. 3.3.6 (1)], one has
f+ = q+i+. The restriction q|W : W → Z is proper. By [Bjö93, Prop. 2.4.8],
one has f+M = Rq∗DRW×Z/Z(i+M)[dimZ]. As each term of the (relative)
de Rham complex DRW×Z/Z(i+M) is OW×Z-good and supported on W , by
[Liu23a, Thm. 3.1.6], Rq∗[DRW×Z/Z(i+M)] ∈ Dgood(OZ).

For a closed embedding i :M → N of complex manifolds, the inverse image
i∗ : Mod(DN ) → Mod(DM ) may not preserveD-coherence ([HT07, Rk. 1.5.10]).
For smooth morphisms, Fact 6.2.5 can be proved by applying [Kas03, Thm. 4.7]
or repeating the proof of [HT07, Prop. 1.5.13 (ii)].

Fact 6.2.5. Let f : M → N be a smooth morphism of complex manifolds.
Then Lf∗ : Db(DN ) → Db(DM ) restricts to functors Db

c(DN ) → Db
c(DM ) and

Db
good(DN ) → Db

good(DM ).

Lemma 6.2.6 concerns the local existence of good filtrations on coherent
AX -modules.
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Lemma 6.2.6. Let M be a coherent AX-module on the complex torus X. For
every x ∈ X, there is an open neighborhood U of x and a positive good filtration
on M |U .

Proof. Let Aq
X |U

ϕ→ Ap
X |U

ϵ→ M |U → 0 be a local presentation of M on a
relatively compact open neighborhood U of x. For every integer v, set Mv =
ϵ(AX(v)p), which is an OU -submodule of M |U . Then Mv = 0 when v < 0.
Moreover, ∪v∈ZMv =M |U and for any integers m, k ≥ 0, one has AX(m)Mk ⊂
Mk+m. Thus, {Mv}v∈Z is a positive filtration of M |U . For every integer k ≥ 0,
one has AX(k)M0 =Mk. It remains to prove that Mk is coherent over OU .

We claim that ϕ(AX(m)q) ∩AX(k)p is coherent over OU . In fact, for every
y ∈ U , there is an integer s ≥ max(0, k−m) such that ϕ(AX(m)q) ⊂ AX(m+s)p

near y. In side the coherent OX -module AX(m+ s)p, the two OX -submodules
ϕ(AX(m)q) andAX(k)p are finite type. By [Sta23, Tag 01BY], their intersection
ϕ(AX(m)q) ∩ AX(k)p is coherent near y. The claim is proved.

Because AX(k)p is a noetherian OX -module, the increasing sequence of
submodules {ϕ(AX(m)q) ∩ AX(k)p}m≥0 is stationary on U . Therefore, the
union ϕ(Aq

X) ∩ AX(k)p = ker(ϵ) ∩ AX(k)p is coherent over OU . Since the
sequence

0 → ker(ϵ) ∩ AX(k)p → AX(k)p →Mk|U → 0

is exact in Mod(OU ), the restriction Mk|U is OU -coherent. The constructed
filtration is therefore good.

When R = DZ , Lemma 6.2.7 is [Sab11, Exercise E.2.4 (4)]. On a complex
manifold Z, an OZ-module F is pseudo-coherent if for every open subset U
of X, every finite type OU -submodule of F |U is of finite presentation ([Kas03,
Def. A.5]).

Lemma 6.2.7. If M is a coherent R-module, then M is pseudo-coherent over
OZ .

Proof. Let F ⊂M be a finite type O-submodule. For every point x, by [Meb89,
Prop. 2.1.9] (in the caseR = DZ) and Lemma 6.2.6 (in the caseR = AX), there
exists an open neighborhood U of x and a good filtration on M |U . By [Bjö93,
Cor. 1.4.6] (in the case R = DZ) and Lemma 6.1.2 (in the case R = AX), M |U
is the sum of an increasing sequence of coherent OU -submodules. Hence M |U
is good over OU . By [Liu23a, Lem. A.4.2 1], the OU -module M |U is pseudo-
coherent. As pseudo-coherence is a local property, M is pseudo-coherent over
OZ .

Lemma 6.2.8. Let M be a good R-module. Let N be a finite type R-submodule
of M . Then N is good over R.

Proof. By [Sta23, Tag 01BY (1)], N is coherent over R. For every relatively
compact open subset U of X and every x ∈ Ū , there is an open neighborhood

U(x) ⊂ X of x, an integer n(x) > 0 and sections {si(x)}n(x)i=1 ⊂ Γ(U(x), N)
generating the R|U(x)-module N |U(x). The open cover {U(x)}x∈Ū of Ū has a
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finite subcover {U(xj)}mj=1. Let N0 be the OU -submodule of N |U generated by
the finitely many local sections

{si(xj)}1≤j≤m,1≤i≤n(xj).

Then N0 is a finite type OU -module. BecauseM |U is good over R|U , by Lemma
6.2.7, the OU -module N0 is coherent. By construction, one has R|U ·N0 = N |U .
Therefore, the R-module N is good by Propositions 6.1.4 (in the case R = DZ)
and 6.1.5 (in the case R = AX).

6.3 Preservation of goodness

Theorem 6.3.1. The functor RS1 : D(AX) → D(DY ) restricts to an equivalence
Db

good(AX) → Db
good(DY ), with a quasi-inverse T gRS2 : Db

good(DY ) → Db
good(AX).

Proof. 1. For every coherent OY -module F , one has RS2(DY ⊗LOY
F ) ∈

Db
good(AX).

By Proposition 5.1.4, one has RS2(DY ⊗LOY
F ) = AX ⊗LOX

RS2(F ). By

Fact 1.2.1 2, one has RS2(F ) ∈ Db
c(OX). From Lemma 6.2.1, one gets AX⊗LOX

RS2(F ) ∈ Db
good(AX).

2. For everyM ∈ Good(DY ) and every integer i, the AX -module HiRS2(M)
is good.

Descending induction on i ∈ Z. The OX -module underlying HiRS2(M) is
HiRS2(M). By Lemma 6.3.2, one has HiRS2(M) = 0 when i > 2g. In
particular, HiRS2(M) is good over AX .

Assume the statement for i + 1. By Proposition 6.1.4, there is a coherent
OY -submodule F ⊂ M with DY · F = M . Let M ′ be the kernel of the natural
epimorphism DY ⊗OY

F →M . Then

0 →M ′ → DY ⊗OY
F →M → 0 (34)

is a short exact sequence in Mod(DY ). By Lemma 6.2.1, the DY -module
DY ⊗OY

F is good. By Lemma 6.2.2, so is M ′. From (34), one gets an exact
sequence in Mod(AX)

HiRS2(M
′) → HiRS2(DY⊗OY

F ) → HiRS2(M) → Hi+1RS2(M
′) → Hi+1RS2(DY⊗OY

F ).
(35)

By 1, the AX -module HjRS2(DY ⊗OY
F ) is good for j ∈ {i, i + 1}. By the

inductive hypothesis, so is Hi+1RS2(M
′).

Let G = ker[Hi+1RS2(M
′) → Hi+1RS2(DY ⊗OY

F )]. By Lemma 6.2.2, the
AX -module G is good (hence of finite type). The sequence (35) yields an exact
sequence

HiRS2(DY ⊗OY
F ) → HiRS2(M) → G→ 0,

so HiRS2(M) is a finite type AX -module for every coherent DY -module M . In
particular, HiRS2(M

′) is a finite type AX -module.
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Let N = im(HiRS2(M
′) → HiRS2(DY ⊗OY

F )). It is a finite type AX -
submodule of the good AX -module HiRS2(DY ⊗OY

F ). By Lemma 6.2.8, the
AX -module N is a good. The sequence (35) yields an exact sequence

0 → N → HiRS2(DY⊗OY
F ) → HiRS2(M) → Hi+1RS2(M

′) → Hi+1RS2(DY⊗OY
F ).

By Lemma 6.2.2, theAX -moduleHiRS2(M) is good. The induction is completed.
From 2, Lemma 6.2.2 and [Har66, I, Prop. 7.3 (i)], the functor RS2 restricts

to a functor Db
good(DY ) → Db

good(AX). Similarly, using Proposition 6.1.5,

one can prove that RS1 restricts to a functor Db
good(AX) → Db

good(DY ). By
Theorem 5.1.3, the restrictions are equivalences.

The proof of Theorem 6.3.1 needs a cohomological dimension estimation.

Lemma 6.3.2. For an OX-module F , we have RS1(F ) ∈ D[0,2g](OY ). Similarly,
for an OY -module G, we have RS2(G) ∈ D[0,2g](OX).

Proof. By left exactness of the functor pY ∗ : Mod(OX×Y ) → Mod(OY ), one has
RiS1(F ) = 0 for every integer i < 0. For every y ∈ Y , let M be the restriction
(as sheaves) of P ⊗OX×Y

p∗XF to X × y. For every integer j, by the proper base
change theorem (see e.g., [Mil13, Thm. 17.2]), one has RjS1(F )y = Hj(X ×
y,M). When j > 2g, by [KS13, Prop. 3.2.2 (iv)], one has Hj(X × y,M) = 0.
Therefore, RjS1(F ) = 0. The other part is similar.

7 Relations with other functors

The properties [Muk81, (3.1), (3.4), (3.8)] of the Fourier-Mukai transform have
analogs for the Laumon-Rothstein transform.

7.1 Exchange of translation and multiplication

For every y ∈ Y , we view Py as an object of Mod(OX)0−sp via Example
2.1.2. There is a canonical isomorphism T ∗

(0,y)P ∼= P ⊗OX×Y
p∗XPy in Mod(X ×

Y )−1−cxn, where p
∗
X : Mod(OX)0−sp → Mod(OX×Y )0−cxn is defined in (13) and

the functor

P ⊗OX×Y
(·) : Mod(OX×Y )0−cxn → Mod(OX×Y )−1−cxn

is from [Rot97, (2.10)]. Arguing as in [Muk81, (3.1)], we get Proposition 7.1.1
from the projection formula.

Proposition 7.1.1.

RS2 ◦ T ∗
y
∼= (· ⊗OX

Py) ◦RS2 : D(DY ) → D(AX);

RS2 ◦ (· ⊗OY
Px) ∼= T ∗

−x ◦RS2 : D(DY ) → D(AX);

RS1 ◦ (· ⊗OX
Py) ∼= T ∗

y ◦RS1 : D(AX) → D(DY );

RS1 ◦ T ∗
x
∼= (· ⊗OY

P−x) ◦RS1 : D(AX) → D(DY ).

Similar results hold for RS1 and RS2.
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7.2 Duality

Let Z be a complex manifold. Denote by ∆OZ the duality (contravariant)
functor RHomOZ

(·, ω−1
Z )[dimZ] : Db

c(OZ) → Db
c(OZ). The duality functor on

DZ-modules ∆DZ : D(DZ) → D(DZ) is defined by ∆DZF = G[dimZ], where G
is the complex of leftDZ-modules associated with the complex RHomDZ

(F,DZ)
of right DZ-modules. By [Bjö93, Def. 2.11.1], ∆DZ restricts to a functor
Db
c(DZ) → Db

c(DZ), and the natural transformation Id → ∆DZ ◦ ∆DZ is an
isomorphism of functors Db

c(DZ) → Db
c(DZ).

Lemma 7.2.1 ([KS16, p.16]). The functor ∆DZ : D(DZ) → D(DZ) restricts
to a functor Db

good(DZ) → Db
good(DZ).

Proof. Suppose F is a coherent OZ-module and N = DZ⊗OZ
F , then by [Bjö93,

(ii), p.122], there is G ∈ Db
c(OZ) with ∆DZN = DZ ⊗OZ

G. By Lemma 6.2.1,
∆DZN ∈ Db

good(DZ).

Take M ∈ Db
good(DZ). To prove ∆DZM ∈ Db

good(DZ), by [Har66, I,
Prop. 7.3 (i)], one may assume M ∈ Good(DZ). For every relatively compact
open subset U ⊂ Z, by [Bjö93, Thm. 1.5.8] and Proposition 6.1.4 , there is a
finite length exact sequence in Mod(DU ):

0 → DU ⊗OU
F−n → · · · → DU ⊗OU

F 0 →M |U → 0,

where each F i is a coherent OU -module. For every i, one has ∆DU (DU⊗OU
F i) ∈

Db
good(DU ). By Lemma 6.2.2, one has (∆DZM)|U = ∆DU (M |U ) ∈ Db

good(DU ).

Hence ∆DZM ∈ Db
good(DZ).

For algebraic varieties, an analogue of Fact 7.2.2 is stated as [HT07, Cor.
2.6.8 (iii), Prop. 3.2.1]. From [HT07, p.101], all the arguments in [HT07, Sec. 2.6]
are valid for analytic D-modules.

Fact 7.2.2.

1. The contravariant functor ∆DZ : Db
h(DZ) → Db

h(DZ) an equivalence.

2. Let M be a coherent DZ-module. Then M is holonomic if and only if
Hi(∆DZM) = 0 for all integers i ̸= 0.

Fact 7.2.3. Let f :W → Z be a morphism of complex manifolds. Then:

1. [Bjö93, Thm. 3.2.13 (1)] The inverse image Lf∗ : Db(DZ) → Db(DW )
restricts to a functor Db

h(DZ) → Db
h(DW ).

2. [Sab11, Thm. 4.4.1] If F ∈ Db
h(DW ) is such that f |Supp(F ) is proper, then

f+F ∈ Db
h(DZ).

3. [Bjö93, Thm. 3.2.13 (3)] The bifunctor −⊗LOW
+ : Db(DW )×Db(DW ) →

Db(DW ) restricts to a bifunctor Db
h(DW )×Db

h(DW ) → Db
h(DW ).
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Restricted to the complex torus Y , [Bjö93, (ii), p.122] becomes [Rot96,
(6.12)]:

∆DY (DY ⊗LOY
·) ∼= DY ⊗LOY

∆OY · : Db
c(OY ) → Db

c(DY ).

Define the duality (contravariant) functor ∆AX : Db(AX) → Db(AX) as

∆AX = T gRHomAX
(·,AX).

It restricts to a functor Db
c(AX) → Db

c(AX). Similar to Lemma 7.2.1, it
restricts to a functor Db

good(AX) → Db
good(AX). Theorem 7.2.4 follows from

Proposition 7.2.5 and Fact 7.2.2 2, in the same way how Theorem 6.5 follows
from Propositions 6.3 and 6.4 in [Rot96].

Theorem 7.2.4 (Rothstein). Let F ∈ Db
good(AX) be an object such that RS1(F )

is concentrated in a single degree i ∈ Z. Then HiRS1(F ) is holonomic if and
only if RS1∆

AXF is concentrated in degree g − i.

Proposition 7.2.5 can be deduced from Corollary 7.2.7, Proposition 5.1.4 and
[Liu23a, Prop. 5.1.6], in the same way that [Rot96, Prop. 6.3] is proved.

Proposition 7.2.5.

RS2∆
DY = [−1]∗XT

−g∆AXRS2 : Db
good(DY ) → Db

good(AX); (36)

∆DY RS1 = [−1]∗Y T
gRS1∆

AX : Db
good(AX) → Db

good(DY ). (37)

Lemma 7.2.6 ([Huy06, (3.13)]). For any objects K,L ∈ D(OZ) and M ∈
D−
c (OZ), the natural morphism (provided by [Sta23, Tag 0BYS])

K ⊗LOZ
RHomOZ

(M,L) → RHomOZ
(M,K ⊗LOZ

L) (38)

is an isomorphism in D(OZ).

Proof. By [Har66, I, Prop. 7.1 (ii)], one may assume that M ∈ Coh(OZ). By
[Sta23, Tag 08DL] and [GH78, p.696], one may shrink Z such that M admits a
globally free resolution F →M , where the complex F is

0 → OknZ → · · · → Ok1Z → Ok0Z → 0

with OkiZ placed in degree −i. The morphism (38) becomes

K ⊗LOZ
HomOZ

(F,L) → HomOZ
(F,K ⊗LOZ

L),

which is an isomorphism.

Corollary 7.2.7 proves the analytic counterpart of [Rot96, (6.12)].

Corollary 7.2.7. There is a canonical isomorphism ∆AX (AX⊗LOX
·) ∼= AX⊗LOX

∆OX · of functors Db
c(OX) → Db

c(AX).
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Proof. By [Rot96, (6.2)], one has

∆AX (AX ⊗LOX
·) = T gRHomAX

(AX ⊗LOX
·,AX) = T gRHomOX

(·,AX).

By Lemma 7.2.6, it equals T gRHomOX
(·, OX)⊗LOX

AX = AX ⊗LOX
∆OX ·.

Example 7.2.8. Let F = T gAX ∈ Db
good(AX). By Corollary 5.1.5, one has

RS1(F ) = DY ⊗OY
C0. One has ∆AXF = AX , and RS1∆

AXF is concentrated
in degree g. Then by Theorem 7.2.4, the DY -module DY ⊗OY

C0 is holonomic.

7.3 Pullback and pushout

Proposition 7.3.1 ([Lau96, Prop. 3.3.2]). Let f : X ′ → X be a morphism of

complex tori, with dimX ′ = g′. Let f̂ : Y → Y ′ be the morphism dual to f .
Let f̃ : (X ′,AX′) → (X,AX) be the induced morphism (26). Then there are
canonical isomorphisms of functors

1.

Lf̂∗RS′
1
∼= RS1Rf̃∗ : DO−good(AX′) → DO−good(DY ); (39)

Rf̃∗RS
′
2
∼= T g−g

′
RS2Lf̂

∗ : DO−good(DY ′) → DO−good(AX). (40)

2.

RS′
2f̂+

∼= Lf̃∗RS2 : Db
good(DY ) → Db

good(AX′); (41)

f̂+RS1
∼= T g

′−gRS′
1Lf̃

∗ : Db
good(AX) → Db

good(DY ′). (42)

Proof. 1. The isomorphism (40) follows from (39) as follows:

Rf̃∗RS
′
2

(a)
∼=T gRS2RS1Rf̃∗RS

′
2

(b)
∼=T gRS2Lf̂

∗RS′
1RS

′
2

(c)
∼=T g−g

′
RS2Lf̂

∗,

where (39) (resp. Theorem 5.1.3) is used in (b) (resp. (a) and (c)). Then
we prove (39).

By (27) (resp. the proof of [HT07, Prop. 1.5.8]), the derived direct image
(resp. inverse image) functor of A-modules (resp. D-modules) regards
that of the underlying O-modules. From [Liu23a, Prop. 3.1.2 2], the
functor P ′ ⊗LOX′×Y ′ p

∗
X′ · : D(AX′) → D(OX′×Y ′) restricts to a functor

DO−good(AX′) → Dgood(OX′×Y ′). An application of [Liu23a, Lem. 3.2.11]
to the cartesian square
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X ′ × Y X ′ × Y ′

Y Y ′

1X′×f̂

p2 □ pY ′

f̂

yields a canonical isomorphism of functors

Lf̂∗RpY ′ → Rp2∗L(1X′ × f̂)∗ : Dgood(OX′×Y ′) → Dgood(OY ). (43)

Applying [Liu23a, Thm. 3.2.3] to the cartesian square

X ′ × Y X ′

X × Y X,

p1

f×1Y □ f

pX

of complex manifolds, one gets a natural isomorphism

p∗XRf̃∗ → R(f × 1Y )∗p
∗
1 (44)

of functors DO−good(AX′) → D(Mod(OX×Y )1−cxn,fl).

Then

Lf̂∗RS′
1 =Lf̂∗RpY ′(P ′ ⊗LOX′×Y ′ p

∗
X′ ·)

(a)
∼=Rp2∗L(1X′ × f̂)∗(P ′ ⊗LOX′×Y ′ p

∗
X′ ·)

∼=Rp2∗[L(1X′ × f̂)∗P ′ ⊗LOX′×Y
L(1X′ × f̂)∗p∗X′ ·]

∼=Rp2∗[(1X′ × f̂)∗P ′ ⊗LOX′×Y
p∗1·]

(b)
∼=Rp2∗[(f × 1Y )

∗P ⊗LOX′×Y
p∗1·]

∼=RpY ∗R(f × 1Y )∗[(f × 1Y )
∗P ⊗LOX′×Y

p∗1·]
(c)
∼=RpY ∗[P ⊗LOX×Y

R(f × 1Y )∗p
∗
1·]

(d)
∼=RpY ∗[P ⊗LOX×Y

p∗XRf̃∗·]

=RS1Rf̃∗,

where (a), (b), (c) and (d)) use (43), [Liu23a, (23)], [Liu23a, Fact 3.2.13]
and (44) respectively. This proves (39).

2. The isomorphism (42) follows from (41) as follows:

f̂+RS1

(a)
∼=T g

′
RS′

1RS
′
2f̂+RS1

(b)
∼=T g

′
RS′

1Lf̃
∗RS2RS1

(c)
∼=T g

′−gRS′
1Lf̃

∗,
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where (a) and (c) use Theorem 6.3.1, and (b) uses (41). Then we prove
(41).

Using (28), one can prove that Lf̃∗ : D(AX) → D(AX′) restricts to a
functor Db

good(AX) → Db
good(AX′). From Fact 6.2.3, the direct image

functor f̂+ : Db(DY ) → Db(DY ′) restricts to a functor Db
good(DY ) →

Db
good(DY ′). There are canonical isomorphism of bifunctorsDb

good(DY )
op×

Db
good(AX′) → Ab:

HomDb
good(AX′ )(RS

′
2f̂+−,+)

(a)
∼=HomDb

good(DY ′ )(f̂+−, T
g′RS′

1+)

(b)
∼=HomDb

good(DY )(−, T gLf̂∗RS′
1+)

(c)
∼=HomDb

good(DY )(−, T gRS1Rf̃∗+)

(d)
∼=HomDb

good(AX)(RS2−, Rf̃∗+)

∼=HomDb
good(AX′ )(Lf̃

∗RS2−,+),

where (a) and (d) use Theorem 6.3.1, (a) uses [Bjö93, Thm. 2.11.8], and
(c) uses (39). From Yoneda’s lemma, there is a canonical isomorphism

RS′
2f̂+

∼= Lf̃∗RS2 of functors Db
good(DY ) → Db

good(AX′).

7.4 External tensor product

For two complex manifolds U, V , recall the (exact) external tensor product
bifunctor

(·)⊠O (·) : Mod(DU )×Mod(DV ) → Mod(DU×V ) (45)

defined in [Bjö93, 2.4.4]. By exactness, it descends to

D(DU )×D(DV ) → D(DU×V ). (46)

Remark 7.4.1. By [Bjö93, 2.4.13], the bifunctor (45) restricts to bifunctors
Coh(DU )×Coh(DV ) → Coh(DU×V ) and Good(DU )×Good(DV ) → Good(DU×V ).
Then by [Har66, I, Prop. 7.3 (i)], the bifunctor (46) restricts to bifunctors
Db
c(DU )×Db

c(DV ) → Db
c(DU×V ) andD

b
good(DU )×Db

good(DV ) → Db
good(DU×V ).

By [Bjö93, p.139], it also restricts to a bifunctorDb
h(DU )×Db

h(DV ) → Db
h(DU×V ).

Using [Liu23a, Lem. 5.1.4] (at the place of [HT07, Lem. 1.5.31]), Lemma
6.2.4 and [Sab11, Thm. 3.3.6 (1)], one can argue as in [HT07, Prop. 1.5.30] to
get Fact 7.4.2.

Fact 7.4.2.
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1. Let U, V, Z be complex manifolds. Let f : U → V be a proper morphism.
Then the natural transformation

f+(−)⊠O(+) → (f×IdZ)+(−⊠O+) : DO−good(DU )×D(DZ) → D(DV×Z)

is an isomorphism.

2. Let fi : Ui → Vi (i = 1, 2) be two proper morphisms of complex manifolds.
Then the natural transformation

(f1+−)⊠O(f2++) → (f1×f2)+(−⊠O+) : DO−good(DU1
)×DO−good(DU2

) → DO−good(DV1×V2
)

is an isomorphism.

For a complex torus X, let forX : Mod(AX) → Mod(OX) be the forgetful
functor. Let X ′ be another complex torus. Set X ′′ = X × X ′. Write u :
X ′′ → X and u′ : X ′′ → X ′ for the projections. Let Y ′, Y ′′ be the dual of
X ′ and X ′′ respectively. For an AX -module F and an AX′ -module G, denote
ũ∗F ⊗AX′′ ũ′

∗
G by F ⊠AX

G. As

F ⊠AX
G = u−1F ⊗u−1AX

AX′′ ⊗u′−1AX′ u
′−1G,

and AX′′ is flat over u−1AX and over u′−1AX′ , the bifunctor

−⊠AX
+ : Mod(AX)×Mod(AX′) → Mod(AX′′)

is exact in both arguments. Consider the diagonal morphism δ : X → X2.
There is a canonical isomorphism of bifunctors

Lδ̃∗[−⊠AX
+] ∼= (−)⊗LAX

(+) : D(AX)×D(AX) → D(AX). (47)

Although the tensor product of two AX -modules is different from the tensor
product of the underlyingOX -module, Lemma 7.4.3 shows that external products
do agree. It is used in the proof of Lemma 7.4.4.

Lemma 7.4.3. There is a natural isomorphism of bifunctors

forX′′(−⊠A+) → (forX−)⊠O (forX′+) : Mod(AX)×Mod(AX′) → Mod(OX′′).

Proof. By construction, one has

AX′′ = AX ⊠O AX′ = u−1AX ⊗u−1OX
u′∗AX′ . (48)

There are natural isomorphisms of functors Mod(AX) → Mod(OX′′):

forX′′ ũ∗ :=u−1 · ⊗u−1AX
AX′′

(a)

=u−1 · ⊗u−1AX
(u−1AX ⊗u−1OX

u′∗AX′)

∼=u−1 · ⊗u−1OX
u′∗AX′

∼=(u−1 · ⊗u−1OX
OX′′)⊗OX′′ u

′∗AX′

∼=u∗forX · ⊗OX′′u
′∗AX′ ,
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where (a) uses (48). Similarly, there is a natural isomorphism of functors

forX′′ ũ′
∗ ∼= u∗AX ⊗OX′′ u

′∗forX′ · : Mod(AX′) → Mod(OX′′). One has natural
isomorphisms of bifunctors

forX′′(−⊠AX
+) :=ũ∗ −⊗AX′′ ũ′

∗
+

∼=(u∗forX −⊗OX′′u
′∗AX′)⊗u∗AX⊗O

X′′ u
′∗AX′ (u

∗AX ⊗OX′′ u
′∗forX′+)

∼=(u∗forX−)⊗OX′′ (u
′∗forX′+)

:=(forX−)⊠O (forX′+).

Lemma 7.4.4. There are canonical isomorphisms of bifunctors

RS′′
2 [−⊠O +] ∼= RS2 −⊠ARS

′
2+ : DO−good(DY )×DO−good(DY ′) → DO−good(AX′′);

(49)

RS′′
1 [−⊠A +] ∼= RS1 −⊠ORS

′
1+ : DO−good(AX)×DO−good(AX′) → DO−good(DY ′′).

(50)

Proof. It follows from [Liu23a, Prop. 5.1.3], Lemma 7.4.3 and Proposition 5.1.2.

7.5 Convolution and tensor product

For the dual complex tori X and Y , let m : X2 → X and µ : Y 2 → Y be their
respective group law.

Definition 7.5.1 (Convolution, [Lau96, p.22]). Define bifunctors

∗D : D(DY )×D(DY ) → D(DY ), − ∗D + = µ+[−⊠O +],

∗A : D(AX)×D(AX) → D(AX), − ∗A + = Rm̃∗[−⊠A +].

As µ is proper, by Fact 6.2.3, Lemma 6.2.4 and Fact 7.2.3 2, the direct
image µ+ restricts to functors Db

good(DY 2) → Db
good(DY ), DO−good(DY 2) →

DO−good(DY ) and Db
h(DY 2) → Db

h(DY ). Together with Remark 7.4.1, this
implies that the bifunctor ∗D restricts to bifunctors Db

good(DY )×Db
good(DY ) →

Db
good(DY ), DO−good(DY ) × DO−good(DY ) → DO−good(DY ) and Db

h(DY ) ×
Db
h(DY ) → Db

h(DY ).

Lemma 7.5.2. The pair (D(DY ), ∗D) is a symmetric tensor triangulated category
(in the sense of [Bal10, Def. 3]) with unit DY ⊗OY

C0.

Proof. Let i : Specan(C) → Y be the inclusion of 0 ∈ Y . Then DY ⊗OY
C0 =

i+C. There are canonical isomorphisms

(i+C) ∗D · :=µ+[(i+C)⊠O ·]
=µ+[(i+C)⊠O (IdY+·)]
(a)
∼=µ+(i× IdY )+(C⊠O ·)
(b)
∼=IdY+ = IdD(DY )
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of functors D(DY ) → D(DY ), where (a) and (b) use Fact 7.4.2 1 and [Sab11,
Thm. 3.3.6 (1)] respectively, Therefore, DY ⊗OY

C0 is the unit. The other
axioms can be verified as in [Wei07, pp. 10-11].

Proposition 7.5.3 ([Wei11]). For every M ∈ Db
good(DY ), the functor · ∗DM :

Db
good(DY ) → Db

good(DY ) admits a right adjoint ([−1]∗Y∆
DY M) ∗D ·.

Proof. Define an automorphism f : Y 2 → Y 2 of the complex torus Y 2 by
f(a, b) = (a + b,−a). Then p1f = µ, p2f = [−1]Y p1 and µf = p2. One has
Lf∗OY 2 = OY 2 in Db(DY 2).

For any objects F,G ∈ Db
good(DY ), there are canonical bijections

HomDb
good(DY )(F ∗D M,G) := HomDb

good(DY )(µ+(F ⊠O M), G)

(a)

=HomD(DY 2 )(F ⊠O M,T gµ∗G)

(b)

=HomD(DY 2 )(OY 2 ,∆DY 2 (F ⊠O M)⊗LOY 2
T gµ∗G)

(c)

=HomD(DY 2 )(OY 2 , (∆DY F )⊠O (∆DY M)⊗LOY 2
T gµ∗G)

:=HomD(DY 2 )(OY 2 , p∗1∆
DY F ⊗LOY 2

p∗2∆
DY M ⊗LOY 2

T gµ∗G)

=HomD(DY 2 )(f
∗OY 2 , f∗[p∗1∆

DY F ⊗LOY 2
p∗2∆

DY M ⊗LOY 2
T gµ∗G])

=HomD(DY 2 )(OY 2 , µ∗∆DY F ⊗LOY 2
p∗1[−1]∗Y∆

DY M ⊗LOY 2
T gp∗2G)

:=HomD(DY 2 )(OY 2 , T gµ∗∆DY F ⊗LOY 2
([−1]∗Y∆

DY M ⊠O G))

(d)

=HomD(DY 2 )(OY 2 , T g∆DY (µ∗F )⊗LOY 2
([−1]∗Y∆

DY M ⊠O G))

(e)

=HomD(DY 2 )(µ
∗F, T g([−1]∗Y∆

DY M ⊠O G))

(f)

=HomD(DY )(F, µ+([−1]∗Y∆
DY M ⊠O G))

(g)

=HomDb
good(DY )(F, ([−1]∗Y∆

DY M) ∗G),

where (a), (c), (d), (f) and (g) use [Bjö93, Thm. 2.11.8], Proposition 7.5.4,
[Kas03, Thm. 4.12], [Kas03, Thm. 4.40] and Lemma 7.2.1 in order, and both
(b), (e) use [Kas03, (3.13)]. As the bijections are functorial in F and G, the
adjunction follows.

The proof of Proposition 7.5.3 needs the commutativity of duality with
external tensor product for D-modules.

Proposition 7.5.4. Let Zi (i = 1, 2) be two complex manifolds. Then there is
a canonical isomorphism

(∆DZ1−)⊠O(∆
DZ2+) → ∆DZ1×Z2 (−⊠O+) : Db

c(DZ1
)×Db

c(DZ2
) → Db

c(DZ1×Z2
)op.
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Proof. For a complex manifold Z, the sheaf DZ ⊗CZ
Dop
Z is naturally a CZ-

algebra, and DZ is naturally a left DZ ⊗CZ
Dop
Z -module. For Ni ∈ D(DZop

i
), by

[HT07, p.39], there is a natural isomorphism in D(Dop
Z1×Z2

):

N1 ⊠O N2 = (N1 ⊠C N2)⊗DZ1
⊠CDZ2

DZ1×Z2
. (51)

First, we construct the natural transformation. Take Mi ∈ Db
c(DZi).

Claim 7.5.5. Then there is a natural morphism in Db((DZ1 ⊠C DZ2)
op):

RHomDZ1
(M1, DZ1

)⊠C RHomDZ2
(M2, DZ2

)

→RHomDZ1
⊠CDZ2

(M1 ⊠C M2, DZ1 ⊠C DZ2).
(52)

Claim 7.5.6. There is a natural morphism in Db(Dop
Z1×Z2

):

RHomDZ1
⊠CDZ2

(M1 ⊠C M2, DZ1
⊠C DZ2

)⊗DZ1
⊠CDZ2

DZ1×Z2

→RHomDZ1
⊠CDZ2

(M1 ⊠C M2, DZ1×Z2
).

(53)

Again, there is a natural morphism in Db(Dop
Z1×Z2

):

RHomDZ1
⊠CDZ2

(M1 ⊠C M2, DZ1×Z2) → RHomDZ1×Z2
(M1 ⊠O M2, DZ1×Z2),

(54)
which can be defined by taking a DZ1×Z2

⊗C D
op
Z1×Z2

-injective resolution of
DZ1×Z2

.
Composing the morphisms (51), (52), (53) and (54) in order, one gets a

natural morphism in Db(Dop
Z1×Z2

):

RHomDZ1
(M1, DZ1

)⊠ORHomDZ2
(M2, DZ2

) → RHomDZ1×Z2
(M1⊠OM2, DZ1×Z2

).
(55)

We prove that the constructed natural transformation is an isomorphism.
To show (55) is an isomorphism, by [Har66, I, Prop. 7.1 (i)], one may assume
Mi ∈ Coh(DZi) for i = 1, 2. By shrinking Zi and using [KS13, Prop. 11.2.6],
one may find a bounded resolution of Mi by free DZi

-modules of finite rank.
Thus, one may further assume that Mi = DZi

. Since ωZ1×Z2
= ωZ1

⊠O ωZ2
in

Mod(Dop
Z1×Z2

), by [HT07, Eg. 2.6.3], in this case (55) is an isomorphism.

Proof of Claim 7.5.5. Take a DZi
⊗C D

op
Zi
-injective resolution DZi

→ I∗i . Then
I∗1 ⊠C I

∗
2 is a complex of modules over

(DZ1
⊗C D

op
Z1
)⊠C (DZ2

⊗C D
op
Z2
) = (DZ1

⊠C DZ2
)⊗C (DZ1

⊠C DZ2
)op. (56)

By [Sta23, Tag 013K (2)], there exists an injective resolution I∗1 ⊠C I
∗
2 → I∗

(hence an induced injective resolution DZ1
⊠C DZ2

→ I∗) over (56). The
natural morphism DZi

→ DZi
⊗C D

op
Zi

is flat, so every injective DZi
⊗C D

op
Zi
-

module is injective over DZi
. Similarly, every term of the complex I∗ is injective

over DZ1 ⊠C DZ2 . Then (52) is defined to be the composition of the natural
morphisms

HomDZ1
(M1, I

∗
1 )⊠C HomDZ2

(M2, I
∗
2 ) → HomDZ1

⊠CDZ2
(M1 ⊠C M2, I

∗
1 ⊠C I

∗
2 )

→ HomDZ1
⊠CDZ2

(M1 ⊠C M2, I
∗).
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Proof of Claim 7.5.6. Take an injective resolution DZ1
⊠CDZ2

→ J∗ over (56).
By [Sta23, Tag 013K (2)], over (DZ1

⊠CDZ2
)⊗CD

op
Z1×Z2

there exists an injective
resolution J∗⊗DZ1

⊠CDZ2
DZ1×Z2

→ K∗. Then (53) is defined to be the composition
of the natural morphisms

HomDZ1
⊠CDZ2

(M1 ⊠C M2, J
∗)⊗DZ1

⊠CDZ2
DZ1×Z2

→HomDZ1
⊠CDZ2

(M1 ⊠C M2, J
∗ ⊗DZ1

⊠CDZ2
DZ1×Z2

)

→HomDZ1
⊠CDZ2

(M1 ⊠C M2,K
∗).

Corollary 7.5.7 ([Lau96, Cor. 3.3.3]). The equivalence RS2 : (Db
good(DY ), ∗D) →

(Db
good(AX),⊗LAX

) is a strong monoidal functor. In fact, there are canonical
isomorphisms of bifunctors

RS2(− ∗D +) ∼= (RS2−)⊗LAX
(RS2+) : Db

good(DY )×Db
good(DY ) → Db

good(AX);

(57)

(RS1−) ∗D (RS1+) ∼= T−gRS1(−⊗LAX
+) : Db

good(AX)×Db
good(AX) → Db

good(DY );

(58)

RS1(− ∗A +) ∼= (RS1−)⊗LOY
(RS1+) : DO−good(AX)×DO−good(AX) → DO−good(DY );

(59)

(RS2−) ∗A (RS2+) ∼= T−gRS2(−⊗LOY
+) : DO−good(DY )×DO−good(DY ) → DO−good(AX).

(60)

Proof. Let δX : X → X2 =: X ′ be the diagonal morphism. Its dual morphism
is µ : Y 2 → Y . There are canonical isomorphisms of bifunctors

RS2(− ∗D +) :=RS2µ+(−⊠O +)

(a)
∼=Lδ̃∗XRS′

2(−⊠O +)

(b)
∼=Lδ̃∗X(RS2 −⊠ARS2+)

(c)
∼=(RS2−)⊗LAX

(RS2+),

where (a), (b) and (c) use (41), (49) and (47) respectively. This shows (57).
By Corollary 5.1.5, the functor RS2 preserves units, so it is strong monoidal.
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In addition, (58) follows:

(RS1−) ∗D (RS1+)
(a)
∼=T gRS1RS2(RS1 − ∗DRS1+)

(b)
∼=T gRS1(RS2RS1 −⊗LAX

RS2RS1+)

(c)
∼=T gRS1(T

−g −⊗LAX
T−g+)

=T−gRS1(−⊗LAX
+),

where (a) and (c) (resp. (b)) use Theorem 6.3.1, (resp. (57)).
Because the diagonal morphism δY : Y → Y 2 is dual to m : X ′ = X2 → X,

there are canonical isomorphisms of bifunctors

RS1(− ∗A +) :=RS1Rm̃∗(−⊠A +)

(a)
∼=Lδ∗YRS′

1(−⊠A +)

(b)
∼=Lδ∗Y (RS1 −⊠ORS1+)

(c)
∼=(RS1−)⊗LOY

(RS1+),

where (a), (b) and (c) use (39), (50) and [HT07, p.39] respectively. This
demonstrates (59). Then (60) follows:

(RS2−) ∗A (RS2+)
(a)
∼=T gRS2RS1(RS2 − ∗ARS2+)

(b)
∼=T gRS2(RS1RS2 −⊗LOY

RS1RS2+)

(c)
∼=T gRS2(T

−g −⊗LOY
T−g+)

=T−gRS2(−⊗LOY
+),

where (a) and (c) (resp. (b)) use Theorem 5.1.3 (resp. (59)).

A Unbounded Bernstein’s equivalence

In Section A, let X be a smooth algebraic variety over be an algebraically
closed field k of characteristic 0. Let Qch(OX) ⊂ Mod(OX) and Modqc(DX) ⊂
Mod(DX) be the full subcategories of objects quasi-coherent over OX . They
are weak Serre subcategories.

Fact A.0.1 (Bernstein, [B+87, VI, Thm. 2.10]). The natural functor

ι′X : Db(Modqc(DX)) → Db
qc(DX)

is an equivalence.
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Theorem A.0.2 is an unbounded generalization of Fact A.0.1. It is left “to
the reader to state and prove” in [Nee96, p.207]. We follow the strategy pointed
out in [gh], and do not claim originality here.

Theorem A.0.2. The functor

ι′X : D(Modqc(DX)) → Dqc(DX) (61)

induced by the inclusion Modqc(DX) → Mod(DX) is an equivalence of categories.

We need a series of lemmas for the proof of Theorem A.0.2.

Lemma A.0.3. Every object of Modqc(DX) is the inductive limit of its coherent
DX-submodules.

Proof. Let F be such an object. Then the family of coherent DX -submodules
of F is directed. In fact, if G1, G2 are coherent DX -submodules of F , then
both have finite type over DX . Their sum G1 +G2(⊂ F ) is of finite type over
DX . As Qch(OX) is an abelian subcategory of Mod(OX), the image G1 + G2

of the natural morphism G1 ⊕ G2 → F is quasi-coherent over OX . By [HT07,
Prop. 1.4.9 (ii)], the DX -submodule G1 +G2 of F is coherent.

We prove that F is the union of its coherent DX -submodules. (It is stated as
[HT07, Cor. 1.4.17 (iii)], whose poof is omitted.) Let U ⊂ X be an affine open,
s ∈ Γ(U,F ) be a section, and G ⊂ F |U be the DU -submodule generated by
s. By [HT07, Prop. 1.4.3, 1.4.4 and 1.4.13], the DU -module G is coherent. By
[Meb89, Prop. 2.5.7], there is a coherent DX -submodule G′ ⊂ F with G′|U = G.
Since X has a basis for the Zariski topology consisting of affine opens, every
local section of F is locally contained in a coherent DX -submodule.

For an open immersion j : U → X, we have a natural morphism of ringed
spaces j : (U,DU ) → (X,DX). From [B+87, VI, 5.2] and [HT07, Prop. 1.5.29],
the functor j+ : D(DU ) → D(DX) is the right derived functor of the corresponding
(left exact) direct image j∗ : Mod(DU ) → Mod(DX). By [Ber83, 2, p.12] and
[Sta23, Tag 0096], the inverse image j∗ : Mod(DX) → Mod(DU ) is left adjoint
to j∗. Lemma A.0.4 2 helps to construct a quasi-inverse to (61).

Lemma A.0.4.

1. The category Modqc(DX) is locally noetherian.

2. The inclusion functor ι′ : Modqc(DX) → Mod(DX) admits a right adjoint
Q′ = Q′

X : Mod(DX) → Modqc(DX). The unit natural transform η′ :
IdModqc(DX) → Q′ι′ is an isomorphism.

Proof. By [Sta23, Tag 01LA (4)], Qch(OX) ⊂ Mod(OX) is an abelian subcategory
closed under colimits. Then so is Modqc(DX) ⊂ Mod(DX).

1. WhenX is affine, by [HT07, Prop. 1.4.4 (ii)], the functor Γ(X, ·) : Modqc(DX) →
Mod(DX(X)) is an equivalence of abelian categories. As the ring DX(X)
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is left noetherian, the category Mod(DX(X)) is locally noetherian by the
last paragraph of [Gab62, p.402].

For a general X, one may assume that there exists an open covering X =
U ∪V , such that the statement holds for U and V . Arguing as in [Gab62,
Prop. 2, p.441], one can prove that Modqc(DX) is the gluing of Modqc(DU )
and Modqc(DV ) along Modqc(DU∩V ) in the sense of [Gab62, VI. 1]. Let
j : U → X be the inclusion. Then

j∗ : Modqc(DX) → Modqc(DU )

is exact and left adjoint to

j∗ : Modqc(DU ) → Modqc(DX).

The (counit) natural transformation ϵ : j∗j∗ → IdModqc(DU ) is an isomorphism.
From [Gab62, Prop. 5, p.374], the subcategory ker(j∗) is localizing in
Modqc(DX) (in the sense of [Gab62, p372]) and j∗ induces an equivalence

Modqc(DX)/ ker(j∗) → Modqc(DU ).

A similar result holds for V . Then by [Gab62, Lem. 2, p.442], the gluing
category Modqc(DX) is locally noetherian.

2. It follows from 1 and Lemma A.0.5.

Lemma A.0.5. Let A be a Grothendieck abelian category. Let F : A → B be a
functor preserving all colimits.

1. Then F admits a right adjoint G : B → A.

2. If further F is fully faithful, then the unit natural transformation η : IdA →
GF is an isomorphism.

Proof. 1. Let Set be the category of sets. For each object Y ∈ B, consider
the functor

HomB(F (·), Y ) : Aop → Set.

It transforms colimits into limits. Then by [Sta23, Tag 07D7], it is representable.
From [ML13, Cor. 2, p.85], the functor F admits a right adjoint.

2. If follows from Yoneda’s lemma.

By [Sta23, Tag 077P (2)], the inclusion ι = ιX : Qch(OX) → Mod(OX)
admits a right adjoint QX = Q : Mod(OX) → Qch(OX), called the coherator of
X. To reduce the problem to the study of OX -modules, consider the square

Mod(DX) Modqc(DX)

Mod(OX) Qch(OX),

Q′
X

forX forX

QX

(62)
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where the vertical functors are forgetful.

Lemma A.0.6. Suppose that X is affine. Write R = Γ(X,DX). Then:

1. The functor ·̃ := DX ⊗R · : Mod(R) → Mod(DX) is left adjoint to the
global section functor Γ(X, ·) : Mod(DX) → Mod(R);

2. The square (62) is commutative.

Proof.

1. Let (σ, σ#) : (X,DX) → ({∗}, R) be the morphism of ringed spaces, with
σ : X → {∗} the unique map and σ# given by IdR. Then Γ(X, ·) = σ∗ :
Mod(DX) → Mod(R). By [Sta23, Tag 01BH], the functor ·̃ = σ∗. The
adjunction follows from [Sta23, Tag 0096].

2. From 1 and [HT07, Prop. 1.4.4 (ii)], the functorQ′ : Mod(DX) → Modqc(DX)
is the composition of Γ(X, ·) : Mod(DX) → Mod(R) with ·̃ : Mod(R) →
Modqc(DX). The largest rectangle in the following diagram

Mod(DX) Mod(R) Modqc(DX) Mod(R)

Mod(OX) Mod(OX(X)) Qch(OX) Mod(OX(X))

Γ(X,·)

Q′

DX⊗R· Γ(X,·)

Γ(X,·)

Q

OX⊗OX (X)· Γ(X,·)

is same as the small square on the left, hence commutative. Moreover,
the two horizontal functors Γ(X, ·) on the right are equivalences, so Q′ is
compatible with Q.

The abelian categories Mod(DX) and Mod(OX) are Grothendieck. By
[Sta23, Tag 079P] and [Sta23, Tag 070K], the functorQ′ : Mod(DX) → Modqc(DX)
and Q : Mod(OX) → Qch(OX) admit right derived functors RQ′ : D(DX) →
D(Modqc(DX)) and RQ : D(OX) → D(Qch(OX)).

Lemma A.0.7. 1. The square (62) is commutative.

2. The square

D(DX) D(Modqc(DX))

D(OX) D(Qch(OX)),

RQ′
X

forX forX

RQX
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is commutative.

Proof.

1. We deduce a formula for Q′
X . Since X is quasi-compact, there is a finite

cover {Uα}α∈I of X by affine opens. For any α ̸= β in I, since X is
separated over k, the scheme Uαβ := Uα ∩ Uβ is affine. Denote all the
various open immersions Uαβ → X and Uα → X as j. For every DX -
module F , the sheaf axiom gives an equalizer diagram in Mod(DX):

0 → F → ⊕αj∗(F |Uα
) ⇒ ⊕(α,β)j∗(F |Uαβ

),

where the two right morphisms are induced by the inclusions Uαβ → Uα
and Uαβ → Uβ . By Lemma A.0.8, it induces another equalizer diagram
in Modqc(DX):

0 → Q′
XF → ⊕αj∗Q′

Uα
(F |Uα) ⇒ ⊕(α,β)j∗Q

′
Uαβ

(F |Uαβ
). (63)

There is a natural transformation ι′Q′
X → IdMod(DX) : Mod(DX) →

Mod(DX). Applying forX : Mod(DX) → Mod(OX), one gets a natural
transformation forX ◦ ι′ ◦ Q′

X → forX : Mod(DX) → Mod(OX). Since
forX ◦ ι′ = ι ◦ forX : Modqc(DX) → Mod(OX) and QX is right adjoint to
ι, there is a natural transformation

µX : forX ◦Q′
X → QX ◦ forX

of functors Mod(DX) → Qch(OX). By Lemma A.0.6 2, it is an isomorphism
when X is affine.

For a general X, by (63) and [TT07, (B.14.2)], there is a commutative
diagram of functors Mod(DX) → Qch(OX):

0 forXQ
′
X ⊕αj∗forUα

Q′
Uα

(·|Uα
) ⊕(α,β)j∗forUαβ

Q′
Uαβ

(·|Uαβ
)

0 QX forX ⊕αj∗QUα forUα(·|Uα) ⊕(α,β)j∗QUαβ
forUαβ

(·|Uαβ
),

µX

where the two vertical arrows on the right are isomorphisms. Therefore,
µX is an isomorphism.

2. The morphism (X,DX) → (X,OX) of ringed spaces is flat, and the direct
image functor is the forgetful functor forX : Mod(DX) → Mod(OX). By
[Sta23, Tag 08BJ], it preserves K-injective complexes. The conclusion
follows from Point 1, Lemma A.0.9 and [Sta23, Tag 070K].

Lemma A.0.8. Let j : U → X be an open immersion. Then the natural
transformation j∗◦Q′

U → Q′
X◦j∗ : Mod(DU ) → Modqc(DX) is an isomorphism.
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Proof. As j∗ : Mod(DX) → Mod(DU ) restricts to a functor Modqc(DX) →
Modqc(DU ), one has ι′U j

∗ = j∗ι′X as functors Modqc(DX) → Mod(DU ). The
functor j∗ : Mod(DU ) → Mod(DX) regards the direct image j∗ : Mod(OU ) →
Mod(OX), so it also restricts to a functor Modqc(DU ) → Modqc(DX). As Q′ is
right adjoint to ι′ and j∗ is right adjoint to j∗, the isomorphism follows.

Lemma A.0.9. Let F : A → B and G : B → C be left exact functors of
abelian categories. Assume that A, B are Grothendieck. If for ever K-injective
complex I over A, the natural morphism GF (I) → RG(F (I)) in D(C) is an
isomorphism,2 then the canonical natural transformation (constructed in [Sta23,
Tag 05T2 (1)]) t : R(G ◦ F ) → RG ◦ RF is an isomorphism of functors from
D(A) → D(C).

Proof. Let A be a complex over A. As A is Grothendieck, by [Sta23, Tag 079P],
there is a quasi-isomorphism A → I such that I is a K-injective complex. By
[Sta23, Tag 070K], the morphism tA is the composition of isomorphisms

R(G ◦ F )(A) = GF (I) → RG(F (I)) = RG(RF (A)).

Proof of Theorem A.0.2. By [Sta23, Tag 09T5], RQ′ : D(DX) → D(Modqc(DX))
is right adjoint to Lι′ = ι′ : D(Modqc(DX)) → D(DX). Let Ψ′ : Dqc(DX) →
D(Modqc(DX)) (resp. Ψ : Dqc(OX) → D(Qch(OX)) ) be the restriction of RQ′

(resp. RQ). By Lemma A.0.7 2, there are natural commutative squares

D(Modqc(DX)) Dqc(DX)

D(Qch(OX)) Dqc(OX),

Lι′

for for

Lι

Dqc(DX) D(Modqc(DX))

Dqc(OX) D(Qch(OX)),

Ψ′

for for

Ψ

where Lι is induced by the inclusion ι : Qch(OX) → Mod(OX).
Since Ψ is right adjoint to ι, the counit ϵ′ : ι′Ψ′ → IdDqc(DX) (resp. unit

η′ : IdD(Modqc(DX)) → Ψ′ι′) is compatible with the counit ϵ : ιΨ → IdDqc(OX)

(resp. unit η : IdD(Qch(OX)) → Ψι). The functor for : D(DX) → D(OX) is
conservative. By [Sta23, Tag 09T4], the counit ϵ and the unit η are isomorphisms,
so are the counit ϵ′ and the unit η′. In particular, the functor (61) is an
equivalence with a quasi-inverse Ψ′.

B When is an induced D-module holonomic?

Proposition B.0.1. Let X be a complex manifold. Let F be an OX-module.
Then the following conditions are equivalent:

1. the induced module DX ⊗OX
F is holonomic;

2i.e., F (I) computes RG in the sense of [Sta23, Tag 05SX (1)]
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2. F is coherent with Supp(F ) discrete.

Lemma B.0.2 and Lemma B.0.3 are needed for the proof of Proposition B.0.1.

Lemma B.0.2. Let A be a Gorenstein local ring (in the sense of [Sta23, Tag
0DW7 (1)]) of Krull dimension n. Let M be a finite A-module. Then the
following conditions are equivalent:

1. For all integers i ̸= n, one has Exti(M,A) = 0;

2. the length of M is finite.

Proof. Let k be the residue field of A.

� Assume Condition 1. To prove 2, one may assume M ̸= 0. As A is
Gorenstein, A[0] is a dualizing complex of A. By [Mat87, Thm. 18.1,
p.141], one hasRHomA(k,A[n]) = k[0], soA[n] is the normalized dualizing
complex of A (in the sense of [Sta23, Tag 0A7M]). Let d be the depth of
M . By [Sta23, Tag 0B5A], the module M is Cohen-Macaulay and

M = Extn−dA (Extn−dA (M,A), A).

Thus, Extn−dA (M,A) ̸= 0. By Condition 1, one has n − d = n. Hence
dimSupp(M) = d = 0. By [Ati69, Exercise 19 v), p.46], one has dimA/Ann(M) =
0. Then A/Ann(M) is an artinian ring. From [Eis13, Cor. 2.17], the
length of M is finite.

� Assume Condition 2. Induction on the length l(M) ofM . When l(M) = 0,
one has M = 0 and Condition 1 holds. Now assume l(M) > 0 and the
statement holds for all modules of length less than l(M). There is a
submodule N of M such that M/N is a simple module and l(N) < l(M).
By [Sta23, Tag 00J2], the module M/N is isomorphic to k. For every
integer i ̸= n, the short exact sequence 0 → N → M → M/N → 0
induces an exact sequence Exti(M/N,A) → Exti(M,A) → Exti(N,A).
By the inductive hypothesis, Exti(N,A) = 0. By [Mat87, Thm. 18.1,
p.141], one has Exti(M/N,A) = 0. Hence Exti(M,A) = 0.

Lemma B.0.3. Let X be a complex analytic space. Let F be a coherent OX-
module. Then the length of the OX,x-module Fx is finite for all x ∈ X if and
only if the subspace Supp(F ) ⊂ X is discrete.

Proof. The “if” part follows from [Liu23a, Lem. 5.2.4 1]. We prove the “only if”
part. By coherence of F and [GR84, p.76], Supp(F ) is a closed analytic set of X.
Assume to the contrary that Supp(F ) is not discrete. Then dimSupp(F ) > 0.
Let C be an irreducible component of Supp(F ) of maximal dimension. Endow
C with the reduced induced closed subspace structure. Let i : C → X be the
closed embedding of complex analytic spaces.
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For every x ∈ C, the morphism OX,x → OC,x is surjective. Then by [Sta23,
Tag 00IX], one has lOC,x

(i∗F )x = lOX,x
(i∗F )x. The morphism Fx → (i∗F )x of

OX,x-modules is surjective, so lOX,x
(i∗F )x ≤ lOX,x

Fx. In particular, the length
of (i∗F )x over OC,x is finite. By [?, Cor. 5.2.4.1], the support of i∗F is C.
Replacing (X,F ) by (C, i∗F ), one may assume further that X is irreducible
with dimX > 0.

By the generic freeness [Ros68, Prop. 3.1], there is x0 ∈ X such that Fx0

is a free OX,x0
-module. As the support of F is X, from [RS17, p.238], F is

not a torsion sheaf. Then by irreducibility of X and [Ros68, p.69], the OX,x0
-

module Fx0
has positive rank. Thus, OX,x0

has finite length over itself, hence
an artinian ring. The dimension formula in [GR84, p.96] and [CD94, (14.14),
p.89] yield dimX = dimx0 X = dimOX,x = 0, a contradiction.

Proof of Proposition B.0.1. Let M = DX ⊗OX
F and F̂ = RHomOX

(F,OX).
By [Sta23, Tag 08DJ], one has

HomOX
(ωX , F̂ ) = RHomOX

(ωX ⊗OX
F,OX). (64)

Provided that F is coherent, [Bjö93, (ii) p.122] gives

∆DXM = DX ⊗OX
HomOX

(ωX , F̂ )[dimX]. (65)

Plugging (64) into (65), one gets

∆DXM = DX ⊗OX
RHomOX

(ωX ⊗OX
F,OX)[dimX].

For every nonzero integer i, one has

Hi(∆DXM) = DX ⊗OX
Exti+dimX

OX
(ωX ⊗OX

F,OX).

By [Sta23, Tag 01CB] and [GH78, 1. p.700], its stalk at x ∈ X is isomorphic to

DX,x ⊗OX,x
Exti+dimxX

OX,x
(Fx, OX,x)

.

� Assume Condition 2. By [Bjö93, 1.5.1], the DX -module M is coherent.
By Lemma B.0.3, the OX,x-module Fx has finite length. As OX,x is a
noetherian regular local ring of Krull dimension dimxX, by Lemma B.0.2,
one has Exti+dimxX

OX,x
(Fx, OX,x) = 0 for all x ∈ X. Hence Hi(∆DXM) = 0.

From Fact 7.2.2 2, the DX -module M is holonomic.

� Assume Condition 1. From [SS94, p.55], the OX -module F is coherent.
From Fact 7.2.2 2, for every nonzero integer i, one hasHi(∆DXM) = 0. As
DX,x is a nonzero free OX,x-module, one gets Exti+dimxX

OX,x
(Fx, OX,x) = 0.

By Lemma B.0.2, the OX,x-module Fx has finite length for every x ∈ X.
From Lemma B.0.3, the support of F is discrete.
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The proof of Proposition B.0.4 (an algebraic analog of Proposition B.0.1) is
similar.

Proposition B.0.4. Let X be a smooth algebraic variety over an algebraically
closed field of characteristic 0. Let F be an OX-module. Then the following
conditions are equivalent:

1. the induced module DX ⊗OX
F is holonomic;

2. F is coherent with Supp(F ) finite.
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elliptic pairs. Astérisque, 224:1–4, 1994.

[Sta23] The Stacks project authors. The stacks project. https://stacks.

math.columbia.edu, 2023.

[TT07] Robert W Thomason and Thomas Trobaugh. Higher algebraic K-
theory of schemes and of derived categories. The Grothendieck
Festschrift: a collection of articles written in honor of the 60th
birthday of Alexander Grothendieck, III:247–435, 2007.

[Vig21] Florian Viguier. D-modules arithmétiques et transformation de
Fourier-Mukai. PhD thesis, Université de Strasbourg, 2021.
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