Sheaves with connection on complex tori

Haohao Liu

April 18, 2024

Contents

1 Introduction 2
1.1 Background 2
1.2 Extension to complex tori 3
2 Preliminaries 4
2.1 Categories of splittings 4
2.2 Categories of twisted connection 7
2.3 Functors between them 8
3 Rothstein transform on modules with connection 11
3.1 Construction 11
3.2 Rothstein's theorem 12
3.3 Matsushima's theorem 13
4 Laumon-Rothstein sheaf of algebras 15
4.1 Construction 15
4.2 Basic properties 16
5 Laumon-Rothstein transform 18
5.1 Construction and properties 18
5.2 Matsushima-Morimoto theorem 19
6 Good modules 20
6.1 Definition 20
6.2 Basic properties 23
6.3 Preservation of goodness 26
7 Relations with other functors 27
7.1 Exchange of translation and multiplication 27
7.2 Duality 28
7.3 Pullback and pushout 30
7.4 External tensor product 32
7.5 Convolution and tensor product 34

B When is an induced D-module holonomic?

1 Introduction

1.1 Background

Mukai [Muk81, Sec. 2] introduces an analog of the Fourier transform for sheaves of modules on abelian varieties, known as the Fourier-Mukai transform. Laumon [Lau96] and Rothstein [Rot96] study independently its lift to sheaves with connection (integrable or not). They both prove the Fourier inversion formula for the lift. Laumon [Lau96, Thm. 6.3.3] applies it to investigate generalized 1-motives. Meanwhile, as an application, Rothstein [Rot96, Thm. 3.2] recovers Matsushima's theorem ([Mat59]): every vector bundle on an abelian variety admitting a connection is translation invariant. Schnell's work [Sch15] about holonomic D-modules on abelian varieties relies upon the lift of the FourierMukai transform.

Let k be an algebraically closed field. Let A, B be abelian varieties over k dual to each other. Set $g=\operatorname{dim} A$. Let $p_{A}\left(\right.$ resp. $\left.p_{B}\right)$ denote the projection from $A \times B$ to A (resp. B). Let \mathcal{P} be the normalized Poincaré line bundle on $A \times B$. We adopt the following sign convention for the Fourier-Mukai transform:

$$
\begin{align*}
& R \mathscr{S}_{1}=R p_{A *}\left(\mathcal{P} \otimes^{L} p_{B}^{*} \cdot\right): D\left(O_{B}\right) \rightarrow D\left(O_{A}\right) \\
& R \mathscr{S}_{2}=R p_{B *}\left(\mathcal{P}^{-1} \otimes^{L} p_{A}^{*} \cdot\right): D\left(O_{A}\right) \rightarrow D\left(O_{B}\right) \tag{1}
\end{align*}
$$

For a triangulated category, let T denote the degree shift automorphism. For an algebraic variety V over k, denote by $D_{\text {qc }}\left(O_{V}\right) \subset D\left(O_{V}\right)\left(\right.$ resp. $D_{c}^{b}\left(O_{V}\right) \subset$ $\left.D^{b}\left(O_{V}\right)\right)$ the full subcategory of objects whose cohomologies are quasi-coherent (resp. coherent) O_{V}-modules. Mukai establishes an analog of the Fourier inversion formula for this triangulated subcategory.

Fact 1.1.1 (Mukai, [Muk81, Thm. 2.2], [Rot96, p.569]). 1. There are natural isomorphisms of functors $R \mathscr{S}_{1} \circ R \mathscr{S}_{2} \cong T^{-g}$ on $D_{\mathrm{qc}}\left(O_{A}\right)$ and $R \mathscr{S}_{2} \circ$ $R \mathscr{S}_{1} \cong T^{-g}$ on $D_{\mathrm{qc}}\left(O_{B}\right)$. In particular, $R \mathscr{S}_{1}: D_{\mathrm{qc}}\left(O_{B}\right) \rightarrow D_{\mathrm{qc}}\left(O_{A}\right)$ is an equivalence of triangulated categories, with a quasi-inverse $T^{g} R \mathscr{S}_{2}$.
2. The functor $R \mathscr{S}_{1}: D\left(O_{B}\right) \rightarrow D\left(O_{A}\right)$ restricts to an equivalence $D_{c}^{b}\left(O_{B}\right) \rightarrow$ $D_{c}^{b}\left(O_{A}\right)$.

Let $0 \rightarrow H^{0}\left(A, \Omega_{A}^{1}\right) \rightarrow B^{\natural} \xrightarrow{p} B \rightarrow 0$ be the universal vectorial extension of B (constructed in [Ros58, Prop. 11]). For an algebraic variety V, denote the forgetful functor $D\left(D_{V}\right) \rightarrow D\left(O_{V}\right)$ by for ${ }_{V}$. Let $D_{\text {qc }}\left(D_{A}\right) \subset D\left(D_{A}\right)$ (resp. $\left.D_{c}^{b}\left(D_{A}\right) \subset D^{b}\left(D_{A}\right)\right)$ be the full subcategory of objects whose cohomologies are quasi-coherent O_{A}-modules (resp. coherent D_{A}-modules). Laumon and Rothstein lift the Fourier-transform to D-modules and establish a duality result similar to Fact 1.1.1.

Fact 1.1.2 (Laumon, Rothstein).

1. There are functors $R S_{1}: D\left(O_{B^{\natural}}\right) \rightarrow D\left(D_{A}\right)$ and $R S_{2}: D\left(D_{A}\right) \rightarrow D\left(O_{B^{\natural}}\right)$ fitting into commutative squares

2. ([Lau96, Thm. 3.2.1], [Rot96, Thm. 4.5], [Rot97], [Vig21, Thm. 2.2.21]) There are natural isomorphisms of functors $R S_{1} R S_{2} \cong T^{-g}$ on $D_{\mathrm{qc}}\left(D_{A}\right)$ and $R S_{2} R S_{1} \cong T^{-g}$ on $D_{\mathrm{qc}}\left(O_{B^{\natural}}\right)$, hence an equivalence $R S_{1}: D_{\mathrm{qc}^{\prime}}\left(O_{B^{\natural}}\right) \rightarrow$ $D_{\mathrm{qc}}\left(D_{A}\right)$.
3. ([Lau96, Cor. 3.1.3], [Rot96, Thm. 6.2]) The functor $R S_{1}: D\left(O_{B^{\text {घ }}}\right) \rightarrow$ $D\left(D_{A}\right)$ restricts to an equivalence $R S_{1}: D_{c}^{b}\left(O_{B^{\natural}}\right) \rightarrow D_{c}^{b}\left(D_{A}\right)$.

1.2 Extension to complex tori

Let X, Y be complex tori dual to each other and of dimension g. Define the analytic Fourier-Mukai transform $R \mathscr{S}_{1}: D\left(O_{X}\right) \rightarrow D\left(O_{Y}\right)$ and $R \mathscr{S}_{2}$: $D\left(O_{Y}\right) \rightarrow D\left(O_{X}\right)$ by formulae similar to (1). For a complex manifold Z, let $D_{\text {good }}\left(O_{Z}\right) \subset D\left(O_{Z}\right)$ be the full subcategory of objects whose cohomologies are good O_{Z}-modules (in the sense of [Kas03, Def. 4.22]). In [BBBP07, Thm. 2.1], a result similar to Fact 1.1.1 is established for complex tori.

Fact 1.2.1 (Mukai, Ben-Bassat, Block, Pantev).

1. ([Liu23a, Thm. 4.1.1]) There are natural isomorphisms of functors

$$
\begin{aligned}
& R \mathscr{S}_{1} R \mathscr{S}_{2} \cong T^{-g}: D_{\text {good }}\left(O_{Y}\right) \rightarrow D_{\text {good }}\left(O_{Y}\right) \\
& R \mathscr{S}_{2} R \mathscr{S}_{1} \cong T^{-g}: D_{\text {good }}\left(O_{X}\right) \rightarrow D_{\text {good }}\left(O_{X}\right)
\end{aligned}
$$

In particular, $R \mathscr{S}_{1}: D_{\text {good }}\left(O_{X}\right) \rightarrow D_{\text {good }}\left(O_{Y}\right)$ is an equivalence of categories with a quasi-inverse $T^{g} R \mathscr{S}_{2}$.
2. ([PPS17, Thm. 13.1]) The functor $R \mathscr{S}_{1}: D\left(O_{X}\right) \rightarrow D\left(O_{Y}\right)$ restricts to an equivalence $D_{c}^{b}\left(O_{X}\right) \rightarrow D_{c}^{b}\left(O_{Y}\right)$.

We lift the analytic Fourier-Mukai transform to D-modules, and give an analog of Fact 1.1.2. Good D-modules are reviewed in Section 6.1. For a complex manifold Z and an O_{Z}-algebra \mathcal{R}, let $D_{O-\operatorname{good}}(\mathcal{R}) \subset D(\mathcal{R})$ (resp. $\left.D_{\text {good }}^{b}(\mathcal{R}) \subset D^{b}(\mathcal{R})\right)$ be the full subcategory of objects whose cohomologies are good over $O_{Z}($ resp. $\mathcal{R})$.

Theorem 1.2.2.

- (Prop. 5.1.2) There is a canonical commutative O_{X}-algebra \mathcal{A}_{X}, such that the functors $R \mathscr{S}_{1}$ and $R \mathscr{S}_{2}$ lift naturally to triangulated functors $R S_{1}$: $D\left(\mathcal{A}_{X}\right) \rightarrow D\left(D_{Y}\right)$ and $R S_{2}: D\left(D_{Y}\right) \rightarrow D\left(\mathcal{A}_{X}\right)$ respectively.
- (Thm. 5.1.3) The functors $R S_{i}$ restrict to equivalences $R S_{1}: D_{O-\operatorname{god}}\left(\mathcal{A}_{X}\right) \rightarrow$ $D_{O-\operatorname{good}}\left(D_{Y}\right)$ and $R S_{2}: D_{O-\operatorname{good}}\left(D_{Y}\right) \rightarrow D_{O-\operatorname{good}}\left(\mathcal{A}_{X}\right)$.
- (Thm. 6.3.1) The functors $R S_{i}$ restricts to equivalences $R S_{1}: D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right) \rightarrow$ $D_{\text {good }}^{b}\left(D_{Y}\right)$ and $R S_{2}: D_{\text {good }}^{b}\left(D_{Y}\right) \rightarrow D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right)$.

Notation and convention

For a sheaf F on a topological space, let $\operatorname{Supp} F$ be its support. For a (not necessarily commutative) ringed space (X, \mathcal{R}), let $\operatorname{Mod}(\mathcal{R})$ be the category of left \mathcal{R}-modules. Let $\operatorname{Coh}(\mathcal{R}) \subset \operatorname{Mod}(\mathcal{R})$ be the full subcategory of coherent \mathcal{R}-modules. Given a symbol $* \in\{\emptyset,+,-, b\}$, the notation $D^{*}(\mathcal{R})$ refers to the unbounded/bounded below/bounded above/bounded derived category of the abelian category $\operatorname{Mod}(\mathcal{R})$ in order. Let $D_{c}^{*}(\mathcal{R}) \subset D^{*}(\mathcal{R})$ be the full subcategory of objects whose cohomologies are coherent \mathcal{R}-modules (in the sense of [Sta23, Tag 01BV]).

Let k be an algebraically closed field. An algebraic variety refers to an integral scheme of finite type and separated over k. For a complex manifold Z and $z \in Z$, let $i_{z}:(z, \mathbb{C}) \rightarrow\left(Z, O_{Z}\right)$ be the closed embedding of complex manifolds. Set $\mathbb{C}_{z}:=\left(i_{z}\right)_{*} \mathbb{C}$, which is a coherent O_{Z}-module. Let X, Y be complex tori dual to each other and of dimension g.

2 Preliminaries

For the convenience of the reader, we recall the notation of [Rot97, Sec. 2.1].

2.1 Categories of splittings

For a complex manifold Z and a (holomorphic) vector bundle $M \rightarrow Z$, by [Har77, III, Prop. 6.3 (c)], one has $H^{1}(Z, M)=\operatorname{Ext}^{1}\left(O_{Z}, M\right)$. Thus, every $\alpha \in H^{1}(Z, M)$ determines a short exact sequence in $\operatorname{Mod}\left(O_{Z}\right)$

$$
\begin{equation*}
0 \rightarrow M \rightarrow \mathcal{E}_{\alpha} \xrightarrow{\mu_{\sigma}} O_{Z} \rightarrow 0 . \tag{2}
\end{equation*}
$$

Since O_{Z} is a flat O_{Z}-module, by [Sta23, Tag 05 NJ$]$, for every $F \in \operatorname{Mod}\left(O_{Z}\right)$, the sequence (2) remains exact after tensored with F :

$$
\begin{equation*}
0 \rightarrow M \otimes_{O_{Z}} F \rightarrow \mathcal{E}_{\alpha} \otimes_{O_{Z}} F \xrightarrow{\mu_{\alpha} \otimes \operatorname{Id}_{F}} F \rightarrow 0 . \tag{3}
\end{equation*}
$$

Definition 2.1.1. Define a category $\operatorname{Mod}\left(O_{Z}\right)_{\alpha-s p}$ as follows: the objects are pairs (F, ψ), where $F \in \operatorname{Mod}\left(O_{Z}\right)$ and $\psi: F \rightarrow \mathcal{E}_{\alpha} \otimes_{O_{Z}} F$ is an α-splitting on F, i.e., an O_{Z}-linear splitting of $\mu_{\alpha} \otimes \operatorname{Id}_{F}$. The morphisms in $\operatorname{Mod}\left(O_{Z}\right)_{\alpha-\mathrm{sp}}$ are required to be compatible with the splittings.

Example 2.1.2. When $\alpha=0$, the sequence (2) identifies \mathcal{E}_{0} with $M \oplus O_{Z}$. There is a natural functor $\operatorname{Mod}\left(O_{Z}\right) \rightarrow \operatorname{Mod}\left(O_{Z}\right)_{0-\text { sp }}$ defined by $F \mapsto(F, \psi)$, where $\psi: F \rightarrow \mathcal{E}_{0} \otimes F=\left(M \otimes_{O_{z}} F\right) \oplus F$ is the canonical injection to the second factor. If further $M=\Omega_{Z}^{1}$, then an α-splitting ϕ on a vector bundle $E \rightarrow Z$ is exactly a holomorphic 1 -form on Z with values in $\mathcal{E} n d(E)$. The pair (E, ϕ) is a Higgs bundle (in the sense of [Sim92, p.6]) if and only if $[\phi, \phi]=0$.

Lemma 2.1.3. For an O_{Z}-module F, there is an α-splitting on F if and only if the map $i_{*}: H^{1}(Z, M) \rightarrow H^{1}\left(Z, M \otimes_{O_{Z}} \mathcal{E} n d(F)\right.$) (induced by the natural morphism $\left.O_{Z} \rightarrow \mathcal{E} n d(F)\right)$ sends α to 0 . In that case, the set of α-splittings on F has a natural simple transitive action of the abelian group $\operatorname{Hom}_{O_{Z}}\left(F, M \otimes_{O_{z}} F\right)$.
Proof. The natural morphism $O_{Z} \rightarrow \mathcal{E} n d(F)$ induces a morphism $i: M \rightarrow$ $\mathcal{H o m}_{O_{Z}}\left(F, M \otimes_{O_{z}} F\right), \quad i(m)(f)=m \otimes f$. There is a canonical evaluation morphism ev : $\mathcal{H o m}_{O_{Z}}\left(F, M \otimes_{O_{Z}} F\right) \otimes F \rightarrow M \otimes_{O_{Z}} F, \quad \operatorname{ev}(\phi \otimes f)=\phi(f)$. The five-term exact sequence of the spectral sequence

$$
E_{2}^{i, j}=\operatorname{Ext}^{i}\left(O_{Z}, \mathcal{E} x t^{j}\left(F, M \otimes_{O_{Z}} F\right)\right) \Rightarrow \operatorname{Ext}^{i+j}\left(F, M \otimes_{O_{Z}} F\right)
$$

gives an injection $\iota: \operatorname{Ext}^{1}\left(O_{Z}, \mathcal{H o m}\left(F, M \otimes_{O_{Z}} F\right)\right) \rightarrow \operatorname{Ext}^{1}\left(F, M \otimes_{O_{Z}} F\right)$, which is $\operatorname{Ext}^{1}(F, \mathrm{ev}) \circ(\cdot \otimes F)$:

One has

$$
\mathrm{ev} \circ\left(i \otimes \operatorname{Id}_{F}\right)(m \otimes f)=\operatorname{ev}(i(m) \otimes f)=i(m)(f)=m \otimes f
$$

so evo $\left(i \otimes \operatorname{Id}_{F}\right)=\operatorname{Id}_{M \otimes O_{Z} F}$ as morphisms $M \otimes_{O_{Z}} F \rightarrow M \otimes_{O_{Z}} F$. Therefore, the diagram is commutative. Then F admits an α-splitting if and only if $\alpha \otimes F=0$ if and only if $i_{*}(\alpha)=0$. Any two α-splittings on F differ by a unique element of $\operatorname{Hom}\left(F, M \otimes_{O_{z}} F\right)$.

To each object $(F, \psi) \in \operatorname{Mod}\left(O_{Z}\right)_{\alpha-\text { sp }}$, we assign an element

$$
\begin{equation*}
[\psi, \psi] \in \Gamma\left(Z,\left(\wedge^{2} M\right) \otimes_{O_{Z}} \mathcal{E} n d(F)\right) \tag{4}
\end{equation*}
$$

as follows. The sequence (2) induces a short exact sequence

$$
0 \rightarrow \wedge^{2} M \rightarrow \wedge^{2} \mathcal{E}_{\alpha} \xrightarrow{\omega_{\alpha}} M \rightarrow 0
$$

where

$$
\omega_{\alpha}\left(\rho_{1} \wedge \rho_{2}\right)=\mu_{\alpha}\left(\rho_{1}\right) \rho_{2}-\mu_{\alpha}\left(\rho_{2}\right) \rho_{1}
$$

The flatness of M ensures the exactness when tensoring with F :

$$
\begin{equation*}
0 \rightarrow\left(\wedge^{2} M\right) \otimes F \rightarrow\left(\wedge^{2} \mathcal{E}_{\alpha}\right) \otimes F \xrightarrow{\omega_{\alpha} \otimes \operatorname{Id}_{F}} M \otimes_{O_{Z}} F \rightarrow 0 . \tag{5}
\end{equation*}
$$

Let $a: \mathcal{E}_{\alpha} \otimes \mathcal{E}_{\alpha} \rightarrow \wedge^{2} \mathcal{E}_{\alpha}$ be the morphism defined by $e \otimes e^{\prime} \mapsto e \wedge e^{\prime}$. Let ψ^{1} be the composition

$$
\mathcal{E}_{\alpha} \otimes F \xrightarrow{\operatorname{Id}_{\mathcal{E}_{\alpha}} \otimes \psi} \mathcal{E}_{\alpha} \otimes\left(\mathcal{E}_{\alpha} \otimes F\right) \xrightarrow{\sim}\left(\mathcal{E}_{\alpha} \otimes \mathcal{E}_{\alpha}\right) \otimes F \xrightarrow{a \otimes \operatorname{Id}_{F}}\left(\wedge^{2} \mathcal{E}_{\alpha}\right) \otimes F,
$$

where the isomorphism in the middle is from the associativity of tensor product.
Lemma 2.1.4. One has $\left(\omega_{\alpha} \otimes \operatorname{Id}_{F}\right) \psi^{1} \psi=0$.
Proof. Locally, the vector bundle \mathcal{E}_{α} has a (holomorphic) frame $\left\{e_{1}, \ldots, e_{r}\right\}$. For a local section $f \in F$, write $\psi(f)=\sum_{i=1}^{r} e_{i} \otimes f_{i}$, where f_{i} are local sections of F. For every $1 \leq i \leq r$, write $\psi\left(f_{i}\right)=\sum_{j=1}^{r} e_{j} \otimes f_{j}^{(i)}$, where $f_{j}^{(i)}$ are local sections of F. As ψ is a section to $\mu_{\alpha} \otimes \operatorname{Id}_{F}$, one has

$$
\begin{gather*}
f=\left(\mu_{\alpha} \otimes \operatorname{Id}_{F}\right) \psi(f)=\sum_{i=1}^{r} \mu_{\alpha}\left(e_{i}\right) f_{i} \tag{6}\\
f_{i}=\left(\mu_{\alpha} \otimes \operatorname{Id}_{F}\right) \psi\left(f_{i}\right)=\sum_{j=1}^{r} \mu_{\alpha}\left(e_{j}\right) f_{j}^{(i)} \tag{7}
\end{gather*}
$$

Thus,

$$
\begin{equation*}
\psi(f) \stackrel{(6)}{=} \sum_{i=1}^{r} \mu_{\alpha}\left(e_{i}\right) \psi\left(f_{i}\right) \tag{8}
\end{equation*}
$$

By construction, $\psi^{1} \psi(f)=\sum_{i, j=1}^{r}\left(e_{i} \wedge e_{j}\right) \otimes f_{j}^{(i)}$. Then

$$
\begin{aligned}
&\left(\omega_{\alpha} \otimes \operatorname{Id}_{F}\right) \psi^{1} \psi(f)=\sum_{i, j=1}^{r}\left[\mu_{\alpha}\left(e_{i}\right) e_{j}-\mu_{\alpha}\left(e_{j}\right) e_{i}\right] \otimes f_{j}^{(i)} \\
&= \sum_{i=1}^{r} \mu_{\alpha}\left(e_{i}\right) \sum_{j=1}^{r} e_{j} \otimes f_{j}^{(i)}-\sum_{i=1}^{r} e_{i} \otimes\left[\sum_{j=1}^{r} \mu_{\alpha}\left(e_{j}\right) f_{j}^{(i)}\right] \\
& \stackrel{(7)}{=} \sum_{i=1}^{r} \mu_{\alpha}\left(e_{i}\right) \psi\left(f_{i}\right)-\sum_{i=1}^{r} e_{i} \otimes f_{i} \\
& \stackrel{(8)}{=} \psi(f)-\psi(f)=0 .
\end{aligned}
$$

From Lemma 2.1.4 and (5), one has $\psi^{1} \psi(F) \subset\left(\wedge^{2} M\right) \otimes F$. The morphism $\psi^{1} \psi: F \rightarrow\left(\wedge^{2} M\right) \otimes F$ gives an element $[\psi, \psi] \in \Gamma\left(Z,\left(\wedge^{2} M\right) \otimes_{O_{Z}} \mathcal{E} n d(F)\right)$.

Example 2.1.5. For the complex torus X, set $\mathfrak{g}=H^{1}\left(X, O_{X}\right)$. Then

$$
H^{1}\left(X, \mathfrak{g}^{*} \otimes_{\mathbb{C}} O_{X}\right)=\mathfrak{g}^{*} \otimes_{\mathbb{C}} \mathfrak{g}=\operatorname{End}(\mathfrak{g})
$$

Hence a category $\operatorname{Mod}\left(O_{X}\right)_{T-s p}$ for each $T \in \operatorname{End}(\mathfrak{g})$. The identity element $1 \in \operatorname{End}(\mathfrak{g})$ corresponds to the tautological exact sequence [Rot96, (1.3)]:

$$
\begin{equation*}
0 \rightarrow \mathfrak{g}^{*} \otimes_{\mathbb{C}} O_{X} \rightarrow \mathcal{E} \rightarrow O_{X} \rightarrow 0 \tag{9}
\end{equation*}
$$

We also write $\operatorname{Mod}\left(O_{X}\right)_{\mathrm{sp}}$ for $\operatorname{Mod}\left(O_{X}\right)_{1-\mathrm{sp}}$. For $(F, \psi) \in \operatorname{Mod}\left(O_{X}\right)_{\mathrm{sp}}$, the element $[\psi, \psi]$ lies in

$$
\Gamma\left(X, \wedge^{2} \mathfrak{g}^{*} \otimes_{\mathbb{C}} O_{X} \otimes_{O_{X}} \mathcal{E} n d(F)\right)=\wedge^{2} \mathfrak{g}^{*} \otimes_{\mathbb{C}} \operatorname{End}(F)
$$

and we recover $[\operatorname{Rot} 96,(4.8)]$. Similarly, $H^{1}\left(X \times X, \mathfrak{g}^{*} \otimes O_{X \times X}\right)=\operatorname{End}(g) \oplus$ $\operatorname{End}(g)$, so for every pair $T_{1}, T_{2} \in \operatorname{End}(g)$, the category $\operatorname{Mod}\left(O_{X \times X}\right)_{\left(T_{1}, T_{2}\right)-\mathrm{sp}}$ is defined.

2.2 Categories of twisted connection

We continue to review the twisted (relative) connection introduced in $[\operatorname{Rot} 97$, p.206]. Consider a smooth morphism of complex manifolds $f: Z \rightarrow S$, with relative cotangent sheaf Ω_{f}^{1}. As f is smooth, Ω_{f}^{1} is a vector bundle on Z. Let $d_{f}: O_{Z} \rightarrow \Omega_{f}^{1}$ denote the differential relative to f. An element $\alpha \in H^{1}\left(Z, \Omega_{f}^{1}\right)$ determines an extension

$$
\begin{equation*}
0 \rightarrow \Omega_{f}^{1} \rightarrow \mathcal{E}_{\alpha} \xrightarrow{\mu_{\alpha}} O_{Z} \rightarrow 0 \tag{10}
\end{equation*}
$$

Definition 2.2.1. On an O_{Z}-module F, an α-connection is an $f^{-1}\left(O_{S}\right)$-linear splitting $\nabla: F \rightarrow \mathcal{E}_{\alpha} \otimes_{O_{z}} F$ to $\mu_{\alpha} \otimes \operatorname{Id}_{F}$, satisfying the Leibniz rule

$$
\begin{equation*}
\nabla(h \phi)=h \nabla(\phi)+d_{f}(h) \otimes \phi \tag{11}
\end{equation*}
$$

where h and ϕ are local sections of O_{Z} and F respectively. Let $\operatorname{Mod}\left(O_{Z}\right)_{f, \alpha-\operatorname{cxn}}$ be the category of pairs (F, ∇), where $F \in \operatorname{Mod}\left(O_{Z}\right)$ and ∇ is an α-connection on F.

Example 2.2.2. If $\alpha=0$, then α-connection are exactly f-relative connection. Define a sheaf $\tilde{D}_{Z / S}$ of noncommutative $O_{Z \text {-algebras by gluing the following }}$ local data. If $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ is a local frame of $\left(\Omega_{f}^{1}\right)^{\vee}$ (the vector bundle dual to Ω_{f}^{1}) on an open subset $U \subset Z$, then a multiplication law on $O_{U}\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ is introduced by imposing the commutation relation $\left[\xi_{i}, h\right]=\xi_{i}(\underset{\sim}{\sim})$ for local sections h of O_{Z}. Let it be $\left.\tilde{D}_{Z / S}\right|_{U}$. Then $\operatorname{Mod}(Z)_{f, 0-\mathrm{cxn}}=\operatorname{Mod}\left(\tilde{D}_{Z / S}\right)$. The category $\operatorname{Mod}\left(O_{Z}\right)_{f, 0-\text { cxn }}$ is denoted by $\operatorname{Mod}\left(O_{Z}\right)_{\text {cxn }}$ when f is the structure morphism $Z \rightarrow \operatorname{Specan}(\mathbb{C})$.

Remark 2.2.3. In fact, a twisted connection is a particular splitting. Define another extension

$$
\begin{equation*}
0 \rightarrow \Omega_{f}^{1} \rightarrow \mathcal{E}_{\alpha^{\prime}} \rightarrow O_{Z} \rightarrow 0 \tag{12}
\end{equation*}
$$

in $\operatorname{Mod}\left(O_{Z}\right)$ as follows. As an extension of abelian sheaves, (12) is same as (10). Let h (resp. s^{\prime}) be a local section of O_{Z} (resp. $\mathcal{E}_{\alpha^{\prime}}$) and s denote the local section of \mathcal{E}_{α} induced by s^{\prime}. The O_{Z}-module structure on $\mathcal{E}_{\alpha^{\prime}}$ is defined such that the local section $h s+\mu_{\alpha}(s) d_{f} h$ of \mathcal{E}_{α} induces the local section $h s^{\prime}$ of $\mathcal{E}_{\alpha^{\prime}}$.

We claim this indeed defines an O_{Z}-module structure on $\mathcal{E}_{\alpha^{\prime}}$. For local sections h_{1}, h_{2} of O_{Z}, let t be the local section of \mathcal{E}_{α} induced by $h_{2} s^{\prime}$. Then $t=$ $h_{2} s+\mu_{\alpha}(s) d_{f} h_{2}$, so $\mu_{\alpha}(t)=h_{2} \mu_{\alpha}(s)$. Thus, the local section of \mathcal{E}_{α} corresponding to $h_{1}\left(h_{2} s^{\prime}\right)$ is
$h_{1} t+\mu_{\alpha}(t) d_{f} h_{1}=h_{1} h_{2} s+h_{1} \mu_{\alpha}(s) d_{f} h_{2}+h_{2} \mu_{\alpha}(s) d_{f} h_{1}=\left(h_{1} h_{2}\right) s+\mu_{\alpha}(s) d_{f}\left(h_{1} h_{2}\right)$.
Therefore, $h_{1}\left(h_{2} s^{\prime}\right)=\left(h_{1} h_{2}\right) s^{\prime}$. The claim is proved.
By construction, the morphisms in (12) are O_{Z}-linear. Then (12) is indeed an extension in $\operatorname{Mod}\left(O_{Z}\right)$, hence a new extension class $\alpha^{\prime} \in \operatorname{Ext}\left(O_{Z}, \Omega_{f}^{1}\right)$. An α-connection on $F \in \operatorname{Mod}\left(O_{Z}\right)$ is equivalent to an α^{\prime}-splitting on F. Hence an equivalence of categories

$$
\operatorname{Mod}\left(O_{Z}\right)_{f, \alpha-\operatorname{cxn}} \rightarrow \operatorname{Mod}\left(O_{Z}\right)_{\alpha^{\prime}-\mathrm{sp}}
$$

There is a notion of integrable α-connection ([Rot97, Remark, p.206]). Let $\operatorname{Mod}\left(O_{Z}\right)_{f, \alpha-\text { cxn,fl }}$ be the full subcategory of $\operatorname{Mod}\left(O_{Z}\right)_{f, \alpha-\operatorname{cxn}}$ comprised of objects whose connection are integrable. Then $\operatorname{Mod}\left(O_{Z}\right)_{f, 0-\mathrm{cxn}, \mathrm{f}}$ coincides with $\operatorname{MIC}(f)$ defined in $[\mathrm{ABC} 20,4.3 .7]$, which is further equivalent to $\operatorname{Mod}\left(D_{Z / S}\right)$. Here $D_{Z / S}$ is the sheaf of ring of relative differential operators on Z / S defined in [SS94, p.9].

Example 2.2.4. For the dual complex tori X, Y, consider the projection p_{X} : $X \times Y \rightarrow X$. Since $\Omega_{p_{X}}^{1}=p_{X}^{*}\left(\mathfrak{g}^{*} \otimes_{\mathbb{C}} O_{X}\right)$, there is a natural morphism

$$
p_{X}^{*}: \operatorname{End}(\mathfrak{g})=H^{1}\left(X, \mathfrak{g}^{*} \otimes_{\mathbb{C}} O_{X}\right) \rightarrow H^{1}\left(X \times Y, \Omega_{p_{X}}^{1}\right)
$$

For every $T \in \operatorname{End}(g)$, the category $\operatorname{Mod}\left(O_{X \times Y}\right)_{p_{X}, p_{X}^{*} T-\mathrm{cxn}}\left(\right.$ resp. $\left.\operatorname{Mod}\left(O_{X \times Y}\right)_{p_{X}, p_{X}^{*} T-\mathrm{cxn}, \mathrm{f}}\right)$ is also written as $\operatorname{Mod}\left(O_{X \times Y}\right)_{T-\text { cxn }}\left(\right.$ resp. $\left.\operatorname{Mod}\left(O_{X \times Y}\right)_{T-\text { cxn,f }}\right)$.

Fact 2.2.5 is taken from the two remarks in [Rot97, pp.206-207].
Fact 2.2.5. The Poincaré bundle \mathcal{P} is naturally an object of $\operatorname{Mod}\left(O_{X \times Y}\right)_{-1-\operatorname{cxn}, \mathrm{f}}$.
In local coordinates, the $p_{X}^{*}(-1)$-connection on \mathcal{P} is explained in $[\operatorname{Rot} 96$, (1.10) and p.575ff.] (except that we use a Stein open cover of X instead of Rothestein's affine open cover).

2.3 Functors between them

Recall that the Fourier-Mukai transform (1) is the composition of the pullback, the tensor product with \mathcal{P} as well as the derived direct image. Rothstein's lift to modules with connection keeps an extra track of the splittings and connection.

Remark 2.3.1. Combining $[\operatorname{Rot} 97,(2.21)]$ with the fact that twisted relative connection are kinds of splittings (Remark 2.2.3), the categories under consideration $\left(\operatorname{Mod}\left(O_{X}\right)_{\mathrm{sp}}, \operatorname{Mod}\left(O_{X \times Y}\right)_{T-\mathrm{cxn}}\right.$, etc.) are equivalent to categories of modules over sheaves of certain noncommutative flat O-algebras. In particular, each of them is a Grothendieck abelian category. Each has enough K-injectives ([Sta23, Tag 079P]) and enough objects flat over O ([HT07, Lem. 1.5.2 (ii)]), cf. [Rot97, Cor. 2.3]. Thus, all the (left exact) direct image functors involved below admit right derived functors on the unbounded derived categories (see [Sta23, Tag 070K] and [Sta23, Tag 079P]).

From splittings to connection

Given $T \in \operatorname{End}(\mathfrak{g})$ and $(F, \psi) \in \operatorname{Mod}\left(O_{X}\right)_{T-\mathrm{sp}}$, the induced morphism

$$
p_{X}^{-1} \psi: p_{X}^{-1} F \rightarrow p_{X}^{-1} \mathcal{E} \otimes_{p_{X}^{-1} O_{X}} p_{X}^{-1} F
$$

is $p_{X}^{-1} O_{X}$-linear. By Example 2.2.4, the sequence (9) induces a short exact sequence in $\operatorname{Mod}\left(O_{X \times Y}\right)$

$$
0 \rightarrow \Omega_{p_{X}}^{1} \rightarrow p_{X}^{*} \mathcal{E} \rightarrow O_{X \times Y} \rightarrow 0
$$

Its extension class is $p_{X}^{*} T \in H^{1}\left(X \times Y, \Omega_{p_{X}}^{1}\right)$. Define another $p_{X}^{-1} O_{X}$-linear morphism

$$
\begin{aligned}
& \nabla_{\psi}: p_{X}^{*} F=\left(O_{X \times Y} \otimes_{p_{X}^{-1} O_{X}} p_{X}^{-1} F\right) \rightarrow p_{X}^{*} \mathcal{E} \otimes_{O_{X \times Y}} p_{X}^{*} F(= \\
& \left.p_{X}^{*} \mathcal{E} \otimes_{p_{X}^{-1} O_{X}} p_{X}^{-1} F=O_{X \times Y} \otimes_{p_{X}^{-1} O_{X}} p_{X}^{-1} \mathcal{E} \otimes_{p_{X}^{-1} O_{X}} p_{X}^{-1} F\right)
\end{aligned}
$$

by

$$
\nabla_{\psi}(h \otimes s)=d_{p_{X}}(h) \otimes s+h \otimes\left[\left(p_{X}^{-1} \psi\right)(s)\right]
$$

where h (resp. s) is a local section of $O_{X \times Y}$ (resp. $p_{X}^{-1} F$). By construction, ∇_{ψ} satisfies the Leibniz rule (11). So it is a $p_{X}^{*} T$-connection on $p_{X}^{*} F$. Thus, we get the exact functor in $[\operatorname{Rot} 97,(2.5)]$:

$$
\begin{equation*}
p_{X}^{*}: \operatorname{Mod}\left(O_{X}\right)_{T-\mathrm{sp}} \rightarrow \operatorname{Mod}\left(O_{X \times Y}\right)_{T-\mathrm{cxn}} \tag{13}
\end{equation*}
$$

Tensoring with Poincaré bundle

By Fact 2.2.5 and [Rot97, (2.10)], the functor

$$
\begin{equation*}
\cdot \otimes_{O_{X \times Y}} \mathcal{P}: \operatorname{Mod}\left(O_{X \times Y}\right)_{1-\mathrm{cxn}} \rightarrow \operatorname{Mod}\left(O_{X \times Y}\right)_{0-\mathrm{cxn}} \tag{14}
\end{equation*}
$$

restricts to a functor $\operatorname{Mod}\left(O_{X \times Y}\right)_{1-c x n, f 1} \rightarrow \operatorname{Mod}\left(O_{X \times Y}\right)_{0-\text { cxn } \mathrm{f}}\left(\cong \operatorname{Mod}\left(D_{X \times Y / X}\right)\right)$. The functor (14) is an equivalence of abelian categories, with a quasi-inverse - $\otimes_{O_{X \times Y}} \mathcal{P}^{-1}$.

From connection to splittings

For every $(F, \nabla) \in \operatorname{Mod}\left(O_{X \times Y}\right)_{1-\mathrm{cxn}}$, the morphism

$$
\nabla: F \rightarrow p_{X}^{*} \mathcal{E} \otimes_{O_{X \times Y}} F\left(=p_{X}^{-1} \mathcal{E} \otimes_{p_{X}^{-1} O_{X}} F\right)
$$

is a $p_{X}^{-1} O_{X}$-splitting to $\left(p_{X}^{-1} \mu_{1}\right) \otimes \operatorname{Id}_{F}$. By projection formula (see e.g, [KS13, Prop. 2.6.6]), the induced morphism

$$
p_{X *} \nabla: p_{X *} F \rightarrow \mathcal{E} \otimes_{O_{X}} p_{X *} F
$$

is an O_{X}-linear splitting to $\mu_{1} \otimes_{O_{X}} \operatorname{Id}_{p_{X *} F}$. Hence $\left(p_{X *} F, p_{X *} \nabla\right) \in \operatorname{Mod}\left(O_{X}\right)_{\mathrm{sp}}$. Thus, we get a left exact functor (a special case of [Rot97, (2.13)]):

$$
\begin{equation*}
p_{X *}: \operatorname{Mod}\left(O_{X \times Y}\right)_{1-\mathrm{cxn}} \rightarrow \operatorname{Mod}\left(O_{X}\right)_{\mathrm{sp}} \tag{15}
\end{equation*}
$$

If (F, ∇) is integrable, then $\left[p_{X *} \nabla, p_{X *} \nabla\right]$ defined in (4) is zero.

Between connection

We define the inverse image and the direct image of relative connection on changing bases. Consider a cartesian square of complex manifolds

where f is smooth. For every $(F, \nabla) \in \operatorname{Mod}\left(O_{Z}\right)_{f, 0-\mathrm{cxn}}$, by [ABC20, Sec. 4.2], the relative connection ∇ is equivalent to an O_{Z}-linear splitting to the natural projection $P_{f}^{1} \otimes_{O_{z}} F \rightarrow F$, where P_{\bullet}^{1} denotes the sheaf of first order jets (defined in [ABC20, Sec. 4.1.2]). Applying $g^{\prime *}$ to the induced splitting, we get an O_{W}-linear splitting to the natural projection $P_{f^{\prime}}^{1} \otimes_{O_{W}} g^{\prime *} F \rightarrow g^{\prime *} F$. This is equivalent to an f^{\prime}-connection on $g^{\prime *} F$. Hence an inverse image functor

$$
\begin{equation*}
g^{\prime *}: \operatorname{Mod}\left(O_{Z}\right)_{f, 0-\operatorname{cxn}} \rightarrow \operatorname{Mod}\left(O_{W}\right)_{f^{\prime}, 0-\operatorname{cxn}} \tag{17}
\end{equation*}
$$

It is right exact. By [ABC20, Sec. 5.1], the connection induced by ∇ is integrable if ∇ is so.

Now for direct image. Fix $\alpha \in F^{1}\left(Z, \Omega_{f}^{1}\right)$. For every

$$
(F, \nabla) \in \operatorname{Mod}\left(O_{W}\right)_{f^{\prime}, g^{\prime *} \alpha-\operatorname{cxn}}
$$

by projection formula (see e.g, [Har77, II, Ex. 5.1 (d)]), one has

$$
g_{*}^{\prime}\left(F \otimes_{O_{W}} g^{\prime *} \mathcal{E}_{\alpha}\right)=\left(g_{*}^{\prime} F\right) \otimes_{O_{Z}} \mathcal{E}_{\alpha}
$$

Then the induced morphism

$$
g_{*}^{\prime} \nabla: g_{*}^{\prime} F \rightarrow\left(g_{*}^{\prime} F\right) \otimes_{O_{z}} \mathcal{E}_{\alpha}
$$

is $f^{-1}\left(O_{S}\right)$-linear. Since $d_{f^{\prime}}: O_{W} \rightarrow \Omega_{f^{\prime}}^{1}$ and $d_{f}: O_{Z} \rightarrow \Omega_{f}^{1}$ are related by $g^{\prime *} d_{f}=d_{f^{\prime}}$, the induced map $g_{*}^{\prime} \nabla$ satisfies the Leibniz rule (11). Hence, the pair $\left(g_{*}^{\prime} F, g_{*}^{\prime} \nabla\right) \in \operatorname{Mod}\left(O_{Z}\right)_{f, \alpha-\operatorname{cxn}}$. In this manner, we get a left exact functor

$$
\begin{equation*}
g_{*}^{\prime}: \operatorname{Mod}\left(O_{W}\right)_{f^{\prime}, g^{\prime *} \alpha-\operatorname{cxn}} \rightarrow \operatorname{Mod}\left(O_{Z}\right)_{f, \alpha-\operatorname{cxn}} \tag{18}
\end{equation*}
$$

When $\alpha=0$, the functor (18) sends $\operatorname{MIC}\left(f^{\prime}\right)$ to $\operatorname{MIC}(f)$.
Example 2.3.2. Take (16) to be

then $p_{Y}^{*}: \operatorname{Mod}\left(O_{Y}\right)_{\operatorname{cxn}} \rightarrow \operatorname{Mod}\left(O_{X \times Y}\right)_{0-\mathrm{cxn}}$ sits on the left of the diagram [Rot97, (2.15)] and

$$
\begin{equation*}
p_{Y *}: \operatorname{Mod}\left(O_{X \times Y}\right)_{0-\mathrm{cxn}} \rightarrow \operatorname{Mod}(Y)_{\mathrm{cxn}} \tag{19}
\end{equation*}
$$

is $[\operatorname{Rot} 97,(2.12)]$. They restrict respectively to functors

$$
\begin{align*}
& p_{Y *}: \operatorname{MIC}\left(p_{X}\right) \rightarrow \operatorname{Mod}\left(D_{Y}\right) ; \tag{20}\\
& p_{Y}^{*}: \operatorname{Mod}\left(D_{Y}\right) \rightarrow \operatorname{MIC}\left(p_{X}\right) \text {. } \tag{21}
\end{align*}
$$

Remark 2.3.3. Take $\alpha=0 \in H^{1}\left(Z, \Omega_{f}^{1}\right)$. From another point of view, the morphism $O_{Z} \rightarrow g_{*}^{\prime} O_{W}$ between sheaves of rings extends to a morphism $\tilde{D}_{Z / S} \rightarrow$ $g_{*}^{\prime} \tilde{D}_{W / T}$. Then (17) and (18) are respectively the pullback and the pushout along the induced morphism $\left(W, \tilde{D}_{W / T}\right) \rightarrow\left(Z, \tilde{D}_{Z / S}\right)$ of ringed spaces. By [Sta23, Tag 0096], the functor (17) is the left adjoint to (18). Then from [Sta23, Tag 09T5], the derived functor

$$
L g^{\prime *}: D\left(\operatorname{Mod}(Z)_{f, 0-\operatorname{cxn}}\right) \rightarrow D\left(\operatorname{Mod}(W)_{f^{\prime}, 0-\operatorname{cxn}}\right)
$$

is the left adjoint to

$$
R g_{*}^{\prime}: D\left(\operatorname{Mod}(W)_{f^{\prime}, 0-\mathrm{cxn}}\right) \rightarrow D\left(\operatorname{Mod}(Z)_{f, 0-\mathrm{cxn}}\right)
$$

3 Rothstein transform on modules with connection

3.1 Construction

Definition 3.1.1. Define functors $R \mathfrak{S}_{1}: D\left(\operatorname{Mod}\left(O_{X}\right)_{\mathrm{sp}}\right) \rightarrow D\left(\operatorname{Mod}\left(O_{Y}\right)_{\mathrm{cxn}}\right)$ and $R \mathfrak{S}_{2}: D\left(\operatorname{Mod}\left(O_{Y}\right)_{\mathrm{cxn}}\right) \rightarrow D\left(\operatorname{Mod}\left(O_{X}\right)_{\mathrm{sp}}\right)$ by

$$
\begin{gathered}
R \mathfrak{S}_{1}=R p_{Y *}\left(\mathcal{P} \otimes_{O_{X \times Y}} p_{X}^{*} \cdot\right) \\
R \mathfrak{S}_{2}=R p_{X *}\left(\mathcal{P}^{-1} \otimes_{O_{X \times Y}} p_{Y}^{*} \cdot\right)
\end{gathered}
$$

Here $R p_{Y *}$ (resp. $R p_{X *}$) is the right derived functor of (19) (resp. (15)). The pair $\left(R \mathfrak{S}_{1}, R \mathfrak{S}_{2}\right)$ is called the Rothstein transform.

Let $D_{O-\operatorname{good}}\left(\operatorname{Mod}\left(O_{Y}\right)_{\operatorname{cxn}}\right) \subset D\left(\operatorname{Mod}\left(O_{Y}\right)_{\operatorname{cxn}}\right)\left(\right.$ resp. $D_{O-\operatorname{good}}\left(\operatorname{Mod}\left(O_{X}\right)_{\mathrm{sp}}\right) \subset$ $\left.D\left(\operatorname{Mod}\left(O_{X}\right)_{\mathrm{sp}}\right)\right)$ be the full subcategory of objects whose cohomologies are good O-modules (in the sense of [Kas03, Def. 4.22]). In view of Proposition 3.1.2, Rothstein transform is compatible with Fourier-Mukai transform.

Proposition 3.1.2. There are commutative squares

where the vertical functors are forgetful. In particular, $R \mathfrak{S}_{1}$ and $R \mathfrak{S}_{2}$ restrict to functors $D_{O-\operatorname{good}}\left(\operatorname{Mod}\left(O_{X}\right)_{\mathrm{sp}}\right) \rightarrow D_{O-\operatorname{good}}\left(\operatorname{Mod}\left(O_{Y}\right)_{\mathrm{cxn}}\right)$ and $D_{O-\operatorname{good}}\left(\operatorname{Mod}\left(O_{Y}\right)_{\mathrm{cxn}}\right) \rightarrow$ $\left.D_{O-\operatorname{good}}\left(\operatorname{Mod}\left(O_{X}\right)_{\mathrm{sp}}\right)\right)$.

Proof. All the functors $p_{X}^{*}: \operatorname{Mod}\left(O_{X}\right) \rightarrow \operatorname{Mod}\left(O_{X \times Y}\right)$, (13), (14) and

$$
\mathcal{P} \otimes_{O_{X \times Y}} \cdot: \operatorname{Mod}\left(O_{X \times Y}\right) \rightarrow \operatorname{Mod}\left(O_{X \times Y}\right)
$$

are exact. To prove the commutativity of the first square, it remains to do so for the square

Since the forgetful functor for $_{Y}: \operatorname{Mod}\left(O_{Y}\right)_{\mathrm{cxn}} \rightarrow \operatorname{Mod}\left(O_{Y}\right)$ is exact, the composition for $_{Y} R p_{Y *}: D\left(\operatorname{Mod}\left(O_{X \times Y}\right)_{0-\operatorname{cxn}}\right) \rightarrow D\left(O_{Y}\right)$ is the right derived functor of

$$
\operatorname{for}_{Y} \circ p_{Y *}: \operatorname{Mod}\left(O_{X \times Y}\right)_{0-\operatorname{cxn}} \rightarrow \operatorname{Mod}\left(O_{Y}\right)
$$

From Remark 2.3.1, [Sta23, Tag 0096] and [Sta23, Tag 08BJ], the functor for $_{X \times Y}: \operatorname{Mod}\left(O_{X \times Y}\right)_{0-\text { cxn }} \rightarrow \operatorname{Mod}\left(O_{X \times Y}\right)$ preserves K-injective complexes. By Lemma A.0.9, the composition $R p_{Y *}$ for $_{X \times Y}: D\left(\operatorname{Mod}\left(O_{X \times Y}\right)_{0-\mathrm{cxn}}\right) \rightarrow$ $D\left(O_{Y}\right)$ is the right derived functor of

$$
p_{Y *} \text { for }_{X \times Y}: \operatorname{Mod}\left(O_{X \times Y}\right)_{0-\operatorname{cxn}} \rightarrow \operatorname{Mod}\left(O_{Y}\right)
$$

Since for ${ }_{Y} \circ p_{Y *}=p_{Y *} \circ$ for $_{X \times Y}$, the first square is indeed commutative.
By the commutativity of the first square and [Liu23a, Cor. 3.1.14], the transform $R \mathfrak{S}_{1}$ preserves O-goodness. The other half about $R \mathfrak{S}_{2}$ is similar.

3.2 Rothstein's theorem

Theorem 3.2.1 (Rothstein). There are natural isomorphisms $R \mathfrak{S}_{1} R \mathfrak{S}_{2} \cong T^{-g}$ on $D_{O-\operatorname{good}}\left(\operatorname{Mod}\left(O_{Y}\right)_{\operatorname{cxn}}\right)$ and $R \mathfrak{S}_{2} R \mathfrak{S}_{1} \cong T^{-g}$ on $D_{O-\operatorname{good}}\left(\operatorname{Mod}\left(O_{X}\right)_{\mathrm{sp}}\right)$.

We begin the proof of Theorem 3.2.1 with Lemma 3.2.2, a direct adaption of [Rot97, Prop. 2.4] for complex tori.

Lemma 3.2.2. Let $\Delta \subset X \times X$ be the diagonal. Define a morphism of complex tori $\epsilon_{X}: X \times X \rightarrow X, \quad\left(x_{1}, x_{2}\right) \mapsto x_{2}-x_{1}$. Then

$$
R p_{12 *}\left(\epsilon_{X} \times 1_{Y}\right)^{*} \mathcal{P} \cong O_{\Delta}[-g]
$$

in $D^{b}\left(\operatorname{Mod}\left(O_{X \times X}\right)_{(1,-1)-\mathrm{sp}}\right)$, where $p_{12}: X \times X \times Y \rightarrow X \times X$ is the projection.
Proof. The identification $R p_{X *} \mathcal{P} \cong \mathbb{C}_{0}[-g]$ in $D^{b}\left(O_{X}\right)$ from [Kem91, Thm. 3.15] can be lifted to an isomorphism in $D^{b}\left(\operatorname{Mod}\left(O_{X}\right)_{-1-\mathrm{sp}}\right)$. As stated in the last sentence of the proof of [Vig21, Prop. 2.1.21], a morphism of modules with splittings (or connection) is an isomorphism whenever the underlying morphism of O-modules is so. Then apply [Liu23a, Thm. 3.2.3] to the cartesian square

Arguing as in Lemma 3.2.2, we can prove the analytic version of $[\operatorname{Rot} 97$, Prop. 2.5; Prop. 3.1]. These three results are used in the proof of Theorem 3.2.1 below.

Proof of Theorem 3.2.1. Repeat the proof of [Rot97, Thm. 3.2], which requires the projection formula and smooth base change theorem for modules with connection. For this, we first construct the corresponding comparison morphism that is compatible with the underlying O-module comparison morphism. The construction reduces to the adjunction between derived inverse image and derived direct image of relative connection in Remark 2.3.3.

The compatibility with O-module comparison morphism can be proved in a way similar to Proposition 3.1.2. On the level of O-modules, the comparison morphism is an isomorphism by [Liu23a, Fact 3.2.13; Thm. 3.2.3]. (This type of arguments can also be found in the proof of [Vig21, Prop. 2.1.21; Thm. 2.1.33].)

3.3 Matsushima's theorem

A holomorphic vector bundle $H \rightarrow Y$ is called homogeneous if $T_{y}^{*} H$ is isomorphic to H for all $y \in Y$, where $T_{y}: Y \rightarrow Y$ is the translation by y. The first half of Theorem 3.3.1 is a special case of [Mat59, Thm. 1].

Theorem 3.3.1 (Matsushima). Let E be a coherent O_{Y}-module with a connection ∇. Then E is a homogeneous vector bundle and the pair (E, ∇) is translation invariant.

Proof. By Proposition 3.1.2, for every integer i, the coherent O_{X}-module $H^{i} R S_{2}(E)$ admits a 1 -splitting. By Lemma 3.3.2, the support of $H^{i} R S_{2}(E)$ is finite. Consequently, in $D_{c}^{b}\left(O_{X}\right)$ there is an isomorphism $R S_{2}(E) \cong \oplus_{i \in \mathbb{Z}} T^{-i} H^{i} R S_{2}(E)$. From [Liu23a, Prop. 5.3.2 3] and Fact 1.2.1 2, it induces an isomorphism in $D_{c}^{b}\left(O_{Y}\right)$

$$
T^{-g} E \rightarrow \oplus_{i \in \mathbb{Z}} T^{-i} H^{0} R S_{1}\left(H^{i} R S_{2}(E)\right)
$$

and each $H^{0} R S_{1}\left(H^{i} R S_{2}(E)\right)$ is a homogeneous vector bundle on Y. Then E is isomorphic to $H^{0} R S_{1}\left(H^{g} R S_{2}(E)\right)$, hence a homogeneous vector bundle.

We adopt the argument in [BK09, Footnote (6), p.388]. For every $y \in Y$, $T_{y}^{*} \nabla$ is a connection on $T_{y}^{*} E \xrightarrow{\sim} E$ and $T_{0}^{*} \nabla=\nabla$. The map

$$
Y \rightarrow H^{0}\left(Y, \Omega_{Y}^{1} \otimes \mathcal{E} n d(E)\right), \quad y \mapsto T_{y}^{*} \nabla-\nabla
$$

is holomorphic. It is constantly 0 since Y is compact and $H^{0}\left(Y, \Omega_{Y}^{1} \otimes \mathcal{E} n d(E)\right)$ is a finite-dimensional vector space (Cartan-Serre's theorem). Hence $T_{y}^{*}(E, \nabla)=$ (E, ∇) for all $y \in Y$.

Lemma 3.3.2 ([Rot96, Lem. 3.1]). Let F be a coherent module with a 1-splitting on the complex torus X, then F is finitely supported.

Proof. Suppose to the contrary that $\operatorname{Supp}(F)$ is infinite. By [GR84, p.76], $\operatorname{Supp}(F)$ is an analytic set in X. Then $\operatorname{dim} \operatorname{Supp}(F) \geq 1$. Let C be an irreducible component of $\operatorname{Supp}(F)$ of maximal dimension. Write $i: C \rightarrow X$ for the inclusion. Take a morphism $h: Z \rightarrow X$ provided by [Liu23a, Lem. 5.3.3]. Then $h(Z)=C$ and $F^{\prime \prime}:=F^{\prime} / T\left(F^{\prime}\right)$ is a vector bundle on Z of positive rank r, where $F^{\prime}=h^{*} F$ and $T(*)$ denotes the torsion part of a sheaf of modules. In consequence, the morphism of complex tori $h^{*}: \operatorname{Pic}^{0}(X) \rightarrow \operatorname{Pic}^{0}(Z)$ is nonzero. However, we claim that its tangent map at origin $h^{*}: \mathfrak{g} \rightarrow H^{1}\left(Z, O_{Z}\right)$ is zero.

Let $\mathcal{E}^{\prime}=h^{*} \mathcal{E}$. Because O_{X} is flat over itself, pulling back (9) to Y and tensoring with $F^{\prime \prime}$, by [Sta23, Tag 05 NJ$]$ we get a short exact sequence

$$
\begin{equation*}
0 \rightarrow \mathfrak{g}^{*} \otimes_{\mathbb{C}} F^{\prime \prime} \rightarrow \mathcal{E}^{\prime} \otimes_{O_{Z}} F^{\prime \prime} \rightarrow F^{\prime \prime} \rightarrow 0 \tag{23}
\end{equation*}
$$

Since \mathcal{E}^{\prime} is a vector bundle on Z, one has

$$
\frac{\mathcal{E}^{\prime} \otimes F^{\prime}}{T\left(\mathcal{E}^{\prime} \otimes F^{\prime}\right)}=\mathcal{E}^{\prime} \otimes F^{\prime \prime}
$$

Then the splitting on F induces a splitting $F^{\prime \prime} \xrightarrow{\psi^{\prime}} \mathcal{E}^{\prime} \otimes F^{\prime \prime}$ of (23). Let β be the natural morphism $\beta: O_{Z} \rightarrow \mathcal{E} n d\left(F^{\prime \prime}\right)$. By Lemma 2.1.3, the composition

$$
\operatorname{End}(g) \xrightarrow{\operatorname{Id}_{\mathfrak{g}^{*}} \otimes h^{*}} \mathfrak{g}^{*} \otimes_{\mathbb{C}} H^{1}\left(Z, O_{Z}\right) \xrightarrow{\operatorname{Id}_{\mathfrak{g}^{*}} \otimes H^{1}(Z, \beta)} \mathfrak{g}^{*} \otimes_{\mathbb{C}} H^{1}\left(Z, \mathcal{E} n d\left(F^{\prime \prime}\right)\right)
$$

sends $1 \in \operatorname{End}(\mathfrak{g})$ to 0 . Therefore, the map $H^{1}(Z, \beta) h^{*}: \mathfrak{g} \rightarrow H^{1}\left(Z, \mathcal{E} n d\left(F^{\prime \prime}\right)\right)$ is zero. Taking trace, we get a morphism $\tau: \mathcal{E} n d\left(F^{\prime \prime}\right) \rightarrow O_{Z}$ with $\tau \beta=r \cdot \operatorname{Id}_{O_{Z}}$. Then $h^{*}=\frac{1}{r} \tau_{*} H^{1}(Z, \beta) h^{*}=0$ as a map $\mathfrak{g} \rightarrow H^{1}\left(Z, O_{Z}\right)$. The claim follows. The claim gives a contradiction.

Corollary 3.3.3. Every local system (of finite dimensional \mathbb{C}-vector spaces) on a complex torus is translation invariant.

Proof. Let L be a local system on Y. By Theorem 3.3.1, the pair $\left(L \otimes_{\mathbb{C}}\right.$ $\left.O_{Y}, \operatorname{Id}_{L} \otimes d\right)$ is translation invariant. The result follows from the RiemannHilbert correspondence [Del70, I, Thm. 2.17].

4 Laumon-Rothstein sheaf of algebras

4.1 Construction

To lift the Fourier-Mukai transform to D-modules, we recall (in Definition 4.1.1) the sheaf \mathcal{A}_{X} from [Rot96, p.576]. In the notation of (9), fix a \mathbb{C}-basis $\left\{\omega^{1}, \ldots, \omega^{g}\right\}$ of the \mathbb{C}-vector space

$$
H^{0}\left(Y, \Omega_{Y}^{1}\right)=\mathfrak{g}^{*}=\Gamma\left(X, \mathfrak{g}^{*} \otimes_{\mathbb{C}} O_{X}\right) \subset \Gamma(X, \mathcal{E})
$$

For each Stein open subset $U \subset X$, by Cartan's Theorem B (see, e.g., [KK11, Sec. 52, Thm. B]) one has $H^{1}\left(U, \mathfrak{g}^{*} \otimes_{\mathbb{C}} O_{X}\right)=0$. Thence (9) induces a short exact sequence

$$
0 \rightarrow \mathfrak{g}^{*} \otimes_{\mathbb{C}} O_{X}(U) \rightarrow \mathcal{E}(U) \xrightarrow{\mu} O_{X}(U) \rightarrow 0
$$

Whence, there is $\rho \in \mathcal{E}(U)$ with $\mu(\rho)=1 \in O_{X}(U)$. For two such pairs (U, ρ) and $(\tilde{U}, \tilde{\rho})$ with $U \cap \tilde{U} \neq \emptyset$, one has $\mu(\tilde{\rho}-\rho)=0 \in O_{X}(U \cap \tilde{U})$, so $\tilde{\rho}-\rho \in \mathfrak{g}^{*} \otimes_{\mathbb{C}} O_{X}(U \cap \tilde{U})$. There exists a unique tuple $f_{1}, \ldots, f_{g} \in O_{X}(U \cap \tilde{U})$ such that

$$
\tilde{\rho}-\rho=\sum_{i=1}^{g} \omega^{i} \otimes f_{i}
$$

in $\mathcal{E}(U \cap \tilde{U})$.
Definition 4.1.1. For each chosen pair (U, ρ) as above, introduce independent variables $x_{1}^{\rho}, \ldots, x_{\rho}^{g}$ and put

$$
\left.\mathcal{A}_{X}\right|_{U}=O_{U}\left[x_{1}^{\rho}, \ldots, x_{g}^{\rho}\right] .
$$

For another choice $(\tilde{U}, \tilde{\rho})$ with the tuple $\left(f_{1}, \ldots, f_{g}\right)$ as above, we glue $\left.\mathcal{A}_{X}\right|_{U}$ and $\left.\mathcal{A}_{X}\right|_{\tilde{U}}$ by the rule

$$
\begin{equation*}
x_{i}^{\rho}-\left.x_{i}^{\tilde{\rho}}\right|_{U \cap \tilde{U}}=f_{i} \tag{24}
\end{equation*}
$$

The resulting sheaf \mathcal{A}_{X} is a sheaf of commutative O_{X}-algebra.
Let

$$
\begin{equation*}
0 \rightarrow \mathfrak{g}^{*} \rightarrow X^{\natural} \xrightarrow{\pi} X \rightarrow 0 \tag{25}
\end{equation*}
$$

be the universal vectorial extension of X constructed in [Liu23b, (22)]. In coordinate-free terms, \mathcal{A}_{X} is the O_{X}-subalgebra of $\pi_{*} O_{X}$ घ of sections whose restriction to each fiber of π is a polynomial on \mathfrak{g}^{*}. For every integer $m \geq 0$, let
$O_{X^{\natural}}(m) \subset O_{X^{\natural}}$ denote the subsheaf of sections whose restriction to the fibers of π are homogeneous polynomials of degree m. Similar to [Bjö93, Def 1.6.1], there exists a sheaf of graded rings $O_{\left[X^{\natural}\right]}:=\oplus_{m \geq 0} O_{X^{\natural}}(m)\left(\subset O_{X^{\natural}}\right)$ on X^{\natural}. Then $\mathcal{A}_{X}=\pi_{*} O_{\left[X^{\natural}\right]}$ and $\Gamma\left(X, \mathcal{A}_{X}\right)=\mathbb{C}$.
Remark 4.1.2. Unlike the analytic case, if X is an abelian variety, then the notation \mathcal{A}_{X} in [Rot96, p.576] is the algebraic direct image $\pi_{*} O_{X^{\natural}}$. Morally, such difference also lies between algebraic and analytic D-modules. For a complex manifold or a smooth algebraic variety V, let $p: T^{*} V \rightarrow V$ be the natural projection of the cotangent bundle. Denote by $G D_{V}$ the associated graded ring of the degree filtration on D_{V}. Then $G D_{V}=p_{*} O_{T^{*} V}$ in the algebraic case ([HT07, p.57]). By contrast, in the analytic case, $G D_{V}$ is the O_{V}-submodule of $p_{*} O_{T^{*} V}$ of sections whose restriction to each fiber of p is a polynomial.
Remark 4.1.3. The sheaf of rings \mathcal{A}_{X} is functorial in X in the following sense. Let $\phi: X^{\prime} \rightarrow X$ be a morphism of complex tori. Let $\hat{\phi}: Y \rightarrow Y^{\prime}$ be the morphism dual to ϕ. By [Liu23b, Prop. 5.4.7], it induces a morphism ϕ^{\natural} : $X^{\prime 4} \rightarrow X^{\natural}$ of complex Lie groups fitting into a commutative diagram

For each local section of $O_{\left[X^{\natural}\right]}$, its ϕ^{\natural}-pullback (a local section of $O_{X^{\prime \natural}}$) restricts to a polynomial on each fiber of π^{\prime}. Indeed, this restriction is the $\hat{\phi}^{*}$-pullback of a restriction to a fiber of π. Therefore, the natural morphism $O_{X^{\natural}} \rightarrow \phi_{*}^{\natural} O_{X^{\prime}}$ restricts to a morphism $O_{\left[X^{\natural}\right]} \rightarrow \phi_{*}^{\natural} O_{\left[X^{\prime} 4\right]}$. The resulting morphism of ringed $\operatorname{spaces}\left(X^{\prime 4}, O_{\left[X^{\prime}\right]}\right) \rightarrow\left(X^{\natural}, O_{\left[X^{\natural}\right]}\right)$ descends to another morphism of ringed spaces

$$
\begin{equation*}
\tilde{\phi}:\left(X^{\prime}, \mathcal{A}_{X^{\prime}}\right) \rightarrow\left(X, \mathcal{A}_{X}\right) \tag{26}
\end{equation*}
$$

which is compatible with ϕ. In particular, the following square

is commutative, where the vertical functors are forgetful. If M is an O_{X}-module, then

$$
\begin{equation*}
L \tilde{\phi}^{*}\left(\mathcal{A}_{X} \otimes_{O_{X}} M\right)=\mathcal{A}_{X^{\prime}} \otimes_{O_{X^{\prime}}} L \phi^{*} M \tag{28}
\end{equation*}
$$

4.2 Basic properties

Notice that \mathcal{A}_{X} has a natural degree filtration $\left\{\mathcal{A}_{X}(m)\right\}_{m \in \mathbb{Z}}$, where

$$
\mathcal{A}_{X}(m)=\pi_{*}\left(\oplus_{j=0}^{m} O_{X^{\natural}}(j)\right)
$$

is the O_{X}-submodule of \mathcal{A}_{X} of polynomials of degree at most m. See also [Rot96, Sec. 5.3] and the end of [Lau96, p.10]. Then $\mathcal{A}_{X}(0)=O_{X}, \mathcal{A}_{X}(1)=\mathcal{E}^{\vee}$ (cf. the start of [Lau96, p.10]), and every $\mathcal{A}_{X}(m)$ is a locally free O_{X}-module of finite rank. Moreover, for any integers $m, n \geq 0$, one has

$$
\begin{equation*}
\mathcal{A}_{X}(n) \mathcal{A}_{X}(m)=\mathcal{A}_{X}(n+m) \tag{29}
\end{equation*}
$$

Thus, \mathcal{A}_{X} is a sheaf of positively filtered rings (in the sense of [Bjö93, p.459; p.464]) on the complex torus X.

We review some terminology from [Bjö93, A:III]. A coherent sheaf of rings on a locally compact Hausdorff space is called noetherian if every increasing sequence of ideal sheaves is stationary over relatively compact subsets ([Bjö93, $2.24, \mathrm{p} .470]$). Let R be a commutative filtered ring. If the subring $\oplus_{v \in \mathbb{Z}} R_{v} T^{v}$ of $R\left[T, T^{-1}\right]$ is a noetherian ring, then R is called a noetherian filtered ring.

Definition 4.2.1 ([Bjö93, A.III, 1.7; Def. 1.11; 1.19]). A filtration on an R module M is a family of additive subgroups $\left\{M_{v}\right\}_{v \in \mathbb{Z}}$ such that

$$
M_{v} \subset M_{v+1} ; \quad R_{k} M_{v} \subset M_{k+v} ; \quad \cup_{v} M_{v}=M
$$

This filtration is called separated if $\cap_{v \in \mathbb{Z}} M_{v}=0$, and called good if $\oplus_{v \in \mathbb{Z}} M_{v} T^{v}$ is a finitely generated $\oplus_{v \in \mathbb{Z}} R_{v} T^{v}$-module.

A zariskian filtered ring is a noetherian filtered ring such that all the good filtrations on every finitely generated module are separated. A filtered sheaf of rings is called stalkwise zariskian if every stalk is a zariskian filtered ring ([Bjö93, Def. 2.6, p.465]).
Lemma 4.2.2. The sheaf of rings \mathcal{A}_{X} is coherent and noetherian. The sheaf of filtered rings \mathcal{A}_{X} is stalkwise zariskian.

Proof. By (24), the graded ring associated to the degree filtration of \mathcal{A}_{X} is

$$
\begin{equation*}
G \mathcal{A}_{X}:=\oplus_{m \geq 0} \mathcal{A}_{X}(m) / \mathcal{A}_{X}(m-1)=\operatorname{Sym}(\mathfrak{g}) \otimes_{\mathbb{C}} O_{X}=O_{X}\left[x_{1}, \ldots, x_{g}\right] \tag{30}
\end{equation*}
$$

Here for each chosen pair (U, ρ) as above, $\left.x_{i}\right|_{U} \in \Gamma\left(U, \mathcal{A}_{X}(1) / \mathcal{A}_{X}(0)\right) \subset \Gamma\left(U, G \mathcal{A}_{X}\right)$ is the image of $x_{i}^{\rho} \in \Gamma\left(U, \mathcal{A}_{X}(1)\right)$. From [Bjö79, Thm. 1.26, p.460], \mathcal{A}_{X} is stalkwise zariskian. The other part follows from [Bjö79, Prop. 1.27, p.460; Thm. 2.7, p.465]. (See also the proof of [Bjö93, Thm. 1.2.5].)

In view of the difference mentioned in Remark 4.1.2, the statement of [Rot96, Prop. 4.4] is slightly modified as Fact 4.2.3. For every \mathcal{A}_{X}-module F and every chosen pair (U, ρ) as above, define $\psi_{U}^{\rho}: F(U) \rightarrow \mathcal{E}(U) \otimes_{O_{X}(U)} F(U)$ by

$$
\psi_{U}^{\rho}(s)=\rho \otimes s+\left.\sum_{i=1}^{g} \omega^{i}\right|_{U} \otimes\left(x_{i}^{\rho} s\right)
$$

Then $\left(\mu_{1} \otimes \operatorname{Id}_{F}\right)\left(\psi_{U}^{\rho}(s)\right)=s$. In light of (24), the family $\left\{\psi_{U}^{\rho}\right\}_{(U, \rho)}$ glue to a 1 -splitting ψ on F. By the commutativity of \mathcal{A}_{X} and $[\operatorname{Rot} 96,(4.9)]$, one has $[\psi, \psi]=0$.

Fact 4.2.3. The resulting functor $\operatorname{Mod}\left(\mathcal{A}_{X}\right) \rightarrow \operatorname{Mod}\left(O_{X}\right)_{\mathrm{sp}}, \quad F \mapsto(F, \psi)$ induces an equivalence from $\operatorname{Mod}\left(\mathcal{A}_{X}\right)$ to the full subcategory of $\operatorname{Mod}\left(O_{X}\right)_{\mathrm{sp}}$ comprised of objects (F, ψ) with $[\psi, \psi]=0$.

From Fact 4.2.3 and the proof of [Rot96, Prop. 4.1], the functor (13) restricts to an exact functor $p_{X}^{*}: \operatorname{Mod}\left(\mathcal{A}_{X}\right) \rightarrow \operatorname{Mod}\left(O_{X \times Y}\right)_{1-\text { cxn,f1. }}$ Similarly by $[\operatorname{Rot} 96$, Prop. 4.2], the functor (15) restricts to a functor

$$
\begin{equation*}
p_{X *}: \operatorname{Mod}\left(O_{X \times Y}\right)_{1-\mathrm{cxn}, \mathrm{fl}} \rightarrow \operatorname{Mod}\left(\mathcal{A}_{X}\right) \tag{31}
\end{equation*}
$$

5 Laumon-Rothstein transform

5.1 Construction and properties

Definition 5.1.1. Define functors

$$
\begin{gather*}
R S_{1}=R p_{Y *}\left(\mathcal{P} \otimes_{O_{X \times Y}}^{L} p_{X}^{*} \cdot\right): D\left(\mathcal{A}_{X}\right) \rightarrow D\left(D_{Y}\right) \tag{32}\\
R S_{2}=R p_{X *}\left(\mathcal{P}^{-1} \otimes_{O_{X \times Y}}^{L} p_{Y}^{*} \cdot\right): D\left(D_{Y}\right) \rightarrow D\left(\mathcal{A}_{X}\right) \tag{33}
\end{gather*}
$$

where $R p_{Y *}: D\left(\operatorname{MIC}\left(p_{X}\right)\right) \rightarrow D\left(D_{Y}\right)\left(\right.$ resp. $R p_{X *}: D\left(\operatorname{Mod}\left(O_{X \times Y}\right)_{1-\text { cxn,fi }}\right) \rightarrow$ $D\left(\mathcal{A}_{X}\right)$) is the right derived functor of (20) (resp. (31)). The pair is called the Laumon-Rothstein transform.

The situation is depicted below.

Proposition 5.1.2. There are commutative squares

where the vertical functors are forgetful. In particular, $R S_{1}$ (resp. $R S_{2}$) sends $D_{O-\operatorname{good}}\left(\mathcal{A}_{X}\right)\left(\right.$ resp. $\left.D_{O-\operatorname{good}}\left(D_{Y}\right)\right)$ to $D_{O-\operatorname{good}}\left(D_{Y}\right)\left(\right.$ resp. $\left.D_{O-\operatorname{good}}\left(\mathcal{A}_{X}\right)\right)$.
Proof. The proof is similar to that of Proposition 3.1.2, as \mathcal{A}_{X} (resp. D_{Y}) is flat over $O_{X}\left(\right.$ resp. $\left.O_{Y}\right)$.

With Proposition 5.1.2, the proof of Theorem 5.1.3 is similar to that of Theorem 3.2.1.

Theorem 5.1.3 (Laumon, Rothstein). There are natural isomorphisms of functors $R S_{1} R S_{2} \cong T^{-g}$ on $D_{O-\operatorname{good}}\left(D_{Y}\right)$ and $R S_{2} R S_{1} \cong T^{-g}$ on $D_{O-\operatorname{good}}\left(\mathcal{A}_{X}\right)$.

Proposition 5.1.4 follows from Proposition 5.1.2, Theorem 5.1.3 and Fact 1.1.1 1 as in the proof of [Rot96, Thm. 6.1], cf. [Lau96, Prop. 3.1.2; Cor. 3.2.4].

Proposition 5.1.4. There are natural isomorphisms of functors

$$
\begin{aligned}
& R S_{2}\left(D_{Y} \otimes_{O_{Y}}^{L} \cdot\right) \cong \mathcal{A}_{X} \otimes_{O_{X}}^{L} R \mathscr{S}_{2}(\cdot): D_{\text {good }}\left(O_{Y}\right) \rightarrow D_{O-\operatorname{good}}\left(\mathcal{A}_{X}\right) ; \\
& R S_{1}\left(\mathcal{A}_{X} \otimes_{O_{X}}^{L} \cdot\right) \cong D_{Y} \otimes_{O_{Y}}^{L} R \mathscr{S}_{1}(\cdot): D_{\text {good }}\left(O_{X}\right) \rightarrow D_{O-\operatorname{good}}\left(D_{Y}\right)
\end{aligned}
$$

For $x \in X$ (resp. $y \in Y$), let $P_{x}=\left.\mathcal{P}\right|_{x \times Y}$ (resp. $P_{y}=\left.\mathcal{P}\right|_{X \times y}$) be the pullback line bundle on Y (resp. X). For a closed analytic subset S of a complex manifold Z, $\left[\operatorname{Kas} 03,(3.30)\right.$, p.51] defines a D_{Z}-module $\mathcal{B}_{S \mid Z}$.

Corollary 5.1.5. For any $x \in X$ and $y \in Y$, one has

$$
\begin{gathered}
R S_{2}\left(D_{Y} \otimes_{O_{Y}} \mathbb{C}_{y}\right)=\mathcal{A}_{X} \otimes_{O_{X}} P_{-y} ; \\
T^{g} R S_{1}\left(\mathcal{A}_{X} \otimes_{O_{X}} P_{-y}\right)=D_{Y} \otimes_{O_{Y}} \mathbb{C}_{y}=i_{y+} \mathbb{C}=\mathcal{B}_{\{y\} \mid Y} ; \\
R S_{1}\left(\mathcal{A}_{X} \otimes_{O_{X}} \mathbb{C}_{x}\right)=D_{Y} \otimes_{O_{Y}} P_{x} ; \\
T^{g} R S_{2}\left(D_{Y} \otimes_{O_{Y}} P_{x}\right)=\mathcal{A}_{X} \otimes_{O_{X}} \mathbb{C}_{x}
\end{gathered}
$$

Proof. By [HT07, Example 1.6.4], one has $D_{Y} \otimes_{O_{Y}} \mathbb{C}_{y}=\mathcal{B}_{\{y\} \mid Y}$. The result follows from Theorem 5.1.3, Proposition 5.1.4, Fact 1.2.1 and [Liu23a, Lem. 2.0.8].

5.2 Matsushima-Morimoto theorem

Proposition 5.2.1, due to Matsushima [Mat59, Thm. 1] and Morimoto [Mor59, Thm. 2], is a converse to Theorem 3.3.1. For abelian varieties, Nakayashiki [Nak94, Prop. 5.9] gives a proof using the Fourier-Mukai transform.

Proposition 5.2.1. A homogeneous vector bundle on a complex torus admits an integrable connection.

Proof. Let $E \rightarrow Y$ be a homogeneous vector bundle. Set $\hat{E}=H^{g} R \mathscr{S}_{2}(E)$. According to [Liu23a, Prop. 5.3.2] and Fact 1.1.1, one has $E=H^{0} R \mathscr{S}_{1}(\hat{E})$ and $\operatorname{Supp}(\hat{E})$ is finite. By Lemma $5.2 .2, \hat{E}$ has an \mathcal{A}_{X}-module structure. By Proposition 5.1.2, the O_{Y}-module underlying $H^{0} R S_{1}(\hat{E})$ is E. The D_{Y}-module $H^{0} R S_{1}(\hat{E})$ carries naturally an integrable connection.

The proof of Proposition 5.2.1 needs Lemma 5.2.2, a converse to Lemma 3.3.2.

Lemma 5.2.2. If F is an O_{X}-module with finite support on the complex torus X, then F admits a 1-splitting ψ with $[\psi, \psi]=0$.

Proof. There is a decomposition $F=\oplus_{i=1}^{m} F_{i}$, where $\operatorname{Supp}\left(F_{i}\right)$ is a singleton for each i. Thus, one may assume that $\operatorname{Supp}(F)$ is a singleton. Then there exists an open neighborhood $U \subset X$ of $\operatorname{Supp}(F)$ and a morphism of complex manifolds $s: U \rightarrow X^{\natural}$ that is a local section to (25). Let $\iota: U \rightarrow X$ be
the inclusion. Applying π_{*} to the morphism of sheaves of rings $O_{X \natural} \rightarrow s_{*} O_{U}$, one gets a morphism $\pi_{*} O_{X^{\natural}} \rightarrow \iota_{*} O_{U}$. As \mathcal{A}_{X} is an O_{X}-subalgebra of $\pi_{*} O_{X^{\natural}}$, this endows $\iota_{*} O_{U}$ an \mathcal{A}_{X}-module structure. ${ }^{1}$ Since the canonical O_{X}-morphism $\operatorname{Id}_{F} \otimes \iota^{\#}: F \rightarrow F \otimes_{O_{X}} \iota_{*} U$ is an isomorphism, F also obtains an \mathcal{A}_{X}-module structure. This induces such a splitting by Fact 4.2.3.

Proposition 5.2.1, together with Theorem 3.3.1, yields (a slight generalization of) Morimoto's theorem [Mor59, Thm. 2, p.91].

Corollary 5.2.3 (Morimoto). A coherent module admitting a connection on a complex torus is a vector bundle admitting an integrable connection.

6 Good modules

6.1 Definition

We define good \mathcal{A}_{X}-modules. We also review several definitions of good D modules in the literature, and show that they are equivalent.

Let Z be a complex manifold.
Definition 6.1.1. [Bjö93, 2.5, p.465] Let \mathcal{R} be a positively filtered sheaf of rings on Z such that the associated graded ring $G \mathcal{R}$ is coherent. Let M be a coherent left \mathcal{R}-module. A filtration on M is an increasing sequence of subsheaves $\left\{M_{v}\right\}_{v \in \mathbb{Z}}$ satisfying $\cup_{v \in \mathbb{Z}} M_{v}=M$ and $\mathcal{R}_{k} M_{v} \subset M_{k+v}$ for all integers $k \geq 0$ and v. This filtration is called

- B-good ([Bjö93, Remark 2.16, p.467]) if for every $x \in Z$, there exists an open neighborhood U, a finite set $\left\{m_{1}, \ldots, m_{s}\right\} \subset \Gamma(U, M)$ and integers k_{1}, \ldots, k_{s} such that $\left.M_{v}\right|_{U}=\sum_{i=1}^{s} \mathcal{R}_{v-k_{i}} m_{i}$ for all integers v.
- locally good ([Meb89, Prop. 2.1.12 (i)]) if every M_{v} is coherent over O_{Z}, and if for every $x \in Z$, there is an open neighborhood U of x and an integer $k_{0} \geq 0$ such that $\mathcal{R}_{m} M_{k_{0}}=M_{m+k_{0}}$ on U for all integers $m \geq 0$.

The proof of Lemma 6.1.2 is similar to that of [HT07, Prop. 2.1.1; Def. 2.1.2].

Lemma 6.1.2. Let $M .=\left(M_{v}\right)_{v \in \mathbb{Z}}$ be a filtration on a coherent \mathcal{A}_{X}-module M. Then M. is B-good if and only if M. is locally good. (In that case, we call M. a good filtration on M.)

Proof. - Assume that M. is B-good. By Lemma 4.2.2 and [Bjö93, Thm. 2.17, p.467], the $G \mathcal{A}_{X}$-module $\oplus_{v \in \mathbb{Z}} M_{v} / M_{v-1}$ is coherent. Because of (30) and the proof of [Bjö93, Prop. 1.4.5], for every integer v, the O_{X}-module M_{v} / M_{v-1} is coherent. From [Bjö93, Prop. 2.23, p.470], the filtration M. is locally bounded blow. Then by induction on $v \in \mathbb{Z}$, one proves that the O_{X}-module M_{v} is coherent.

[^0]For every $x \in X$, by definition, there is an open neighborhood $U \subset X$ of x, sections $m_{1}, \ldots, m_{s} \in \Gamma(U, M)$ and integers k_{1}, \ldots, k_{s} such that $\left.M_{v}\right|_{U}=\sum_{i=1}^{s} \mathcal{A}_{X}\left(v-k_{i}\right) m_{i}$ for all integers v. Put $k_{0}=\max _{j=1}^{s} k_{j}$. For every integer $k \geq 0$, one has $\mathcal{A}_{X}(k) M_{k_{0}} \subset M_{k+k_{0}}$. Moreover,

$$
\left.M_{k+k_{0}}\right|_{U}=\sum_{i=1}^{s} \mathcal{A}_{X}\left(k+k_{0}-k_{i}\right) m_{i} \stackrel{(\mathrm{a})}{\subset} \sum_{i=1}^{s} \mathcal{A}_{X}(k) \mathcal{A}_{X}\left(k_{0}-k_{i}\right) m_{i} \subset \mathcal{A}_{X}(k) M_{k_{0}}
$$

where (a) uses (29). Hence $\mathcal{A}_{X}(k) M_{k_{0}}=M_{k+k_{0}}$ on U.

- Conversely, assume that M. is locally good. For a fixed $x \in X$, take U and k_{0} provided by the definition of local goodness. Since $M_{k_{0}}$ is coherent over O_{X}, by shrinking U, one may assume that the O_{U}-module $\left.M_{k_{0}}\right|_{U}$ is generated by sections $s_{1}, \ldots, s_{m} \in \Gamma\left(U, M_{k_{0}}\right)$. Define a morphism of \mathcal{A}_{X}-modules $\phi:\left.\left.\mathcal{A}_{X}^{m}\right|_{U} \rightarrow M\right|_{U}, \quad\left(f_{1}, \ldots, f_{m}\right) \mapsto \sum_{j=1}^{m} f_{j} s_{j}$. Since M. is a filtration, for every integer v, one has $\mathcal{A}_{X}\left(v-k_{0}\right) M_{k_{0}} \subset M_{v}$. Hence $\phi\left(\mathcal{A}_{X}\left(v-k_{0}\right)^{m}\right) \subset M_{v}$. By construction, one has $\phi\left(\mathcal{A}_{X}(0)^{m}\right)=\left.M_{k_{0}}\right|_{U}$. For every integer $k \geq k_{0}$, on U one has

$$
M_{k}=\mathcal{A}_{X}\left(k-k_{0}\right) M_{k_{0}}=\mathcal{A}_{X}\left(k-k_{0}\right) \phi\left(\mathcal{A}_{X}(0)^{m}\right) \subset \phi\left(\mathcal{A}_{X}\left(k-k_{0}\right)^{m}\right)
$$

Therefore, the filtration M. is B-good.

From [HT07, Thm. 2.1.3 (i)], a coherent D_{V}-module on a smooth algebraic variety V admits a globally defined good filtration. By contrast, Malgrange [Mal04, p.405] gives a coherent D-module on the complex manifold $\mathbb{C}^{*} \times \mathbb{C P}^{1}$ that does not admit any global good filtration.

Definition 6.1.3. An O_{Z}-module F is called

- countably quasi-good ([KS97, p.942]) if every compact subset of Z has an open neighborhood U such that $\left.F\right|_{U}$ is the union of an increasing sequence of coherent O_{U}-submodules.
- quasi-good ([KS16, p.12]) if for every relatively compact open subset $U \subset$ Z, the restriction $\left.F\right|_{U}$ is a sum of coherent O_{U}-submodules.

A D_{Z}-module M is called

- good coherent if for every relatively compact open subset U of Z, there is a finite filtration $\left\{M_{k}\right\}_{k \in \mathbb{Z}}$ of $\left.M\right|_{U}$ such that each quotient M_{k} / M_{k-1} is a coherent D_{U}-modules admitting a good filtration. ([Sai89, p.369], [SS94, p.10] and [KS96, p.43].)
- S-quasi-good ([KS96, p.43]) if for every relatively compact open subset $U \subset Z$, the restriction $\left.M\right|_{U}$ admits a filtration $\left\{M_{v}\right\}_{v \in \mathbb{Z}}$ by coherent $D_{U^{-}}$ submodule such that each quotient M_{v} / M_{v-1} admits a good filtration and $M_{v}=0$ for $v \ll 0$.

Proposition 6.1.4. Let M be a coherent D_{Z}-module. Then the following are equivalent.

1. For every relatively compact open subset U of Z, there is a coherent O_{U} submodule $\left.F \subset M\right|_{U}$ with $D_{U} \cdot F=\left.M\right|_{U}$.
2. For every relatively compact open subset U of Z, the D_{U}-module $\left.M\right|_{U}$ admits a good filtration.
3. The D_{Z}-module M is good coherent.
4. The D_{Z}-module M is S-quasi-good.
5. The O_{Z}-module M is countably quasi-good.
6. The O_{Z}-module M is good.
7. The O_{Z}-module M is quasi-good.

Proof. We follow the circular chain.
1 implies 2 See [Bjö93, 1.4.10].
2 implies 3 For every relatively compact open subset U of Z, define a finite filtration of $\left.M\right|_{U}$ by $M_{0}=0$ and $M_{1}=\left.M\right|_{U}$. Then the graded piece M_{1} / M_{0} admits a good filtration over U.

3 implies 4 For every relatively compact open subset U of Z, consider the filtration $\left\{M_{k}\right\}$ in the definition. By induction on k, one proves that each M_{k} is D_{U}-coherent.

4 implies 5 Every quotient M_{v} / M_{v-1} admits a good filtration, then by [Bjö93, Cor. 1.4.6], it is countably quasi-good. By induction on v and using [KS97, Lem. 2.1.1], one proves that every M_{v} is countably quasi-good. Therefore, for every integer v, there is an increasing sequence $\left\{M_{v}^{k}\right\}_{k \geq 1}$ of coherent O_{U}-submodules of M_{v} with $M_{v}=\cup_{k \geq 1} M_{v}^{k}$. For every integer $k \geq 1$, let $M^{k}:=\sum_{i \leq k, v \leq k} M_{v}^{i}$. By [Sta23, Tag 01BY], M^{k} is a coherent $O_{U^{-}}$ submodule of \bar{M}_{k}. Then

$$
M=\cup_{v \in \mathbb{Z}} M_{v}=\cup_{v \in \mathbb{Z}} \cup_{i \geq 1} M_{v}^{i}=\cup_{k \geq 1} M^{k}
$$

so M is countably quasi-good.
5 implies 6 An increasing sequence forms a directed family.
6 implies 7 By definition.
7 implies 1 Let U be a relatively compact open subset of Z. Because M is a finite type D_{Z}-module, for every $x \in \bar{U}$, there is a relatively compact open neighborhood $U(x) \subset Z$ of x, an integer $n(x) \geq 1$ and sections

$$
\left\{s_{i}^{x}\right\}_{1 \leq i \leq n(x)} \subset \Gamma(U(x), M)
$$

generating the $D_{U(x)}$-module $\left.M\right|_{U(x)}$. By compactness of \bar{U}, the open cover $\{U(x)\}_{x \in \bar{U}}$ of \bar{U} has a finite subcover $\left\{U\left(x_{j}\right)\right\}_{1 \leq j \leq r}$. Then $V=$ $\cup_{j=1}^{r} U\left(x_{j}\right)$ is a relatively compact open subset of Z containing U. By Condition 7 , one may write $\left.M\right|_{V}=\sum_{\alpha \in I} G_{\alpha}$, where I is an index set, and each G_{α} is a coherent O_{V}-submodule of $\left.M\right|_{V}$.
For every $x \in \bar{U}$, there is an open neighborhood $V(x) \subset U(x)$ of x, such that for each $1 \leq i \leq n(x)$, the restriction $\left.s_{i}^{x}\right|_{\underline{V}(x)} \in \Gamma\left(V(x), G_{\alpha(x, i)}\right)$ for some index $\alpha(x, i) \in I$. By compactness of \bar{U} again, the open cover $\{V(x)\}_{x \in \bar{U}}$ has a finite subcover $\left\{V\left(x_{k}^{\prime}\right)\right\}_{1 \leq k \leq m}$. Then

$$
F:=\sum_{1 \leq k \leq m, 1 \leq i \leq n\left(x_{k}^{\prime}\right)} G_{\alpha\left(x_{k}^{\prime}, i\right)}
$$

is a finite type O_{V}-submodule of $\left.M\right|_{V}$. By Lemma 6.2.7, it is coherent over O_{V}. Moreover, $\left.D_{U} \cdot F\right|_{U}=\left.M\right|_{U}$.

The proof of Proposition 6.1.5 is similar to that of Proposition 6.1.4.
Proposition 6.1.5. Let M be a coherent \mathcal{A}_{X}-module on the complex torus X. Then the O_{X}-module M is good if and only if there is a coherent O_{X}-submodule $F \subset M$ with $\mathcal{A}_{X} \cdot F=M$.

Let the sheaf of rings \mathcal{R} be either D_{Z} or \mathcal{A}_{X} on the fixed complex torus X.
Definition 6.1.6. [Kas03, Def. 4.24] A coherent \mathcal{R}-module is good if the underlying O-module is good.

For example, by Lemma 4.2 .2 and [Bjö93, Thm. 1.2.5], the left \mathcal{R}-module \mathcal{R} is good. Let $\operatorname{Good}(\mathcal{R}) \subset \operatorname{Coh}(\mathcal{R})\left(\right.$ resp. $\left.D_{\text {good }}^{b}(\mathcal{R}) \subset D_{O-\text { good }}^{b}(\mathcal{R})\right)$ be the full subcategory of good \mathcal{R}-modules (resp. objects whose cohomologies are good \mathcal{R} modules). By Proposition 6.1.4, the category $D_{\text {good }}^{b}\left(D_{Z}\right)$ is what Björk denotes by $D_{\text {coh }}^{b}\left(D_{Z}\right)_{f}$ in [Bjö93, p.119].

A coherent D_{Z}-module is called holonomic if its characteristic variety is of (minimal) dimension $\operatorname{dim} Z$ ([Bjö93, Def. 3.1.1]). Malgrange ([Mal94, p.35], [Mal96, p.367], see also [Sab11, Thm. 4.3.4 (2)]) claims to have proved that every holonomic D_{Z}-module is generated by a coherent O_{Z}-submodule, so it is a good D_{Z}-module. Let $D_{h}^{b}\left(D_{Z}\right) \subset D^{b}\left(D_{Z}\right)$ be the full subcategory of objects with holonomic cohomologies.

6.2 Basic properties

Let \mathcal{R} be either D_{Z} on a complex manifold Z or \mathcal{A}_{X} on the fixed complex torus X.

Lemma 6.2.1 (Induced modules). The functor $\mathcal{R} \otimes_{O_{Z}} \cdot: \operatorname{Mod}\left(O_{Z}\right) \rightarrow \operatorname{Mod}(\mathcal{R})$ is exact. It restricts to a functor $\mathcal{R} \otimes_{O_{Z}} \cdot: \operatorname{Coh}(Z) \rightarrow \operatorname{Good}(\mathcal{R})$, and induces a t-exact functor $\mathcal{R} \otimes_{O_{Z}}^{L} \cdot: D_{c}^{b}\left(O_{Z}\right) \rightarrow D_{\text {good }}^{b}(\mathcal{R})$.

Proof. As \mathcal{R} is flat over O_{Z}, the functor is exact. Consider the degree filtration $\{\mathcal{R}(m)\}_{m \geq 0}$ of \mathcal{R}, where $\mathcal{R}(m) \subset \mathcal{R}$ is the O_{Z}-submodule of polynomials of degree at most m. Each $\mathcal{R}(m)$ is vector bundle on Z and $\mathcal{R}=\operatorname{colim}_{m} \mathcal{R}(m)$. Therefore, the O-module \mathcal{R} is good. By [Liu23a, Prop. 3.1.5 2], for every coherent O_{Z}-module F, the O-module $\mathcal{R} \otimes_{O_{Z}} F$ is good. Because F is an $O_{Z^{-}}$ module of finite presentation, $\mathcal{R} \otimes_{O_{z}} F$ is an \mathcal{R}-module of finite presentation. Then it is \mathcal{R}-coherent by [Bjö93, Thm. 1.2.5] and Lemma 4.2.2. The other part follows.

Lemma 6.2.2. The category $\operatorname{Good}(\mathcal{R})$ is a weak Serre subcategory of $\operatorname{Mod}(\mathcal{R})$. In particular, $D_{\text {good }}^{b}(\mathcal{R})$ is a triangulated subcategory of $D^{b}(\mathcal{R})$.

Proof. The first half is a combination of [Kas03, Prop. 4.23], [Sta23, Tag 01BY] and [Sta23, Tag 0754]. The second half follows from [Yek19, Prop. 7.4.5].

For a morphism of complex manifolds $f: M \rightarrow N$, the direct image of D-modules $f_{+}: D\left(D_{M}\right) \rightarrow D\left(D_{N}\right)$ is constructed in [Bjö93, 2.3.12].

Fact 6.2.3 ([Bjö93, Thm. 2.8.1, 2.8.7]). Let $f: W \rightarrow Z$ be a morphism of complex manifolds. For every $M \in D_{\text {good }}^{b}\left(D_{W}\right)$, if $\left.f\right|_{\operatorname{Supp}(M)}: \operatorname{Supp}(M) \rightarrow Z$ is proper, then $f_{+} M \in D_{\text {good }}^{b}\left(D_{Z}\right)$.
Lemma 6.2.4. Let $f: W \rightarrow Z$ be a proper morphism of complex manifolds. Then the direct image functor $f_{+}: D\left(D_{W}\right) \rightarrow D\left(D_{Z}\right)$ restricts to a functor $D_{O-\text { good }}\left(D_{W}\right) \rightarrow D_{O-\text { good }}\left(D_{Z}\right)$.

Proof. Take $M \in D_{O-\operatorname{good}}\left(D_{W}\right)$. By [Sab11, Remark 3.3.4 (4)], the functor f_{+}has finite cohomological dimension. So to prove $f_{+} M \in D_{O-\operatorname{good}}\left(D_{Z}\right)$, by [Har66, I, Prop. 7.3 (iii)], one may assume that $M \in \operatorname{Mod}\left(D_{W}\right)$. Define a morphism $i: W \rightarrow W \times Z, \quad w \mapsto(w, f(w))$, which is a closed embedding. Let $q: W \times Z \rightarrow Z$ be the projection. By [Sab11, Thm. 3.3.6 (1)], one has $f_{+}=q_{+} i_{+}$. The restriction $\left.q\right|_{W}: W \rightarrow Z$ is proper. By [Bjö93, Prop. 2.4.8], one has $f_{+} M=R q_{*} D R_{W \times Z / Z}\left(i_{+} M\right)[\operatorname{dim} Z]$. As each term of the (relative) de Rham complex $D R_{W \times Z / Z}\left(i_{+} M\right)$ is $O_{W \times Z \text {-good and supported on } W \text {, by }}$ [Liu23a, Thm. 3.1.6], $R q_{*}\left[D R_{W \times Z / Z}\left(i_{+} M\right)\right] \in D_{\text {good }}\left(O_{Z}\right)$.

For a closed embedding $i: M \rightarrow N$ of complex manifolds, the inverse image $i^{*}: \operatorname{Mod}\left(D_{N}\right) \rightarrow \operatorname{Mod}\left(D_{M}\right)$ may not preserve D-coherence ([HT07, Rk. 1.5.10]). For smooth morphisms, Fact 6.2 .5 can be proved by applying [Kas03, Thm. 4.7] or repeating the proof of [HT07, Prop. 1.5.13 (ii)].

Fact 6.2.5. Let $f: M \rightarrow N$ be a smooth morphism of complex manifolds. Then $L f^{*}: D^{b}\left(D_{N}\right) \rightarrow D^{b}\left(D_{M}\right)$ restricts to functors $D_{c}^{b}\left(D_{N}\right) \rightarrow D_{c}^{b}\left(D_{M}\right)$ and $D_{\text {good }}^{b}\left(D_{N}\right) \rightarrow D_{\text {good }}^{b}\left(D_{M}\right)$.

Lemma 6.2.6 concerns the local existence of good filtrations on coherent \mathcal{A}_{X}-modules.

Lemma 6.2.6. Let M be a coherent \mathcal{A}_{X}-module on the complex torus X. For every $x \in X$, there is an open neighborhood U of x and a positive good filtration on $\left.M\right|_{U}$.

Proof. Let $\left.\left.\left.\mathcal{A}_{X}^{q}\right|_{U} \xrightarrow{\phi} \mathcal{A}_{X}^{p}\right|_{U} \xrightarrow{\epsilon} M\right|_{U} \rightarrow 0$ be a local presentation of M on a relatively compact open neighborhood U of x. For every integer v, set $M_{v}=$ $\epsilon\left(\mathcal{A}_{X}(v)^{p}\right)$, which is an O_{U}-submodule of $\left.M\right|_{U}$. Then $M_{v}=0$ when $v<0$. Moreover, $\cup_{v \in \mathbb{Z}} M_{v}=\left.M\right|_{U}$ and for any integers $m, k \geq 0$, one has $\mathcal{A}_{X}(m) M_{k} \subset$ M_{k+m}. Thus, $\left\{M_{v}\right\}_{v \in \mathbb{Z}}$ is a positive filtration of $\left.M\right|_{U}$. For every integer $k \geq 0$, one has $\mathcal{A}_{X}(k) M_{0}=M_{k}$. It remains to prove that M_{k} is coherent over O_{U}.

We claim that $\phi\left(\mathcal{A}_{X}(m)^{q}\right) \cap \mathcal{A}_{X}(k)^{p}$ is coherent over O_{U}. In fact, for every $y \in U$, there is an integer $s \geq \max (0, k-m)$ such that $\phi\left(\mathcal{A}_{X}(m)^{q}\right) \subset \mathcal{A}_{X}(m+s)^{p}$ near y. In side the coherent O_{X}-module $\mathcal{A}_{X}(m+s)^{p}$, the two O_{X}-submodules $\phi\left(\mathcal{A}_{X}(m)^{q}\right)$ and $\mathcal{A}_{X}(k)^{p}$ are finite type. By [Sta23, Tag 01BY], their intersection $\phi\left(\mathcal{A}_{X}(m)^{q}\right) \cap \mathcal{A}_{X}(k)^{p}$ is coherent near y. The claim is proved.

Because $\mathcal{A}_{X}(k)^{p}$ is a noetherian O_{X}-module, the increasing sequence of submodules $\left\{\phi\left(\mathcal{A}_{X}(m)^{q}\right) \cap \mathcal{A}_{X}(k)^{p}\right\}_{m \geq 0}$ is stationary on U. Therefore, the union $\phi\left(\mathcal{A}_{X}^{q}\right) \cap \mathcal{A}_{X}(k)^{p}=\operatorname{ker}(\epsilon) \cap \mathcal{A}_{X}(k)^{p}$ is coherent over O_{U}. Since the sequence

$$
\left.0 \rightarrow \operatorname{ker}(\epsilon) \cap \mathcal{A}_{X}(k)^{p} \rightarrow \mathcal{A}_{X}(k)^{p} \rightarrow M_{k}\right|_{U} \rightarrow 0
$$

is exact in $\operatorname{Mod}\left(O_{U}\right)$, the restriction $\left.M_{k}\right|_{U}$ is O_{U}-coherent. The constructed filtration is therefore good.

When $\mathcal{R}=D_{Z}$, Lemma 6.2.7 is [Sab11, Exercise E.2.4 (4)]. On a complex manifold Z, an $O_{Z \text {-module }} F$ is pseudo-coherent if for every open subset U of X, every finite type O_{U}-submodule of $\left.F\right|_{U}$ is of finite presentation ([Kas 03 , Def. A.5]).

Lemma 6.2.7. If M is a coherent \mathcal{R}-module, then M is pseudo-coherent over O_{Z}.

Proof. Let $F \subset M$ be a finite type O-submodule. For every point x, by [Meb89, Prop. 2.1.9] (in the case $\mathcal{R}=D_{Z}$) and Lemma 6.2 .6 (in the case $\mathcal{R}=\mathcal{A}_{X}$), there exists an open neighborhood U of x and a good filtration on $\left.M\right|_{U}$. By [Bjö93, Cor. 1.4.6] (in the case $\mathcal{R}=D_{Z}$) and Lemma 6.1 .2 (in the case $\mathcal{R}=\mathcal{A}_{X}$), M| is the sum of an increasing sequence of coherent O_{U}-submodules. Hence $\left.M\right|_{U}$ is good over O_{U}. By [Liu23a, Lem. A.4.2 1], the O_{U}-module $\left.M\right|_{U}$ is pseudocoherent. As pseudo-coherence is a local property, M is pseudo-coherent over O_{Z}.

Lemma 6.2.8. Let M be a good \mathcal{R}-module. Let N be a finite type \mathcal{R}-submodule of M. Then N is good over \mathcal{R}.

Proof. By [Sta23, Tag 01BY (1)], N is coherent over \mathcal{R}. For every relatively compact open subset U of X and every $x \in \bar{U}$, there is an open neighborhood $U(x) \subset X$ of x, an integer $n(x)>0$ and sections $\left\{s_{i}(x)\right\}_{i=1}^{n(x)} \subset \Gamma(U(x), N)$ generating the $\left.\mathcal{R}\right|_{U(x)}$-module $\left.N\right|_{U(x)}$. The open cover $\{U(x)\}_{x \in \bar{U}}$ of \bar{U} has a
finite subcover $\left\{U\left(x_{j}\right)\right\}_{j=1}^{m}$. Let N_{0} be the O_{U}-submodule of $\left.N\right|_{U}$ generated by the finitely many local sections

$$
\left\{s_{i}\left(x_{j}\right)\right\}_{1 \leq j \leq m, 1 \leq i \leq n\left(x_{j}\right)}
$$

Then N_{0} is a finite type O_{U}-module. Because $\left.M\right|_{U}$ is good over $\left.\mathcal{R}\right|_{U}$, by Lemma 6.2.7, the O_{U}-module N_{0} is coherent. By construction, one has $\left.\mathcal{R}\right|_{U} \cdot N_{0}=\left.N\right|_{U}$. Therefore, the \mathcal{R}-module N is good by Propositions 6.1 .4 (in the case $\mathcal{R}=D_{Z}$) and 6.1.5 (in the case $\mathcal{R}=\mathcal{A}_{X}$).

6.3 Preservation of goodness

Theorem 6.3.1. The functor $R S_{1}: D\left(\mathcal{A}_{X}\right) \rightarrow D\left(D_{Y}\right)$ restricts to an equivalence $D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right) \rightarrow D_{\text {good }}^{b}\left(D_{Y}\right)$, with a quasi-inverse $T^{g} R S_{2}: D_{\text {good }}^{b}\left(D_{Y}\right) \rightarrow D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right)$.

Proof. 1. For every coherent O_{Y}-module F, one has $R S_{2}\left(D_{Y} \otimes_{O_{Y}}^{L} F\right) \in$ $D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right)$.
By Proposition 5.1.4, one has $R S_{2}\left(D_{Y} \otimes_{O_{Y}}^{L} F\right)=\mathcal{A}_{X} \otimes_{O_{X}}^{L} R \mathscr{S}_{2}(F)$. By Fact 1.2.1 2 , one has $R \mathscr{S}_{2}(F) \in D_{c}^{b}\left(O_{X}\right)$. From Lemma 6.2.1, one gets $\mathcal{A}_{X} \otimes_{O_{X}}^{L}$ $R \mathscr{S}_{2}(F) \in D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right)$.
2. For every $M \in \operatorname{Good}\left(D_{Y}\right)$ and every integer i, the \mathcal{A}_{X}-module $H^{i} R S_{2}(M)$ is good.

Descending induction on $i \in \mathbb{Z}$. The O_{X}-module underlying $H^{i} R S_{2}(M)$ is $H^{i} R \mathscr{S}_{2}(M)$. By Lemma 6.3.2, one has $H^{i} R \mathscr{S}_{2}(M)=0$ when $i>2 g$. In particular, $H^{i} R S_{2}(M)$ is good over \mathcal{A}_{X}.

Assume the statement for $i+1$. By Proposition 6.1.4, there is a coherent O_{Y}-submodule $F \subset M$ with $D_{Y} \cdot F=M$. Let M^{\prime} be the kernel of the natural epimorphism $D_{Y} \otimes_{O_{Y}} F \rightarrow M$. Then

$$
\begin{equation*}
0 \rightarrow M^{\prime} \rightarrow D_{Y} \otimes_{O_{Y}} F \rightarrow M \rightarrow 0 \tag{34}
\end{equation*}
$$

is a short exact sequence in $\operatorname{Mod}\left(D_{Y}\right)$. By Lemma 6.2.1, the D_{Y}-module $D_{Y} \otimes_{O_{Y}} F$ is good. By Lemma 6.2 .2 , so is M^{\prime}. From (34), one gets an exact sequence in $\operatorname{Mod}\left(\mathcal{A}_{X}\right)$

$$
\begin{equation*}
H^{i} R S_{2}\left(M^{\prime}\right) \rightarrow H^{i} R S_{2}\left(D_{Y} \otimes_{O_{Y}} F\right) \rightarrow H^{i} R S_{2}(M) \rightarrow H^{i+1} R S_{2}\left(M^{\prime}\right) \rightarrow H^{i+1} R S_{2}\left(D_{Y} \otimes_{O_{Y}} F\right) \tag{35}
\end{equation*}
$$

By 1, the \mathcal{A}_{X}-module $H^{j} R S_{2}\left(D_{Y} \otimes_{O_{Y}} F\right)$ is good for $j \in\{i, i+1\}$. By the inductive hypothesis, so is $H^{i+1} R S_{2}\left(M^{\prime}\right)$.

Let $G=\operatorname{ker}\left[H^{i+1} R S_{2}\left(M^{\prime}\right) \rightarrow H^{i+1} R S_{2}\left(D_{Y} \otimes_{O_{Y}} F\right)\right]$. By Lemma 6.2.2, the \mathcal{A}_{X}-module G is good (hence of finite type). The sequence (35) yields an exact sequence

$$
H^{i} R S_{2}\left(D_{Y} \otimes_{O_{Y}} F\right) \rightarrow H^{i} R S_{2}(M) \rightarrow G \rightarrow 0
$$

so $H^{i} R S_{2}(M)$ is a finite type \mathcal{A}_{X}-module for every coherent D_{Y}-module M. In particular, $H^{i} R S_{2}\left(M^{\prime}\right)$ is a finite type \mathcal{A}_{X}-module.

Let $N=\operatorname{im}\left(H^{i} R S_{2}\left(M^{\prime}\right) \rightarrow H^{i} R S_{2}\left(D_{Y} \otimes_{O_{Y}} F\right)\right)$. It is a finite type $\mathcal{A}_{X^{-}}$ submodule of the good \mathcal{A}_{X}-module $H^{i} R S_{2}\left(D_{Y} \otimes_{O_{Y}} F\right)$. By Lemma 6.2.8, the \mathcal{A}_{X}-module N is a good. The sequence (35) yields an exact sequence
$0 \rightarrow N \rightarrow H^{i} R S_{2}\left(D_{Y} \otimes_{O_{Y}} F\right) \rightarrow H^{i} R S_{2}(M) \rightarrow H^{i+1} R S_{2}\left(M^{\prime}\right) \rightarrow H^{i+1} R S_{2}\left(D_{Y} \otimes_{O_{Y}} F\right)$.
By Lemma 6.2.2, the \mathcal{A}_{X}-module $H^{i} R S_{2}(M)$ is good. The induction is completed.
From 2, Lemma 6.2.2 and [Har66, I, Prop. 7.3 (i)], the functor $R \mathscr{S}_{2}$ restricts to a functor $D_{\text {good }}^{b}\left(D_{Y}\right) \rightarrow D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right)$. Similarly, using Proposition 6.1.5, one can prove that $R S_{1}$ restricts to a functor $D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right) \rightarrow D_{\text {good }}^{b}\left(D_{Y}\right)$. By Theorem 5.1.3, the restrictions are equivalences.

The proof of Theorem 6.3.1 needs a cohomological dimension estimation.
Lemma 6.3.2. For an O_{X}-module F, we have $R \mathscr{S}_{1}(F) \in D^{[0,2 g]}\left(O_{Y}\right)$. Similarly, for an O_{Y}-module G, we have $R \mathscr{S}_{2}(G) \in D^{[0,2 g]}\left(O_{X}\right)$.
Proof. By left exactness of the functor $p_{Y *}: \operatorname{Mod}\left(O_{X \times Y}\right) \rightarrow \operatorname{Mod}\left(O_{Y}\right)$, one has $R^{i} \mathscr{S}_{1}(F)=0$ for every integer $i<0$. For every $y \in Y$, let M be the restriction (as sheaves) of $\mathcal{P} \otimes_{O_{X \times Y}} p_{X}^{*} F$ to $X \times y$. For every integer j, by the proper base change theorem (see e.g., [Mil13, Thm. 17.2]), one has $R^{j} \mathscr{S}_{1}(F)_{y}=H^{j}(X \times$ $y, M)$. When $j>2 g$, by [KS13, Prop. 3.2.2 (iv)], one has $H^{j}(X \times y, M)=0$. Therefore, $R^{j} \mathscr{S}_{1}(F)=0$. The other part is similar.

7 Relations with other functors

The properties [Muk81, (3.1), (3.4), (3.8)] of the Fourier-Mukai transform have analogs for the Laumon-Rothstein transform.

7.1 Exchange of translation and multiplication

For every $y \in Y$, we view P_{y} as an object of $\operatorname{Mod}\left(O_{X}\right)_{0-\text { sp }}$ via Example 2.1.2. There is a canonical isomorphism $T_{(0, y)}^{*} \mathcal{P} \cong \mathcal{P} \otimes_{O_{X \times Y}} p_{X}^{*} P_{y}$ in $\operatorname{Mod}(X \times$ $Y)_{-1-\mathrm{cxn}}$, where $p_{X}^{*}: \operatorname{Mod}\left(O_{X}\right)_{0-\mathrm{sp}} \rightarrow \operatorname{Mod}\left(O_{X \times Y}\right)_{0-\mathrm{cxn}}$ is defined in (13) and the functor

$$
\mathcal{P} \otimes_{O_{X \times Y}}(\cdot): \operatorname{Mod}\left(O_{X \times Y}\right)_{0-\operatorname{cxn}} \rightarrow \operatorname{Mod}\left(O_{X \times Y}\right)_{-1-\operatorname{cxn}}
$$

is from $[\operatorname{Rot} 97,(2.10)]$. Arguing as in $[\operatorname{Muk} 81,(3.1)]$, we get Proposition 7.1.1 from the projection formula.

Proposition 7.1.1.

$$
\begin{aligned}
& R S_{2} \circ T_{y}^{*} \cong\left(\cdot \otimes_{O_{X}} P_{y}\right) \circ R S_{2}: D\left(D_{Y}\right) \rightarrow D\left(\mathcal{A}_{X}\right) \\
& R S_{2} \circ\left(\cdot \otimes_{O_{Y}} P_{x}\right) \cong T_{-x}^{*} \circ R S_{2}: D\left(D_{Y}\right) \rightarrow D\left(\mathcal{A}_{X}\right) \\
& R S_{1} \circ\left(\cdot \otimes_{O_{X}} P_{y}\right) \cong T_{y}^{*} \circ R S_{1}: D\left(\mathcal{A}_{X}\right) \rightarrow D\left(D_{Y}\right) \\
& R S_{1} \circ T_{x}^{*} \cong\left(\cdot \otimes_{O_{Y}} P_{-x}\right) \circ R S_{1}: D\left(\mathcal{A}_{X}\right) \rightarrow D\left(D_{Y}\right)
\end{aligned}
$$

Similar results hold for $R \mathfrak{S}_{1}$ and $R \mathfrak{S}_{2}$.

7.2 Duality

Let Z be a complex manifold. Denote by $\Delta^{O_{z}}$ the duality (contravariant) functor $\operatorname{RH}^{\left(m_{O_{Z}}\right.}\left(\cdot, \omega_{Z}^{-1}\right)[\operatorname{dim} Z]: D_{c}^{b}\left(O_{Z}\right) \rightarrow D_{c}^{b}\left(O_{Z}\right)$. The duality functor on D_{Z}-modules $\Delta^{D_{Z}}: D\left(D_{Z}\right) \rightarrow D\left(D_{Z}\right)$ is defined by $\Delta^{D_{Z}} F=G[\operatorname{dim} Z]$, where G is the complex of left D_{Z}-modules associated with the complex $R \mathcal{H} m_{D_{Z}}\left(F, D_{Z}\right)$ of right D_{Z}-modules. By [Bjö93, Def. 2.11.1], $\Delta^{D_{Z}}$ restricts to a functor $D_{c}^{b}\left(D_{Z}\right) \rightarrow D_{c}^{b}\left(D_{Z}\right)$, and the natural transformation Id $\rightarrow \Delta^{D_{Z}} \circ \Delta^{D_{Z}}$ is an isomorphism of functors $D_{c}^{b}\left(D_{Z}\right) \rightarrow D_{c}^{b}\left(D_{Z}\right)$.

Lemma 7.2.1 ([KS16, p.16]). The functor $\Delta^{D_{Z}}: D\left(D_{Z}\right) \rightarrow D\left(D_{Z}\right)$ restricts to a functor $D_{\text {good }}^{b}\left(D_{Z}\right) \rightarrow D_{\text {good }}^{b}\left(D_{Z}\right)$.

Proof. Suppose F is a coherent O_{Z}-module and $N=D_{Z} \otimes_{O_{Z}} F$, then by [Bjö93, (ii), p.122], there is $G \in D_{c}^{b}\left(O_{Z}\right)$ with $\Delta^{D_{Z}} N=D_{Z} \otimes_{O_{Z}} G$. By Lemma 6.2.1, $\Delta^{D_{Z}} N \in D_{\text {good }}^{b}\left(D_{Z}\right)$.

Take $M \in D_{\text {good }}^{b}\left(D_{Z}\right)$. To prove $\Delta^{D_{Z}} M \in D_{\text {good }}^{b}\left(D_{Z}\right)$, by [Har66, I, Prop. 7.3 (i)], one may assume $M \in \operatorname{Good}\left(D_{Z}\right)$. For every relatively compact open subset $U \subset Z$, by [Bjö93, Thm. 1.5.8] and Proposition 6.1.4, there is a finite length exact sequence in $\operatorname{Mod}\left(D_{U}\right)$:

$$
\left.0 \rightarrow D_{U} \otimes_{O_{U}} F^{-n} \rightarrow \cdots \rightarrow D_{U} \otimes_{O_{U}} F^{0} \rightarrow M\right|_{U} \rightarrow 0
$$

where each F^{i} is a coherent O_{U}-module. For every i, one has $\Delta^{D_{U}}\left(D_{U} \otimes_{O_{U}} F^{i}\right) \in$ $D_{\text {good }}^{b}\left(D_{U}\right)$. By Lemma 6.2.2, one has $\left.\left(\Delta^{D_{Z}} M\right)\right|_{U}=\Delta^{D_{U}}\left(\left.M\right|_{U}\right) \in D_{\text {good }}^{b}\left(D_{U}\right)$. Hence $\Delta^{D_{z}} M \in D_{\text {good }}^{b}\left(D_{Z}\right)$.

For algebraic varieties, an analogue of Fact 7.2.2 is stated as [HT07, Cor. 2.6.8 (iii), Prop. 3.2.1]. From [HT07, p.101], all the arguments in [HT07, Sec. 2.6] are valid for analytic D-modules.

Fact 7.2.2.

1. The contravariant functor $\Delta^{D_{Z}}: D_{h}^{b}\left(D_{Z}\right) \rightarrow D_{h}^{b}\left(D_{Z}\right)$ an equivalence.
2. Let M be a coherent D_{Z}-module. Then M is holonomic if and only if $H^{i}\left(\Delta^{D_{z}} M\right)=0$ for all integers $i \neq 0$.

Fact 7.2.3. Let $f: W \rightarrow Z$ be a morphism of complex manifolds. Then:

1. $\left[\mathrm{Bjö} 93\right.$, Thm. 3.2.13 (1)] The inverse image $L f^{*}: D^{b}\left(D_{Z}\right) \rightarrow D^{b}\left(D_{W}\right)$ restricts to a functor $D_{h}^{b}\left(D_{Z}\right) \rightarrow D_{h}^{b}\left(D_{W}\right)$.
2. [Sab11, Thm. 4.4.1] If $F \in D_{h}^{b}\left(D_{W}\right)$ is such that $\left.f\right|_{\operatorname{Supp}(F)}$ is proper, then $f_{+} F \in D_{h}^{b}\left(D_{Z}\right)$.
3. $\left[\mathrm{Bjö} 93\right.$, Thm. 3.2.13 (3)] The bifunctor $-\otimes_{O_{W}}^{L}+: D^{b}\left(D_{W}\right) \times D^{b}\left(D_{W}\right) \rightarrow$ $D^{b}\left(D_{W}\right)$ restricts to a bifunctor $D_{h}^{b}\left(D_{W}\right) \times D_{h}^{b}\left(D_{W}\right) \rightarrow D_{h}^{b}\left(D_{W}\right)$.

Restricted to the complex torus Y, [Bjö93, (ii), p.122] becomes [Rot96, (6.12)]:

$$
\Delta^{D_{Y}}\left(D_{Y} \otimes_{O_{Y}}^{L} \cdot\right) \cong D_{Y} \otimes_{O_{Y}}^{L} \Delta^{O_{Y}} \cdot: D_{c}^{b}\left(O_{Y}\right) \rightarrow D_{c}^{b}\left(D_{Y}\right)
$$

Define the duality (contravariant) functor $\Delta^{\mathcal{A}_{X}}: D^{b}\left(\mathcal{A}_{X}\right) \rightarrow D^{b}\left(\mathcal{A}_{X}\right)$ as

$$
\Delta^{\mathcal{A}_{X}}=T^{g} R \mathcal{H o m}_{\mathcal{A}_{X}}\left(\cdot, \mathcal{A}_{X}\right)
$$

It restricts to a functor $D_{c}^{b}\left(\mathcal{A}_{X}\right) \rightarrow D_{c}^{b}\left(\mathcal{A}_{X}\right)$. Similar to Lemma 7.2.1, it restricts to a functor $D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right) \rightarrow D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right)$. Theorem 7.2.4 follows from Proposition 7.2.5 and Fact 7.2.2 2, in the same way how Theorem 6.5 follows from Propositions 6.3 and 6.4 in $[\operatorname{Rot} 96]$.

Theorem 7.2.4 (Rothstein). Let $F \in D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right)$ be an object such that $R S_{1}(F)$ is concentrated in a single degree $i \in \mathbb{Z}$. Then $H^{i} R S_{1}(F)$ is holonomic if and only if $R S_{1} \Delta^{\mathcal{A}_{X}} F$ is concentrated in degree $g-i$.

Proposition 7.2 .5 can be deduced from Corollary 7.2.7, Proposition 5.1.4 and [Liu23a, Prop. 5.1.6], in the same way that $[\operatorname{Rot} 96, \operatorname{Prop} .6 .3]$ is proved.

Proposition 7.2.5.

$$
\begin{gather*}
R S_{2} \Delta^{D_{Y}}=[-1]_{X}^{*} T^{-g} \Delta^{\mathcal{A}_{X}} R S_{2}: D_{\text {good }}^{b}\left(D_{Y}\right) \rightarrow D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right) \tag{36}\\
\Delta^{D_{Y}} R S_{1}=[-1]_{Y}^{*} T^{g} R S_{1} \Delta^{\mathcal{A}_{X}}: D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right) \rightarrow D_{\text {good }}^{b}\left(D_{Y}\right) \tag{37}
\end{gather*}
$$

Lemma 7.2.6 ([Huy06, (3.13)]). For any objects $K, L \in D\left(O_{Z}\right)$ and $M \in$ $D_{c}^{-}\left(O_{Z}\right)$, the natural morphism (provided by [Sta23, Tag 0BYS])

$$
\begin{equation*}
K \otimes_{O_{Z}}^{L} \operatorname{RH}_{H_{O_{Z}}}(M, L) \rightarrow \operatorname{RHom}_{O_{z}}\left(M, K \otimes_{O_{z}}^{L} L\right) \tag{38}
\end{equation*}
$$

is an isomorphism in $D\left(O_{Z}\right)$.
Proof. By [Har66, I, Prop. 7.1 (ii)], one may assume that $M \in \operatorname{Coh}\left(O_{Z}\right)$. By [Sta23, Tag 08DL] and [GH78, p.696], one may shrink Z such that M admits a globally free resolution $F \rightarrow M$, where the complex F is

$$
0 \rightarrow O_{Z}^{k_{n}} \rightarrow \cdots \rightarrow O_{Z}^{k_{1}} \rightarrow O_{Z}^{k_{0}} \rightarrow 0
$$

with $O_{Z}^{k_{i}}$ placed in degree $-i$. The morphism (38) becomes

$$
K \otimes_{O_{z}}^{L} \mathcal{H o m}_{O_{z}}(F, L) \rightarrow \mathcal{H o m}_{O_{z}}\left(F, K \otimes_{O_{z}}^{L} L\right)
$$

which is an isomorphism.
Corollary 7.2 .7 proves the analytic counterpart of $[\operatorname{Rot} 96,(6.12)]$.
Corollary 7.2.7. There is a canonical isomorphism $\Delta^{\mathcal{A}_{X}}\left(\mathcal{A}_{X} \otimes_{O_{X}}^{L} \cdot\right) \cong \mathcal{A}_{X} \otimes_{O_{X}}^{L}$ $\Delta^{O_{X}}$. of functors $D_{c}^{b}\left(O_{X}\right) \rightarrow D_{c}^{b}\left(\mathcal{A}_{X}\right)$.

Proof. By [Rot96, (6.2)], one has

$$
\Delta^{\mathcal{A}_{X}}\left(\mathcal{A}_{X} \otimes_{O_{X}}^{L} \cdot\right)=T^{g} R \mathcal{H o m}_{\mathcal{A}_{X}}\left(\mathcal{A}_{X} \otimes_{O_{X}}^{L} \cdot, \mathcal{A}_{X}\right)=T^{g} R \mathcal{H o m}{O_{X}}\left(\cdot, \mathcal{A}_{X}\right)
$$

By Lemma 7.2.6, it equals $T^{g} R \mathcal{H}_{O_{X}}\left(\cdot, O_{X}\right) \otimes_{O_{X}}^{L} \mathcal{A}_{X}=\mathcal{A}_{X} \otimes_{O_{X}}^{L} \Delta^{O_{X}}$.
Example 7.2.8. Let $F=T^{g} \mathcal{A}_{X} \in D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right)$. By Corollary 5.1.5, one has $R S_{1}(F)=D_{Y} \otimes_{O_{Y}} \mathbb{C}_{0}$. One has $\Delta^{\mathcal{A}_{X}} F=\mathcal{A}_{X}$, and $R S_{1} \Delta^{\mathcal{A}_{X}} F$ is concentrated in degree g. Then by Theorem 7.2.4, the D_{Y}-module $D_{Y} \otimes_{O_{Y}} \mathbb{C}_{0}$ is holonomic.

7.3 Pullback and pushout

Proposition 7.3 .1 ([Lau96, Prop. 3.3.2]). Let $f: X^{\prime} \rightarrow X$ be a morphism of complex tori, with $\operatorname{dim} X^{\prime}=g^{\prime}$. Let $\hat{f}: Y \rightarrow Y^{\prime}$ be the morphism dual to f. Let $\tilde{f}:\left(X^{\prime}, \mathcal{A}_{X^{\prime}}\right) \rightarrow\left(X, \mathcal{A}_{X}\right)$ be the induced morphism (26). Then there are canonical isomorphisms of functors
1.

$$
\begin{array}{r}
L \hat{f}^{*} R S_{1}^{\prime} \cong R S_{1} R \tilde{f}_{*}: D_{O-\operatorname{good}}\left(\mathcal{A}_{X^{\prime}}\right) \rightarrow D_{O-\operatorname{good}}\left(D_{Y}\right) \\
R \tilde{f}_{*} R S_{2}^{\prime} \cong T^{g-g^{\prime}} R S_{2} L \hat{f}^{*}: D_{O-\operatorname{good}}\left(D_{Y^{\prime}}\right) \rightarrow D_{O-\operatorname{good}}\left(\mathcal{A}_{X}\right) \tag{40}
\end{array}
$$

2.

$$
\begin{gather*}
R S_{2}^{\prime} \hat{f}_{+} \cong L \tilde{f}^{*} R S_{2}: D_{\text {good }}^{b}\left(D_{Y}\right) \rightarrow D_{\text {good }}^{b}\left(\mathcal{A}_{X^{\prime}}\right) \tag{41}\\
\hat{f}_{+} R S_{1} \cong T^{g^{\prime}-g} R S_{1}^{\prime} L \tilde{f}^{*}: D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right) \rightarrow D_{\text {good }}^{b}\left(D_{Y^{\prime}}\right) \tag{42}
\end{gather*}
$$

Proof. 1. The isomorphism (40) follows from (39) as follows:

$$
\begin{aligned}
R \tilde{f}_{*} R S_{2}^{\prime} & \stackrel{(\mathrm{a})}{\cong} T^{g} R S_{2} R S_{1} R \tilde{f}_{*} R S_{2}^{\prime} \\
& \stackrel{(\mathrm{b})}{\cong} T^{g} R S_{2} L \hat{f}^{*} R S_{1}^{\prime} R S_{2}^{\prime} \\
& \stackrel{(\mathrm{c})}{\cong} T^{g-g^{\prime}} R S_{2} L \hat{f}^{*}
\end{aligned}
$$

where (39) (resp. Theorem 5.1.3) is used in (b) (resp. (a) and (c)). Then we prove (39).

By (27) (resp. the proof of [HT07, Prop. 1.5.8]), the derived direct image (resp. inverse image) functor of \mathcal{A}-modules (resp. D-modules) regards that of the underlying O-modules. From [Liu23a, Prop. 3.1.2 2], the functor $\mathcal{P}^{\prime} \otimes_{O_{X^{\prime} \times Y^{\prime}}}^{L} p_{X^{\prime}}^{*} \cdot: D\left(\mathcal{A}_{X^{\prime}}\right) \rightarrow D\left(O_{X^{\prime} \times Y^{\prime}}\right)$ restricts to a functor $D_{O-\text { good }}\left(\mathcal{A}_{X^{\prime}}\right) \rightarrow D_{\text {good }}\left(O_{X^{\prime} \times Y^{\prime}}\right)$. An application of [Liu23a, Lem. 3.2.11] to the cartesian square

yields a canonical isomorphism of functors

$$
\begin{equation*}
L \hat{f}^{*} R p_{Y^{\prime}} \rightarrow R p_{2 *} L\left(1_{X^{\prime}} \times \hat{f}\right)^{*}: D_{\text {good }}\left(O_{X^{\prime} \times Y^{\prime}}\right) \rightarrow D_{\text {good }}\left(O_{Y}\right) \tag{43}
\end{equation*}
$$

Applying [Liu23a, Thm. 3.2.3] to the cartesian square

of complex manifolds, one gets a natural isomorphism

$$
\begin{equation*}
p_{X}^{*} R \tilde{f}_{*} \rightarrow R\left(f \times 1_{Y}\right)_{*} p_{1}^{*} \tag{44}
\end{equation*}
$$

of functors $D_{O-\operatorname{good}}\left(\mathcal{A}_{X^{\prime}}\right) \rightarrow D\left(\operatorname{Mod}\left(O_{X \times Y}\right)_{1-\mathrm{cxn}, \mathrm{fl}}\right)$.
Then

$$
L \hat{f}^{*} R S_{1}^{\prime}=L \hat{f}^{*} R p_{Y^{\prime}}\left(\mathcal{P}^{\prime} \otimes_{O_{X^{\prime} \times Y^{\prime}}}^{L} p_{X^{\prime}}^{*} \cdot\right)
$$

$$
\stackrel{(\mathrm{a})}{\cong} R p_{2 *} L\left(1_{X^{\prime}} \times \hat{f}\right)^{*}\left(\mathcal{P}^{\prime} \otimes_{O_{X^{\prime} \times Y^{\prime}}}^{L} p_{X^{\prime}}^{*} \cdot\right)
$$

$$
\cong R p_{2 *}\left[L\left(1_{X^{\prime}} \times \hat{f}\right)^{*} \mathcal{P}^{\prime} \otimes_{O_{X^{\prime} \times Y}}^{L} L\left(1_{X^{\prime}} \times \hat{f}\right)^{*} p_{X^{\prime}}^{*}\right]
$$

$$
\cong R p_{2 *}\left[\left(1_{X^{\prime}} \times \hat{f}\right)^{*} \mathcal{P}^{\prime} \otimes_{O_{X^{\prime} \times Y}}^{L} p_{1}^{*} \cdot\right]
$$

(b)
$\stackrel{(\mathrm{b})}{\cong} R p_{2 *}\left[\left(f \times 1_{Y}\right)^{*} \mathcal{P} \otimes_{O_{X^{\prime} \times Y}}^{L} p_{1}^{*} \cdot\right]$
$\cong R p_{Y *} R\left(f \times 1_{Y}\right)_{*}\left[\left(f \times 1_{Y}\right)^{*} \mathcal{P} \otimes_{O_{X^{\prime} \times Y}}^{L} p_{1}^{*} \cdot\right]$
$\stackrel{\text { c) }}{\sim}$
$\stackrel{(\mathrm{c})}{\cong} R p_{Y *}\left[\mathcal{P} \otimes_{O_{X \times Y}}^{L} R\left(f \times 1_{Y}\right)_{*} p_{1}^{*} \cdot\right]$
(d)
$\stackrel{(\mathrm{d})}{\cong} R p_{Y *}\left[\mathcal{P} \otimes_{O_{X \times Y}}^{L} p_{X}^{*} R \tilde{f}_{*} \cdot\right]$
$=R S_{1} R \tilde{f}_{*}$,
where (a), (b), (c) and (d)) use (43), [Liu23a, (23)], [Liu23a, Fact 3.2.13] and (44) respectively. This proves (39).
2. The isomorphism (42) follows from (41) as follows:

$$
\begin{aligned}
\hat{f}_{+} R S_{1} & \stackrel{(\mathrm{a})}{\cong} T^{g^{\prime}} R S_{1}^{\prime} R S_{2}^{\prime} \hat{f}_{+} R S_{1} \\
& \stackrel{(\mathrm{~b})}{\cong} T^{g^{\prime}} R S_{1}^{\prime} L \tilde{f}^{*} R S_{2} R S_{1} \\
& \stackrel{(\mathrm{c})}{\cong} T^{g^{\prime}-g} R S_{1}^{\prime} L \tilde{f}^{*}
\end{aligned}
$$

where (a) and (c) use Theorem 6.3.1, and (b) uses (41). Then we prove (41).

Using (28), one can prove that $L \tilde{f}^{*}: D\left(\mathcal{A}_{X}\right) \rightarrow D\left(\mathcal{A}_{X^{\prime}}\right)$ restricts to a functor $D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right) \rightarrow D_{\text {good }}^{b}\left(\mathcal{A}_{X^{\prime}}\right)$. From Fact 6.2.3, the direct image functor $\hat{f}_{+}: D^{b}\left(D_{Y}\right) \rightarrow D^{b}\left(D_{Y^{\prime}}\right)$ restricts to a functor $D_{\text {good }}^{b}\left(D_{Y}\right) \rightarrow$ $D_{\text {good }}^{b}\left(D_{Y^{\prime}}\right)$. There are canonical isomorphism of bifunctors $D_{\text {good }}^{b}\left(D_{Y}\right)^{\mathrm{op}} \times$ $D_{\text {good }}^{b}\left(\mathcal{A}_{X^{\prime}}\right) \rightarrow \mathrm{Ab}:$

$$
\begin{aligned}
\operatorname{Hom}_{D_{\text {good }}^{b}\left(\mathcal{A}_{X^{\prime}}\right)}\left(R S_{2}^{\prime} \hat{f}_{+}-,+\right) & \stackrel{(\mathrm{a})}{\cong} \operatorname{Hom}_{D_{\text {good }}^{b}\left(D_{Y^{\prime}}\right)}\left(\hat{f}_{+}-, T^{g^{\prime}} R S_{1}^{\prime}+\right) \\
& \stackrel{(\mathrm{b})}{\cong} \operatorname{Hom}_{D_{\text {good }}^{b}\left(D_{Y}\right)}\left(-, T^{g} L \hat{f}^{*} R S_{1}^{\prime}+\right) \\
& \stackrel{(\mathrm{c})}{\cong} \operatorname{Hom}_{D_{\text {good }}^{b}\left(D_{Y}\right)}\left(-, T^{g} R S_{1} R \tilde{f}_{*}+\right) \\
& \stackrel{(\mathrm{d})}{\cong} \operatorname{Hom}_{D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right)}\left(R S_{2}-, R \tilde{f}_{*}+\right) \\
& \cong \operatorname{Hom}_{D_{\text {good }}^{b}\left(\mathcal{A}_{X^{\prime}}\right)}\left(L \tilde{f}^{*} R S_{2}-,+\right),
\end{aligned}
$$

where (a) and (d) use Theorem 6.3.1, (a) uses [Bjö93, Thm. 2.11.8], and (c) uses (39). From Yoneda's lemma, there is a canonical isomorphism $R S_{2}^{\prime} \hat{f}_{+} \cong L \tilde{f}^{*} R S_{2}$ of functors $D_{\text {good }}^{b}\left(D_{Y}\right) \rightarrow D_{\text {good }}^{b}\left(\mathcal{A}_{X^{\prime}}\right)$.

7.4 External tensor product

For two complex manifolds U, V, recall the (exact) external tensor product bifunctor

$$
\begin{equation*}
(\cdot) \boxtimes_{O}(\cdot): \operatorname{Mod}\left(D_{U}\right) \times \operatorname{Mod}\left(D_{V}\right) \rightarrow \operatorname{Mod}\left(D_{U \times V}\right) \tag{45}
\end{equation*}
$$

defined in [Bjö93, 2.4.4]. By exactness, it descends to

$$
\begin{equation*}
D\left(D_{U}\right) \times D\left(D_{V}\right) \rightarrow D\left(D_{U \times V}\right) \tag{46}
\end{equation*}
$$

Remark 7.4.1. By [Bjö93, 2.4.13], the bifunctor (45) restricts to bifunctors $\operatorname{Coh}\left(D_{U}\right) \times \operatorname{Coh}\left(D_{V}\right) \rightarrow \operatorname{Coh}\left(D_{U \times V}\right)$ and $\operatorname{Good}\left(D_{U}\right) \times \operatorname{Good}\left(D_{V}\right) \rightarrow \operatorname{Good}\left(D_{U \times V}\right)$. Then by [Har66, I, Prop. 7.3 (i)], the bifunctor (46) restricts to bifunctors $D_{c}^{b}\left(D_{U}\right) \times D_{c}^{b}\left(D_{V}\right) \rightarrow D_{c}^{b}\left(D_{U \times V}\right)$ and $D_{\text {good }}^{b}\left(D_{U}\right) \times D_{\text {good }}^{b}\left(D_{V}\right) \rightarrow D_{\text {good }}^{b}\left(D_{U \times V}\right)$. By [Bjö93, p.139], it also restricts to a bifunctor $D_{h}^{b}\left(D_{U}\right) \times D_{h}^{b}\left(D_{V}\right) \rightarrow D_{h}^{b}\left(D_{U \times V}\right)$.

Using [Liu23a, Lem. 5.1.4] (at the place of [HT07, Lem. 1.5.31]), Lemma 6.2.4 and [Sab11, Thm. 3.3.6 (1)], one can argue as in [HT07, Prop. 1.5.30] to get Fact 7.4.2.

Fact 7.4.2.

1. Let U, V, Z be complex manifolds. Let $f: U \rightarrow V$ be a proper morphism. Then the natural transformation

$$
f_{+}(-) \boxtimes_{O}(+) \rightarrow\left(f \times \operatorname{Id}_{Z}\right)_{+}\left(-\boxtimes_{O}+\right): D_{O-\operatorname{good}}\left(D_{U}\right) \times D\left(D_{Z}\right) \rightarrow D\left(D_{V \times Z}\right)
$$

is an isomorphism.
2. Let $f_{i}: U_{i} \rightarrow V_{i}(i=1,2)$ be two proper morphisms of complex manifolds. Then the natural transformation

$$
\left(f_{1+}-\right) \boxtimes_{O}\left(f_{2+}+\right) \rightarrow\left(f_{1} \times f_{2}\right)_{+}\left(-\boxtimes_{O+}\right): D_{O-\operatorname{good}}\left(D_{U_{1}}\right) \times D_{O-\operatorname{good}}\left(D_{U_{2}}\right) \rightarrow D_{O-\operatorname{good}}\left(D_{V_{1} \times V_{2}}\right)
$$

is an isomorphism.
For a complex torus X, let for $_{X}: \operatorname{Mod}\left(\mathcal{A}_{X}\right) \rightarrow \operatorname{Mod}\left(O_{X}\right)$ be the forgetful functor. Let X^{\prime} be another complex torus. Set $X^{\prime \prime}=X \times X^{\prime}$. Write u : $X^{\prime \prime} \rightarrow X$ and $u^{\prime}: X^{\prime \prime} \rightarrow X^{\prime}$ for the projections. Let $Y^{\prime}, Y^{\prime \prime}$ be the dual of X^{\prime} and $X^{\prime \prime}$ respectively. For an $\mathcal{A}_{X^{\prime}}$-module F and an $\mathcal{A}_{X^{\prime}}$-module G, denote $\tilde{u}^{*} F \otimes_{\mathcal{A}_{X^{\prime}}} \tilde{u}^{\prime \prime} G$ by $F \boxtimes_{\mathcal{A}_{X}} G$. As

$$
F \boxtimes_{\mathcal{A}_{X}} G=u^{-1} F \otimes_{u^{-1} \mathcal{A}_{X}} \mathcal{A}_{X^{\prime \prime}} \otimes_{u^{\prime-1}} \mathcal{A}_{X^{\prime}} u^{\prime-1} G
$$

and $\mathcal{A}_{X^{\prime \prime}}$ is flat over $u^{-1} \mathcal{A}_{X}$ and over $u^{\prime-1} \mathcal{A}_{X^{\prime}}$, the bifunctor

$$
-\boxtimes_{\mathcal{A}_{X}}+: \operatorname{Mod}\left(\mathcal{A}_{X}\right) \times \operatorname{Mod}\left(\mathcal{A}_{X^{\prime}}\right) \rightarrow \operatorname{Mod}\left(\mathcal{A}_{X^{\prime \prime}}\right)
$$

is exact in both arguments. Consider the diagonal morphism $\delta: X \rightarrow X^{2}$. There is a canonical isomorphism of bifunctors

$$
\begin{equation*}
L \tilde{\delta}^{*}\left[-\boxtimes_{\mathcal{A}_{X}}+\right] \cong(-) \otimes_{\mathcal{A}_{X}}^{L}(+): D\left(\mathcal{A}_{X}\right) \times D\left(\mathcal{A}_{X}\right) \rightarrow D\left(\mathcal{A}_{X}\right) \tag{47}
\end{equation*}
$$

Although the tensor product of two \mathcal{A}_{X}-modules is different from the tensor product of the underlying O_{X}-module, Lemma 7.4.3 shows that external products do agree. It is used in the proof of Lemma 7.4.4.
Lemma 7.4.3. There is a natural isomorphism of bifunctors
$\operatorname{for}_{X^{\prime \prime}}\left(-\boxtimes_{\mathcal{A}}+\right) \rightarrow\left(\right.$ for $\left._{X}-\right) \boxtimes_{O}\left(\right.$ for $\left._{X^{\prime}}+\right): \operatorname{Mod}\left(\mathcal{A}_{X}\right) \times \operatorname{Mod}\left(\mathcal{A}_{X^{\prime}}\right) \rightarrow \operatorname{Mod}\left(O_{X^{\prime \prime}}\right)$.
Proof. By construction, one has

$$
\begin{equation*}
\mathcal{A}_{X^{\prime \prime}}=\mathcal{A}_{X} \boxtimes_{O} \mathcal{A}_{X^{\prime}}=u^{-1} \mathcal{A}_{X} \otimes_{u^{-1} O_{X}} u^{\prime *} \mathcal{A}_{X^{\prime}} \tag{48}
\end{equation*}
$$

There are natural isomorphisms of functors $\operatorname{Mod}\left(\mathcal{A}_{X}\right) \rightarrow \operatorname{Mod}\left(O_{X^{\prime \prime}}\right)$:

$$
\begin{aligned}
\text { for }_{X^{\prime \prime}} \tilde{u}^{*} & :=u^{-1} \cdot \otimes_{u^{-1} \mathcal{A}_{X}} \mathcal{A}_{X^{\prime \prime}} \\
& \begin{aligned}
& \text { (a) } \\
&=u^{-1} \cdot \otimes_{u^{-1} \mathcal{A}_{X}}\left(u^{-1} \mathcal{A}_{X} \otimes_{u^{-1} O_{X}} u^{* *} \mathcal{A}_{X^{\prime}}\right) \\
& \cong u^{-1} \cdot \otimes_{u^{-1} O_{X}} u^{\prime *} \mathcal{A}_{X^{\prime}} \\
& \cong\left(u^{-1} \cdot \otimes_{u^{-1} O_{X}} O_{X^{\prime \prime}}\right) \otimes_{O_{X^{\prime \prime}}} u^{\prime *} \mathcal{A}_{X^{\prime}} \\
& \cong u^{*} \text { for }_{X} \cdot \otimes_{O_{X^{\prime \prime}}} u^{\prime *} \mathcal{A}_{X^{\prime}}
\end{aligned}
\end{aligned}
$$

where (a) uses (48). Similarly, there is a natural isomorphism of functors for $_{X^{\prime \prime}} \tilde{u}^{\prime *} \cong u^{*} \mathcal{A}_{X} \otimes_{O_{X^{\prime \prime}}} u^{* *}$ for $_{X^{\prime}}: \operatorname{Mod}\left(\mathcal{A}_{X^{\prime}}\right) \rightarrow \operatorname{Mod}\left(O_{X^{\prime \prime}}\right)$. One has natural isomorphisms of bifunctors

$$
\begin{aligned}
\operatorname{for}_{X^{\prime \prime}}\left(-\boxtimes_{\mathcal{A}_{X}}+\right): & : \tilde{u}^{*}-\otimes_{\mathcal{A}_{X^{\prime \prime}}} \tilde{u}^{\prime *}+ \\
& \cong\left(u^{*} \text { for }_{X}-\otimes_{O_{X^{\prime \prime}}} u^{\prime *} \mathcal{A}_{X^{\prime}}\right) \otimes_{u^{*} \mathcal{A}_{X} \otimes_{o_{X^{\prime \prime}} u^{\prime *}} \mathcal{A}_{X^{\prime}}}\left(u^{*} \mathcal{A}_{X} \otimes_{O_{X^{\prime \prime}}} u^{\prime *} \text { for }_{X^{\prime}}+\right) \\
& \cong\left(u^{*} \text { for }_{X}-\right) \otimes_{O_{X^{\prime \prime}}}\left(u^{\prime *} \text { for }_{X^{\prime}}+\right) \\
& :=\left(\text { for }_{X}-\right) \boxtimes_{O}\left(\text { for }_{X^{\prime}}+\right) .
\end{aligned}
$$

Lemma 7.4.4. There are canonical isomorphisms of bifunctors
$R S_{2}^{\prime \prime}\left[-\boxtimes_{O}+\right] \cong R S_{2}-\boxtimes_{\mathcal{A}} R S_{2}^{\prime}+: D_{O-\operatorname{good}}\left(D_{Y}\right) \times D_{O-\operatorname{good}}\left(D_{Y^{\prime}}\right) \rightarrow D_{O-\operatorname{good}}\left(\mathcal{A}_{X^{\prime \prime}}\right) ;$
$R S_{1}^{\prime \prime}\left[-\boxtimes_{\mathcal{A}}+\right] \cong R S_{1}-\boxtimes_{O} R S_{1}^{\prime}+: D_{O-\operatorname{good}}\left(\mathcal{A}_{X}\right) \times D_{O-\operatorname{good}}\left(\mathcal{A}_{X^{\prime}}\right) \rightarrow D_{O-\operatorname{good}}\left(D_{Y^{\prime \prime}}\right)$.

Proof. It follows from [Liu23a, Prop. 5.1.3], Lemma 7.4.3 and Proposition 5.1.2.

7.5 Convolution and tensor product

For the dual complex tori X and Y, let $m: X^{2} \rightarrow X$ and $\mu: Y^{2} \rightarrow Y$ be their respective group law.
Definition 7.5.1 (Convolution, [Lau96, p.22]). Define bifunctors

$$
\begin{aligned}
& *_{D}: D\left(D_{Y}\right) \times D\left(D_{Y}\right) \rightarrow D\left(D_{Y}\right), \quad-*_{D}+=\mu_{+}\left[-\boxtimes_{O}+\right] \\
& *_{\mathcal{A}}: D\left(\mathcal{A}_{X}\right) \times D\left(\mathcal{A}_{X}\right) \rightarrow D\left(\mathcal{A}_{X}\right), \\
& -*_{\mathcal{A}}+=R \tilde{m}_{*}\left[-\boxtimes_{\mathcal{A}}+\right]
\end{aligned}
$$

As μ is proper, by Fact 6.2.3, Lemma 6.2.4 and Fact 7.2.3 2, the direct image μ_{+}restricts to functors $D_{\text {good }}^{b}\left(D_{Y^{2}}\right) \rightarrow D_{\text {good }}^{b}\left(D_{Y}\right), D_{O-\text { good }}\left(D_{Y^{2}}\right) \rightarrow$ $D_{O-\operatorname{good}}\left(D_{Y}\right)$ and $D_{h}^{b}\left(D_{Y^{2}}\right) \rightarrow D_{h}^{b}\left(D_{Y}\right)$. Together with Remark 7.4.1, this implies that the bifunctor $*_{D}$ restricts to bifunctors $D_{\text {good }}^{b}\left(D_{Y}\right) \times D_{\text {good }}^{b}\left(D_{Y}\right) \rightarrow$ $D_{\text {good }}^{b}\left(D_{Y}\right), D_{O-\operatorname{good}}\left(D_{Y}\right) \times D_{O-\operatorname{good}}\left(D_{Y}\right) \rightarrow D_{O-\operatorname{good}}\left(D_{Y}\right)$ and $D_{h}^{b}\left(D_{Y}\right) \times$ $D_{h}^{b}\left(D_{Y}\right) \rightarrow D_{h}^{b}\left(D_{Y}\right)$.
Lemma 7.5.2. The pair $\left(D\left(D_{Y}\right), *_{D}\right)$ is a symmetric tensor triangulated category (in the sense of $\left[\right.$ Bal10, Def. 3]) with unit $D_{Y} \otimes_{O_{Y}} \mathbb{C}_{0}$.
Proof. Let $i: \operatorname{Specan}(\mathbb{C}) \rightarrow Y$ be the inclusion of $0 \in Y$. Then $D_{Y} \otimes_{O_{Y}} \mathbb{C}_{0}=$ $i_{+} \mathbb{C}$. There are canonical isomorphisms

$$
\begin{aligned}
\left(i_{+} \mathbb{C}\right) *_{D} & : \\
& =\mu_{+}\left[\left(i_{+} \mathbb{C}\right) \boxtimes_{O} \cdot\right] \\
& =\mu_{+}\left[\left(i_{+} \mathbb{C}\right) \boxtimes_{O}\left(\operatorname{Id}_{Y+} \cdot\right)\right] \\
& \left(\stackrel{\text { a) }}{\cong} \mu_{+}\left(i \times \operatorname{Id}_{Y}\right)_{+}\left(\mathbb{C} \boxtimes_{O} \cdot\right)\right. \\
& (\text { b) } \\
& \cong \operatorname{Id}_{Y+}=\operatorname{Id}_{D\left(D_{Y}\right)}
\end{aligned}
$$

of functors $D\left(D_{Y}\right) \rightarrow D\left(D_{Y}\right)$, where (a) and (b) use Fact 7.4.2 1 and [Sab11, Thm. 3.3.6 (1)] respectively, Therefore, $D_{Y} \otimes_{O_{Y}} \mathbb{C}_{0}$ is the unit. The other axioms can be verified as in [Wei07, pp. 10-11].

Proposition 7.5.3 ([Wei11]). For every $M \in D_{\text {good }}^{b}\left(D_{Y}\right)$, the functor $\cdot *_{D} M$: $D_{\text {good }}^{b}\left(D_{Y}\right) \rightarrow D_{\text {good }}^{b}\left(D_{Y}\right)$ admits a right adjoint $\left([-1]_{Y}^{*} \Delta^{D_{Y}} M\right) *_{D} \cdot$
Proof. Define an automorphism $f: Y^{2} \rightarrow Y^{2}$ of the complex torus Y^{2} by $f(a, b)=(a+b,-a)$. Then $p_{1} f=\mu, p_{2} f=[-1]_{Y} p_{1}$ and $\mu f=p_{2}$. One has $L f^{*} O_{Y^{2}}=O_{Y^{2}}$ in $D^{b}\left(D_{Y^{2}}\right)$.

For any objects $F, G \in D_{\text {good }}^{b}\left(D_{Y}\right)$, there are canonical bijections

$$
\begin{aligned}
& \quad \operatorname{Hom}_{D_{\text {good }}^{b}\left(D_{Y}\right)}\left(F *_{D} M, G\right):=\operatorname{Hom}_{D_{\text {good }}^{b}\left(D_{Y}\right)}\left(\mu_{+}\left(F \boxtimes_{O} M\right), G\right) \\
& \stackrel{\text { (a) }}{=} \operatorname{Hom}_{D\left(D_{Y^{2}}\right)}\left(F \boxtimes_{O} M, T^{g} \mu^{*} G\right) \\
& \text { (b) } \\
& =\operatorname{Hom}_{D\left(D_{Y^{2}}\right)}\left(O_{Y^{2}}, \Delta^{D_{Y^{2}}}\left(F \boxtimes_{O} M\right) \otimes_{O_{Y^{2}}}^{L} T^{g} \mu^{*} G\right) \\
& \text { (c) } \\
& =\operatorname{Hom}_{D\left(D_{Y^{2}}\right)}\left(O_{Y^{2}},\left(\Delta^{D_{Y}} F\right) \boxtimes_{O}\left(\Delta^{D_{Y}} M\right) \otimes_{O_{Y^{2}}}^{L} T^{g} \mu^{*} G\right) \\
& :=\operatorname{Hom}_{D\left(D_{Y^{2}}\right)}\left(O_{Y^{2}}, p_{1}^{*} \Delta^{D_{Y}} F \otimes_{O_{Y^{2}}}^{L} p_{2}^{*} \Delta^{D_{Y}} M \otimes_{O_{Y^{2}}}^{L} T^{g} \mu^{*} G\right) \\
& =\operatorname{Hom}_{D\left(D_{Y^{2}}\right)}\left(f^{*} O_{Y^{2}}, f^{*}\left[p_{1}^{*} \Delta^{D_{Y}} F \otimes_{O_{Y^{2}}}^{L} p_{2}^{*} \Delta^{D_{Y}} M \otimes_{O_{Y^{2}}}^{L} T^{g} \mu^{*} G\right]\right) \\
& =\operatorname{Hom}_{D\left(D_{Y^{2}}\right)}\left(O_{Y^{2}}, \mu^{*} \Delta^{D_{Y}} F \otimes_{O_{Y^{2}}}^{L} p_{1}^{*}[-1]_{Y}^{*} \Delta^{D_{Y}} M \otimes_{O_{Y^{2}}}^{L} T^{g} p_{2}^{*} G\right) \\
& :=\operatorname{Hom}_{D\left(D_{Y^{2}}\right)}\left(O_{Y^{2}}, T^{g} \mu^{*} \Delta^{D_{Y}} F \otimes_{O_{Y^{2}}}^{L}\left([-1]_{Y}^{*} \Delta^{D_{Y}} M \boxtimes_{O} G\right)\right) \\
& \text { (d) }=\operatorname{Hom}_{D\left(D_{Y^{2}}\right)}\left(O_{Y^{2}}, T^{g} \Delta^{D_{Y}}\left(\mu^{*} F\right) \otimes_{O_{Y^{2}}}^{L}\left([-1]_{Y}^{*} \Delta^{D_{Y}} M \boxtimes_{O} G\right)\right) \\
& \text { (e) }=\operatorname{Hom}_{D\left(D_{Y^{2}}\right)}\left(\mu^{*} F, T^{g}\left([-1]_{Y}^{*} \Delta^{D_{Y}} M \boxtimes_{O} G\right)\right) \\
& \text { (f) } \\
& =\operatorname{Hom}_{D\left(D_{Y}\right)}\left(F, \mu_{+}\left([-1]_{Y}^{*} \Delta^{D_{Y}} M \boxtimes_{O} G\right)\right) \\
& (\mathrm{g}) \\
& =\operatorname{Hom}_{D_{\text {good }}^{b}\left(D_{Y}\right)}\left(F,\left([-1]_{Y}^{*} \Delta^{D_{Y}} M\right) * G\right),
\end{aligned}
$$

where (a), (c), (d), (f) and (g) use [Bjö93, Thm. 2.11.8], Proposition 7.5.4, [Kas03, Thm. 4.12], [Kas03, Thm. 4.40] and Lemma 7.2.1 in order, and both (b), (e) use [Kas03, (3.13)]. As the bijections are functorial in F and G, the adjunction follows.

The proof of Proposition 7.5 .3 needs the commutativity of duality with external tensor product for D-modules.

Proposition 7.5.4. Let $Z_{i}(i=1,2)$ be two complex manifolds. Then there is a canonical isomorphism
$\left(\Delta^{D_{Z_{1}}}-\right) \boxtimes_{O}\left(\Delta^{D_{Z_{2}}}+\right) \rightarrow \Delta^{D_{Z_{1} \times Z_{2}}}\left(-\boxtimes_{O}+\right): D_{c}^{b}\left(D_{Z_{1}}\right) \times D_{c}^{b}\left(D_{Z_{2}}\right) \rightarrow D_{c}^{b}\left(D_{Z_{1} \times Z_{2}}\right)^{\mathrm{op}}$.

Proof. For a complex manifold Z, the sheaf $D_{Z} \otimes_{\mathbb{C}_{Z}} D_{Z}^{\text {op }}$ is naturally a $\mathbb{C}_{Z^{-}}$ algebra, and D_{Z} is naturally a left $D_{Z} \otimes_{\mathbb{C}_{Z}} D_{Z}^{\text {op }}$-module. For $N_{i} \in D\left(D_{Z_{i}^{\text {op }}}\right)$, by [HT07, p.39], there is a natural isomorphism in $D\left(D_{Z_{1} \times Z_{2}}^{\mathrm{op}}\right)$:

$$
\begin{equation*}
N_{1} \boxtimes_{O} N_{2}=\left(N_{1} \boxtimes_{\mathbb{C}} N_{2}\right) \otimes_{D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}} D_{Z_{1} \times Z_{2}} \tag{51}
\end{equation*}
$$

First, we construct the natural transformation. Take $M_{i} \in D_{c}^{b}\left(D_{Z_{i}}\right)$.
Claim 7.5.5. Then there is a natural morphism in $D^{b}\left(\left(D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}\right)^{\mathrm{op}}\right)$:

$$
\begin{align*}
& \text { RHom }_{D_{Z_{1}}}\left(M_{1}, D_{Z_{1}}\right) \boxtimes_{\mathbb{C}} \text { RHom }_{D_{Z_{2}}}\left(M_{2}, D_{Z_{2}}\right) \tag{52}\\
\rightarrow & \text { RHom }_{D_{Z_{1}}} \boxtimes_{\mathbb{C}} D_{Z_{2}}\left(M_{1} \boxtimes_{\mathbb{C}} M_{2}, D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}\right) .
\end{align*}
$$

Claim 7.5.6. There is a natural morphism in $D^{b}\left(D_{Z_{1} \times Z_{2}}^{\mathrm{op}}\right)$:

$$
\begin{align*}
& \operatorname{RHom}_{D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}}\left(M_{1} \boxtimes_{\mathbb{C}} M_{2}, D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}\right) \otimes_{D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}} D_{Z_{1} \times Z_{2}} \tag{53}\\
& \rightarrow \text { Hom }_{D_{Z_{1}}} \boxtimes_{\mathbb{C}} D_{Z_{2}} \\
&\left(M_{1} \boxtimes_{\mathbb{C}} M_{2}, D_{Z_{1} \times Z_{2}}\right) .
\end{align*}
$$

Again, there is a natural morphism in $D^{b}\left(D_{Z_{1} \times Z_{2}}^{\mathrm{op}}\right)$:

$$
\begin{equation*}
\operatorname{RHom}_{D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}}\left(M_{1} \boxtimes_{\mathbb{C}} M_{2}, D_{Z_{1} \times Z_{2}}\right) \rightarrow \text { RHom }_{D_{Z_{1} \times Z_{2}}}\left(M_{1} \boxtimes_{O} M_{2}, D_{Z_{1} \times Z_{2}}\right), \tag{54}
\end{equation*}
$$

which can be defined by taking a $D_{Z_{1} \times Z_{2}} \otimes_{\mathbb{C}} D_{Z_{1} \times Z_{2}}^{\mathrm{op}}$-injective resolution of $D_{Z_{1} \times Z_{2}}$.

Composing the morphisms (51), (52), (53) and (54) in order, one gets a natural morphism in $D^{b}\left(D_{Z_{1} \times Z_{2}}^{\mathrm{op}}\right)$:

$$
\begin{equation*}
\operatorname{RHom}_{D_{Z_{1}}}\left(M_{1}, D_{Z_{1}}\right) \boxtimes_{O} \text { RHom }_{D_{Z_{2}}}\left(M_{2}, D_{Z_{2}}\right) \rightarrow \operatorname{RHom}_{D_{Z_{1} \times Z_{2}}}\left(M_{1} \boxtimes_{O} M_{2}, D_{Z_{1} \times Z_{2}}\right) \tag{55}
\end{equation*}
$$

We prove that the constructed natural transformation is an isomorphism. To show (55) is an isomorphism, by [Har66, I, Prop. 7.1 (i)], one may assume $M_{i} \in \operatorname{Coh}\left(D_{Z_{i}}\right)$ for $i=1,2$. By shrinking Z_{i} and using [KS13, Prop. 11.2.6], one may find a bounded resolution of M_{i} by free $D_{Z_{i}}$-modules of finite rank. Thus, one may further assume that $M_{i}=D_{Z_{i}}$. Since $\omega_{Z_{1} \times Z_{2}}=\omega_{Z_{1}} \boxtimes_{O} \omega_{Z_{2}}$ in $\operatorname{Mod}\left(D_{Z_{1} \times Z_{2}}^{\mathrm{op}}\right)$, by [HT07, Eg. 2.6.3], in this case (55) is an isomorphism.
Proof of Claim 7.5.5. Take a $D_{Z_{i}} \otimes_{\mathbb{C}} D_{Z_{i}}^{\mathrm{op}}$-injective resolution $D_{Z_{i}} \rightarrow I_{i}^{*}$. Then $I_{1}^{*} \boxtimes_{\mathbb{C}} I_{2}^{*}$ is a complex of modules over

$$
\begin{equation*}
\left(D_{Z_{1}} \otimes_{\mathbb{C}} D_{Z_{1}}^{\mathrm{op}}\right) \boxtimes_{\mathbb{C}}\left(D_{Z_{2}} \otimes_{\mathbb{C}} D_{Z_{2}}^{\mathrm{op}}\right)=\left(D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}\right) \otimes_{\mathbb{C}}\left(D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}\right)^{\mathrm{op}} \tag{56}
\end{equation*}
$$

By [Sta23, Tag 013K (2)], there exists an injective resolution $I_{1}^{*} \boxtimes_{\mathbb{C}} I_{2}^{*} \rightarrow I^{*}$ (hence an induced injective resolution $D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}} \rightarrow I^{*}$) over (56). The natural morphism $D_{Z_{i}} \rightarrow D_{Z_{i}} \otimes_{\mathbb{C}} D_{Z_{i}}^{\mathrm{op}}$ is flat, so every injective $D_{Z_{i}} \otimes_{\mathbb{C}} D_{Z_{i}}^{\mathrm{op}}$ module is injective over $D_{Z_{i}}$. Similarly, every term of the complex I^{*} is injective over $D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}$. Then (52) is defined to be the composition of the natural morphisms

$$
\begin{aligned}
& \mathcal{H o m}_{D_{Z_{1}}}\left(M_{1}, I_{1}^{*}\right) \boxtimes_{\mathbb{C}} \mathcal{H o m}_{D_{Z_{2}}}\left(M_{2}, I_{2}^{*}\right) \rightarrow \mathcal{H o m}_{D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}}\left(M_{1} \boxtimes_{\mathbb{C}} M_{2}, I_{1}^{*} \boxtimes_{\mathbb{C}} I_{2}^{*}\right) \\
& \rightarrow \mathcal{H o m}_{D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}}\left(M_{1} \boxtimes_{\mathbb{C}} M_{2}, I^{*}\right) .
\end{aligned}
$$

Proof of Claim 7.5.6. Take an injective resolution $D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}} \rightarrow J^{*}$ over (56). By [Sta23, Tag 013K (2)], over $\left(D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}\right) \otimes_{\mathbb{C}} D_{Z_{1} \times Z_{2}}^{\text {op }}$ there exists an injective resolution $J^{*} \otimes_{D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}} D_{Z_{1} \times Z_{2}} \rightarrow K^{*}$. Then (53) is defined to be the composition of the natural morphisms

$$
\left.\begin{array}{rl}
& \mathcal{H o m}_{D_{Z_{1}}} \boxtimes_{\mathbb{C}} D_{Z_{2}} \\
& \left(M_{1} \boxtimes_{\mathbb{C}} M_{2}, J^{*}\right) \otimes_{D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}} D_{Z_{1} \times Z_{2}} \\
\rightarrow & \mathcal{H o m}_{D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}}\left(M_{1} \boxtimes_{\mathbb{C}} M_{2}, J^{*} \otimes_{D_{Z_{1}} \boxtimes_{\mathbb{C}} D_{Z_{2}}} D_{Z_{1} \times Z_{2}}\right) \\
\rightarrow & \mathcal{H o m}_{D_{Z_{1}}} \boxtimes_{\mathbb{C}} D_{Z_{2}}
\end{array} M_{1} \boxtimes_{\mathbb{C}} M_{2}, K^{*}\right) . ~ .
$$

Corollary 7.5.7 ([Lau96, Cor. 3.3.3]). The equivalence $R S_{2}:\left(D_{\text {good }}^{b}\left(D_{Y}\right), *_{D}\right) \rightarrow$ $\left(D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right), \otimes_{\mathcal{A}_{X}}^{L}\right)$ is a strong monoidal functor. In fact, there are canonical isomorphisms of bifunctors
$R S_{2}\left(-*_{D}+\right) \cong\left(R S_{2}-\right) \otimes_{\mathcal{A}_{X}}^{L}\left(R S_{2}+\right): D_{\text {good }}^{b}\left(D_{Y}\right) \times D_{\text {good }}^{b}\left(D_{Y}\right) \rightarrow D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right) ;$
$\left(R S_{1}-\right) *_{D}\left(R S_{1}+\right) \cong T^{-g} R S_{1}\left(-\otimes_{\mathcal{A}_{X}}^{L}+\right): D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right) \times D_{\text {good }}^{b}\left(\mathcal{A}_{X}\right) \rightarrow D_{\text {good }}^{b}\left(D_{Y}\right) ;$
$R S_{1}\left(-*_{\mathcal{A}}+\right) \cong\left(R S_{1}-\right) \otimes_{O_{Y}}^{L}\left(R S_{1}+\right): D_{O-\operatorname{good}}\left(\mathcal{A}_{X}\right) \times D_{O-\operatorname{good}}\left(\mathcal{A}_{X}\right) \rightarrow D_{O-\operatorname{good}}\left(D_{Y}\right) ;$
$\left(R S_{2}-\right) *_{\mathcal{A}}\left(R S_{2}+\right) \cong T^{-g} R S_{2}\left(-\otimes_{O_{Y}}^{L}+\right): D_{O-\operatorname{good}}\left(D_{Y}\right) \times D_{O-\operatorname{good}}\left(D_{Y}\right) \rightarrow D_{O-\operatorname{good}}\left(\mathcal{A}_{X}\right)$.

Proof. Let $\delta_{X}: X \rightarrow X^{2}=: X^{\prime}$ be the diagonal morphism. Its dual morphism is $\mu: Y^{2} \rightarrow Y$. There are canonical isomorphisms of bifunctors

$$
R S_{2}\left(-*_{D}+\right):=R S_{2} \mu_{+}\left(-\boxtimes_{O}+\right)
$$

(a)
$\stackrel{(a)}{\cong} L \tilde{\delta}_{X}^{*} R S_{2}^{\prime}\left(-\boxtimes_{O}+\right)$
(b)
$\cong L \tilde{\delta}_{X}^{*}\left(R S_{2}-\boxtimes_{\mathcal{A}} R S_{2}+\right)$
(c)
$\stackrel{(c)}{\cong}\left(R S_{2}-\right) \otimes_{\mathcal{A}_{X}}^{L}\left(R S_{2}+\right)$,
where (a), (b) and (c) use (41), (49) and (47) respectively. This shows (57).
By Corollary 5.1.5, the functor $R S_{2}$ preserves units, so it is strong monoidal.

In addition, (58) follows:

$$
\begin{aligned}
\left(R S_{1}-\right) *_{D}\left(R S_{1}+\right) & \stackrel{(\mathrm{a})}{\cong} T^{g} R S_{1} R S_{2}\left(R S_{1}-*_{D} R S_{1}+\right) \\
& \stackrel{(\mathrm{b})}{\cong} T^{g} R S_{1}\left(R S_{2} R S_{1}-\otimes_{\mathcal{A}_{X}}^{L} R S_{2} R S_{1}+\right) \\
& \stackrel{(\mathrm{c})}{\cong} T^{g} R S_{1}\left(T^{-g}-\otimes_{\mathcal{A}_{X}}^{L} T^{-g}+\right) \\
& =T^{-g} R S_{1}\left(-\otimes_{\mathcal{A}_{X}}^{L}+\right),
\end{aligned}
$$

where (a) and (c) (resp. (b)) use Theorem 6.3.1, (resp. (57)).
Because the diagonal morphism $\delta_{Y}: Y \rightarrow Y^{2}$ is dual to $m: X^{\prime}=X^{2} \rightarrow X$, there are canonical isomorphisms of bifunctors

$$
\begin{aligned}
R S_{1}\left(-*_{\mathcal{A}}+\right) & :=R S_{1} R \tilde{m}_{*}\left(-\boxtimes_{\mathcal{A}}+\right) \\
& \stackrel{(\mathrm{a})}{\cong} L \delta_{Y}^{*} R S_{1}^{\prime}\left(-\boxtimes_{\mathcal{A}}+\right) \\
& \stackrel{(\mathrm{b})}{\cong} L \delta_{Y}^{*}\left(R S_{1}-\boxtimes_{O} R S_{1}+\right) \\
& \stackrel{(\mathrm{c})}{\cong}\left(R S_{1}-\right) \otimes_{O_{Y}}^{L}\left(R S_{1}+\right),
\end{aligned}
$$

where (a), (b) and (c) use (39), (50) and [HT07, p.39] respectively. This demonstrates (59). Then (60) follows:

$$
\begin{aligned}
\left(R S_{2}-\right) *_{\mathcal{A}}\left(R S_{2}+\right) & \stackrel{(\mathrm{a})}{\cong} T^{g} R S_{2} R S_{1}\left(R S_{2}-*_{\mathcal{A}} R S_{2}+\right) \\
& \stackrel{(\mathrm{b})}{\cong} T^{g} R S_{2}\left(R S_{1} R S_{2}-\otimes_{O_{Y}}^{L} R S_{1} R S_{2}+\right) \\
& \stackrel{(\mathrm{c})}{\cong} T^{g} R S_{2}\left(T^{-g}-\otimes_{O_{Y}}^{L} T^{-g}+\right) \\
& =T^{-g} R S_{2}\left(-\otimes_{O_{Y}}^{L}+\right)
\end{aligned}
$$

where (a) and (c) (resp. (b)) use Theorem 5.1.3 (resp. (59)).

A Unbounded Bernstein's equivalence

In Section A, let X be a smooth algebraic variety over be an algebraically closed field k of characteristic 0 . Let $\mathrm{Qch}\left(O_{X}\right) \subset \operatorname{Mod}\left(O_{X}\right)$ and $\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right) \subset$ $\operatorname{Mod}\left(D_{X}\right)$ be the full subcategories of objects quasi-coherent over O_{X}. They are weak Serre subcategories.

Fact A.0.1 (Bernstein, $\left[\mathrm{B}^{+} 87\right.$, VI, Thm. 2.10]). The natural functor

$$
\iota_{X}^{\prime}: D^{b}\left(\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)\right) \rightarrow D_{\mathrm{qc}}^{b}\left(D_{X}\right)
$$

is an equivalence.

Theorem A. 0.2 is an unbounded generalization of Fact A.0.1. It is left "to the reader to state and prove" in [Nee96, p.207]. We follow the strategy pointed out in [gh], and do not claim originality here.

Theorem A.0.2. The functor

$$
\begin{equation*}
\iota_{X}^{\prime}: D\left(\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)\right) \rightarrow D_{\mathrm{qc}}\left(D_{X}\right) \tag{61}
\end{equation*}
$$

induced by the inclusion $\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right) \rightarrow \operatorname{Mod}\left(D_{X}\right)$ is an equivalence of categories.
We need a series of lemmas for the proof of Theorem A.0.2.
Lemma A.0.3. Every object of $\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)$ is the inductive limit of its coherent D_{X}-submodules.

Proof. Let F be such an object. Then the family of coherent D_{X}-submodules of F is directed. In fact, if G_{1}, G_{2} are coherent D_{X}-submodules of F, then both have finite type over D_{X}. Their sum $G_{1}+G_{2}(\subset F)$ is of finite type over D_{X}. As $\operatorname{Qch}\left(O_{X}\right)$ is an abelian subcategory of $\operatorname{Mod}\left(O_{X}\right)$, the image $G_{1}+G_{2}$ of the natural morphism $G_{1} \oplus G_{2} \rightarrow F$ is quasi-coherent over O_{X}. By [HT07, Prop. 1.4.9 (ii)], the D_{X}-submodule $G_{1}+G_{2}$ of F is coherent.

We prove that F is the union of its coherent D_{X}-submodules. (It is stated as [HT07, Cor. 1.4.17 (iii)], whose poof is omitted.) Let $U \subset X$ be an affine open, $s \in \Gamma(U, F)$ be a section, and $\left.G \subset F\right|_{U}$ be the D_{U}-submodule generated by s. By [HT07, Prop. 1.4.3, 1.4.4 and 1.4.13], the D_{U}-module G is coherent. By [Meb89, Prop. 2.5.7], there is a coherent D_{X}-submodule $G^{\prime} \subset F$ with $\left.G^{\prime}\right|_{U}=G$. Since X has a basis for the Zariski topology consisting of affine opens, every local section of F is locally contained in a coherent D_{X}-submodule.

For an open immersion $j: U \rightarrow X$, we have a natural morphism of ringed spaces $j:\left(U, D_{U}\right) \rightarrow\left(X, D_{X}\right)$. From [B ${ }^{+} 87, \mathrm{VI}, 5.2$] and [HT07, Prop. 1.5.29], the functor $j_{+}: D\left(D_{U}\right) \rightarrow D\left(D_{X}\right)$ is the right derived functor of the corresponding (left exact) direct image $j_{*}: \operatorname{Mod}\left(D_{U}\right) \rightarrow \operatorname{Mod}\left(D_{X}\right)$. By [Ber83, 2, p.12] and [Sta23, Tag 0096], the inverse image $j^{*}: \operatorname{Mod}\left(D_{X}\right) \rightarrow \operatorname{Mod}\left(D_{U}\right)$ is left adjoint to j_{*}. Lemma A.0.4 2 helps to construct a quasi-inverse to (61).

Lemma A.0.4.

1. The category $\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)$ is locally noetherian.
2. The inclusion functor $\iota^{\prime}: \operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right) \rightarrow \operatorname{Mod}\left(D_{X}\right)$ admits a right adjoint $Q^{\prime}=Q_{X}^{\prime}: \operatorname{Mod}\left(D_{X}\right) \rightarrow \operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)$. The unit natural transform $\eta^{\prime}:$ $\operatorname{Id}_{\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)} \rightarrow Q^{\prime} \iota^{\prime}$ is an isomorphism.

Proof. By [Sta23, Tag 01LA (4)], $\mathrm{Qch}\left(O_{X}\right) \subset \operatorname{Mod}\left(O_{X}\right)$ is an abelian subcategory closed under colimits. Then so is $\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right) \subset \operatorname{Mod}\left(D_{X}\right)$.

1. When X is affine, by $\left[H T 07\right.$, Prop. 1.4.4 (ii)], the functor $\Gamma(X, \cdot): \operatorname{Mod}_{q \mathrm{c}}\left(D_{X}\right) \rightarrow$ $\operatorname{Mod}\left(D_{X}(X)\right)$ is an equivalence of abelian categories. As the ring $D_{X}(X)$
is left noetherian, the category $\operatorname{Mod}\left(D_{X}(X)\right)$ is locally noetherian by the last paragraph of [Gab62, p.402].
For a general X, one may assume that there exists an open covering $X=$ $U \cup V$, such that the statement holds for U and V. Arguing as in [Gab62, Prop. 2, p.441], one can prove that $\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)$ is the gluing of $\operatorname{Mod}_{\mathrm{qc}}\left(D_{U}\right)$ and $\operatorname{Mod}_{\mathrm{qc}}\left(D_{V}\right)$ along $\operatorname{Mod}_{\mathrm{qc}}\left(D_{U \cap V}\right)$ in the sense of [Gab62, VI. 1]. Let $j: U \rightarrow X$ be the inclusion. Then

$$
j^{*}: \operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right) \rightarrow \operatorname{Mod}_{\mathrm{qc}}\left(D_{U}\right)
$$

is exact and left adjoint to

$$
j_{*}: \operatorname{Mod}_{\mathrm{qc}}\left(D_{U}\right) \rightarrow \operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)
$$

The (counit) natural transformation $\epsilon: j^{*} j_{*} \rightarrow \operatorname{Id}_{\operatorname{Mod}_{\text {qc }}\left(D_{U}\right)}$ is an isomorphism. From [Gab62, Prop. 5, p.374], the subcategory $\operatorname{ker}\left(j^{*}\right)$ is localizing in $\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)$ (in the sense of $[\mathrm{Gab} 62, \mathrm{p} 372]$) and j^{*} induces an equivalence

$$
\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right) / \operatorname{ker}\left(j^{*}\right) \rightarrow \operatorname{Mod}_{\mathrm{qc}}\left(D_{U}\right)
$$

A similar result holds for V. Then by [Gab62, Lem. 2, p.442], the gluing category $\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)$ is locally noetherian.
2. It follows from 1 and Lemma A.0.5.

Lemma A.0.5. Let \mathcal{A} be a Grothendieck abelian category. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be a functor preserving all colimits.

1. Then F admits a right adjoint $G: \mathcal{B} \rightarrow \mathcal{A}$.
2. If further F is fully faithful, then the unit natural transformation $\eta: \operatorname{Id}_{\mathcal{A}} \rightarrow$ $G F$ is an isomorphism.

Proof. 1. Let Set be the category of sets. For each object $Y \in \mathcal{B}$, consider the functor

$$
\operatorname{Hom}_{\mathcal{B}}(F(\cdot), Y): \mathcal{A}^{\mathrm{op}} \rightarrow \text { Set. }
$$

It transforms colimits into limits. Then by [Sta23, Tag 07D7], it is representable. From [ML13, Cor. 2, p.85], the functor F admits a right adjoint.
2. If follows from Yoneda's lemma.

By [Sta23, Tag 077P (2)], the inclusion $\iota=\iota_{X}: \operatorname{Qch}\left(O_{X}\right) \rightarrow \operatorname{Mod}\left(O_{X}\right)$ admits a right adjoint $Q_{X}=Q: \operatorname{Mod}\left(O_{X}\right) \rightarrow \operatorname{Qch}\left(O_{X}\right)$, called the coherator of X. To reduce the problem to the study of O_{X}-modules, consider the square

where the vertical functors are forgetful.
Lemma A.0.6. Suppose that X is affine. Write $R=\Gamma\left(X, D_{X}\right)$. Then:

1. The functor $\tilde{}:=D_{X} \otimes_{R} \cdot: \operatorname{Mod}(R) \rightarrow \operatorname{Mod}\left(D_{X}\right)$ is left adjoint to the global section functor $\Gamma(X, \cdot): \operatorname{Mod}\left(D_{X}\right) \rightarrow \operatorname{Mod}(R)$;
2. The square (62) is commutative.

Proof.

1. Let $\left(\sigma, \sigma^{\#}\right):\left(X, D_{X}\right) \rightarrow(\{*\}, R)$ be the morphism of ringed spaces, with $\sigma: X \rightarrow\{*\}$ the unique map and $\sigma^{\#}$ given by Id_{R}. Then $\Gamma(X, \cdot)=\sigma_{*}$: $\operatorname{Mod}\left(D_{X}\right) \rightarrow \operatorname{Mod}(R)$. By $[\operatorname{Sta} 23, \operatorname{Tag} 01 \mathrm{BH}]$, the functor $\tilde{\sim}=\sigma^{*}$. The adjunction follows from [Sta23, Tag 0096].
2. From 1 and [HT07, Prop. 1.4 .4 (ii)], the functor $Q^{\prime}: \operatorname{Mod}\left(D_{X}\right) \rightarrow \operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)$ is the composition of $\Gamma(X, \cdot): \operatorname{Mod}\left(D_{X}\right) \rightarrow \operatorname{Mod}(R)$ with $\tilde{\sim}: \operatorname{Mod}(R) \rightarrow$ $\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)$. The largest rectangle in the following diagram

is same as the small square on the left, hence commutative. Moreover, the two horizontal functors $\Gamma(X, \cdot)$ on the right are equivalences, so Q^{\prime} is compatible with Q.

The abelian categories $\operatorname{Mod}\left(D_{X}\right)$ and $\operatorname{Mod}\left(O_{X}\right)$ are Grothendieck. By [Sta23, Tag 079P] and [Sta23, Tag 070K], the functor $Q^{\prime}: \operatorname{Mod}\left(D_{X}\right) \rightarrow \operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)$ and $Q: \operatorname{Mod}\left(O_{X}\right) \rightarrow \operatorname{Qch}\left(O_{X}\right)$ admit right derived functors $R Q^{\prime}: D\left(D_{X}\right) \rightarrow$ $D\left(\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)\right)$ and $R Q: D\left(O_{X}\right) \rightarrow D\left(\operatorname{Qch}\left(O_{X}\right)\right)$.

Lemma A.0.7. 1. The square (62) is commutative.
2. The square

is commutative.
Proof.

1. We deduce a formula for Q_{X}^{\prime}. Since X is quasi-compact, there is a finite cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ of X by affine opens. For any $\alpha \neq \beta$ in I, since X is separated over k, the scheme $U_{\alpha \beta}:=U_{\alpha} \cap U_{\beta}$ is affine. Denote all the various open immersions $U_{\alpha \beta} \rightarrow X$ and $U_{\alpha} \rightarrow X$ as j. For every $D_{X^{-}}$ module F, the sheaf axiom gives an equalizer diagram in $\operatorname{Mod}\left(D_{X}\right)$:

$$
0 \rightarrow F \rightarrow \oplus_{\alpha} j_{*}\left(\left.F\right|_{U_{\alpha}}\right) \rightrightarrows \oplus_{(\alpha, \beta)} j_{*}\left(\left.F\right|_{U_{\alpha \beta}}\right)
$$

where the two right morphisms are induced by the inclusions $U_{\alpha \beta} \rightarrow U_{\alpha}$ and $U_{\alpha \beta} \rightarrow U_{\beta}$. By Lemma A.0.8, it induces another equalizer diagram in $\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)$:

$$
\begin{equation*}
0 \rightarrow Q_{X}^{\prime} F \rightarrow \oplus_{\alpha} j_{*} Q_{U_{\alpha}}^{\prime}\left(\left.F\right|_{U_{\alpha}}\right) \rightrightarrows \oplus_{(\alpha, \beta)} j_{*} Q_{U_{\alpha \beta}}^{\prime}\left(\left.F\right|_{U_{\alpha \beta}}\right) \tag{63}
\end{equation*}
$$

There is a natural transformation $\iota^{\prime} Q_{X}^{\prime} \rightarrow \operatorname{Id}_{\operatorname{Mod}\left(D_{X}\right)}: \operatorname{Mod}\left(D_{X}\right) \rightarrow$ $\operatorname{Mod}\left(D_{X}\right)$. Applying for ${ }_{X}: \operatorname{Mod}\left(D_{X}\right) \rightarrow \operatorname{Mod}\left(O_{X}\right)$, one gets a natural transformation for ${ }_{X} \circ \iota^{\prime} \circ Q_{X}^{\prime} \rightarrow$ for $_{X}: \operatorname{Mod}\left(D_{X}\right) \rightarrow \operatorname{Mod}\left(O_{X}\right)$. Since for $_{X} \circ \iota^{\prime}=\iota \circ$ for $_{X}: \operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right) \rightarrow \operatorname{Mod}\left(O_{X}\right)$ and Q_{X} is right adjoint to ι, there is a natural transformation

$$
\mu_{X}: \text { for }_{X} \circ Q_{X}^{\prime} \rightarrow Q_{X} \circ \text { for }_{X}
$$

of functors $\operatorname{Mod}\left(D_{X}\right) \rightarrow \operatorname{Qch}\left(O_{X}\right)$. By Lemma A.0.6 2, it is an isomorphism when X is affine.
For a general X, by (63) and [TT07, (B.14.2)], there is a commutative diagram of functors $\operatorname{Mod}\left(D_{X}\right) \rightarrow \operatorname{Qch}\left(O_{X}\right)$:

where the two vertical arrows on the right are isomorphisms. Therefore, μ_{X} is an isomorphism.
2. The morphism $\left(X, D_{X}\right) \rightarrow\left(X, O_{X}\right)$ of ringed spaces is flat, and the direct image functor is the forgetful functor for ${ }_{X}: \operatorname{Mod}\left(D_{X}\right) \rightarrow \operatorname{Mod}\left(O_{X}\right)$. By [Sta23, Tag 08BJ], it preserves K-injective complexes. The conclusion follows from Point 1, Lemma A.0.9 and [Sta23, Tag 070K].

Lemma A.0.8. Let $j: U \rightarrow X$ be an open immersion. Then the natural transformation $j_{*} \circ Q_{U}^{\prime} \rightarrow Q_{X}^{\prime} \circ j_{*}: \operatorname{Mod}\left(D_{U}\right) \rightarrow \operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)$ is an isomorphism.

Proof. As $j^{*}: \operatorname{Mod}\left(D_{X}\right) \rightarrow \operatorname{Mod}\left(D_{U}\right)$ restricts to a functor $\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right) \rightarrow$ $\operatorname{Mod}_{\mathrm{qc}}\left(D_{U}\right)$, one has $\iota_{U}^{\prime} j^{*}=j^{*} \iota_{X}^{\prime}$ as functors $\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right) \rightarrow \operatorname{Mod}\left(D_{U}\right)$. The functor $j_{*}: \operatorname{Mod}\left(D_{U}\right) \rightarrow \operatorname{Mod}\left(D_{X}\right)$ regards the direct image $j_{*}: \operatorname{Mod}\left(O_{U}\right) \rightarrow$ $\operatorname{Mod}\left(O_{X}\right)$, so it also restricts to a functor $\operatorname{Mod}_{\mathrm{qc}}\left(D_{U}\right) \rightarrow \operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)$. As Q^{\prime} is right adjoint to ι^{\prime} and j_{*} is right adjoint to j^{*}, the isomorphism follows.

Lemma A.0.9. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ and $G: \mathcal{B} \rightarrow \mathcal{C}$ be left exact functors of abelian categories. Assume that \mathcal{A}, \mathcal{B} are Grothendieck. If for ever K-injective complex I over \mathcal{A}, the natural morphism $G F(I) \rightarrow R G(F(I))$ in $D(\mathcal{C})$ is an isomorphism, ${ }^{2}$ then the canonical natural transformation (constructed in [Sta23, Tag 05T2 (1)]) $t: R(G \circ F) \rightarrow R G \circ R F$ is an isomorphism of functors from $D(\mathcal{A}) \rightarrow D(\mathcal{C})$.

Proof. Let A be a complex over \mathcal{A}. As \mathcal{A} is Grothendieck, by [Sta23, Tag 079P], there is a quasi-isomorphism $A \rightarrow I$ such that I is a K-injective complex. By [Sta23, Tag 070K], the morphism t_{A} is the composition of isomorphisms

$$
R(G \circ F)(A)=G F(I) \rightarrow R G(F(I))=R G(R F(A))
$$

Proof of Theorem A.0.2. By [Sta23, Tag 09T5], $R Q^{\prime}: D\left(D_{X}\right) \rightarrow D\left(\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)\right)$ is right adjoint to $L \iota^{\prime}=\iota^{\prime}: D\left(\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)\right) \rightarrow D\left(D_{X}\right)$. Let $\Psi^{\prime}: D_{\mathrm{qc}}\left(D_{X}\right) \rightarrow$ $D\left(\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)\right)\left(\operatorname{resp} . \Psi: D_{\mathrm{qc}}\left(O_{X}\right) \rightarrow D\left(\mathrm{Qch}\left(O_{X}\right)\right)\right)$ be the restriction of $R Q^{\prime}$ (resp. $R Q$). By Lemma A.0.7 2, there are natural commutative squares

where $L \iota$ is induced by the inclusion $\iota: \operatorname{Qch}\left(O_{X}\right) \rightarrow \operatorname{Mod}\left(O_{X}\right)$.
Since Ψ is right adjoint to ι, the counit $\epsilon^{\prime}: \iota^{\prime} \Psi^{\prime} \rightarrow \operatorname{Id}_{D_{\mathrm{qc}}\left(D_{X}\right)}$ (resp. unit $\left.\eta^{\prime}: \operatorname{Id}_{D\left(\operatorname{Mod}_{\mathrm{qc}}\left(D_{X}\right)\right)} \rightarrow \Psi^{\prime} \iota^{\prime}\right)$ is compatible with the counit $\epsilon: \iota \Psi \rightarrow \operatorname{Id}_{D_{\mathrm{qc}}\left(O_{X}\right)}$ (resp. unit $\left.\eta: \operatorname{Id}_{D\left(\operatorname{Qch}\left(O_{X}\right)\right)} \rightarrow \Psi \iota\right)$. The functor for : $D\left(D_{X}\right) \rightarrow D\left(O_{X}\right)$ is conservative. By [Sta23, Tag 09T4], the counit ϵ and the unit η are isomorphisms, so are the counit ϵ^{\prime} and the unit η^{\prime}. In particular, the functor (61) is an equivalence with a quasi-inverse Ψ^{\prime}.

B When is an induced D-module holonomic?

Proposition B.0.1. Let X be a complex manifold. Let F be an O_{X}-module. Then the following conditions are equivalent:

1. the induced module $D_{X} \otimes_{O_{X}} F$ is holonomic;

[^1]2. F is coherent with $\operatorname{Supp}(F)$ discrete.

Lemma B.0.2 and Lemma B.0.3 are needed for the proof of Proposition B.0.1.
Lemma B.0.2. Let A be a Gorenstein local ring (in the sense of [Sta23, Tag 0DW7 (1)]) of Krull dimension n. Let M be a finite A-module. Then the following conditions are equivalent:

1. For all integers $i \neq n$, one has $\operatorname{Ext}^{i}(M, A)=0$;
2. the length of M is finite.

Proof. Let k be the residue field of A.

- Assume Condition 1. To prove 2, one may assume $M \neq 0$. As A is Gorenstein, $A[0]$ is a dualizing complex of A. By [Mat87, Thm. 18.1, p.141], one has $R \mathcal{H o m} A_{A}(k, A[n])=k[0]$, so $A[n]$ is the normalized dualizing complex of A (in the sense of [Sta23, Tag 0A7M]). Let d be the depth of M. By [Sta23, Tag 0B5A], the module M is Cohen-Macaulay and

$$
M=\operatorname{Ext}_{A}^{n-d}\left(\operatorname{Ext}_{A}^{n-d}(M, A), A\right)
$$

Thus, $\operatorname{Ext}_{A}^{n-d}(M, A) \neq 0$. By Condition 1, one has $n-d=n$. Hence $\operatorname{dim} \operatorname{Supp}(M)=d=0$. By [Ati69, Exercise 19 v), p.46], one has $\operatorname{dim} A / \operatorname{Ann}(M)=$ 0 . Then $A / \operatorname{Ann}(M)$ is an artinian ring. From [Eis13, Cor. 2.17], the length of M is finite.

- Assume Condition 2. Induction on the length $l(M)$ of M. When $l(M)=0$, one has $M=0$ and Condition 1 holds. Now assume $l(M)>0$ and the statement holds for all modules of length less than $l(M)$. There is a submodule N of M such that M / N is a simple module and $l(N)<l(M)$. By [Sta23, Tag 00J2], the module M / N is isomorphic to k. For every integer $i \neq n$, the short exact sequence $0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0$ induces an exact sequence $\operatorname{Ext}^{i}(M / N, A) \rightarrow \operatorname{Ext}^{i}(M, A) \rightarrow \operatorname{Ext}^{i}(N, A)$. By the inductive hypothesis, $\operatorname{Ext}^{i}(N, A)=0$. By [Mat87, Thm. 18.1, p.141], one has $\operatorname{Ext}^{i}(M / N, A)=0$. Hence $\operatorname{Ext}^{i}(M, A)=0$.

Lemma B.0.3. Let X be a complex analytic space. Let F be a coherent O_{X-} module. Then the length of the $O_{X, x}$-module F_{x} is finite for all $x \in X$ if and only if the subspace $\operatorname{Supp}(F) \subset X$ is discrete.
Proof. The "if" part follows from [Liu23a, Lem. 5.2.4 1]. We prove the "only if" part. By coherence of F and [GR84, p.76], $\operatorname{Supp}(F)$ is a closed analytic set of X. Assume to the contrary that $\operatorname{Supp}(F)$ is not discrete. Then $\operatorname{dim} \operatorname{Supp}(F)>0$. Let C be an irreducible component of $\operatorname{Supp}(F)$ of maximal dimension. Endow C with the reduced induced closed subspace structure. Let $i: C \rightarrow X$ be the closed embedding of complex analytic spaces.

For every $x \in C$, the morphism $O_{X, x} \rightarrow O_{C, x}$ is surjective. Then by [Sta23, Tag 00IX], one has $l_{O_{C, x}}\left(i^{*} F\right)_{x}=l_{O_{X, x}}\left(i^{*} F\right)_{x}$. The morphism $F_{x} \rightarrow\left(i^{*} F\right)_{x}$ of $O_{X, x}$-modules is surjective, so $l_{O_{X, x}}\left(i^{*} F\right)_{x} \leq l_{O_{X, x}} F_{x}$. In particular, the length of $\left(i^{*} F\right)_{x}$ over $O_{C, x}$ is finite. By [?, Cor. 5.2.4.1], the support of $i^{*} F$ is C. Replacing (X, F) by $\left(C, i^{*} F\right)$, one may assume further that X is irreducible with $\operatorname{dim} X>0$.

By the generic freeness [Ros68, Prop. 3.1], there is $x_{0} \in X$ such that $F_{x_{0}}$ is a free $O_{X, x_{0}}$-module. As the support of F is X, from [RS17, p.238], F is not a torsion sheaf. Then by irreducibility of X and [Ros68, p.69], the $O_{X, x_{0}}{ }^{-}$ module $F_{x_{0}}$ has positive rank. Thus, $O_{X, x_{0}}$ has finite length over itself, hence an artinian ring. The dimension formula in [GR84, p.96] and [CD94, (14.14), p.89] yield $\operatorname{dim} X=\operatorname{dim}_{x_{0}} X=\operatorname{dim} O_{X, x}=0$, a contradiction.

Proof of Proposition B.0.1. Let $M=D_{X} \otimes_{O_{X}} F$ and $\hat{F}=R \mathcal{H o m} O_{X}\left(F, O_{X}\right)$. By [Sta23, Tag 08DJ], one has

$$
\begin{equation*}
\mathcal{H o m}_{O_{X}}\left(\omega_{X}, \hat{F}\right)=R \mathcal{H} \text { om }_{O_{X}}\left(\omega_{X} \otimes_{O_{X}} F, O_{X}\right) \tag{64}
\end{equation*}
$$

Provided that F is coherent, [Bjö93, (ii) p.122] gives

$$
\begin{equation*}
\Delta^{D_{X}} M=D_{X} \otimes_{O_{X}} \mathcal{H o m}_{O_{X}}\left(\omega_{X}, \hat{F}\right)[\operatorname{dim} X] \tag{65}
\end{equation*}
$$

Plugging (64) into (65), one gets

$$
\Delta^{D_{X}} M=D_{X} \otimes_{O_{X}} \text { RHom }_{O_{X}}\left(\omega_{X} \otimes_{O_{X}} F, O_{X}\right)[\operatorname{dim} X]
$$

For every nonzero integer i, one has

$$
H^{i}\left(\Delta^{D_{X}} M\right)=D_{X} \otimes_{O_{X}} \mathcal{E} x t_{O_{X}}^{i+\operatorname{dim} X}\left(\omega_{X} \otimes_{O_{X}} F, O_{X}\right)
$$

By [Sta23, Tag 01CB] and [GH78, 1. p.700], its stalk at $x \in X$ is isomorphic to

$$
D_{X, x} \otimes_{O_{X, x}} \operatorname{Ext}_{O_{X, x}}^{i+\operatorname{dim}_{x} X}\left(F_{x}, O_{X, x}\right)
$$

- Assume Condition 2. By [Bjö93, 1.5.1], the D_{X}-module M is coherent. By Lemma B.0.3, the $O_{X, x}$-module F_{x} has finite length. As $O_{X, x}$ is a noetherian regular local ring of Krull dimension $\operatorname{dim}_{x} X$, by Lemma B.0.2, one has $\operatorname{Ext}_{O X, x}^{i+\operatorname{dim}_{x} X}\left(F_{x}, O_{X, x}\right)=0$ for all $x \in X$. Hence $H^{i}\left(\Delta^{D_{X}} M\right)=0$. From Fact 7.2.2 2, the D_{X}-module M is holonomic.
- Assume Condition 1. From [SS94, p.55], the O_{X}-module F is coherent. From Fact 7.2.2 2 , for every nonzero integer i, one has $H^{i}\left(\Delta^{D_{X}} M\right)=0$. As $D_{X, x}$ is a nonzero free $O_{X, x}$-module, one gets $\operatorname{Ext}_{O_{X, x}}^{i+\operatorname{dim}_{x} X}\left(F_{x}, O_{X, x}\right)=0$. By Lemma B.0.2, the $O_{X, x}$-module F_{x} has finite length for every $x \in X$. From Lemma B.0.3, the support of F is discrete.

The proof of Proposition B.0.4 (an algebraic analog of Proposition B.0.1) is similar.

Proposition B.0.4. Let X be a smooth algebraic variety over an algebraically closed field of characteristic 0 . Let F be an O_{X}-module. Then the following conditions are equivalent:

1. the induced module $D_{X} \otimes_{O_{X}} F$ is holonomic;
2. F is coherent with $\operatorname{Supp}(F)$ finite.

Acknowledgments

I would like to express my gratitude to my supervisor Anna Cadoret, for her support, patience and tolerance. Gabriel Ribeiro kindly shared several useful notes and helped me with Lemma 7.5.2, to whom I am grateful. Proposition 7.5.4 and its proof, both due to Claude Sabbah, are explained to me by Gabriel Ribeiro. I also owe a lot to Professor Robin Hartshorne, Professor Pierre Schapira, Professor Toshiyuki Tanisaki, Professor Jean-Baptiste Teyssier, Chenyu Bai, Adrien Cortes, Andreas Hohl and Hui Zhang for their generous help and many enlightening discussions. I must thank Professors Akio Tamagawa and Benjamin Collas, for giving me a precious opportunity to visit Kyoto University and for their generous help, during and beyond my stay. The kindness and friendliness of all the secretaries of Kokusai, RIMS are sincerely appreciated.

References

[ABC20] Yves André, Francesco Baldassarri, and Maurizio Cailotto. De Rham cohomology of differential modules on algebraic varieties. Springer, 2nd edition, 2020.
[Ati69] Michael Atiyah. Introduction to commutative algebra. CRC Press, 1969.
[$\left.\mathrm{B}^{+} 87\right] \quad$ Armand Borel et al. Algebraic D-Modules, volume 2 of Perspectives in Mathematics. Academic Press, 1987.
[Bal10] Paul Balmer. Tensor triangular geometry. In Proceedings of the International Congress of Mathematicians, volume 2, pages 85-112, 2010.
[BBBP07] Oren Ben-Bassat, Jonathan Block, and Tony Pantev. Noncommutative tori and Fourier-Mukai duality. Compositio Mathematica, 143(2):423-475, 2007.
[Ber83] J Bernstein. Algebraic theory of D-modules. https://gauss.math. yale.edu/~il282/Bernstein_D_mod.pdf, 1983.
[Bjö79] Jan-Erik Björk. Rings of differential operators, volume 21. NorthHolland Mathematical Library, 1979.
[Bjö93] Jan-Erik Björk. Analytic D-modules and applications, volume 247. Springer Science \& Business Media, 1993.
[BK09] Jean-Benoît Bost and Klaus Künnemann. Hermitian vector bundles and extension groups on arithmetic schemes II. The arithmetic Atiyah extension. In Dai Xianzhe, Léandre Rémi, Xiaonan Ma, and Zhang Weiping, editors, From probability to geometry (I) - Volume in honor of the 60th birthday of Jean-Michel Bismut, number 327 in Astérisque. Société mathématique de France, 2009.
[CD94] Frédéric Campana and G Dethloff. Several complex variables VII: sheaf-theoretical methods in complex analysis, volume 74. Springer Science \& Business Media, 1994.
[Del70] Pierre Deligne. Équations différentielles à points singuliers réguliers, volume 163. Springer, 1970.
[Eis13] David Eisenbud. Commutative algebra: with a view toward algebraic geometry, volume 150. Springer Science \& Business Media, 2013.
[Gab62] P. Gabriel. Des catégories abéliennes. Bulletin de la Société Mathématique de France, 90:323-448, 1962.
[gh] gdb (https://mathoverflow.net/users/115211/gdb). Compare bounded (unbounded) derived categories of D-modules. https://mathoverflow.net/q/361206.
[GH78] Phillip Griffiths and Joseph Harris. Principles of algebraic geometry. John Wiley \& Sons, 1978.
[GR84] Hans Grauert and Reinhold Remmert. Coherent analytic sheaves, volume 265. Springer Science \& Business Media, 1984.
[Har66] Robin Hartshorne. Residues and duality, volume 20. Springer, 1966.
[Har77] Robin Hartshorne. Algebraic geometry, volume 52. Springer Science \& Business Media, 1977.
[HT07] Ryoshi Hotta and Toshiyuki Tanisaki. D-modules, perverse sheaves, and representation theory, volume 236. Springer Science \& Business Media, 2007.
[Huy06] Daniel Huybrechts. Fourier-Mukai transforms in algebraic geometry. Clarendon Press, 2006.
[Kas03] Masaki Kashiwara. D-modules and microlocal calculus, volume 217. American Mathematical Soc., 2003.
[Kem91] George R Kempf. Complex abelian varieties and theta functions. Springer-Verlag Berlin, 1991.
[KK11] Ludger Kaup and Burchard Kaup. Holomorphic functions of several variables: an introduction to the fundamental theory, volume 3. Walter de Gruyter, 2011.
[KS96] Masaki Kashiwara and Pierre Schapira. Moderate and formal cohomology associated with constructible sheaves. Number 64 in Mémoires de la Société Mathématique de France. Société mathématique de France, 1996.
[KS97] Masaki Kashiwara and Pierre Schapira. Integral transforms with exponential kernels and Laplace transform. Journal of the American Mathematical Society, 10(4):939-972, 1997.
[KS13] Masaki Kashiwara and Pierre Schapira. Sheaves on Manifolds, volume 292. Springer Science \& Business Media, 2013.
[KS16] Masaki Kashiwara and Pierre Schapira. Regular and irregular holonomic D-modules, volume 433. Cambridge University Press, 2016.
[Lau96] Gérard Laumon. Transformation de Fourier généralisée. https: //arxiv.org/pdf/alg-geom/9603004v1.pdf, 1996.
[Liu23a] Haohao Liu. Fourier-Mukai transform on complex tori, revisited. https://webusers.imj-prg.fr/~haohao.liu/OFM.pdf, 2023.
[Liu23b] Haohao Liu. Group extensions of complex Lie groups. https:// webusers.imj-prg.fr/~haohao.liu/Liegpext.pdf, 2023.
[Mal94] Bernard Malgrange. Filtration des modules holonomes. In Analyse algébrique des perturbations singulières. Hermann, 1994.
[Mal96] Bernard Malgrange. Connexions méromorphes 2 Le réseau canonique. Inventiones mathematicae, 124(1):367-387, 1996.
[Mal04] Bernard Malgrange. On irregular holonomic D-modules. In Eléments de la théorie des systemes différentiels géométriques, volume 8, pages 391-410. Société mathématique de France, 2004.
[Mat59] Yozô Matsushima. Fibres holomorphes sur un tore complexe. Nagoya Mathematical Journal, 14:1-24, 1959.
[Mat87] Hideyuki Matsumura. Commutative Ring Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1987.
[Meb89] Zoghman Mebkhout. Le formalisme des six opérations de Grothendieck pour les D_{X}-modules cohérents. Hermann, Paris, 1989.
[Mil13] James S. Milne. Lectures on Étale cohomology (v2.21). https: //www.jmilne.org/math/CourseNotes/LEC.pdf, 2013.
[ML13] Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science \& Business Media, 2013.
[Mor59] Akihiko Morimoto. Sur la classification des espaces fibrés vectoriels holomorphes sur un tore complexe admettant des connexions holomorphes. Nagoya Mathematical Journal, 15:83-154, 1959.
[Muk81] Shigeru Mukai. Duality between $D(X)$ and $D(\hat{X})$ with its application to Picard sheaves. Nagoya Mathematical Journal, 81:153-175, 1981.
[Nak94] Atsushi Nakayashiki. Commuting partial differential operators and vector bundles over abelian varieties. American Journal of Mathematics, 116(1):65-100, 1994.
[Nee96] Amnon Neeman. The Grothendieck duality theorem via Bousfield's techniques and Brown representability. Journal of the American Mathematical Society, 9(1):205-236, 1996.
[PPS17] Giuseppe Pareschi, Mihnea Popa, and Christian Schnell. Hodge modules on complex tori and generic vanishing for compact Kähler manifolds. Geometry \S Topology, 21(4):2419-2460, 2017.
[Ros58] Maxwell Rosenlicht. Extensions of vector groups by abelian varieties. American Journal of Mathematics, 80(3):685-714, 1958.
[Ros68] Hugo Rossi. Picard variety of an isolated singular point. Rice Institute Pamphlet-Rice University Studies, 54(4), 1968.
[Rot96] Mitchell Rothstein. Sheaves with connection on abelian varieties. Duke Mathematical Journal, 84(3):565-598, 1996.
[Rot97] Mitchell Rothstein. Correction to "Sheaves with connection on abelian varieties". Duke Mathematical Journal, 87(1):205-211, 1997.
[RS17] Jean Ruppenthal and Martin Sera. Modifications of torsion-free coherent analytic sheaves. Annales de l'Institut Fourier, 67(1):237265, 2017.
[Sab11] Claude Sabbah. Introduction to the theory of \mathcal{D}-modules. https://perso.pages.math.cnrs.fr/users/claude.sabbah/ livres/sabbah_nankai110705.pdf, 2011.
[Sai89] Morihiko Saito. Induced D-modules and differential complexes. Bulletin de la Société Mathématique de France, 117(3):361-387, 1989.
[Sch15] Christian Schnell. Holonomic d-modules on abelian varieties. Publications mathématiques de l'IHÉS, 121(1):1-55, 2015.
[Sim92] Carlos Simpson. Higgs bundles and local systems. Publications Mathématiques de l'IHÉS, 75:5-95, 1992.
[SS94] Pierre Schapira and Jean-Pierre Schneiders. Index theorem for elliptic pairs. Astérisque, 224:1-4, 1994.
[Sta23] The Stacks project authors. The stacks project. https://stacks. math. columbia.edu, 2023.
[TT07] Robert W Thomason and Thomas Trobaugh. Higher algebraic Ktheory of schemes and of derived categories. The Grothendieck Festschrift: a collection of articles written in honor of the 60th birthday of Alexander Grothendieck, III:247-435, 2007.
[Vig21] Florian Viguier. D-modules arithmétiques et transformation de Fourier-Mukai. PhD thesis, Université de Strasbourg, 2021.
[Wei07] Rainer Weissauer. Brill-Noether sheaves, 2007.
[Wei11] R. Weissauer. A remark on rigidity of BN-sheaves, 2011.
[Yek19] Amnon Yekutieli. Derived categories, volume 183. Cambridge University Press, 2019.

[^0]: ${ }^{1}$ This example shows that Lemma 3.3.2 fails without coherent condition.

[^1]: ${ }^{2}$ i.e., $F(I)$ computes $R G$ in the sense of [Sta23, Tag 05SX (1)]

