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1 Introduction

Mordell's conjecture is �rst proved by Faltings via Arakelov methods (see
[Fal83] or its English translation [Fal86]). He proved the following conjectures
in order:

� (Tate conjecture) An abelian variety over a number �eldK is determined
up to K-isogeny by its Tate module with ΓK-action.

� (Shafarevich conjecture) There are only �nitely many abelian varieties
(resp. smooth projective curves) of �xed dimension g ≥ 0 (resp. �xed
genus g > 1) de�ned over a �xed number �eld K with good reduction1

outside a �xed �nite set of places of K.

� (Mordell conjecture) Theorem 5.0.1.

The observation that Mordell's conjecture follows from that of Shafarevich
was due to Parshin [Par68]. It relies on constructing a non-isotrivial relative
curve over the given curve of genus at least 2.

1De�nition 3.4.5
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By now di�erent proofs are presented: Vojta's Diophantine approximation
way [Voj91] and Lawrence-Venkatesh's p-adic period method in [LV20]. The
method of Lawrence-Venkatesh is a combination of ideas from Faltings' proof
and Kim's non-abelian Chabauty theory [Kim05]. Although certain additional
assumption is needed to deduce �niteness by the method of Chabauty-Kim,
this one can explicitly determine the set of rational points in some examples
where the additional information is known.

Mordell's conjecture can be formulated more generally for integral points
on smooth hyperbolic curves in order to include genus 0 curves with at least
three punctures (cf.[LV20, Theorem 4.1]) and genus 1 curves with at least
one puncture (see Theorem 8.0.1).
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2 Preparatory results

This section should be referred to only as necessary when reading the main
text.

Frobv ∈ GKv arithmetic Frobenius, see [BC09, p.4]
We gather some notation. A general �eld is denoted by k and its absolute

Galois group is denoted by Gk = G(ks/k), where ks denotes a separable
closure of k. Denote an algebraic closure of k by k̄. A �eld with a discrete
valuation is denoted by E, the ring of integer by OE and its residue �eld
by F. For a �nite unrami�ed extension E/Qp, we call a preimage of the
(arithmetic, that is the �eld automorphism Fp → Fp de�ned by x 7→ xp)
Frobenius (element of GFp) under the isomorphism G(E/Qp)→ G(F/Fp) an
(arithmetic) Frobenius of E/Qp and denote it by σE/Qp , which is of order
[E : Qp]. Throughout K denotes a number �eld unless otherwise speci�ed.
Repeatedly S(⊃ S∞) stands for a �nite set of places of K, including the set
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S∞ of all archimedean ones. Then OS(⊂ K) is understood to be the ring of
S-integers.

For a �nite place w of K, Kw denotes the completion of K at w and Fw
denotes its residue �eld. Let qw = #Fw be its cardinal. We let CKw denote the
completion of an algebraic closure ofKw, which is isomorphic to C andKur

w be
the maximal unrami�ed extension of Kw inside Ks

w. Then the inertia group
at w is GKur

w
. Recall the natural isomorphism GKw/GKur

w
→ GFw . Choosing

a place u of Ka above w allows us to identify GKw with the decomposition
subgorupDu of GK . Di�erent choices lead to GK-conjucate closed subgroups.
Choose Frobw ∈ GKw an element maps to the Frobenius in GFw and use the
same symbol for its restriction to Ks: Frobw ∈ GK . For a scheme X of
�nite type over K, denote by Xh(= Xan

C ) (resp.Xan
w ) the analyti�cation of

XC (resp.XKw). For X a scheme over a local ring (R,m), its special �ber
X ⊗R R/m is written as X̄ . For a scheme S, we denote dimS its Krull
dimension.

Recall that a subset of a topology space is called rare/thin/nowhere dense
if its closure has no interior.

Proposition 2.0.1. [GR12, Theorem, p.168] Let X be an analytic space,
then X is irreducible if and only if every proper analytic subset is rare. Every
connected complex manifold is an irreducible analytic space.

Theorem 2.0.2. [GR12, p.111] Let X be an analytic space, {Aα} a family
of analytic subsets of X, then ∩αAα is an analytic subset of X.

From Theorem 2.0.2, for every subset A ⊂ X, there is a smallest analytic
subset of X containing A, called the analytic Zariski closure of A in X.

2.1 Riemann-Hilbert correspondence

Let M be a connected, locally path connected, locally simply connected
topological space with a base point p.

Proposition 2.1.1. [Del70, Corollaire 1.4, p.4][ZS09, Corollary 1.9] Denote
the category of local systems (i.e., locally constant sheaf) of �nite-dimensional
C-vector spaces by Loc(M). Then taking stalk Fp : Loc(M)→ V ecC is a �ber
functor making Loc(M) a neutralized Tannakian category. The topological
monodromy representation induces an equivalence of neutralized Tannakian
categories

Loc(M)→ RepC(π1(M, p)). (1)
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The Tannakian group is the algebraic hull of π1(M, p) over �eld C. For all
L ∈ Loc(M), its Tannakian monodromy group is the Zariski closure of the
image of the associated monodromy representation π1(M, p) → GL(Lp) and
the image of the natural map Γ(M,L) → Lp is an isomorphism onto the
set of monodromy invariants Lπ1(M,p)

p . In particular, when M is furthermore
simply connected, then any local system on M is a constant sheaf.

Assume further that M is a connected smooth manifold. Let C∞
M be the

sheaf of smooth complex functions on M . Let E → M be a smooth vector
bundle with a linear (smooth) connection D. Let E be the sheaf of smooth
sections of E. The connection D is called integrable/�at if its curvature RD

vanishes. A smooth local section s of E is called horizontal/�at/parallel if
D(s) = 0.

Assume that {s1, . . . , sr} is a smooth local frame of E over an open
U ⊂ M , then any section s ∈ Γ(U,E) writes as s =

∑r
i=1 fisi and D(s) =∑r

i=1 si ⊗ dfi. That means we get a local trivialization

E|U U × Cr

U

that carries D to the standard derivative on U × Cr. Then RD|U = 0. In
fact, a converse holds.

Theorem 2.1.2 (Smooth Frobenius). [Huy05, Exercise 4.3.10, p.192][CMSP17,
Lemma C.4.1; Corollary C.4.2] The connection D is integrable if and only
if every p ∈ M admits an open neighborhood U and a smooth local frame
over U consisting of horizontal sections. In that case, ker(D) is a local
system on M and the parallel transport along a smooth curve depends only
on the homotopy (with �xed ends) class of the curve, hence a representation
π1(M, p) → GL(Ep). The natural map ker(D)p → Ep = Ep ⊗C∞

p
C is a

π1(M, p)-equivariant isomorphism.

Given another smooth vector bundle E ′ with a connection D′, then a
morphism F : (E,D) → (E ′, D′) is equivalent to a global horizontal section
of the Hom-vector bundle Hom(E,E ′) with the induced connection. When
D,D′ are integrable, then so is the induced connection. In particular, the
stalks Fp ∈ HomC(Ep, E

′
p) are of the same rank in view of Theorem 2.1.2.
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Here a morphism of smooth vector bundles is not required to have a smooth
vector bundles as its kernel a priori, but this follows from its compatibility
with the �at connections.

Theorem 2.1.3 (Smooth Riemann-Hilbert correspondence). [CMSP17, Theorem
C.4.3] Let Fl(M) be the category of smooth complex vector bundles with a �at
connection. Then Fl(M) is an abelian category and the functor ψ : Fl(M)→
Loc(M) by (E,D) 7→ ker(D) is an equivalence of abelian categories. A quasi-
inverse is given by L 7→ (L ⊗C C

∞
M , Id⊗ d).

Proof. For a morphism (E,D) → (E ′, D′) in Fl(M), the kernel is a smooth
vector bundle. Given a local system L, then L ⊗C C

∞
M is a smooth vector

bundle. Then one can argue as in [Con, Theorem 2.6].

Now assume even further that M is a connected complex manifold and
retain a base point p ∈M . Let A1

M (resp.A1,0
M , resp. A0,1

M ) the sheaf of smooth
complex 1 (resp. (1, 0) resp. (0, 1)) forms on M , Ω1

M ⊂ A1,0
M the sheaf of

holomorphic 1-forms on M , (note that A1
M = A1,0

M ⊕ A
0,1
M = Ω1

M ⊗OM
C∞
M ).

Recall the de�nition of holomorphic connection, which is more restrictive
than a connection compatible with the holomorphic structure.

De�nition 2.1.4 (holomorphic connection). [Huy05, De�nition 4.2.17, p.179]Let
H →M be a holomorphic vector bundle. A holomorphic connection is a C-
linear map ∇ : H → H ⊗C Ω1

M with

∇(fs) = s⊗ (∂f) + f∇(s)

for any local holomorphic function f onM and any local holomorphic section
s of H.

An analogue for Theorem 2.1.2 in the analytic setting.

Theorem 2.1.5 (holomorphic Frobenius). Let E → M be a holomorphic
vector bundle with a holomorphic connection, then the connection is integrable
if and only if every p ∈M admits an open neighborhood U and a holomorphic
local frame comprised of horizontal sections.

Proof. Use [Voi02, Theorem 2.26, p.51].

Given a smooth vector bundle on M with a smooth connection D, ie a
locally free sheaf E of C∞

M -module of rank r with D : E → E ⊗C∞
M
A1
M . We
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can decompose D = D1,0+D0,1, where D1,0 : E → E ⊗C∞
M
A1,0
M (not a smooth

connection!) idem for D0,1. Then the curvature RD = (D1,0)2 + (D0,1)2 +
D1,0D0,1 +D0,1D1,0. Therefore, D is integrable if and only if

(D1,0)2 = 0, (D0,1)2, D1,0D0,1 +D0,1D1,0 = 0.

If (D0,1)2 = 0, then by Koszul-Malgrange theorem [KM58, Théorème 2,
p.106] H := ker(D0,1) ⊂ E is a holomorphic vector bundle (i.e a locally free
sheaf of OM -module) of same rank r, the natural map H⊗OM

C∞
M → E is an

isomorphism and D0,1 = ∂̄H is the Dolbeault operator. If D is furthermore
integrable, then by [Bis98, p.2829] D1,0 restricts to an integrable holomorphic
connection ∇ : H → H⊗OM

Ω1
M .

Conversely, given a holomorphic vector bundle H, we obtain a smooth
vector bundle E := H⊗OM

C∞
M . If ∇ is a holomorphic connection on H, then

D : E → E ⊗C∞
M
A1
M by D(s ⊗ f) := (∇s) ⊗ f + s ⊗ df (for all holomorphic

local section s of H and smooth function f de�ned on the same open subset)
de�nes a smooth connection. We �nd

D1,0(s⊗ f) = (∇s)⊗ f + s⊗ (∂f);

D0,1(s⊗ f) = s⊗ ∂̄f.

Therefore D0,1 = ∂̄H, H = ker(D0,1) and D1,0|H = ∇. If ∇ is integrable,
then D is integrable.

Denote the category of holomorphic vector bundles with an integrable
connection on M by DE(M). The following is a summary of the preceding
discussion.

Theorem 2.1.6. DE(M) is an abelian category. The functor Fl(M) →
DE(M) by (E , D) 7→ (ker(D0,1), D1,0|ker(D0,1)) is an equivalence of categories,
with quasi-inverse DE(M)→ Fl(M) by (H,∇) 7→ (H⊗OM

C∞
M ,∇+ d).

Note carefully, a morphism of two holomorphic vector bundles is not
required to have a holomorphic vector bundle as its kernel a priori. Then
and taking �ber ωp : DE(M) → V ecC by (E ,∇) 7→ Ep ⊗OM,p

C is a �ber
functor making DE(M) a neutralized Tannakian category over C. Under
Theorem 2.1.3, Theorem 2.1.6 is equivalent to the following.

Theorem 2.1.7 (Analytic Riemann-Hilbert correspondence, [Del70, Théorème
2.17, p.12], [Kat82, Proposition 5.1], [Mal87, Theorem 1.1], [Con, Theorem 2.6]).
The functor η : DE(M)→ Loc(M) de�ned by (E ,∇) 7→ ker(∇), ker(∇) ⊂ E
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being the subsheaf given by horizontal sections, is an equivalence of neutralized
Tannakian categories (a tensor equivalence commuting with chosen �ber functors).
A quasi-inverse Loc(M)→ DE(M) is given by

L 7→ (L ⊗C OM , Id⊗ ∂M).

In particular, for all (E ,∇) ∈ DE(M) the natural inclusion (ker∇)p →
Ep ⊗OM,p

C is a π1(M, p)-equivariant linear isomorphism.

Example 2.1.8. Let M = C∗ with base point p = 1 ∈ M . The trivial
holomorphic line bundle E = M × C (ie E = OM). For every holomorphic
function f ∈ OM(M), we de�ne a holomorphic connection D : E → E ⊗CΩ

1
M

by D(s) = (s′ − fs) ⊗ dz. This connection is �at since dimM = 1. Then
L = ker(D) is a local system on M of rank 1. The fundamental group
π1(M, p) has a generator γ : [0, 1] → M by γ(t) = e2πit. Its monodromy
representation π1(M, p) → GL(Lp) is identi�ed with Z → C∗. By parallel
transport, s(p) ∈ Lp is transported to s(p)e

∫ q
p f(z)dz along the chose path.

Therefor the image of 1 ∈ Z is e
∫
γ f(z)dz = e2πiRes(f,0)

Corollary 2.1.9. Given (E ,∇) ∈ DE(M), then ker(∇) is quasi-isomorphic
to the de Rham complex (Ω∗

M ⊗ E).

Since ker∇ is a local system, there exists a connected open neighborhood
Ω of p ∈M such that (ker∇)|Ω = E(p)

Ω
. Further, E(p)

Ω
⊗COΩ = (ker∇)|Ω⊗C

OΩ
∼−→ E|Ω. For any y ∈ Ω, taking �bers at y induces a parallel transport

isomorphism:
P y
p : E(y0)→ E(y).

In short, an integrable connection on a vector bundle provides a way to
identify nearby �bers.

Now we present a relative version of Theorem 2.1.7.

De�nition 2.1.10 (relative local system). [BE13, De�nition 1.17 (ii)] A
sheaf L of ϕ−1(OX)-module is called a relative local system if for every
y ∈ Y there exist an open neighborhoods U of y and an open subset V of X
with ϕ(U) ⊂ V and a coherent OV -module M such that L|U is isomorphic
to ϕ−1(M)|U . The full subcategory of the category of ϕ−1(OX)-modules
comprised of relative local systems is denoted by LS(Y/X).
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When X is a point, then we recover local system of �nite dimensional C-
vector spaces on Y . Given a morphism X ′ → X, let ϕ′ : Y ′ → X ′ be the base
change, tensor then LS(Y/X) → LS(Y ′/X ′) functor. In particular, given a
relative local system L on Y/X, for any x ∈ X, L|Yx is a local system. If
Y → X → X ′, a relative local system on Y/X ′ is also a relative local system
on Y/X.

let DE(Y/X) be the category of coherent OY -modules with a �at relative
connection.

Proposition 2.1.11. [Kat70, Proposition 8.8][And01, Corollaire 2.5.2.2]
When X is a point, (E ,∇) ∈ DE(Y/X), then E is a holomorphic vector
bundle on the complex manifold Y and hence DE(Y ) = DE(Y/X). (I don't
think it is true in general.)

Theorem 2.1.12 (relative Riemann-Hilbert). [Del70, Théorème 2.23, p.14]
then the functor DE(Y/X)→ LS(Y/X) by (E ,∇) 7→ ker(∇) is an equivalence
of categories. A quasi-inverse is given by L 7→ L ⊗ϕ−1OX

OY with relative
connection IdL ⊗ dY/X .

By Proposition 2.1.11, Theorem 2.1.12 contains Theorem 2.1.7 as a special
case.

2.2 Symplectic groups

Let (V, ⟨, ⟩) be a �nite dimensional symplectic space over a �eld k of characteristic
0. The associated symplectic group is denoted by Sp(V ). If dimk V = 2n,
we also write Sp2n(k) for Sp(V ).

De�nition 2.2.1 (transvection). If T ∈ Sp(V ) is unipotent and rk(T− I) =
1, then we call T a transvection.

Example 2.2.2. For 0 ̸= v ∈ V , de�ne Tv(x) = x + ⟨v, x⟩v. Then Tv is a
transvection.

Theorem 2.2.3. [Hua48, p. 740,Theorem][Dul74, p. 26,V.1.Theorem][Sol77,
Theorem 2.5][Kli63, Theorem 3] Let k be a �eld with characteristic di�erent
from 2 and g ∈ N+. If Λ ∈ Aut(Sp2g(k)), then there exists B ∈ GSp2g(k)
such that Λ(A) = BAB−1 for any A ∈ Sp2g(k). Moreover, the natural map
Aut(Sp2g(k)) → Aut(PSp2g(k)) is surjective. The only nontrivial normal
subgroup of Sp2g(k) is its center {±I2g}.
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We record two Goursat type lemmas for subgroups of
∏
Sp2g(Q).

Lemma 2.2.4. Suppose that G ≤ Sp2g(Q)N is an abstract normal subgroup
whose projection to each factor is surjective, then G = Sp2g(Q)N .

The proof of [Rib76, Sublemma, p. 794] works.
The second is a mild generalization of [LV20, Lemma 2.12].

Lemma 2.2.5. Let G be an algebraic subgroup of Sp2g(Q)N satisfying the
following conditions.

� For 1 ≤ i ≤ N , the projection πi : G→ Sp2g(Q) onto the i-th factor is
surjective.

� For 1 ≤ i ̸= j ≤ N , there exists g ∈ G such that πi(g) is not conjugated
to any one of ±πj(g) in GSp2g(Q).

Then G = Sp2g(Q)N .

Note that G = {(A,±A) : A ∈ SL2(Q)}(≤ SL2(Q)2) satis�es the �rst
condition but not the second.

Proof. Induction on N . The case N = 1 is trivial. Now assume that the case
N = k is proved and we proceed to N = k + 1. Let Pk : G → Spk be the
projection onto the �rst k factors. By induction hypothesis, Pk is surjective.
Let H2 = ker(Pk) and H1 = ker(πk+1). By Goursat's lemma, H1 (resp. H2)
can be viewed as a normal algebraic subgroup of the product of �rst k factors
Spk (resp. of the last factor Sp) and im(G→ Spk/H1 × Sp/H2) is the graph
of an isomorphism

f : Spk/H1 → Sp/H2, [πk(g)] 7→ [πk+1(g)] (2)

between algebraic groups, hence an isomorphism between Lie algebras

def : Lie(Spk/H1)→ Lie(Sp/H2).

By Theorem 2.2.3, H2 is {I2g}, {±I2g} or the full of Sp. We just need to
exclude the �rst two possibilities.

If H2 = {I}, in virtue of [Ser09, p. 45,Corollary 3], Lie(H1) ⊂ spk is direct
sum of some (say the �rst) (k − 1) factors. By [Bor12, 7.1, p.105], Spk−1 is
the identity component of H1. Then πk(H1) is a �nite normal subgroup of
the k-th factor Sp and πk induces an isomorphism Spk/H1 → Sp/πk(H1). By
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(2) the latter group has nontrivial center, so πk(H1) = {I} and H1 = Spk−1.
Now (2) becomes

f : Sp→ Sp, πk(g) 7→ πk+1(g)

an isomorphism between the last two factors. According to the second
condition, there exists g0 ∈ G such that πk(g0), πk+1(g0) are not conjugated,
which contradicts Theorem 2.2.3.

If H2 = {±I}, by the same reasoning as above, we may assume that H1

is the product of the �rst (k − 1) factors and one piece of {±I} at the k-th
factor which leads to similar contradiction.

Therefore, H2 = Sp and G = Spk+1. The induction is completed.

Lemma 2.2.6. A �nite (abstract) subgroup G of SL2(R) is cyclic.

Proof. De�ne a new scalar product of R2 from the standard one (−,−) by
⟨x, y⟩ := 1

|G|
∑

g∈G(g ·x, g · y). Fix an orthonormal basis of (R2, ⟨−,−⟩), with
regard to which we obtain an injection ψ : G → SO2(R). As any �nite
subgroup of SO2(R) is cyclic, so is G.

Remark 2.2.7. We can determine n = |G| if G ≤ SL2(Q). In fact, there

exists g ∈ G such that ψ(g) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, where θ = 2π

n
. Since ψ(g)

and g are conjugate, tr(g) = tr(ψ(g)) = 2 cos(θ) ∈ Q. By Niven's theorem
(cf.[KN16]), n = 1, 2, 3, 4 or 6.

2.3 Faltings' �niteness theorem

All representations are assumed to be �nite dimensional.

De�nition 2.3.1. Let v be a �nite place ofK and ρ be a Galois representation
of GK . Denote the inertia group by Iv(≤ GK). If ρ(Iv) is trivial, then ρ is
called unrami�ed at v.

Fact 2.3.2 ([Dal06, Theorem, p.2]). Let p ̸= l be primes. Let E/Qp be a
�nite extension. Let X/E be a smooth proper variety with good reduction.
Then for every integer k ≥ 0, the representation ΓK → GL(Hk

ét
(XKs ;Ql)) is

unrami�ed.

De�nition 2.3.3 (Weil number). [SZ15, Sec.1][Kli, De�nition 2.5.1] Fixm ∈
N+. Let Z̄ be the set of algebraic integers (i.e., the integral closure of Z inside
C). An m-Weil number is an element α ∈ Z̄ such that |σ(α)|2 = m for every
σ ∈ GQ.
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De�nition 2.3.4 (Purity, weight). [FON12, p.19][FO22, Def. 2.19] Let K
be a number �eld. A p-adic Galois representation ρ : GK → GLd(Qp) is
called pure of weight w ∈ Z, if for all but �nitely many �nite places v of K,
ρ is unrami�ed at v and any complex eigenvalue of the geometric Frobenius
action ρ(Frobv) is a qmv -Weil number.

Theorem 2.3.5. [Del74, Theorem 1.6][Del80, Corollaire 3.3.9, p.207]Let
X/Fq be a smooth proper variety. The Frobenius morphism F : X → X
(de�ned by x 7→ xq) induces F ∗ : H i

ét
(XFq

,Ql) → H i
ét
(XFq

,Ql) for each
i ≥ 0 and rational prime l(̸= char(Fq)). Then the characteristic polynomial
det(tI − F ∗, H i

ét
(XFq

,Ql)) is of integral coe�cients and independent of l.
Each complex root of this polynomial is a q-Weil number of weight i.

Lemma 2.3.6 (Faltings' �niteness, [Del85, Cor. 1], [Del83, Thm. 3.1], [Lan91,
Ch. IV, Theorem 4.3], [LV20, Lem. 2.3]). Fix d ≥ 0, w ∈ Z, K a number
�eld with a �nite set S(⊃ S∞) of places including all the archimedean ones.
Then up to conjugation, there are only �nitely many semisimple p-adic Galois
representations ρ : GK → GLd(Qp) such that outside S

1. ρ is unrami�ed and

2. pure of weight w.

3. The characteristic polynomials of a (hence every) arithmetic Frobenius
(element of ΓK) have integer coe�cients.

This is a consequence of Theorem 2.3.7 below. It is worth noting that
the semisimplicity hypothesis is essential in Lemma 2.3.6.

Theorem 2.3.7 (Hermite-Minkowski). [SBW89, p. 49]Let K be a number
�eld, S ⊃ S∞ a �nite set of places of K, and n ≥ 1 an integer. Then
there are (up to isomorphism) only �nitely many extensions of K unrami�ed
outside S of degree n.

3 Cohomology theory

A quick guide is [Rom14].
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3.1 Algebraic de Rham cohomology

De�nition 3.1.1 (hypercohomology). Suppose thatA is an abelian category
with enough injectives and F : A → B a left exact functor to another abelian
category B. If C ∈ Kom+(A) is a cochain complex of objects of A bounded
on the left, i ∈ Z, then the i-th hypercohomology Hi(C) := RiF (C) ∈ B of
C is calculated as follows: Take a quasi-isomorphism Φ : C → I, here I is
a complex of injective elements of A. Then Hi(C) is the i-th cohomology of
the complex F (I).

The hypercohomology of C is independent of the choice of the quasi-
isomorphism, up to a unique isomorphism. In the language of derived categories,
it is the composition of derived functor RF : D+(A) → D+(B) and the
cohomology functor H i : D+(B)→ B.

Lemma 3.1.2. [Wei95, Lemma 5.7.5]Settings as in De�nition 3.1.1. If 0→
C1 → C2 → C3 → 0 is a short exact sequence of complexes bounded on the
left, then there is a long exact sequence

· · · → RjF (C3)
δ→ Rj+1F (C1)→ Rj+1F (C2)→ Rj+1F (C3)

δ→ . . .

Given a schemeX, letMod(X) be the category of sheaves of OX-modules.
It is a Grothendieck abelian category, hence with enough injectives. Let
π : X → Y be a morphism of schemes. Then the functor π∗ : Mod(X) →
Mod(Y ) is left exact. Its right derived functor Rπ∗ : D+(Mod(X)) →
D+(Mod(Y )) exists.

De�nition 3.1.3. [Sta23, Tag 0FL6]For every n ≥ 0, the n-th algebraic de
Rham cohomology of X over Y is de�ned by

Hn
dR(X/Y ) := Rnπ∗(Ω

∗
X/Y , d) ∈Mod(Y ).

Put Γ(Y,OY )-module

Hn
dR(X/Y ) := Γ(Y,Hn

dR(X/Y )).

By [Sta23, Tag 0FLX], if f is quasi-compact and quasi-separated, then
each Hn

dR(X/Y ) is a quasi-coherent OY -module.

Lemma 3.1.4. [Sta23, Tag 0FLY] If Y is a locally Noether scheme and
f : X → Y is a proper morphism, then Hn

dR(X/Y ) is a coherent OY -module
for each n ≥ 0.
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Lemma 3.1.5 (�niteness). [Sta23, Tag 0FLZ] Let A be a Noether ring and
Y = Spec(A). If f : X → Y is a proper morphism, then H i

dR(X/Y ) is �nite
A-module for all i.

Example 3.1.6. Let k be a �eld of characteristic p > 0, then H0
dR(A

1
k/k) =

k[T p] as O(A1
k) = k[T ]-module.

This examples shows that de Rham cohomology is not a reasonable tool
in positive characteristic.

Lemma 3.1.7. Let k be a �eld and X/k be a proper connected geometrically
connected scheme, then H0

dR(X/k) = k.

Proof. By [Sta23, Tag 0BUG], Ω0
X/k = O(X) = k and the di�erential map

d0 : Ω0
X/k → Ω1

X/k is zero.

Fact 3.1.8. [Lau96, p.18][Vig21, p.62] Let k be a �eld and A/k an abelian
variety. Then the cup product induces a canonical isomorphism

∧qH1
dR(A/k)→

Hq
dR(A/k) for each q ≥ 0. There is a �rst Chern class map c1 : Pic(A) →

H2
dR(A/k). If L ∈ Pic(A) induces a polarization on A, then the pairing

H1
dR(A/k)×H1

dR(A/k)→ k induced by c1(L) is symplectic.

Remark 3.1.9. Let π : X → Y be a morphism of complex analytic spaces,
then we can de�ne (analytic) relative de Rham cohomology in a similar
manner.

Lemma 3.1.10. [Sta23, Tag 0FM0]Let π : X → Y be a proper smooth
morphism of schemes. Then the formation of H∗

dR(X/Y ) commutes with
arbitrary base change.

Without properness, it remains true in derived categories, cf [Gro68,
p.309].

The stupid truncation (Ω≥p
X/Y )p≥0 on the complex Ω∗

X/Y gives rise to a
spectral sequence (cf.[Sta23, Tag 012K]), called the Hodge to de Rham

spectral sequence (also known as the Frölicher spectral sequence),

Ep,q
1 = Rqπ∗Ω

p
X/Y ⇒ H

p+q
dR (X/Y ). (3)

The induced decreasing �ltration by holomorphic vector subbundles onHn
dR(X/Y )

is called the Hodge �ltration, whose terms are

FilpHn
dR(X/Y ) := Im(Hn(X,Ω≥p

X/Y)→ H
n
dR(X/Y)).
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F pHn = im[Rnf∗Ω
≥p
X/Y → H

n
dR(X/Y )].

Similar formula holds for FilpHn
dR(X/Y ). Taking global sections, we get

a �ltration of Hn
dR(X/Y ).

Theorem 3.1.11. [Del68, Thm. 5.5] [Kat70, Proposition 8.8] Let Y be a
scheme of characteristic 0 and let f : X → Y be a proper smooth morphism.
Then

1. The OY -modules Hj
dR(X/Y ) and Hp,q(X/Y ) := Rqf∗Ω

p
X/Y are locally

free of �nite type whose formation commutes with arbitrary base change.

2. The Hodge to de Rham spectral sequence (3) degenerates at E1. In
particular, for each n ∈ N, the p-th graded piece of Hodge �ltration on
Hn
dR(X/Y ) is GrpFHn = F p/F p−1 = Rn−pf∗Ω

p
X/Y .

3. At any point of Y , the OY -modules Rqf∗Ω
p
X/Y and Rpf∗Ω

q
X/Y have the

same rank (Hodge symmetry).

For analytic counterparts of Theorem 3.1.11, see Proposition 3.1.16 and
Theorem 3.6.6.

Proposition 3.1.12. Let f : X → Y be a morphism of locally �nite type
C-schemes. Then there are unique isomorphisms Ψp : (Ωp

X/Y )
h → Ωp

Xh/Y h

of OXh-modules for p ≥ 0 such that Ψ0 is the natural isomorphism and the
following diagram commutes

(Ωp
X/Y )

h Ωp
Xh/yh

(Ωp+1
X/Y )

h Ωp+1
Xh/Y h

(dp
X/Y

)h

Ψp

dp
Xh/Y h

Ψp+1

Theorem 3.1.13. Let f : X → Y be a proper morphism of locally �nite type
C-schemes. Then the natural maps are isomorphisms:

1. (Rqf∗Ω
p
X/Y )

h → Rqfh∗Ω
p
Xh/Y h

2. Hj
dR(X/Y )h → Hj

dR(X
h/Y h)

Proposition 3.1.14. Let f : X → Y be a smooth proper morphism of
complex analytic spaces. Then for every j ∈ N:
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1. For every local system L on X, the sheaf Rjf∗L is a local system on Y .

2. The natural map CX → OX induces an isomorphism of OY -modules

Rjf∗C⊗CY
OY → Hj

dR(X/Y ).

3. The module Hj
dR(X/Y ) is a holomorphic vector bundle on Y .

Proof. 1. It can be proved as in [Vir21, Prop. 2].

2. By projection formula [KS90, Prop. 2.6.6], Rjf∗C = Rjf∗f
−1OY . By

Lemma 3.5.2, the canonical morphism Rjf∗f
−1OY → Hj

dR(X/Y ) is an
isomorphism.

3. It follows from 1 and 2.

An analytic analogue for Theorem 3.1.11.

Fact 3.1.15. [Del70, Cor. 1.4, p.4] Let S be a path-connected, locally path-
connected and locally simply connected topological space with a base point s.
Then the category of local systems (of �nite-dimensional C-vector spaces) on
S is equivalent to the category RepC(π1(S, s)), by sending a local system L to
its monodromy representation on the stalk Ls.

Proposition 3.1.16. Let f : X → Y be a smooth proper morphism of
complex analytic manifolds. Then

1. Rjf∗C is a local system of �nite-dimensional C-vector spaces on Y , so
Hj
dR(X/Y ) is a holomorphic vector bundle on Y . (by Ehresmann and

Riemann-Hilbert correspondence)

2. [Dem96, p.58] For each pair p, q ∈ N, the OY -module Rqf∗Ω
p
X/Y is a

vector bundle.

3.2 Cohomology on sites

We follow Tag 00VG to present the notion of site.

De�nition 3.2.1 (site). A site is given by a category C with a set Cov(C)
of families of morphisms with �xed target, called coverings of C, satisfying
the following axioms.
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1. If f : V → U is an isomorphism in C, then {f} ∈ Cov(C).

2. If {Vi → U : i ∈ I} ∈ Cov(C) and for each i {Vij → Ui : j ∈ Ij} ∈
Cov(C), then {Vij → U : i ∈ I, j ∈ Ji} ∈ Cov(C).

3. If {Ui → U : i ∈ I} ∈ Cov(C) and V → U is a morphism of C then
Ui ×U V exists for all i and {Ui ×U V → V : i ∈ I} ∈ Cov(C).

Example 3.2.2. Given a topological space X, let C be the category whose
objects consist of all the opens in X and whose morphisms are inclusion
maps. De�ne {Ui → U : i ∈ I} ∈ Cov(C) if and only if ∪iUi = U . Thus we
get a site (C, Cov(C)).

Fix a site C and let Psh(C) be the category of presheaves of sets on C.

De�nition 3.2.3 (sheaf). [Sta23, Tag 00VM]Let F be a presheaf of sets on
a site C. We say F is a sheaf if for every covering {Ui → U : i ∈ I} ∈ Cov(C)
the diagram

F (U)
∏

i∈I F (Ui)
∏

(i0,i1)∈I2 F (Ui0 ×U Ui1)
pr∗0

pr∗1

represents the �rst arrow as the equalizer of pr∗0 and pr
∗
1.

Let A be a category and let F be a presheaf on C with values in A. For
each X ∈ Ob(A), de�ne a presheaf of sets FX by

FX(U) = HomA(X,F(U)).

We say that F is a sheaf if for all X ∈ Ob(A), FX is a sheaf. Let Ab(C) be
the category of abelian sheaves on C.

Theorem 3.2.4. [Sta23, Tag 03NU]The category of abelian sheaves on a site
is an abelian category with enough injectives.

If U ∈ Ob(C), then the section functor Γ(U,−) : Ab(C)→ Ab is left exact.
De�ne Hp(U,−) = RpΓ(U,−).

De�nition 3.2.5 (global section functor). [Sta23, Tag 071D]De�ne Γ(C,−) :
Psh(C) → Set by Γ(C, F ) = HomPsh(C)(e, F ), where e is a �nal object of
Psh(C).

Example 3.2.6. Suppose that C has a �nal object X, then Γ(C, F ) = F (X).

The functor Γ(C,−) : Ab(C) → Ab is left exact. De�ne H i(C,−) =
RiΓ(C,−).
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3.3 Étale cohomology

Fix a scheme X and F ∈ Ab(Xét).

De�nition 3.3.1 (small étale site). [Sta23, Tag 03XB]Let X be a scheme.
The category Xét is the full subcategory of Sch/X whose objects are étale X-
schemes. A covering is {fi : Ui → U : i ∈ I} with U ∈ Ob(Xét), ∪i∈Ifi(Ui) =
U and fi is étale for each i ∈ I.

Clearly X is a �nal object of Xét. The étale cohomology group Hp
ét
(X,F )

is de�ned to beHp(X,F ) on the siteXét. However, this de�nition is reasonable
only when F is a torsion sheaf. We de�ne

Hj
ét
(X,Zp) := lim←−

n

Hj
ét
(X,Z/pn);

Hj
ét
(X,Qp) := Qp ⊗Zp H

j
ét
(X,Zp).

If X is a k-scheme, then Hj
ét
(Xks ,Qp) is a p-adic representation of Gk. It is

an important origin of Galois representations.
Then we review étale fundamental groups.

De�nition 3.3.2 (geometric point). [Sta23, Tag 03PO]LetX be a scheme. A
geometric point of X is a morphism Spec(k)→ X where k is an algebraically
closed �eld (separably closed �elds also work). It is usually denoted by x̄.

De�nition 3.3.3 (étale fundamental group). [Sta23, Tag 0BNC]Let X be
a connected scheme. Let x̄ be a geometric point of X. Let Fx̄ be the �ber
functor FEt/X → Set. De�ne

πét

1 (X, x̄) = Aut(Fx̄).

The πét

1 (X, x̄) is naturally a pro�nite group. Another choice of geometric
point leads to isomorphic fundamental group, although the isomorphism is
not canonical. So, sometimes we omit the geometric point in the notation.

Example 3.3.4. Let x̄ be the natural geometric point of X = Spec(k), then
πét

1 (X, x̄) = Gk.

In general, for a connected scheme X/k and a geometric point x̄ of Xk̄

(or X, they are the same), we put πgeom1 (X, x̄) = πét

1 (Xk̄, x̄).
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Lemma 3.3.5 (fundamental exact sequence). [Sta23, Tag 0BTX] Let X/k be
a geometrically connected quasi-compact quasi-separated scheme, then there
is a natural exact sequence

1→ πgeom1 (X)→ πét

1 (X)→ Gk → 1.

Theorem 3.3.6 (Grauert-Remmert). [Sza09, Theorem 5.7.4][Ray71, Exp.
XII, Corollaire 5.2] Let X/C be a connected scheme locally of �nite type.
Then the functor (Y → X) 7→ (Y an → Xan) induces an equivalence of the
category FEt/X of �nite étale covers of X with that of �nite-sheeted covers of
Xan. Consequently, for every x ∈ X(C) this functor induces an isomorphism

̂π1(Xan, x)→ πét

1 (X, x)

where ·̂ on the left hand side means pro�nite completion.

Theorem 3.3.7. [Ser07, Theorem 6.3.3] Let L/k be an extension of two
algebraically closed �elds of characteristic 0 and V/k be an algebraic variety.
Then the base change functor FEt/V → FEt/VL is an equivalence of categories.
In particular, for any geometric point v̄′ of VL, let ā be the corresponding
geometric point of V , then the natural map πét

1 (VL, v̄
′) → πét

1 (V, v̄) is an
isomorphism.

Proposition 3.3.8. [EVdGM12, Corollary 10.39] Let k be a �eld, A/k be an
abelian variety, l be a rational prime invertible in k. Then Hét1(Aks ,Zl) =
Hom(TlA,Zl) as Zl-modules with continuous Gk-action.

Theorem 3.3.9 is part of Tate's conjecture, proved by Zarhin (positive
characteristic) and Faltings (zero characteristic).

Theorem 3.3.9. Let K be a �nitely generated �eld, X/K a smooth proper
integral variety with a geometric point x̄. If l is a rational prime di�erent
from the characteristic of K and πgeom1 (X, x̄) has no l-torsion, then the
representation GK → GL(H1

ét
(XKs ,Ql)) is semisimple. In particular, the

identity component of the Zariski closure of the image is a reducitve algebraic
group.

It is conjectured to hold for the Galois representation on Hk
ét
(XKs ,Ql) for

each k ∈ N.
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Proof. We may enlarge K to a �nite extension. Let x ∈ X be the image
of x̄. We may assume that x is a closed point of X, then k(x)/K is a
�nite extension. By enlarging K, we may assume x ∈ X(K). Consder the
Albanese map αx : (X, x) → (Alb(X), 0) de�ned over K. It induces an
morphism πgeom1 (X, x̄) → πgeom1 (Alb(X), 0) identifying the latter as the free
part of the abelianization of the former. It induces further an isomorphism
of GK-modules H1

ét
(Alb(X)Ks ,Ql)→ H1

ét
(XKs ,Ql). By Proposition 3.3.8 the

�rst as a GK-module is dual to the Tate moduel VlAlb(X). The result follows
from [Fal83, Satz 3] in the number �eld case and [MB85, Théorème 2.5,
pp.244�245, Ch XII] in positive characteristic case.

3.4 Crystalline cohomology

Assume that p is a rational prime and (S, I, γ) is a divided power scheme
over Z(p). Set S0 = V (I) ⊂ S. Suppose that p is locally nilpotent on an
S0-scheme X.

De�nition 3.4.1 (divided power thickening). [Sta23, Tag 07I4]Let U → T
be a thickening of schemes and let J be the corresponding ideal sheaf. If
(T,J , γ) is a divided power scheme, we call the triple (U, T, γ) a divided
power thickening.

De�nition 3.4.2 (big crystalline site). [Sta23, Tag 07IB]A divided power
thickening of X relative to (S, I, γ) is a divided power thickening (U, T, δ)
with an S-morphism U → X. All of them form a category, denoted by
CRIS(X/S, I, γ) = CRIS(X/S). A family {(Ui, Ti, δi) → (U, T, δ)} is a
covering if Ui = Ti ×T U for all i and {Ti → T} is a Zariski covering.

De�nition 3.4.3 (small crystalline site). [Sta23, Tag 07IG]The full subcategory
Cris(X/S) of CRIS(X/S) consisting of those (U, T, δ) ∈ CRIS(X/S) such
that U → X is an open immersion, endowed with the induced (Zariski)
topology.

Let F be a perfect �eld with char(F) = p > 0. Let W = W (F) be the
ring of Witt vectors of F and Wn = W/pn. For an F-scheme X, we denote
Hj

cris(X/Wn) = Hj(Cris(X/Wn)) andH
j
cris(X/W ) = lim←−nH

j
cris(X/Wn). This

is a graded W -module depending functorially on X.

Lemma 3.4.4. If X/F is a smooth proper scheme, then Hj
cris(X/W (F)) is a

�nite W (F)-module. When j > 2 dimX, Hj
cris(X/W (F)) = 0.
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Let E be a �eld of characteristic 0 with a complete discrete valuation.
Assume its residue �eld F is perfect and char(F) = p > 0. Let φ be the
Frobenius endomorphism of W . Denote E0 the fraction �eld of W . (In
application, we will take E to be a �nite unrami�ed extension of Qp, then
W = OE, φ = σE/Qp|OE

and E0 = E.) Let X/E be a proper smooth variety.

De�nition 3.4.5 (Good reduction, [GM87, B.1.1], [Dal06, p.1]). The variety
X/E has good reduction provided there exists a smooth proper OE-scheme
X such that the generic �ber XE is E-isomorphic to X. In that case, the
special �ber X̄ is a smooth proper variety over F, called a reduction of X.
Similarly, given a smooth proper variety Y over a number �eld K and a
�nite place v of K, we call Y has good reduction at v if Y ⊗K Kv has good
reduction in the above sense.

We consider two particular cases. When A/E is an abelian variety, then
it has good reduction if and only if its the identity component of its Néron
model is an abelian scheme over OE. When C/E is a smooth projective curve
with H0(C,OC) = E and positive genus, then it has good reduction if and
only if its minimal model (provided by [Sta23, Tag 0C6B]) is smooth over
OE.

Proposition 3.4.6. If X has good reduction over E, then so does its Albanese
variety.

Proof. It follows from Fact 2.3.2 and the Néron�Ogg�Shafarevich criterion.
(But the converse is not true.)

Theorem 3.4.7 (�niteness of bad reduction). If Y is a smooth proper variety
over a number �eld K, then there is a �nite set of (�nite) places of K, outside
which Y has good reduction.

Theorem 3.4.8 (Fontaine, Abrashkin). [Fon85, Corollaire, p.517][Abr87]
There is no abelian variety over Q with everywhere good reduction.

Assume X has good reduction. We de�ne its crystalline cohomology to be
Hj

cris(X) := E0 ⊗W Hj
cris(X̄/W ). Then Hj

cris(X) is equipped with a bijective
φ-semilinear endomorphism ϕ induced by the absolute Frobenius of X̄ and
functoriality of Hj

cris. (By [GM87, Corollary B.3.6], Hj
cris(X), together with

the Gauss-Manin connection and the crystalline Frobenius, is independent of
the model X .)
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3.5 Comparison theorems

Theorem 3.5.1. [Gro66a, Theorem 1][Gro68, Theorem 1.2, p.310][HMS17,
Proposition 4.1.7, p.101] Let X be an algebraic variety over C (neither
smoothness nor properness are required), then analyti�cation induces a linear
isomorphism H∗

dR(X/C)→ H∗
dR(X

an).

The singular cohomology groups are usually called Betti cohomology.

Lemma 3.5.2 (Relative holomorphic Poincaré lemma). Let f : X → Y be
a smooth morphism of complex analytic spaces. Then the kernel of dX/Y :
OX → Ω1

X/Y is the sheaf theoretic inverse image f−1OY and the complex
Ω∗
X/Y is exact in all higher degrees.

In other words, f−1OY is quasi-isomorphic to the de Rham complex
(Ω∗

X/Y , d).

Corollary 3.5.3 (analytic de Rham). Let M be a complex manifold, then
Hq

dR(M) is canonically isomorphic to Hq(M ;C) (the sheaf cohomology or
singular cohomology) for all q ≥ 0.

Theorem 3.5.4 (Artin). [AGV73, Théorème 4.4, Exposé XI] Let X/C be a
smooth scheme, then the canonical morphism Hq

ét
(X,Ql)→ Hq

sing(X
an,Z)⊗Z

Ql is an isomorphism for all q ≥ 0.

Theorem 3.5.5 (Comparison of Hodge structures, [Del82, Theorem 1.4]).
If X/C is a smooth proper variety, then the canonical morphism Xan → XZar

of ringed spaces induces an isomorphism H∗
dR(X/C)→ H∗

sing(X
an;C) under

which the Hodge �ltration FiliHn
dR(X/C) corresponds to ⊕p≥i,p+q=nHp,q(Xan;C).

Proof. By Lemma 3.5.2, the complex

0→ CXan → Ω∗
Xan

is exact. Hj
dR(X

an,C) = Hj(Xan,CXan) equals the hypercohomology H ∗
(Xan,Ω∗

Xan) and the latter equals Hj(X,Ω∗
X/C) = Hj

dR(X/C) by GAGA.

Theorem 3.5.6. [BO83, Corollary 2.5][Ber06, p.24] Let V be a complete
discrete valuation ring of mixed characteristic (0, p) with fraction �eld K
and perfect residue �eld k. Let X be a smooth proper V -scheme, with generic
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�ber X/K and special �ber X0/k. Then there exists a canonical K-linear
isomorphism

σcris : H
i
dR(X/K) = H i

dR(X/V )⊗V K → H i
cris(X0/W )⊗W K,

where W = W (k) is a subring of K.

By Lemma 3.1.10, H i
dR(X/V ) ⊗V K = H i

dR(X/K). Thus, if one takes
E/Qp a �nite unrami�ed extension and V = OE, then H i

dR(X/E) is equipped
with a σE/Qp-semilinear operator ϕ (called the crystalline Frobenius operator).
Note that ϕ[E:Qp] is E-linear.

3.6 Variation of Hodge structures and Period maps

De�nition 3.6.1 (relative algebraic (holomorphic) connection). [BE13, De�nition
1.17 (i)] Let f : X → Y be a morphism of schemes (complex analytic spaces),
and let E be a vector bundle on X. A connection on E relative to Y is an
f−1OY -linear map of sheaves ∇ : E → Ω1

X/Y ⊗OX
E satisfying Leibniz rule:

for g a section of OX and s a section of E ,

∇(gs) = dX/Y (g)⊗ s+ g · ∇(s).

A relative connection ∇ is called integrable/�at if its relative curvature form
R∇ vanishes.

When Y is a point, we recover De�nition 2.1.4.

Example 3.6.2 (Analytic GM connection). Let f : X → Y be a smooth
proper morphism of complex analytic spaces. Then Rjπ∗CX is a C-local
system on Y (cf. [Vir21, Proposition 2]).

OY ⊗C R
jf∗C Ω1

Y ⊗C R
jf∗C

Hj
dR(X/Y ) Ω1

Y ⊗OY
(OY ⊗C R

jf∗C)

≃

dY ⊗Id

≃

∇j

The vertical isomorphism on the left is given by Proposition 3.1.14. The
integrable connection on Hj

dR(X/Y ) corresponding to dY ⊗ Id is called the
complex analytic Gauss-Manin connection. By Lemma 3.5.2, the local system
Rjπ∗CX = ker(∇j) is the sheaf of germs of horizontal sections of Hj

dR(X/Y ).
When Y is a complex manifold, this is an example of Theorem 2.1.7.
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De�nition 3.6.3 (Variation of complex Hodge structures(=C-VHS), [Gri70,
sec 2,p.232], [CMSP17, De�nition 4.6.1, p.156], [PS03, p.189], [SS22, De�nition
4.1.4, 4.1.5]). Let S be a connected complex manifold and w ∈ Z. A variation
of C-Hodge structure of weight w on S refers to the following data:

1. a C-local system L on S with the corresponding object (E,∇) ∈ DE(S)
given by Theorem 2.1.7;

2. opposite �ltrations: two �nite decreasing �ltrations F ′ (called the Hodge
�ltration) and F ′′ of E, such that for each k ∈ Z, F ′k and F ′′k are
(holomorphic) vector subbundles of E (i.e., of holomorphic variation)
and such that at each s ∈ S, the C-vector space Es with the �ltrations
F ′∗
s , F

′′∗
s is a C-Hodge structure of weight w;

3. Gri�ths transversality: ∇(F ′p) ⊂ F ′p−1⊗Ω1
S and anti-Gri�ths transversality:

∇(F̄ ′′p) ⊂ F̄ ′′p−1 ⊗ Ω1
S for all p ∈ Z.

The C-VHS above is called real, an R-VHS for short, if there is an R-local
system LR on S such that LR ⊗R C = L and we have Hodge symmetry: for
all k ∈ Z, F ′′k = F̄ ′k. Then the �ber at each point x ∈ S is an R-Hodge
structure.

The R-VHS above is called rational, a Q-VHS for short, if there is a
Q-local system LQ on S such that LQ ⊗Q R = LR.

For a C-VHS, by condition 2 in De�nition 3.6.3, when p large enough,
F ′p = 0, F ′′p = 0; when −p is large enough, then F ′p = E and F ′′p = Ē. The
natural map from

Ep,w−p := F ′p ∩ F ′′w−p (4)

to the graded piece GrpE = F ′p

F ′p+1 is an isomorphism of smooth vector
subbundles of E ⊗OS

Ω1
S. And we have a global Hodge decomposition

E ⊗OS
Ω1
S = ⊕p∈ZEp,w−p. (5)

Remark 3.6.4. One can also use smooth vector bundle with integrable connection
to de�ne C-VHS, see [SS22, Lem. 4.1.6]

We proceed to de�ne period mappings, central objects in this note.
Given a C-VHS (L, E, F ′∗) on a connected complex manifold S with a

base point p, we take a simply connected open neighborhood Ω ⊂ S of p.
As the connection ∇ is integrable, by Theorem 2.1.2 for any x ∈ Ω we have
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a parallel transport (C-linear) isomoprhism E(x) → E(p) between �bers of
E. (Since Ω is simply connected, this isomorphism does not depend on the
chosen curve from x to p used in the parallel transport.) The Hodge �ltration
of the �ber E(x) is sent to a �ltration of E(p), which has the same dimension
data as (but in general is di�erent from) the Hodge �ltration of E(p). This
(local) variation of Hodge �ltrations is encoded in the period map.

We de�ne period maps as follows. Consider the smooth projective variety
H/C (so-called �ag variety) parametrizing the �ltrations of the C-vector
space Lp = Hp with same dimension data as its Hodge �ltration. (Explicitly,
the C-linear algebraic group GL(Lp) acts transitively on the set of such
�ltrations. Let St ≤ GL(Lp) be the closed subgroup of the stabilizer of
the Hodge �ltration of Lp. Then St is a parabolic subgroup of GL(Lp) and
H = GL(Lp)/St.) Then we get a holomorphic map

Φ : Ω→ Han,

where Φ(x) ∈ Han represents the �ltration corresponding to the Hodge
�ltration on E(x).

To globalize, consider the universal cover π : S̃ → S and pull the C-VHS
back over S̃, then we get a holomorphic map

Φ̃ : S̃ → Han (6)

�tting to a commutative square

p−1(Ω) S̃

Ω Han
C .

p Φ̃

Φ

We call Φ a local period map and Φ̃ the global period map. Recall that the
monodromy (C-)representation

π1(S, p)→ GL(Lp)

given by Proposition 2.1.1. Let Γ be the Zariski closure of the image,
which is a C-linear algebraic group. Then there is a natural morphism
Γ × H → H de�ning a group action. Moreover, Φ̃ is π1(S, p)-equivariant
([Sch73, (3.25)]) and we get the Gri�ths' period mapping [Sch73, (3.26)]
S → π1(S, p)\Han. Therefore, the image of the global period map is bounded
below by monodromy.
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Lemma 3.6.5. [LV20, Lemma 3.1]For every C-VHS on a complex manifold
S, The analytic Zariski closure Z of Φ(Ω) inside HC coincides with that of
Φ̃(S̃), hence independent of choice of Ω. Moreover, Z contains Γ · Φ(p).

Proof. As Φ̃ is holomorphic, Φ̃−1(Z) is an analytic subset of S̃ containing
the non-empty open π−1(Ω). In particular, Φ̃−1(Z) is not rare in S̃. By
Proposition 2.0.1 Φ̃−1(Z) = S̃. Therefore, Z contains Φ̃(S̃). Note that
Φ̃(S̃) ⊃ Φ(Ω), so Z is the analytic Zariski closure of Φ̃(S̃). As the global
period map (6) is π1(S, p)-equivariant, the image Φ̃(S̃) contains π1(S, p)·Φ(p).
The preimage of Z under the morphism GL(Lp)→ HC of algebraic varieties
contains the image of π1(S, p) and is Zariski closed in GL(Lp). Thus, Z
contains Γ · Φ(p).

An important class of VHS comes from geometry.

Theorem 3.6.6 (Gri�ths). [Dem96, Theorem 10.9][Voi02, Theorem 10.3]
Let π : X → Y be a proper, smooth morphism of complex manifolds. Suppose
that for each t ∈ Y , the Hodge to de Rham spectral sequence (3) degenerates
at page E1. For each k ∈ N, the following data: Q-local system LQ := Rkπ∗Q
inducing the holomorphic vector bundle E = Hk

dR(X/Y ) with the (analytic)
Gauss-Manin connection ∇ : Hk

dR(X/Y ) → Hk
dR(X/Y ) ⊗ Ω1

Y as well as the
Hodge �ltration Fil∗Hk(Xt,C) ⊂ Hk(Xt,C) (at all t ∈ Y ) form a Q-VHS
of weight k on Y . (Modulo torsion, Rkf∗Z gives integral VHS.) The smooth
subbundle Ep,k−p in (4) underlies the holomorphic vector bundle Rk−pπ∗Ω

p
X/Y .

Remark 3.6.7. The decomposition (5) induces a decomposition HdR(X/Y ) =
⊕0≤p≤kR

k−pπ∗Ω
p
X/Y of smooth vector bundles. In general, this decomposition

does not hold in the sense of holomorphic vector bundles, see [Dem96, p.59].

Now we turn to algebraic Gauss-Manin connection.

Theorem 3.6.8 (Katz-Oda, existence of Gauss-Manin connection). Let S
be a scheme and π : X → Y be a smooth S-morphism of smooth S-schemes.
Then for each q ∈ N, there exists a canonical integrable connection relative
to S

∇ = ∇q : Hq
dR(X/Y )→ Ω1

Y/S ⊗OY
Hq
dR(X/Y ).

The connection ∇ is compatible with the cup product in the sense that

∇(e · e′) = ∇(e) · e′ + (−1)qe · ∇(e′),

where e and e′ are sections of Hq
dR(X/Y ) and Hq′

dR(X/Y ) respectively over
an open subset of Y .
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The above theorem is a slight generalization of [KO68, Thm. 1] and the
proof therein extends to our situation. The complex Ω∗

X has a �ltration
LrΩ∗

X = π∗Ωr
Y ⊗ Ω∗−r

X . The short exact sequence of OX-modules

0→ π∗Ω1
Y ⊗ F p−1Ω∗−1

X → F pΩ∗
X → F pΩ∗

X/Y → 0

induces a long exact sequnece of OY -modules with connected morphims
Rqπ∗F

pΩ∗
X/Y → Ω1

Y ⊗ F p−1Rqπ∗Ω
∗
X/Y is the connection. See also [Sta23,

Tag 0FMN] and [BP96, Section 2.C]. A result of GAGA type.

Fact 3.6.9 (Deligne, [HT07, Corollary 5.3.9, p.156]). Let X/C be a smooth
integral variety. Let DE(X/C) be the category of locally free �nite rank OX-
modules (i.e., vector bundles) with integrable connection. Let DEr(X/C) be
the full subcategory of DE(X/C) comprised of object with regular singularity.
Then the analyti�cation functor induces an equivalence of neutralized Tannakian
categories

DEr(X/C)→ DE(Xan).

If X is proper, then DEr(X/C) = DE(X/C).

If S = Spec(C) and π is further proper, we see that Hq
dR(X/Y ) with

algebraic Gauss-Manin connection is naturally a DY -module by Theorem
3.1.11 and [HT07, Theorem 1.4.10].

By [BP96, Theorem 2.1], the analytic and algebraic Gauss-Manin connections
are compatible when π is furthermore proper.

Corollary 3.6.10. Let π : X → Y be a smooth proper morphism of smooth
C-algebraic varieties with Y irreducible, then for each k ∈ N, Rkπ∗QXan

carries a natural Q-VHS of weight k on Y an.

Proof. Combine Theorem 3.1.11 and Theorem 3.6.6.

3.7 p-adic Hodge theory

Let E/Qp be a �nite unrami�ed extension and σ = σE/Qp the Frobenius
on E. See [BC09, Def. 9.1.4] for the crystalline period ring Bcris of E. It
is an integral domain containing the maxima unrami�ed extension of Qp

and carries an action of GE, an injective Frobenius operator ϕ : Bcris →
Bcris ([BC09, Thm. 9.1.8]) and a non-increasing, exhausting and separated
�ltration (FiliBcris)i∈Z stable under GE.
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De�nition 3.7.1 (Filtered ϕ-module, [BC09, 6.2; 7.3.1; 7.3.4], [Dia17, p.11]).
If V is a �nite dimensional E-vector space equipped with ϕ : V → V a σ-
semilinear bijection and a decreasing exhaustive and separated �ltration2

Fil∗V , then we call the triple (V, ϕ, F il∗V ) a �ltered ϕ-module. A morphism
is required to preserve ϕ and compatible with the �ltrations. Let MFϕE be
the category of �ltered ϕ-modules over E.

Note here we require no compatibility of Fil∗V with ϕ. Given two objects
(V, ϕ, F ∗V ), (V ′, ϕ′, F ∗V ′), we de�ne their tensor product to be (V ⊗E V ′, ϕ⊗
ϕ′, G∗(V ⊗E V ′)), where Gk(V ⊗E V ′) is

∑
p+q=kWp,q, where Wp,q is the

image of the natural map F pV ⊗E F qE ′ → V ⊗E V ′. The forget functor
MFϕE → VecE is a �bre functor. We see that MFϕE is a symmetric monoidal
category. The pair (V, ϕ) is an isocrystal over E in the sense of [BC09,
Def. 7.3.1], and the triple (V, ϕ, F il∗V ) is called a �ltered isocrystal in [BC09,
Section 7].

De�ne a functor Dcris : RepQp
(GE)→ MFϕE by

Dcris(V ) := (Bcris ⊗Qp V )GE ,

and for every integer i, FiliDcris(V ) = (FiliBcris ⊗Qp V )GE .

De�nition 3.7.2 (Crystalline representation). [BC09, p.133] A p-adic representation
V of GE is called crystalline if dimE Dcris(V ) = dimQp(V ).

Denote the full subcategory of RepQp
(GE) comprised of crystalline ones

by Repcris
Qp

(GE).

Proposition 3.7.3 ([BC09, Prop. 9.1.11]). The functor Dcris : Rep
cris
Qp

(GE)→
MFϕE is an exact fully faithful tensor functor.

Theorem 3.7.4 (Fontaine's Ccris conjecture, Faltings' crystalline comparison
theorem, [Fon82, A.11, p.573], [Fal88, Cor. p.69], [Dal06, p.2], [Hon, Example
3.2.2 (2); Remark to Thm. 1.2.4, p.10]). If X/OE is a smooth proper scheme,
let X = XE, then H i

ét
(XĒ,Qp) ∈ RepcrisQp

(GE) and its image under Dcris is

(H i
dR(X/E), ϕ,Hodge �ltration),

where the crystalline Frobenius ϕ on H i
dR(X/E) is given by Theorem 3.5.6.

2Here the dimension data is changing.
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4 A family of varieties with good reduction

We assemble some ingredients needed for the method of Lawrence and Venkatesh.
The following lemma relates rational points to integral points. It relies on
[Gro61, Proposition 7.3.3].

Lemma 4.0.1. Let Y be an integral scheme of generic point b and function
�eld K. Assume that for any y ̸= b ∈ Y , the stalk OY,y is a valuation ring.
Let f : X → Y be a separated closed morphism.

1. If X is an integral scheme, the generic �ber f−1(b) = {x} is a singleton
and the corresponding homomorphism k(b)→ k(x) is bijective, then f
is an isomorphism.

2. The natural map ι : X(Y )→ XK(K) is a bijection.

Proof. 1.For any y ̸= b ∈ Y , the localization Spec(OY,y)→ Y is a topological
embedding, so the base change fy : Xy := X ×Y Spec(OY,y) → Spec(OY,y)
is closed. The morphism iy : Xy → X is also a localization of ring when
restricted to a�ne opens of X, hence iy is a topological embedding and Xy

is reduced. As x ∈ X is the generic point and x ∈ Xy, the scheme Xy

is irreducible. Thus by [Gro61, Propositon 7.3.1], fy is an isomorphism.
Therefore f is an isomorphism.

2.By [Gro60, Ch I, Corollaire 5.4.7], ι is injective. Let's show ι is surjective.
Take any x ∈ XK(K). Since f is separated, so is XK → Spec(K). Then

x ∈ XK is a closed point by [Gro60, Ch I, Corollaire 5.4.6]. Let X ′ be
the closure of x ∈ X with reduced induced scheme structure. Then X ′ is
integral. The restricted morphism X ′ → Y is closed and separated, which is
an isomorphism by 1. The inverse Y → X ′ followed by X ′ → X is in ι−1(x).
We conclude that ι is bijective.

A rough picture for the presented proof of Mordell's conjecture is summarized
below: Given a smooth OS-scheme Y , our aim is to show the �niteness of
Y(OS) in view of Lemma 4.0.1. In stages:

� Construct a smooth proper morphism π : X → Y .

� Show the semisimplicity of the global Galois representation ρy : GK →
GL

(
Hq

ét
((Xy)K ,Qp)

)
for �most� y ∈ Y(OS). Lemma 2.3.6 ensures that

for such y, ρy lies in only �nitely many isomorphism classes. We are
going to show there are only �nitely many y for each class.
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� Choose a place v and use Gauss-Manin connection to construct a v-adic
period map which encodes the variation of the Galois representations
ρy.

� Calculate monodromy to give a lower bound of the image of v-adic
period map, i.e. show that Hodge structure indeed varies.

� Control the centralizer of Frobenius operator to give an upper bound
of the image of integral points under the v-adic period map.

In this section we consider a proper smooth morphism Π : X → Y of smooth
separated OS schemes, whose base change to K is denoted by π : X → Y .
Fix y0 ∈ Y(OS) ⊂ Y (K). Let Xy0 be the �ber above y0, which is a smooth
proper K-variety that has good reduction at every �nite place of K outsider
S. Let V := Hq

dR(Xy0/OS) and V := Hq
dR(Xy0/K) = V ⊗OS

K. Since Y is
separated over OS, the map y0 : Spec(OS) → Y is a closed immersion. Let
y0(∈ Y(Fv)) : SpecFv → Spec(OS)→ Y denote the reduction modulo v and
y#0 : OY,y → O(v) the local surjection.

4.1 Comparison of connections

By Theorem 3.1.11, Rqπ∗Ω
p
X/Y and Hq

dR(X/Y) are �nite locally free OY-
modules. As the morphism Π is smooth of smooth OS schemes, Theorem
3.6.8 provides us with the Gauss-Manin connection

∇ : Hq
dR(X/Y)→ H

q
dR(X/Y)⊗OY Ω1

Y/OS
.

Fix an archimedean place ι : K → C and a �nite place v of K satisfying:

� if p is the rational prime below v, then p > 2;

� v is unrami�ed in K/Q;

� no place of K above p lies in S.

In fact, the condition p > 2 is here just to simplify notation. Once for
all, we �x an isomorphism CKv → C. For any K-scheme Z, we denote
interchangeably by ZC or Zι its base change to C via ι.

Let's show that the Gauss-Manin connection is de�ned by power series
on K.
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Take a basis {v1, . . . , vr} of the free OY,y0-module Hq
dR(X/Y)y0 . On some

open neighborhood of y0 ∈ Y , {v1, . . . , vr} is de�ned and form a local basis.
Write ∇vi =

∑
j A

j
ivj, where the A

j
i are local sections of Ω

1
Y/OS

near ȳ0.
Since Y is smooth over OS, OY,y0 is a Noetherian regular local ring. Also

O(v) is a discrete valuation ring. There exists a regular system of parameters
{z0, z1, . . . , zm} of OY,y0 such that {z1, . . . , zm} generate the kernel of y#0 .
The completion of OY,y0 is Ov[[z1, . . . , zm]] in which OY,y0 is included in
O(v)[[z1, . . . , zm]].

OY,y0 O(v)[[z1, . . . , zm]] K[[z1, . . . , zm]]

ÔY,y0 Ov[[z1, . . . , zm]] Kv[[z1, . . . , zm]] C[[z1, . . . , zm]]=

The stalk Aji (y0) =
∑

k a
jk
i dzk with

ajki ∈ OY,y0 ⊂ O(v)[[z1, . . . , zm]]. (7)

(The stalk Ω1
Y/OS ,y0

= Ω1
OY,y0

/O(v)
.) Note that the ajki are power series with

coe�cients in K!
Then we consider the existence of horizontal sections.
A local section ofHq

dR(X/Y) near ȳ0 writes as f =
∑

α f
αvα, where fα are

local sections of OY . Recall that a local section f satisfying the �at equation
∇f = 0 is called horizontal. In local basis, the equation expand as a linear
system of di�erential equations

dfα +
∑
β

Aαβf
β = 0; α = 1, 2, . . . , r. (8)

By integrability of the Gauss-Manin connection, for any K-initial condition
we obtain a formal solution (f 1, . . . , f r) ∈ K[[z1, . . . , zm]] to (8) (compare to
Theorem 2.1.5).

Lemma 4.1.1 (Picard-Lindelöf method). [LV20, p.915] AnyKv-formal solution
f is v-adically absolutely convergent on {z ∈ Km

v : |zi|v < |p|1/(p−1)
v }. If the

initial value is in OL, then it remains true over this disk.

Proof. For any given initial condition (f 1(0), . . . , f r(0)) = (a1, . . . , ar) ∈ Kr
v ,

let fα =
∑

I∈Nm aαI z
I be the unique formal solution with coe�cients in Kv.
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We show that maxα |aαI | ≤ C
|I!| , where C is shorthand for maxα |aα|. by

induction on I. It is trivial if I = 0⃗. Assume the inequality for J ≤
I = (i1, . . . , im). We proceed to show that for I + 1k = (i1, . . . , ik−1, ik +
1, ik+1, . . . , im). Consider equation (8) with ∂

∂zk
, then

(1 + ik)f
α
I+1k

+
∑
β

∑
J+L=I,J,L∈Nm

aαβ,Jf
β
L = 0.

Note that for aαβ,J ∈ O(v) by (7), so for each L ≤ I,

|aαβ,Jf
β
L | ≤ |f

β
L | ≤

C

|L!|
≤ C

|I!|

by induction hypothesis. As (Kv, | · |) is non-archimedean,

|fαI+1k
| ≤ C

|I!|(ik + 1)
=

C

|(I + 1k)!|
.

The induction is completed. Recall that for any n ∈ N+, |n|v > |p|
− n

p−1
v , so

1
|I!| < |p|

− |I|
p−1

v . Now given such a point z, for any α,

|fαI zI | < C(
max1≤i≤m |zi|v

|p|
1

p−1
v

)|I|.

Since ajki ∈ C{z1, . . . , zm}, the formal C-solution converges near the origin
of Cm for any initial C-condition.

For the base change πC : XC → YC, the pullback of Hq
dR(X/Y ) to YC is

Hq
dR(XC/YC). Its analyti�cation is Hq

dR(X
an
C /Y an

C ). Thus, the pullback of
{v1, . . . , vr} to Y an

C is a local basis of Hq
dR(X

an
C /Y an

C ) around y0 ∈ Y h. The
analyti�cation of the algebraic Gauss-Manin connection C∇ : Hq

dR(XC/YC)→
Hq
dR(XC/YC)⊗OY

Ω1
YC/C is the analytic counterpart ∇an : Hq

dR(X
an/Y an)→

Hq
dR(X

an/Y an)⊗OY anΩ1
Y an . Therefore, the formal solution (f 1, . . . , f r) induces

a local basis of Hq
dR(X

an
C /Y an

C ) near y0 consisting of horizontal sections.
By Lemma 4.1.1, the argument carries over mutatis mutandis to the Kv-
analytic setting and results in a local basis of Hq

dR(X
an
v /Y an

v ) on the chart
disk {z ∈ Km

v : |zi|v < |p|1/(p−1)
v } centered at y0 (the chart induced by y0 ∈
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Y(Ov)) consisting of horizontal sections. The ι-adic and v-adic local bases
are represented by the same power series in K with respect to {v1, . . . , vr}.

Now we use the horizontal sections to identify nearby �bers in both v-adic
and ι-adic settings via parallel transport.

On Y an
C , Rqπh∗CXh is a local system (Proposition 3.1.16). The �ber at y ∈

Y (C) is Hq
sing(X

an
y ,C) (singular cohomology) by proper base change theorem

[Har11, Theorem 4.4.17]. When ya, yb ∈ Y (C) are su�ciently close in the
analytic topology, the complex analytic Gauss-Manin connection induces an
identi�cation

GM : Hq
sing(X

an
ya ;C)→ Hq

sing(X
an
yb
;C). (9)

Consider the v-adic analogue. On YKv , R
qπ∗Kv is a local system. The

�ber at y ∈ Y (Kv) is H
q
dR(Xy/Kv). By the choice of v, p > 2 and |p|1/(p−1)

v >
|p|v. Thus by Lemma 4.1.1, for any y1, y2 ∈ Y(Ov) with y1 ≡ y2 modulo v,
we obtain an identi�cation [LV20, (3.7)]:

GM : Hq
dR(Xy1/Kv)→ Hq

dR(Xy2/Kv).

The �ber over y ∈ Y(Ov) is a smooth proper Ov-model Xy for Xy/Kv.

Xy Xy Xy

Spec(Kv) Spec(Ov) Spec(Fv).

By Theorem 3.5.6, the Frobenius operator ϕv on H
q
dR(Xy/Kv) is induced by

the identi�cation with Hq
cris(Xy)⊗Ov Kv. As y1 ≡ y2 modulo v, Xy1 = Xy2 .

Hq
dR(Xy1/Kv)

Hq
cris(Xy1)⊗Ov Kv

Hq
dR(Xy2/Kv)

∼

GM

∼

(10)

The commutativity of Diagram (10) follows from [Ber06, Prop.3.6.1]. Thus
the identi�cation GM is a morphism of �ltered modules.

The GM identi�cations in general do not preserve the Hodge �ltration.
The period maps are tools to study the variation of Hodge structures.
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4.2 Monodromy and the period mappings

By Theorem 3.5.5, we get an isomorphism Hq
dR(Xy/C) → Hq

sing(X
an
y ,C) for

y ∈ Y (C). In particular, VC = Hq
dR(Xy0/C) = Hq

sing(X
h
y0
,C). First recall the

monodromy representation

µ : π1(Y
an
C , y0)→ GL(VC). (11)

Let Γ be the Zariski closure of the image, which is an algebraic subgroup of
GL(VC).

Form the �ag scheme H/OS such that H(OS) is the set of �ags in V with
the same dimension data as the Hodge �ltration de�ned by �ber over y0.
Note that H/OS is proper and its generic �ber H/K is the usual (projective)
�ag variety.

We start by the complex case. Let Ωι be a simply connected open
neighborhood of y0 ∈ Y an

C . Recall the analytic period maps de�ned in Section
3.6

Φι : Ωι → Han
ι (12)

and
Φ̃ : ˜Y an

C → HC(C), (13)

where p : ˜Y an → Y an denotes the universal cover of Y an.
Put

hι0 = Φι(y0). (14)

Consider a v-adic analogue. Let Ωv = {y ∈ Y(Ov) : y ≡ y0 modulo v}
be the residue disk centered at a base point y0 ∈ Y(Ov). Then Ωv is
a Kv-analytic manifold in the sense of [Ser09, Part II, Ch. III.2] since
Y(OS) ⊂ Y an

v is open. For any y ∈ Ωv, the Gauss-Manin connection (10)
induces a Kv-linear isomorphism Hq

dR(Xy/Kv)
∼−→ Hq

dR(Xy0/Kv) translating
the Hodge �ltration at y to a �ltration with same dimension date on Vv (by
Theorem.3.1.11). There is a v-adic period map

Φv : Ωv → H(Ov) = H(Kv).

The map Φv is Kv-analytic. We record a simple observation.

Lemma 4.2.1. [LV20, Lem. 3.3] If Hbad
v ⊂ Hv is a Zariski closed subset and

dimHbad
v < dimΦv(Ωv),

then Φ−1
v (Hbad

v ) is a proper Kv-analytic subset of Ωv. Here Φv(Ωv) denotes
the Zariski closure of Φv(Ωv) inside Hv.
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When Ωv is one-dimensional, the result implies further the �niteness of
Φ−1
v (Hbad

v ). In the next subsection we will get lower bounds of dimΦv(Ωv).

4.3 v-period≥ C-period ≥ monodromy

The title of is an informal way to put the results. The second inequality
refers to Lemma 3.6.5.

To compare complex and v-adic period maps, the key is that the �at
variety is over K and the two Gauss-Manin connections are de�ned by
common power series with K coe�cients (see Section 4.1).

Lemma 4.3.1. Given a �eldK of characteristic 0 and power series B1, . . . , BN ∈
K[[z1, . . . , zm]], then there exists a closed subvariety Z ⊂ ANK with the following
property: For every local �eld L containing K and ϵ > 0 such that all the
Bi are absolutely convergent on U = Uϵ,L = {z ∈ Lm : |zi| < ϵ,∀i}, the base
change ZL is the Zariski closure of B(U) inside ANL , where B : U → ANL is
the map associated with B1, . . . , BN .

Proof. Let I ⊂ K[x1, . . . , xN ] be the ideal generated by all polynomials Q
such that Q(B0, . . . , BN) = 0 in K[[z1, . . . , zm]] and let Z ⊂ ANK be the
corresponding subvariety.

Claim: the vanishing ideal of L[x1, . . . , xN ] associated to B(U)(⊂ ANL ) is
I · L[x1, . . . , xN ].

In fact, if a polynomial P ∈ L[x1, . . . , xN ] vanishes onB(U), then P (B0, . . . , BN)
as a function on U is L-analytic and identically vanishes, so P (B0, . . . , BN) =
0 in L[[z1, . . . , zm]]. This is equivalent to an in�nite system of linear equation
with coe�cients inK (the �nitely many variables being the coe�cients of P ).
Any L-solution of this linear system is a L-linear combination of K-solutions.
The Claim is proved.

So, the Zariski closure of B(U) contains ZL. The reverse inclusion is
clear.

The following lemma links v-adic period map to its complex counterpart.

Lemma 4.3.2. There is a closed subvariety W ⊂ H de�ned over K such
that WC is the Zariski closure of Φι(Ωι) in HC and WKv is contained in the
Zariski closure Φv(Ωv) of Φv(Ωv). In particular,

dimΦv(Ωv) ≥ dimΓ · hι0.
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Proof. Take ϵ > 0 small enough such that a formal solution to the �at
equation (8) converges absolutely on both Uϵ,Kv ⊂ Ωv and Uϵ,C. Recall that
the v-adic and ι-adic Gauss-Manin connections are determined by same power
series over K. Lemma 4.3.1 implies that the Zariski closures of Φv(Uϵ,Kv) and
that of Φι(Uϵ,C) are base changes of a same K-closed subvariety W ⊂ H. By
Lemma 3.6.5,WC is the Zariski closure of Φι(Ωι) and dimWC ≥ dimΓ·hι0.

Note that we may use some variant of the �ag variety in Lemma 4.2.1,
3.6.5 and 4.3.2. Below we will use some Lagrangian Grassmannian in the
place of H.

4.4 A prototype of arguments

Fix q ≥ 0. For y ∈ Y(OS), we denote by ρy the global p-adic Galois
representation

ρy : GK → GL
(
Hq

ét
(Xy,K ,Qp)

)
.

Restricted to GKv , ρy is crystalline by Theorem 3.7.4 (as a good model Xy
exists) and

Dcris(ρ|GKv
) = (HdR(Xy/Kv), ϕv,Hodge �ltration).

Then Gauss-Manin connection identi�es the last triple with (Vv, ϕv,Φv(y))
where Vv := V ⊗K Kv = Hq

dR(Xy0/Kv). (Recall that a morphism in MFϕK is
compatible with ϕ but may not preserve the �ltration.)

Here is a sample result.

Lemma 4.4.1. [LV20, Prop. 3.4] Suppose that

dimKv(Z(ϕ
[Kv :Qp]
v )) < dimΓ · hι0,

where Z(−) denotes the centralizer of theKv-linear operator ϕ
[Kv :Qp]
v in GLKv(Vv)

and hι0 is de�ned in (14). Then the set

Uss = {y ∈ Y(OS) : y ≡ y0 modulo v, ρy semisimple}

is contained in a proper Kv-analytic subvariety of Ωv. (Here Γ · hι0 is locally
closed in the Zariski topology of HC by [Mil17, p.27].)
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Proof. Let S ′ be the union of S with the places above p of K. For y ∈ Uss
and at a place outside S ′, the p-adic representation ρy of ΓK is unrami�ed
by Fact 2.3.2, pure of weight q with integral characteristic polynomial by
Theorem 2.3.5. By Lemma 2.3.6, ρy belongs to �nitely many isomorphism
classes. We may consider y ∈ Uss with ρy in a �xed isomorphism class.
Take a representative (Vv, ϕv, h) of the Dcris image of this �xed class. By
Proposition 3.7.3, the triple (Vv, ϕv,Φv(y)) is isomorphic to (Vv, ϕv, h) in
MFϕKv

, so Φv(y) ∈ Z(ϕv) · h. Note that Z(ϕv) ⊂ Z(ϕ
[Kv :Qp]
v ) and Z(ϕ[Kv :Qp]

v )
is the Kv-points of a Kv-algebraic subgroup of GLKv(Vv). Therefore Φv(Uss)

is contained in a �nite union of subsets of HKv of the form Z(ϕ
[Kv :Qp]
v ) · h,

each of which is Zariski-closed subset of Hv having dimension no greater than
dimKv(Z(ϕ

[Kv :Qp]
v )). We conclude by applying Lemma 4.2.1.

Lemma 4.4.1 appeals us to �nd upper bound of the centralizer of the
Frobenius ϕv. To this end, we record the following linear algebra result.

Lemma 4.4.2. [LV20, Lemma 2.1]Let E be a �eld and σ : E → E a �eld
automorphism of �nite order e, with �xed sub�eld F . Assume that V is a
E-vector space of dimension d with ϕ : V → V is a σ-semilinear3 bijection.
De�ne Zend(ϕ) = {f ∈ gl(V ) : fϕ = ϕf}. It's an F vector space of dimension
dimE Zend(ϕ

e). In particular, dimF Zend(ϕ) ≤ d2.

4.5 Abelian-by-�nite family

We concentrate on the speci�c type of morphism Π : X → Y to be used.

De�nition 4.5.1 (relative (smooth proper) curve). Let S be a scheme. A
relative curve over S is de�ned to be a smooth proper morphism X → S of
relative dimension 1 whose geometric �bers are connected curves.

De�nition 4.5.2 (abelian scheme). [FP19, De�nition 1.1]A smooth proper
group scheme X → S is called an abelian scheme if the geometric �bers are
connected.

We call an abelian scheme of relative dimension one an elliptic scheme.

Example 4.5.3 (relative Jacobian). If C → S is a relative curve, then
Pic0C/S → S is an abelian scheme.

3
i.e., ϕ is F -linear and for every λ ∈ E, v ∈ V , one has ϕ(λv) = σ(λ)ϕ(v)
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Proposition 4.5.4. [FGI05, Remark 9.6.22]If A→ S is an abelian scheme,
then Pic0A/S = PicτA/S.

Let π : A → S be an abelian scheme, then π̂ : Pic0A/S → S is also
an abelian scheme, called the dual of π. If π is projective, then so is π̂
(cf.[MFK94, Corollary 6.8]). Denote Pic0A/S by Â.

Theorem 4.5.5. [BBM06, Theorem 5.1.6]Let π : A → S be an abelian
scheme. Then there is a canonical isomorphism

ΦA : H1
dR(A/S)

∨ → H1
dR(Â/S).

Corollary 4.5.6. [Wed08, Section 5.1]A polarization λ : X → X̂ of an
abelian variety X/K induces a symplectic pairing H1

dR(X/K)×H1
dR(X/K)→

K.

De�nition 4.5.7 (polarization). [MFK94, De�nition 6.3]Let π : X → S be
a projective abelian scheme. A polarization of X is an S-homomorphism λ :
X → X̂ such that for all geometric points s̄ ∈ S, then induced λ : Xs̄ → X̂s̄
is a polarization of abelian variety. If λ is further an isomorphism, we call it
a principal polarization.

De�nition 4.5.8. [LV20, De�nition 5.1] An abelian-by-�nite family over a
scheme Y is a sequence of morphisms

X −→ Y ′ π−→ Y

where π is �nite étale, andX → Y ′ is a polarized abelian scheme. A goodOS-
model for such a family is an abelian-by-�nite family X → Y ′ → Y of smooth
�nite type separated OS-scheme whose base change to K is X → Y ′ → Y
and satis�es the assumptions in the start of Section 4.1.

Remark 4.5.9. In our application,K is a number �eld, then for any y ∈ Y (K),
ρy on H1

ét
is semisimple by Theorem 3.3.9. This deep result is avoided in

[LV20] intentionally.

Given an abelian-by-�nite family X → Y ′ → Y over K with a good
OS-model X → Y ′ → Y , let Ey = O(Y ′

y) for y ∈ Y (K), then the �nite
étale K-scheme Y ′

y = SpecEy and Ey =
∏

ỹ∈π−1(y) k(ỹ) is an étale K-algebra.
The �ber Xy is a polarized abelian scheme over Ey. Let d be the relative
dimension of the abelian scheme X → Y ′. For any ỹ ∈ π−1(y), Xỹ/k(ỹ)
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is an abelian variety of dimension d. As a result, Vy := H1
dR(Xy/K) =

H1
dR(Xy/Ey) = ⊕ỹ∈π−1(y)H

1
dR(Xỹ/k(ỹ)) is actually a free Ey-module of rank

2d. The polarization on Xy gives an Ey-bilinear symplectic pairing

ωy : H
1
dR(Xy/K)×H1

dR(Xy/K)→ Ey.

Also k(ỹ)/K is unrami�ed outside S of bounded degree (see identi�cation
(20) below). By Theorem 2.3.7, up to K-isomorphism, there are �nitely
many extensions k(ỹ)/K. There are only �nitely many possibilities for the
algebras Ey up to isomorphism, or equivalently, for the �nite GK-sets Y ′

y(K̄).
The Frobv-orbits of Y ′

y(K̄) are in bijection with pairs (y′, w) where y′ ∈ π−1(y)
and w|v a place of k(y′). The (y′, w) orbit has [k(y′)w : Kv] elements.

Let v be a place of K as in the start of Section 4.1. Fix y0 ∈ Y(OS) and
de�ne Ωv as before. Write Ey,v = Ey ⊗K Kv then

Ey,v =
∏
ỹ,w

k(ỹ)w (15)

where ỹ ∈ π−1(y) and w|v is a place of k(ỹ). Now k(ỹ)w/Qp is unrami�ed,
hence a Frobenius σk(ỹ)w/Qp ∈ G(k(ỹ)w/Qp) is available.

Write Vy,v = Vy ⊗K Kv. Then

Vy,v = ⊕ỹ,wVỹ,w, (16)

where Vỹ,w = H1
dR(Xỹ/k(ỹ)w). The two decompositions (15), (16) and module

structures are compatible.
Write ρỹ for the 2d dimensional p-adic representation

ρỹ : Gk(ỹ) → H1
ét
(Xỹ,K ,Qp). (17)

For y′ ∈ π−1(y0), de�ne the �ag variety by Weil restriction: Hy′ =

Res
k(y′)
K LGr(Vy′ , ωy′) and

H =
∏

y′∈π−1(y0)

Hy′ . (18)

Here Lagrangian Grassmann LGr classi�es k(y′)-Lagrangian subspaces of
Vy′ . The period map

Φv : Ωv → Hv (19)

by y 7→ Fil1H1
dR(Xy/Kv) is Kv-analytic. In fact, we have
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Ωv Hv

LGrKv(Vy0,v, ω)

For y ∈ Ωv ∩ Y(OS), the v-adic Gauss-Manin connection of Y ′ → Y on H0
dR

induces an isomorphism
Ey,v → Ey0,v (20)

which is compatible with the identi�cation

H1
dR(Xy,Kv/Kv)→ H1

dR(Xy0,Kv/Kv)

and gives a bijection between pairs

(ỹ, w) above (y, v)→ (ỹ0, w0) above (y0, v).

This bijection gives further identi�cations Vỹ,w → Vỹ0,w0 . Recall that the
Lagrangian Grassmannian LGrk(ỹ0)(Vỹ0 , ω) is a projective variety of dimension
(d+1)d

2
carrying a transitive action of symplectic group, so dimHỹ0 = [k(ỹ0)w0 :

Kv]
(d+1)d

2
.

Projecting the period map further to each factor, we have period maps

Φỹ0,w0 : Ωv → Hỹ0,w0 (21)

where Φỹ0,w0(y) = Fil1H1
dR(Xỹ,w/k(ỹ)w). Here Fil1H1 is embedded into

Vỹ0,w0 via Gauss-Manin connection.
In application we hope that the monodromy is �big� in some sense in view

of Lemma 4.4.1. We make a precise de�nition.

De�nition 4.5.10 (full monodromy). Let Y/K be a variety and X → Y ′ π→
Y be an abelian-by-�nite family. This family is said to have full monodromy
if for a base point y0 ∈ Y (C) the Zariski closure of the image of monodromy
representation

π1(Y
an
C , y0)→ GL(H1

sing(X
an
y0
,Q))

contains
∏

π(ỹ)=y0
Sp(H1

sing(Xỹ,Q), ω). Here we use the decomposition

H1
sing(X

an
y0
,Q) = ⊕ỹ∈π−1(y0)H

1
sing(X

an
ỹ ,Q)

and the symplectic form ω comes from the polarization.

40



5 Mordell's conjecture

Theorem 5.0.1 (Mordell's conjecture, Faltings). If Y/K is an integral smooth
projective curve of genus g ≥ 2, then Y (K) is �nite.

The proof relies on Proposition 5.0.4 below and a speci�c construction of
family of curves. Note that in the case of S-unit equation, we may use the
group law of the base variety Gm/OS

to twist the Legendre family, and hence
a large �eld extension. But here such a twist is absent. In Proposition 5.0.4,
we need a size condition to get large �eld extension, which is checked using
Weil pairing in the proof of Theorem 5.0.1.

Start by some properties of the constructed family. For a rational prime
q, let

Aff(q) = {
(
a b
0 1

)
: a ∈ F∗

q, b ∈ Fq} = Fq ⋊ F∗
q.

Given Y as in Theorem 5.0.1, the abelian-by-�nite family Xq → Y ′
q → Y in

De�nition 6.0.5 for each prime q ≥ 3 has the following properties:

1. It has full monodromy.

2. dq = (q − 1)(g − 1/2), where dq is the relative dimension of Xq → Y ′
q .

3. For each y0 ∈ Y (K), there is aGK-equivariant identi�cation of π−1(y0)(K)
with the conjugacy classes of surjections πét

1 (Y − y0, ∗) ↠ Aff(q) that
are nontrivial on a loop around y0.

We state it in a theorem, whose proof is in Section 7.2.

Theorem 5.0.2. The Kodaira-Parshin family for the group Aff(q) with q ≥ 3
a rational prime has full monodromy. The relative dimension of Xq → Y ′

q is
(q − 1)(g − 1/2).

Fix a geometric symplectic basis of H1(Y
an,Z), then by Theorem 3.3.6,

πgeom1 (Y −y0, ∗) is the pro�nite completion of the free group on 2g generators
x1, x

′
1, . . . , xg, x

′
g and the loop around y0 corresponds to [x1, x

′
1][x2, x

′
2] . . . [xg, x

′
g],

so πgeom1 (Y − y0, ∗)ab = πgeom1 (Y, ∗)ab.

H1
ét
(YK ,Z/(q−1)) = Hom(πgeom1 (Y, ∗),Z/(q−1)) = Hom(πgeom1 (Y−y0, ∗),Z/(q−1)).
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Note that a conjugacy classes of group morphisms H → Aff(q) induces a
unique morphism H → F∗

q. Thus the third property of Kodaira-Parshin
family gives a GK-equivariant

π−1(y0)(K)→ H1
ét
(YK ,Z/(q − 1)), (22)

which is the map [LV20, (2.3)] with regard to the �xed basis.

De�nition 5.0.3. Let K be a number �eld and E be a �nite set with GK

action. Fix a positive integer d (it will be the relative dimension of X → Y ′

when used). If v is a place of K such that v unrami�ed in K/Q and the GK

action on E is unrami�ed at v, then we de�ne

sizev(E) = |A|/|E|,

where A ⊂ E is the subset of elements whose Frobv(∈ GK) orbit has size
≤ 8d

d+1
.

See [LV20, De�nition 2.7] for the term �friendly place� appearing below.
At friendly places, we have control of the local behavior of global Galois
representations (that is the restriction to GKv of a representation of GK).

Proposition 5.0.4. Let Y/K be a smooth curve, with an abelian-by-�nite
family X → Y ′ π→ Y of full monodromy and having a good model X → Y ′ →
Y over OS. Let d be the relative dimension of X → Y ′. Let v /∈ S be a
friendly place of K. Then

Y (K)∗ = {y ∈ Y(OS) : sizev(π−1(y)(K)) <
1

d + 1
}

is �nite.

Example 5.0.5. The variant Legendre family in [LV20, Section 4.2] satis�es
the conditions. Let v be as in Proposition 5.0.4. For t ∈ Y (K), Y ′

t =
Spec(K(t1/m)) and π−1(t)(K) = {z ∈ K : zm = t}. The cardinality of each
Frobv orbit is the order of the element Frobv,K(t1/m)/K ∈ G(K(t1/m)/K).

Assuming Proposition 5.0.4, we �nish the proof of Theorem 5.0.1 .

Proof. We are going to �nd a suitable prime q ≥ 3, a �nite set S of places
and a friendly place v such that for the family Xq → Y ′

q → Y , the conditions
of Proposition 5.0.4 are satis�ed (relatively easy) and Y (K)∗ = Y (K) (main
part of arguments). The �niteness follows.

We can enlarge K freely, so assume that K/Q is Galois. First, choose a
prime q such that
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1. q ≡ 3(4) and q ≡ 2(l) for any odd prime l|disc(K) or l ≤ 8[K : Q]

2. K is linearly disjoint from Q(ζq−1) over Q

3. 7·2g+1

(q−1)g
< 1

(g−1/2)(q−1)+1
.

By Dirichlet's theorem on arithmetic progressions, we choose q satisfying
the �rst and last condition (since g ≥ 2). If a rational prime p rami�es in
Q(ζq−1) = Q(ζ(q−1)/2) and in K, then p| q−1

2
and p|disc(K), so p ̸= 2 and this

contradicts the �rst condition on q. The second condition follows and

G(K(ζq−1)/Q)→ G(K/Q)×G(Q(ζq−1)/Q)

is an isomorphism. (That any odd prime factor of q − 1 must > 8[K : Q] is
used when we choose v.) Choose S such that the family Xq → Y ′

q → Y has
a good model over OS. We admit the existence of v satisfying the following
conditions (proved in [LV20, p. 27] and relying essentially on Chebotarev
density theorem):

1. (qv, q − 1) = 1

2. For any odd prime l|(q − 1), qv ∈ F∗
l has order > 8.

We are going to bound size of π−1(y)(K) to show Y (K) = Y (K)∗.
Let E be the image of (22). By [LV20, Lemma 2.11], each nonempty

�ber of the map have the same cardinality and #E = (q − 1)2g
∏

p|(q−1)(1−
p−2g) ≥ (q − 1)2g/2, in particular sizev(π−1(y)(K)) ≤ sizev(E). Let J be the
Jacobian variety of Y . Recall M := H1

ét
(YK ,Z/(q − 1)) = J [q − 1] is a free

Z/(q − 1)-module of rank 2g equipped with a perfect GK-equivariant Weil
pairing ([Mum74, p.183])

M ×M → Hom(µq−1(K),Z/(q − 1)).

Also Frobv ∈ GKv ≤ GK induces a Z/(q−1)-linear automorphism T ofM . As
Frobv acts on µq−1(K) by qv-power and the Weil pairing is GK-equivariant,

⟨Tv1, T v2⟩ = q−1
v ⟨v1, v2⟩.

We estimate sizev(E). An element ofM of Frobv-orbit < 8 is in ∪7i=1 ker(T
i−

1). If m1,m2 ∈ ker(T i − 1), then (q−iv − 1)⟨m1,m2⟩ = 0. By the second
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condition on v, 2⟨m1,m2⟩ = 0. The pairing restricted to 2M is nondegenerate
and vanishes on 2 ker(T i−1), so #[2 ker(T i−1)] ≤

√
#2M = ( q−1

2
)g. Hence,

#ker(T i − 1) ≤ 2g(q − 1)g.

sizev(E) ≤
7 · 2g(q − 1)g

1
2
(q − 1)2g

<
1

dq + 1
.

The proof of Theorem 5.0.1 is completed.

By the existence of a good model X → Y ′ → Y over OS, the GK action on
π−1(y)(K) is unrami�ed at v (which justi�es the notation sizev(π

−1(y)(K))).
As in the proof of S-unit equation, we hope that for most y ∈ Y (K), there
is a pair (y′, w) above (y, v) such that [k(y′)w : Kv] is large (to obtain better
control when applying Lemma 4.4.2). Lemma 5.0.6 and 5.0.8 show that the
condition on sizev gives the existence of such pairs. To prove Proposition
5.0.4, we need Lemmas 5.0.6 and 5.0.7.

Lemma 5.0.6. [LV20, Lemma 6.1] Setting as in Proposition 5.0.4. There
is a �nite subset F ⊂ Ωv ∩ Y (K)∗ such that for y ∈ Ωv ∩ Y (K)∗ − F , there
exists (ỹ, w) above (y, v) such that [k(ỹ)w : Kv] >

8d
d+1

and ρỹ (see (17)) is a
simple Gk(ỹ)-representation.

Lemma 5.0.6 is analogue to Lemma 8.0.2 but more complicated. It takes
care of failure of simplicity and its proof requires friendliness of the place v.
We advice the reader to skip it and use Theorem 3.3.9 instead in the proof
of Proposition 5.0.4 below at �rst reading.

Lemma 5.0.7. [LV20, Lemma 6.2]Setting as in Proposition 5.0.4 but v /∈ S
is allowed to be unfriendly. Fix a �nite extension E/Kv with [E : Kv] >

8d
d+1

and a semisimple p-adic representation ρ of GE. There are only �nitely
many y ∈ Ωv ∩ Y (K) for which there exists a pair (ỹ, w) above (y, v) such
that (k(ỹ)w, ρỹ,w) is isomorphic to (E, ρ).

Assuming Lemma 5.0.6 and 5.0.7 temporarily, we prove Proposition 5.0.4.

Proof. Fix y0 ∈ Y (K)∗. It su�ces to show the �niteness of Y (K)∗∩Ωv. There
are only �nitely many possibilities for k(ỹ) when y ∈ Y(OS). Consider the
�nite subset F in Lemma 5.0.6. When y ∈ (Ωv ∩Y (K)∗) \F , let (ỹ, w) be as
in Lemma 5.0.6. By Lemma 2.3.6, there are only �nitely many possibilities
for (k(ỹ), ρỹ) and also for (k(ỹ)w, ρỹ|Gk(ỹ)w

). The conclusion then follows from
Lemma 5.0.7.
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Proof of Lemma 5.0.7. It's a repeat of the proof of Lemma 4.4.1.
By Theorem 3.7.4,

Dcris(ρỹ,w) = (H1
dR(Xỹ/k(ỹ)w), ϕ,Hodge �ltration). (23)

Here ϕ is the σk(ỹ)w/Qp-semilinear Frobenius operator and the Hodge �ltration
is determined by Fil1H1

dR(Xỹ/k(ỹ)w). Using the Gauss-Manin connection
and the period map (21) we identify the tripe with

(H1
dR(Xỹ0/k(ỹ0)w0), ϕ,Φỹ0,w0(y)). (24)

It remains to show the �niteness of points y ∈ Ωv ∩ Y (K) such that the
triple (24) belongs to a �xed isomorphism class, i.e. Φỹ0,w0(y) lies in a �xed
orbit for the action of centralizer Z(ϕ) on Hỹ0,w0 . Here Z(−) is taken inside
GLk(ỹ0)w0

(Vỹ0,w0). note that Z(ϕ) ⊂ Z(ϕ[Kv :Qp]) and ϕ[Kv :Qp] is σk(ỹ)w/Kv =

σ
[Kv :Qp]

k(ỹ)w/Qp
-semilinear. By Lemma 4.4.2,

dimKv Zend(ϕ
[Kv :Qp]) ≤ (dimk(ỹ0)w0

Vỹ0,w0) = 4d2.

The assumption of full monodromy implies that Φv(Ωv) ⊂ Hv is Zariski-
dense, so is each Φỹ0,w0(Ωv) ⊂ Hỹ0,w0 . Now that [E : Kv] >

8d
d+1

, we �nd

dim(Γ · hι0) = dimHỹ0,w0 = [E : Kv]
(d+ 1)d

2
> 4d2.

Lemma 4.2.1 terminates the proof.

We proceed to the proof of Lemma 5.0.6. It follows lines similar to the
proof of Lemma 8.0.2. We call y ∈ Ωv ∩Y (K)∗ �bad� if no (ỹ, w) above (y, v)
is such that [k(ỹ)w : Kv] >

8d
d+1

and ρỹ is simple simultaneously. We will take
F to be the set of bad points.

Lemma 5.0.8. Setting as in Lemma 5.0.6. If y ∈ Ωv ∩ Y (K)∗ is bad,
then there exists a pair (ỹ, w) above (y, v) with [k(ỹ)w : Kv] >

8d
d+1

and a
nonzero proper ϕ-stable subspace WdR ≤ H1

dR(Xỹ/k(ỹ)w) = Vỹ,w such that
dimk(ỹ)w Fil

1WdR ≥ 1
2
dimk(ỹ)w WdR. (Here ϕ is as in (23).)

Proof. Assume the contrary of Lemma 5.0.8. For each y′ ∈ π−1(y), choose
Wy′ a minimal nonzero subrepresentation of ρy′ . For each w|v a place of k(y′),
we have DdR,w : RepdRQp

(Gk(y′)w) → Filk(y′)w . The subspace DdR,w(Wy′) ≤
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DdR,w(ρy′) = H1
dR(Xy′/k(y

′)w) is ϕ-stable and equipped with induced Hodge
�ltration. The representation Gk(y′) → GL(Wy′) is crystalline at all primes
above v (by Theorem 3.7.4) and pure of weight 1,

Fil2DdR,w(Wy′) ≤ Fil2H1
dR(Xy′/k(y

′)w) = 0.

Therefore dimDdR,w(Wy′) is even and 2+2 dimFil1DdR,w(Wy′) ≤ dimDdR,w(Wy′).
Applying [LV20, Lemma 2.10] to the friendly place v, we �nd∑

w|v

[k(y′)w : Kv]
dimFil1DdR,w(Wy′)

dimDdR,w(Wy′)
=

[k(y′) : K]

2
.

If [k(y′)w : Kv] >
8d
d+1

, then ρy′ is not simple as y is bad. As Xy′,w/k(y
′)w is

a polarized abelian variety,

dimk(y′)w DdR,w(Wy′) ≤
1

2
dimk(y′)w H

1
dR(Xy′/k(y

′)w) = d, (25)

dimFil1DdR,w(Wy′)

dimDdR,w(Wy′)
≤ d− 1

2d
. (26)

Sum over all y′ ∈ π−1(y),

1

2

∑
(y′,w)

[k(y′)w : Kv] =
∑

y′∈π−1(y)

1

2
[k(y′) : K]

=
∑
(y′,w)

[k(y′)w : Kv]
dimFil1DdR,w(Wy′)

dimDdR,w(Wy′)

≤
∑

[k(y′)w:Kv ]>
8d
d+1

d− 1

2d
[k(y′)w : Kv] +

∑
[k(y′)w:Kv ]≤ 8d

d+1

[k(y′)w : Kv].

We deduce that

d
∑

[k(y′)w:Kv ]≤ 8d
d+1

[k(y′)w : Kv] ≥
∑

[k(y′)w:Kv ]>
8d
d+1

[k(y′)w : Kv].

Let f1, . . . , fk be the cardinal of each Frobv-orbit. Then

d
∑

i:fi≤ 8d
d+1

fi ≥
∑

i:fi>
8d
d+1

fi,

so sizev(π−1(y)(K)) ≥ 1
d+1

. This contradicts the assumption that y ∈ Y (K)∗.
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Proof of Lemma 5.0.6. Fix (y′, w) above (y0, v). De�neAy′,w ⊂ LGrk(y′)w(Vy′,w, ω)
(closed sub k(y′)w-variety) as the set of Lagrangian k(y′)w-subspaces F ⊂
Vy′,w for which there exists a ϕ-stable subspaceW ⊂ Vy′,w satisfying dimk(y′)w(F∩
W ) ≥ 1

2
dimk(y′)w W . Put Hbad

y′,w = Res
k(y′)w
Kv

Ay′,w. By [LV20, Lemma 6.3,6.4],
Hbad
y′,w ⊂ Hy′,w is a proper closed Kv-subvariety. The assumption of full

monodromy and Lemma 4.2.1 show that Φ−1
y′,w(Hbad

y′,w) is �nite. Combined
with Lemma 5.0.8 this implies the �niteness of bad points. Take F to be the
set of bad points.

6 Construction of Kodaira-Parshin family

We present the construction of the family used in the proof of Theorem 5.0.1.
Readers can admit Proposition 6.0.1 and jump to De�nition 6.0.4.

Proposition 6.0.1. [LV20, Proposition 7.1]Let Y be a smooth projective
curve over a number �eld K of genus g ≥ 1, and let G be a center-free
�nite group. Then there is a smooth projective K-curve Y ′ with a �nite
étale morphism π : Y ′ → Y and a relative curve Z → Y ′ with the following
properties:

1. For y ∈ Y (K), π−1(y) is in bijection with the set of G-conjugacy classes
of surjections πgeom1 (Y − y, ∗) → G nontrivial on a loop around y.
Moreover, if y ∈ Y (K), this identi�cation is GK-equivariant.

2. There's a �nite Y ′-morphism f : Z → Y ′ × Y , where G acts on Z
covering the trivial action on Y ′× Y and making Z − f−1(Γπ)→ Y ′×
Y − Γπ into a G-Galois cover, where Γπ ⊂ Y ′ ×K Y is the graph of
π. For y′ ∈ Y ′(K), the base change Zy′ → Y is branched exactly at
y = π(y′) and the induced morphism πgeom1 (Y an − y, ∗) → G is in the
conjugacy class from 1.

The strategy of proof is to construct it analytically over C, where the
properties are easily veri�ed. Then show it is algebraic over C and use
GAGA to translate the properties. The di�culty is to descent to K (i.e.,
show that it is algebraic over K).

Proof of Proposition 6.0.1. Lemma 6.0.3 gives Z◦ → Y ′ ×K Y → Y 2 where
everything is algebraic over K. Let Z → Y 2 be the normalization of Y 2

inside the function �eld of Z◦. Then Z is normal, and �nite over Y 2. The
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base extension ZC is normal, so coincides with the normalization of Y 2
C inside

the function �eld of Z◦. The desired properties can be veri�ed since they are
true over C by Proposition 6.0.2.

Proposition 6.0.2. Let Y be a compact Riemann surface and let G be a
�nite group. Then there exists a compact Riemann surface Y ′ with a �nite
sheeted cover map π : Y ′ → Y , and an algebraic relative curve Z → Y ′ with
the following properties:

1. For y ∈ Y , π−1(y) is in bijection with the �nite set S(y) of G-conjugacy
classes of surjections π1(Y an − y, ∗) → G nontrivial on a loop around
y.

2. There is an algebraic �nite Y ′-morphism f : Z → Y ′ × Y . And G
acts on Z covering the trivial action on Y ′×Y making Z− f−1(Γπ)→
Y ′×Y −Γπ into a G-Galois cover, where Γπ ⊂ Y ′×Y is the graph of π.
For y′ ∈ Y ′, the base change Zy′ → Y is branched exactly at y = π(y′)
and the induced morphism π1(Y

an−y, ∗)→ G is in the conjugacy class
from 1.

Proof. For y ∈ Y we identify S(y) to the set of isomorphism classes of
connected branched coverings of Y branched precisely at y, whose restriction
to Y − y is a G-Galois �nite sheeted cover.

Put a set Y ′ = ⊔y∈Y S(y) and π : Y ′ → Y the natural map. Fix a small
open neighborhood U of y ∈ Y , then Y −U ⊂ Y −y is a deformation retract,
which induces an isomorphism π1(Y − U) → π1(Y − y) and hence a way to
identify the various groups π1(Y − y′) for y′ ∈ U . Another choice U ′ leads
to same identi�cation over y′ ∈ U ∩ U ′ (cf.[Ful69, Section 1.3]). Therefore,
locally on Y , e is a in the form of the projection Y × S → Y , where S is a
�nite set. So, Y ′ has a unique topology making π : Y ′ → Y a �nite sheeted
covering. Then Y ′ becomes a compact Riemann surface.

Let Zy′ → Y be the branched cover represented by y′ ∈ Y . Put Z =
⊔y′∈Y ′Zy′ and f : Z → Y ′×Y the natural map. Then Z is a complex manifold
and f is holomorphic. The group G acts holomorphically on Z (leaving the
rami�cation locus of each Zy′ → Y invariant) and f is G-equivariant where
the action on Y ′ × Y is trivial. Restriction Z − f−1(Γπ)→ Y ′ × Y − Γπ is a
G-Galois cover.

We have explicitly constructed what we need in the analytic setting. Now
note that π is algebraic as Y ′, Y are projective. As f is a �nite analytic map,
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the manifold Z and the map f are algebraic by [Har77, Appendix B, Theorem
3.2]. (Note that the cited result is false if the map is only proper instead of
being �nite, as there is a compact complex manifold not algebraic.)

The following lemma descends from C to K.

Lemma 6.0.3. [LV20, Lemma 7.4]Settings as in Proposition 6.0.1. Let ∆ ⊂
Y×KY = Y 2 be the diagonal. Recall the embedding ι : K → C �xed in Section
4.1. Denote by Z/C the algebraic variety and by f : Z → (Y ′ ×K Y )C the
�nite morphism given by Proposition 6.0.2. Put Z◦ = f−1((Y ′×K Y )C−Γπ).
Then

1. There exists a unique �nite étale cover F : Z◦ → Y 2 −∆ over K such
that its base extension to C is (π × Id) ◦ f : Z◦ → (Y 2 − ∆)C. This
Z◦/K is a smooth integral variety equipped with a G-action and F is
G-equivariant, where Y 2 −∆ is with trivial G-action.

2. Let (y1, y0) ∈ Y (K)2 with y1 ̸= y0, the categorical quotient F−1(y1, y0)/G
is identi�ed with S(y0) (notation from of Proposition 6.0.2, using πgeom1 (Y−
y0, y1) instead of topological π1 to de�ne it). If furthermore (y1, y0) ∈
Y (K), then this identi�cation is GK-equivariant.

3. There is a smooth projective curve Y ′/K and an étale cover π : Y ′ → Y
such that π × Id : Y ′ ×K Y → Y 2 extends Z◦/G→ Y 2 −∆.

Proof. (I can only prove a weaker version, allowing �nite extension of K,
which su�ces for our purpose.) Firstly, we descend from C to Q̄. By
Proposition 6.0.1, there is a �nite étale morphism π : Y ′

C → YC over C. By
Theorem 3.3.7, π and Y ′ are de�ned over Q̄. Idem, the �nite étale morphism
Z◦ → (Y ′×K Y )C−Γπ is de�ned over (Y ′×K Y )C−Γπ. By enlarging K we
�nd F,Z◦ in 1.

The construction uses also Prym variety to get abelian scheme from
relative curve.

De�nition 6.0.4 (Prym variety). [LV20, Section 7.2]Let k be an algebraically
closed �eld. For f : C1 → C2 a nonconstant morphism between smooth
projective curves over k, the Prym variety is de�ned to be Prym(C1/C2) =
coker(f∗ : J2 → J1), where Ji is the Jacobian of Ci and the norm map J2 → J1
is by pulling back a divisor.

49



Note that the so de�ned Prym variety is isogenous to the connected
component of ker(N : J1 → J2), where N is the norm map. If the cover
f : C1 → C2 is Galois of group G, then J2 → J1 is of �nite kernel and the
image is the connected component of the G-invariants. For a subgroup H
of G, let C1 → M be the corresponding Galois cover. Then Prym(M/C2) is
isogenous to cokernel of the map

connected component of JG1 → connected component of JH1 .

Form the idempotent e = 1
#H

∑
h∈H h−

1
#G

∑
g∈G g ∈ Q[G] and let e′ = 1−e

be the complementary idempotent. Then e′′ = #G · e′ ∈ Z[G] acts on J1.
The connected component of the kernel J1[e′′] is isogenous to Prym(M/C2).

Let Y/K be a smooth projective curve of genus g ≥ 1 and let q ≥ 3
be a rational prime, consider the sequence Zq → Y ′

q → Y be the sequence
given by Proposition 6.0.1 with G = Aff(q). Let H(≤)G be the stabilizer
of 0 ∈ Fq and form e′′ as above. For each y′ ∈ Y ′

q (K). De�ne Xq to be the
relative identity component (cf. [Sta23, Tag 055K]) of Pic0Zq→Y ′

q
[e′′]. Then

Xq → Y ′
q is a polarized abelian scheme. Its �ber over y′ ∈ Y ′

q (K) is isogenous
to Prym(Zred

y′ /Y), where

Zred
y′ := Zy′ ×G Fq → Y (27)

is a cover of degree q and Fq is viewed as a G-set.

De�nition 6.0.5 (Kodaira-Parshin family). Notations as above. We call
Xq → Y ′

q → Y the Kodaira-Parshin family over Y associated to Aff(q).

7 The monodromy of Kodaira-Parshin families

A few words about the proof of Theorem 5.0.2. We relate the fundamental
group to the mapping class group using Birman exact sequence. When
working with the latter we have access to Dehn twists, which is amenable to
explicit calculation.

From now on, by a �surface� we mean a connected orientable closed surface
with �nitely many punctures. For such a surface Y , MCG(Y ) denotes the
mapping class group of Y . When we discuss homology or cohomology, the
coe�cients are assumed to be Q unless stated otherwise. An embedding
e : S1 → Σ to a surface Σ is called a simple closed curve, which is oriented
by a �xed orientation of S1. Quite often we use the image of e to refer to e
by abusing language.
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7.1 Covers and their homology

De�nition 7.1.1 (Primitive homology). For a map π : Z → Y between
surfaces, de�ne the primitive homology to beHPr

1 (Z, Y ) = ker(π∗ : H1(Z,Q)→
H1(Y,Q)).

Let S be a compact Riemann surface with Jacobian J . Fix a basepoint
p ∈ S and let Ψ : S → J be the corresponding Abel-Jacobi map, then
Ψ∗ : H1(S,Z)→ H1(J,Z) is an isomorphism.

Lemma 7.1.2. If π : Z → Y is a non-constant morphism of compact
Riemann surfaces, then the primitive homology equals the homology of the
Prym variety, i.e. H1(Prym(Z/Y),Q) = HPr

1 (Z,Y;Q).

Proof. Let JY → JZ be the induced map on the Jacobians. Note that JZ is
isogenous to JY×Prym(Z/Y), soH1(JZ ,Q) = H1(JY ,Q)⊕H1(Prym(Z/Y),Q).
Choose base point z0 ∈ Z and π(z0) ∈ Y and form the corresponding Abel-
Jacobian map.

0 HPr
1 (Z, Y ) H1(Z) H1(Y ) 0

0 H1(Prym(Z/Y)) H1(JZ) H1(JY ) 0

= =

Therefore, H1(Prym(Z/Y),Q) = HPr
1 (Z,Y,Q).

Given a �nite-sheeted topological covering π : Z → Y of surfaces, we
have an exact sequence

0→ HPr
1 (Z, Y,Q)→ H1(Z,Q)

π∗→ H1(Y,Q)→ 0.

By path lifting, we have a splitting of this sequence π∗ : H1(Y,Q)→ H1(Z,Q),
hence a decomposition

H1(Z,Q) = π∗H1(Y,Q)⊕HPr
1 (Z, Y,Q). (28)

If furthermore the intersection pairing on H1(Z,Q) is nondegenerate, then
it's an orthogonal direct sum, making HPr

1 (Z, Y ;Q) a symplectic Q-vector
space.
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De�nition 7.1.3 (Aff(q)-cover). A q-sheeted covering Z → Y between
surfaces whose monodromy representation on a general �ber is equivalent
to the action of Aff(q) on Fq (i.e. we can label the points in the �ber by Fq
such that π1(Y, y)→ Sym(Fq) has image Aff(q)) is called an Aff(q)-cover.

Do not confuse it with Galois cover of group Aff(q)!
Fix a basepoint y0 ∈ Y . For an Aff(q)-cover π : Z → Y , its monodromy

representation π1(Y, y0) ↠ Aff(q) is well-de�ned up to conjugation by the
normalizer of Aff(q) in Sym(Fq) (due to various ways to label a �ber in
De�nition 7.1.3). But the normalizer is Aff(q) itself. As a result, the
isomorphism classes of Aff(q)-covers over Y is in bijection with the set of
Aff(q)-conjugacy classes of surjections π1(Y, y0)→ Aff(q).

De�ne the type that the cover (27) belongs to.

De�nition 7.1.4 (singly rami�ed Aff(q)-cover). Let f : Z → Y be a
branched cover between compact Riemann surfaces. If its rami�cation locus
is a singleton z ∈ Z, and Z◦ = Z − z → Y − f(z) is an Aff(q)-cover, then
Z → Y is called a singly rami�ed Aff(q)-cover.

For a singly rami�ed Aff(q)-cover, Riemann-Hurwitz formula implies that
g(Z) = g(Y )q − q−1

2
. Note that the intersection pairing on H1(Z

◦,Q) =
H1(Z) is perfect, and

0 HPr
1 (Z◦, Y − y) H1(Z − z,Q) H1(Y − y,Q) 0

0 HPr
1 (Z, Y ) H1(Z,Q) H1(Y,Q) 0

= = =

We �nd thatHPr
1 (Z◦, Y−y) = HPr

1 (Z, Y ) (with subspace intersection pairings).
To emphasis, the importance is that each branch point has only one preimage.
See also Remark 7.3.4.

7.2 Mapping class group

For a surface Y , recall the natural morphismMCG(Y )→ Out(π1(Y, y0)) and
that Out(π1(Y, y0)) acts on the set of Aff(q)-conjugacy classes of surjections
π1(Y, y0) → Aff(q), or rather isomorphism classes of Aff(q)-covers over Y .
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Given an Aff(q)-cover π : Z → Y , let MCG(Y )Z ≤ MCG(Y ) be the
stabilizer of the isomorphism class of π. There's a homomorphism

MCG(Y )Z →MCG(Z). (29)

Consider the symplectic representation MCG(Z) → Sp(H1(Z,Q)). The
action on H1(Z,Q) of an element of MCG(Y )Z preserves the decomposition
(28). If the intersection pairing on H1(Z,Q) is nondegenerate, then we get

Mon :MCG(Y )Z → Sp(HPr
1 (Z, Y ;Q)).

Fix Y a closed surface of genus g ≥ 2, a basepoint y ∈ Y , a prime
q ≥ 3. There are only �nitely many isomorphism classes for singly rami�ed
Aff(q)-cover of Y branched at y. Choose a representative system Z1, . . . , ZN .
MCG(Y − y)0 := ∩iMCG(Y − y)Z◦

i
. We have a combined monodromy map

MCG(Y − y)0 →
N∏
i=1

Sp(HPr
1 (Zi, Y )). (30)

Theorem 7.2.1 (Birman exact sequence). [FM11, Theorem 4.6] Let S be a
surface with χ(S) < 0 and x ∈ S. Then the following sequence is exact:

1→ π1(S, x)→MCG(S, x)→MCG(S)→ 1.

As χ(Y ) = 2 − 2g < 0, Theorem 7.2.1 applies and we have a morphism
π1(Y, y) → MCG(Y − y). Let π1(Y, y)0 ≤ π1(Y, y) be the preimage of
MCG(Y − y)0.

Theorem 7.2.2. Let notation be as above. The restriction of (30)

Mon : π1(Y, y)0 →
N∏
i=1

Sp(HPr
1 (Zi, Y )) (31)

has Zariski-dense image.

By de�nition, each lift in Y ′ of a simple closed curve representing a class
of π1(Y, y)0 is a simple closed curve.
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Proof of Theorem 5.0.2 assuming Theorem 7.2.2. In the analytic setting, �x
y ∈ Y and for y′ ∈ π−1(y), the cover Zy′ → Y is singly branched and outside
the branch locus is an Aff(q)-Galois cover. The induced homomorphism
π1(Y − y, ∗) → G maps a loop around y to a q-cycle by the discussion
following Theorem 5.0.2. The induced morphism Zred

y′ → Y is therefore a
singly rami�ed Aff(q)-cover branched at y, hence isomorphic to a unique
Zi → Y . By the construction of Kodaira-Parshin family, Xy′ is isogenous to
Prym(Zred

y′ /Y), so dimXy′ = g(Zy′)− 1 = (q− 1)(g− 1/2) and H1(Xy′ ,Q) =

HPr
1 (Zred

y′ , Y ;Q) by Lemma 7.1.2. The spaceH1(Xy′ ,Q) is dual toH1(Xy′ ,Q).
As {Zred

y′ : y′ ∈ π−1(y)} is in bijection with {Zi : 1 ≤ i ≤ N}, Theorem 7.2.2
shows that the monodromy is full.

Lemma 7.2.3. [LV20, Lemma 8.7]

MCG(Y − y)0 →
N∏
i=1

SpHPr
1 (Zi, Y )

has Zariski dense image.

Lemma 7.2.3 is proved by Lemma 7.2.4, 2.2.5 and [LV20, Lemma 8.8].

Proof of Theorem 7.2.2, assuming Lemma 7.2.3. As π1(Y, y)0 ≤ MCG(Y −
y)0 is a normal subgroup and the symplectic group is almost simple, π1(Y, y)0 →
SpHPr

1 (Zi, Y ) has Zariski dense image for each i and the Zariski-closure of the
image of (31) is normal subgroup. Lemma 2.2.4 readily implies the desired
result.

Lemma 7.2.4. Let Z → Y be a singly rami�ed Aff(q)-cover branched at y.
The monodromy map Mon : MCG(Y − y)Z◦ → SpHPr

1 (Z, Y ) has Zariski-
dense image.

We prove Lemma 7.2.4 in the next section by showing that there are
enough Dehn twists.

7.3 Dehn twist

Consider an Aff(q)-cover f :M → N , or rather a conjugacy class π1(N, ∗) ↠
Aff(q). For e a simple closed curve in N , let ne be the order of the �image�
in Aff(q) of [e] ∈ π1(N, ∗) (It is well-de�ned.) The �image� in Sym(Fq) has
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a well-de�ned cycle type (d1, . . . , dk), then ne = lcm(d1, . . . , dk). The Dehn
twist about e is denoted by De ∈ MCG(N). Then Dne

e ∈ MCG(N)M . The
lift of e in M is ⊔iei, where ei are closed curves in M . In fact, ei is the
concatenate of di pieces of lift of e. The image of Dne

e in MCG(N)M →
MCG(M) is

∏
iD

ne/di
ei . (As ei are disjoint, the elements Dei ∈ MCG(M)

are commuting.)

Lemma 7.3.1. [LV20, Lemma 8.2]Notations as above. Then [e1], . . . , [ek] ∈
H1(M,Q) are linearly independent over Q. When projected to HPr

1 (M,N ;Q),
their span has dimension k − 1.

De�nition 7.3.2 (liftable curve). For a �nite sheeted covering of surfaces
X → Y , a simple closed curve e on Y whose lift to X consists of two disjoint
closed curves is called liftable.

For a liftable simple closed curve e onN , Dq−1
e is mapped to a transvection

(cf. De�nition 2.2.1) under the map MCG(N)M → SpHPr
1 (M,N ;Q). Let

f−1(e) = e+⊔e−, where e+ is of degree 1 over e and e− of degree q−1. Write
ẽ for the projection of [e+] ∈ H1(M) to HPr

1 (M,N). We admit the following
lemma.

Lemma 7.3.3. [LV20, Lemma 8.10]For a singly rami�ed Aff(q)-cover Z →
Y branched at y with g(Y ) ≥ 1, there exists a collection of liftable curves
A1, . . . , AN on Y − y such that

� the Ãi span HPr
1 (Z, Y )

� the graph obtained by connecting Ai, Aj when Ãi · Ãj ̸= 0 is connected.

Lemma 2.2.4 and [LV20, Lemma 2.14] prove Lemma 7.2.4.

Remark 7.3.4. For Y = P 1
K−{0, 1,∞}, the Legendre family L→ Y (which is

an abelian scheme by [MFK94, Theorem 6.14]) de�ned by y2 = x(x−1)(x−λ)
can be viewed as the Kodaira-Parshin family associated to G = Z/2Z. It's
monodromy group is Γ(2) by [CMSP17, Theorem 1.1.7], which is Zariski
dense inside SL2/Q. The strategy of Section 7 gives another proof to the
full monodromy of Legendre family. In the analytic setting, given y ∈ C −
{0, 1}, there is only one (up to isomorphism) degree-2 morphism E → P 1

with branch locus {0, 1,∞, y}. Each branch point has only one preimage, so
HPr

1 (E − R,P 1 − B) = HPr
1 (E,P 1) where R,B stand for rami�cation and

branch locus respectively. The analogue of Lemma 7.3.3 is that there exists
two split curves A,B on P 1−{0, 1,∞, y} such that Ã · B̃ ̸= 0, which is clear
from the picture. (Note that HPr

1 (E,P 1) = H1(E) is of dimension two.)
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Figure 1: The unique double cover

8 Siegel's theorem

The following theorem of Siegel is an immediate corollary of Faltings' theorem
and Chevalley-Weil theorem on integral points ([Fuc14, p.140]). Still, we
present a proof base on the method of [LV20].

Theorem 8.0.1. Let Y be a smooth separated OS-scheme whose base change
to K is Y = E−O, where E/K is an elliptic curve with O ∈ E(K) the zero
element of the group law. Then Y(OS) is a �nite set.

If we start with an a�ne embedding Y → AnK , then Y (K) ∩ An(OS)
is �nite. In fact, let Y be the scheme theoretic image of Y → AnK →
AnOK

, then the generic �ber Y ⊗OK
K is the smooth curve Y . By [Gro66b,

Théorème 12.2.4 (iii)] by enlarging S we may assume Y/OS is smooth. Note
that Y (K) ∩ AnOS

⊂ Y(OS), we deduce �niteness of the former from the
latter.

To prove Theorem 8.0.1, we make use of X → Y ′ [l]→ Y the l-twist of KP
family, where X→ Y is the KP family (see De�nition 9.0.2 and 9.0.3). Some
ideas are borrowed from [Che19, Chapter 3], where �niteness is established
for modular curves Y = Y1(N) when X1(N) is of genus 1.

In the following proof the reader will recognize similarity to that of S-unit
equation in [LV20, Section 4], parallel to the similarity between Dirichlet's
unit theorem and Mordell-Weil theorem.

Proof. Choose a prime l > 4 and enlarge K such that E[l] ⊂ E(K), so E[l]

is isomorphic to (Z/lZ)2. Let E be a good OS-model of E and X → Y ′ [l]→ Y
a good OS-model of the l-twist of KP family X → Y ′ [l]→ Y , where Y ′ ⊂ Y is
a Zariski open. By Lemma 4.0.1 and Mordell-Weil theorem, E(OS) = E(K)
is a �nitely generated abelian group. Let m be the largest integer such that
E(OS) has an element of order lm.

Claim: Y(OS) ⊂ ∪mi=0[l
i]U
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If y′ ∈ E(OS) is such that ly′ ∈ Y(OS), then y′ ∈ Y ′(OS) ⊂ Y(OS). Let
U = {y ∈ Y(OS) : y /∈ [l]E(OS)}. Assume y ∈ Y(OS) − ∪mi=0[l

i]U , y /∈ U ,
so y = ly1 with y1 ∈ Y(OS). y1 /∈ U , so y1 = ly2 with y2 ∈ Y(OS) till then
ym = lym+1 with ym+1 ∈ Y(OS). y = lm+1ym+1. By maximality of m, the
torsion group E(OS)[lm] has an element r /∈ [l]E(OS). y = lm(lym+1 + r), so
r + lym+1 ∈ Y(OS) and further r + lym+1 ∈ U . Claim is proved.

Recall the Kummer map

E(K)/lE(K)→ H1(GK , E[l]), x 7→ (g 7→ gx′ − x′),

where x′ is any point with lx′ = x. Since E[l] ⊂ E(K), the �eld K(x′)
is independent of x′, written as K(l−1x), and K(x′)/K is Galois. When
y ∈ U , K(l−1y)/K is nontrivial. The Kummer pairing embeds G(K(y′)/K)
into (Z/lZ)2, so it is isomorphic to either Z/lZ or (Z/lZ)2. As discussed in
Section 4.5, there are only �nitely many isomorphism classes of K(l−1y)/K
when y varies over U . Therefore, it su�ces to show �niteness of

UL = {y ∈ U : K(l−1y)/K isomorphic to L/K}

for a �xed extension L/K. We may apply the Chebotarev density theorem
to choose a prime v of K such that

1. {
v inert in L if G(L/K) = Z/lZ
v = w1 . . . wl if G(L/K) = (Z/lZ)2

(32)

2. the rational prime p > 2 below v is unrami�ed in L.

3. no prime of S lies above p.

We leave the rest part of proof to Lemma 8.0.3 below.

For the following, the numbering with prime in parentheses indicates to
which result in [LV20] it should be compared.

Lemma 8.0.2 (4.4'). Let p > 2 a rational prime unrami�ed in K such
that no element of S is above p. Assume that E → X is an elliptic scheme
de�ned over OS such that E → X, the base change to K, has nontrivial
monodromy. Then there are only �nitely many x ∈ X (OT ) such that the
elliptic curve Ex/K has good reduction at all places above p but H1

ét
(Ex,K ,Qp)

is not simple representation of GK.
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Proof. Fix x0 ∈ X (OS) such that Ex0 has good reductions above p. We
just need to prove the �niteness of such z (i.e. those with non-simple
representation) in the residue disk Ωp = {x ∈ X (OS) : x ≡ x0 modulo v,∀v|p}.

Consider the situation where ρz is not simple. Say ρz has a one-dimensional
subrepresentation Wz, which is pure of weight 1 and crystalline at all places
above p by Theorem 2.3.5 and 3.7.4. By [LV20, Lemma 2.10] (with notation
loc.cit.), ∑

u|p

[Ku : Qp]au(W ) = [K : Q]/2.

Since dimWz = 1, the weights of Hodge �ltration au(W ) are integers, and in
particular, aw(Wz) ≥ 1 for some w|p.

Recall Fil2H1
dR(Ez,Ku/Ku) = 0, so

Fil1DdR,w(Wz) = DdR,w(Wz) = Fil1H1
dR(Ez,Kw/Kw),

where DdR,w : RepdRQp
(GKw)→ FilKw is the functor in p-adic Hodge theory.

Since dimDdR,w(Wz) = 1, the Hodge polygon of DdR,w(Wz) is a slope one
line, so is its Newton polygon. The slope of the Frobenius on DdR,w(Wz)
is 1. The Hodge polygon of H1

dR(Ez,Kw/Kw) consists of a slope zero line
followed by a slope one line of length 1, so the other slope of the Frobenius
ϕw on H1

dR(Ez,Kw/Kw) is 0. The Kw-linear operator ϕ[Kw:Qp]
w has distinct

eigenvalues and DdR,w(Wz) is the eigenspace of slope one. (We remind that
the identi�cation GM : H1

dR(Ez,Kw/Kw) → H1
dR(Ez0,Kw/Kw) is compatible

with ϕw.)
To sum up, if z ∈ Ωp and ρz is not simple, then there exists a place w|p,

such that Φw(z) is the unique slope-1 ϕw-eigenline inside H1
dR(Ez0,Kw/Kw).

The w-adic period map Φw : {z ∈ Ow : z ≡ x0 modulo w} → PH1
dR(Ex0/Lw)

isKw-analytic and non-constant by the results of Section 4.3 and the assumption
that the monodromy is non-trivial. The conclusion follows.

Lemma 8.0.3. Adopt the notation of proof of Theorem 8.0.1. For �xed
extension L/K and y0 ∈ UL, the set

U0,L = {y ∈ UL : y ≡ y0 (mod v)}

is �nite.

Proof. We may enlarge S such that the twisted KP family has a good model
over OS. By Lemma 8.0.2 and Theorem 10.0.1, there are only �nitely many
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y ∈ Y(OS) such that there exist y′ ∈ Y ′
y with non-simple GL-representation

VpXy′ (Tate module). In virtue of this and [LV20, Lemma 2.2], we may
assume that ρy is semisimple. Therefore, ρy|GL

lies in �nitely many isomorphism
class by Lemma 2.3.6.

The Kv-analytic period maps (21) in this case are Φ(y′,u) : Ωv → Hy′,u,
where Ωv = {y ∈ Y(Ov) : y ≡ y0 (mod v)} and Hy′,u = ResLu

Kv
P1
Lu
, for

y′ ∈ Y ′
y0
and u|v a place of L.

The functor Dcris,u : Rep
cris
Qp

(GLu)→ MFϕLu
maps ρb|GLu

to

(H1
dR(Xb/Lu), ϕu,Hodge �ltration).

Here ϕu (acting on H1
dR(Xy′/Lu)) is σLu/Qp-semilinear and ϕ[Kv :Qp]

u is σLu/Kv -
semilinear.

When y ∈ Y(OS), Φ(y′,u)(y) is in a �nite union of orbits ∪iZ(ϕu)hi, where
Z(ϕu) ≤ GLLu(H

1
dR(Xy′/Lu)) denotes the centralizer. By [LV20, Lemma

2.1],
dimKv Zend(ϕ

[Kv :Qp]) ≤ (dimLu H
1
dR(Xy′/Lu))

2 = 4.

By Section 4.3 and Theorem 10.0.2, Φy′,u is of Zariski-dense image. Note
that dimH(y′,u) = [Lu : Kv] = l > 4. Apply Lemma 4.2.1 to the period map
Φy′,u to �nish the proof.

9 Construction of KP family

Proposition 9.0.1 (7.1'). Let Y = E−O be the K-curve under consideration
and let G = S3 = Aff(F3). Then there is a relative curve Z over Y with a
�nite morphism Z → Y ×E such that for each y ∈ Y (K), the base extension
Zy → EK along y : Spec(K) → Y is a branched Galois cover of group G
corresponding to S the G-conjugacy class of surjections πgeom1 (Y −y, ∗)→ S3

sending σ1, σ2 to the same 3-cycle and τ to a transposition. Here {σ1, σ2}
are loops of Y − y forming a geometric symplectic basis of E and τ is a loop
around y.

Note that a loop around O is necessarily sent to a transposition.

Proof. By Lemma 9.0.5, there is a �nite étale morphism Z◦ → Y 2 − ∆, so
Z◦ is normal integral. Let Z be the normalization of Y 2 inside the function
�eld of Z◦. Then Z is normal, and �nite over Y 2. The base extension ZC is
therefore normal, and �nite over Y 2

C . Consequently, ZC coincides with Z, the
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normalization of Y 2
C inside the function �eld of Z◦. The proposition follows

from the construction of Z.

De�nition 9.0.2 (KP family). Let Z → Y be the family given by Proposition
9.0.1. De�neX to be the relative identify component of Pic0Z→Y [e

′′], where e′′

is that in the discussion following De�nition 6.0.4 withH = Z/3Z(≤ G = S3).
We call X→ Y the KP family over Y .

Then X → Y is a polarized elliptic scheme. Its �ber over y ∈ Y (K)
is isogenous to Prym(Zred

y /E), where Zred
y → EK is the subcover of degree

two of Zy → EK corresponding to Z/3Z ≤ S3,. As Zy → E is unrami�ed
outside {O, y}, so is Zred

y → E. In Proposition 9.0.1 we require that a loop
around y is sent to a transposition, so Zred

y /E is branched at {y,O}. By
Riemann-Hurwitz formula, g(Zred

y ) = 2 and dimPrym(Zred
y /E) = 1.

As in the S-unit equation case, we use the group law of E to twist the
constructed KP family.

De�nition 9.0.3. Let Y ′ be the pullback of Y under the isogeny [l] : E → E
and j : Y ′ → Y be the natural open immersion. Given an abelian familyX→
Y , call the abelian-by-�nite family X → Y ′ [l]→ Y obtained by restriction to
Y ′ its l-twist.

X Y

X Y ′ Y

j

[l]

We complete the proof of Proposition 9.0.1.

Proposition 9.0.4. Proposition 9.0.1 remains true if we replace both K and
K by C and replace πgeom1 by topological π1.

Proof. We start by working in the analytic topology. For each y ∈ Y an,
let Zy → E be the branched cover of Riemann surfaces corresponding to
the said homomorphism (with π(Y an − y, ∗) in the place of πgeom1 ). De�ne
Z = ∪y∈Y anZy and f : Z → Y × E to be the natural map. Then Z has
a structure of complex manifold such that f is a �nite sheeted cover over
Y 2 − ∆, where ∆ ⊂ Y 2 is the diagonal. With this topology, f is a closed
map (veri�ed directly) of �nite �ber, hence a �nite (analytic) morphism. By
[Har77, Appendix B, Theorem 3.2], both Z and f are algebraic over C.
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Lemma 9.0.5 (7.4'). Settings as in Proposition 9.0.1. Let Z and f : Z →
(Y ′ ×K E)C be as given by Proposition 9.0.4 . Let Z◦ = f−1((Y 2 − ∆)C).
Then there exists a unique �nite étale morphism F : Z◦ → Y 2 −∆ over K
whose base change to C is Z◦ → Y 2

C −∆.

Proof. Fix y0 ̸= y1 ∈ Y (C). Then y0, y1 are geometric points of Y . Write
y = (y1, y0) ∈ Y 2. Let Γ = πét

1 (YK − y0, y1), Γ̃geom = πét

1 ((Y
2 −∆)K , y) and

Γ̃ = πét

1 (Y
2 −∆, y).The universal cover of Y an is biholomorphic to the unit

disk, so π2(Y an, y0) = 0. Use the terminology of [Sch78]: Z is locally free of
type F , so belongs to F∗. By Theorem 2 loc.cit, so is π1(Y an, y0), hence the
sequence

1→ πgeom1 (Y − y0, y1)→ πgeom1 (Y 2 −∆, y)→ πgeom1 (Y, y0)→ 1

is exact by Proposition 2 loc.cit. The rest is the same as the proof of Lemma
6.0.3.

10 The monodromy of KP family

Theorem 10.0.1. The KP family Ψ : X→ Y has full topological monodromy.
Explicitly, �x y0 ∈ Y (Qa) ⊂ Y (C),

ρtop : π1(Y
an, y0)→ SpH1

sing(Xy0 ,Q) (33)

has Zariski-dense image.

Theorem 10.0.2. For a positive integer l ≥ 1, the l-twisted KP family
X → Y ′ → Y (9.0.3) is also of full monodromy.

Proof assuming Theorem 10.0.1. The proof parallels that of [LV20, Lemma 4.3].
To �x ideas, take l = 2. Fix a basepoint y0 ∈ Y and denote by y′1, . . . , y

′
4 ∈ Y ′

its preimages under [l]. The situation is depicted in Figure 2. The round
holes are punctures, the blacks being those only for Y ′ but not Y . The
monodromy action is

π1(Y
an, y0)→ GL(⊕4

i=1H
1
sing(Xy′i

,Q)).

Let G be the Zariski closure of the image. Fix an element (v1, . . . , v4) ∈
⊕4
i=1H

1
sing(Xy′i

).
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Figure 2: Y ′ [l]→ Y
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Take two simple closed curves {σ1, σ2} of Y representing a geometric
symplectic basis of H1(E,Z) and τ a small loop around y, all of which are of
base point y0. Each σ lifts to four paths who form two disjoint loops.

The τ -monodromy is of matrix (Id, Id, T, Id) ∈
∏

i SpH
1(X∗). The

picked element is mapped to (A12v2, A21v1, A34v4, A43v3) under the σ1-monodromy,
and to (B13v3, B24v4, B31v1, B42v2) under the σ2-monodromy.

We check the two conditions of Lemma 2.2.5 forG∩
∏4

i=1 Sp(H
1
sing(Xy′i

,Q)).
As in the proof of [LV20, Lemma 4.3], we recognize a transitive action
on indices i = 1, . . . , 4. Iterate twice the two σ-monodromies we get the
monodromies of the untwisted KP family X → Y . By Theorem 10.0.1, the
projection to SpH1(X3) is surjective. By transitive action on i, it remains
true if we replace 3 by other indices i. The �rst condition is thus ful�lled.

By Borel's monodromy theorem (cf.[Kat70, Section 0.2]), T is quasi-
unipotent. Recall that T is the commutator of the two σ monodromies and
that PSL2(Q) is not abelian, so T /∈ {±I2}. By transitive action on i, the
second condition is ful�lled. We conclude by Lemma 2.2.5.

10.1 Topological proof of Theorem 10.0.1

Wemake some preparation. Throughout this section we use analytic topology.
Fix y ∈ Y .

Lemma 10.1.1. For a branched cover p : Z → E of degree two with exactly
two branch points {O, y}, HPr

1 (Z − p−1(O, y), E − {O, y}) → HPr
1 (Z/E) is

an isomorphism preserving their subspace intersection pairing.

Proof. Let τ be a loop around y ∈ E, then its lift in Z is a simple closed
curve τ̃ surrounding the rami�cation point above y and is of degree 2 over τ .

0 Q · [τ̃ ] Q · [τ ]

0 HPr
1 (Z − p−1(O, y), Y − y) H1(Z − p−1(O, y)) H1(E − {O, y}) 0

0 HPr
1 (Z/E) H1(Z) H1(E) 0

0 0 0

×2

p∗
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We conclude by Snake Lemma.

By Lemma 10.1.1, the morphism (29) (now MCG(Y − y)Z−p−1(O,y) →
MCG

(
Z − p−1(O, y)

)
) induces a monodromy map

MCG(Y − y)Z−p−1(O,y) → Sp(HPr
1 (Z,E)). (34)

Let Z1, . . . , ZN be a (�nite) representative system of twice-rami�ed double
covers of E branched at {O, y}. In fact, N = 4. Let MCG(Y − y)0 denote
the intersection of MCG(Y − y)Zi−p−1

i (O,y). Combine the maps (34) to be

MCG(Y − y)0 →
N∏
i=1

Sp(HPr
1 (Zi, E)).

Theorem 7.2.1 gives an exact sequence

1→ π1(Y, y)→MCG(Y, y)→MCG(Y )→ 1,

where MCG(Y, y)(≤MCG(Y − y)) is the subgroup preserving the marking
point y ∈ Y . Let π1(Y, y)0 andMCG(Y, y)0 be the pullbacks ofMCG(Y −y)0
respectively.

Theorem 10.1.2 (8.1'). Notation as above. The map

π1(Y, y)0 →
N∏
i=1

SpHPr
1 (Zi, E) (35)

has Zariski-dense image.

Proof of Theorem 10.0.1. By the discussion following De�nition 9.0.2, the
degree two cover Zred

y → E is branched at {O, y}, so isomorphic to one
Zi → E. It follows that the �ber Xy is isogenous to Prym(Zi/E), hence an
isomorphism

H1(Xy,Q)→ H1(Prym(Zi/E),Q)→ HPr
1 (Zi, E).

This identi�cation is compatible with monodromy, so the conclusion follows
form Theorem 10.1.2.

Note that Theorem 10.1.2 is stronger than what we need. The rest part
is devoted to the proof of Theorem 10.1.2.
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Proof of Theorem 10.1.2. By Lemma 10.1.3, MCG(Y, y)0 → SpHPr
1 (Zi, E)

has Zariski-dense image for each i. Because π1(Y, y)0 ≤ MCG(Y, y)0 is a
normal subgroup of �nite index, the Zariski closure of the image of (35)
is a normal subgroup of �nite index of the right hand side and for each i,
π1(Y, y)0 → SpHPr

1 (Zi, E) has Zariski-dense image. The result follows from
Lemma 2.2.4.

Lemma 10.1.3 (8.7'). The monodromy map

MCG(Y, y)0 →
N∏
i=1

SpHPr
1 (Zi, E)

has Zariski-dense image.

Proof. It follows from Lemma 10.1.4, 10.1.5 and [LV20, Lemma 2.12].

Lemma 10.1.4 (8.8'). For two non-isomorphic two-sheeted covers Z1, Z2 →
E − {O, y}, there exists a simple closed curve e in E − {O, y} such that the
cycle decomposition of the monodromy along e in Z1, Z2 are di�erent.

Proof. Obvious since the induced morphisms π1(Y−y, ∗)→ Z/2Z are di�erent.

Lemma 10.1.5 (8.9'). For a double cover p : Z → E branched at {O, y}, the
monodromy map MCG(Y − y)Z−p−1(O,y) → SpHPr

1 (Z, Y ) has Zariski dense
image.

Proof. By the construction of Dehn twists from liftable curves (consult the
paragraph following De�nition 7.3.2), as well as [LV20, Lemma 2.14], the
desired result follows from Lemma 10.1.6 below.

For a two-sheeted cover Σ → S of surfaces, the preimage of a liftable
curve e is e+, e− each of degree 1 over e and ẽ = e+−e−

2
is the projection of

[e+] ∈ H1(S,Q) to HPr
1 (Σ, S). Given a pair of liftable curves A,B, we have

Ã · B̃ = (A+ ·B+)− 1

2
A ·B. (36)

(Compare this to [LV20, (8.6)])

Lemma 10.1.6 (8.10'). Given a double cover Z → E branched at {O, y}
with Z closed, there exists a pair of liftable curves (A,B) on E−{O, y} such
that Ã · B̃ ̸= 0.
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Proof. Adopt the notation in proof of Theorem 10.0.2 but the loops are
forbidden to pass y. Note that [σiτ ] ∈ π1(E − {O, y}, y0) is represented by
a simple closed curve ei. Consider the image of [σi] ∈ π1(E − {O, y}, x) in
Z/2Z. If both of them are trivial, then take the pair (σ1, σ2). If σ1 is trivial
but σ2 not, take (σ1, e2). The case that σ2 is trivial but σ1 not follows by
symmetry. If both are nontrivial, take (e1, e2). In each case, the pairing is
nonzero by (36) since A ·B = 1.

10.2 Algebraic proof of Theorem 10.0.1

Denote byMg the moduli space of genus g compact Riemann surfaces.

Lemma 10.2.1. The map

H : Y (C)→M2 y 7→ [Zred
y ]

is of �nite �ber.

We introduce some notation: Let A be the set of isomorphism classes of
double covers of E by genus two surface, branched at O. (Recall that two
E-covers Z1 → E and Z2 → E are called isomorphism if there exists an
E-isomorphism Z1 → Z2.)

Let D be the underlying scheme of E, i.e., the curve forgetting the group
law. Let B be the set of isomorphism classes of double covers by genus two
surface over some elliptic curve, whose underlying scheme is D, branched at
the origin. In the de�nition of B, an isomorphism between two covers p1, p2
signi�es an isomorphism Φ and an isomorphism of elliptic curves ϕ such that
the following diagram commutes.

Z1 Z2

E1 E2

Φ

p1 p2

ϕ

Let C be the set of isomorphism classes of double covers of D by genus
two surface. Let N = {(Z, ι) : Z ∈M2, ι ∈ Aut(Z)}.

Proof. Let F : Y (C) → A be the map y 7→ (Zred
y → E). Let E(2) be the

two-fold symmetric product of E. The following diagram shows that F is
injective.
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Y (C) A

E(2)

F

y 7→{O,y}
branch locus

We have forgetful maps A → B and B → C. The automorphism group
of a complex elliptic curve is �nite, so A → B is of �nite �ber. Since the
origin is in the �nite branch locus, B → C is of �nite �ber. The map
C → N by (Z → D) 7→ (Z, ιZ/D) is injective, where ιZ/D ∈ Aut(Z/D) is the
nontrivial element. The projection N → M2 is of �nite �ber by Hurwitz's
automorphisms theorem. The mapH is the composition of all the morphisms
above, so of �nite �ber.

We give another proof of Theorem 10.0.1. Assuming the contrary

from now on, we are going to derive a contradiction by cardinality argument.
The following lemma is a �rst consequence.

Lemma 10.2.2. For y ∈ Y (C), the �bers Xy are isomorphic complex elliptic
curves.

Let Γ be the Zariski closure of the image of monodromy (33). By [Del71,
Corollary 4.2.9], Γ is a semisimple proper closed subgroup of SL2/Q. Therefore
Γ is a �nite Q-group scheme. Denote the generic point of Y by ξ. R1Ψ∗QlX
is a lisse Ql-sheaf on Y , and its �ber over y0 is H1

ét
(Xy0 ,Ql) which as a Ql-

module is canonically isomorphic to H1
sing(Xy0 ,Q)⊗Q Ql by Theorem 3.5.4.

This isomorphism induces an injection of (abstract) groups i : SL(H1
sing(Xy0 ,Q))→

SL(H1
ét
(Xy0 ,Ql)). Consider the geometrical monodromy representation (cf.[CT12,

Section 5.1.1])
ρgeo : π

ét

1 (YC, y0)→ SL(H1
ét
(Xy0 ,Ql)) (37)

which is compatible with (33) in the sense that the following diagram is
commutative:

π1(Y
an, y0) SL(H1

sing(Xy0 ,Q))

πét

1 (YC, y0) SL(H1
ét
(Xy0 ,Ql))

ρtop

j i

ρgeo

where j is the map given by Theorem 3.3.6. By Theorem 3.3.6, ΓQl
is the

Zariski closure of the image of (37). Let W → YC be the connected �nite
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étale cover corresponding to the kernel of (37) (which is an open subgroup
of πét

1 (YC, y0)). The morphism W → YC and the scheme YC are a�ne, so
W = Spec(R) is also a�ne. By [Sta23, Tag 0BQL], W is normal integral.
As W/C is a smooth curve, R is a Dedekind domain.

Remark 10.2.3. By Lemma 2.2.6, Γ is cyclic, so the morphism (37) factors
through the natural map πét

1 (YC, y0)→ πét

1 (EC, y0). The kernel of πét

1 (EC, y0)→
SL2(Ql) corresponds to a �nite étale cover p : Ẽ → EC. A �nite étale cover
of an elliptic curve is still an elliptic curve. Therefore, W = p−1(YC) is an
elliptic curve with �nitely many punctures. This provides another way to see
that W = Spec(R) for some Dedekind domain R.

Let C(W ) = Frac(R) be the function �eld of W . Let η = Spec(C(W )) ∈
W be the generic point. Let P = X ×Y Spec(C(W )) be the generic �ber of
the abelian scheme X×Y W → W .

We have a canonical surjection GC(W ) → πét

1 (W, η̄) given by [Sta23, Tag
0BQM]. By the choice of W and Proposition 3.3.8, the GC(W ) action on the
Tate module TlP is trivial, or equivalently, P [ln] ⊂ P (C(W )) for each n ≥ 1.
In particular, the Z-module P (C(W )) has in�nite torsion thus is not �nitely
generated.

By [Con06, Example 2.2], the C(W )-elliptic curve P is de�ned over C.
More precisely, there exists an elliptic curve E ′/C such that P is isomorphic
to E ′

C(W ).

Proof of Lemma 10.2.2. An abelian scheme over R is a Néron model of its
generic �ber. By uniqueness of Néron model, W ×Y X = W ×C E

′ as W -
abelian scheme. By GAGA, W an → Y an

C is a �nite sheeted cover. Therefore,
Xy = E ′ as C-elliptic curve for each y ∈ Y (C).

From now on, the base �eld is C unless otherwise speci�ed.

De�nition 10.2.4 (optimal cover). [Dju17, De�nition 1.1]Let C be a curve
of genus 2 and E an elliptic curve. A covering map ϕ : C → E is called
optimal if whenever ϕ factors through an isogeny ψ : E1 → E with E1 being
another elliptic curve, then ψ is an isomorphism.

For example, ϕ : C → E is optimal if deg(ϕ) is a prime.

Lemma 10.2.5. [Dju17, Lemma 1.6]Let C be a curve of genus 2 and let
ϕ : C → E be an optimal cover of an elliptic curve E with deg(ϕ) = n.
Then E ′ = ker(ϕ∗ : JC → E) is an elliptic curve. There exists an isogeny
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φ : E × E ′ → JC such that deg(φ) = n2 and ker(φ) ⊂ (E × E ′)[n] is the
graph of an isomorphism E[n]→ E ′[n].

Lemma 10.2.6. Given an elliptic curve E/C, its isogeny class is at most
countable.

It is a special case of [Har77, Ch.IV, Exercise 4.9].

Proof. For τ in H the upper half plane, write Λτ = Z⊕ Zτ and Eτ = C/Λτ .
We may assume that E = Eτ0 . Assume that ϕ : Eτ → Eτ0 is a (nonzero)
isogeny. Then there exists a ∈ C∗ such that aΛτ ⊂ Λτ0 and the following
diagram commutes:

C C

C/Λτ C/Λτ0

a

ϕ

So, there exists integers (p, q, r, s) such that τ = p+qτ0
r+sτ0

. In particular, τ has
at most countably many choices.

Lemma 10.2.7. The image of the map H is at most countable.

Proof. The elliptic curve E ′
y := ker(JZred

y
→ E) is isogenous to Prym(Zred

y /E),
so isogenous to Xy by the construction of KP family. By Lemma 10.2.2,
Xy = E ′. In virtue of Lemma 10.2.6, there are at most countably many E ′

y up
to isomorphism. We �x one E ′

y. By Lemma 10.2.5, (E×CE
′
y)/ ker(φ)→ JZred

y

is an isomorphism. There are only �nitely many isomorphisms E[n] →
E ′[n], so up to isomorphism there are only �nitely many JZred

y
. By [NN81,

Theorem 1.1], there are only �nitely many principally polarized abelian
variety (JZred

y
, λ). By Torelli theorem, there are only �nitely many [Zred

y ] ∈
M2 (and at most countably many [Zred

y ] when E ′
y is allowed to vary).

Lemma 10.2.7 and Lemma 10.2.1 forces Y (C) to be countable. This
contradiction completes the proof of Theorem 10.0.1.

11 MPN family

A far simpler abelian-by-�nite family is used by Marc Paul Noordman to
demonstrate Siegel' theorem in [Noo21]. We brie�y present that construction.
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By enlarging K suitably, we may assume that E is given by Legendre
form y2 = x(x − 1)(x − λ) for some λ ∈ K − {0, 1}. Then E[2] ⊂ E(K).
There is a K-morphism x : E → P 1 of degree 2 whose rami�cation locus E[2]
and branch locus is {0, 1,∞, λ} ⊂ P 1(K). Denote T = E − E[2]. De�ne an
elliptic scheme A′ → T , which we call MPN family, by pullback:

A′ T

L P 1 − {0, 1,∞}

x

where L → P 1 − {0, 1,∞} is the Legendre family. For a positive integer
m ≥ 1, consider the twisted MPN family

Am E − E[2m] Y

A′ T

[2m]

Note that everything is de�ned over K. Analogue to Theorem 10.0.1, the
MPN family has full monodromy.

Theorem 11.0.1. Fix a base point t0 ∈ T (C), the monodromy representation

ϕ : π1(T
an, t0)→ SpH1

sing(A
′
t0
;Q)

has Zariski-dense image.

Proof. The morphism x : T → P 1 − {0, 1,∞} induces

π1(x) : π1(T
an, t0)→ π1(CP1 − {0, 1,∞}, x(t0))

The two-sheeted covering T an → CP1 − {0, 1,∞, λ} identi�es π1(T an, t0) as
an index 2 subgroup of π1(CP1 − {0, 1,∞, λ}, x(t0)).

π1(T
an, t0) SpH1

sing(A
′
t0
;Q)

π1(CP1 − {0, 1,∞}), x(t0) SpH1
sing(Lx(t0);Q)

ϕ

π1(x) =

ψ
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Because Legendre family is of full monodromy, and the natural morphism

π1(CP1 − {0, 1,∞, λ}, x(t0))→ π1(CP1 − {0, 1,∞}, x(t0))

is surjective, the index of the Zariski closure G of the image of ϕ is at most
2 in SL2. Recall that SL2 is Zariski connected, so G = SL2.

A counterpart of Theorem 10.0.2 follows by parallel proof. (We can also
cite [LV20, Lemma 2.12] in stead of Lemma 2.2.5 in the end.)

Theorem 11.0.2. For m ≥ 2, the twisted MPN family Am → E−E[2m]→
Y is of full monodromy.

Given these two theorems, Lemma 8.0.3 and hence Siegel's theorem (Theorem
8.0.1) follow immediately.
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