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1 Introduction

In the history of cohomology theory of abelian varieties over positive characteristic
�elds, the study of group extension problem played an important role. For
instance, Rosenlicht obtains Fact 1.0.1 through considering vectorial extensions
of abelian varieties. Let k be an algebraically closed �eld and A/k be an abelian
variety with dimA = g. The dual abelian variety of A is denoted by A∨.

Fact 1.0.1. [Ros58, Theorem 1 and 2] The dimension of the k-vector space
H1(A,OA) is g.

A notable byproduct of Rosenlicht's work is the existence of the following
object, the so-called universal vectorial extension.

Fact 1.0.2. [Ros58, Prop. 11] There is a short exact sequence1 of commutative
algebraic groups over k: 0 → Gga → A

^ → A→ 0, where A^ is the moduli space
of line bundles equipped with an integrable connection on A∨.

In [Rot96, (1.17)] and [Lau96, Thm. 3.2.1], it is proved that the Fourier-
Mukai transformDb(Qch(OA)) → Db(Qch(OA∨)) lifts to an equivalenceDb(Qch(O

A
^)) →

Db(Qch(DA∨)), where for a smooth algebraic variety M/k, Qch(OM ) (resp.
Qch(DM )) refers to the category of OM (resp. left DM ) modules that are OM -
quasi-coherent.

The cohomology theory of complex analytic analogue of abelian varieties,
namely complex tori, is elementary. By contrast, as far as we know, the existence
of universal vectorial extension in the analytic setting is not covered in the
literature, though admittedly easier and should be known. The main results are
summarized imprecisely in Proposition 1.0.3 and Theorem 1.0.4.

Proposition 1.0.3 (Proposition 4.3.1). For two commutative complex Lie groups
A,B, the commutative extensions of A by B are classi�ed by the abelian group

Ext1Z(π0(A), π0(B))⊕HomAb(π1(A0), π0(B))⊕ coker(s).

Here s is the restriction morphism HomVec(L(A), L(B0)) → HomAb(π1(A0), B0),
A0 (resp. B0) signi�es the identity component of A (resp. B), the notation π1(∗)
refers to the fundamental group, and A/A0 = π0(A) denotes the 0-th homotopy
group of A and similar for B.

Theorem 1.0.4. Let A be a complex torus of dimension g. Then:

� (Theorem 5.2.4 (resp. Theorem 5.3.2)) The dual torus Pic0(A) (resp.
tangent space T0A = H1(A,OA)) naturally classi�es the extensions of A
by the multiplicative group C∗ (resp. additive group C).

� (Proposition 5.4.5 1, Proposition 5.4.7) There is an extension

0 → H0(A∨,Ω1
A∨) → (C∗)2g → A→ 0

that is universal among all vectorial extensions of A.
1in the sense of [Ros58, Sec. 2, p.691]
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We emphasis some di�erences between the analytic case and the algebraic
case. For a complex torus A, let Div(A) be the group of analytic divisors on A
modulo linear equivalence. Let Pic(A) be the group of isomorphic classes of line
bundles on A. The natural map Div(A) → Pic(A) is surjective if and only if A
is an abelian variety ([Deb05, Sec. 4.3, Cor. 4]). This is why the Picard group
is used in Theorem 5.2.4 while divisor group appears in its algebraic analogue
([Wei49, no. 2], [Ser88, Thm. 6]). Discrete groups like Z are not (�nite type)
algebraic groups, but there is no reason to exclude them as complex Lie groups.
Plenty of important analytic morphisms are not algebraic, like the universal
covering (exponential map) exp : C → C∗.

The organization is as follows. The main goal of this text is to classify
extensions of complex Lie groups. Section 2 contains preliminaries about complex
Lie groups. In Section 3 we de�ne complex Lie group extensions and give several
�rst results about the classi�cation. Then we focus on commutative extensions
in Section 4. Commutative extensions of complex tori deserve extra attention,
and they are discussed in Section 5. Some extensions with complex-tori base are
automatically commutative, as Section 6 shows. Noncommutative extensions
are treated super�cially in Section 7.

Convention and notation

A statement about Lie groups is understood to hold for both real and complex
Lie groups. The topology underlying a Lie group is always assumed to be second
countable.2

For every Lie group G, the identity component of G is denoted by G0. The
Lie algebra of G is written as L(G). And Z(G) denotes the center of G. The
automorphism group of G is denoted by Aut(G). Let Inn : G → Aut(G) be
the group morphism de�ned by taking conjugation g 7→ g • g−1. Then the
subgroup Inn(G) of inner automorphisms is normal in Aut(G). Let Out(G) =
Aut(G)/Inn(G) be the group of outer automorphisms. Let Gop be the Lie group
opposite to G. (If G is complex, then so is Gop.) There is a natural identi�cation
of real/complex manifolds G→ Gop denoted by g 7→ g∗. If G is connected, then
the universal covering group of G is denoted by G̃ and the fundamental group
of G with the identity eG as the base point is denoted by π1(G).

Complex Lie subgroups refer to embedded closed complex Lie subgroups. If
G is a complex Lie group and S ⊂ G is a subset, by [HN11, Exercise 15.1.3 (b)]
there is a smallest complex Lie subgroup of G containing S, called the complex
Lie subgroup generated by S.

Let Vec (resp. Ab, resp. C, resp. Set) be the category of �nite dimensional
complex vector spaces (resp. abelian groups, resp. commutative complex Lie
groups, resp. sets). For a complex manifold X and a commutative complex Lie
group B, let BX be the abelian sheaf on X of germs of holomorphic maps from
X to B.

2A partial reason for such restriction is that, in this case, Condition (2) of [Hoc51b,
De�nition 1.1] is implied by Condition (1), showed in p.542 loc.cit.
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2 Generalities on complex Lie groups

Two fundamental facts about complex Lie groups are recalled.

Fact 2.0.1 ([Bou72, Ch. III, �3, no.8, Prop. 28]). Let f : G→ H be a morphism
of complex Lie groups. Then:

1. ker(f) is a normal complex Lie subgroup of G and L(ker(f)) = ker(def :
L(G) → L(H)).

2. If f(G) is closed in H, then f(G) is a complex Lie subgroup of H, and f
induces a complex Lie group isomorphism G/ ker(f) → f(G). In particular,
if f is surjective, then def : L(G) → L(H) is surjective. If f bijective,
then f is an isomorphism.

Remark 2.0.2. Fact 2.0.1 2 fails if the topology of G is not assumed to be
second countable. For example, let τ (resp. τ ′) be the discrete topology (resp.
the Euclidean topology) of C, then Id : (C, τ) → (C, τ ′) is a bijective morphism
but not open.

Right principal bundle is de�ned in [Bou07, 6.2.1]. Left principal bundle can
be de�ned similarly.

Fact 2.0.3 ([HBS66, Thm. 3.4.3], [Bou72, Ch. III, �1, Propositions 10 and 11]).
Suppose G is a complex Lie group and K is a normal complex Lie subgroup of
G. Then the group G/K has a unique structure of complex manifold, such that
the quotient map π : G → G/K is a submersion.3 With this structure, G/K
is a complex Lie group and p is a left principal K-bundle under the natural left
group action K ×G→ G de�ned by (k, g) 7→ kg. In particular, every surjective
morphism of complex Lie groups is open.

We recall that principal bundles are classi�ed by the �rst sheaf cohomology,
in the following way. LetX (resp. B) be a complex manifold (resp. commutative
complex Lie group). Let S be the set of isomorphism classes of principal B-
bundles4 over X. De�ne a map

Ψ : S → H1(X,BX) (1)

as follows. For every [p : P → X] ∈ S, there exists an open cover {Ui}i∈I of
X and a family of local trivializations fi : Ui × B → p−1(Ui) for every i ∈ I.

3in the sense of [Bou07, 5.9.1]
4Here B is commutative, so it is unnecessary to specify the principal bundle to be left or

right.

4



For any indices i, j ∈ I and every x ∈ Ui ∩ Uj , there exists a unique element
bij(x) ∈ B such that bij(x) · fi(y) = fj(y) for all y ∈ p−1(x). Hence a morphism
bij : Ui∩Uj → B of complex manifolds. Moreover, for any indices i, j, k ∈ I and
every x ∈ Ui∩Uj∩Uk, they satisfy the 1-cocycle relation bij(x)+bjk(x)+bki(x) =
0. Thus, the family {bij}i,j∈I de�nes an element Ψ(p) of H1(X,BX).

As per [HBS66, 3.2 b), p.41], the map Ψ is bijective. The structure of
abelian group on H1(X,BX) is translated to S via Ψ. The zero element of S
is the class of the trivial principal B-bundle. For every pair [p1 : P1 → X] and
[p2 : P2 → X] in S, by taking a family of trivialization for each pi, we can de�ne
a morphism ϕ : P1 ×X P2 → P1 + P2 of principal B-bundles on X such that or
every b, b′ ∈ B, u ∈ P1, v ∈ P2 with p1(u) = p2(v), one has

ϕ(b · u, b′ · v) = (b+ b′) · ϕ(u, v). (2)

In particular, ϕ is surjective. Restricted to the �ber at some x ∈ X, ϕ is induced
by the group law of B and the chosen trivializations.

We need a complex version of Cartan's subgroup theorem. Notice that a real
analytic closed subgroup of a complex Lie group may not be a complex analytic
subset. Lemma 2.0.4 is mentioned in [Bjö13, p.513].

Lemma 2.0.4. Let X be a complex manifold, Y ⊂ X be a complex analytic
subset. If p ∈ Y is a smooth point of Y , then near p, the subset Y is an
embedded complex submanifold of X.

Proof. As the problem is local, we may assume that X is an open subset
Cn, there exist f1, . . . , fm ∈ OX(X) with OX,p/(f1, . . . , fm) = OY,p and Y =
Z(f1, . . . , fm). Let r = rankp(f1, . . . , fm). By reordering subscripts, one may
assume

det(
∂fi
∂zj

)1≤i,j≤r ̸= 0.

Then (f1, . . . , fr) : X → Cr is a holomorphic submersion near p. Therefore,
near p, the subset Z(f1, . . . , fr) is an embedded complex submanifold of X of
dimension n− r. By the Jacobian criterion (see, e.g., [GR12, p.114]), embpY =
n − r. By the criterion of smoothness ([GR12, p.116]), dimp Y = n − r. Now
that Y ⊂ Z(f1, . . . , fr), near p the subset Y is an irreducible component of
Z(f1, . . . , fr), hence also an embedded complex submanifold of X.

Corollary 2.0.5 contains [Lee01, Prop. 1.23] as a special case.

Corollary 2.0.5 (Complex Cartan subgroup theorem). Let G be a complex Lie
group, and let H be a subgroup that is a complex analytic subset of G. Then H
is a complex Lie subgroup of G.

Proof. Endow H with the induced structure of reduced complex analytic space.
By [GR12, p.117], the complex analytic space H has a smooth point p. For
every q ∈ H, the left multiplication by qp−1 gives a biholomorphic map G→ G,
which sends H to H and maps p to q. Therefore, q is also a smooth point of H.
By Lemma 2.0.4, H is a complex submanifold of G near q for all q ∈ H. Thus,
H is a complex submanifold of G and hence a complex Lie subgroup.
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In Lemma 2.0.6, if G is furthermore connected, then the result of is contained
in [Bou72, Ch.III, Sec. 6, no. 4, Cor. 4].

Lemma 2.0.6. Let G be a complex Lie group. Then the center Z(G) is a
complex Lie subgroup of G.

Proof. The holomorphic map G×G→ G de�ned by (x, y) 7→ yxy−1 is a group
action of G on itself. By [Bou72, Ch. III, Sec. 1, no. 7, Prop. 14], for every
x ∈ G, the stabilizer CG(x) of x ∈ G is a complex Lie subgroup of G. Therefore,
so is Z(G) = ∩x∈GCG(x) by [HN11, Exercise 15.1.3 (a)].

A complex Lie group isomorphic to a complex Lie subgroup of GLn(C) for
some integer n ≥ 1 is called linear. Proposition 2.0.7, due to Matsushima and
Morimoto, is a characterization of commutative linear complex Lie groups.

Proposition 2.0.7. Let B be a connected commutative complex Lie group.
Then the following conditions are equivalent:

1. B is isomorphic to Cm × (C∗)n for some integers m,n ≥ 0;

2. the complex Lie group B is linear;

3. B is a Stein group (i.e., the underlying complex manifold is a Stein manifold).

In that case, the pair (m,n) is unique.

Proof. See [HN11, Exercise 15.3.1] for the fact that 1 implies 2. Since GLn(C)
is a Stein manifold, 2 implies 3. As per [MM60, Proposition 4], 3 implies 1. The
uniqueness is contained in the Remmert-Morimoto decomposition (see, e.g.,
[AK01, Thm. 1.1.5]).

Remark 2.0.8. The commutativity of B in Proposition 2.0.7 is important. In
fact, there is a connected Stein group that is not linear ([Ari19, Sec.1]). This
di�ers from the algebraic case where every algebraic group that is an a�ne
variety is linear ([Mil17, Cor. 4.10]).

In some sense, De�nition 2.0.9 is an antipode to Stein groups.

De�nition 2.0.9. A connected complex Lie group on which every holomorphic
function is constant is called a toroidal group.5

Complex tori are toroidal groups, but there exist toroidal groups that are
not compact ([AK01, p.1]). Every toroidal group is a semi-torus in the sense of
[NW13, Def. 5.1.5].

By [AK01, 1.1.5], every connected commutative complex Lie group G is
uniquely isomorphic to Cl×(C∗)m×X with a toroidal group X. In particular, G
can be presented as an extension of a complex torus by a connected linear group.
(From [NW13, pp.169-170], a semi-torus can admit nonequivalent presentations,
while semiabelian varieties admit exactly one algebraic presentation.)

5also known as a Cousin group
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3 Group extensions

Given a surjective Lie group morphism p : E → Q, by Fact 2.0.1, K := ker(p)
is a normal Lie subgroup of E and the induced morphism E/K → Q is an
isomorphism. We write it as

1 → K
i→ E

p→ Q→ 1 (3)

and call it a short exact sequence. In that case, E is called an extension of the
base Q by the extension kernel K. Moreover, dep : L(E) → L(Q) is surjective
of kernel L(K), hence an extension of Lie algebras

0 → L(K) → L(E)
dep→ L(Q) → 0.

WhenK ⊂ Z(E), such an extension is called central. If (3) is a central extension
with Q commutative, as in [MRM74, p.222], using Fact 2.0.3 one can construct
a skew-symmetric bimorphism

e : Q×Q→ K, (4)

to measure the deviation of E from commutativity. Indeed, the group E is
commutative if and only if e is constant.

Several topological properties of Lie groups are preserved by extensions.

Fact 3.0.1. If K,Q in (3) are compact (resp.connected, resp. discrete), then
so is E.

Proof. The statement concerning connectedness is in [Che46, Prop. 2, p.36].
The others are consequences of Fact 2.0.3.

Fact 3.0.2 ([HN11, Cor. 16.3.9]). If (3) is a central extension of complex Lie
groups, where K is �nite and E is connected, then Q is linear if and only if E
is linear.

The �niteness of K in Fact 3.0.2 is necessary. Consider the exact sequence
0 → Z2 → C → A → 0 de�ning a complex torus A. Here Z2 and C are linear,
while A is not.

Similarly, an extension E of a �nite group Q by a linear group K is linear.
Indeed, let ρ : K → GLn(C) be a faithful representation, then the induced
representation IndEKρ : E → GLmn(C) is also faithful, where m = #Q. Again,
the �niteness of Q is essential here. Example 3.0.3 shows the statement fails
when Q is only discrete and linear but in�nite.

Example 3.0.3. Work of Deligne [Del78] (see also [KRW20, p.470]) shows
that for any integers g ≥ 2, n ≥ 3, there is a central extension 1 → Z/n→ G→
Sp2g(Z) → 1 for which G is not residually �nite. By Malcev's theorem ([Mal40,
Thm. VII]; see also [Nic13, p.1]), the discrete complex Lie group G is not linear,
even though Z/n and Sp2g(Z) are linear.

7



We turn to the classi�cation of extensions. Two Lie group extensions C and
C ′ of B by A are called equivalent if there exists a morphism f : C → C ′ making
a commutative diagram

0 B C A 0

0 B C ′ A 0.

Id f Id

In this case, f is bijective, hence an isomorphism by Fact 2.0.1. The trivial
extension of Q by K refers to the equivalence class of the obvious sequence

1 → K → K ×Q→ Q→ 1.

Fact 3.0.4 ([Bou72, Ch.III, no.4, Prop. 8]). The Lie group extension (3) is
trivial if and only if there is a morphism r : E → K with ri = IdK . The
extension is a semidirect product if and only if there is a morphism s : Q → E
with ps = IdQ.

The extension (3) de�nes a group morphism ψ : Q → Out(K), called the
outer action corresponding to the extension. We call (K,ψ) the extension kernel
of (3). Equivalent extensions induce the same outer action. For two complex Lie
groups Q,K and a group morphism ψ : Q → Out(K), denote by Ext(Q,K,ψ)
the set of equivalence classes of extensions of Q by K with outer action ψ.

Since the center Z(K) is a characteristic complex Lie subgroup of K by
Lemma 2.0.6, there is a canonical group morphism Aut(K) → Aut(Z(K)) which
passes to another group morphism Out(K) → Aut(Z(K)). Hence a group
morphism

ψ0 : Q→ Aut(Z(K)) (5)

induced by ψ. When K is commutative, ψ = ψ0 and the construction of Baer
sum ((42) and [FLA19, p.444]) makes Ext(Q,K,ψ) an abelian group.

3.1 Pullback and pushout

Extensions can be pulled back.

Example 3.1.1 (Pullback). Given a morphism g : Q′ → Q of complex Lie
groups, pulling (3) back along g gives an extension of Q′ by K as follows.

The map E × Q′ → Q de�ned by (x, h′) 7→ p(x)−1g(h′) is holomorphic, so
the preimage E′ of the identity element eQ ∈ Q is an analytic subset of E×Q′.
As E′ = {(x, h′) ∈ E ×Q′ : p(x) = g(h′)} is a subgroup of E ×Q′, by Corollary
2.0.5, E′ is a complex Lie subgroup of E × Q′ (which is the extension group).
Let p′ : E′ → Q′ and ϵ : E′ → E be the projections. Then the triple (E′, ϵ, p′)
is the �ber product E ×Q Q′ in the category of complex Lie groups.

For every h′ ∈ Q′, by surjectivity of p, there is x ∈ E with p(x) = g(h′).
Then (x, h′) ∈ E′ with p′(x, h′) = h′. Hence p′ is surjective.

De�ne a morphism i′ : K → E′ by i′(k) = (k, eQ′). Then i′ is injective. Since
p′i′ is trivial, i′(K) ⊂ ker(p′). Conversely, for every (x, h′) ∈ ker(p′), h′ = eQ′
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and p(x) = g(eQ′) = eQ. Thus, x ∈ K and (x, h′) = i′(x) ∈ i′(K). Hence a
commutative diagram with exact rows

1 K E′ Q′ 1

1 K E Q 1.

i′

Id

p′

ϵ g

i
p

The �rst row is called the pullback extension of (3) along g. Its outer action is
ψg : Q′ → Out(K). Hence a map Ext(Q,K,ψ) → Ext(Q′,K, ψg). It is a group
morphism when K is commutative ([Hoc51a, p.99]).

The universal property of pullback shows that the �rst row of every such
commutative diagram is determined by the second row and g : Q′ → Q. By
construction, the pullback of a central extension is also central.

A pushout extension along a morphism f : K → K ′ of complex Lie groups
may not exist. When it exists, it satis�es a universal property.

Lemma 3.1.2. Consider a commutative diagram of complex Lie groups, where
each row is exact

1 K E Q ‘

1 K ′ E′ Q 1.

f

p

m Id

ι π

(6)

Then the triple (E′,m, ι) has the following universal property: For every commutative
diagram of complex Lie groups

K E

K ′ E′

H

i

f

ϕ

m

ψ

ι

η

with ψ(m(c)−1bm(c)) = ϕ(c)−1ψ(b)ϕ(c) for every c ∈ E and b ∈ K ′, there exists
a unique morphism η : E′ → H keeping the diagram commutative.

In particular, up to a unique equivalence, the second row of (6) has at most
one choice when the �rst row and f : K → K ′ are given.

Proof. We construct a map η : E′ → H as follows. For every c′ ∈ E′, there exists
c ∈ E with p(c) = π(c′). Let b′ = m(c)−1c′. Then π(b′) = p(c)−1π(c′) = eQ, so
b′ ∈ K ′. De�ne η(c′) = ϕ(c)ψ(b′).

To show that η is well-de�ned, we claim that η(c′) is independent of the
choice of c. Indeed, take another c1 ∈ E with p(c1) = π(c′), then p(c−1c1) =
eQ, hence c

−1c1 ∈ K. This time the element in K ′ is b′1 = m(c1)
−1c′, so

9



b′ = f(c−1c1)b
′
1 in K ′ and hence ψ(b′) = ϕ(c−1c1)ψ(b

′
1). Therefore, ϕ(c)ψ(b

′) =
ϕ(c1)ψ(b

′
1) in H as claimed.

We check that η is holomorphic near c′ ∈ E′. Indeed, by Fact 2.0.3, there is
an open neighborhood U of π(c′) ∈ Q, and a holomorphic map s : U → E with
ps = IdU . The map

π−1(U) → U ×K ′, x 7→ (π(x), [msπ(x)]−1x)

is biholomorphic. The map

U ×K ′ → H, (u, b′) 7→ ϕ(s(u))ψ(b′)

is holomorphic. The composition is exactly η|π−1(U).
We check that η is a group morphism. For c′i ∈ E′ (i = 1, 2), choose ci ∈ E

with p(ci) = π(c′i). Then for c′1c
′
2 we can choose c1c2. Let b

′
1 = m(c1)

−1c′1 and
b′2 = m(c2)

−1c′2. Then

b′ := m(c1c2)
−1c′1c

′
2 = m(c2)

−1b′1m(c2)b
′
2.

By the construction of η, one has

η(c′1c
′
2) = ϕ(c1c2)ψ(b

′)

=ϕ(c1)ϕ(c2)ψ[m(c2)
−1b′1m(c2)]ψ(b

′
2)

=ϕ(c1)ψ(b
′
1)ϕ(c2)ψ(b

′
2) = η(c′1)η(c

′
2)

Then η is a morphism of complex Lie groups. By construction, η is the
unique group morphism keeping the diagram commutative.

Example 3.1.3. Assume that Q is connected. As the map p : E → Q
in (3) is open by Fact 2.0.3, p(E0) is a nonempty open subgroup of Q and
hence p(E0) = Q by the connectedness of Q. Then the following diagram is
commutative and each row is exact

1 K ∩ E0 E0 Q 1

1 K E Q 1

Id

By Lemma 3.1.2, the second row is determined by the inclusion K ∩ E0 → K
(an open normal subgroup) and the �rst row.

3.2 Rudimentary classi�cation

Let K,Q be complex Lie groups, where Q is discrete. Consider an abstract
group extension 1 → K → E → Q → 1. Then as a set E = ⊔xxK, where
x runs through a set of left representatives of E/K. Thus E admits a unique
complex manifold structure making the maps holomorphic. However, the group
law of E needs not to be holomorphic in this complex structure. The semidirect

10



product sequence 1 → C → C ⋊ Z/2 → Z/2 → 1 serves as an example, where
Z/2 acts on C by complex conjugation. But when the base is discrete and the
outer action is trivial, the Lie group extension problem reduces to the abstract
group extension problem.

Proposition 3.2.1. Let K,Q be complex Lie groups. If Q is discrete, then
the natural forgetful map ϕ : Ext(Q,K, 1) → ExtAbs(Q,K, 1) is bijective, where
ExtAbs(Q,K, 1) denotes the set of isomorphism classes of abstract group extensions
of Q by K with trivial outer action. In fact, for every abstract group extension
1 → K → E → Q → 1, E admits a unique complex manifold structure making
the sequence an extension of complex Lie groups.

Proof. We prove that ϕ is injective. Consider E1, E2 ∈ Ext(Q,K, 1) with
ϕ(E1) = ϕ(E2). Then there is an abstract group isomorphism f : E1 → E2

making a commutative diagram

K E1

E2.

f

For every x ∈ E1, the restriction xK → f(x)K of f is holomorphic, since the left
multiplication K → xK (resp. K → f(x)K) by x (resp. f(x)) in E1 (resp. E2)
is biholomorphic. Thus, f is holomorphic and hence an equivalence of complex
Lie group extensions.

We prove that ϕ is surjective. Given an abstract group extension 1 → K →
E → Q→ 1 in ExtAbs(Q,K, 1), we endow E with the complex structure making
the maps holomorphic. We show the group law m : E×E → E is holomorphic.
Choose a set-theoretic section s : Q→ E. Then the map K×Q→ E de�ned by
(a, b) 7→ as(b) is biholomorphic. With this identi�cation, m becomes the map

µ : K×Q×K×Q→ K×Q, (a, b, a′, b′) 7→ (as(b)a′s(b′)s(bb′)−1, bb′) = (aρ(a′)s(b)s(b′))s(bb′)−1, bb′),

where ρ : K → K is x 7→ s(b)xs(b)−1. Since the outer action is trivial,
ρ ∈ Inn(K). Therefore, the map K × K → K de�ned by (a, a′) 7→ aρ(a′)
is holomorphic. Because Q is discrete, µ (and hence m) is holomorphic. Then
E is a complex Lie group and the abstract extension lifts to Ext(Q,K, 1).

Corollary 7.2.6 below is a result about discrete base with nontrivial outer
action. We turn to two other simple cases.

Proposition 3.2.2. Every extension of C is a semidirect product. In particular,
every central extension of C trivial.

Proof. Let 0 → B → C
p→ C → 0 be an extension. Then 0 → L(B) →

L(C)
dep→ L(C) → 0 is an exact sequence of Lie algebras. Take a C-linear map

ds : L(C) → L(C) with dep ◦ ds = IdL(C). Because dimC L(C) = 1, ds is a
Lie algebra morphism. As C is simply connected, there is a unique morphism
s : C → C with des = ds. Since de(ps) = IdL(C), one has ps = IdC. Therefore,
this extension is a semidirect product by Fact 3.0.4.
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Proposition 3.2.3. Let B be a connected commutative complex Lie group.
Then every central extension of C∗ by B is trivial.

Proof. Let C be a central extension of C∗ by B. Consider the pullback extension
along exp(2πi•) : C → C∗. By Proposition 3.2.2, there is a morphism ρ : C →
C ′ with p′ρ = IdC. Then pϵρ(1) = exp(2πi) = 1, so ϵρ(1) ∈ B. As B is
connected commutative, its exponential map expB : L(B) → B is surjective.
Take v ∈ L(B) with expB(−v) = ϵρ(1).

Z

1 B C ′ C 0

1 B C C∗ 1

Id

p′

ϵ exp(2πi•)

ρ

p

De�ne a holomorphic map

ρ′ : C → C ′, ρ′(z) = expB(zv)ρ(v).

We check that ρ′ is a group morphism. For every z, w ∈ C,

ρ′(z + w) = expB((z + w)v)ρ(z + w) = expB(zv) expB(wv)ρ(z)ρ(w)

= expB(zv)ρ(z) expB(wv)ρ(w) = ρ′(z)ρ′(w),

where the last but one equality uses B ⊂ Z(C).
Therefore, ρ′ is a complex Lie group morphism. Moreover, ρ′(1) = expB(v)ρ(1) =

ϵρ(−1)ρ(1). Then ϵρ′(1) = eC . Therefore, ρ′(Z) ⊂ ker(ϵ). Thus, ρ′ induces a
morphism s : C∗ → C making a commutative diagram

C C ′ C

C∗ C C∗

ρ′

exp(2πi•)

p′

ϵ exp(2πi•)

s p

Since p′ρ′ = IdC and exp(2πi•) : C → C∗ is surjective, ps = IdC∗ . From Fact
3.0.4, the extension C is trivial.

Example 7.1.7 gives a result about non-central extensions of C∗.
Now assume that the Lie group K is discrete and commutative. We recall

results6 from [Hoc51b, Sec. 3].

Fact 3.2.4 ([Hoc51b, p.545]). Let K,Q be Lie groups. If K is discrete commutative
and Q is connected, then the extension (3) of Lie groups is central.

Corollary 3.2.5. Let K,Q be commutative Lie groups. If Q is connected and
K is discrete, then every extension of Q by K is commutative.

6They are stated for real Lie groups, but the proofs extend to the complex setting.

12



Proof. Let (3) be such an extension. By Fact 3.2.4, this extension is central.
Then consider the induced continuous map (4). Since Q is connected and K is
discrete, this map is constant, or equivalently, E is commutative.

Let Abc be the abelian category of abelian groups that are at most countable.
Fact 3.2.6 shows that the universal cover of a connected Lie group is �universal"
among all the extensions with discrete commutative kernels.

Fact 3.2.6 (Hochschild, [Hoc51b, Thm. 3.2 and Cor.]). Let Q be a connected
Lie group. Then the functor Ext(Q, ·, 1) : Abc → Ab is represented by π1(Q)
and the class of the universal cover sequence 1 → π1(Q) → Q̃ → Q → 1 in
Ext(Q, π1(Q), 1). Hence an isomorphism ΓK : Ext(Q,K, 1) → HomAb(π1(Q),K)
functorial in K ∈ Abc. Moreover, E ∈ Ext(Q,K, 1) is connected if and only if
ΓK(E) is surjective.

4 Commutative Extensions

4.1 Generalities

Lemma 4.1.1. The category C is naturally additive with �nite direct products.

Proof. The Hom sets are commutative groups, and composition of morphisms
is bilinear. Moreover, the product G1 × G2 of two commutative complex Lie
groups is both a product and a coproduct of G1 and G2 in C.

Although the category Alg of commutative complex algebraic groups is an
abelian category ([Mil17, Thm. 5.62]), as Example 4.1.2 and Example 4.1.3
show, C is NOT an abelian category.

Example 4.1.2. The map i : Z2 → C de�ned by (a, b) 7→ a+b
√
2 is injective.

The image is not closed in C as it is dense in R. For every morphism f : C → X
in C, with fi = 0, we have f = 0 by identity theorem for holomorphic maps.
Thus i is a monomorphism and epimorphism in C, but not an isomorphism.

Example 4.1.3. Let p : C2 → C2/Z4 be the natural projection. Let i : C →
C2 be the closed embedding de�ned by z 7→ (z,

√
2z). Then the composition pi :

C → C2/Z4 is an injective morphism (hence a monomorphism) in C. By [Lee13,
Example 7.19], pi(C) is a connected dense subset of C2/Z4. In particular, pi
is an epimorphism in C. The cokernel of pi is the zero morphism C2/Z4 → 0.
However, pi is not an isomorphism in C.

Proposition 4.1.4 3 is a special case of [Con14, Prop. D.2.1]. An elementary
proof is given.

Proposition 4.1.4.

1. HomC(C∗,C) = 0.

13



2. For A ∈ C, the map

HomC(Cn, A) → HomVec(L(Cn), L(A)), f 7→ def

is a group isomorphism.

3. Let f : C∗ → C∗ be a morphism in C. Then there is an integer k such that
f(z) = zk for every z ∈ C∗. Hence an isomorphism Z = HomC(C∗,C∗).

Proof. The Lie algebra of C∗ is C. The exponential map exp : C → C∗ is
normalized as w 7→ e2πiw.

1. Let f : C∗ → C be a morphism. Then def : C → C is linear. There is
a ∈ C with def(v) = av for all v ∈ C. Since 1 ∈ C = L(C∗) is mapped
to 1 ∈ C∗ under the exponential map exp(2πi•), one has 0 = f(1) =
def(1) = a. Then def = 0 and f = 0.

2. It follows from the fact that Cn is simply connected and both groups are
commutative.

3. Consider the induced linear map on Lie algebras df : C → C. There is a
unique complex number k such that df(w) = kw for all w ∈ C. Then

e2πik = exp(df(1)) = f exp(1) = f(1) = 1.

Therefore, k is an integer. For every z ∈ C∗, there is w ∈ C with exp(w) =
z. Then f(z) = f(exp(w)) = exp df(w) = exp(kw) = zk.

For A,B ∈ C, the set of isomorphism classes of commutative extensions of
A by B is denoted by Ext(A,B).

Proposition 4.1.5.

1. Ext(•, •) : Cop × C → Set is a covariant functor.

2. Let E be the collection of extensions in C. Then the pair (C, E) is an exact
category.7

Proof. 1. Fix A,B ∈ C and an element of Ext(A,B): 0 → B
i→ C

p→ A→ 0.

(a) If f : B → B′ is a morphism in C, then

g : B → C ×B′, b 7→ (−b, f(b))

is a morphism in C. It is injective and the (set-theoretic) image is
closed in C × B′. By Fact 2.0.1 2, g identi�es B as a complex Lie
subgroup of C × B′. Let f∗C be the quotient (C × B′)/B provided
by Fact 2.0.3. The canonical map B′ → C ×B′ induces an injective

7see [Sta22, Tag 05SF]
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morphism f∗i : B
′ → f∗C since B ∩ ({0} × B′) = {0}. Moreover,

B is in the kernel of the composition C × B′ → A by (c, β) 7→ p(c),
hence a surjective morphism f∗p : f∗C → A.

Note that f∗p ◦ f∗i = 0, so f∗i(B
′) ⊂ ker(f∗p). For every element x

of ker(f∗p), take a representative (c, β) ∈ C×B′. As p(c) = 0, c ∈ B.
Then (0, β + f(c))− (c, β) = g(c). Therefore,

x = [(0, β + f(c))] = f∗i(β + f(c)) ∈ f∗(B
′).

Thus, f∗i(B
′) = ker(f∗p)

Therefore, the sequence

0 → B′ f∗i→ f∗C
f∗p→ A→ 0

is exact and f∗C ∈ Ext(A,B′). Hence a morphism f∗ : Ext(A,B) →
Ext(A,B′) in the category Set.

Let F be the canonical morphism C → f∗C. By construction, the
extension f∗C ∈ Ext(A,B′) has the following universal property: for
every morphism h : A → A′ in C, every C ′ ∈ Ext(A′, B′), every
morphism G : C → C ′ making the diagram commutative

0 B C A 0

0 B′ f∗C A 0

0 B′ C ′ A′ 0,

f F

G

Id

Id u h

(7)

there exists a unique morphism u : f∗C → C ′ keeping the diagram
commutative.

(b) If h : A′ → A is a morphism in C, by Example 3.1.1, we get a
morphism h∗ : Ext(A,B) → Ext(A′, B) in the category Set. Let F be
the canonical projection h∗C → C. By construction, the extension
g∗C has the following universal property: for every morphism g :
B′ → B, every extension C ′ ∈ Ext(A′, B′), every morphism G :
C ′ → C making the following diagram commutative

0 B′ C ′ A′ 0

0 B h∗C A′ 0

0 B C A 0,

g v

G

Id

Id F h

(8)

there exits a unique morphism v : C ′ → h∗C keeping the diagram
commutative.
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(c) Let f : B → B′, g : A → A′ be morphisms in C, C ∈ Ext(A,B),
and C ′ ∈ Ext(A′, B′). Then the relation f∗C = g∗C ′ in Ext(A,B′)
is equivalent to the existence of a morphism F : C → C ′ making a
commutative diagram

0 B C A 0

0 B′ C ′ A′ 0.

f F g

Indeed, it follows from the universal properties in Points (1a) and
(1b). For every X ∈ Ext(A′, B), in view of the diagram

0 B g∗X A 0

0 B X A′ 0

0 B′ f∗X A′ 0,

Id g

f Id

one has f∗g
∗X = g∗f∗X. This completes the proof.

2. It follows from Point 1 and Lemma 4.1.1.

Example 4.1.6. If A is a complex torus with dimA = g, B is the discrete
group Q/Z, then Ext(A,B) is isomorphic to B2g by Fact 3.2.6. Even though B
is an injective object of Ab, the functor Ext(·, B) : Cop → Ab is nonzero.

Example 4.1.7. For an extension 0 → B
i→ C

p→ A → 0 in C, the pushout
i∗C ∈ Ext(A,C) is the trivial extension. In fact, i∗C = C × C/B with the
embedding

B → C × C, b 7→ (−b, b).
The group law C × C → C descents to a morphism r : i∗C → C. Then
r ◦ i∗(i) = IdC . By Fact 3.0.4, i∗C is trivial.

Similarly, as the diagonal inclusion C → C ×C factors through a morphism
s : C → p∗C and p∗(p) ◦ s = IdC , the pullback p

∗C ∈ Ext(C,B) is also trivial.

Fact 4.1.8 follows from Proposition 4.1.5.

Fact 4.1.8 ([Ros58, Prop. 5], [Ser88, Prop. 1, p.163]). 1. For every A,B ∈
C, under the Baer sum Ext(A,B) is an abelian subgroup of Ext(A,B, 1).

2. The functor Ext(•, •) : Cop × C → Ab is an additive bifunctor.

3. For any C,C ′ ∈ Ext(A,B), the product C ×C ′ is naturally an element of
Ext(A×A,B ×B).

4. Let d : A → A × A the diagonal map of A and s : B × B → B the group
law of B. Then C + C ′ = d∗s∗(C × C ′) in Ext(A,B).
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Corollary 4.1.9. For every commutative complex Lie group A, the restriction
Ext(A, ·) : Vec → Ab factors through a functor from Vec to the category of all
complex vector spaces.

By Example 4.3.3 below, for every V ∈ Vec, dimC Ext(A, V ) is �nite. Hence
an additive functor Ext(A, ·) : Vec → Vec.

Example 4.1.10. Endowing each object of Abc the discrete topology gives
a functor Abc → C, identifying Abc as a full subcategory of C. The subcategory
Abc is closed under extension by Fact 3.0.1. From Proposition 3.2.1, the forgetful
morphism Ext(A,B) → Ext1Z(A,B) is an isomorphism for every A ∈ Abc and
every B ∈ C.

Example 4.1.11. Analyti�cation functor (•)an : Alg → C identi�es Alg
as a subcategory of C (which is not full). The extension problem within the
subcategory Alg is discussed by Rosenlicht [Ros58] and Serre [Ser88, Ch. VII].
They de�ne a similar additive functor ExtAlg : Algop × Alg → Ab. For every
A,B ∈ Alg, there is a natural morphism ExtAlg(A,B) → Ext(Aan, Ban). In
general, this morphism is neither injective nor surjective.

For example, when A/C is an abelian variety, ExtAlg(Ga, A) = 0 while
ExtAlg(Gm, A) is non-canonically isomorphic to the torsion subgroup Ator of
A ([MM66, Introduction, 1.]). But Ext(C∗, Aan) = 0 by Proposition 3.2.3, so
the natural morphism ExtAlg(Gm, A) → Ext(C∗, Aan) is not injective.

For any two abelian varietiesXi/C (i = 1, 2) of positive dimension, ExtAlg(X2, X1)
is countable while Ext(Xan

2 , Xan
1 ) is uncountable. In fact, the natural morphism

ExtAlg(X2, X1) → Ext(Xan
2 , Xan

1 ) is an embedding onto the torsion subgroup of
Ext(Xan

2 , Xan
1 ) ([BL99, Ch. 1; Prop. 6.1, Cor. 6.3]).

Lemma 4.1.12 is mentioned at the bottom of [Hoc51b, p.546].

Lemma 4.1.12. If G is a commutative connected Lie group, then G is a divisible
Z-module.

Proof. The exponential map exp : L(G) → G is surjective. For every x ∈ G,
there is v ∈ L(G) with exp(v) = x. For every integer n ≥ 1, exp(v/n) ∈ G and
n(exp(v/n)) = x.

Corollary 4.1.13. An extension 0 → B → C → A→ 0 in C with B connected
and A discrete is trivial. In particular, for every G ∈ C, the natural exact
sequence

0 → G0 → G→ G/G0 → 0

is a trivial extension, hence a non-canonical isomorphism G → G0 × G/G0 in
C.

Proof. By Lemma 4.1.12, the Z-module B is divisible, so the functor Ext1Z(·, B) :
Ab → Ab is zero. Since A is discrete, the result follows from Example 4.1.10.
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Example 4.1.14. The abelian group underlying a complex torusB is divisible
by Lemma 4.1.12, hence an injective object of Ab and Ext1Z(•, B) : Ab → Ab
is zero. However, Ext(•, B) : Cop → Ab can be nonzero. In fact, [BL04, (8) b),
p.68] gives an example of a nontrivial exact sequence of complex tori

0 → B → C → A→ 0

with dimA = dimB = 1.

4.2 Exact sequences of Ext

Let 0 → A′ i→ A
p→ A′′ → 0 be an exact sequence in C, i.e., A ∈ Ext(A′′, A′).

For f ∈ Hom(A′, B), there is f∗A ∈ Ext(A′′, B). Hence a map

d : Hom(A′, B) → Ext(A′′, B), d(f) = f∗A.

Then d is a group morphism. The formation of d is functorial in B.

Proposition 4.2.1. Let B ∈ C. The sequence in Ab with obvious morphisms

0 → HomC(A
′′, B) → HomC(A,B) → HomC(A

′, B)
d→ Ext(A′′, B)

p∗→ Ext(A,B) → Ext(A′, B)

is exact and functorial in B.

Proof.

� Exactness at Hom(A,B) follows from Fact 2.0.1.

� Exactness at Hom(A′, B): By Example 4.1.7, the composition

Hom(A,B)
i∗→ Hom(A′, B) → Ext(A′′, B)

is zero. Now take ϕ ∈ ker(d). By Fact 3.0.4, there is a morphism r : ϕ∗A→
B with rϕ∗(i) = IdB . Let F : A→ ϕ∗A be the canonical morphism. Then
rF i = rϕ∗(i)ϕ = ϕ. Hence ϕ ∈ im(i∗).

� Exactness at Ext(A′′, B): By Example 4.1.7, for every ϕ ∈ Hom(A′, B),
p∗dϕ = p∗ϕ∗A = ϕ∗p

∗A = 0, i.e., the composition

Hom(A′, B)
d→ Ext(A′′, B)

p∗→ Ext(A,B)

is zero.

Now take C ∈ ker(p∗) ⊂ Ext(A′′, B) with connecting morphisms f : B →
C and g : C → A′′. By Fact 3.0.4, there is a morphism s : A → p∗C
with p∗(p) ◦ s = IdA. For every a′ ∈ A′, the image of s(a′) in A′′ is
p(a′) = 0, so the image of s(a′) in C lies in B. Thus, the restriction of s
to A′ is a morphism ϕ : A′ → B. By construction, the extension group of
d(ϕ) = ϕ∗A ∈ Ext(A′′, B) is A×B/D, where D = {(−a′, ϕ(a′)) : a′ ∈ A′}.
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De�ne ψ : A→ C by ψ = F ◦ s. De�ne

A×B → C, (a, b) 7→ ψ(a) + f(b).

For every a′ ∈ A′, ψ(−a′) + f(s(a′)) = 0, hence a factorization ϕ∗A → C
in the middle keeping the diagram commutative:

0 A′ A A′′ 0

0 B ϕ∗A A′′ 0

0 B C A′′ 0

0 B p∗C A 0.

i

ϕ

p

Id

ϕ∗i

Id Id

f

g

Id

p∗p

F p

s

Then C = ϕ∗A = dϕ in Ext(A′′, B). Therefore, ker(p∗) = im(d).

� Exactness at Ext(A,B): As the composition A′ → A → A′′ is zero and
Ext(•, B) : Cop → Ab is an additive functor, the composition Ext(A′′, B) →
Ext(A,B) → Ext(A′, B) is zero.

Conversely, if C1 ∈ Ext(A,B) with i∗C1 = 0 in Ext(A′, B), then there is a
morphism s : A′ → i∗C1 with i

∗g◦s = IdA′ . The composition ϕ : A′ → C1

is injective. Indeed, if a′ ∈ ker(ϕ), then s(a′) = (a′, 0) in A′ × C1. Thus,
i(a′) = 0 by the construction of pullback extension. Since i is injective,
a′ = 0.

Let C1 → C = C1/ϕ(A
′) be the quotient morphism. Let f0 : B → C be

the induced morphism. Then f0 is injective. Indeed, if b ∈ ker(f0), then
f(b) = ϕ(a′) for some a′ ∈ A′. Then (a′, f(b)) ∈ i∗C1, so i(a

′) = gf(b) = 0.
Hence a′ = 0 and f(b) = 0. Therefore, b = 0.

Because pgϕ = p ◦ i = 0, the morphism pg : C1 → A′′ descends to a
surjective morphism g0 : C → A′′. We prove that the bottom row of the
following diagram is exact:

0 B i∗C1 A′ 0

0 B C1 A 0

0 B C A′′ 0.

Id

i∗g

i

s

ϕ
f

Id

g

p

f0 g0

Since gf = 0, one has g0f0 = 0. Therefore, f0(B) ⊂ ker(g0). Conversely,
for c ∈ ker(g0), there is c1 ∈ C1 with [c1] = c. Since pg(c1) = g0(c) = 0,
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one gets g(c1) ∈ A′. Then gϕg(c1) = gc1. So c1 − ϕg(c1) ∈ ker(g) = B
and

f0(c1 − ϕg(c1)) = [c1 − ϕg(c1)] = c.

Therefore, ker(g0) = f0(B). In particular, the bottom row is exact, i.e.,
C ∈ Ext(A′′, B). By the universal property showed in the diagram (8),
C1 = p∗C.

Example 4.2.2. Let A be a complex torus, and let B be a �nite abelian
group. Then HomC(A,B) = 0. Let integer n(≥ 1) be a multiple of #B.
Applying Proposition 4.2.1 to the exact sequence in C

0 → A[n] → A
[n]A→ A→ 0,

one gets an exact sequence in Ab:

0 → Hom(A[n], B) → Ext(A,B)
f→ Ext(A,B).

Since the morphism [n]B : B → B is zero in C, by Fact 4.1.8, f = ([n]B)∗ = 0.
Hence an isomorphism Hom(A[n], B) → Ext(A,B) that is functorial in B, which
is also con�rmed by Fact 3.2.6.

Let 0 → B′ → B → B′′ → 0 be an exact sequence in C. If A ∈ C and
ϕ ∈ Hom(A,B′′), then ϕ∗B ∈ Ext(A′, B). De�ne a map d : Hom(A,B′′) →
Ext(A,B′) by d(ϕ) = ϕ∗B.

Proposition 4.2.3. Let 0 → B′ → B → B′′ → 0 be an exact sequence in C
and A ∈ C. Then the sequence

0 → Hom(A,B′) → Hom(A,B) → Hom(A,B′′)
d→ Ext(A,B′) → Ext(A,B) → Ext(A,B′′)

in Ab is exact and functorial in A.

The proof is analogous to that of Proposition 4.2.1 and is thereby omitted.
Consider the extension problem with connected bases. Corollary 4.2.4 should

be compared to [Sha49, Thm. 1]: for two compact connected real Lie groups
G,H, the cokernel of the restriction morphismHom(H̃, Z(G)) → Hom(π1(H), Z(G))
is isomorphic to the group of extensions of H by G.

Corollary 4.2.4. Let A,B be commutative complex Lie groups. Assume that
A is connected with universal cover ω : Ã→ A. Then there is a canonical exact
sequence in Ab:

0 → HomC(A,B)
·◦ω→ HomC(Ã, B)

r→ HomAb(π1(A), B) → Ext(A,B) → 0, (9)

where r is induced by restriction.
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Proof. By Proposition 3.2.2, Fact 3.2.6 and Corollary 4.1.13, the functor Ext(C, •) :
C → Ab is zero. By Fact 4.1.8,

Ext(Cn, •) = 0. (10)

The proof is concluded by Proposition 4.2.1.

Example 4.2.5. In Corollary 4.2.4, if B discrete, then HomC(Ã, B) = 0 and
the natural morphism Hom(π1(A), B) → Ext(A,B) is an isomorphism, which
agrees with Fact 3.2.6.

4.3 Determination of commutative extension group

The commutative extension problem of complex Lie groups is answered by
Proposition 4.3.1. Fix two commutative complex Lie groups A,B.

Proposition 4.3.1. There is a non-canonical isomorphism in Ab:

Ext(A,B) → Ext1Z(A/A0, B/B0)⊕HomAb(π1(A0), B/B0)⊕ Ext(A0, B0),

and Ext(A0, B0) is the cokernel of the natural restriction morphism

s : HomVec(L(A), L(B)) → HomAb(π1(A0), B0).

Proof. By Corollary 4.1.13, there are non-canonical isomorphisms in C: A →
A/A0 ×A0 and B → B/B0 ×B0. Using Fact 4.1.8, one gets an isomorphism in
Ab:

Ext(A,B) → Ext(A/A0, B0)⊕Ext(A/A0, B/B0)⊕Ext(A0, B/B0)⊕Ext(A0, B0).

The �rst factor Ext(A/A0, B0) = 0 by Corollary 4.1.13. By Example 4.1.10, the
natural morphism Ext(A/A0, B/B0) → Ext1Z(A/A0, B/B0) is an isomorphism.
Fact 3.2.6 gives a natural isomorphismHomAb(π1(A0), B/B0) → Ext(A0, B/B0).
Corollary 4.2.4 identi�es Ext(A0, B0) with the cokernel of the restriction map
r : HomC(Ã0, B0) → HomAb(π1(A0), B0). By Proposition 4.1.4 2, the group
morphism

t : HomC(Ã0, B0) → HomVec(L(A), L(B)), ϕ 7→ deϕ

is an isomorphism. The proof is �nished by setting s = rt−1.

For every C ∈ Ext(A,B), by Fact 2.0.3, the morphism C → A is a principal
B-bundle. The bijection (1) gives rise to a canonical map

π : Ext(A,B) → H1(A,BA). (11)

Fact 4.3.2 is taken from [Ros58, pp.698-699] and the proof of [Ser88, Ch. VII,
no. 5, Prop. 5].
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Fact 4.3.2. The map (11) is a group morphism and the formation of π is
functorial, in the sense that it commutes with the morphisms f∗ : Ext(A,B) →
Ext(A,B′) de�ned by f : B → B′ and g∗ : Ext(A,B) → Ext(A′, B) de�ned by
g : A′ → A. When B is a vector group, the map π is C-linear.

Example 4.3.3. Let X be a toroidal group, and let ω : X̃ → X be the
universal covering of kernel F . Then F is a discrete subgroup of the vector
space X̃. By Proposition 4.2.1,

HomC(X,C) → HomC(X̃,C) → HomC(F,C) → Ext(X,C) → Ext(X̃,C)

is an exact sequence in Ab. From De�nition 2.0.9, HomC(X,C) = 0. By
Proposition 10, Ext(X̃,C) = 0. Hence the �rst exact row of Diagram (12).

According to [AK01, p.48], there is a C-linear isomorphism HomC(X̃,C) →
H0(X,Ω1

X) and every global holomorphic 1-form on X is d-closed. So taking
de Rham cohomology class results in a linear map H0(X,Ω1

X) → H1(X,C).
The inclusion CX → OX induces a linear map H1(X,C) → H1(X,OX). By
universal coe�cient theorem (see, e.g., [Hat05, Thm. 3.2]), the natural morphism
HomC(F,C) → H1(X,C) is an isomorphism. Hence a commutative diagram

0 HomC(X̃,C) HomC(F,C) Ext(X,C) 0

0 H0(X,Ω1
X) H1(X,C) H1(X,OX).

≃ ≃ (11) (12)

Let b1(X) := dimCH
1(X,C) be the �rst Betti number of X, i.e., the Z-rank of

F . From [AK01, p.48], as a C-vector space

Ext(X,C) =
H1(X,C)
H0(X,Ω1

X)
(13)

is of dimension b1(X)− dimX.
If X is a toroidal theta group,8 then π : Ext(X,C) → H1(X,OX) is a C-

linear isomorphism by [AK01, Thm. 2.2.6 b)]. Otherwise, X is a toroidal wild
group8and H1(X,OX) is in�nite dimensional by [AK01, Prop. 2.2.7].

A seemingly di�erent way to compute the last factor in Proposition 4.3.1, i.e.,
the group of commutative extensions of two connected commutative complex Lie
groups, is given in Example 4.3.4.

Example 4.3.4. Start by the special case that X is a toroidal group and
B is a connected commutative complex Lie group. Denote the kernel of the
universal cover of B (resp. X) by ι : K → B̃ (resp. F → X̃). By (10) and
Proposition 4.1.4 2, the sequence

0 → HomC(X̃,K) → HomC(X̃, B̃) → HomC(X̃, B) → 0

8in the sense of [AK01, Def. 2.2.1]
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is exact in Ab. As F is a free Z-module,

0 → HomC(F,K) → HomC(F, B̃) → HomC(F,B) → 0

in Ab is also exact. Applying Proposition 4.2.1 and the snake lemma to the
commutative diagram

0 HomC(X̃,K) HomC(X̃, B̃) HomC(X̃, B) 0

0 HomC(F,K) HomC(F, B̃) HomC(F,B) 0,

one gets an exact sequence in Ab:

0 → HomC(X,B)
j→ Ext(X,K)

ι∗→ Ext(X, B̃) → Ext(X,B) → 0. (14)

Since K is a free Z-module, by Fact 3.2.6, Ext(X,K) = H1(X,Z)⊗ZK. By
Fact 4.1.8 and (13), one has

Ext(X, B̃) =
H1(X,C)
H0(X,Ω1

X)
⊗C B̃.

The group morphism ι∗ is induced by the Z-bilinear map

H1(X,Z)×K → (
H1(X,C)
H0(X,Ω1

X)
)⊗C B̃, (η, x) 7→ [η]⊗ ι(x).

Thus we can compute Ext(X,B) from (14).
For a general connected commutative complex Lie group A, by [AK01, 1.1.5],

A = Cl × (C∗)m ×X0 for some integers l,m ≥ 0 and a toroidal group X0. By
Fact 4.1.8, Proposition 3.2.2 and Proposition 3.2.3, Ext(A,B) = Ext(X0, B),
reducing to the previous case.

5 Commutative extensions of complex tori

5.1 Primitive cohomology classes

Every central extension of a compact real Lie group by a vector group is trivial,
shown by Fact 5.1.1.

Fact 5.1.1 (Iwasawa, [Iwa49, Lem. 3.7], [Hoc51a, Footnote 10, p.107]). Let
(3) be an exact sequence of real Lie groups. If K is a vector group and Q
is compact, then this extension is a semidirect product. In particular, if this
extension is central, then it is trivial.

Contrary to the real case, Example 5.1.2 shows a commutative extension of
a complex torus by a vector group can be nontrivial.
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Example 5.1.2 ([MM60, p.145, Exemple], [LH76, Sec. I.3]). Set C = C∗ ×
C∗. Then B = {(ez, eiz) : z ∈ C} is a complex Lie subgroup of C (but not an
algebraic subgroup of Gm × Gm) isomorphic to C. The quotient A = C/B is
an elliptic curve. The exact sequence 0 → B → C → A → 0 is a nontrivial
extension, as C is not biholomorphic to B ×A.

In the remainder of Section 5, unless otherwise speci�ed, let A be a complex
torus of dimension g and B be a commutative complex Lie group. Let sA :
A×A→ A be the group law of A. The dual of A is A∨ = Pic0(A).

The analogue of Proposition 5.1.3 for abelian varieties is [Ros58, Prop. 9].

Proposition 5.1.3. The morphism (11) is injective.

Proof. Let C ∈ ker(π). The principal bundle C → A is trivial, so there is a
morphism s : A → C of complex manifolds with ps = IdA. Then there exists
a unique b ∈ B with b · s(eA) = eC , where dot signi�es the action of B on the
�ber p−1(eA). De�ne

s′ : A→ C, s(a) = b · s(a).

Then s′ is a complex manifold morphism with ps′ = IdA. Replacing s by s
′, we

may suppose that s(eA) = eC . By [NW13, Thm. 5.1.36], s is a morphism in C.
By Fact 3.0.4, C = 0 in Ext(A,B). Therefore, π is injective.

We propose to determine the image of (11). Let Mfd be the category of
complex manifolds. De�ne a functor

T : Mfdop → Ab, T (X) = H1(X,BX).

When X is a point, T (X) = 0. Let X1, X2 ∈ Mfd, and let pi : X1 ×X2 → Xi

(i = 1, 2) be the projection to the i-th factor. There is a morphism p∗1 ⊕ p∗2 :
T (X1)× T (X2) → T (X1 ×X2).

De�nition 5.1.4. [Ser88, (29), no.14, Ch. VII] For A ∈ C, an element x ∈
T (A) = H1(A,BA) is called primitive if s∗A(x) = p∗1(x) + p∗2(x) in T (A × A).
Denote by PT(A) the subgroup of T (A) formed by the primitive elements.

Fact 5.1.5. [Ser88, Lem. 8, p.181] The functor PT : Cop → Ab is additive.

Theorem 5.1.6 is an analytic analog of [Ser88, Thm. 5, p.181].

Theorem 5.1.6. Assume that B0 is linear. Then the image of the morphism
(11) is the set of primitive elements of H1(A,BA).

Proof. Take C ∈ Ext(A,B) and put x = π(C). By Facts 4.1.8 and 4.3.2,

s∗A(x) = s∗Aπ(C) = πs∗A(C) = π(p∗1C + p∗2C) = p∗1π(C) + p∗2π(C) = p∗1x+ p∗2x,

so x is primitive.
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Conversely, let x ∈ H1(A,BA) be a primitive element and let p : C → A be
the corresponding principal B-bundle. We show that there exists a structure of
commutative complex Lie group on C which makes it an extension of A by B.

By Corollary 4.1.13, every morphism of complex manifoldsA→ B is constant.
Let C ′ → A × A be the pull-back of C → A along sA : A × A → A. As x is
primitive, C ′ = p∗1C+p∗2C in T (A×A). Choose a surjection p∗1C×A×Ap

∗
2C → C ′

satisfying (2). Since p∗1C = C × A and p∗2C = A × C, as a complex manifold
p∗1C ×A×A p

∗
2C is isomorphic to C × C. Hence a morphism g : C × C → C of

complex manifolds:

C × C = p∗1C ×A×A p
∗
2C p∗1C + p∗2C = C ′ C

A×A A.

g

p

sA

(15)

By construction, it satis�es

g(b · c, b′ · c′) = (b+ b′) · g(c, c′) (16)

for every c, c′ ∈ C and b, b′ ∈ B.
Choose a point e ∈ p−1(eA). Since p(g(e, e)) = sA(eA, eA) = eA, there exists

a unique b ∈ B with b · g(e, e) = e. Replacing e by b · e, we can suppose that

g(e, e) = e. (17)

We verify that (C, e, g) is a group.

Identity According to (15), there is a morphism h : C → B of complex manifolds
with g(c, e) = h(c) · c for all c ∈ C. By (17), h(e) = eB . Furthermore,
(16) shows that h(b · c) = h(c) for all b ∈ B. Therefore, h factors as

C
p→ A

h̄→ B. The morphism h̄ of complex manifolds is constant, so
g(c, e) = c for all c ∈ C. The formula g(e, c) = c is proved similarly.

Associativity According to (15), there is a complex manifold morphism u : C×C×C →
B with

g(c, g(c′, c′′)) = u(c, c′, c′′) · g(g(c, c′), c′′)
for all c, c′, c′′ ∈ C. Then u(e, e, e) = eB . Equation (16) shows that u
factors through a morphism ū : A × A × A → B of complex manifolds.
Then ū is of constant value eB . Therefore, g(c, g(c′, c′′)) = g(g(c, c′), c′′)
for all c, c′, c′′ ∈ C.

Inverse Denote by iA : A→ A (resp. iB : B → B) the inverse map of A (resp. B).
Let C− → A be the principal B-bundle corresponding to −x ∈ H1(A,BA).
There is a morphism f : C → C− of principal B-bundles over A, such that
for every b ∈ B, c ∈ C, f(b · c) = (−b) · c. Since 0A = iA + IdA, by Fact
5.1.5, 0 = 0∗Ax = i∗Ax+ x, hence i∗Ax = −x. In other words, the pullback
of p : C → A along iA is C− → A.
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C i∗AC C

A A

f

i

p

iA

The induced morphism i : C → C of complex manifolds is such that for
every c ∈ C, b ∈ B,

i(b · c) = (−b) · i(c). (18)

Since i(e) ∈ p−1(eA), there is b ∈ B with b · i(e) = e. De�ne i′ : C → C
by i′(x) = b · i(x) and replace i by i′. Then we may further assume that
i(e) = e. Because

p(g(c, i(c))) = sA(p(c), pi(c)) = sA(p(c), iA(p(c))) = eA,

there exists a morphism v : C → B of complex manifolds such that
g(c, i(c)) = v(c) · e and v(e) = eB . By (16) and (18), v factors through
v̄ : A → B, which is of constant value eB . Therefore, g(c, i(c)) = e for all
c ∈ C.

In conclusion, (C, e, g, i) is a complex Lie group and (15) shows that p : C → A
is a morphism. De�ne an injective map ι : B → C by b 7→ b · e. By (16), then ι
is a morphism. Since ι(B) = p−1(e), the sequence

0 → B
ι→ C

p→ A→ 0

is exact. By Proposition 6.0.2 2 below, C is commutative and hence C ∈
Ext(A,B). (The commutativity of C can also be proved using an argument of
similar type.) Therefore, x = π(C) is in the image of π.

5.2 The case B = C∗

We review some basics about (holomorphic) line bundles on complex tori.

De�nition 5.2.1. [Wei48, Ch.VIII, n.58] Let L → A be a line bundle on a
complex torus. If for every a ∈ A, the pullback line bundle T ∗

aL is isomorphic
to L, then we write L ≡ OA. Here Ta : A→ A is de�ned by Ta(x) = x+ a.

By [BL04, p.36], L induces a morphism

ϕL : A→ A∨, a 7→ T ∗
aL⊗ L−1.

Then L ≡ OA is equivalent to ϕL = 0. Then [BL04, Prop. 2.5.3] becomes Fact
5.2.2.

Fact 5.2.2. Let L → A be a line bundle on a complex torus. The following
conditions are equivalent:

1. L is analytically equivalent to OA;
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2. L ∈ Pic0(A);

3. L ≡ OA.

Proposition 5.2.3. Let L → A be a line bundle on complex torus. Then
L ≡ OA if and only if s∗AL = p∗1L⊗ p∗2L.

Proof. If s∗AL = p∗1L ⊗ p∗2L, then for every a ∈ A, the line bundle T ∗
aL =

(s∗AL)|A×a = (p∗1L⊗ p∗2L)|A×a = L, i.e., L ≡ OA.
Conversely, if L ≡ OA, then for every a ∈ A, (s∗AL)|A×a = T ∗

aL = L =
(p∗1L)|A×a. Therefore, s

∗L⊗ p∗1L
−1 → A×A is a line bundle, whose restriction

to A× a is trivial for all a ∈ A. By seesaw theorem [BL04, A.8], there is a line
bundleM → A such that s∗L⊗p∗1L−1 = p∗2M . Then s∗L = p∗1L⊗p∗2M . Hence,
L = s∗L|0×A = (p∗1L⊗ p∗2M)|0×A =M . Therefore, s∗L = p∗1L⊗ p∗2L.

Theorem 5.2.4 is mentioned without proof in [KKN08, Sec. 1.2]. The
analogue for abelian varieties is in [Wei49, no. 2].

Theorem 5.2.4 (Weil). If A is a complex torus, then π : Ext(A,C∗) → Pic0(A)
is an isomorphism.

Proof. For B = C∗, the sheaf BA = O∗
A and H1(A,BA) = Pic(A). The class

of a line bundle L → A is primitive means the line bundle s∗AL is isomorphic
to p∗1L ⊗ p∗2L on A × A. By Proposition 5.2.3 and Fact 5.2.2, it is equivalent
to [L] ∈ Pic0(A). Then Proposition 5.1.3 and Theorem 5.1.6 complete the
proof.

With the identi�cations provided by Theorem 5.2.4 and Proposition 4.1.4 3,
[AK01, Remark 1.1.16] can be rephrased in a coordinate-free way as follows. It
is a criterion telling whether a semi-torus is a toroidal group.

Fact 5.2.5. Let r ≥ 1 be an integer, and let 0 → (C∗)r → X → A → 0 be an
extension in C. Denote by (L1, . . . , Lr) ∈ (A∨)r the point corresponding to the
equivalent class [X] ∈ Ext(A, (C∗)r). Then the following are equivalent:

� X is a toroidal group;

� for all σ ∈ Zr \ {0},
∑r
i=1 σiLi ̸= 0 in A∨;

� for every nontrivial morphism f : (C∗)r → C∗, the pushout extension f∗X
of A by C∗ is nontrivial.

5.3 The case B = C
When B = C, the sheaf BA = OA.

Fact 5.3.1 (Künneth formula, [Men20, (3.1)]). Let X,Y be connected complex
manifolds. Assume that Y is compact. Then there is a canonical decomposition
H1(X × Y,OX×Y ) = H1(X,OX)⊕H1(Y,OY ).

The analogue of Theorem 5.3.2 for abelian varieties is [Ros58, Theorem 1].
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Theorem 5.3.2 (Rosenlicht, Serre). If A is a complex torus, then the canonical
morphism π : Ext(A,C) → H1(A,OA) is a C-linear isomorphism. In particular,
dimC Ext(A,C) = dimA.

Proof. Let m1 (resp. m2) be the injection A → A × A de�ned by a 7→ (a, 0)
(resp. a 7→ (0, a)). Let pi : A × A → A (u = 1, 2) be the two projections. By
Fact 5.3.1, p∗1 and p∗2 identify T (A × A) as the direct sum T (A) ⊕ T (A). The
projection to ith factor ism∗

i . Because sA◦mi = IdA, one has s
∗
A(x) = p∗1x+p

∗
2x

for every x ∈ T (A), i.e., x is primitive. Then Proposition 5.1.3 and Theorem
5.1.6 conclude the proof.

Remark 5.3.3. Another way to prove Theorem 5.3.2 is to use (13). In this case,
the diagram (12) can be completed into a commutative diagram with exact rows

0 HomC(Ã,C) Hom(π1(A),C) Ext(A,C) 0

0 H0(A,Ω1
A) H1(A,C) H1(A,OA) 0.

π

(19)
The bottom row comes from the Hodge structure onH1(A,C) ([Huy05, Lem. 3.3.1]).

Corollary 5.3.4. Let A be a complex abelian variety, and let n(≥ 0) be an
integer. Then the natural morphism ExtAlg(A,Gna) → Ext(Aan,Cn) is an isomorphism.

Proof. It is a combination of [Ser88, Thm. 7, p.185], Theorem 5.3.2 and [Ser56,
Thm. 1].

5.4 Universal vectorial extension

De�nition 5.4.1. [Ros58, p.705] Let H be a vector group. An extension

0 → H → G→ A→ 0 (20)

in C is called decomposable if there exists an extension

0 → H1 → G1 → A→ 0

in C of A by a vector subgroup H1 of H, and H ′ is a vector subgroup of H of
positive dimension with an isomorphism f : G1 ⊕H ′ → G such that the maps

H1 → H → G and H1 → G1

f |G1→ G coincide. Otherwise, the extension G is
called indecomposable.

Proposition 5.4.2. The extension (20) is decomposable if and only if there is
a strict vector subgroup H1 of H and an extension 0 → H1 → G1

p1→ A → 0
with ι∗G1 = G, where ι : H1 → H is the inclusion.

Proof. If G is decomposable, by de�nition, we can write G = G1 ⊕ H ′, where
H ′ ⊂ H is a positive-dimensional vector subgroup and 0 → H1 → G1 → A→ 0
is an extension in C of A by a vector subgroup H1 ⊂ H making a commutative
diagram
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0 H1 G1 A 0

0 H G A 0

ι Id

By the universal property (7), G = ι∗G1. Moreover,

dimH1 = dimG1−dimA = dimG−dimH ′−dimA = dimH−dimH ′ < dimH.

Conversely, assume that ι∗G1 = G. Choose a vector subspace H ′ of H with
H = H ′ ⊕H1, then dimH ′ = dimH − dimH1 > 0. The composed morphism

G1 ⊕H ′ pr1→ G1
p1→ A is surjective of kernel H1 ⊕H ′ = H, hence a commutative

diagram

0 H1 G1 A 0

0 H G1 ⊕H ′ A 0

ι Id

with exact rows. By the universal property (7), G = ι∗G1 = G1 ⊕ H ′. This
identi�cation makes the maps H1 → H → G and H1 → G1 → G coincide.
Therefore, G is decomposable.

Proposition 5.4.3. Let 0 → Cn → G → A → 0 be an extension in C. Let
qi : Cn → C be the i-th coordinate function. Then G is indecomposable if and
only if the family {qi,∗G}1≤i≤n of vectors in Ext(A,C) is linearly independent.

Proof. Assume that {qi,∗G} is linearly dependent. By changing of coordinate,
one may assume that qn,∗G = 0 in Ext(A,C). By Fact 3.0.4, there is a morphism
r : qn,∗G→ C with inr = Id on qn,∗G.

0 Cn G A 0

0 C qn,∗G A 0

i

qn α Id

in

r

Then inrαi = αi = inqn. Since in is injective, one has

rαi = qn. (21)

Let q : Cn → Cn−1 be the projection to the �rst (n − 1) coordinates. Let
β : G→ q∗G be the canonical morphism. De�ne a morphism

ϵ : G→ q∗G⊕ C, g 7→ (β(g), rα(g)).

Then the right square of the following diagram is commutative.

0 Cn G A 0

0 Cn−1 ⊕ C q∗G⊕ C A 0

i

q⊕qn ϵ Id
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By (21), the left square of the above diagram is commutative. Therefore, ϵ is
an equivalence of extensions and G = q∗G⊕ C is decomposable.

Conversely, assume that G is decomposable. By Proposition 5.4.2, there
is a vector subgroup ι : H1 → Cn with dimH1 < n and an extension 0 →
H1 → G1 → A → 0 with ι∗G1 = G. There is a linear combination f =∑n
i=1 aiqi : Cn → C, where a1, . . . , an ∈ C are not all zero, such that fι = 0.

Then
∑m
i=1 aiqi,∗G = f∗G = (fι)∗G1 = 0. Thus, the family {qi,∗G}i is linearly

dependent.

Corollary 5.4.4 follows from Proposition 5.4.3 and Theorem 5.3.2.

Corollary 5.4.4. Let 0 → V → G → A → 0 be an extension in C by a vector
group V . If dimC V > g, then G is decomposable.

Proposition 5.4.5 is an analytic analogue of [Ros58, Prop. 11].

Proposition 5.4.5.

1. There is a C-vector group H with dimCH = g and an indecomposable
extension

0 → H → G→ A→ 0 (22)

such that for every V ∈ Vec, the map

ϕV : HomVec(H,V ) → Ext(A, V ), l 7→ l∗G (23)

is a linear isomorphism. In other words, H together with the extension
(22) represents the functor Ext(A, •) : Vec → Vec.

2. A G′ ∈ Ext(A, V ) is indecomposable if and only if the corresponding linear
map ϕ−1

V (G′) : H → V is surjective.

Proof.

1. By Theorem 5.3.2, dimC Ext(A,C) = g. Take a C-basis {G1, . . . , Gg} of
Ext(A,C). By Fact 4.1.8, Ext(A,Cg) = ⊕gi=1Ext(A,C), so there is an
element G ∈ Ext(A,Cg) corresponding to (G1, . . . , Gg) ∈ ⊕gi=1Ext(A,C).
Hence an extension 0 → H → G → A → 0, where H = Cg. By
Proposition 5.4.3, G is indecomposable.

When l ∈ H∨ is taking the i-th coordinate of H = Cg, l∗G = Gi.
Therefore, the image of the linear map ϕC contains a basis of Ext(A,C).
Thus, ϕC is surjective. Since dimCH

∨ = dimC Ext(A,C), ϕC is a linear
isomorphism. Since every V ∈ Vec is the direct sum of �nitely many
copies of C and the formation of ϕV is functorial in V , ϕV is also a linear
isomorphism.

2. By Proposition 5.4.2, G′ is decomposable i� there is a proper linear subspace
ι : V1 → V with G′ in the image of the map ι∗ : Ext(A, V1) → Ext(A, V )
i� there is a proper linear subspace ι : V1 → V with ϕ−1

V (G′) in the image
of the map ι∗ : HomVec(H,V1) → HomVec(H,V ) i� ϕ−1

V (G′) : H → V
factors through a proper linear subspace ι : V1 → V i� ϕ−1

V (G′) : H → V
is not surjective.
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The extension (22) is called the universal vectorial extension of A. (As a
representing object, such an extension is unique up to equivalence.) By (23)
and Theorem 5.3.2, H = H0(A∨,Ω1

A∨).

Example 5.1.2 (continued). Since dimExt(A,C) = 1, this nontrivial
extension is equivalent to the universal vectorial extension.

We proceed to give an explicit construction of the universal vectorial extension.

Proposition 5.4.6. Let B♮1 be the group of isomorphic classes of rank 1 local
systems on A. Let B♮ be the group of isomorphic classes of pairs (L,∇), where
L→ A is a holomorphic line bundle and ∇ is a �at holomorphic connection on
L. Then there exist natural identi�cations of groups

B♮ = B♮1 = HomAb(π1(A),C∗) = H1(A,C∗) =
H1(A,C)
H1(A,Z)

.

They are isomorphic to (C∗)2g.

Proof. By the Riemann-Hilbert correspondence [Del06, Théorème 2.17, p.12],
the map B♮ → B♮1 de�ned by (L,∇) 7→ ker(∇) is a group isomorphism. By
[Del06, Corollaire 1.4, p.4], there is an isomorphism B♮1 → HomAb(π1(A),C∗).
By the universal coe�cient theorem [Hat05, Thm. 3.2], there is a natural isomorphism

H1(A,C∗) → Hom(π1(A),C∗). The exact sequences 0 → Z → C exp(2πi•)→ C∗ →
0 of constant sheaves on A gives rise to an exact sequence

H0(A,C) → H0(A,C∗) → H1(A,Z) → H1(A,C) → H1(A,C∗) → H2(A,Z) → H2(A,C).

Since the �rst map is surjective and the last map is injective, it breaks into a
short exact sequence

0 → H1(A,Z) → H1(A,C) → H1(A,C∗) → 0

and hence an isomorphism H1(A,C)/H1(A,Z) → H1(A,C∗) functorial in A.
Moreover, there is a non-canonical isomorphism H1(A,C∗) → (C∗)2g.

For every (L,∇) ∈ B♮, the line bundle L ∈ Pic0(A) = A∨ by [Dem12, Ch. V,
�9]. The bottom row of (19) induces an exact sequence in C:

0 → H0(A,Ω1
A) →

H1(A,C)
H1(A,Z)

→ H1(A,OA)

H1(A,Z)
→ 0. (24)

Using the identi�cationsB♮ ∼= H1(A,C)
H1(A,Z) from Proposition 5.4.6 andA∨ = Pic0(A) =

H1(A,OA)/H
1(A,Z), (24) is an extension of A∨ by H0(A,Ω1

A) and gives a
morphism B♮ → Pic0(A), which sends (L,∇) to L. Hence a commutative
diagram
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0 HomC(Ã,C∗) HomAb(π1(A),C∗) Ext(A,C∗) 0

0 H0(A,Ω1
A) B♮ Pic0(A) 0,

π

u

where the �rst exact row is (9) and the second comes from (24). The left vertical
isomorphism uses Proposition 4.1.4 2 and the isomorphism L(A)∨ → H0(A,Ω1

A)
given by [BL04, Thm. 1.4.1 b)]. The middle vertical isomorphism is contained
in Proposition 5.4.6.

When A is an abelian variety, it is proved in [Mes73, p.260] that (24) is the
universal vectorial extension of A∨. The proof is based on [Ros58, Thm. 1]. In
a similar manner, Proposition 5.4.7 follows from Theorem 5.3.2.

Proposition 5.4.7. The extension (24) is the universal vectorial extension of
A∨ = Pic0(A). In particular, the extension group is isomorphic to (C∗)2g (as a
complex Lie group).

Proof. Let U = H0(A,Ω1
A). Pushing out the extension (24) de�nes a natural

transformation ψ : HomVec(U, •) → Ext(A∨, •) between two functors on Vec.
We claim that ψC is an isomorphism. Choose u ∈ ker(ψC) ⊂ HomVec(U,C).

As the push-out along u is trivial, by Fact 3.0.4, there is a morphism r : E → C
with ir = IdE . Let u′ : H1(A,C) → C be the morphism in C induced by r.
Then u′ = deu

′ is C-linear. Now that u′(H1(A,Z)) = 0 and H1(A,Z) contains
a C-basis of H1(A,C), one has u′ = 0. As the diagram commutes, u = 0.

H1(A,C)

0 U H1(A,C)
H1(A,Z) A∨ 0

0 C E A∨ 0

u′

u

i

r

Therefore, ψC is injective. By Theorem 5.3.2, dimC Ext(A∨,C) = dimC HomVec(U,C).
Therefore, ψC is a linear isomorphism. Similar to the proof of Proposition 5.4.5
1, ψ is a natural isomorphism of the two functors.

Another construction of the universal vectorial extension is in [Nak94, Prop. 2.4]9.

Remark 5.4.8. The real Lie group extension underlying (24) is trivial by Fact
5.1.1. Indeed, consider the real analytic group morphism A∨ → B♮ de�ned by
L 7→ (L,∇L), where ∇L is the unique �at Chern connection on L given by This
map is a real Lie group section to (24), but not holomorphic.

9stated for complex abelian varieties but the proof extends to complex tori.
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Remark 5.4.9. Let A be a complex abelian variety of dimension g. By Corollary
5.3.4, the extension (22) is equivalent to an algebraic one. Thus, the analyti�cation
of the algebraic universal vectorial extension 0 → Gga → E → A → 0 is exactly
the analytic universal vectorial extension . From [Bri09, Prop. 2.3 (i)] and the
footnote in [MRM74, p.34], the algebraic variety E is anti-a�ne, i.e., every
morphism E → A1

C of algebraic varieties is constant. On the other hand, by
Proposition 5.4.7, Ean is isomorphic to (C∗)2g as a complex Lie group, so Ean

is not a toroidal group. Although E is not an a�ne variety, Ean is a Stein
manifold. See also Serre's example [Har70, Exampe 3.2, p.232].

Remark 5.4.10. Universal vectorial extensions can be de�ned for not only complex
tori but also toroidal groups. Consider a toroidal group X of dimension n.
Similar to Proposition 5.4.5, the functor Ext(X, ·) : Vec → Vec is represented
by Ext(X,C)∨, which is the kernel of the natural linear map H1(X,C) →
H0(X,Ω1

X)∨ by (13).
An extrinsic description is possible. Choose a presentation

0 → (C∗)n−q → X → T → 0 (25)

according to [AK01, 1.1.14], where T is a complex torus of dimension q. For
every V ∈ Vec, by Proposition 4.2.1, the induced sequence

HomC((C∗)n−q, V ) → Ext(T, V ) → Ext(X,V ) → Ext((C∗)n−q, V )

is exact in Vec. By Proposition 4.1.4 1, HomC((C∗)n−q, V ) = 0. By Proposition
3.2.3, Ext((C∗)n−q, V ) = 0. Thus, the morphism Ext(T, V ) → Ext(X,V ) is a
C-linear isomorphism. In other words, the natural transformation Ext(T, ·) →
Ext(X, ·) between the two functors on Vec is an isomorphism. In this way, the
case of toroidal groups is reduced to the case of complex tori.

5.5 Application to the functor Ext(A, •)
Analogue of Proposition 5.5.1 for abelian varieties is [Ros58, Cor., p.711].

Proposition 5.5.1. If B is a complex Lie subgroup (not necessarily connected)
of A, then there is a natural exact sequence in Ab:

0 → Ext(A/B,C) → Ext(A,C) → Ext(B,C) → 0.

Proof. By Corollary 4.1.13, there is an isomorphism B → B0 ×B/B0 in C and
Ext(B/B0,C) = 0. By Fact 4.1.8, Ext(B,C) = Ext(B0,C). Since B is compact
and B0 is open in B, the quotient B/B0 is �nite, thus HomAb(B/B0,C) =
0. By the compactness of B0, HomC(B0,C) = 0. Then Hom(B,C) = 0.
Now that A,B0, A/B are complex tori, Theorem 5.3.2 implies dimExt(A,C) =
dimExt(A/B,C) + dimExt(B,C). This together with Proposition 4.2.1 proves
the stated exactness.

The proof of Theorem 5.5.2 is shorter than that of its algebraic analogue
[Ser88, Thm. 12, p.195].
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Theorem 5.5.2. If 0 → B′ → B
ϕ→ B′′ → 0 is an exact sequence in C, then

the sequence10 in Ab

Ext(A,B′) → Ext(A,B)
ϕ∗→ Ext(A,B′′) → 0 (26)

is exact. If B′′
0 is linear, then the �rst map in (26) is injective.

Proof. By Proposition 4.2.3, it su�ces to prove that ϕ∗ : Ext(A,B) → Ext(A,B′′)
is surjective. From (10) and Proposition 4.2.1, one obtains a commutative square

Hom(π1(A), B) Hom(π1(A), B
′′)

Ext(A,B) Ext(A,B′′),
ϕ∗

where the vertical maps are surjective. Since π1(A) is a free Z-module, the top
row is surjective, then so is the bottom.

Now assume that B′′
0 is linear, then HomC(A,B

′′) = 0. By Proposition 4.2.3,
the �rst map is injective.

Remark 5.5.3. The linearity of B′′
0 is necessary to guarantee the injectivity in

Theorem 5.5.2. For instance, let 0 → Cg → (C∗)2g → A → 0 be the universal
vectorial extension of A and assume g ≥ 1. By Proposition 4.2.3, the natural
sequence 0 → HomC(A,A) → Ext(A,Cg) → Ext(A, (C∗)2g) is exact. Thus, IdA
is a nonzero element in the kernel of the �rst map of (26).

Example 5.5.4. Applying Theorem 5.5.2 to the exact sequence 0 → Z →
C exp(2πi•)→ C∗ → 1, and using Fact 3.2.6, Theorems 5.2.4 and 5.3.2, one gets an
exact sequence

0 → Hom(π1(A),Z) → H1(A,OA) → Pic0(A) → 0. (27)

In particular, Ext(A, ·) tuns the exponential map to the universal cover of
the complex torus A∨. Identifying Hom(π1(A),Z) with the sheaf cohomology
H1(A,Z), th sequence (27) is also induced by the exponential sequence of
sheaves on A:

0 → ZA → OA
exp(2πi)→ O∗

A → 1.

Theorem 5.5.5 is an analytic version of [Ser88, Thm. 13, p.196]

Theorem 5.5.5. If 0 → L
i→ C → A → 0 is an exact sequence in C with L

connected and G ∈ Abc. Then there is a natural exact sequence

0 → Ext(A,G) → Ext(C,G)
i∗→ Ext(L,G) → 0.

10induced by Proposition 4.2.3
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Proof. As L is connected and G is discrete, HomC(L,G) = 0. By Proposition
4.2.1, it su�ces to show that i∗ : Ext(C,G) → Ext(L,G) is surjective. For
every L′ ∈ Ext(L,G), by Theorem 5.5.2, the map Ext(A,L′) → Ext(A,L) is
surjective. Thus, there exists C ′ ∈ Ext(A,L′) having image C ∈ Ext(A,L).

0 0

0 G ker(α) 0

0 L′ C ′ A 0

0 L C A 0

0 0 0

β

α

i

By the snake lemma, α is surjective and β is an isomorphism. Therefore, C ′ ∈
Ext(C,G) and i∗C ′ = L′ in Ext(L,G).

In Example 5.5.6, we give another proof of [BL99, Prop. 5.7, p.21], which
computes the extension group of two complex tori.

Example 5.5.6. Let Xi = Cgi/ΠiZ2gi (i = 1, 2) be two complex tori, where
the chosen period matrix is of the form Πi = (τi, Igi) with τi ∈ Mgi(C) and
det(Im(τi)) ̸= 0. De�ne ξ : M(2g1 × 2g2,Z) → M(g1 × g2,C) by ξ(P ) =
Π1P

(
Ig2
τ2

)
.

De�ne a map ρ : M(g1 × g2,C) → Ext(X2, X̃1) as follows. For every α ∈
M(g1 × g2,C), let α′ = (α, 0) ∈M(g1 × 2g2,C). Consider the sequence

0 → Cg1 i→ Cg1+g2
{(α′v,Π2v) : v ∈ Z2g2}

p→ X2 → 0,

where i is induced by Cg1 → Cg1+g2 de�ned by x 7→ (x, 0) and p is induced by
the second projection Cg1+g2 → Cg2 . It is an exact sequence. Denote its class
by ρ(M) ∈ Ext(X2, X̃1). This sequence �ts into a commutative diagram

0 X̃1
Cg1+g2

{(α′v,Π2v):v∈Z2g2} X2 0

0 X1 X X2 0,

where the second row is ψΠ1,Π2
(α′) ∈ Ext(X2, X1) de�ned in [BL99, p.20], and

X =
Cg1+g2

{(Π1u+ α′v,Π2v) : u ∈ Z2g1 , v ∈ Z2g2}
.
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Then ρ is a linear isomorphism by Theorem 5.3.2.
De�ne a map ϕ : M(2g1 × 2g2,Z) → Ext(X2, π1(X1)) as follows. Given

P =

(
P1 P2

P3 P4

)
∈ M(2g1 × 2g2,Z), with each Pi ∈ M(g1 × g2,Z), we set A =

τ1P2+P4 ∈M(g1×g2,C) and α = ξ(P ). The linear map Cg1+g2 (I,−A)→ Cg1 sends

(u, 0) to u for all u ∈ Cg1 and sends (α′v,Π2v) to Π1

(
P1 −P2

P3 −P4

)
v ∈ Π1Z2g1

for all v ∈ Z2g2 . Thus it descents to the vertical morphism in the middle of the
following commutative diagram

0 Cg1 Cg1+g2

{(α′v,Π2v):v∈Z2g2} X2 0

0 X1 X1 0 0,

(Ig1 ,−A)
(28)

where the �rst row is of class ρ(α) = ρ(ξ(P )). The snake lemma gives an
extension of X2 by π1(X1), whose class is denoted by ϕ(P ).

The image of ϕ(P ) under the pushout map Ext(X2, π1(X1)) → Ext(X2, X̃1)
is exactly the �rst row of (28), i.e., ρ(ξ(P )). Then ϕ is a group isomorphism by
Fact 3.2.6. And there is a commutative diagram

M(g1 × 2g2,C)

M(2g1 × 2g2,Z) M(g1 × g2,C) M(g1×g2,C)
Im(ξ)

Ext(X2, π1(X1)) Ext(X2, X̃1) Ext(X2, X1) 0

ψΠ1,Π2

ξ

ϕ ρ

α 7→α′

where the second row is from (14) and the induced dotted isomorphism is exactly
the content of [BL99, Proposition 5.7, p.21].

To conclude Section 5.5, we show that the groups of commutative extensions
of complex tori by linear groups are naturally complex Lie groups. Let T (resp.
S) be the full subcategory of C comprised of complex tori (resp. objects whose
identity component is linear). Then Ext : T op × S → Ab is an additive functor
by Fact 4.1.8. Theorem 5.5.7, an analytic analogue of [Wu86, Theorem 5], lifts
this functor.

Theorem 5.5.7 (Wu). There is a natural way to lift Ext : T op × S → Ab to
an additive functor Ext : T op × S → C.

Proof. First we de�ne a complex Lie group structure on Ext(A,H), where A ∈ T
and H ∈ S. Let g = dimA.

If there is an isomorphism f : H → (C∗)n in S, then by Theorem 5.2.4, f
gives rise to an isomorphism Ext(A,H) → (A∨)n making Ext(A,H) a complex
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torus. The complex structure on Ext(A,H) is independent of the choice of the
isomorphism f .

If H is connected, by Proposition 2.0.7, there is an isomorphism u : H →
V × Hm, where V ∈ Vec and Hm is a power of C∗. Then u∗ : Ext(A,H) →
Ext(A, V ) × Ext(A,Hm) is an isomorphism. By Theorem 5.3.2, the vector
space Ext(A, V ) is �nite dimensional. Together with last paragraph, Ext(A,H)
inherits a complex Lie group structure, which is independent of the choice of u.

For a general object H ∈ S, the natural exact sequence 0 → H0 → H →
H/H0 → 0 in C is trivial by Corollary 4.1.13. Thus, the resulting exact sequence
0 → Ext(A,H0) → Ext(A,H) → Ext(A,H/H0) → 0 in Ab is also trivial. Now
that Ext(A,H/H0) = HomAb(π1(A), H/H0) by Fact 3.2.6, one regards it as a
discrete group. From the complex structure on Ext(A,H0), the group Ext(A,H)
has a unique complex Lie group structure, such that the identity component is
Ext(A,H0).

It remains to show:

1. If A ∈ T is �xed, then Ext(A, ·) sends morphisms in S to morphisms in C.

2. If H ∈ S is �xed, then Ext(·, H) sends morphisms in T to morphisms in
C.

To show 1, let h : H → H ′ be a morphism in S. By decomposing H,H ′

according to Corollary 4.1.13 and Proposition 2.0.7, one may assume that each
of H and H ′ is either discrete, C or C∗.

� If H is discrete, then so is Ext(A,H), hence Ext(A, h) is a morphism in
C.

� If H = H ′ = C, by Proposition 4.1.4 2, h is a linear map. By Corollary
4.1.9, so is Ext(A, h).

� IfH = C, H ′ = C∗. By Proposition 4.1.4 2, h is the composition of a linear
map C → C followed by the exponential map exp(2πi·) : C → C∗. By
Example 5.5.4, Ext(A, h) is the composition of a linear map H1(A,OA) →
H1(A,OA) followed by the universal cover H1(A,OA) → A∨. Thus,
Ext(A, h) is a morphism in C.

� If H ′ is discrete and H is connected, then h is trivial and so is Ext(A, h).

� If H = C∗ and H ′ = C, then h is trivial by Proposition 4.1.4 1 and so is
Ext(A, h).

� If H = H ′ = C∗, then h is a power map by Proposition 4.1.4 3. Then
Ext(A, h) is a power map of A∨, hence a morphism in C.

This proves 1.
To show 2, let g : A → A′ be a morphism in T . By decomposing H again,

we may divide the proof into three cases.
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� H = C∗. By pulling back line bundles, g induces the dual morphism
g∗ : Pic0(A′) → Pic0(A). It is identi�ed with Ext(g,H) by Fact 4.3.2 and
Theorem 5.2.4.

� H is discrete. Then so is Ext(A′, H) and thus Ext(g,H) is a morphism in
C.

� H = C. By pulling back, g induces a C-linear map H1(A′, OA′) →
H1(A,OA). It is identi�ed with Ext(g,H) by Fact 4.3.2 and Theorem
5.3.2.

This proves 2.

Remark 5.5.8. In Theorem 5.5.7, we cannot generalize from complex tori to
toroidal groups, nor remove the linear restriction.

Let X be a toroidal group. Then HomC(X,C∗) = 0, hence (14) specializes
to

0 → Ext(X,Z) i→ Ext(X,C) → Ext(X,C∗) → 0. (29)

Note that Ext(X,Z) = H1(X,Z) (Fact 3.2.6), and by (13) the injection i is
the composition of the inclusion H1(X,Z) → H1(X,C) with the projection

H1(X,C) → H1(X,C)
H0(X,Ω1

X)
.

When X is compact, the sequence (29) lifts to an exact sequence in C by
Theorem 5.5.7. As opposed to the compact case, when X is not compact and
consider the presentation (25), one has 1 ≤ q < n, so

rankZExt(X,Z) = n+ q > 2q = dimR Ext(X,C).

Therefore, the image of i is not closed in the vector space Ext(X,C) (a phenomenon
seen in Example 4.1.2). In particular, the sequence (29) has no lift to an exact
sequence in C.

Let A,B be two complex tori, g = dimA, g′ = dimB and reconsider (14):

0 → HomC(A,B)
j→ Ext(A, π1(B)) → Ext(A, B̃) → Ext(A,B) → 0.

Here, Ext(A, B̃) is a C-vector space of dimension gg′ by Theorem 5.3.2. Identifying
Ext(A, π1(B)) with HomAb(π1(A), π1(B)) via Fact 3.2.6, j is the map ρr in

[BL04, p.10]. The quotient Ext(A,π1(B))
HomC(A,B) is a free abelian group of rank 4gg′ −

rankZHomC(A,B). As long as rankZHomC(A,B) < 2gg′ (say, when A = B is an
elliptic curve without complex multiplication, then Z = HomC(A,B)), the image

of the induced injection Ext(A,π1(B))
HomC(A,B) → Ext(A, B̃) is not closed. In particular,

Ext(A,B) has no structure of complex Lie group making this sequence exact in
C.

6 Extensions of complex tori are often commutative

In Section 6, we prove that under suitable hypotheses, an extension of a complex
torus is commutative.
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Proposition 6.0.1. If 1 → B → C
p→ A → 1 is a central extension of

complex Lie groups, where A is a toroidal group, then C is commutative. Or
equivalently, for every B ∈ C, the natural injection Ext(A,B) → Ext(A,B, 1) is
an isomorphism.

Proof. Consider the holomorphic map A × A → B given by (4). By [NW13,
Thm. 5.1.36], it is a group morphism, so constant. Thus, C is commutative.

An algebraic analogue of Proposition 6.0.2 is [Wu86, Cor. 2, p.370].

Proposition 6.0.2. Let 1 → K → E → A→ 1 be an extension of complex Lie
groups, where A is a complex torus.

1. If Z(K)0 is Stein, then Z(K) = Z(E) ∩K.

2. If K is commutative and K0 is Stein, then E is commutative.

Proof.

1. Since Z(E)∩K ⊂ Z(K), it su�ces to prove that Z(K) ⊂ Z(E). Consider
the group morphism (5): θ : A → Aut(Z(K)). For every x ∈ Z(K), the
map

ϕ : A→ Z(K), a 7→ θa(x)x
−1

is continuous. Moreover, ϕ(0) = eK . By the connectedness of A, ϕ(A) ⊂
Z(K)0. As Z(K)0 is Stein and A is compact, ϕ(A) is the singleton {eK}.
Therefore, θa(x) = x for every x ∈ Z(K), which proves Z(K) ⊂ Z(E).

2. By 1, K ⊂ Z(E). By Proposition 6.0.1, E is commutative.

In Proposition 6.0.3, when B is isomorphic to Cn for some integer n ≥ 0 or
to C∗, we recover [BZ21, Lem. 2.10].

Proposition 6.0.3. Let 1 → B → C
p→ A→ 1 be an exact sequence of complex

Lie groups, where A is a complex torus and B is commutative. If the group B/B0

is torsion (i.e., every element of B/B0 has �nite order), then C is commutative.

Proof. Let Z be the center of C. By Proposition 6.0.1, it su�ces to check
B ⊂ Z.

The outer action induces a morphism A → Aut(B0)(≤ GL(L(B))). It is
trivial by the compactness of A, i.e., B0 ≤ Z. By Corollary 4.1.13, one may
assume B = B0 ×D, where D is a discrete subgroup of B isomorphic to B/B0

and D ∩ B0 = {eB}. Let q : B → D and r : B → B0 be the corresponding
projections.

It remains to show that 0 ×D(≤ B) is contained in Z. Fix d ∈ D and put
b = (0, d) ∈ B. The map

ν : C → C, c 7→ cbc−1
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is holomorphic and ν(e) = b. For every b′ ∈ B, one has

ν(cb′) = cb′bb′−1c−1 = cbc−1 = ν(c).

The right multiplication action of B on the complex manifold C has quotient A
by Fact 2.0.3, so ν factors through a morphism u : A→ B of complex manifolds.
Then qu : A → D is continuous. Since A is connected, qu is constant. Since
qu(eA) = d, one gets qu ≡ d.

On the other hand, the map ru : A → B0 is holomorphic. By assumption,
there is an integer n ≥ 1 (depending on d) such that dn = eD in D. Thus,
bn = eB . For every c ∈ C, one has ν(c)n = (cbc−1)n = cbnc−1 = eB . Therefore,
ru(A) is contained in the torsion subgroup B0,tor of B0. In view of [AK01,
Prop. 1.1.2], B0,tor is totally disconnected. Since A is connected, ru is constant.

Since ru(eA) = 0, one has ru ≡ 0. Therefore, u ≡ b, i.e., b ∈ Z. Therefore,
0×D ⊂ Z and the proof is completed.

Corollary 6.0.4 follows immediately from Proposition 6.0.3.

Corollary 6.0.4. Given an extension

0 → (C∗)n → G→ A→ 0 (30)

of complex Lie groups, where A is a complex tours and n(≥ 1) is an integer,
then G is a semi-torus.

Corollary 6.0.5. In Corollary 6.0.4, if A is algebraic, then G admits a unique
structure of semiabelian variety such that (30) de�nes a commutative extension
of algebraic groups.

Proof. From Corollary 6.0.4, (30) de�nes an element of Ext(Aan, (C∗)n). By
[Ser88, Thm. 6, p.184] and Theorem 5.2.4, the natural map ExtAlg(A,Gnm) →
Ext(Aan, (C∗)n) is identi�ed with the analyti�cation map [Pic0(A)]n → [Pic0(Aan)]n,
hence a group isomorphism. In particular, there is a unique exact sequence
0 → Gnm → C → A→ 0 in Alg whose analyti�cation is equivalent to (30).

Lemma 6.0.6 is used in the proof of Proposition 6.0.7.

Lemma 6.0.6. Let G be a real Lie group with Lie algebra g.

1. If X,Y ∈ g are such that [X, [X,Y ]] = 0 and [Y, [X,Y ]] = 0, then

exp(X) exp(Y ) exp(−X) exp(−Y ) = exp([X,Y ]). (31)

2. If X ∈ g satis�es that exp(X) commutes with every element of G0 and
[X, g] ⊂ Z(g), then X ∈ Z(g).

Proof.
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1. According to Baker-Campbell-Hausdor� formula (see, e.g., [Far08, Cor. 3.4.5]),
there is a symmetric open neighborhood U of 0 ∈ g such that for every
A,B ∈ U , exp(A) exp(B) = exp(Z), where

Z = Z(A,B) = A+B + [A,B]/2 + . . .

and "..." indicates terms involving higher commutators of A and B. There
is a symmetric open neighborhood V of 0 ∈ U such that Z(A,B) ∈ U for
every A,B ∈ V .

De�ne f : R → G by

f(t) = exp(tX) exp(tY ) exp(−tX) exp(−tY ) exp(−t2[X,Y ]).

Then f is real analytic. There is ϵ > 0 such that tX, tY ∈ V for all t ∈
(−ϵ, ϵ). By assumption, [Z(tX, tY ), Z(−tX,−tY )] = 0 and Z(tX, tY ) +
Z(−tX,−tY ) = t2[X,Y ]. Then

f(t) = exp(Z(tX, tY )) exp(Z(−tX,−tY )) exp(−t2[X,Y ]) = eG

for all t ∈ (−ϵ, ϵ) (see [Laz54, p.144]). By [ADGK23, Cor. A.5], f(1) = eG.

2. Let D = exp−1(eG). There is an open neighborhood W of 0 ∈ g such that
exp(W ) is open in G and exp : W → exp(W ) is a di�eomorphism. Then
D ∩W = {0}. For every Y ∈ g, there is k > 0 with [X,Y/k] ∈ W . By
assumption, [X,Y/k] ∈ Z(g), so [X, [X,Y/k]] = 0 and [Y/k, [X,Y/k]] = 0.
Since exp(Y/k) ∈ G0, it commutes with exp(X). By 1, exp([X,Y/k]) =
eG. Then [X,Y/k] ∈ D ∩W . Therefore, [X,Y ] = 0. Thus, X ∈ Z(g).

An algebraic analogue of Proposition 6.0.7 is [Ros56, Cor. 2, p.433].

Proposition 6.0.7. If 1 → B → C
p→ A → 1 is an exact sequence of complex

Lie groups, where A is a complex torus and B is commutative, then C0 is
commutative.

Proof. We may assume that C is connected by replacing C (resp. B) with C0

(resp. B ∩ C0). Let ω : Cg → A be the universal covering of A. Denote by
b (resp. c) the Lie algebra of B (resp. C). Let η : A → Aut(B) be the outer
action. Then η induces a holomorphic morphism η0 : A → Aut(B0). Because
Aut(B0) is complex Lie subgroup of GL(b), η0 is trivial.

Consider the pullback extension along ω.
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0 ker(ϵ) ker(ω)

1 B E Cg 1

1 B C A 1

0

π|ker(ϵ)

Id

π

ϵ ω

p

By the snake lemma, ϵ is surjective and π restricts to an isomorphism ker(π) →
ker(ω). In particular, deϵ : L(E) → L(C) is an isomorphism. By Fact 2.0.3, the
morphism ϵ is open. Since E0 is open in E, ϵ(E0) is an open subgroup of C. By
connectedness of C, ϵ(E0) = C. Similarly, π(E0) = Cg. By Fact 7.2.7 1 below,
B ∩ E0 is connected. Therefore, B ∩ E0 ⊂ B0. Since B0 ⊂ B ∩ E0, one has
B0 = B ∩ E0. Hence an extension 1 → B0 → E0 → Cg → 1. The outer action
is η0ω : Cg → Aut(B0), so it is a central extension. Then

0 → b → c → Cg → 0 (32)

is a central extension of Lie algebras. In particular, b ⊂ Z(c). We shall prove
the extension (32) is trivial.

We show that expE : c → E0 is surjective. Indeed, for every x ∈ E0, there
is v ∈ c with dep(v) = π(x). Then π(expE(v)) = π(x), so π(x expE(−v)) = 0
and hence x expE(−v) ∈ B0. As B0 is connected commutative, there is u ∈ b
with expB(u) = x expE(−v). Since u ∈ Z(c), one gets x = expE(u) expE(v) =
expE(u+ v).

By Corollary 4.1.13, there is a decomposition B = B0 ×D, where D ∈ Abc
is discrete. The natural morphism E0 × D → E0 → Cg is surjective of kernel
B0 ×D, hence the �rst row of the diagram

1 B E0 ×D Cg 1

1 B0 E0 Cg 1

1 B E Cg 1

Id

Id

ϕ

By Lemma 3.1.2, there is an equivalence of extensions ϕ : E → E0 ×D.
Fix x ∈ ker(ϵ), let ϕ(x) = (ϕ1(x), ϕ2(x)) ∈ E0 ×D. For every y ∈ E0,

(y, 1)ϕ(x)(y, 1)−1 = (yϕ1(x)y
−1, ϕ2(x)) ∈ ϕ(ker(ϵ)).

Hence, ϕ−1((yϕ1(x)y
−1, ϕ2(x))) ∈ ker(ϵ). The map

E0 → ker(ϵ), y 7→ ϕ−1((yϕ1(x)y
−1, ϕ2(x)))
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is continuous. As E0 is connected and ker(ϵ) is discrete, this map is constantly
x. Thus, yϕ1(x)y

−1 = ϕ1(x). Therefore, ϕ1(x) commutes with every element of
E0. As expE : c → E0 is surjective, there is X ∈ c with expE(X) = ϕ1(x). Since
Cg is an abelian Lie algebra, [c, c] is contained in the kernel of dep : c → Cg,
which is b. Then [c, c] ⊂ Z(c), i.e., [c, [c, c]] = 0. By Lemma 6.0.6 2, X ∈ Z(c).

Consider the commutative diagram

c Cg

E Cg

dep
expE Id

π

Then π(x) = π(ϕ1(x)) = dep(X) ∈ dep(Z(c)). Therefore, ker(ω) = π(ker(ϵ)) ⊂
dep(Z(c)). Since dep is C-linear and ker(ω) contains a C-basis of Cg, one has
dep(Z(c)) = Cg. Consequently, there is a C-linear map s : Cg → Z(c) with
dep ◦ s = IdCg . As s : Cg → c is a Lie algebra morphism, the central extension
(32) is trivial and c is the direct sum of b and Cg. In particular, c is abelian.
As C is connected and its Lie algebra is abelian, C is commutative.

Example 6.0.8 shows that the the condition that B/B0 is torsion (resp. K0

is Stein) in Proposition 6.0.3 (resp. Proposition 6.0.2 2) is necessary. Moreover,
in Proposition 6.0.7, the commutativity of C fails in general.

Example 6.0.8. Let A be a complex torus and B = A × Z be the product
group. Consider the complex manifold morphism A × B → B de�ned by
(a, a′, k) 7→ (a′ + ka, k). It is a non trivial group action of A on B. Let C
be the corresponding semidirect product (see [Bou72, Ch.III, no. 4, Prop. 7]),
then the resulting complex Lie group extension 1 → B → C → A → 1 is not
central.

7 Noncommutative extensions

7.1 Lifted extensions

The real Lie group extension problem is studied by G. Hochschild in [Hoc51a]
and [Hoc51b]. As Example 7.1.1 shows, the case of real Lie groups is di�erent
from the case of complex Lie groups.

Example 7.1.1. Let G = C. The morphism of real Lie groups ρ : C →
C∗ = Aut(G) de�ned by z 7→ ez̄ is an action of G on itself which is real analytic
but not holomorphic. Hence an exact sequence of real Lie groups 1 → G →
G ⋊ρ G → G → 1 by [Bou72, Ch. III, no. 4, Prop. 7]. However, the middle
term has no structure of complex Lie group making the maps holomorphic.
Therefore, [Iwa49, Theorem 7] fails for complex Lie groups. Besides, this shows
that the real Lie group extension problem and the complex one are di�erent.

In Section 7, we review Hochschild's work, but in the context of complex
Lie groups. References to the original statement are given when the proofs are
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similar modulo slight modi�cations. All results in the sequel are essentially
known.

In Section 7.1, the goal is to derive Corollary 7.1.6, a result about the
extensions of a commutative group by a connected group.

Let L be a complex Lie group and K ∈ C. For a �xed holomorphic group
action L ×K → K, let ϕ : L → Aut(K) denote the induced group morphism.
Let Z(L,K, ϕ) denote the set of crossed morphisms, i.e., morphisms ρ : L→ K
of complex manifolds such that ρ(l1l2) = ρ(l1)ϕl1(ρ(l2)) for all l1, l2 ∈ L. Then
Z(L,K, ϕ) is an abelian group under addition. (When ϕ is trivial, Z(L,K, ϕ) =
Hom(L,K).)

For a normal complex Lie subgroup H of L, de�ne

OphomL(H,K, ϕ) = {ψ ∈ Hom(H,K) : ψ(lhl−1) = ϕl(ψ(h)),∀l ∈ L, h ∈ H}.

Then OphomL(H,K, ϕ) is a subgroup of Hom(H,K). When H ⊂ Z(L), one
has

OphomL(H,K, ϕ) = HomC(H,K
ϕ(L)), (33)

where Kϕ(L) = ∩l∈L{x ∈ K : ϕl(x) = x} is the set of elements �xed by ϕ(L)(≤
Aut(K)). Here Kϕ(L) is indeed a complex Lie subgroup of K by Corollary 2.0.5.
When ϕ is trivial, OphomL(H,K, ϕ) is the set of morphisms H → K invariant
under the conjugation action of L.

Proposition 7.1.2. Assume that H is a normal complex Lie subgroup of L
contained in ker(ϕ). For every ρ ∈ Z(L,K, ϕ), ρ|H ∈ OphomL(H,K, ϕ), hence
a group morphism Z(L,K, ϕ) → OphomL(H,K, ϕ), whose image is denoted by
ZH(L,K, ϕ).

Proof. For every h, h′ ∈ H, ρ(hh′) = ρ(h)ϕh(ρ(h
′)) = ρ(h)ρ(h′) since h ∈

ker(ϕ). Thus ρ|H ∈ Hom(H,K). In particular, ρ(eL) = eK . For every l ∈ L,

eK = ρ(eL) = ρ(ll−1) = ρ(l)ϕl(ρ(l
−1)),

so ρ(l)−1 = ϕl(ρ(l
−1)). Then

ρ(lhl−1) = ρ(lh)ϕlh(ρ(l
−1))

=ρ(lh)ϕl(ρ(l
−1)) = ρ(lh)ρ(l)−1

=ρ(l)ϕl(ρ(h))ρ(l)
−1 = ϕl(ρ(h)).

The last equality uses the commutativity ofK. Therefore, ρ|H ∈ OphomL(H,K, ϕ).

Let ω : Q′ → Q be a surjective morphism of connected complex Lie groups
with kernel F . Let η : Q→ Aut(K) be a group morphism such that the induced
group action Q × K → K is holomorphic. As K is commutative, the pulling
back map ω∗ : Ext(Q,K, η) → Ext(Q′,K, ηω) is a group morphism. Fact 7.1.3
gives a description of ker(ω∗).
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De�ne a map σ : OphomQ′(F,K, ηω) → Ext(K,Q, ηω) as follows. As the
group action de�ned by η is holomorphic, the semidirect complex Lie group
K⋊ηωQ′ exists by [Bou72, Ch.III, no.4, Prop. 7]. For ψ ∈ OphomQ′(F,K, ηω),
the morphism F → K ⋊ηω Q′ de�ned by k 7→ (ψ(k), k) identi�es F as a normal
complex Lie subgroup of K ⋊ηω Q′. Let E = K ⋊ηω Q′/F . The projection
K ⋊ηω Q′ → Q′ descends to a morphism E → Q. The injection K → K ⋊ηω Q′

induces a morphism K → E. Then the resulting sequence 1 → K → E → Q→
1 is exact with outer action ηω, whose equivalence class is denoted by σ(ψ).

Fact 7.1.3. [Hoc51a, Thm. 1.1] The map σ is a group morphism and the
sequence

Z(Q′,K, ηω) → OphomQ′(F,K, ηω)
σ→ Ext(Q,K, η)

ω∗

→ Ext(Q′,K, ηω)

is exact.

The use of Fact 7.1.3 is based on the existence of ω : Q′ → Q such that
every extension in Ext(Q,K, η) becomes a semidirect product when pulled back
to Ext(Q′,K, ηω) along ω.

Fact 7.1.4. [Hoc51a, Thm. 2.1] Let Q be a connected complex Lie group.
Assume that η : Q→ Aut(K) is a group morphism such that the induced group
action is holomorphic. Then there exists a simply connected complex Lie group
Q′ and a surjective morphism ω : Q′ → Q such that the pullback morphism
ω∗ : Ext(Q,K, η) → Ext(Q′,K, ηω) is zero.

Remark 7.1.5. The connectedness condition of the extension kernel in [Hoc51a,
Theorems 1.1 and 2.1] is in fact unnecessary.

Corollary 7.1.6 follows from Fact 7.1.3 and Fact 7.1.4.

Corollary 7.1.6 ([Hoc51a, Corollary 2.1]). In the notation of Fact 7.1.4, Ext(Q,K, η) =
OphomQ′(F,K, ηω)/ZF (Q

′,K, ηω), where F = ker(ω).

Example 7.1.7. Let Q = C∗, L = C and ω : L → Q be de�ned by
ω(z) = e2πiz. Then F = ker(ω) = Z. Let C∗ × K → K be a holomorphic
group action and η : C∗ → Aut(K) be the induced group morphism. Then
OphomL(F,K, ηω) = Hom(Z,Kη(C∗)) = Kη(C∗). By Proposition 3.2.2 and
Corollary 7.1.6, one has Ext(C∗K, η) = Kη(C∗)/ZZ(C,K, ηω).

7.2 Factor systems

It is well-known that extensions of abstract groups can be classi�ed in terms
of factor systems, see [CE56, Ch. XIV, Sec. 4]. This description relies on the
existence of set-theoretical cross sections. In general, nevertheless, it is not
possible to �nd a continuous cross section to a surjective morphism of topological
groups.

Consider the extension (3) of complex Lie groups with outer action ψ : Q→
Out(K).
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Example 7.2.1. Assume that there is a cross section to (3), i.e., a morphism
s : Q→ E of complex manifolds with ps = IdQ. Replacing s by s(eQ)

−1s when
necessary, one may assume that s is normalized as s(eQ) = eE . De�ne

f : Q×Q→ E, f(g, h) = s(g)s(h)s(gh)−1.

Then f is holomorphic. Since p(f(g, h)) = eQ, f(g, h) ∈ K, so f factors through
K. The map f measures the failure of s to be a morphism. If E is commutative,
then additionally f is symmetric in the sense of [Ser88, (16), p.166]:

f(x, y) = f(y, x) ∀x, y ∈ Q. (34)

De�ne ϕ : Q → Aut(K) by ϕg = Inns(g)|K . Then ϕ is a map (but not
necessarily a group morphism) lifting ψ, and the induced map

Q×K → K, (g, x) 7→ ϕg(x) (35)

is holomorphic. WhenK is commutative, ϕ = ψ is a group morphism independent
of the choice of s. When (3) is a central extension, ϕ is constantly IdK .

Moreover, f and ϕ satisfy the following relations:

f(eQ, h) = f(g, eQ) = eK ;

ϕe = IdK ;

ϕgϕh = Innf(g,h)ϕgh;

f(g, h)f(gh, k) = ϕg(f(h, k))f(g, hk).

(36)

Example 7.2.1 motivates De�nition 7.2.2.

De�nition 7.2.2 (Factor system). If a morphism f : Q × Q → K of complex
manifolds and a map ϕ : Q → Aut(K) making (35) holomorphic satisfy the
relations (36), then f is called a ϕ-factor system (and simply a factor system
when ϕ is trivial, in which case the last relation in (36) is f(g, h)f(gh, k) =
f(h, k)f(g, hk).) A factor system f is called symmetric if (34) holds.

When K is commutative, the set of ϕ-factor systems is an abelian group
under addition.

We examine how the ϕ-factor system f induced by s in Example 7.2.1
depends on the choice of the cross section s.

Example 7.2.3. Let s′ : Q → E be another normalized cross section still
inducing ϕ. De�ne

g : Q→ E, g(x) = s(x)−1s′(x).

Then g(eQ) = eE as s, s′ are normalized and g is holomorphic. For every x ∈ Q,
p(g(x)) = eQ, so g(x) ∈ K. For every k ∈ K, Inns(x)k = ϕx(k) = Inns′(x)k, so
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g(x) ∈ Z(K), i.e., g factors through Z(K). Then s′(x) = s(x)g(x). Let f ′ be
the factor system induced by s′. Then

f ′(x, y) = s′(x)s′(y)s′(xy)−1

=s(x)g(x)s(y)g(y)[s(xy)g(xy)]−1

=ϕx(g(x))s(x)s(y)g(y)g(xy)
−1s(xy)−1

=ϕx(g(x))f(x, y)s(xy)g(y)g(xy)
−1s(xy)−1

=ϕx(g(x))f(x, y)ϕxy(g(y)g(xy)
−1)

=gϕ(x, y)f(x, y),

where gϕ : Q×Q→ K is a morphism of complex manifolds de�ned by

gϕ(x, y) = ϕx(g(x))ϕxy(g(y)g(xy)
−1). (37)

When (3) is a central extension, ϕ is trivial, then (37) reduces to [Ser88,
(15), p.166]: gϕ(x, y) = g(x)g(y)g(xy)−1.

Example 7.2.3 motivates De�nition 7.2.4.

De�nition 7.2.4. Let f, f ′ be two ϕ-factors systems. If there is a holomorphic
map g : Q → Z(K) with g(eQ) = eE such that f ′ = gϕf with gϕ de�ned by
(37), then f and f ′ are called ϕ-equivalent, denoted by f ∼ϕ f ′.

In De�nition 7.2.4, ∼ϕ is an equivalent relation on the set of ϕ-factor systems.
When K is commutative, inside the group of all ϕ-factor systems, the elements
ϕ-equivalent to the zero form a subgroup. A result similar to Proposition 7.2.5
for algebraic groups is in [Ser88, Ch. VII, Sec. 1, no.4].

Proposition 7.2.5. Let K,Q be complex Lie groups with a map ϕ : Q →
Aut(K) such that (35) is holomorphic and the induced map ψ : Q→ Out(K) is
a group morphism. Then:

1. The set F of ∼ϕ-equivalence classes of ϕ-factor systems is canonically
identi�ed with the subset E ⊂ Ext(Q,K,ψ) of equivalence classes of extensions
of Q by K which admit at least one normalized cross section inducing ϕ.

2. When K is commutative, the identi�cation in 1 is a group isomorphism.

3. If further Q is also commutative and ϕ = ψ = 1 is trivial, then the
subgroup of equivalence classes of symmetric factor systems corresponds
to the subgroup of equivalence classes of commutative extensions.

Proof. We only prove 1. Examples 7.2.1 and 7.2.3 construct a map Φ : E → F .
(Note that equivalent extensions induces the same ϕ-equivalence class.)

Conversely, we de�ne a map Ψ : F → E by the following construction. Given
a ϕ-factor system f , one can construct an exact sequence 1 → K → Ef,ϕ →
Q → 1 of complex Lie groups with a (holomorphic) normalized cross section
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s : Q → Ef,ϕ as follows. Let Ef,ϕ = K × Q as a complex manifold. De�ne a
map

g : Ef,ϕ × Ef,ϕ → Ef,ϕ, g((k, x), (l, y)) = (kϕx(l)f(x, y), xy).

As f and the map (35) are holomorphic, so is g. Moreover, (36) shows g de�nes
an associative multiplication. The pair (1, 1) ∈ Ef,ϕ is the identity, and the
inverse of (k, x) is

(ϕ−1
x [k−1f(x, x−1)−1], x−1).

Hence (Ef,ϕ, g) is a complex Lie group. The projection p : Ef,ϕ → Q is a
surjective morphism. The map i : K → Ef,ϕ by k 7→ (k, 1) is the kernel of
p. Moreover, de�ne s : Q → Ef,ϕ by s(g) = (1, g), then s is normalized cross
section. Put Ψ(f) = Ef,ϕ.

We check that ΨΦ = IdE . Indeed, the map Ef,ϕ → E de�ned by (k, x) 7→
ks(x) is an equivalence of extensions. We check that ΦΨ = IdF , or equivalently
s induces f and ϕ. In fact, for every x ∈ Q, k ∈ K, one has

ϕx(k)s(x) = (ϕx(k), 1)(1, x) = (ϕx(k), x) = (1, x)(k, 1) = s(x)k,

so ϕx = Inns(x)|K , i.e., s induces ϕ. For every y ∈ Q,

s(x)s(y)s(xy)−1 = (1, x)(1, y)(1, xy)−1

=(f(x, y), xy)(ϕ−1
xy [f(xy, y

−1x−1)−1], y−1x−1)

=(f(x, y)ϕxyϕ
−1
xy (f(xy, y

−1x−1)−1)f(xy, y−1x−1), 1)

=(f(x, y), 1).

Therefore, s induces f .

When the base Q of (3) is discrete, then a set-theoretic cross section is
automatically holomorphic.

Corollary 7.2.6. Let Q be a discrete complex Lie groups, and let η : Q →
Aut(K) be a group morphism. Then the group Ext(Q,K, η) is isomorphic to
the group of ∼η-equivalence classes of η-factor systems. Furthermore, if Q is
also commutative, then Ext(Q,K) is isomorphic to the group of ∼-equivalence
classes of symmetric factor systems.

Proof. Since Q is discrete, the group action Q × K → K induced by η is
holomorphic. The �rst (resp. second) half follows from Proposition 7.2.5 2
(resp. 3).

Another important case where a cross section exists is with simply connected
bases. For this, we need a holomorphic version of Malcev's theorem ([Mal42,
(E), p.12], [Hoc51a, Lemma 3.1], [Mac60, Theorem 3.2]).

Fact 7.2.7 (Malcev, [Bou72, Ch. III, sec 6, no.6, Prop. 14; Cor. 2]). Let L be
a connected complex Lie group, N be a normal immersed complex Lie subgroup
of L.
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1. If N is closed in L and L/N is simply connected, then N is connected.

2. If L is simply connected, N is connected, then N is closed in L and there
exists a biholomorphic map f : L → N × L/N making a commutative
diagram

L N × L/N

L/N,

f

q
p2

where p2 is the projection to the second factor and q : L → L/N is the
quotient morphism.

In the same way that [Hoc51a, Theorem 3.1] follows from [Hoc51a, Lemma
3.1], Fact 7.2.8 can be deduced from Fact 7.2.7.

Fact 7.2.8. Let (3) be an exact sequence of complex Lie groups, where E is
connected and Q is simply connected. Then there exists a cross section, i.e.,
a holomorphic map s : Q → E with ps = IdQ. In particular, the principal
K-bundle p : E → Q is trivial.

Example 7.2.9. Let A be a complex elliptic curve. Take a nonzero element
of A∨, which induces a nontrivial extension E of A by C∗ via Theorem 5.2.4.
By Proposition 5.1.3, the principal C∗-bundle E → A is nontrivial. Therefore,
Fact 7.2.8 fails if the base is not simply connected.

Corollary 7.2.10 follows immediately from Fact 7.2.8 and Proposition 7.2.5.

Corollary 7.2.10. Let K,Q be complex Lie groups, where K is connected
commutative and Q is simply connected. Let η : Q → Aut(K) be a complex
Lie group morphism11. Then Ext(Q,K, η) is isomorphic to the group of ∼η-
equivalence classes of η-factor systems.

Similar to [Hoc51a, Theorem 3.2], Fact 7.2.11 can be proved using Fact 7.2.7
and Fact 7.2.8,

Fact 7.2.11. Let K,Q be complex Lie groups, where K is connected and Q
is simply connected. Then the map (on the set of equivalence classes) which
associates with each extension of Q by K the induced extension of L(Q) by
L(K) is injective. The image is the set of classes of those extensions 0 →
L(K) → E → L(Q) → 0 in which the derivation

[x, •]E|L(K) ∈ Der(L(K)) = L(Aut(L(K)))

belongs to L(Aut(K)) for every x ∈ E. Furthermore, if K is commutative and
η : Q→ Aut(K) is a morphism, then the resulting map

Ext(Q,K, η) → Ext(L(Q), L(K), deη)

is a group isomorphism.
11Here Aut(K) is a complex Lie subgroup of GL(L(K)) by [Lee01, Propositions 1.26 and

1.27].
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A connected Lie group is called semisimple if its Lie algebra is semisimple.
Analogue of Fact 7.2.12 for semisimple real Lie groups H and real vector groups
G is contained in the proof of [Hoc51b, Theorem 5.1]. Fact 7.2.12 can be proved
in a similar way.

Fact 7.2.12. Let G,H be connected complex Lie groups, where G is commutative
and H is semisimple. Let η : H → Aut(G) be a morphism of complex Lie
groups. If ϕ ∈ Z(H,G, η) is a crossed morphism, then there exists g ∈ G such
that ϕ(x) = ηx(g)g

−1 for all x ∈ H. In particular, ϕ ≡ eG on ker(η).

Theorem 7.2.13 is a complex version of [Hoc51a, Theorem 4.4].

Theorem 7.2.13. In Fact 7.2.12, Ext(H,G, η) is canonically isomorphic to
HomAb(π1(H), Gη(H)).

Proof. Let ω : H̃ → H be the universal covering of H. Then ker(ω) = π1(H) is
a discrete subgroup of H̃. By Fact 3.2.4, π1(H) ⊂ Z(H̃). Then (33) gives

OphomH̃(ker(ω), G, ηω) = Hom(π1(H), Gη(H)).

By Fact 7.2.12, for every ρ ∈ Z(H̃,G, ηω), ρ|kerω = 1, i.e., Zker(ω)(H̃,G, ηω) =

0. By Fact 7.2.11, the natural map Ext(H̃,G, ηω) → Ext(L(H), L(G), deη) is
a group isomorphism. Since L(H) is a semisimple complex Lie algebra, Levi's
theorem [Ser64, Theorem 4.1, p.48] a�rms that Ext(L(H), L(G), deη) = 0. By
Fact 7.1.3, Ext(H,G, η) = Hom(π1(H), Gη(H)).

7.3 Non-abelian kernels and extensions of the center

For two complex Lie groups K,Q and a group morphism θ : Q → Out(K), if
θ is induced by some extension of Q by K, then the extension kernel (K, θ)
is called extendible. The problem to determine the extendibility of a given
extension kernel is more di�cult than that for abstract groups treated in [EM47,
Theorem 8.1], because of the obstruction to the existence of a cross section. For
extendible kernels, Corollary 7.3.8 shows that the problem for extensions by K
can be reduced to that with an abelian kernel, namely Z(K).

Let 1 → K → E
p→ Q → 1 and 1 → K ′ → E′ p′→ Q → 1 be two extension

of complex Lie groups. Denote their outer action by θ : Q → Out(K) and
θ′ : Q → Out(K ′) respectively. Assume that Z(K) = Z(K ′) := C and θ, θ′

induce a common center action12 θ0 : Q → Aut(C). Hence a commutative
diagram

Out(K)

Q Aut(C)

Out(K ′)

θ

θ′

θ0 (38)

12see (5)
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We recall the multiplication of kernels de�ned in [EM47, Sec. 4]. The group law
C × C → C is holomorphic, so the subset

C∗ := {(x, x−1) : x ∈ C} (39)

is analytic in C × C. By Lemma 2.0.6, C × C is an analytic subset of K ×K ′.
As C∗ is a central subgroup of K × K ′, it is also a complex Lie subgroup of
K × K ′ by Corollary 2.0.5. Let K ′′ = K × K ′/C∗. From [EM47, p.328], the
morphism C → K ′′ by g 7→ [(g, 1)] identi�es C as the center of K ′′.

For every x ∈ Q, select automorphisms α ∈ θ(x)(⊂ Aut(K)) and α′ ∈
θ′(x)(⊂ Aut(K ′)). Because the diagram (38) is commutative, α × α′ is an
automorphism ofK×K ′ sending C∗ into itself. It thus determines an automorphism
α′′ of K ′′. The class [α′′] ∈ Out(K ′′) depends only on θ, θ′, but not the choices
of α, α′. Hence a group morphism

θ′′ : Q→ Out(K ′′) (40)

that also induces θ0 : Q→ Aut(C).

De�nition 7.3.1. The pair (K ′′, θ′′) constructed above is called the C-product
of the two given extension kernels (K, θ) and (K ′, θ′).

Example 7.3.2. If K ′ = C is commutative, it is asserted in [EM47, (4.4)]
that K ′ acts as an identity for the C-product. To make it explicit, we de�ne a
surjective morphism ϕ : K × C → K of complex manifolds by ϕ(k, k′) = k′k.
Then ϕ is a morphism and C∗ = ker(ϕ). Thus, ϕ induces an isomorphism
σ : K ′′ → K satisfying [EM47, (4.2), (4.3)].

Then we review the multiplication of the given two extensions, contained
the proof of [EM47, Lem. 5.1].

As the map E × E′ → Q by (x, x′) 7→ p′(x′)p(x)−1 is holomorphic, the
preimage of eQ

D = Dp,p′(E,E
′) = {(x, x′) ∈ E × E′ : p(x) = p′(x′)}, (41)

is analytic in E ×E′. Since D is a subgroup of E ×E′, by Corollary 2.0.5, D is
a complex Lie subgroup of E × E′.

For every (x, x′) ∈ D with y = p(x) = p(x′), every g ∈ C, the element

(x, x′)(g, g−1)(x−1, x′−1) = (θ0(y)(g), θ0(y)(g)
−1)

is in C∗. Therefore, C∗ de�ned by (39) is normal in D.
As C∗ is a normal complex Lie subgroup of D, we can set E′′ = D/C∗. The

inclusion K ×K ′ → D descends to an injective morphism K ′′ → E′′. The map
D → Q de�ned by (x, x′) 7→ p(x) induces a surjective morphism p′′ : E′′ → Q
whose kernel is K ′′. Hence an extension 1 → K ′′ → E′′ → Q→ 1. The induced
outer action Q → Out(K ′′) is (40). We call (E′′, p′′) the C-product of the
two given extensions (E, p) and (E′, p′), written as (E′′, p′′) = (E, p)⊗ (E′, p′).
Thus, [EM47, Lemmas 5.1 and 5.2] hold for complex Lie groups.
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Fact 7.3.3. The C-product of two extendible kernels is extendible. The kernel
of the C-product (E, p)⊗ (E′, p′) of two extensions is the C-product of the two
kernels.

Proposition 7.3.4. When K ′ = C, (E′, p′) is the semidirect product C ⋊θ0 Q,
then (E′′, p′′) is naturally equivalent to (E, p).

Proof. Consider the subgroup D ≤ E × E′ = E × (C ⋊θ0 Q) de�ned in (41).
De�ne a map ψ : D → E by (x, c, q) 7→ cx for x ∈ E and (c, q) ∈ C⋊θ0 Q. Then
ψ is holomorphic.

We check that ψ is a group morphism. Take another (x, c′, q′) ∈ D. Since
θ0,q(c

′) = θp(x)(c
′) = xc′x−1, one has

ψ((x, c, q)(x′, c′, q′)) = ψ(xx′, cθ0,q(c
′), qq′)

=cθ0,q(c
′)xx′ = cxc′x′ = ψ(x, c, q)ψ(x′, c′, q′).

For every g ∈ C, ψ(g, g−1) = eE , so C
∗ ⊂ kerψ. Thus, ψ induces a morphism

ϵ : E′′ → E. Together with σ de�ned in Example 7.3.2, ϵ �ts into a commutative
diagram.

1 K ′′ E′′ Q 1

1 K E Q 1

σ ϵ Id

Therefore, ϵ is an equivalence of extensions.

By construction, C-product de�nes a map Ext(Q,K, θ) × Ext(Q,K ′, θ′) →
Ext(Q,K ′′, θ′′). When K ′ = C, it specializes to

Ext(Q,K, θ)× Ext(Q,C, θ0) → Ext(Q,K, θ), (42)

which de�nes an action of the abelian group Ext(Q,C, θ0) on the set Ext(Q,K, θ).
If further K is also commutative, by [Hoc51a, p.97], (42) is exactly the group
law de�ned by the Baer sum on Ext(Q,C, θ0).

De�nition 7.3.5. [EM47, p.329] For every extension kernel (K, θ), let θ∗ be the
composition of θ : Q→ Out(K) with the natural group isomorphism Out(K) →
Out(Kop). Then the extension kernel (Kop, θ∗) is called the inverse of (K, θ).

For every (E, p) ∈ Ext(Q,K, θ), de�ne p∗ : Eop → Q by p∗(x∗) = p(x−1),

then it is a surjective morphism. Since ker(p∗) = Kop, 1 → Kop → Eop p∗→ Q→
1 is an extension. The associated outer action is θ∗. Thus, we get an element
(Eop, p∗) ∈ Ext(Q,Kop, θ∗) of (E, p). It is called the inverse of (E, p) and its
extension kernel is the inverse of (K, θ).

It is a classical result that the group action (42) is simple transitive. For
abstract groups, see [EM47, Lem. 11.2 and 11.3]. For algebraic groups, see
[FLA19, Thm. 1.1]. It remains true for complex Lie groups. The �rst half,
Fact 7.3.6, can be proved in the same way as in [Hoc51b, Thm. 1.1], using the
inverse in the group Ext(Q,C, θ0) and Proposition 7.3.4.
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Fact 7.3.6. Let K,Q be complex Lie groups, C = Z(K). Let θ : Q → Out(K)
be a group morphism that induces θ0 : Q → Aut(C). Then the action of
Ext(Q,C, θ0) on Ext(Q,K, θ) de�ned by (42) is free.

Theorem 7.3.7 is analogue to [EM47, Lemma 11.2].

Theorem 7.3.7. In the notation of Fact 7.3.6, if Ext(Q,K, θ) is nonempty
(i.e., the extension kernel (K, θ) is extendible), then its Ext(Q,C, θ0)-action
de�ned by (42) is transitive. Equivalently, for every (E, p), (E1, p1) ∈ Ext(Q,K, θ),
there exits F ∈ Ext(Q,C, θ0) with F ⊗ E equivalent to E1.

Proof. De�ne Dp1,p∗(E1, E
op) like (41). Set

S = {(x−1
1 , x∗) ∈ Dp1,p∗(E1, E

op) : x1kx
−1
1 = xkx−1,∀k ∈ K}.

Then S is a subgroup of E1 × Eop. For every k ∈ K, the map

ϕk : E1 × Eop → K (x1, x
∗) 7→ x−1

1 kx1xk
−1x−1

is holomorphic, so ϕ−1
k (eK) is analytic in E1×Eop. Then S = Dp1,p∗(E1, E

op)∩
∩k∈Kϕ−1

k (eK) is analytic in E1 × Eop, by [Whi72, Theorem 9C, p.100]. By
Corollary 2.0.5, S is a complex Lie subgroup of E1 × Eop.

The map K × Kop → K by (k, k′∗) 7→ kk′ is holomorphic, so K∗ =
{(k−1, k∗) : k ∈ K} is an analytic subset of K × Kop. It is a subgroup of
S, hence a complex Lie subgroup of S by Corollary 2.0.5.

For every (x−1
1 , x∗) ∈ S, k ∈ K, one has

(x−1
1 , x∗)(k−1, k∗)(x1, (x

∗)−1) = (x−1
1 k−1x1, x

∗k∗(x−1)∗)

=(x−1k−1x, (x−1kx)∗) ∈ K∗,

so K∗ is a normal subgroup of S. Let F = S/K∗ and ν : S → F be the quotient
morphism. The map i : C → F de�ned by c 7→ [(c, 1)] is an injective morphism.

The map ϕ̄ : S → Q de�ned by ϕ̄(x−1
1 , x∗) = p(x−1) is a morphism with

K∗ contained in the kernel. We check that ϕ̄ is surjective. For every h ∈ Q,
there exist x ∈ E and x1 ∈ E1 with p(x) = p1(x1) = h−1. Since the two
automorphisms of K, Innx|K and Innx1

|K have the same class θh−1 in Out(K),
there exists k0 ∈ K such that Innx1 |K = Innx|KInnk0 . Then (x−1

1 , (xk0)
∗) ∈ S

and ϕ̄(x−1
1 , (xk0)

∗) = h.
If (x−1

1 , x∗) ∈ ker ϕ̄, then p1(x1) = p(x1) = eQ, so x1, x ∈ K. Moreover,
x1kx

−1
1 = xkx−1 for all k ∈ K. Then x−1

1 x ∈ C, so (x−1
1 , x∗) = (x−1

1 x, 1∗)(x−1, x∗).
Thus, [(x−1

1 , x∗)] = i(x−1
1 x) ∈ i(C).

Thus ϕ̄ induces a surjective morphism ϕ : F → Q with i(C) ⊃ kerϕ. In

addition, ϕi is trivial, so i(C) ⊂ ker(ϕ). Hence an extension 1 → C
i→ F

ϕ→
Q→ 1 with the induced action Q→ Aut(C) coinciding with θ0.

It remains to show that the C-product extension F ⊗ E is equivalent to
E1. By construction, F ⊗ E is represented by G = Dϕ,p(F,E)/C∗, where
C∗ = {(c, c−1) ∈ F ×E : c ∈ C}. The pullback of Dϕ,p(F,E) along the natural
surjection S × E → F × E is Dϕν,p(S,E).
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For every (a, b∗, x) ∈ Dϕν,p(S,E) ⊂ E1×Eop×E, one has p1(a) = p(b−1) =
p(x), whence bx ∈ K and a · (bx) ∈ E1. De�ne a holomorphic map τ :
Dϕν,p(S,E) → E1 by τ(a, b∗, x) = a · (bx).

E1

Dϕν,p(S,E) Dϕ,p(F,E) G

S × E F × E

E1 × Eop × E

τ
ν∗

ν×IdE

We check that τ is a group morphism. For every (a, b∗, x), (a′, b′∗, x′) ∈ Dϕν,p(S,E),
since (a′, b′∗) ∈ S and bx ∈ K, one has a′−1(bx)a′ = b′(bx)b′−1. Hence,

τ(a, b∗, x)τ(a′, b′∗, x′) = [a(bx)][a′(b′x′)]

=aa′[a′−1(bx)a′](b′x′) = aa′[b′(bx)b′−1](b′x′)

=aa′(b′bxx′) = τ(aa′, (b′b)∗, xx′) = τ(aa′, b∗b′∗, xx′).

We check that τ is surjective. For every x1 ∈ E1, p1(x1) ∈ Q. As ϕν : S → Q
is surjective, there is (a, b∗) ∈ S with ϕν(a, b∗) = p1(x1). Then p1(a) = p1(x1).
Thus, a−1x1 ∈ K. Let x = b−1(a−1x1) ∈ E. Then p(x) = p(b−1) = ϕν(a, b∗),
so (a, b∗, x) ∈ Dϕν,p(S,E) and τ(a, b∗, x) = a(bx) = a(a−1x1) = x1.

We check that ker(ν∗) ⊂ ker(τ). For every (x1, x
∗, y) ∈ ker(ν∗) ⊂ E1×Eop×

E, there is c ∈ C with ([(x1, x
∗)], y) = (c, c−1) in F×E. Equivalently, y = c−1 in

E and [(x1, x
∗)] = [(c, 1∗)] in F = S/K∗. Whence, (x1c

−1, x∗) ∈ K∗, i.e., x ∈ K
and x1 = x−1c. Therefore, (x1, x

∗, y) = (x−1c, x∗, c−1) with x ∈ K, c ∈ C.
Thus, τ(x1, x

∗, y) = x−1c(xc−1) = eE1 and (x1, x
∗, y) ∈ ker(τ).

Conversely, we check ker(τ) ⊂ ker(ν∗). For every (a, b∗, x) ∈ ker(τ), one
has a(bx) = eE1

, so a ∈ K. Because (a, b∗) ∈ Dp1,p∗(E1, E
op), we obtain

p(b−1) = p(a) = eQ and hence b ∈ K. Since Inna−1 = Innb ∈ Aut(K), one has
ab ∈ C. Therefore, [(a, b∗)] = [(ab, 1∗)] = i(ab) in F = S/K∗ and (a, b∗, x) =
(ab, (ab)−1) ∈ C∗ ≤ F × E. Then (a, b∗, x) ∈ ker(ν∗).

Therefore, ker(τ) = ker(ν∗), so τ induces an isomorphism G → E1 that
establishes an equivalence between the two elements of Ext(Q,K, θ).

Fact 7.3.6 and Theorem 7.3.7 yield Corollary 7.3.8.

Corollary 7.3.8. Let K,Q be complex Lie groups, C = Z(K), θ : Q→ Out(K)
be a group morphism. Let θ0 : Q → Aut(C) be the induced group morphism.
If Ext(Q,K, θ) is nonempty, then Ext(Q,K, θ) is in (non-canonical) bijection
with Ext(Q,C, θ0).
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A Maximal morphisms

A result stronger than Proposition 5.1.3 holds.

De�nition A.0.1. [Ser88, De�nition 1, p.125]. Let X be a complex manifold,
A be a complex torus. A morphism f : X → A is called maximal if whenever f

factors as X
g→ A′ h→ A, where A′ ∈ C is connected and h− h(0) : A′ → A is a

�nite morphism, it holds that h− h(0) is an isomorphism.

Proposition A.0.2. If X is a regular manifold13, then the Albanese morphism
f : X → Alb(X) associated to some base point x ∈ X is maximal.

Proof. Assume that f factors asX
g→ A′ h→ Alb(X), whereA′ ∈ C is a connected

and h− h(0) is a �nite morphism. Then A′ is compact, hence a complex torus.
Choosing g(x) as the new zero element of A′, we get a new structure of complex
torus on A′, to which we stick from now on. Then h is a �nite morphism. By
[Liu23, Proposition 4.1.2 3], there is a morphism ϕ : Alb(X) → A′ with ϕf = g
and the complex Lie subgroup of Alb(X) generated by f(X) is Alb(X) itself.
Then hϕf = f and hence hϕ = IdAlb(X). In particular, h is surjective. By Fact

3.0.4, the exact sequence 0 → ker(h) → A′ h→ A→ 0 de�nes a trivial extension,
so A′ is isomorphic to ker(h)×A. By connectedness of A′, ker(h) = 0 and h is
an isomorphism.

When f = IdA, Proposition A.0.3 reduces to Proposition 5.1.3.

Proposition A.0.3 ([Ser88, Prop. 14, p.188]). Let X be a connected compact
complex manifold, A be a complex torus, B ∈ C. Let f : X → A be a maximal
morphism. If B0 is linear, then the composed morphism

Ext(A,B)
π→ H1(A,BA)

f∗

→ H1(X,BX) (43)

is injective.

Proof. Let C ∈ ker(f∗ ◦ π). Then the principal �ber bundle f∗p : f∗C → X
is trivial. Fix a point c ∈ f∗C lying over 0 ∈ C. Then there is a morphism
s : X → f∗C with f∗p ◦ s = IdX and s(f∗p(c)) = c. Let t : X → C be the
morphism induced by s.

f∗C X

0 B C A 0

0 B ∩A′ A′ A 0

f∗p

f

s

t

p

h−1

h

Id

13in the sense of [Var86, p.233]
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By Remmert's theorem [Whi72, Theorem 4A, p.150], t(X) is an analytic subset
of C. By [CD94, (14.14), p.89], the analytic space t(X) is irreducible. Moreover,
t(X) is compact and 0 = t(f∗p(c)) ∈ t(X). Let A′ be the complex Lie subgroup
of C generated by t(X). By [Liu23, Lemma A.3.5], A′ is a complex torus. Then
(A′∩B)0 is a compact. As a closed complex submanifold of B0, (A

′∩B)0 is also
a Stein manifold, hence a point. Thus, A′ ∩ B is discrete and compact, hence
�nite. Therefore, h : A′ → A is a �nite morphism. As the maximal morphism f

factors as X
t→ A′ h→ A, h is an isomorphism. Then h−1 : A→ C is a morphism

and ph−1 = IdA. By Fact 3.0.4, C = 0 in Ext(A,B).

Example A.0.4. Let X be a regular manifold, f : X → A be the Albanese
morphism associated to some base point x ∈ X. When B = C, the composed
morphism (43) is a linear isomorphism f∗ : H1(A,OA) → H1(X,OX). When
B = C∗, it is the inclusion of the identity component Pic0(A) → Pic(X).

B Commutative extensions of real Lie groups

Let R be the category of commutative real Lie groups. The solution to the
extension problem within R is summarized in Proposition B.0.2. Similar to
Lemma 4.1.1, the category R is additive but not abelian. Parallel to the
construction in Section 4, we can de�ne an additive functor ExtR : Rop ×R →
Ab by considering commutative extensions.

Proposition B.0.1 generalizes [LH76, Proposition 5, p.110] (which says that
C is isomorphic to A × B) and [HN11, Lemma 15.3.2] (which is for real tori).
The similar statement for complex tori is false, shown by Example 4.1.14.

Proposition B.0.1. Let 0 → B → C → A→ 0 be an extension of commutative
real Lie groups. If A,B are connected, this extension is trivial.

Proof. Similar to Proposition 3.2.2, every extension of R is a semidirect product,
hence ExtR(R, •) = 0 on R. Similar to Proposition 3.2.3, ExtR(S1, B) = 0.
According to [LH76, Proposition 4, p.109], A is isomorphic to (S1)n × Rm for
some m,n ∈ N. As the functor ExtR(•, B) : R → Ab is additive, we get
ExtR(A,B) = 0.

Proposition B.0.2. For every A,B ∈ R, there is a non canonical isomorphism
in Ab:

ExtR(A,B) → Ext1Z(A/A0, B/B0)⊕HomAb(π1(A0), B/B0).

Proof. By a real version of Corollary 4.1.13, there are non canonical isomorphisms
in R: A → A/A0 × A0 and B → B/B0 × B0. By additivity of the bifunctor
ExtR, we get an isomorphism in Ab:

ExtR(A,B) → ExtR(A/A0, B0)⊕ExtR(A/A0, B/B0)⊕ExtR(A0, B/B0)⊕ExtR(A0, B0).

Using Lemma 4.1.12, one can prove that ExtR(A/A0, B0) = 0. Identical to
Example 4.1.10, ExtR(A/A0, B/B0) = Ext1Z(A/A0, B/B0). Similar to Corollary
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3.2.5 and [Hoc51b, Thm. 3.2], ExtR(A0, B/B0) = HomAb(π1(A0), B/B0). By
Proposition B.0.1, ExtR(A0, B0) = 0. The proof is completed.
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