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1 Introduction

In the history of cohomology theory of abelian varieties over positive characteristic
fields, the study of group extension problem played an important role. For
instance, Rosenlicht obtains Fact 1.0.1 through considering vectorial extensions
of abelian varieties. Let k be an algebraically closed field and A/k be an abelian
variety with dim A = g. The dual abelian variety of A is denoted by AV.

Fact 1.0.1. [Ros58, Theorem 1 and 2] The dimension of the k-vector space
HY(A,04) is g.

A notable byproduct of Rosenlicht’s work is the existence of the following
object, the so-called universal vectorial extension.

Fact 1.0.2. [Ros58, Prop. 11] There is a short exact sequence' of commutative
algebraic groups over k: 0 — GY — Af A 0, where A% is the moduli space
of line bundles equipped with an integrable connection on AV.

In [Rot96, (1.17)] and [Lau96, Thm. 3.2.1], it is proved that the Fourier-
Mukai transform D?(Qch(O4)) — D®(Qch(O4v)) lifts to an equivalence Db(Qch(OAh ) —
D*(Qch(Dav)), where for a smooth algebraic variety M/k, Qch(Ops) (resp.
Qch(Dyy)) refers to the category of Oy (resp. left Djys) modules that are Opy-
quasi-coherent.

The cohomology theory of complex analytic analogue of abelian varieties,
namely complex tori, is elementary. By contrast, as far as we know, the existence
of universal vectorial extension in the analytic setting is not covered in the
literature, though admittedly easier and should be known. The main results are
summarized imprecisely in Proposition 1.0.3 and Theorem 1.0.4.

Proposition 1.0.3 (Proposition 4.3.1). For two commutative complex: Lie groups
A, B, the commutative extensions of A by B are classified by the abelian group

Ext}(m(A), mo(B)) @ Homay, (11 (Ag), 70 (B)) @ coker(s).

Here s is the restriction morphism Homvec(L(A), L(By)) — Homay (71 (Ap), Bo),
Ap (resp. By) signifies the identity component of A (resp. B), the notation my (%)
refers to the fundamental group, and A/Ay = mo(A) denotes the 0-th homotopy
group of A and similar for B.

Theorem 1.0.4. Let A be a complex torus of dimension g. Then:

e (Theorem 5.2.4 (resp. Theorem 5.3.2)) The dual torus Pic®(A) (resp.
tangent space ToA = H'(A,O4)) naturally classifies the extensions of A
by the multiplicative group C* (resp. additive group C).

¢ (Proposition 5.4.5 1, Proposition 5.4.7) There is an extension
0— H°(AY, QL) = (C)% - A -0

that is universal among all vectorial extensions of A.
Lin the sense of [Ros58, Sec. 2, p.691]




We emphasis some differences between the analytic case and the algebraic
case. For a complex torus A, let Div(A) be the group of analytic divisors on A
modulo linear equivalence. Let Pic(A) be the group of isomorphic classes of line
bundles on A. The natural map Div(A) — Pic(A) is surjective if and only if A
is an abelian variety ([Deb05, Sec. 4.3, Cor. 4]). This is why the Picard group
is used in Theorem 5.2.4 while divisor group appears in its algebraic analogue
([Weid9, no. 2], [Ser88, Thm. 6]). Discrete groups like Z are not (finite type)
algebraic groups, but there is no reason to exclude them as complex Lie groups.
Plenty of important analytic morphisms are not algebraic, like the universal
covering (exponential map) exp : C — C*.

The organization is as follows. The main goal of this text is to classify
extensions of complex Lie groups. Section 2 contains preliminaries about complex
Lie groups. In Section 3 we define complex Lie group extensions and give several
first results about the classification. Then we focus on commutative extensions
in Section 4. Commutative extensions of complex tori deserve extra attention,
and they are discussed in Section 5. Some extensions with complex-tori base are
automatically commutative, as Section 6 shows. Noncommutative extensions
are treated superficially in Section 7.

Convention and notation

A statement about Lie groups is understood to hold for both real and complex
Lie groups. The topology underlying a Lie group is always assumed to be second
countable.?

For every Lie group G, the identity component of G is denoted by Gy. The
Lie algebra of G is written as L(G). And Z(G) denotes the center of G. The
automorphism group of G is denoted by Aut(G). Let Inn : G — Aut(G) be
the group morphism defined by taking conjugation g +— g @ g~ !. Then the
subgroup Inn(G) of inner automorphisms is normal in Aut(G). Let Out(G) =
Aut(G)/Inn(G) be the group of outer automorphisms. Let G°P be the Lie group
opposite to G. (If G is complex, then so is G°P.) There is a natural identification
of real/complex manifolds G — G°P denoted by g — ¢*. If G is connected, then
the universal covering group of G is denoted by G and the fundamental group
of G with the identity e as the base point is denoted by 71 (G).

Complex Lie subgroups refer to embedded closed complex Lie subgroups. If
G is a complex Lie group and S C G is a subset, by [HN11, Exercise 15.1.3 (b)]
there is a smallest complex Lie subgroup of G containing S, called the complex
Lie subgroup generated by S.

Let Vec (resp. Ab, resp. C, resp. Set) be the category of finite dimensional
complex vector spaces (resp. abelian groups, resp. commutative complex Lie
groups, resp. sets). For a complex manifold X and a commutative complex Lie
group B, let Bx be the abelian sheaf on X of germs of holomorphic maps from
X to B.

2A partial reason for such restriction is that, in this case, Condition (2) of [Hoc51b,
Definition 1.1] is implied by Condition (1), showed in p.542 loc.cit.
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2 Generalities on complex Lie groups

Two fundamental facts about complex Lie groups are recalled.

Fact 2.0.1 ([Bou72, Ch. III, §3, no.8, Prop. 28]). Let f : G — H be a morphism
of complex Lie groups. Then:

1. ker(f) is a mormal complex Lie subgroup of G and L(ker(f)) = ker(d.f :
L(G) — L(H)).

2. If {(G) is closed in H, then f(G) is a complex Lie subgroup of H, and f
induces a complex Lie group isomorphism G/ ker(f) — f(G). In particular,
if [ is surjective, then d.f : L(G) — L(H) is surjective. If f bijective,
then f is an isomorphism.

Remark 2.0.2. Fact 2.0.1 2 fails if the topology of G is not assumed to be
second countable. For example, let 7 (resp. 7') be the discrete topology (resp.
the Euclidean topology) of C, then Id : (C,7) — (C,7’) is a bijective morphism
but not open.

Right principal bundle is defined in [Bou07, 6.2.1]. Left principal bundle can
be defined similarly.

Fact 2.0.3 ([HBS66, Thm. 3.4.3], [Bou72, Ch. III, §1, Propositions 10 and 11]).
Suppose G is a complex Lie group and K is a normal complex Lie subgroup of
G. Then the group G/K has a unique structure of complex manifold, such that
the quotient map 7 : G — G/K is a submersion.> With this structure, G/K
is a complex Lie group and p is a left principal K-bundle under the natural left
group action K x G — G defined by (k,g) — kg. In particular, every surjective
morphism of complex Lie groups is open.

We recall that principal bundles are classified by the first sheaf cohomology,
in the following way. Let X (resp. B) be a complex manifold (resp. commutative
complex Lie group). Let S be the set of isomorphism classes of principal B-
bundles* over X. Define a map

U:S — HY(X,Bx) (1)

as follows. For every [p: P — X] € S, there exists an open cover {U,};cs of
X and a family of local trivializations f; : U; x B — p~1(U;) for every i € I.

3in the sense of [Bou07, 5.9.1]
4Here B is commutative, so it is unnecessary to specify the principal bundle to be left or
right.



For any indices 4,5 € I and every x € U; N Uj, there exists a unique element
bij(z) € B such that b;;(z)- f;(y) = f;(y) for all y € p~!(x). Hence a morphism
bi; : U;NU; — B of complex manifolds. Moreover, for any indices i, j,k € I and
every x € U;NU;NUy, they satisfy the 1-cocycle relation b;;(z)+b,x(x)+bgi(z) =
0. Thus, the family {b;;}; jes defines an element ¥(p) of H'(X, Bx).

As per [HBS66, 3.2 b), p.41], the map ¥ is bijective. The structure of
abelian group on H'(X, Bx) is translated to S via V. The zero element of S
is the class of the trivial principal B-bundle. For every pair [p; : P, — X]| and
[p2 : P> — X]in S, by taking a family of trivialization for each p;, we can define
a morphism ¢ : P, x x P, — P; + P, of principal B-bundles on X such that or
every b,b/ € B, u € P, v € Py with p;(u) = pa(v), one has

¢(b " u, b U) = (b + bl) : ¢(u7 'U)‘ (2)

In particular, ¢ is surjective. Restricted to the fiber at some z € X, ¢ is induced
by the group law of B and the chosen trivializations.

We need a complex version of Cartan’s subgroup theorem. Notice that a real
analytic closed subgroup of a complex Lie group may not be a complex analytic
subset. Lemma 2.0.4 is mentioned in [Bj613, p.513].

Lemma 2.0.4. Let X be a complex manifold, Y C X be a complex analytic
subset. If p € Y is a smooth point of Y, then near p, the subset Y is an
embedded complex submanifold of X.

Proof. As the problem is local, we may assume that X is an open subset
C", there exist f1,..., fm € Ox(X) with Ox,/(f1,...,fm) = Oyp and ¥ =
Z(fi,..., fm). Let r = rank,(fi,..., fm). By reordering subscripts, one may
assume

ofi

det(ajj)lg,jy # 0.
Then (f1,...,f.) : X — C" is a holomorphic submersion near p. Therefore,
near p, the subset Z(f1,..., f.) is an embedded complex submanifold of X of
dimension n —r. By the Jacobian criterion (see, e.g., [GR12, p.114]), emb,Y =
n — r. By the criterion of smoothness ([GR12, p.116]), dim,Y = n — r. Now
that Y C Z(f1,..., fr), near p the subset Y is an irreducible component of
Z(f1,..., fr), hence also an embedded complex submanifold of X. O

Corollary 2.0.5 contains [Lee01, Prop. 1.23] as a special case.

Corollary 2.0.5 (Complex Cartan subgroup theorem). Let G be a complex Lie
group, and let H be a subgroup that is a complex analytic subset of G. Then H
is a complex Lie subgroup of G.

Proof. Endow H with the induced structure of reduced complex analytic space.
By [GR12, p.117], the complex analytic space H has a smooth point p. For
every q € H, the left multiplication by gp~! gives a biholomorphic map G — G,
which sends H to H and maps p to q. Therefore, ¢ is also a smooth point of H.
By Lemma 2.0.4, H is a complex submanifold of G near ¢ for all ¢ € H. Thus,
H is a complex submanifold of G and hence a complex Lie subgroup. O



In Lemma 2.0.6, if G is furthermore connected, then the result of is contained
in [Bou72, Ch.III, Sec. 6, no. 4, Cor. 4].

Lemma 2.0.6. Let G be a complex Lie group. Then the center Z(G) is a
complex Lie subgroup of G.

Proof. The holomorphic map G x G — G defined by (z,y) — yxy~! is a group

action of G on itself. By [Bou72, Ch. III, Sec. 1, no. 7, Prop. 14], for every
x € G, the stabilizer Cg(z) of € G is a complex Lie subgroup of G. Therefore,
so is Z(G) = NgyeceCq(z) by [HN11, Exercise 15.1.3 (a)]. O

A complex Lie group isomorphic to a complex Lie subgroup of GL,,(C) for
some integer n > 1 is called linear. Proposition 2.0.7, due to Matsushima and
Morimoto, is a characterization of commutative linear complex Lie groups.

Proposition 2.0.7. Let B be a connected commutative complex Lie group.
Then the following conditions are equivalent:

1. B is isomorphic to C™ x (C*)™ for some integers m,n > 0;

2. the complex Lie group B is linear;

3. B is a Stein group (i.e., the underlying complex manifold is a Stein manifold).
In that case, the pair (m,n) is unique.

Proof. See [HN11, Exercise 15.3.1] for the fact that 1 implies 2. Since GL,,(C)
is a Stein manifold, 2 implies 3. As per [MM60, Proposition 4], 3 implies 1. The
uniqueness is contained in the Remmert-Morimoto decomposition (see, e.g.,
[AKO1, Thm. 1.1.5]). O

Remark 2.0.8. The commutativity of B in Proposition 2.0.7 is important. In
fact, there is a connected Stein group that is not linear ([Aril9, Sec.1]). This
differs from the algebraic case where every algebraic group that is an affine
variety is linear ([Mil17, Cor. 4.10]).

In some sense, Definition 2.0.9 is an antipode to Stein groups.

Definition 2.0.9. A connected complex Lie group on which every holomorphic
function is constant is called a toroidal group.’

Complex tori are toroidal groups, but there exist toroidal groups that are
not compact ([AKO1, p.1]). Every toroidal group is a semi-torus in the sense of
[NW13, Def. 5.1.5].

By [AKO1, 1.1.5], every connected commutative complex Lie group G is
uniquely isomorphic to C! x (C*)™ x X with a toroidal group X. In particular, G
can be presented as an extension of a complex torus by a connected linear group.
(From [NW13, pp.169-170], a semi-torus can admit nonequivalent presentations,
while semiabelian varieties admit exactly one algebraic presentation.)

5also known as a Cousin group



3 Group extensions

Given a surjective Lie group morphism p : E — @, by Fact 2.0.1, K := ker(p)
is a normal Lie subgroup of E and the induced morphism E/K — @ is an
isomorphism. We write it as

15K5EBQ o1 (3)

and call it a short exact sequence. In that case, F is called an extension of the
base @ by the extension kernel K. Moreover, d.p : L(E) — L(Q) is surjective
of kernel L(K), hence an extension of Lie algebras

0— L(K) — L(E) % L(Q) — 0.

When K C Z(FE), such an extension is called central. If (3) is a central extension
with @ commutative, as in [MRM74, p.222], using Fact 2.0.3 one can construct
a skew-symmetric bimorphism

e:QxQ— K, (4)

to measure the deviation of E from commutativity. Indeed, the group F is
commutative if and only if e is constant.
Several topological properties of Lie groups are preserved by extensions.

Fact 3.0.1. If K,Q in (3) are compact (resp.connected, resp. discrete), then
so is B.

Proof. The statement concerning connectedness is in [Che46, Prop. 2, p.36].
The others are consequences of Fact 2.0.3. O

Fact 3.0.2 ([HN11, Cor. 16.3.9]). If (3) is a central extension of complex Lie
groups, where K is finite and E is connected, then Q is linear if and only if £
is linear.

The finiteness of K in Fact 3.0.2 is necessary. Consider the exact sequence
0 — Z%? - C — A — 0 defining a complex torus A. Here Z? and C are linear,
while A is not.

Similarly, an extension F of a finite group @ by a linear group K is linear.
Indeed, let p : K — GL,(C) be a faithful representation, then the induced
representation Ind%p : B — GL,,,(C) is also faithful, where m = #Q. Again,
the finiteness of @) is essential here. Example 3.0.3 shows the statement fails
when @ is only discrete and linear but infinite.

ExAMPLE 3.0.3. Work of Deligne [Del78] (see also [KRW20, p.470]) shows
that for any integers g > 2,n > 3, there is a central extension 1 - Z/n — G —
Spay(Z) — 1 for which G is not residually finite. By Malcev’s theorem ([Mal40,
Thm. VII]; see also [Nic13, p.1]), the discrete complex Lie group G is not linear,
even though Z/n and Sp,,(Z) are linear.



We turn to the classification of extensions. Two Lie group extensions C' and
C’ of B by A are called equivalent if there exists a morphism f : C' — C’ making
a commutative diagram

0 B C A 0
"
0 B c’ A 0.

In this case, f is bijective, hence an isomorphism by Fact 2.0.1. The trivial
extension of Q) by K refers to the equivalence class of the obvious sequence

1o K—>KxQ@Q—Q—1.

Fact 3.0.4 ([Bou72, Ch.III, no.4, Prop. 8|). The Lie group extension (3) is
trivial if and only if there is a morphism r : E — K with ri = Idg. The
extension is a semidirect product if and only if there is a morphism s : Q@ — E
with ps = Idg.

The extension (3) defines a group morphism ¢ : Q@ — Out(K), called the
outer action corresponding to the extension. We call (K, ¢) the extension kernel
of (3). Equivalent extensions induce the same outer action. For two complex Lie
groups @, K and a group morphism 1 : Q@ — Out(K), denote by Ext(Q, K, )
the set of equivalence classes of extensions of @) by K with outer action .

Since the center Z(K) is a characteristic complex Lie subgroup of K by
Lemma 2.0.6, there is a canonical group morphism Aut(K) — Aut(Z(K)) which
passes to another group morphism Out(K) — Aut(Z(K)). Hence a group
morphism

o : Q — Aut(Z(K)) ()

induced by 1. When K is commutative, 1) = 1)y and the construction of Baer
sum ((42) and [FLA19, p.444]) makes Ext(Q, K, 1) an abelian group.

3.1 Pullback and pushout
Extensions can be pulled back.

ExAMPLE 3.1.1 (Pullback). Given a morphism g : Q" — @ of complex Lie
groups, pulling (3) back along g gives an extension of )’ by K as follows.

The map F x Q" — Q defined by (z,h’) — p(x)~1g(h’) is holomorphic, so
the preimage E’ of the identity element eg € @) is an analytic subset of E x Q'.
As ' ={(z,h') € Ex Q" : p(x) = g(h')} is a subgroup of FE x Q’, by Corollary
2.0.5, F’ is a complex Lie subgroup of F x @’ (which is the extension group).
Let p' : ' — Q" and ¢ : E — F be the projections. Then the triple (E’,¢,p’)
is the fiber product E x¢ Q' in the category of complex Lie groups.

For every ' € @', by surjectivity of p, there is x € E with p(z) = g(h’).
Then (z,h') € E’ with p'(x,h’) = h’. Hence p’ is surjective.

Define a morphism ¢’ : K — E’ by i'(k) = (k, eqg’). Then ¢’ is injective. Since
p't’ is trivial, i'(K) C ker(p’). Conversely, for every (x,h’) € ker(p'), b = eq



and p(z) = gleg') = eq. Thus, z € K and (z,h') = i'(z) € /(K). Hence a
commutative diagram with exact rows

1 KB 2, 1
bl
1 K—5E—>Q 1.

The first row is called the pullback extension of (3) along g. Its outer action is
g : Q" — Out(K). Hence a map Ext(Q, K,v¢) — Ext(Q’, K,¢g). It is a group
morphism when K is commutative ([Hocb1a, p.99]).

The universal property of pullback shows that the first row of every such
commutative diagram is determined by the second row and g : Q' — Q. By
construction, the pullback of a central extension is also central.

A pushout extension along a morphism f : K — K’ of complex Lie groups
may not exist. When it exists, it satisfies a universal property.

Lemma 3.1.2. Consider a commutative diagram of complex Lie groups, where
each row is exact

1 K E—25Q ‘
y jm [1a (6)
1 K —“5 B —T5Q 1.

Then the triple (E',m, ) has the following universal property: For every commutative
diagram of complex Lie groups

K—>FE

[l

with ¥ (m(c)~tbm(c)) = ¢(c) " 1(b)¢(c) for every c € E and b € K', there ezists
a unique morphism n : E' — H keeping the diagram commutative.

In particular, up to a unique equivalence, the second row of (6) has at most
one choice when the first row and f : K — K’ are given.

Proof. We construct amap 7 : E' — H as follows. For every ¢’ € E’, there exists
¢ € E with p(c) = n(c’). Let b’ = m(c)~'c’. Then n(b') = p(c)~'7(c) = eq, so
b € K'. Define n(c') = ¢(c)yp (V).

To show that 7 is well-defined, we claim that n(c¢’) is independent of the
choice of c. Indeed, take another ¢; € E with p(c;) = 7(c'), then p(c™1c;) =

eq, hence c7'c; € K. This time the element in K’ is b} = m(c1)~!¢/, so



b = f(cte1)by in K" and hence (V') = ¢(cter)yp(b)). Therefore, ¢(c)yp(b') =
@(c1)(b)) in H as claimed.

We check that 7 is holomorphic near ¢’ € E’. Indeed, by Fact 2.0.3, there is
an open neighborhood U of 7(¢’) € @, and a holomorphic map s : U — E with
ps = Idy. The map

7N U) - Ux K', xw (r(2),[msr(x)] " z)
is biholomorphic. The map
UxK' —H, (u,b) = ¢(s(u)b()

is holomorphic. The composition is exactly 7| -1 (.

We check that 7 is a group morphism. For ¢} € E’ (i = 1,2), choose ¢; € E
with p(c;) = w(c;). Then for ¢}c} we can choose cico. Let b = m(c1)~ ¢} and
by = m(ca)tch. Then

V= m(cica) "ty = mlca) T b m(co)bh.
By the construction of 7, one has

n(cicy) = plerca)p(b')
=¢(c1)p(c2)b[m(c2) ™ bim(c2)] (b))
=¢(c1)(b)d(c2)y(by) = n(ch)n(cz)

Then 7 is a morphism of complex Lie groups. By construction, 7 is the
unique group morphism keeping the diagram commutative. O

ExXAMPLE 3.1.3. Assume that () is connected. As the map p : £ — @
in (3) is open by Fact 2.0.3, p(Ey) is a nonempty open subgroup of @ and
hence p(Fy) = Q by the connectedness of Q. Then the following diagram is
commutative and each row is exact

1 —— KNE, Eo Q 1
| [ e
1 K E Q 1

By Lemma 3.1.2, the second row is determined by the inclusion K N Ey — K
(an open normal subgroup) and the first row.

3.2 Rudimentary classification

Let K,Q be complex Lie groups, where @) is discrete. Consider an abstract
group extension 1 - K — E — @ — 1. Then as a set £ = U,z K, where
x runs through a set of left representatives of E/K. Thus E admits a unique
complex manifold structure making the maps holomorphic. However, the group
law of E needs not to be holomorphic in this complex structure. The semidirect

10



product sequence 1 - C — C x Z/2 — 7Z/2 — 1 serves as an example, where
Z/2 acts on C by complex conjugation. But when the base is discrete and the
outer action is trivial, the Lie group extension problem reduces to the abstract
group extension problem.

Proposition 3.2.1. Let K,Q be complex Lie groups. If Q is discrete, then
the natural forgetful map ¢ : Ext(Q, K,1) — Extaps(Q, K, 1) is bijective, where
Extaps(@, K, 1) denotes the set of isomorphism classes of abstract group extensions
of Q by K with trivial outer action. In fact, for every abstract group extension
1—-K—=FE—Q—1, E admits a unique complex manifold structure making
the sequence an extension of complex Lie groups.

Proof. We prove that ¢ is injective. Consider Eq,E> € Ext(Q, K, 1) with
¢(E1) = ¢(F2). Then there is an abstract group isomorphism f : F; — Fs
making a commutative diagram

K — F;
N
FEs.

For every « € Ey, the restriction K — f(x)K of f is holomorphic, since the left
multiplication K — 2K (resp. K — f(z)K) by « (resp. f(z)) in E; (resp. Es)
is biholomorphic. Thus, f is holomorphic and hence an equivalence of complex
Lie group extensions.

We prove that ¢ is surjective. Given an abstract group extension 1 - K —
E — Q — 1in Extans(Q, K,1), we endow F with the complex structure making
the maps holomorphic. We show the group law m : E x E — F is holomorphic.
Choose a set-theoretic section s : Q — E. Then the map K x @ — E defined by
(a,b) — as(b) is biholomorphic. With this identification, m becomes the map

p: KxQxKxQ — KxQ, (a,b,a’,b) — (as(b)a’s(b)s(bb' ), bb) = (ap(a’)s(b)s(b'))s(bb’) ™1, bb'),

where p : K — K is x + s(b)zs(b)~!. Since the outer action is trivial,
p € Inn(K). Therefore, the map K x K — K defined by (a,a’) — ap(a’)
is holomorphic. Because @ is discrete, p (and hence m) is holomorphic. Then
E is a complex Lie group and the abstract extension lifts to Ext(Q, K,1). O

Corollary 7.2.6 below is a result about discrete base with nontrivial outer
action. We turn to two other simple cases.

Proposition 3.2.2. Every extension of C is a semidirect product. In particular,
every central extension of C trivial.

Proof. Let 0 - B — C % C — 0 be an extension. Then 0 — L(B) —

L(C) dep L(C) — 0 is an exact sequence of Lie algebras. Take a C-linear map
ds : L(C) — L(C) with dep o ds = Idc). Because dimc L(C) = 1, ds is a
Lie algebra morphism. As C is simply connected, there is a unique morphism
5: C — C with d.s = ds. Since d.(ps) = Idpc), one has ps = Idc. Therefore,
this extension is a semidirect product by Fact 3.0.4. O

11



Proposition 3.2.3. Let B be a connected commutative complex Lie group.
Then every central extension of C* by B is trivial.

Proof. Let C be a central extension of C* by B. Consider the pullback extension
along exp(2mie) : C — C*. By Proposition 3.2.2, there is a morphism p : C —
C" with p’p = Idc. Then pep(1) = exp(2wi) = 1, so ep(l) € B. As B is
connected commutative, its exponential map expp : L(B) — B is surjective.
Take v € L(B) with expg(—v) = ep(1).

Z

RN S
lld le : lexp(27rio)

1 B c -t 1

Define a holomorphic map
J o p(z) = expplz0)p(v).
We check that p’ is a group morphism. For every z,w € C,
§ (2 +w) = expp((z + w)0)p(z + w) = expp(2v) exp (wo)p(2)p(w)
=expp(2v)p(2) expg(wv)p(w) = p'(2)p' (w),

where the last but one equality uses B C Z(C).

Therefore, p’ is a complex Lie group morphism. Moreover, p'(1) = expg(v)p(1) =
ep(—1)p(1). Then €p’(1) = ec. Therefore, p’(Z) C ker(e). Thus, p’ induces a
morphism s : C* — C making a commutative diagram

¢y oY

J{exp(Qﬂ'io) J{e J{exp(Qﬂ'io)

C* --%y C == C*
Since p'p’ = Idc and exp(27ie) : C — C* is surjective, ps = Id¢«. From Fact
3.0.4, the extension C' is trivial. O

Example 7.1.7 gives a result about non-central extensions of C*.
Now assume that the Lie group K is discrete and commutative. We recall
results® from [Hoc51b, Sec. 3].

Fact 3.2.4 ([Hocb1b, p.545]). Let K, Q be Lie groups. If K is discrete commutative
and Q is connected, then the extension (8) of Lie groups is central.

Corollary 3.2.5. Let K,Q be commutative Lie groups. If Q is connected and
K is discrete, then every extension of QQ by K is commutative.

6They are stated for real Lie groups, but the proofs extend to the complex setting.
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Proof. Let (3) be such an extension. By Fact 3.2.4, this extension is central.
Then consider the induced continuous map (4). Since @ is connected and K is
discrete, this map is constant, or equivalently, F is commutative. O

Let Ab, be the abelian category of abelian groups that are at most countable.
Fact 3.2.6 shows that the universal cover of a connected Lie group is “universal"
among all the extensions with discrete commutative kernels.

Fact 3.2.6 (Hochschild, [Hoc51b, Thm. 3.2 and Cor.]). Let Q be a connected
Lie group. Then the functor Ext(Q,-,1) : Ab. — Ab is represented by m (Q)
and the class of the universal cover sequence 1 — m(Q) — Q—>Q—=1in
Ext(Q,m1(Q),1). Hence an isomorphism ' : Ext(Q, K, 1) — Homap(m(Q), K)
functorial in K € Ab.. Moreover, E € Ext(Q, K,1) is connected if and only if
Tk (E) is surjective.

4 Commutative Extensions

4.1 Generalities

Lemma 4.1.1. The category C is naturally additive with finite direct products.

Proof. The Hom sets are commutative groups, and composition of morphisms
is bilinear. Moreover, the product G; x Gg of two commutative complex Lie
groups is both a product and a coproduct of G; and G5 in C. O

Although the category Alg of commutative complex algebraic groups is an
abelian category ([Mill7, Thm. 5.62]), as Example 4.1.2 and Example 4.1.3
show, C is NOT an abelian category.

EXAMPLE 4.1.2. Themap i : Z? — C defined by (a, b) — a+bv/2 is injective.
The image is not closed in C as it is dense in R. For every morphism f: C — X
in C, with fi = 0, we have f = 0 by identity theorem for holomorphic maps.
Thus 4 is a monomorphism and epimorphism in C, but not an isomorphism.

EXAMPLE 4.1.3. Let p: C?> — C?/Z* be the natural projection. Let i : C —
C? be the closed embedding defined by z — (z, \/ﬁz) Then the composition pi :
C — C?/Z* is an injective morphism (hence a monomorphism) in C. By [Leel3,
Example 7.19], pi(C) is a connected dense subset of C?/Z*. In particular, pi
is an epimorphism in C. The cokernel of pi is the zero morphism C2/Z* — 0.
However, pi is not an isomorphism in C.

Proposition 4.1.4 3 is a special case of [Conl4, Prop. D.2.1]. An elementary
proof is given.

Proposition 4.1.4.
1. Hom¢(C*,C) = 0.
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2. For A € C, the map
Home(C™, A) — Homvyee (L(C™), L(4)), f—d.f
is a group isomorphism.

3. Let f : C* — C* be a morphism in C. Then there is an integer k such that
f(2) = 2* for every = € C*. Hence an isomorphism Z = Hom¢(C*,C*).

Proof. The Lie algebra_, of C* is C. The exponential map exp : C — C* is
normalized as w — 2™,

1. Let f: C* — C be a morphism. Then d.f : C — C is linear. There is
a € C with def(v) = av for all v € C. Since 1 € C = L(C*) is mapped
to 1 € C* under the exponential map exp(2wie), one has 0 = f(1) =
dof(1) =a. Then d.f =0 and f =0.

2. It follows from the fact that C™ is simply connected and both groups are
commutative.

3. Consider the induced linear map on Lie algebras df : C — C. There is a
unique complex number k such that df (w) = kw for all w € C. Then

€2 — exp(df(1)) = fexp(1) = f(1) = 1.

Therefore, k is an integer. For every z € C*, there is w € C with exp(w) =
2. Then f(z) = f(exp(w)) = exp df (w) = exp(kw) = z*.

O

For A, B € C, the set of isomorphism classes of commutative extensions of
A by B is denoted by Ext(A, B).

Proposition 4.1.5.
1. Ext(e,e) : C°P x C — Set is a covariant functor.

2. Let € be the collection of extensions in C. Then the pair (C,E) is an ezact
category.”

Proof. 1. Fix A, B € C and an element of Ext(4, B): 0 -+ B SHoB Ao
(a) If f: B — B’ is a morphism in C, then
g:B—CxDB', b~ (=b,f(b))

is a morphism in C. It is injective and the (set-theoretic) image is
closed in C' x B’. By Fact 2.0.1 2, g identifies B as a complex Lie
subgroup of C' x B’. Let f.C be the quotient (C x B’)/B provided
by Fact 2.0.3. The canonical map B’ — C' x B’ induces an injective

Tsee [Sta22, Tag 05SF]
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morphism f,i : B = f.C since BN ({0} x B’) = {0}. Moreover,
B is in the kernel of the composition C' x B’ — A by (¢, 5) — p(c),
hence a surjective morphism f.p: f.C — A.
Note that f.po fii =0, so f.«i(B’) C ker(f.p). For every element x
of ker(f.p), take a representative (¢, 3) € C' x B’. Asp(¢) =0, c € B.
Then (0,5 + f(c)) — (¢, 8) = g(c). Therefore,

z=[(0,8+ f()] = fui(B+ f(c) € fu(B).

Thus, f.«i(B') = ker(f.p)
Therefore, the sequence

0B ot a0

is exact and f.C € Ext(A, B'). Hence a morphism f, : Ext(4, B) —

Ext(A, B’) in the category Set.

Let F be the canonical morphism C' — f.C. By construction, the
extension f,C € Ext(A, B’) has the following universal property: for
every morphism h : A — A’ in C, every C' € Ext(A’, B'), every
morphism G : C — C’ making the diagram commutative

0

0

B C A 0
lf Fl l{d

B f.CG A 0 (7)
lld u % ih

B cr A 0,

there exists a unique morphism u : f,C — C’ keeping the diagram

cominutative.

(b) If h : A — A is a morphism in C, by Example 3.1.1, we get a
morphism h* : Ext(A, B) — Ext(A’, B) in the category Set. Let F be
the canonical projection h*C' — C'. By construction, the extension
g*C has the following universal property: for every morphism g :
B’ — B, every extension C' € Ext(A’, B), every morphism G :
C’" — C making the following diagram commutative

0

0

there exits a unique morphism v

commutative.

B’ c’ A’ 0

b

B h (G A 0 (8)
woof)

B C A 0,
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(c) Let f: B— B, g: A— A’ be morphisms in C, C € Ext(A4, B),
and C' € Ext(A’, B’). Then the relation f.C = ¢*C’ in Ext(A, B’)
is equivalent to the existence of a morphism F : C — C’ making a
commutative diagram

0 B c A 0
ool
0 B ' A 0.

Indeed, it follows from the universal properties in Points (1la) and
(1b). For every X € Ext(A’, B), in view of the diagram

0—— B— ¢ X — A——0

ool L

X A 0

A

00— B — f,X — A —— 0,

one has f,g*X = ¢* f, X. This completes the proof.

2. It follows from Point 1 and Lemma 4.1.1.
O

EXAMPLE 4.1.6. If A is a complex torus with dim A = g, B is the discrete
group Q/Z, then Ext(A, B) is isomorphic to B9 by Fact 3.2.6. Even though B
is an injective object of Ab, the functor Ext(-, B) : C°® — Ab is nonzero.

EXAMPLE 4.1.7. For an extension 0 — B — C % A — 0 in C, the pushout
i.C € Ext(A,C) is the trivial extension. In fact, i.C = C x C/B with the
embedding

B—-CxC, b~ (=bb).

The group law C' x C — C descents to a morphism r : i,C — C. Then
r 0i,(i) = Ide. By Fact 3.0.4, 4,.C is trivial.

Similarly, as the diagonal inclusion C' — C' x C factors through a morphism
s:C = p*C and p*(p) o s = Id¢, the pullback p*C € Ext(C, B) is also trivial.

Fact 4.1.8 follows from Proposition 4.1.5.

Fact 4.1.8 ([Ros58, Prop. 5|, [Ser88, Prop. 1, p.163]). 1. For every A,B €
C, under the Baer sum Ext(A, B) is an abelian subgroup of Ext(A, B,1).

2. The functor Ext(e,e) : C°? x C — Ab is an additive bifunctor.

3. For any C,C" € Ext(A, B), the product C x C' is naturally an element of
Ext(A x A, B x B).

4. Letd: A — A X A the diagonal map of A and s : B x B — B the group
law of B. Then C + C" = d*s,(C x C') in Ext(A, B).
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Corollary 4.1.9. For every commutative complex Lie group A, the restriction
Ext(A,-) : Vec — Ab factors through a functor from Vec to the category of all
complex vector spaces.

By Example 4.3.3 below, for every V' € Vec, dimc Ext(A, V) is finite. Hence
an additive functor Ext(A4,-) : Vec — Vec.

ExAMPLE 4.1.10. Endowing each object of Ab. the discrete topology gives
a functor Ab, — C, identifying Ab, as a full subcategory of C. The subcategory
Ab, is closed under extension by Fact 3.0.1. From Proposition 3.2.1, the forgetful
morphism Ext(A, B) — Exty(A, B) is an isomorphism for every A € Ab, and
every B € C.

EXAMPLE 4.1.11. Analytification functor (e)** : Alg — C identifies Alg
as a subcategory of C (which is not full). The extension problem within the
subcategory Alg is discussed by Rosenlicht [Ros58] and Serre [Ser88, Ch. VIIJ.
They define a similar additive functor Extajs : Alg® x Alg — Ab. For every
A, B € Alg, there is a natural morphism Extaig(A, B) — Ext(A*", B*"). In
general, this morphism is neither injective nor surjective.

For example, when A/C is an abelian variety, Extais(Gg, A) = 0 while
Extaig (G, A) is non-canonically isomorphic to the torsion subgroup Ao, of
A (JMM66, Introduction, 1.]). But Ext(C*, A*") = 0 by Proposition 3.2.3, so
the natural morphism Extaig (G, A) = Ext(C*, A*") is not injective.

For any two abelian varieties X;/C (i = 1, 2) of positive dimension, Ext 14 (X2, X1)
is countable while Ext(X3", X#") is uncountable. In fact, the natural morphism
Extalg (X2, X1) — Ext(X3", X{") is an embedding onto the torsion subgroup of
Ext(X3™, X$) (|]BL99, Ch. 1; Prop. 6.1, Cor. 6.3]).

Lemma 4.1.12 is mentioned at the bottom of [Hoc51b, p.546].

Lemma 4.1.12. If G is a commutative connected Lie group, then G is a divisible
Z-module.

Proof. The exponential map exp : L(G) — G is surjective. For every = € G,
there is v € L(G) with exp(v) = x. For every integer n > 1, exp(v/n) € G and
n(exp(v/n)) = x.

Corollary 4.1.13. An extension 0 - B — C — A — 0 in C with B connected
and A discrete is trivial. In particular, for every G € C, the natural ezxact

sequence
0—-Gy—G—G/Gy—0

is a trivial extension, hence a non-canonical isomorphism G — Gy x G/Gq in

C.

Proof. By Lemma 4.1.12, the Z-module B is divisible, so the functor Ext (-, B) :
Ab — Abis zero. Since A is discrete, the result follows from Example 4.1.10. [
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EXAMPLE 4.1.14. The abelian group underlying a complex torus B is divisible
by Lemma 4.1.12, hence an injective object of Ab and Extj (e, B) : Ab — Ab

is zero. However, Ext(e, B) : C°® — Ab can be nonzero. In fact, [BLO04, (8) b),

p.68] gives an example of a nontrivial exact sequence of complex tori

0—-—B—-C—-A—=0

with dim A = dim B = 1.

4.2 Exact sequences of Ext

(2

Let 0 + A" 5 A% A” — 0 be an exact sequence in C, i.e., A € Ext(A”, A').
For f € Hom(A’, B), there is f.A € Ext(A”, B). Hence a map

d: Hom(A', B) — Ext(A”,B), d(f) = f.A.
Then d is a group morphism. The formation of d is functorial in B.

Proposition 4.2.1. Let B € C. The sequence in Ab with obvious morphisms

0 — Home(A”, B) — Home(A, B) — Home(A', B) % Ext(A”, B) % Ext(A, B) — Ext(4’, B)
is exact and functorial in B.
Proof.

e Exactness at Hom(A, B) follows from Fact 2.0.1.

e Exactness at Hom(A’, B): By Example 4.1.7, the composition
Hom(A, B) % Hom(A', B) — Ext(A”, B)

is zero. Now take ¢ € ker(d). By Fact 3.0.4, there is a morphism r : ¢, A —
B with r¢.(i) =Idg. Let F : A — ¢, A be the canonical morphism. Then
rFi=r¢.(i)¢ = ¢. Hence ¢ € im(iy).

e Exactness at Ext(A”, B): By Example 4.1.7, for every ¢ € Hom(A’, B),
p*de = p*Pp. A = ¢.p*A = 0, i.e., the composition

Hom(A', B) % Ext(A”, B) ™ Ext(A, B)

is zero.

Now take C € ker(p*) C Ext(A”, B) with connecting morphisms f: B —
C and g : C — A”. By Fact 3.0.4, there is a morphism s : A — p*C
with p*(p) o s = Ids. For every o’ € A’, the image of s(a’) in A” is
p(a’) = 0, so the image of s(a’) in C lies in B. Thus, the restriction of s
to A" is a morphism ¢ : A’ — B. By construction, the extension group of
d(¢) = ¢ A € Ext(A”,B)is Ax B/D, where D = {(—d/,¢(a’)) : a’ € A'}.
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Define ¢ : A — C by ¢ = F o s. Define
AxB—C, (a,b)— ¢(a)+ f(b).

For every o’ € A', ¢(—a’) + f(s(a’)) = 0, hence a factorization ¢.A — C
in the middle keeping the diagram commutative:

0 A — AL q 0
T
0 B - 6. A A 0
Jld % lld
0 B—t o 0
1d F p
0 L ij' ( re, Ix 0.

Then C = ¢, A = d¢ in Ext(A”, B). Therefore, ker(p*) = im(d).

e Exactness at Ext(A, B): As the composition A’ — A — A” is zero and
Ext(e, B) : C°? — Abis an additive functor, the composition Ext(A”, B) —
Ext(A, B) — Ext(A’, B) is zero.

Conversely, if C; € Ext(A, B) with i*Cy = 0 in Ext(A’, B), then there is a
morphism s : A" — *C with i*gos = Id 4. The composition ¢ : A" — Cy
is injective. Indeed, if a’ € ker(¢), then s(a’) = (a/,0) in A’ x Cy. Thus,
i(a’) = 0 by the construction of pullback extension. Since i is injective,
a =0.

Let C; — C = C1/¢(A’) be the quotient morphism. Let fy : B — C be
the induced morphism. Then fj is injective. Indeed, if b € ker(fy), then
f(b) = ¢(a’) for some o’ € A’. Then (o, f(b)) € i*Cy,s0i(a’) = gf(b) = 0.
Hence o/ =0 and f(b) = 0. Therefore, b = 0.

Because pgp = p oi = 0, the morphism pg : C; — A” descends to a

surjective morphism go : C' — A”. We prove that the bottom row of the
following diagram is exact:

PR
0 B #Cp —— A 0
itg .
lld l et lz
f 0
0 B ¢ —2— A 0
J{Id J lp
0—B-—L 024 —0

Since gf = 0, one has gofo = 0. Therefore, fo(B) C ker(gg). Conversely,
for ¢ € ker(gop), there is ¢; € C; with [¢1] = ¢. Since pg(c1) = go(c) = 0,
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one gets g(c1) € A’. Then gog(c1) = ger. So ¢1 — ¢g(cr) € ker(g) = B
and

foler — dg(cr)) = [e1 — ¢gler)] = c.

Therefore, ker(gg) = fo(B). In particular, the bottom row is exact, i.e.,
C € Ext(A”, B). By the universal property showed in the diagram (8),
Cl = p*C

O

EXAMPLE 4.2.2. Let A be a complex torus, and let B be a finite abelian
group. Then Hom¢(A,B) = 0. Let integer n(> 1) be a multiple of #B.
Applying Proposition 4.2.1 to the exact sequence in C

O%A[n]%A[Ti;‘AHO,
one gets an exact sequence in Ab:
0 — Hom(A[n], B) — Ext(A, B) & Ext(A, B).

Since the morphism [n]|g : B — B is zero in C, by Fact 4.1.8, f = ([n]g)« = 0.
Hence an isomorphism Hom(A[n], B) — Ext(A, B) that is functorial in B, which
is also confirmed by Fact 3.2.6.

Let 0 - B’ - B — B” — 0 be an exact sequence in C. If A € C and
¢ € Hom(A, B"”), then ¢*B € Ext(A’, B). Define a map d : Hom(A4, B") —
Ext(A, B') by d(¢) = ¢ B.

Proposition 4.2.3. Let 0 - B’ — B — B” — 0 be an ezact sequence in C
and A € C. Then the sequence

0 — Hom(A, B') — Hom(A, B) — Hom(4, B") % Ext(A, B') — Ext(A, B) — Ext(A4, B")

in Ab is exact and functorial in A.

The proof is analogous to that of Proposition 4.2.1 and is thereby omitted.
Cousider the extension problem with connected bases. Corollary 4.2.4 should
be compared to [Sha49, Thm. 1]: for two compact connected real Lie groups
G, H, the cokernel of the restriction morphism Hom(H, Z(G)) — Hom(m (H), Z(G))
is isomorphic to the group of extensions of H by G.

Corollary 4.2.4. Let A, B be commutative complex Lie groups. Assume that
A is connected with universal cover w : A — A. Then there is a canonical exact
sequence in Ab:

0 — Home (A, B) % Home (A, B) 5 Homay,(m1(A), B) — Ext(A, B) — 0, (9)

where v is induced by restriction.
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Proof. By Proposition 3.2.2, Fact 3.2.6 and Corollary 4.1.13, the functor Ext(C, e) :
C — Ab is zero. By Fact 4.1.8,

Ext(C", o) = 0. (10)
The proof is concluded by Proposition 4.2.1. O

EXAMPLE 4.2.5. In Corollary 4.2.4, if B discrete, then Home(A, B) = 0 and
the natural morphism Hom(7(A), B) — Ext(A, B) is an isomorphism, which
agrees with Fact 3.2.6.

4.3 Determination of commutative extension group

The commutative extension problem of complex Lie groups is answered by
Proposition 4.3.1. Fix two commutative complex Lie groups A, B.

Proposition 4.3.1. There is a non-canonical isomorphism in Ab:
Ext(A, B) — Exty(A/Ao, B/By) & Homay(m1 (Ao), B/By) & Ext(Ag, Bo),
and Ext(Aq, By) is the cokernel of the natural restriction morphism
s : Homyec(L(A), L(B)) — Homap(m1(Ao), Bo).

Proof. By Corollary 4.1.13, there are non-canonical isomorphisms in C: A —
A/Ay x Ag and B — B/By x By. Using Fact 4.1.8, one gets an isomorphism in
Ab:

Ext(A, B) — Ext(A/Aq, Bo)®&Ext(A/Aq, B/Bo)&Ext(Ag, B/Bo)&Ext(Ag, Bo).

The first factor Ext(A/Ag, Bp) = 0 by Corollary 4.1.13. By Example 4.1.10, the
natural morphism Ext(A/Aq, B/By) — Ext}(A/Ag, B/By) is an isomorphism.
Fact 3.2.6 gives a natural isomorphism Homay, (71 (Ao), B/Bo) — Ext(Ao, B/Bo).
Corollary 4.2.4 identifies Ext(Ag, By) with the cokernel of the restriction map
r = Home(Ag, Bo) — Homap(m1(Ag), By). By Proposition 4.1.4 2, the group
morphism

t: Homc(Ao, BO) — HomVec(L(A)a L(B))v P> ded
is an isomorphism. The proof is finished by setting s = rt~1. O

For every C € Ext(A, B), by Fact 2.0.3, the morphism C' — A is a principal
B-bundle. The bijection (1) gives rise to a canonical map

7 Ext(A, B) — H'(A,Ba). (11)

Fact 4.3.2 is taken from [Ros58, pp.698-699] and the proof of [Ser88, Ch. VII,
no. 5, Prop. j].
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Fact 4.3.2. The map (11) is a group morphism and the formation of m is
functorial, in the sense that it commutes with the morphisms f. : Ext(A, B) —
Ext(A, B’) defined by f : B — B’ and g* : Ext(A, B) — Ext(A4’, B) defined by
g: A" — A. When B is a vector group, the map 7 is C-linear.

ExXAMPLE 4.3.3. Let X be a toroidal group, and let w : X — X be the
universal covering of kernel F. Then F' is a discrete subgroup of the vector
space X. By Proposition 4.2.1,

Home (X, C) — Home (X, C) — Home (F,C) — Ext(X,C) — Ext(X,C)

is an exact sequence in Ab. From Definition 2.0.9, Hom¢(X,C) = 0. By
Proposition 10, Ext(X,C) = 0. Hence the first exact row of Diagram (12).
According to [AKO1, p.48], there is a C-linear isomorphism Home(X,C) —
H°(X,0Q%) and every global holomorphic 1-form on X is d-closed. So taking
de Rham cohomology class results in a linear map H°(X, Q%) — H'(X,C).
The inclusion Cx — Ox induces a linear map H'(X,C) - H!(X,0Ox). By
universal coefficient theorem (see, e.g., [Hat05, Thm. 3.2]), the natural morphism
Home (F,C) — H'(X,C) is an isomorphism. Hence a commutative diagram

0 —— Home(X,C) —— Home(F,C) —— Ext(X,C) —— 0

lz lg j(n) (12)

0 —— HY(X,0L) —— H'Y(X,C) —— H'(X,0x).

Let b1 (X) := dim¢ H!(X,C) be the first Betti number of X, i.e., the Z-rank of
F. From [AKO1, p.48], as a C-vector space

H'(X,C)

:E}Xt()(7 (C) = m

(13)

is of dimension by (X) — dim X.

If X is a toroidal theta group,® then 7 : Ext(X,C) — H'(X,Ox) is a C-
linear isomorphism by [AKO01, Thm. 2.2.6 b)]. Otherwise, X is a toroidal wild
group®and H'(X,Ox) is infinite dimensional by [AKO1, Prop. 2.2.7].

A seemingly different way to compute the last factor in Proposition 4.3.1, i.e.,
the group of commutative extensions of two connected commutative complex Lie
groups, is given in Example 4.3.4.

ExXAMPLE 4.3.4. Start by the special case that X is a toroidal group and
B is a connected commutative complex Lie group. Denote the kernel of the
universal cover of B (resp. X) by ¢ : K — B (resp. F — X). By (10) and
Proposition 4.1.4 2, the sequence

0 — Home(X, K) — Home(X, B) — Home(X, B) — 0

8in the sense of [AKOL, Def. 2.2.1]
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is exact in Ab. As F'is a free Z-module,
0 — Home(F, K) — Home(F, B) — Home(F, B) — 0

in Ab is also exact. Applying Proposition 4.2.1 and the snake lemma to the
commutative diagram

0 —— Home(X, K) —— Home(X, B) —— Home(X,B) —— 0

! !

0 —— Home(F, K) —— Home(F, B) —— Home(F, B) — 0,
one gets an exact sequence in Ab:
0 — Home (X, B) 5 Ext(X, K) 5 Ext(X, B) — Ext(X,B) » 0. (14)

Since K is a free Z-module, by Fact 3.2.6, Ext(X,K) = H}(X,Z) ®z K. By
Fact 4.1.8 and (13), one has

_ HY(X,C _
EXt(X,B) = HO(E(Q}X)) ®(C B

The group morphism ¢, is induced by the Z-bilinear map

H'(X,C -
HY(X,Z) x K — (HO((X, ’Qﬁ)) ®c B, (n,2) = [n] ®@u(z).
Thus we can compute Ext(X, B) from (14).

For a general connected commutative complex Lie group A, by [AK01, 1.1.5],
A =C!x (C*)™ x X, for some integers [,m > 0 and a toroidal group X,. By
Fact 4.1.8, Proposition 3.2.2 and Proposition 3.2.3, Ext(A, B) = Ext(Xy, B),
reducing to the previous case.

5 Commutative extensions of complex tori

5.1 Primitive cohomology classes

Every central extension of a compact real Lie group by a vector group is trivial,
shown by Fact 5.1.1.

Fact 5.1.1 (Iwasawa, [Iwa49, Lem. 3.7], [Hoc51a, Footnote 10, p.107]). Let
(8) be an exact sequence of real Lie groups. If K is a vector group and Q
is compact, then this extension is a semidirect product. In particular, if this
extension s central, then it is trivial.

Contrary to the real case, Example 5.1.2 shows a commutative extension of
a complex torus by a vector group can be nontrivial.
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EXAMPLE 5.1.2 ([MM60, p.145, Exemple|, [LH76, Sec. 1.3]). Set C = C* x
C*. Then B = {(e*,¢e"*) : z € C} is a complex Lie subgroup of C' (but not an
algebraic subgroup of G,, x G,,) isomorphic to C. The quotient A = C/B is
an elliptic curve. The exact sequence 0 - B — C — A — 0 is a nontrivial
extension, as C is not biholomorphic to B x A.

In the remainder of Section 5, unless otherwise specified, let A be a complex
torus of dimension g and B be a commutative complex Lie group. Let s4 :
A x A — A be the group law of A. The dual of A is AV = Pic’(A).

The analogue of Proposition 5.1.3 for abelian varieties is [Ros58, Prop. 9].

Proposition 5.1.3. The morphism (11) is injective.

Proof. Let C € ker(m). The principal bundle C' — A is trivial, so there is a
morphism s : A — C of complex manifolds with ps = Id4. Then there exists
a unique b € B with b- s(ea) = ec, where dot signifies the action of B on the
fiber p~1(e4). Define

s:A—=C, s(a)=10b-s(a).

Then s’ is a complex manifold morphism with ps’ = Id 4. Replacing s by s, we
may suppose that s(es) = ec. By [NW13, Thm. 5.1.36], s is a morphism in C.
By Fact 3.0.4, C' = 0 in Ext(A, B). Therefore, 7 is injective. O

We propose to determine the image of (11). Let Mfd be the category of
complex manifolds. Define a functor

T :Mfd°® — Ab, T(X)=H'(X,Bx).

When X is a point, T(X) = 0. Let X1, Xs € Mfd, and let p; : X1 x Xo = X;
(i = 1,2) be the projection to the i-th factor. There is a morphism pj @ p} :
T(Xl) X T(XQ) — T(X1 X X2)

Definition 5.1.4. [Ser88, (29), no.14, Ch. VII] For A € C, an element x €
T(A) = H'(A,B,) is called primitive if s%(z) = pi(z) + p3(z) in T(A x A).
Denote by PT(A) the subgroup of T'(A) formed by the primitive elements.

Fact 5.1.5. [Ser88, Lem. 8, p.181] The functor PT : C°P — Ab is additive.
Theorem 5.1.6 is an analytic analog of [Ser88, Thm. 5, p.181].

Theorem 5.1.6. Assume that By is linear. Then the image of the morphism
(11) is the set of primitive elements of H'(A,Ba).

Proof. Take C € Ext(A, B) and put = w(C). By Facts 4.1.8 and 4.3.2,
sa(x) = sym(C) = sy (C) = m(piC + p3C) = pi7(C) + p37(C) = piz + p3a,

So x is primitive.
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Conversely, let © € H'(A,B4) be a primitive element and let p : C — A be
the corresponding principal B-bundle. We show that there exists a structure of
commutative complex Lie group on C' which makes it an extension of A by B.

By Corollary 4.1.13, every morphism of complex manifolds A — B is constant.
Let C" — A x A be the pull-back of C — A along s4 : Ax A — A. As z is
primitive, ¢’ = piC+p5C in T(Ax A). Choose a surjection p;CX 4x ap5C — C’
satisfying (2). Since piC = C x A and p3;C = A x C, as a complex manifold
PiC X ax 4 p5C is isomorphic to C' x C. Hence a morphism g : C' x C — C' of
complex manifolds:

C xC=piC xaxapsC —— piC+psC=0C" — C

l Jp (15)

Ax A —2 5 A

By construction, it satisfies
glb-c, b -y =(b+b)- gle ) (16)

for every ¢, ¢’ € C and b,V € B.
Choose a point e € p~1(e4). Since p(g(e,e)) = sa(ea,ea) = ea, there exists
a unique b € B with b- g(e,e) = e. Replacing e by b- e, we can suppose that

gle,e) =e. (17)
We verify that (C,e,g) is a group.

Identity According to (15), there is a morphism h : C — B of complex manifolds
with g(c,e) = h(c) - ¢ for all ¢ € C. By (17), h(e) = ep. Furthermore,
(16) shows that h(b-c) = h(c) for all b € B. Therefore, h factors as

C % A% B The morphism A of complex manifolds is constant, so
g(c,e) = cfor all ¢ € C. The formula g(e, c) = ¢ is proved similarly.

Associativity According to (15), there is a complex manifold morphism u : C'x C' x C —
B with
g(c, g(cla C”)) - U(C, C/, C//) ’ g(g(c, C/)a C”)
for all ¢,¢/,¢” € C. Then u(e,e,e) = eg. Equation (16) shows that u
factors through a morphism @ : A X A x A — B of complex manifolds.
Then 4 is of constant value eg. Therefore, g(c, g(c’, ")) = g(g(c, '), ")
for all ¢,c’,c” € C.

Inverse Denote by is : A — A (resp. ip : B — B) the inverse map of A (resp. B).
Let C~ — A be the principal B-bundle corresponding to —x € H(A, Ba).
There is a morphism f : C — C~ of principal B-bundles over A, such that
for every b€ B, ce C, f(b-¢) = (=b) - c. Since 04 = i4 + Ida, by Fact
5.1.5, 0 = 0%x = ¢ + z, hence iy = —z. In other words, the pullback
of p: C — Aalong iy is C~ — A.

25



C i C
l p
A4y 4

The induced morphism i : C — C of complex manifolds is such that for

every ce C, b€ B,
i(b-c) = (=b)-i(c). (18)

Since i(e) € p~'(ea), there is b € B with b-i(e) = e. Define i/ : C — C
by i'(z) = b-i(x) and replace i by i’. Then we may further assume that
i(e) = e. Because

p(g(c,i(c))) = sa(p(c),pi(c)) = sa(p(c),ia(p(c))) = ea,

there exists a morphism v : ¢ — B of complex manifolds such that
g(c,i(c)) = v(c) - e and v(e) = ep. By (16) and (18), v factors through
v : A — B, which is of constant value eg. Therefore, g(c,i(c)) = e for all
ceC.

In conclusion, (C, e, g,%) is a complex Lie group and (15) shows that p: C' — A
is a morphism. Define an injective map ¢ : B — C by b+ b-e. By (16), then ¢
is a morphism. Since «(B) = p~!(e), the sequence

0-BSCH A0

is exact. By Proposition 6.0.2 2 below, C is commutative and hence C' &
Ext(A, B). (The commutativity of C' can also be proved using an argument of
similar type.) Therefore, z = 7(C) is in the image of . O

5.2 The case B =C*

We review some basics about (holomorphic) line bundles on complex tori.

Definition 5.2.1. [Weid8, Ch.VIII, n.58] Let L — A be a line bundle on a
complex torus. If for every a € A, the pullback line bundle 7' L is isomorphic
to L, then we write L = Oy4. Here T, : A — A is defined by Ty, (z) = = + a.

By [BL04, p.36], L induces a morphism
6p: A=A, a—T/LL

Then L = O,4 is equivalent to ¢y, = 0. Then [BL04, Prop. 2.5.3] becomes Fact
5.2.2.

Fact 5.2.2. Let L — A be a line bundle on a complex torus. The following
conditions are equivalent:

1. L is analytically equivalent to O 4;
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2. L € Pic’(A);
3. L= OA.

Proposition 5.2.3. Let L — A be a line bundle on complex torus. Then
L=0,4 if and only if s{ L = piL ® p5L.

Proof. If s} L = piL ® p5L, then for every a € A, the line bundle TL =
(s%L)|axa = WL ®@p3sL)|axa =L, i.e., L=04.

Conversely, if L = Oy, then for every a € A, (s L)|axe = T)L =L =
(piL)| Axa- Therefore, s*L®piL~' — A x A is a line bundle, whose restriction
to A x a is trivial for all @ € A. By seesaw theorem [BL04, A.8], there is a line
bundle M — A such that s*L®p{L~! = p3M. Then s*L = p; L@ p5M. Hence,
L =5"Lloxa = (piL @ p5M)|oxa = M. Therefore, s*L = p;iL @ p5L. O

Theorem 5.2.4 is mentioned without proof in [KKNO08, Sec. 1.2]. The
analogue for abelian varieties is in [Wei49, no. 2].

Theorem 5.2.4 (Weil). If A is a complex torus, then 7 : Ext(A, C*) — Pic(A)
is an isomorphism.

Proof. For B = C*, the sheaf By = O% and H'(A,B4) = Pic(A4). The class
of a line bundle L — A is primitive means the line bundle s% L is isomorphic
to piL ® p5L on A x A. By Proposition 5.2.3 and Fact 5.2.2, it is equivalent
to [L] € Pic’(A). Then Proposition 5.1.3 and Theorem 5.1.6 complete the
proof. O

With the identifications provided by Theorem 5.2.4 and Proposition 4.1.4 3,
[AKO1, Remark 1.1.16] can be rephrased in a coordinate-free way as follows. It
is a criterion telling whether a semi-torus is a toroidal group.

Fact 5.2.5. Let r > 1 be an integer, and let 0 — (C*)" - X — A — 0 be an
extension in C. Denote by (L1,...,L,) € (AY)" the point corresponding to the
equivalent class [X] € Ext(A, (C*)"). Then the following are equivalent:

e X is a toroidal group;
e forallo € Z"\ {0}, >i_, 0iL; #0 in AY;
e for every nontrivial morphism f : (C*)" — C*, the pushout extension f.X
of A by C* is nontrivial.
5.3 The case B=C
When B = C, the sheaf B4 = O4.

Fact 5.3.1 (Kiinneth formula, [Men20, (3.1)]). Let X,Y be connected complex
manifolds. Assume that'Y is compact. Then there is a canonical decomposition
HI(X X KOXXY) = Hl(X, Ox) @HI(Y, Oy)

The analogue of Theorem 5.3.2 for abelian varieties is [Ros58, Theorem 1].
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Theorem 5.3.2 (Rosenlicht, Serre). If A is a complex torus, then the canonical
morphism m : Ext(A,C) — H'(A,O4) is a C-linear isomorphism. In particular,
dim¢ Ext(4, C) = dim A.

Proof. Let my (resp. mg) be the injection A — A x A defined by a — (a,0)
(resp. a — (0,a)). Let p; : Ax A — A (u=1,2) be the two projections. By
Fact 5.3.1, p and p} identify T'(A x A) as the direct sum T(A) ® T(A). The
projection to ith factor is m}. Because s40m; = Id, one has s%(z) = piz+piz
for every x € T(A), i.e., x is primitive. Then Proposition 5.1.3 and Theorem
5.1.6 conclude the proof. O

Remark 5.3.3. Another way to prove Theorem 5.3.2 is to use (13). In this case,
the diagram (12) can be completed into a commutative diagram with exact rows

0 —— Home (A, C) —— Hom(m;(A),C) —— Ext(A4,C) —— 0

| l [

0 —— H°A,QY) ———— HY(A,C) ——— HY(A,04) —— 0.
(19)
The bottom row comes from the Hodge structure on H' (A, C) ([Huy05, Lem. 3.3.1]).

Corollary 5.3.4. Let A be a complex abelian variety, and let n(> 0) be an
integer. Then the natural morphism Extag (A, G)) — Ext(A**,C") is an isomorphism.

Proof. Tt is a combination of [Ser88, Thm. 7, p.185], Theorem 5.3.2 and [Ser56,
Thm. 1]. O

5.4 Universal vectorial extension
Definition 5.4.1. [Ros58, p.705] Let H be a vector group. An extension
0-H—-G—>A—-0 (20)
in C is called decomposable if there exists an extension
0—H —Gi—A—=0

in C of A by a vector subgroup H; of H, and H’ is a vector subgroup of H of

positive dimension with an isomorphism f : G; ® H' — G such that the maps

H, - H— G and H — Gy fI—G>1 G coincide. Otherwise, the extension G is

called indecomposable.

Proposition 5.4.2. The extension (20) is decomposable if and only if there is

a strict vector subgroup Hy of H and an extension 0 — H, — G1 5 A — 0
with 1,G1 = G, where v : Hy — H is the inclusion.

Proof. If G is decomposable, by definition, we can write G = G ® H', where
H' C H is a positive-dimensional vector subgroup and 0 — H; - Gy — A — 0
is an extension in C of A by a vector subgroup H; C H making a commutative
diagram
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0 H,y Gy A 0

ool

0 H G A 0

By the universal property (7), G = t.G;1. Moreover,
dim H; = dim G; —dim A = dim G—dim H'—dim A = dim H —dim H’ < dim H.

Conversely, assume that +,G; = G. Choose a vector subspace H' of H with
H = H' ® Hy, then dim H' = dim H — dim H; > 0. The composed morphism
GioH ™GB Ais surjective of kernel H; @& H' = H, hence a commutative
diagram

0 H,y G, A 0

L

0 —— H — G oH — A ——0

with exact rows. By the universal property (7), G = 1,G1 = G1 & H'. This
identification makes the maps H; - H — G and H; — G; — G coincide.
Therefore, G is decomposable. O

Proposition 5.4.3. Let 0 - C" — G — A — 0 be an extension in C. Let
q; : C" — C be the i-th coordinate function. Then G is indecomposable if and
only if the family {¢; +G}1<i<n of vectors in Ext(A, C) is linearly independent.

Proof. Assume that {g; .G} is linearly dependent. By changing of coordinate,
one may assume that ¢, .G = 0in Ext(A, C). By Fact 3.0.4, there is a morphism
7 ¢n«G — C with i, = 1d on ¢, . G.

0——Cr — 5 @ A——0

[T

O%C%qn’*G%A%0

Then i,rai = ai = i,q,. Since i, is injective, one has
rod = qp. (21)

Let ¢ : C* — C"! be the projection to the first (n — 1) coordinates. Let
B : G — q.G be the canonical morphism. Define a morphism

€:G—=¢@GoC, g (B(g),ralg)).

Then the right square of the following diagram is commutative.

0 Ccn ‘ G A 0

Jeon o

0 —— C"'aC — ¢.GA®C —— A —— 0
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By (21), the left square of the above diagram is commutative. Therefore, € is
an equivalence of extensions and G = ¢,.G @ C is decomposable.

Conversely, assume that G is decomposable. By Proposition 5.4.2, there
is a vector subgroup ¢ : H; — C" with dim H; < n and an extension 0 —
H, - G - A — 0 with (,G; = G. There is a linear combination f =

Yo aigi : C* — C, where aq,...,a, € C are not all zero, such that f. = 0.
Then >, ;i +G = f.G = (f1).G1 = 0. Thus, the family {¢; .G}, is linearly
dependent. O

Corollary 5.4.4 follows from Proposition 5.4.3 and Theorem 5.3.2.

Corollary 5.4.4. Let 0 -V — G — A — 0 be an extension in C by a vector
group V. If dim¢ V' > g, then G is decomposable.

Proposition 5.4.5 is an analytic analogue of [Ros58, Prop. 11].
Proposition 5.4.5.

1. There is a C-vector group H with dimc H = g and an indecomposable

eztension
0—-H—-G—-A—-0 (22)
such that for every V € Vec, the map
¢y : Homyec(H,V) = Ext(4,V), 1— LG (23)

is a linear isomorphism. In other words, H together with the extension
(22) represents the functor Ext(A,e) : Vec — Vec.

2. A G' € Ext(A,V) is indecomposable if and only if the corresponding linear
map ¢ (G') : H =V is surjective.

Proof.

1. By Theorem 5.3.2, dim¢ Ext(A,C) = g. Take a C-basis {G1,...,G,} of
Ext(4,C). By Fact 4.1.8, Ext(A,CY9) = @_,Ext(A,C), so there is an
element G € Ext(A, CY) corresponding to (Gi,...,Gy) € ®_ Ext(4,C).
Hence an extension 0 - H — G — A — 0, where H = C9. By
Proposition 5.4.3, G is indecomposable.

When | € HV is taking the i-th coordinate of H = C9, I.G = G;.
Therefore, the image of the linear map ¢¢ contains a basis of Ext(A, C).
Thus, ¢c¢ is surjective. Since dim¢ HY = dim¢ Ext(A, C), ¢¢ is a linear
isomorphism. Since every V & Vec is the direct sum of finitely many
copies of C and the formation of ¢y is functorial in V', ¢y is also a linear
isomorphism.

2. By Proposition 5.4.2, G’ is decomposable iff there is a proper linear subspace
t: Vi — V with G’ in the image of the map ¢, : Ext(A,V7) — Ext(A,V)
iff there is a proper linear subspace ¢ : V3 — V with gzb(,l(G’) in the image
of the map ¢, : Homyee(H, Vi) — Homvyeo(H,V) iff ¢, (G') : H — V
factors through a proper linear subspace ¢ : Vi — V iff qb‘_/l(G’) cH—V
is not surjective.
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O

The extension (22) is called the universal vectorial extension of A. (As a
representing object, such an extension is unique up to equivalence.) By (23)
and Theorem 5.3.2, H = H(AY,QY.).

EXAMPLE 5.1.2 (CONTINUED). Since dimExt(A,C) = 1, this nontrivial
extension is equivalent to the universal vectorial extension.

We proceed to give an explicit construction of the universal vectorial extension.

Proposition 5.4.6. Let B be the group of isomorphic classes of rank 1 local
systems on A. Let BY be the group of isomorphic classes of pairs (L,V), where
L — A is a holomorphic line bundle and V is a flat holomorphic connection on
L. Then there exist natural identifications of groups

B* = B! = Homuy(m (A),C*) = HY(A,C*) =

They are isomorphic to (C*)?9.

Proof. By the Riemann-Hilbert correspondence [Del06, Théoréme 2.17, p.12],

the map B% — B! defined by (L,V) + ker(V) is a group isomorphism. By
[Del06, Corollaire 1.4, p.4], there is an isomorphism B% — Homay, (7 (A), C*).

By the universal coefficient theorem [Hat05, Thm. 3.2], there is a natural isomorphism
H'(A,C*) — Hom(m(A),C*). The exact sequences 0 — Z — C CPETI) o

0 of constant sheaves on A gives rise to an exact sequence

HY(A,C) — H°(A,C*) = HY(A,Z) — H'(A,C) — H'(A,C*) = H*(A,Z) — H?*(A,C).

Since the first map is surjective and the last map is injective, it breaks into a
short exact sequence

0— HY(A,Z) — H'(A,C) = H*(A,C*) =0

and hence an isomorphism H'(A,C)/H'(A,Z) — H'(A,C*) functorial in A.
Moreover, there is a non-canonical isomorphism H'(A,C*) — (C*)29. O

For every (L,V) € Bf, the line bundle L € Pic’(4) = AV by [Dem12, Ch. V,
§9]. The bottom row of (19) induces an exact sequence in C:

HY(A,C)  HYA,04)
0 1 ’ )
O%H(A,QA)%Hl(A’Z)% H1(A.Z)

0. (24)

Using the identifications BY = gig’:’% from Proposition 5.4.6 and AV = Pic’(A4) =
HY(A,04)/HY(A,Z), (24) is an extension of AV by H°(A,QY) and gives a
morphism B — Pic’(A), which sends (L,V) to L. Hence a commutative

diagram
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0—— Homc(fl,(C*) —— Hompp(m1(A),C*) —— Ext(4,C*) —— 0

| | |

0 —— H%A,QY) B" u Pic’(A) —— 0,

where the first exact row is (9) and the second comes from (24). The left vertical
isomorphism uses Proposition 4.1.4 2 and the isomorphism L(A)Y — H°(A, QY)
given by [BL0O4, Thm. 1.4.1 b)]. The middle vertical isomorphism is contained
in Proposition 5.4.6.

When A is an abelian variety, it is proved in [Mes73, p.260] that (24) is the
universal vectorial extension of AY. The proof is based on [Ros58, Thm. 1]. In
a similar manner, Proposition 5.4.7 follows from Theorem 5.3.2.

Proposition 5.4.7. The extension (24) is the universal vectorial extension of
AY =Pic’(A). In particular, the extension group is isomorphic to (C*)?9 (as a
complex: Lie group).

Proof. Let U = H°(A,QY). Pushing out the extension (24) defines a natural
transformation v : Homye,.(U, ) — Ext(AY, ) between two functors on Vec.

We claim that t¢ is an isomorphism. Choose u € ker(¢)¢c) C Homye. (U, C).
As the push-out along u is trivial, by Fact 3.0.4, there is a morphism r : £ — C
with ir = Idg. Let u/ : H*(A,C) — C be the morphism in C induced by r.
Then u' = d.u’ is C-linear. Now that u'(H'(A,Z)) = 0 and H'(A,Z) contains
a C-basis of H'(A,C), one has v/ = 0. As the diagram commutes, u = 0.

H'(A,C)

/
7
7
’
’

7

/ H'(A,C)
0 U ——>0 7maz) AY 0

0 C—F AY 0

Therefore, ¢ is injective. By Theorem 5.3.2, dim¢ Ext(AY, C) = dim¢ Homye (U, C).
Therefore, ¥¢ is a linear isomorphism. Similar to the proof of Proposition 5.4.5
1, ¢ is a natural isomorphism of the two functors. O

Another construction of the universal vectorial extension is in [Nak94, Prop. 2.4]°.

Remark 5.4.8. The real Lie group extension underlying (24) is trivial by Fact
5.1.1. Indeed, consider the real analytic group morphism AY — B! defined by
L~ (L, V%), where V' is the unique flat Chern connection on L given by This
map is a real Lie group section to (24), but not holomorphic.

9stated for complex abelian varieties but the proof extends to complex tori.
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Remark 5.4.9. Let A be a complex abelian variety of dimension g. By Corollary
5.3.4, the extension (22) is equivalent to an algebraic one. Thus, the analytification
of the algebraic universal vectorial extension 0 - G — E — A — 0 is exactly
the analytic universal vectorial extension . From [Bri09, Prop. 2.3 (i)] and the
footnote in [MRMT74, p.34], the algebraic variety E is anti-affine, i.e., every
morphism E — Al of algebraic varieties is constant. On the other hand, by
Proposition 5.4.7, E** is isomorphic to (C*)29 as a complex Lie group, so E2"
is not a toroidal group. Although E is not an affine variety, E*" is a Stein
manifold. See also Serre’s example [Har70, Exampe 3.2, p.232].

Remark 5.4.10. Universal vectorial extensions can be defined for not only complex
tori but also toroidal groups. Consider a toroidal group X of dimension n.
Similar to Proposition 5.4.5, the functor Ext(X,-) : Vec — Vec is represented
by Ext(X,C)Y, which is the kernel of the natural linear map H;(X,C) —
HO(X, QL)Y by (13).

An extrinsic description is possible. Choose a presentation

0-CH" "X —>T—0 (25)

according to [AKO1, 1.1.14], where T is a complex torus of dimension ¢. For
every V € Vec, by Proposition 4.2.1, the induced sequence

Home ((C*)"79,V) — Ext(T, V) — Ext(X,V) — Ext((C*)"79,V)

is exact in Vec. By Proposition 4.1.4 1, Home((C*)"~4,V) = 0. By Proposition
3.2.3, Ext((C*)"~9,V) = 0. Thus, the morphism Ext(7,V) — Ext(X,V) is a
C-linear isomorphism. In other words, the natural transformation Ext(7T),-) —
Ext(X,-) between the two functors on Vec is an isomorphism. In this way, the
case of toroidal groups is reduced to the case of complex tori.

5.5 Application to the functor Ext(A,e)
Analogue of Proposition 5.5.1 for abelian varieties is [Ros58, Cor., p.711].

Proposition 5.5.1. If B is a complex Lie subgroup (not necessarily connected)
of A, then there is a natural exact sequence in Ab:

0 — Ext(A/B,C) — Ext(4,C) — Ext(B,C) — 0.

Proof. By Corollary 4.1.13, there is an isomorphism B — By x B/By in C and
Ext(B/By,C) = 0. By Fact 4.1.8, Ext(B, C) = Ext(By, C). Since B is compact
and By is open in B, the quotient B/By is finite, thus Homap(B/By,C) =
0. By the compactness of By, Hom¢(By,C) = 0. Then Hom(B,C) = 0.
Now that A, By, A/B are complex tori, Theorem 5.3.2 implies dim Ext(A,C) =
dim Ext(A/B, C) + dim Ext(B, C). This together with Proposition 4.2.1 proves
the stated exactness. 0

The proof of Theorem 5.5.2 is shorter than that of its algebraic analogue
[Ser88, Thm. 12, p.195].
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Theorem 5.5.2. If0 - B’ — B % B" 5 0 is an evact sequence in C, then
the sequence'® in Ab

Ext(A, B') — Ext(A, B) %5 Ext(A, B") — 0 (26)

is exact. If B is linear, then the first map in (26) is injective.

Proof. By Proposition 4.2.3, it suffices to prove that ¢. : Ext(A, B) — Ext(A, B")
is surjective. From (10) and Proposition 4.2.1, one obtains a commutative square

Hom(; (A), B) —— Hom(m;(A), B”)

l |

Ext(A, B) —2 Ext(A, B"),

where the vertical maps are surjective. Since 71(A) is a free Z-module, the top
row is surjective, then so is the bottom.

Now assume that B{ is linear, then Hom¢ (A4, B”) = 0. By Proposition 4.2.3,
the first map is injective. U

Remark 5.5.3. The linearity of B{j is necessary to guarantee the injectivity in
Theorem 5.5.2. For instance, let 0 — C9 — (C*)29 — A — 0 be the universal
vectorial extension of A and assume g > 1. By Proposition 4.2.3, the natural
sequence 0 — Home (A, A) — Ext(A,C9) — Ext(A4, (C*)29) is exact. Thus, Ida
is a nonzero element in the kernel of the first map of (26).

ExAMPLE 5.5.4. Applying Theorem 5.5.2 to the exact sequence 0 — Z —
C engm.) C* — 1, and using Fact 3.2.6, Theorems 5.2.4 and 5.3.2, one gets an
exact sequence

0 — Hom(m (A),Z) — H'(A,0,4) — Pic’(4) — 0. (27)

In particular, Ext(A,-) tuns the exponential map to the universal cover of
the complex torus AY. Identifying Hom(m;(A),Z) with the sheaf cohomology
H'(A,Z), th sequence (27) is also induced by the exponential sequence of
sheaves on A:

exp(27i
%

0—>ZA—>OA )OZ—>1.

Theorem 5.5.5 is an analytic version of [Ser88, Thm. 13, p.196]

Theorem 5.5.5. If 0 — L 5 C = A= 0 is an ezact sequence in C with L
connected and G € Ab.. Then there is a natural exact sequence

0 — Ext(A,G) — Ext(C,G) 5 Ext(L,G) — 0.

10induced by Proposition 4.2.3
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Proof. As L is connected and G is discrete, Hom¢ (L, G) = 0. By Proposition
4.2.1, it suffices to show that ¢* : Ext(C,G) — Ext(L,G) is surjective. For
every L' € Ext(L,G), by Theorem 5.5.2, the map Ext(A, L") — Ext(4, L) is
surjective. Thus, there exists C' € Ext(A, L’) having image C € Ext(A, L).

|l

0*>Gi>ker(a) *iO
L7

0 r c’ K - A 0
[

0 L l < C A 0
Lol
0 0 0

By the snake lemma, « is surjective and 3 is an isomorphism. Therefore, C’ €
Ext(C,G) and +*C" = L' in Ext(L, Q). O

In Example 5.5.6, we give another proof of [BL99, Prop. 5.7, p.21], which
computes the extension group of two complex tori.

EXAMPLE 5.5.6. Let X; = CY% /II;Z?% (i = 1,2) be two complex tori, where
the chosen period matrix is of the form II, = (7, I,,) with 7; € M, (C) and
det(Im(7;)) # 0. Define £ : M(2g; x 2¢2,Z) — M(g1 X g2,C) by &(P) =
I, P('s2).

Define a map p : M(g1 X g2,C) — Ext(Xy, X,) as follows. For every a €
M(g1 x g2,C), let o/ = (a,0) € M (g1 X 2g2,C). Consider the sequence

C91t92

P
= Xy —0
{(a/v,gv) : v € Z292} 2 ’

0—Co 5

where i is induced by C9 — C91192 defined by x + (z,0) and p is induced by
the second projection C91+92 — (9. It is an exact sequence. Denote its class
by p(M) € Ext(Xs, X1). This sequence fits into a commutative diagram

% Cc91t92
0 Xl {(O"’U7H2U)2UEZ2-‘72} X2 0

| | |

0 X, X X, 0,

where the second row is ¢, 11, (¢) € Ext(X2, X1) defined in [BL99, p.20], and

C91t92

X = .
{T1u + o/v,TIgv) : u € Z291, v € 7292}
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Then p is a linear isomorphism by Theorem 5.3.2.
Define a map ¢ : M(2¢1 X 2g2,Z) — Ext(Xs,m(X1)) as follows. Given

P = <1€1 ]]';2> € M(2g1 X 2g2,7Z), with each P; € M (g1 X go2,7Z), we set A =
3 4

T1Po+ Py € M(g1Xg2,C) and o = £(P). The linear map C91+92 (I;A) C9* sends
(u,0) to u for all u € C9* and sends (v, av) to Iy (? _1122) v € I1,Z%9
R

for all v € Z292. Thus it descents to the vertical morphism in the middle of the
following commutative diagram

Cc91+92
O (Cgl {(a”u,Hz’U)t’UGZQ‘qz} X2 O

J o] =)
X1

0 X1 0 0,

where the first row is of class p(a) = p(£(P)). The snake lemma gives an
extension of Xy by m1(X7), whose class is denoted by ¢(P).

The image of ¢(P) under the pushout map Ext(Xs, 7 (X)) — Ext(Xs, X1)
is exactly the first row of (28), i.e., p(§(P)). Then ¢ is a group isomorphism by
Fact 3.2.6. And there is a commutative diagram

M (g1 x 2g2,C)

M(2g1 X 29272) L M(gl X gQ,C) M(?rlrfz.&g)%c)
Py 1,

L I ;

EXt(XQ,’/Tl(Xl)) e EXt(XQ,Xl) —_— EXt(XQ,Xl) — 0

where the second row is from (14) and the induced dotted isomorphism is exactly
the content of [BL99, Proposition 5.7, p.21].

To conclude Section 5.5, we show that the groups of commutative extensions
of complex tori by linear groups are naturally complex Lie groups. Let 7 (resp.
S) be the full subcategory of C comprised of complex tori (resp. objects whose
identity component is linear). Then Ext : T°P x & — Ab is an additive functor
by Fact 4.1.8. Theorem 5.5.7, an analytic analogue of [Wu86, Theorem 5], lifts
this functor.

Theorem 5.5.7 (Wu). There is a natural way to lift Ext : TP x S — Ab to
an additive functor Ext : TP x S — C.

Proof. First we define a complex Lie group structure on Ext(A, H), where A € T
and H € S. Let g = dim A.

If there is an isomorphism f : H — (C*)" in S, then by Theorem 5.2.4, f
gives rise to an isomorphism Ext(A, H) — (AY)™ making Ext(A, H) a complex
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torus. The complex structure on Ext(A, H) is independent of the choice of the
isomorphism f.

If H is connected, by Proposition 2.0.7, there is an isomorphism u : H —
V x H,,, where V € Vec and H,, is a power of C*. Then u, : Ext(4,H) —
Ext(A,V) x Ext(A, H,,) is an isomorphism. By Theorem 5.3.2, the vector
space Ext(A, V) is finite dimensional. Together with last paragraph, Ext(A, H)
inherits a complex Lie group structure, which is independent of the choice of u.

For a general object H € S, the natural exact sequence 0 — Hy — H —
H/Hy — 0in C is trivial by Corollary 4.1.13. Thus, the resulting exact sequence
0 — Ext(A, Hy) — Ext(A, H) — Ext(A, H/Hp) — 0 in Ab is also trivial. Now
that Ext(A, H/Hy) = Homap(m1(A), H/Hy) by Fact 3.2.6, one regards it as a
discrete group. From the complex structure on Ext(A, Hy), the group Ext(A, H)
has a unique complex Lie group structure, such that the identity component is
EXt(A, Ho)

It remains to show:

1. If A € T is fixed, then Ext(A,-) sends morphisms in S to morphisms in C.

2. If H € S is fixed, then Ext(-, H) sends morphisms in 7 to morphisms in
C.

To show 1, let h : H — H’ be a morphism in S. By decomposing H, H’
according to Corollary 4.1.13 and Proposition 2.0.7, one may assume that each
of H and H' is either discrete, C or C*.

e If H is discrete, then so is Ext(A, H), hence Ext(A, k) is a morphism in
C.

e If H = H' = C, by Proposition 4.1.4 2, h is a linear map. By Corollary
4.1.9, so is Ext(A, h).

e If H=C, H = C*. By Proposition 4.1.4 2, h is the composition of a linear
map C — C followed by the exponential map exp(27i-) : C — C*. By
Example 5.5.4, Ext(A4, h) is the composition of a linear map H'(A4,04) —
H'(A,04) followed by the universal cover H'(A,O4) — AY. Thus,
Ext(A, h) is a morphism in C.

e If H' is discrete and H is connected, then h is trivial and so is Ext(A, h).

e If H=C* and H' = C, then h is trivial by Proposition 4.1.4 1 and so is
Ext(A, h).

o If H = H' = C*, then h is a power map by Proposition 4.1.4 3. Then
Ext(A, h) is a power map of AV, hence a morphism in C.

This proves 1.
To show 2, let g : A — A’ be a morphism in 7. By decomposing H again,
we may divide the proof into three cases.
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e H = C*. By pulling back line bundles, g induces the dual morphism
g* : Pic?(A’) — Pic®(A). Tt is identified with Ext(g, H) by Fact 4.3.2 and
Theorem 5.2.4.

e H is discrete. Then so is Ext(A’, H) and thus Ext(g, H) is a morphism in
C.

e H = C. By pulling back, g induces a C-linear map H'(A’,04/) —
H(A,04). 1t is identified with Ext(g, H) by Fact 4.3.2 and Theorem
5.3.2.

This proves 2. O

Remark 5.5.8. In Theorem 5.5.7, we cannot generalize from complex tori to
toroidal groups, nor remove the linear restriction.
Let X be a toroidal group. Then Home (X, C*) = 0, hence (14) specializes
to
0 — BExt(X,Z) % Ext(X,C) — Ext(X,C*) — 0. (29)

Note that Ext(X,Z) = H'(X,Z) (Fact 3.2.6), and by (13) the injection i is
the composition of the inclusion H'(X,Z) — H'(X,C) with the projection

1 H'(X,C)
H'(X,C) — XL
When X is compact, the sequence (29) lifts to an exact sequence in C by
Theorem 5.5.7. As opposed to the compact case, when X is not compact and

consider the presentation (25), one has 1 < g < n, so
rankzExt(X,Z) = n + g > 2q = dimg Ext(X, C).

Therefore, the image of ¢ is not closed in the vector space Ext(X, C) (a phenomenon
seen in Example 4.1.2). In particular, the sequence (29) has no lift to an exact
sequence in C.

Let A, B be two complex tori, g = dim A, ¢’ = dim B and reconsider (14):

0 — Home(A, B) % Ext(A, m(B)) — Ext(A, B) — Ext(A, B) — 0.

Here, Ext(A, B) is a C-vector space of dimension gg’ by Theorem 5.3.2. Identifying
Ext(A,m1(B)) with Homay(m1(A4), 71(B)) via Fact 3.2.6, j is the map p, in
[BL04, p.10]. The quotient %&fg;) is a free abelian group of rank 4gg’ —
rankyHome (A, B). As long as rankzHome (A, B) < 2gg’ (say, when A = B is an
elliptic curve without complex multiplication, then Z = Hom¢ (A, B)), the image
%&Egg) — Ext(A, B) is not closed. In particular,
Ext(A, B) has no structure of complex Lie group making this sequence exact in
C.

of the induced injection

6 Extensions of complex tori are often commutative

In Section 6, we prove that under suitable hypotheses, an extension of a complex
torus is commutative.
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Proposition 6.0.1. If1 — B — C 5 A — 1 is a central eatension of
complex Lie groups, where A is a toroidal group, then C is commutative. Or
equivalently, for every B € C, the natural injection Ext(A, B) — Ext(A4, B,1) is
an isomorphism.

Proof. Consider the holomorphic map A x A — B given by (4). By [NW13,
Thm. 5.1.36], it is a group morphism, so constant. Thus, C' is commutative. [

An algebraic analogue of Proposition 6.0.2 is [Wu86, Cor. 2, p.370].

Proposition 6.0.2. Let 1 - K — F — A — 1 be an extension of complex Lie
groups, where A is a complex torus.

1. If Z(K)y is Stein, then Z(K)=Z(E)N K.
2. If K is commutative and K is Stein, then E is commutative.
Proof.

1. Since Z(E)NK C Z(K), it suffices to prove that Z(K) C Z(FE). Consider
the group morphism (5): 6 : A — Aut(Z(K)). For every z € Z(K), the
map

p: A= Z(K), aO(x)z!

is continuous. Moreover, ¢(0) = ex. By the connectedness of A, ¢p(A) C
Z(K)p. As Z(K)g is Stein and A is compact, ¢(A) is the singleton {ex}.
Therefore, 0,(x) = x for every x € Z(K), which proves Z(K) C Z(E).

2. By 1, K C Z(E). By Proposition 6.0.1, E is commutative.
O

In Proposition 6.0.3, when B is isomorphic to C" for some integer n > 0 or
to C*, we recover [BZ21, Lem. 2.10].

Proposition 6.0.3. Let1 — B — C 5 A — 1 be an ezxact sequence of complex
Lie groups, where A is a complex torus and B is commutative. If the group B/ By
is torsion (i.e., every element of B/By has finite order), then C is commutative.

Proof. Let Z be the center of C. By Proposition 6.0.1, it suffices to check
BcCZ.

The outer action induces a morphism A — Aut(By)(< GL(L(B))). It is
trivial by the compactness of A, i.e., By < Z. By Corollary 4.1.13, one may
assume B = By x D, where D is a discrete subgroup of B isomorphic to B/By
and DN By = {eg}. Let ¢ : B — D and r : B — By be the corresponding
projections.

It remains to show that 0 x D(< B) is contained in Z. Fix d € D and put
b= (0,d) € B. The map

v:C—C, ¢ cbet
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is holomorphic and v(e) = b. For every b/ € B, one has
v(ch') = eb'bb' "t = ebe™! = v(e).

The right multiplication action of B on the complex manifold C has quotient A
by Fact 2.0.3, so v factors through a morphism u : A — B of complex manifolds.
Then qu : A — D is continuous. Since A is connected, qu is constant. Since
qu(ea) = d, one gets qu = d.

On the other hand, the map ru : A — By is holomorphic. By assumption,
there is an integer n > 1 (depending on d) such that d* = ep in D. Thus,
b" = ep. For every c € C, one has v(c)" = (cbc™1)" = cb"c™! = ep. Therefore,
ru(A) is contained in the torsion subgroup By ior of By. In view of [AKOL,
Prop. 1.1.2], By tor is totally disconnected. Since A is connected, ru is constant.

Since ru(e4) = 0, one has ru = 0. Therefore, u = b, i.e., b € Z. Therefore,
0 x D C Z and the proof is completed. O

Corollary 6.0.4 follows immediately from Proposition 6.0.3.

Corollary 6.0.4. Given an extension
0—-(CH)"—->G—>A—-0 (30)

of complex Lie groups, where A is a complex tours and n(> 1) is an integer,
then G is a semi-torus.

Corollary 6.0.5. In Corollary 6.0.4, if A is algebraic, then G admits a unique
structure of semiabelian variety such that (30) defines a commutative extension
of algebraic groups.

Proof. From Corollary 6.0.4, (30) defines an element of Ext(A4*",(C*)"). By
[Ser88, Thm. 6, p.184] and Theorem 5.2.4, the natural map Extaiz(A,GJ,) —
Ext(A*, (C*)") is identified with the analytification map [Pic’(A4)]™ — [Pic”(42™)]",
hence a group isomorphism. In particular, there is a unique exact sequence
0— G, - C — A — 0in Alg whose analytification is equivalent to (30). O

Lemma 6.0.6 is used in the proof of Proposition 6.0.7.
Lemma 6.0.6. Let G be a real Lie group with Lie algebra g.
1. If XY € g are such that [X,[X,Y]] =0 and [Y,[X,Y]] =0, then
exp(X) exp(Y) exp(—X) exp(=Y) = exp([X,Y]). (31)
2. If X € g satisfies that exp(X) commutes with every element of Go and
[X,g] C Z(g), then X € Z(g).
Proof.
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1. According to Baker-Campbell-Hausdorff formula (see, e.g., [Far08, Cor. 3.4.5]),
there is a symmetric open neighborhood U of 0 € g such that for every
A,B € U, exp(A) exp(B) = exp(Z), where

Z=7(A,B)=A+B+[AB]/2+...

and "..." indicates terms involving higher commutators of A and B. There
is a symmetric open neighborhood V' of 0 € U such that Z(A, B) € U for
every A, BeV.

Define f : R — G by
f(t) = exp(tX) exp(tY) exp(—tX) exp(—tY) exp(—t*[X, Y]).

Then f is real analytic. There is ¢ > 0 such that tX,tY € V for all ¢ €
(—e,€). By assumption, [Z(tX,tY), Z(—tX,—tY)] = 0 and Z(tX,tY) +
Z(—tX,—tY) =t*[X,Y]. Then

f(t) = exp(Z(tX,tY)) exp(Z(—tX, —tY)) exp(—t*[X,Y]) = eq
for all t € (—¢,€) (see [Lazb4, p.144]). By [ADGK23, Cor. A.5], f(1) = eg.

2. Let D = exp~!(eg). There is an open neighborhood W of 0 € g such that
exp(W) is open in G and exp : W — exp(W) is a diffeomorphism. Then
DNW = {0}. For every Y € g, there is £ > 0 with [X,Y/k] € W. By
assumption, [X,Y/k] € Z(g), so [ X, [X,Y/k]] =0 and [Y/k,[X,Y/k]] = 0.
Since exp(Y/k) € Gy, it commutes with exp(X). By 1, exp([X,Y/k]) =
eg. Then [X,Y/k] € DN W. Therefore, [X,Y] = 0. Thus, X € Z(g).

O

An algebraic analogue of Proposition 6.0.7 is [Ros56, Cor. 2, p.433].

Proposition 6.0.7. If1 — B — C 5 A — 1 is an ezact sequence of complex
Lie groups, where A is a complex torus and B is commutative, then Cy is
commutative.

Proof. We may assume that C' is connected by replacing C (resp. B) with Cy
(resp. BN Cp). Let w : C9 — A be the universal covering of A. Denote by
b (resp. ¢) the Lie algebra of B (resp. C). Let n: A — Aut(B) be the outer
action. Then 7 induces a holomorphic morphism 7y : A — Aut(By). Because
Aut(By) is complex Lie subgroup of GL(b), 1 is trivial.

Consider the pullback extension along w.
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0 —— ker(e) Thhereq ker(w)
L 7]

1 B E—~Z o 1
bk

1 B——4% 0 —"— 4 1

By the snake lemma, € is surjective and 7 restricts to an isomorphism ker(w) —
ker(w). In particular, dee : L(E) — L(C) is an isomorphism. By Fact 2.0.3, the
morphism ¢ is open. Since Ej is open in F, €(Ejy) is an open subgroup of C. By
connectedness of C, ¢(Ep) = C. Similarly, 7(Ep) = CY9. By Fact 7.2.7 1 below,
BN Ey is connected. Therefore, BN Ey C By. Since By C B N Ey, one has
By = BN Ey. Hence an extension 1 — By — Eg — C9 — 1. The outer action
is now : C9 — Aut(By), so it is a central extension. Then

0—=b—=-c—=C—=0 (32)

is a central extension of Lie algebras. In particular, b C Z(¢). We shall prove
the extension (32) is trivial.

We show that expy : ¢ = Ej is surjective. Indeed, for every x € Ejy, there
is v € ¢ with dep(v) = 7(x). Then w(expg(v)) = m(x), so m(xexpg(—v)) =0
and hence zexpg(—v) € By. As By is connected commutative, there is u € b
with expp(u) = xexpg(—v). Since u € Z(c), one gets x = expg(u) expg(v) =
expp(u +v).

By Corollary 4.1.13, there is a decomposition B = By x D, where D € Ab,
is discrete. The natural morphism Ey x D — Ey — CY is surjective of kernel
By x D, hence the first row of the diagram

1—— B —— EgxD —CI — 1

oo

1 By E, +¢ CY 1
[ I/
1 B E (o] 1

By Lemma 3.1.2, there is an equivalence of extensions ¢ : F — Fg x D.
Fix x € ker(e), let ¢(x) = (¢p1(x), p2(x)) € Eg x D. For every y € Ey,

(3. D)o(@) (1, 1)~ = (o @)y, 9 (2)) € Blker(e)).
Hence, 61 ((y1 (x)y~, 62(x))) € ker(e). The map

Ey = ker(e), y— ¢ ((yor()y™", d2(x)))
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is continuous. As Ej is connected and ker(e) is discrete, this map is constantly

x. Thus, yo1(2)y~! = ¢1(z). Therefore, ¢1(x) commutes with every element of

Ey. As expy : ¢ — Ejy is surjective, there is X € ¢ with expg(X) = ¢1(x). Since

CY is an abelian Lie algebra, [c,¢| is contained in the kernel of dep : ¢ — CY,

which is b. Then [c,¢] C Z(¢), i.e., [c,[c,¢]] = 0. By Lemma 6.0.6 2, X € Z(c).
Consider the commutative diagram

c —— C9

dep
J{eXPE J{Id
FE L> (Cg

Then 7(z) = w(¢p1(x)) = dep(X) € dep(Z(¢)). Therefore, ker(w) = w(ker(e)) C
dep(Z(c)). Since d.p is C-linear and ker(w) contains a C-basis of CY, one has
dep(Z(c)) = C9. Consequently, there is a C-linear map s : C9 — Z(c¢) with
depos=Idgs. As s: C9 — ¢ is a Lie algebra morphism, the central extension
(32) is trivial and ¢ is the direct sum of b and C9. In particular, ¢ is abelian.
As C'is connected and its Lie algebra is abelian, C' is commutative. O

Example 6.0.8 shows that the the condition that B/Bj is torsion (resp. K
is Stein) in Proposition 6.0.3 (resp. Proposition 6.0.2 2) is necessary. Moreover,
in Proposition 6.0.7, the commutativity of C fails in general.

EXAMPLE 6.0.8. Let A be a complex torus and B = A x Z be the product
group. Consider the complex manifold morphism A x B — B defined by
(a,d’,k) — (a’ + ka,k). It is a non trivial group action of A on B. Let C
be the corresponding semidirect product (see [Bou72, Ch.III, no. 4, Prop. 7]),
then the resulting complex Lie group extension 1 - B — C — A — 1 is not
central.

7 Noncommutative extensions

7.1 Lifted extensions

The real Lie group extension problem is studied by G. Hochschild in [Hoc51a]
and [Hoc51b]. As Example 7.1.1 shows, the case of real Lie groups is different
from the case of complex Lie groups.

ExAaMPLE 7.1.1. Let G = C. The morphism of real Lie groups p : C —
C* = Aut(G) defined by z +— €7 is an action of G on itself which is real analytic
but not holomorphic. Hence an exact sequence of real Lie groups 1 — G —
G %, G - G — 1 by [Bou72, Ch. III, no. 4, Prop. 7|. However, the middle
term has no structure of complex Lie group making the maps holomorphic.
Therefore, [Iwad49, Theorem 7] fails for complex Lie groups. Besides, this shows
that the real Lie group extension problem and the complex one are different.

In Section 7, we review Hochschild’s work, but in the context of complex
Lie groups. References to the original statement are given when the proofs are
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similar modulo slight modifications. All results in the sequel are essentially
known.

In Section 7.1, the goal is to derive Corollary 7.1.6, a result about the
extensions of a commutative group by a connected group.

Let L be a complex Lie group and K € C. For a fixed holomorphic group
action L x K — K, let ¢ : L — Aut(K) denote the induced group morphism.
Let Z(L, K, ¢) denote the set of crossed morphisms, i.e., morphisms p : L — K
of complex manifolds such that p(l1l2) = p(l1)é, (p(l2)) for all l;,1; € L. Then
Z(L,K, ¢) is an abelian group under addition. (When ¢ is trivial, Z(L, K, ¢) =
Hom(L, K).)

For a normal complex Lie subgroup H of L, define

Ophomy (H, K, $) = { € Hom(H, K) : (lhi"*) = ¢ (sp(h),Vl € L, h € H}.

Then Ophom; (H, K, ¢) is a subgroup of Hom(H, K). When H C Z(L), one
has
Ophom, (H, K, ¢) = Home (H, K*2)), (33)

where K?5) = Mjcp{x € K : ¢;(x) = x} is the set of elements fixed by ¢(L)(<
Aut(K)). Here K¢(") is indeed a complex Lie subgroup of K by Corollary 2.0.5.
When ¢ is trivial, Ophom; (H, K, ¢) is the set of morphisms H — K invariant
under the conjugation action of L.

Proposition 7.1.2. Assume that H is a normal complex Lie subgroup of L
contained in ker(¢). For every p € Z(L, K, ®), p|g € Ophom, (H, K, ¢), hence
a group morphism Z(L, K, ¢) — Ophom; (H, K, ¢), whose image is denoted by
ZH(L7 Ka ¢)

Proof. For every h,h' € H, p(hh') = p(h)¢n(p(h')) = p(h)p(h') since h €
ker(¢). Thus p|g € Hom(H, K). In particular, p(er) = ex. For every [ € L,
ex = pler) = pl™") = p()du(p(™)),

so p(1)™! = ¢i(p(I™1)). Then

p(II=Y) = p(ih) i (p(I~ 1))
=p(th) i (p(I~1)) = p(Ih)p(1)~"
=p()pu(p()p(1)~" = du(p(h)).

The last equality uses the commutativity of K. Therefore, p|ir € Ophom, (H, K, ¢).
O

Let w: Q" — Q be a surjective morphism of connected complex Lie groups
with kernel F'. Let i : @ — Aut(K) be a group morphism such that the induced
group action @@ x K — K is holomorphic. As K is commutative, the pulling
back map w* : Ext(Q, K,n) — Ext(Q’, K,nw) is a group morphism. Fact 7.1.3
gives a description of ker(w*).
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Define a map o : Ophomg, (F, K,nw) — Ext(K,Q,nw) as follows. As the
group action defined by 7 is holomorphic, the semidirect complex Lie group
K %y, Q" exists by [Bou72, Ch.III, no.4, Prop. 7]. For ¢ € Ophomg, (F, K, nw),
the morphism F' — K X, @’ defined by k — (¢(k), k) identifies F' as a normal
complex Lie subgroup of K X,, Q'. Let E = K x,, Q'/F. The projection
K Xy, Q" — Q' descends to a morphism E — Q. The injection K — K X, Q’
induces a morphism K — FE. Then the resulting sequence 1 - K — F — Q —
1 is exact with outer action nw, whose equivalence class is denoted by o(v)).

Fact 7.1.3. [Hoc51a, Thm. 1.1] The map o is a group morphism and the
sequence

Z(Q', K,nw) — Ophom, (F, K, nw) % Ext(Q, K, n) =N Ext(Q', K,nw)
15 exact.

The use of Fact 7.1.3 is based on the existence of w : @’ — @ such that
every extension in Ext(Q, K, n) becomes a semidirect product when pulled back
to Ext(Q’, K, nw) along w.

Fact 7.1.4. [Hoc51a, Thm. 2.1] Let ) be a connected complex Lie group.
Assume that 1 : Q — Aut(K) is a group morphism such that the induced group
action is holomorphic. Then there exists a simply connected complex Lie group
Q' and a surjective morphism w : Q' — Q such that the pullback morphism
w* : Ext(Q, K,n) — Ext(Q’, K, nw) is zero.

Remark 7.1.5. The connectedness condition of the extension kernel in [Hoc51a,
Theorems 1.1 and 2.1] is in fact unnecessary.

Corollary 7.1.6 follows from Fact 7.1.3 and Fact 7.1.4.

Corollary 7.1.6 ([Hoc51a, Corollary 2.1]). In the notation of Fact 7.1.4, Ext(Q, K,n) =
Ophom, (F, K,nw)/Zr(Q', K,nw), where F' = ker(w).

ExAMPLE 7.1.7. Let Q = C*, L = C and w : L — Q be defined by
w(z) = €*™*. Then F = ker(w) = Z. Let C* x K — K be a holomorphic
group action and n : C* — Aut(K) be the induced group morphism. Then
Ophom, (F, K,nw) = Hom(Z, K"¢)) = K"€), By Proposition 3.2.2 and
Corollary 7.1.6, one has Ext(C*K,n) = K" /Z;(C, K, nw).

7.2 Factor systems

It is well-known that extensions of abstract groups can be classified in terms
of factor systems, see [CE56, Ch. XIV, Sec. 4]. This description relies on the
existence of set-theoretical cross sections. In general, nevertheless, it is not
possible to find a continuous cross section to a surjective morphism of topological
groups.

Consider the extension (3) of complex Lie groups with outer action ¢ : @ —
Out(K).
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EXAMPLE 7.2.1. Assume that there is a cross section to (3), i.e., a morphism
s:Q — E of complex manifolds with ps = Idg. Replacing s by s(eg)~'s when
necessary, one may assume that s is normalized as s(eg) = ep. Define

f:QxQ—=E, f(g,h)=s(g)s(h)s(gh)~".

Then f is holomorphic. Since p(f(g,h)) = eq, f(g,h) € K, so f factors through
K. The map f measures the failure of s to be a morphism. If E is commutative,
then additionally f is symmetric in the sense of [Ser88, (16), p.166]:

f(z,y) = fly,z) Vo,yeQ. (34)

Define ¢ : @ — Aut(K) by ¢, = Inn,g)|x. Then ¢ is a map (but not
necessarily a group morphism) lifting ¢, and the induced map

QXK =K, (g,7)— ¢4(x) (35)

is holomorphic. When K is commutative, ¢ = v is a group morphism independent
of the choice of s. When (3) is a central extension, ¢ is constantly Id .
Moreover, f and ¢ satisfy the following relations:

fleq,h) = f(g,eq) = ex;

¢e = IdK;

Gg®n = Inng (g n)dgn;

f(g, h)f(gh7 k) = ¢g(f(h7 k))f(gv hk)

Example 7.2.1 motivates Definition 7.2.2.

(36)

Definition 7.2.2 (Factor system). If a morphism f : Q x @ — K of complex
manifolds and a map ¢ : Q@ — Aut(K) making (35) holomorphic satisfy the
relations (36), then f is called a ¢-factor system (and simply a factor system
when ¢ is trivial, in which case the last relation in (36) is f(g,h)f(gh,k) =
f(h,k)f(g,hk).) A factor system f is called symmetric if (34) holds.

When K is commutative, the set of ¢-factor systems is an abelian group
under addition.

We examine how the ¢-factor system f induced by s in Example 7.2.1
depends on the choice of the cross section s.

EXAMPLE 7.2.3. Let s’ : Q — E be another normalized cross section still
inducing ¢. Define

9:Q—E, g(x)=s(x)"'s' ().

Then g(eq) = eg as s, s" are normalized and g is holomorphic. For every x € @,
p(g(x)) = eq, so g(x) € K. For every k € K, Inng,)k = ¢.(k) = Inng )k, so
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g(z) € Z(K), i.e., g factors through Z(K). Then s'(z) = s(x)g(z). Let f’ be
the factor system induced by s’. Then

where ¢ : Q x Q — K is a morphism of complex manifolds defined by

9 (2,y) = 02 (9(2)) by (9(y)g(xy) ). (37)

When (3) is a central extension, ¢ is trivial, then (37) reduces to [Ser88,
(15), p-166]: g% (2, y) = g(x)g(y)g(zy)~".

Example 7.2.3 motivates Definition 7.2.4.

Definition 7.2.4. Let f, f’ be two ¢-factors systems. If there is a holomorphic
map g : Q — Z(K) with g(eq) = er such that f' = ¢g®f with ¢g¢ defined by
(37), then f and f’ are called ¢-equivalent, denoted by f ~, f'.

In Definition 7.2.4, ~4 is an equivalent relation on the set of ¢-factor systems.
When K is commutative, inside the group of all ¢-factor systems, the elements
¢-equivalent to the zero form a subgroup. A result similar to Proposition 7.2.5
for algebraic groups is in [Ser88, Ch. VII, Sec. 1, no.4].

Proposition 7.2.5. Let K,Q be complex Lie groups with a map ¢ : Q —
Aut(K) such that (35) is holomorphic and the induced map ¢ : Q — Out(K) is
a group morphism. Then:

1. The set F of ~g-equivalence classes of ¢-factor systems is canonically
identified with the subset £ C Ext(Q, K, v) of equivalence classes of extensions
of Q by K which admit at least one normalized cross section inducing ¢.

2. When K is commutative, the identification in 1 is a group isomorphism.

3. If further @ is also commutative and ¢ = = 1 is trivial, then the
subgroup of equivalence classes of symmetric factor systems corresponds
to the subgroup of equivalence classes of commutative extensions.

Proof. We only prove 1. Examples 7.2.1 and 7.2.3 construct a map ® : £ — F.
(Note that equivalent extensions induces the same ¢-equivalence class.)
Conversely, we define a map ¥ : F — &£ by the following construction. Given
a ¢-factor system f, one can construct an exact sequence 1 — K — Ey g4 —
@ — 1 of complex Lie groups with a (holomorphic) normalized cross section
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5:Q — Eyg4 as follows. Let Ey 4 = K x () as a complex manifold. Define a
map

g:Erg x Efg— Epg,  g((k,z),(l,y) = (ko) f(2, ), 7Y).

As f and the map (35) are holomorphic, so is g. Moreover, (36) shows g defines
an associative multiplication. The pair (1,1) € Ef, is the identity, and the
inverse of (k,x) is

0z k™ f(w,a™h) e ).

Hence (Ey,4,9) is a complex Lie group. The projection p : Efy — Q is a
surjective morphism. The map i : K — Ef4 by k +— (k,1) is the kernel of
p. Moreover, define s : Q — Ef 4 by s(g) = (1,g), then s is normalized cross
section. Put U(f) = Ey 4.

We check that ¥® = Ids. Indeed, the map Ef 4 — E defined by (k,z) —
ks(z) is an equivalence of extensions. We check that ®¥ = Idz, or equivalently
s induces f and ¢. In fact, for every = € @, k € K, one has

¢z (k)s(x) = (¢ (k),1)(1, 2) = (¢2(k), ) = (1, z)(k, 1) = s(z)k,

80 ¢, = Inng(,)|x, i.¢., s induces ¢. For every y € Q,

s(@)s(y)s(ay) ™" = (1,2)(1, )1, 2y) "

=(f(z,9), 2y) (b [f(xy,y T2 ")y~ ™)
=(f(2, ) PayDry ey g e f ey, y~ ), 1)
=(f(z,9),1).

Therefore, s induces f. U

When the base @ of (3) is discrete, then a set-theoretic cross section is
automatically holomorphic.

Corollary 7.2.6. Let QQ be a discrete complex Lie groups, and let n : Q —
Aut(K) be a group morphism. Then the group Ext(Q, K,n) is isomorphic to
the group of ~,-equivalence classes of n-factor systems. Furthermore, if Q is
also commutative, then Ext(Q, K) is isomorphic to the group of ~-equivalence
classes of symmetric factor systems.

Proof. Since @ is discrete, the group action @ x K — K induced by 7 is
holomorphic. The first (resp. second) half follows from Proposition 7.2.5 2
(resp. 3). O

Another important case where a cross section exists is with simply connected
bases. For this, we need a holomorphic version of Malcev’s theorem ([Mal42,
(E), p.12], [Hoc51a, Lemma 3.1], [Mac60, Theorem 3.2]).

Fact 7.2.7 (Malcev, [Bou72, Ch. III, sec 6, no.6, Prop. 14; Cor. 2|). Let L be
a connected complex Lie group, N be a normal immersed complex Lie subgroup
of L.
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1. If N is closed in L and L/N is simply connected, then N is connected.

2. If L is simply connected, N is connected, then N is closed in L and there
exists a biholomorphic map f : L — N x L/N making a commutative
diagram

Lt NxL/N

\ [
L/N,

where py is the projection to the second factor and q : L — L/N is the
quotient morphism.

In the same way that [Hoc51a, Theorem 3.1] follows from [Hoc51la, Lemma
3.1], Fact 7.2.8 can be deduced from Fact 7.2.7.

Fact 7.2.8. Let (3) be an exact sequence of complex Lie groups, where E is
connected and Q is simply connected. Then there exists a cross section, i.e.,
a holomorphic map s : Q — E with ps = Idg. In particular, the principal
K-bundle p: E — Q is trivial.

EXAMPLE 7.2.9. Let A be a complex elliptic curve. Take a nonzero element
of AV, which induces a nontrivial extension £ of A by C* via Theorem 5.2.4.
By Proposition 5.1.3, the principal C*-bundle £ — A is nontrivial. Therefore,
Fact 7.2.8 fails if the base is not simply connected.

Corollary 7.2.10 follows immediately from Fact 7.2.8 and Proposition 7.2.5.

Corollary 7.2.10. Let K,(Q be complex Lie groups, where K is connected
commutative and Q is simply connected. Let n : Q — Aut(K) be a complex
Lie group morphism*'. Then Ext(Q, K,n) is isomorphic to the group of ~n-
equivalence classes of n-factor systems.

Similar to [Hoch1a, Theorem 3.2], Fact 7.2.11 can be proved using Fact 7.2.7
and Fact 7.2.8,

Fact 7.2.11. Let K,Q be complex Lie groups, where K is connected and @
is simply connected. Then the map (on the set of equivalence classes) which
associates with each extension of Q@ by K the induced extension of L(Q) by
L(K) is injective. The image is the set of classes of those extensions 0 —
L(K) — € — L(Q) — 0 in which the derivation

[z, o]e|L(k) € Der(L(K)) = L(Aut(L(K)))

belongs to L(Aut(K)) for every x € €. Furthermore, if K is commutative and
7 :Q — Aut(K) is a morphism, then the resulting map

Ext(Q, K, 1) — Ext(L(Q), L(K), d.n)

18 a group isomorphism.

MHere Aut(K) is a complex Lie subgroup of GL(L(K)) by [Lee01, Propositions 1.26 and
1.27].
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A connected Lie group is called semisimple if its Lie algebra is semisimple.
Analogue of Fact 7.2.12 for semisimple real Lie groups H and real vector groups
G is contained in the proof of [Hoc51b, Theorem 5.1]. Fact 7.2.12 can be proved
in a similar way.

Fact 7.2.12. Let G, H be connected complex Lie groups, where G is commutative
and H is semisimple. Let n : H — Aut(G) be a morphism of complex Lie
groups. If ¢ € Z(H,G,n) is a crossed morphism, then there exists g € G such
that ¢(x) = 1,(9)g~" for all x € H. In particular, ¢ = eq on ker(n).

Theorem 7.2.13 is a complex version of [Hoc51a, Theorem 4.4].

Theorem 7.2.13. In Fact 7.2.12, Ext(H, G, n) is canonically isomorphic to
HomAb(ﬂl(H),G"(H)).

Proof. Let w: H — H be the universal covering of H. Then ker(w) = m(H) is
a discrete subgroup of H. By Fact 3.2.4, mi(H) C Z(H). Then (33) gives

Ophom z (ker(w), G, nw) = Hom(my (H), G"H)).

By Fact 7.2.12, for every p € Z(f[,G,nw), Plkerw =1, i€, Zker(w)(f[,G,nw) =
0. By Fact 7.2.11, the natural map Ext(H,G,nw) — Ext(L(H), L(G),d.n) is
a group isomorphism. Since L(H) is a semisimple complex Lie algebra, Levi’s
theorem [Ser64, Theorem 4.1, p.48] affirms that Ext(L(H), L(G),d.n) = 0. By
Fact 7.1.3, Ext(H,G,n) = Hom(r (H), G")). O

7.3 Non-abelian kernels and extensions of the center

For two complex Lie groups K, @ and a group morphism 6 : @ — Out(K), if
0 is induced by some extension of @ by K, then the extension kernel (K, 6)
is called eztendible. The problem to determine the extendibility of a given
extension kernel is more difficult than that for abstract groups treated in [EMA47,
Theorem 8.1], because of the obstruction to the existence of a cross section. For
extendible kernels, Corollary 7.3.8 shows that the problem for extensions by K
can be reduced to that with an abelian kernel, namely Z(K).

Let ] 5 K >EFE5Q—1and1l —» K — E' % Q — 1 be two extension
of complex Lie groups. Denote their outer action by 6 : @ — Out(K) and
0" : Q — Out(K’) respectively. Assume that Z(K) = Z(K') := C and 6,6’
induce a common center action'? 6y : @ — Aut(C). Hence a commutative

diagram
Out(K)
0
/ § ~
Q\ Aut(C) (38)
0’ /
Out(K")
P2gee (5)



We recall the multiplication of kernels defined in [EM47, Sec. 4]. The group law
C x C — (' is holomorphic, so the subset

C* = {(z,z ) :x € C} (39)

is analytic in C' x C. By Lemma 2.0.6, C x C'is an analytic subset of K x K.
As C* is a central subgroup of K x K', it is also a complex Lie subgroup of
K x K’ by Corollary 2.0.5. Let K" = K x K'/C*. From [EM47, p.328], the
morphism C' — K" by g — [(g,1)] identifies C' as the center of K”.

For every z € @, select automorphisms a € 0(z)(C Aut(K)) and o' €
0'(z)(C Aut(K’)). Because the diagram (38) is commutative, o X ' is an
automorphism of K x K’ sending C* into itself. It thus determines an automorphism
o/ of K”. The class [@”] € Out(K") depends only on 6, 6, but not the choices
of a,o’. Hence a group morphism

0" : Q — Out(K") (40)
that also induces 6y : Q@ — Aut(C').

Definition 7.3.1. The pair (K", 0") constructed above is called the C-product
of the two given extension kernels (K, 0) and (K',¢’).

ExAMPLE 7.3.2. If K’ = C is commutative, it is asserted in [EM47, (4.4)]
that K’ acts as an identity for the C-product. To make it explicit, we define a
surjective morphism ¢ : K x C — K of complex manifolds by ¢(k, k") = k'k.
Then ¢ is a morphism and C* = ker(¢). Thus, ¢ induces an isomorphism
o: K" — K satisfying [EM47, (4.2), (4.3)].

Then we review the multiplication of the given two extensions, contained
the proof of [EM47, Lem. 5.1].

As the map E x B/ — Q by (z,2') — p'(2')p(x)~! is holomorphic, the
preimage of eg

D =Dpp(E E") ={(z,2") € Ex E : p(x) = p'(2')}, (41)

is analytic in F x E’. Since D is a subgroup of E x E’, by Corollary 2.0.5, D is
a complex Lie subgroup of E x E'.
For every (x,2') € D with y = p(z) = p(a’), every g € C, the element

(z,2")(g, 9~ (@121 = (Bo(y)(9), b0 (v)(9) ")

is in C*. Therefore, C* defined by (39) is normal in D.

As C* is a normal complex Lie subgroup of D, we can set E” = D/C*. The
inclusion K x K’ — D descends to an injective morphism K” — E”. The map
D — @ defined by (x,2') — p(x) induces a surjective morphism p” : E” — @
whose kernel is K”'. Hence an extension 1 — K" — E” — @ — 1. The induced
outer action @ — Out(K") is (40). We call (E”,p"”) the C-product of the
two given extensions (F,p) and (E’,p’), written as (E”,p") = (E,p) ® (E',p).
Thus, [EM47, Lemmas 5.1 and 5.2] hold for complex Lie groups.
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Fact 7.3.3. The C-product of two extendible kernels is extendible. The kernel
of the C-product (E,p) ® (E',p') of two extensions is the C-product of the two
kernels.

Proposition 7.3.4. When K' = C, (E',p’) is the semidirect product C X, Q,
then (E",p") is naturally equivalent to (E,p).

Proof. Consider the subgroup D < E x E' = E x (C xg, Q) defined in (41).
Define amap ¢ : D — E by (z,¢,q) — cx for x € E and (¢, q) € C xp, Q. Then
1 is holomorphic.

We check that ¢ is a group morphism. Take another (z,c,¢’) € D. Since
00,4(¢') = Op(z)(¢') = x’2™", one has

w((x? C, q)(x/’ C/a q/)) = w('rxlv ceo,q(c/)a qq/)
=cby 4()zx" = cads’ = P(z,c,q)(2',, q).

For every g € C, (9,97 1) = eg, so C* C ker. Thus, 1 induces a morphism
€: E" — E. Together with o defined in Example 7.3.2, € fits into a commutative
diagram.

1 K" E" Q 1
ol
1 K E Q 1
Therefore, € is an equivalence of extensions. O

By construction, C-product defines a map Ext(Q, K, 0) x Ext(Q, K',0") —
Ext(Q, K”,0"). When K’ = C, it specializes to

EXt(QaKv 9) X EXt(Q’07 00) - EXt(Q7K7 9)7 (42)

which defines an action of the abelian group Ext(Q, C, 6y) on the set Ext(Q, K, 6).
If further K is also commutative, by [Hocbla, p.97], (42) is exactly the group
law defined by the Baer sum on Ext(Q, C, 6y).

Definition 7.3.5. [EM47, p.329] For every extension kernel (K, ), let 0* be the
composition of § : @ — Out(K) with the natural group isomorphism Out(K) —
Out(K°P). Then the extension kernel (K°P,6*) is called the inverse of (K, 0).

For every (E,p) € Ext(Q, K, 0), define p* : E°® — Q by p*(z*) = p(z~1),

then it is a surjective morphism. Since ker(p*) = K°P, 1 — K°P — E°P LI
1 is an extension. The associated outer action is #*. Thus, we get an element
(E°P,p*) € Ext(Q, K°P,0%) of (E,p). It is called the inverse of (F,p) and its
extension kernel is the inverse of (K, 0).

It is a classical result that the group action (42) is simple transitive. For
abstract groups, see [EM47, Lem. 11.2 and 11.3]. For algebraic groups, see
[FLA19, Thm. 1.1]. Tt remains true for complex Lie groups. The first half,
Fact 7.3.6, can be proved in the same way as in [Hoc51b, Thm. 1.1], using the
inverse in the group Ext(Q, C,6y) and Proposition 7.3.4.
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Fact 7.3.6. Let K,Q be complex Lie groups, C = Z(K). Let 0 : @ — Out(K)
be a group morphism that induces 6y : Q — Aut(C). Then the action of
Ext(Q,C,0p) on Ext(Q, K,0) defined by (42) is free.

Theorem 7.3.7 is analogue to [EM47, Lemma 11.2].

Theorem 7.3.7. In the notation of Fact 7.3.6, if Ext(Q, K,0) is nonempty
(i.e., the extension kernel (K,0) is extendible), then its Ext(Q,C,0p)-action
defined by (42) is transitive. Equivalently, for every (E,p), (E1,p1) € Ext(Q, K, 0),
there exits F' € Ext(Q, C, 0y) with FF @ E equivalent to E.

Proof. Define D,,, ,,«(E1, E°P) like (41). Set
S ={(z;",2*) € Dy, p- (B, E®) : wkayt = xka™ ' VEk € K}.
Then S is a subgroup of F; x E°P. For every k € K, the map
¢p : By X E? - K (z1,2") — xl_lkzlxkflel

is holomorphic, so ¢, ! (ex) is analytic in Ey x E°P. Then S = D,, ,-(E1, E°?)N
Nker @y, ' (er) is analytic in Fy x E°P, by [Whi72, Theorem 9C, p.100]. By
Corollary 2.0.5, S is a complex Lie subgroup of E; x E°P.

The map K x K°° — K by (k,k’™) — kk’ is holomorphic, so K* =
{(k1,k*) : k € K} is an analytic subset of K x K°P. It is a subgroup of
S, hence a complex Lie subgroup of S by Corollary 2.0.5.

For every (z7',2*) € S, k € K, one has

(e a") (k) (o, (7)) = (2 R e, etk (@)
=(x 'k e, (27 hr)*) € K,

so K* is a normal subgroup of S. Let F' = S/K* and v : S — F be the quotient
morphism. The map i : C — F defined by ¢ — [(¢,1)] is an injective morphism.

The map ¢ : S — Q defined by ¢(z7',z*) = p(z~"') is a morphism with
K* contained in the kernel. We check that ¢ is surjective. For every h € Q,
there exist + € E and x; € F; with p(x) = pi(x1) = h~!. Since the two
automorphisms of K, Inn,|x and Inn,, |k have the same class 6;,-1 in Out(K),
there exists ko € K such that Inng, |x = Inng|xInng,. Then (xfl, (zko)*) € S
and ¢(x7 ", (xko)*) = h.

If (x7',2%) € ker ¢, then py(z1) = p(zy) = eg, so x1,x € K. Moreover,
z1key! = xkx~ forallk € K. Thenay 'z € C,so (z7 !, 2*) = (27 2, 1%) (™1, 2*).
Thus, (7}, 2*)] = i(z7'z) € i(C).

Thus ¢ induces a surjective morphism ¢ : F — Q with i(C) D ker¢. In
addition, ¢i is trivial, so i(C') C ker(¢). Hence an extension 1 — C' % F %
@ — 1 with the induced action @ — Aut(C') coinciding with 6.

It remains to show that the C-product extension F' ® E is equivalent to
E;. By construction, F ® E is represented by G = Dy ,(F, E)/C*, where
C* ={(¢,c7') € F x E : ¢ € C}. The pullback of Dy ,(F, E) along the natural
surjection S x E — F x E is Dy, (S, E).
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For every (a,b*,z) € Dy, (S, E) C By x E°P x E, one has p(a) = p(b™!) =
p(z), whence br € K and a - (bx) € E;. Define a holomorphic map 7 :
Dy (S, E) — Eq by 7(a,b*,z) = a- (bx).

SxE M poR

/

F{ x E°? x E

We check that 7 is a group morphism. For every (a,b*,z), (a’,0"*,2’) € Dy, (S, E),
since (a’,b*) € S and bx € K, one has a'~!(bz)a’ = b/ (bx)b'~!. Hence,

7(a,b*,x)7(ad’, 0™, 2") = [a(bz)][d’ (V'z"))
=ad'[a/ " (bx)ad'| (V') = ad' [V (ba)b' 1] (b'2)

=aad' (V'bxx') = 7(ad’, (V'b)*, x2’) = 7(ad’,b* V", z2').

We check that 7 is surjective. For every 1 € Ey, p1(z1) € Q. As¢v: S — Q
is surjective, there is (a,b*) € S with ¢v(a,d*) = pi(x1). Then p;(a) = p1(x1).
Thus, a 'z; € K. Let z = b~'(a"'z;) € E. Then p(z) = p(b~!) = ¢v(a,b*),
so (a,b*,x) € Dy, (S, E) and 7(a,b*,z) = a(bz) = ala'z1) = 21.

We check that ker(v*) C ker(7). For every (z1,2*,y) € ker(v*) C Fy x E°P x
E, thereis ¢ € C with ([(x1,2*)],y) = (¢,c¢™1) in F x E. Equivalently, y = ¢! in
E and [(z1,2%)] = [(¢,1%)] in F = S/K*. Whence, (z1c71,2*) € K*,i.e.,z € K
and x; = x~'c. Therefore, (z1,2%,y) = (27 'e¢,2*,¢71) with 2 € K,c € C.
Thus, 7(z1,2*,y) = 2 c(xzc™) = ep, and (z1,2*,y) € ker(7).

Conversely, we check ker(7) C ker(v*). For every (a,b*,z) € ker(r), one
has a(bzx) = ep,, so a € K. Because (a,b*) € Dy, ,+(E1,E°P), we obtain
p(b~!) = p(a) = eg and hence b € K. Since Inn,-: = Inn, € Aut(K), one has
ab € C. Therefore, [(a,b*)] = [(ab,1*)] = i(ad) in F = S/K* and (a,b*,z) =
(ab, (ab)~') € C* < F x E. Then (a,b*, ) € ker(v*).

Therefore, ker(r) = ker(v*), so 7 induces an isomorphism G — E; that
establishes an equivalence between the two elements of Ext(Q, K, §). O

Fact 7.3.6 and Theorem 7.3.7 yield Corollary 7.3.8.

Corollary 7.3.8. Let K, Q be complex Lie groups, C = Z(K), 6 : Q — Out(K)
be a group morphism. Let 6y : Q — Aut(C) be the induced group morphism.
If Ext(Q, K, 0) is nonempty, then Ext(Q, K, 0) is in (non-canonical) bijection
with Ext(Q, C, 0p).
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A Maximal morphisms

A result stronger than Proposition 5.1.3 holds.

Definition A.0.1. [Ser88, Definition 1, p.125]. Let X be a complex manifold,
A be a complex torus. A morphism f: X — A is called maximal if whenever f
factors as X % A’ 25 A, where A’ € C is connected and h — h(0): A — Ais a
finite morphism, it holds that A — h(0) is an isomorphism.

Proposition A.0.2. If X is a reqular manifold"3, then the Albanese morphism
f: X — Ab(X) associated to some base point x € X is maximal.

Proof. Assume that f factors as X 2% A’ LN Alb(X), where A’ € C is a connected
and h — h(0) is a finite morphism. Then A’ is compact, hence a complex torus.
Choosing g(x) as the new zero element of A’, we get a new structure of complex
torus on A’, to which we stick from now on. Then h is a finite morphism. By
[Liu23, Proposition 4.1.2 3], there is a morphism ¢ : Alb(X) — A’ with ¢f = ¢
and the complex Lie subgroup of Alb(X) generated by f(X) is Alb(X) itself.
Then hof = f and hence h¢ = Iday,(x). In particular, h is surjective. By Fact

3.0.4, the exact sequence 0 — ker(h) — A’ 2 A = 0 defines a trivial extension,
so A’ is isomorphic to ker(h) x A. By connectedness of A, ker(h) = 0 and h is
an isomorphism. O

When f = 1d4, Proposition A.0.3 reduces to Proposition 5.1.3.

Proposition A.0.3 ([Ser88, Prop. 14, p.188]). Let X be a connected compact
complex manifold, A be a complex torus, B € C. Let f: X — A be a mazimal
morphism. If By is linear, then the composed morphism

Ext(A, B) & HY(A,B4) & H'(X, By) (43)
1§ 1njective.

Proof. Let C € ker(f* om). Then the principal fiber bundle f*p : f*C — X
is trivial. Fix a point ¢ € f*C lying over 0 € C. Then there is a morphism
s: X — f*C with f*pos = Idx and s(f*p(c)) = c. Let t : X — C be the
morphism induced by s.

< AN
ffC -y X
l /t'///// lf
0 B c— 2, 0
r\7¢_,/
T T JhTt 1d
\1
0 —— BnA At 0

13in the sense of [Var86, p.233]
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By Remmert’s theorem |Whi72, Theorem 4A, p.150], t(X) is an analytic subset
of C. By [CD94, (14.14), p.89], the analytic space ¢(X) is irreducible. Moreover,
t(X) is compact and 0 = t(f*p(c)) € t(X). Let A’ be the complex Lie subgroup
of C generated by ¢(X). By [Liu23, Lemma A.3.5], A’ is a complex torus. Then
(A’'NB)y is a compact. As a closed complex submanifold of By, (A'NB)y is also
a Stein manifold, hence a point. Thus, A’ N B is discrete and compact, hence
finite. Therefore, h : A’ — A is a finite morphism. As the maximal morphism f

factors as X > A’ 7% A, h is an isomorphism. Then h~! : A — C is a morphism
and ph~! =1d. By Fact 3.0.4, C = 0 in Ext(4, B). O

ExaMPLE A.0.4. Let X be a regular manifold, f : X — A be the Albanese
morphism associated to some base point x € X. When B = C, the composed
morphism (43) is a linear isomorphism f* : H'(A,04) — H'(X,0x). When
B = C*, it is the inclusion of the identity component Pic’(A4) — Pic(X).

B Commutative extensions of real Lie groups

Let R be the category of commutative real Lie groups. The solution to the
extension problem within R is summarized in Proposition B.0.2. Similar to
Lemma 4.1.1, the category R is additive but not abelian. Parallel to the
construction in Section 4, we can define an additive functor Extr : R°P x R —
Ab by considering commutative extensions.

Proposition B.0.1 generalizes [LH76, Proposition 5, p.110] (which says that
C' is isomorphic to A x B) and [HN11, Lemma 15.3.2] (which is for real tori).
The similar statement for complex tori is false, shown by Example 4.1.14.

Proposition B.0.1. Let0 — B — C — A — 0 be an extension of commutative
real Lie groups. If A, B are connected, this extension is trivial.

Proof. Similar to Proposition 3.2.2, every extension of R is a semidirect product,
hence Extr(R,e) = 0 on R. Similar to Proposition 3.2.3, Extg (S, B) = 0.
According to [LH76, Proposition 4, p.109], A is isomorphic to (S')™ x R™ for
some m,n € N. As the functor Extg(e,B) : R — Ab is additive, we get

Proposition B.0.2. For every A, B € R, there is a non canonical isomorphism
in Ab:

Extr (A, B) — Extg(A/Ao, B/Bo) ® Homay, (w1 (Ao), B/Bo).

Proof. By areal version of Corollary 4.1.13, there are non canonical isomorphisms
in R: A — A/Ag x Ag and B — B/By x By. By additivity of the bifunctor
Extr, we get an isomorphism in Ab:

EXtR(A, B) — EXtR(A/Ao, Bo)@EXtR (A/Ao, B/Bo)@EXtR(AQ, B/Bo)@EXtR(AQ, Bo)
Using Lemma 4.1.12, one can prove that Extg(A/Ag, By) = 0. Identical to
Example 4.1.10, Extr (A/Ag, B/By) = Exty(A/Ag, B/By). Similar to Corollary
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3.2.5 and [HOC51b, Thm. 32], EXtR(Ao,B/B()) = HomAb(m(Ao)7B/Bo). By
Proposition B.0.1, Extr (Ao, Byp) = 0. The proof is completed. O
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