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Abstract

We study the Fourier-Mukai transform on complex tori. An inversion
formula is given for good sheaves (defined by Kashiwara), which are
replacements of quasi-coherent sheaves on algebraic varieties. We explain
why goodness is necessary for the inversion formula.
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1 Introduction

For a ringed space (Z,OZ), let D(Z) be the derived category of the abelian
category of OZ-modules. A scheme of finite type and separated over a field is
called an algebraic variety. For two algebraic varieties (resp. complex analytic
spaces) M,N , let pM :M ×N →M and pN :M ×N → N be the projections.

For an object K ∈ D(M ×N), the integral transform ϕ
[M→N ]
K : D(M)→ D(N)

with integral kernel K is defined as

ϕ
[M→N ]
K (·) = RpN,∗(K ⊗L p∗M ·). (1)

When Z is a complex analytic space, letDgd(Z) ⊂ D(Z) be the full subcategory
consisting of complexes whose cohomology sheaves are good (Definition A.4.1).
Roughly speaking, an analytic sheaf of modules is good if it can be approximated
by coherent submodules. For a complex torus X of dimension g, let X̂ be
the dual complex torus. Let P be the normalized1 Poincaré line bundle on
X × X̂. Define functors RS : D(X̂) → D(X) and RŜ : D(X) → D(X̂) by

RS = ϕ
[X̂→X]
P , RŜ = ϕ

[X→X̂]
P . The pair (RS,RŜ) is called the Fourier-Mukai

transform of X. Theorem 1.0.1 establishes an analog of the Fourier inversion
formula for this pair.

Theorem 1.0.1 (Theorem 4.1.1). The functor RŜ (resp. RS) restricts to a
functor Dgd(X) → Dgd(X̂) (resp. Dgd(X̂) → Dgd(X)). Moreover, there are
natural isomorphisms of functors

RS ◦RŜ ∼= [−1]∗X [−g] : Dgd(X)→ Dgd(X),

RŜ ◦RS ∼= [−1]∗
X̂
[−g] : Dgd(X̂)→ Dgd(X̂),

where [−g] denotes degree shift.

Theorem 1.0.1 is a complex analytic variant of [Muk81, Thm. 2.2] (Statement
2.0.4, which has a minor problem for lack of quasi-coherence condition). For
complex tori, a parallel false assertion is made as [BBBP07, Thm. 2.1] (Statement
2.0.5). Theorem 1.0.1 shows that “good sheaves” on complex manifolds serve as
substitutes for “quasi-coherent sheaves” on algebraic varieties in this case. As an
application, we recover Matsushima-Morimoto’s classification of homogeneous
vector bundles on complex tori.

Theorem (Theorem 5.3.6). A vector bundle F on the complex torus X is
translation invariant if and only if there is an integer n ≥ 0, unipotent vector
bundles2 U1, . . . , Un on X and P1, . . . , Pn ∈ Pic0(X), such that F is isomorphic
to ⊕ni=1(Pi ⊗ Ui).

1i.e., both pullback modules P|X×0 and P|0×X̂ are trivial
2Definition 5.2.2
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Notation and conventions

For a topological space M , the category of abelian sheaves on M is denoted by
Ab(M). The category of ringed spaces is denoted by RingS. For a ringed space
(X,OX), let Mod(OX) be the category of OX -modules. The full subcategory
of Mod(OX) comprised of quasi-coherent (resp. coherent) OX -modules in the
sense of Definition A.1.1 3 (resp. 6) is denoted by Qch(X) (resp. Coh(X)).
For a closed subset Z ⊂ X, let CohZ(X) ⊂ Coh(X) be the full subcategory
consisting of modules with support contained in Z.

Given a symbol ∗ ∈ {∅,+,−, b}, the notationD∗(X) refers to the unbounded/bounded
below/bounded above/bounded derived category of Mod(OX) in order. The
full subcategory of D∗(X) consisting of the complexes whose cohomologies are
coherent (resp. quasi-coherent) is denoted by D∗

c (X) (resp. D∗
qc(X)). Denote

by RHomX : D(X)op ×D(X)→ D(X) the internal hom bifunctor constructed
in [Sta23, Tag 08DH].

For a locally ringed space X and x ∈ X, let ix : (x,OX,x) → (X,OX) be
the canonical morphism of locally ringed spaces. For an OX,x-module M , the
OX -module (ix)∗M is denoted by Mx.

All complex analytic spaces (in the sense of [KK83, Def. 43.2]) are assumed
to be paracompact. Let An be the category of complex analytic spaces. The
dimension of a complex manifold always refers to the complex dimension, which
is assumed to be finite.

When X is an abelian variety (resp. complex torus), its dual abelian variety
(resp. complex torus) is denoted by X̂. The normalized Poincaré bundle on
X × X̂ is denoted by P. For y ∈ X̂ (resp. x ∈ X), let Py (resp. Px) denote the
line bundle P|X×y (resp. P|x×X̂).

Acknowledgment

I thank my supervisor Anna Cadoret for her much guidance, constant support
and valuable helps. Her careful reading and constructive suggestions have
greatly improved the exposition. I benefited a lot from enlightening communication
with Prof. Oren Ben-Bassat, Prof. Jonathan Block, Prof. Julien Grivaux, Prof. Daniel
Huybrechts, Prof. Joseph Lipman, Prof. Pierre Schapira, Joseph Leclere, Long
Liu, Xinyu Shao, Mingchen Xia, Hui Zhang and Yicheng Zhou. Lemma 3.1.11
is told by Hui Zhang. In a draft version, Theorem 4.1.1 was stated for the
categories Db

gd(∗). Gabriel Ribeiro suggested the present extension to Dgd(∗),
to whom I am very grateful for his suggestions and much help. The work
would be impossible without their kind help. I express my deep gratitude to
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2 Fourier-Mukai transform

Complex tori are generalizations of complex abelian varieties. Every complex
torus of dimension 1 is an abelian variety. By contrast, for every integer g ≥ 2,
a very general complex torus of dimension g is not3 an abelian variety (see, e.g.,
[BZ23, p.21]).

The Fourier-Mukai transform is an analog of the classical Fourier transform.
It is proposed by Mukai [Muk81] on abelian varieties and complex tori. Let k be
an algebraically closed field. LetX be an abelian variety over k (resp. a complex

torus) of dimension g. Write RS and RŜ for ϕ
[X̂→X]
P and ϕ

[X→X̂]
P respectively.

The pair (RS,RŜ) is called the Fourier-Mukai transform of X. The functor RS
(resp. RŜ) restricts to a functor Db(X̂)→ Db(X) (resp. Db(X)→ Db(X̂)).

Let X be an abelian variety. The usual exchange of translation and time
shifting (resp. multiplication and convolution) of Fourier transform finds analog
for Fourier-Mukai transform, namely the exchange of translation and line bundle
twisting (resp. tensor product and Pontrjagin product) in [Muk81, (3.1) (resp.
(3.7))]. Moreover, Mukai proves a duality theorem similar to the classical Fourier
inversion formula.

Fact 2.0.1. There are canonical isomorphisms of functors

RS ◦RŜ ∼= [−1]∗X [−g] : Dqc(X)→ Dqc(X);

RŜ ◦RS ∼= [−1]∗
X̂
[−g] : Dqc(X̂)→ Dqc(X̂).

In particular, the functorRS : Dqc(X̂)→ Dqc(X) is an equivalence of categories,

with a quasi-inverse [−1]∗
X̂
◦RŜ[g].

Example 2.0.2 ([Muk81, Eg. 2.6]). For every y ∈ X̂(k), one has RS(ky) = Py
and RŜ(Py) = k−y[−g].

Remark 2.0.3. Combining Fact 2.0.1, the natural equivalence D(Qch(X)) →
Dqc(X) ([BN93, Cor. 5.5]) with the compatibility of derived direct images
[TT07, Cor. B.9], one gets [Rot96, Mukai’s Theorem, p.569] stated forDb(Qch(∗))
instead ofDqc(∗). The quasi-coherence restriction is essential for Čech resolution
with respect to affine covers in [Rot96, p.571].

The proof of Fact 2.0.1 uses projection formula and the flat base change
theorem ([Lip09, Prop. 3.9.4; Prop. 3.9.5]). Compared with Fact 2.0.1, the
original statement (Statement 2.0.4) has no quasi-coherence restriction.

Statement 2.0.4 ([Muk81, Thm. 2.2]). The functor RS gives an equivalence of
categories between D(X̂) and D(X), and its quasi-inverse is [−1]∗

X̂
◦RŜ[g].

3To the contrary, it is incorrectly implied in [BBR94, p.151] that every complex torus of
dimension 2 admits a compatible structure of algebraic complex surface. In fact, it fails for
each 2-dimensional complex torus X that is not a projective manifold. For otherwise, assume
there is a complex algebraic surface V with V an ∼= X. Then V is proper by [GR71, XII, Prop.
3.2 (v)]. In consequence, the algebraic variety V is projective by [Har77, p.357]. Thus, X is
a projective manifold, a contradiction.
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In [BBBP07, Thm. 2.1], an assertion similar to Statement 2.0.4 is made for
complex tori.

Statement 2.0.5. Let X be a complex torus. Then the integral transform RS :
Db(X̂)→ Db(X) is an equivalence of triangulated categories.

However, Lemma 2.0.6 shows that Statement 2.0.4 (resp. Statement 2.0.5)
holds if and only if g = 0.

Lemma 2.0.6 ([th]). Let X be an abelian variety or a complex torus. If the
functor RS : Db(X̂)→ Db(X) is an equivalence of categories, then g = 0.

Proof. When X is a complex torus, let k = C. In both cases, let F = kN0 be
the product of a countable infinite family of k0 in Mod(OX̂). Since kN = k⊕I

as a k-module for some index set I, the direct sum sheaf k⊕I0 is isomorphic to
F . Therefore, by [Sta23, Tag 07D9 (2)], F is the direct sum of I copies of k0 in
Db(X̂). We claim that F is the product of N copies of k0 in Db(X̂).

By [Gro57, p.129], the abelian category Mod(OX̂,0) satisfies the AB 4*)

axiom. From [Sta23, Tag 07KC (2)], the inclusion Mod(OX̂,0)→ Db(Mod(OX̂,0))

commutes with countable products. Let i : 0 → X̂ be the closed immersion.
Since i∗ : Mod(OX̂,0)→ Mod(OX̂) is exact, there is a commutative square

Mod(OX̂,0) Mod(OX̂)

Db(Mod(OX̂,0)) Db(X̂).

i∗

Ri∗

Since Ri∗ : Db(Mod(OX̂,0)) → Db(X̂) has a left adjoint, it commutes with

products. As F = i∗(k
N), the claim is proved.

As RS : Db(X̂)→ Db(X) is an equivalence, inside Db(X), the object RS(F )
is the direct sum of I copies of RS(k0), as well as the product of N copies of
RS(k0). By Example 2.0.2 (when X is an abelian variety) and Lemma 2.0.8
(when X is a complex torus), one has RS(k0) = OX . Therefore, RS(F ) is
isomorphic to O⊕I

X and to ON
X in Mod(OX).

Assume the contrary g > 0. Then there is a nonempty connected open subset
V ⊂ X, such that OX(V ) is an integral domain but not a field. In particular,
the ring OX(V ) is not Artinian. By [Har77, II, Exercise 1.11] (when X is an
abelian variety) and Corollary A.5.4 (when X is a complex torus), the OX(V )-
module Γ(V,RS(F )) is isomorphic to OX(V )⊕I and to OX(V )N. However, this
contradicts Fact 2.0.7.

Fact 2.0.7 ([Len68, Thm, p.211]). If A is a commutative ring such that AN is
a free A-module, then A is Artinian.

For algebraic varieties, the analog of Lemma 2.0.8 follows from the flat base
change theorem and the projection formula.
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Lemma 2.0.8. Let X,Y be two complex analytic spaces, let K ∈ D(X × Y ),
and let x ∈ X. Consider the closed embedding hx : Y → X × Y, y 7→ (x, y).

Then ϕ
[X→Y ]
K (Cx) = Lh∗xK.

Proof. Let p : X × Y → X, q : X × Y → Y be the two projections. Denote
the closed embedding of complex analytic spaces x → X by jx. The cartesian
square

Y x

X × Y X

p0

hx □ jx

p

in the category An induces a natural morphism ϕ : p∗Cx → Rhx,∗OY in
Mod(OX×Y ). Both sheaves are supported on {x} × Y .

For two (Hausdorff) locally convex topological vector spaces E,F over C,
the completed projective topological tensor product E⊗̂CF is defined in [Gro55,
Ch. I, Déf. 2, p.32]. For every y ∈ Y , by [GR84, p.27], the stalk OX×Y,(x,y) =

OX,x⊗̂COY,y. Then

(p∗Cx)(x,y) = C⊗OX,x
OX×Y,(x,y) = OY,y.

Therefore, ϕ(x,y) : (p∗Cx)(x,y) → (hx,∗OY )(x,y) is an isomorphism. Thus, ϕ is
an isomorphism.

By [Sta23, Tag 0B55], the natural morphism (Rhx,∗OY )⊗LK → Rhx,∗(Lh
∗
xK)

is an isomorphism. Then

ϕ
[X→Y ]
K (Cx) = Rq∗(p

∗Cx ⊗L K) ∼= Rq∗(Rhx,∗OY ⊗L K)
∼=Rq∗Rhx,∗(Lh∗xK) ∼= R(qhx)∗(Lh

∗
xK) = Lh∗xK.

The minor problem with Statement 2.0.4 occurs in the proof of [Muk81,
Prop. 1.3], when the flat base change theorem [Har66, Prop. 5.12] stated for
objects of Dqc(∗) is applied to objects in D−(∗). Similarly, the minor problem
with Statement 2.0.5 originates from a lack of certain analytic quasi-coherence in
the wrong Statement 2.0.9 (a counterpart of [Muk81, Prop. 1.3]). A modification
of Statement 2.0.9 is Proposition 4.2.2.

Statement 2.0.9 ([BBBP07, p.427]). If M , N , and P are compact complex
manifolds and K ∈ Db(M × N) and L ∈ Db(N × P ), then one has a natural
isomorphism of functors from Db(M) to Db(P ):

ϕ
[N→P ]
L ◦ ϕ[M→N ]

K
∼= ϕ

[M→P ]
K∗L ,

where
K ∗ L = RpM×P∗(p

∗
M×NK ⊗L p∗N×PL) ∈ Db(M × P ),

and pM×N , pM×P , pN×P are the natural projections M × N × P → M × N ,
etc.
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3 Good modules

As Section 2 explains, to obtain an analytic analogue of Fact 2.0.1, it is necessary
to find a substitute for quasi-coherence on complex manifolds. We show that
goodness introduced by Kashiwara (Definition A.4.1) can be used as such.

3.1 Functoriality

In Corollary 3.1.14, we prove that goodness is preserved by integral transforms.
To prove this, we show that goodness is preserved by the operations involved in
(1).

Example 3.1.1. [Har66, Example 1., p.68] Let f : X → Y be a morphism of
ringed spaces. Then the derived pullback Lf∗ : D(Y )→ D(X) (constructed in
[Spa88, Prop. 6.7 (a)]) is bounded above (in the sense of [Lip09, 1.11.1]), and
the derived pushout Rf∗ : D(X)→ D(Y ) is bounded below.

Proposition 3.1.2 (Pullback). Let f : X → Y be a morphism of complex
analytic spaces. Then Lf∗ : D(Y )→ D(X) restricts to a functor

1. Db
c(Y )→ Db

c(X) when Y is a complex manifold or f is flat;

2. Dgd(Y )→ Dgd(X).

Proof.

1. Because Y is smooth or f is flat, by Lemma 3.1.3, the morphism f has
finite tor-dimension. Thus, Lf∗ restricts to a functor Db(Y )→ Db(X).

Consider F ∈ Db
c(Y ). To prove that Lf∗F ∈ Db

c(X), by [Har66, I,
Prop. 7.3 (i)], one may assume F ∈ Coh(Y ). This case is proved by
Lemma A.3.3.

2. (a) Let G ∈ D−
gd(Y ). By Example 3.1.1, Lemma A.4.3 3 and a dual of

[Har66, Prop. 7.3 (ii)], to prove Lf∗G ∈ Dgd(X), one may assume
G ∈ Good(Y ). Let U be a relatively compact open subset ofX. Then
f(Ū) is a compact subset of Y , so contained in a relatively compact
open subset V of Y . Since G is good, its restriction G|V =

∑
i∈I Gi

is the sum of a directed family of coherent OV -submodules of G|V .
Let g : f−1(V ) → V be the base change of f along the inclusion
V → Y . As Lf∗ commutes with colimits, one has

(Lf∗G)|f−1(V ) = colimi∈ILg
∗Gi.

For every integer n, in Mod(Of−1(V )) one has

Hn(Lf∗G)|f−1(V ) = Hn
(
(Lf∗G)|f−1(V )

)
=Hn(colimi∈ILg

∗Gi) = colimi∈IH
n(Lg∗Gi).
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SinceGi is coherent, by Lemma A.3.3, theOf−1(V )-moduleHn(Lg∗Gi)
is coherent. By Lemma A.4.3 3, theOf−1(V )-moduleHn(Lf∗G)|f−1(V )

is good. Since Ū is a compact subset of f−1(V ), the subset U is
relatively compact in f−1(V ). Hence, Hn(Lf∗G)|U is the sum of a
directed family of coherent submodules. Hence Lf∗G ∈ Dgd(X).

(b) Then consider the general case C ∈ Dgd(Y ). For every integer
m ≥ 0, the m-th canonical truncation ([Sta23, Tag 0118 (4)]) Cm :=
τ≤mC is in D−

gd(Y ). From the proof of [Lip09, Prop. 2.5.5], there
is a bounded above complex of flat OY -modules Qm with a quasi-
isomorphism Qm → Cm that is functorial in Cm. Moreover, the
complex Q := colimmQm is K-flat (in the sense of [Spa88, Def. 5.1]),
and the canonical morphism Q→ C is a quasi-isomorphism. Because
Lf∗ : D(Y ) → D(X) admits a right adjoint, it commutes with
colimits. Thus, the resulting morphisms

colimmLf
∗Qm → Lf∗Q→ Lf∗C

are isomorphisms in D(X).

Let Ch(Mod(OX)) be the category of chain complexes over Mod(OX).
The directed set N can be seen naturally as a category. Define
a functor N → Ch(Mod(OX)), m 7→ f∗Qm. Because Mod(OX)
is a Grothendieck abelian category, for every integer n, by [Hov99,
Lem. 1.5], the natural morphism

colimmH
n(f∗Qm)→ Hn(colimmf

∗Qm)

in Mod(OX) is an isomorphism. Hence an isomorphismHn(Lf∗C) ∼=
colimmH

n(Lf∗Qm) in Mod(OX). Since Qm ∈ D−
gd(Y ), by Case 2a,

the OX -module Hn(Lf∗Qm) is good. By Lemma A.4.3 3, so is the
OX -module Hn(Lf∗C).

The tor-dimension tor-dim f of a morphism f : X → Y of ringed spaces is
defined to be the lower dimension (in the sense of [Lip09, 1.11.1]) of the functor
Lf∗ : D−(Y ) → D(X). If f is flat, then tor-dim f = 0. If f has finite tor-
dimension, then Lf∗ : D−(Y )→ D(X) restricts to a functor Db(Y )→ Db(X).
The weak dimension wgld(R) of a commutative ring R is defined to be the
supremum of flat dimension of all R-modules.

Lemma 3.1.3. Let f : X → Y be a morphism of complex analytic spaces, with
Y a complex manifold. Then f has finite tor-dimension.

Proof. From [Lip09, (2.7.6.4)], one only needs to show that for every x ∈ X, the
flat dimension of the OY,f(x)-module OX,x is uniformly bounded. By definition,
the flat dimension of every OY,f(x)-module is bounded by the weak dimension
of the ring OY,f(x). Because Y is a complex manifold, the local ring OY,f(x)
is Noetherian regular. By Lemma 3.1.4, wgldOY,f(x) is the Krull dimension of
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OY,f(x), which coincides with the dimension of the complex manifold Y near
f(x).

Lemma 3.1.4 (Serre). Let R be a commutative, Noetherian, regular local ring.
Then wgld(R) coincides with the Krull dimension of R, hence finite.

Proof. From [Osb12, Cor. 4.21], the weak dimension coincides with the global
dimension of R. By Serre’s theorem (see, e.g., [Osb12, p.332]), the global
dimension equals the Krull dimension, which is finite.

Proposition 3.1.5 (Tensor product). Let X be a complex analytic space. Then
the bifunctor (constructed in [Spa88, Thm. A. (ii)]) ⊗L : D(X)×D(X)→ D(X)
restricts to a bifunctor

1. Db(X)×Db(X)→ Db(X) (resp. Db
c(X)×Db

c(X)→ Db
c(X)) when X is

a complex manifold;

2. Dgd(X)×Dgd(X)→ Dgd(X).

Proof.

1. The weak dimension of a ringed space (M,OM ) is defined to be supx∈M wgld(OM,x).
By [HT07, (C.2.20)], to prove the statement forDb(X), it suffices to bound
the weak dimension of X. As X is smooth, for every x ∈ X, the stalk
OX,x is a Noetherian, regular local ring. Thus, by Lemma 3.1.4, its weak
dimension wgld(OX,x) is equal to the dimension of the complex manifold
X near x. Therefore, the weak dimension of X is at most dimX

Consider any F,G ∈ Db
c(X). To prove that F ⊗L G ∈ Db

c(X), by [Har66,
I, Prop. 7.3 (i)], one may assume F,G ∈ Coh(X). Then the conclusion
follows from [GH78, 4., p.700].

2. Take F,G ∈ Dgd(X). To prove that F ⊗L G ∈ Dgd(X), as in the proof of
Proposition 3.1.2 2, one may assume that F,G ∈ D−

gd(X). By a dual of
[Har66, I, Prop. 7.3 (ii)], one may assume that F,G ∈ Good(X). Let U
be a relatively compact open subset of X.

For every integer n, we claim that the OU -moduleHn(F⊗LOX
G)|U is good.

By assumption, the restrictions F |U =
∑
i∈I Fi and G|U =

∑
j∈J Gj can

be written as sums of directed families of coherent submodules. By [Sta23,
Tag 08DJ], the functor ⊗LOU

(G|U ) : D(U)→ D(U) has a right adjoint, so

(F ⊗L G)|U = colimi∈I [Fi ⊗L (G|U )]. (2)

By [Sta23, Tag 05NI (2)], there exists a complex C• of flat OU -modules
and a quasi-isomorphism C• → G|U . Then for every i ∈ I, in D(U)

Fi ⊗OU
C• ∼−→ Fi ⊗LOU

G|U . (3)
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Define a functor I → Ch(Mod(OX)) by i 7→ Fi⊗C•. By [Hov99, Lem. 1.5],
the natural morphism

colimi∈IH
n(Fi ⊗ C•)→ Hn(colimi∈I(Fi ⊗ C•))

in Mod(OU ) is an isomorphism. Combining it with (2) and (3), one gets
an isomorphism in Mod(OU )

colimi∈IH
n(Fi ⊗LOU

G|U )→ Hn(F ⊗LOX
G)|U .

Because Good(U) is closed under colimits in Mod(OU ) by Lemma A.4.3 3,
one may assume that F |U is coherent. Similarly, one may assume further
that G|U is coherent. Then the claim follows from Lemma A.3.4.

As the proof of Theorem 3.1.6 is lengthy, we split it into a series of lemmas.

Theorem 3.1.6 (Pushout). Let f : X → Y be a proper morphism of complex
analytic spaces. If dimX is finite, then Rf∗ : D(X) → D(Y ) restricts to a
functor Dgd(X)→ Dgd(Y ) (resp. Db

gd(X)→ Db
gd(Y )).

Proof. By Lemma 3.1.10, the functor Rf∗ restricts to a functor Db(X) →
Db(Y ). We show that Rf∗F ∈ Dgd(Y ) for every F ∈ Dgd(X). By [Har66, I,
Prop. 7.3 (iii)], Lemmas 3.1.10 and A.4.3 3, one may assume that F ∈ Good(X).
For every relatively compact open subset V ⊂ Y , its closure V̄ is compact in
Y . As f is proper, the preimage f−1(V̄ ) is compact. Thus, U := f−1(V ) is a
relatively compact open subset of X. Since F is good, F |U = colimi∈IFi, where
{Fi}i∈I is a directed family of coherent OU -submodules of F |U . Let g : U → V
be the base change of f . Fix an integer n. By Lemma 3.1.8, in Mod(OV )

(Rnf∗F )|V = Rng∗(F |U ) = colimi∈IR
ng∗Fi.

As a base change of f , the morphism g is proper. Then by Fact 3.1.7, for every
i ∈ I, the OV -module Rng∗Fi is coherent. By Coh(V ) ⊂ Good(V ) and Lemma
A.4.3 3, the OV -module (Rnf∗F )|V is good. Therefore, Rf∗F ∈ Dgd(Y ).

Fact 3.1.7 (Grauert direct image theorem, see e.g., [GR84, p.207]). Let f :
X → Y be a proper morphism of complex analytic spaces. Then Rf∗ : D(X)→
D(Y ) restricts to a functor Coh(X)→ Dc(Y ).

Lemma 3.1.8. Let f : X → Y be a proper map between locally compact,
Hausdorff spaces. Then for every integer n ≥ 0, the functor Rnf∗ : Ab(X) →
Ab(Y ) commutes with filtrant colimits.

Proof. Let (Fi, fij)i∈I be a filtrant inductive system with colimit F in Ab(X).
Since the abelian category Ab(Y ) is Grothendieck, the filtrant colimit G =
colimi∈IR

nf∗Fi exists and there is a canonical morphism ϕ : G → Rnf∗F in

10



Ab(Y ). For every y ∈ Y , the functor Ab(Y ) → Ab taking the stalk at y
commutes with colimits, so Gy = colimi∈I(R

nf∗Fi)y. By [Mil13, Thm. 17.2], for
every i the stalk (Rnf∗Fi)y = Hn(Xy, Fi|Xy

). Then by [God58, Thm. 4.12.1],
the morphism ϕy : Gy → (Rnf∗F )y is an isomorphism. Therefore, ϕ is an
isomorphism.

The proof of Fact 3.1.9 is similar to that of [KS90, Prop. 3.2.2].

Fact 3.1.9. Let X be a locally compact, Hausdorff topological space which is
countable at infinity. Suppose that there is an integer n ≥ 0 such that every
point of X has an open neighborhood homeomorphic to a locally closed subset
of Rn. Then for every abelian sheaf F on X and every integer j > n, one has
Hj(X,F ) = 0.

Lemma 3.1.10. Let X be a complex analytic space of finite dimension n. Let
f : X → Y be a proper morphism of complex analytic spaces. Then for an object
E ∈ D(X) with Hm(E) = 0 for every integer m > 0, one has Hi(Rf∗E) = 0
for every integer i > 2n. In particular, the functor Rf∗ : D(X) → D(Y ) is
bounded.

Proof. For every open subset V ⊂ Y and every OX -moduleM , from i > 2n and
Fact 3.1.9, one has Hi(f−1(V ),M) = 0. Applying Lemma 3.1.12 to the functor
Γ(f−1(V ), ·) : Mod(OX)→ Ab, one gets

Hi(RΓ(f−1(V ), E)) = Hi(RΓ(f−1(V ), τ≥1E)) = 0.

By Lemma 3.1.11, the OY -module Hi(Rf∗E) = 0.

Lemma 3.1.11 is a derived version of [Har77, III, Prop. 8.1].

Lemma 3.1.11. Let f : X → Y be a continuous map of topological spaces.
Then for every integer i and every F ∈ D(Ab(X)), the sheaf Hi(Rf∗F ) on Y
is the sheaf associated to the abelian presheaf V 7→ HiRΓ(f−1(V ), F ).

Proof. By [Spa88, Thm. D], there is a quasi-isomorphism F → I, where I is
a K-injective complex of abelian sheaves on X. Then the canonical morphism
Rf∗F → f∗I is an isomorphism in D(Ab(Y )). By [Mur06, Lem. 3], Hi(Rf∗F )
is the sheaf associated the presheaf

V 7→ Hi
(
Γ(V, f∗I)) = Hi

(
Γ(f−1(V ), I)) = Hi

(
RΓ(f−1(V ), F )).

Lemma 3.1.12. Let X be a ringed space as in Fact 3.1.9. Let F : Mod(OX)→
Ab be an additive functor. Assume that F commutes with countable products,
and there is an integer N ≥ 0 with RpF (M) = 0 for every integer p ≥ N and
every M ∈ Mod(OX). Then the right derived functor RF : D(X) → D(Ab)
exists. Moreover, for any integers i ≥ j, the natural transformation

Hi(RF ·)→ Hi(RF (τ≥j−N+1·)) : D(X)→ Ab

is an isomorphism.

11



Proof. The existence of N and [Wei95, Cor. 10.5.11] show that RF : D+(X)→
D+(Ab) extends to a right derived functor RF : D(X)→ D(Ab) of F .

For every integer m and every E ∈ D(X), set Em := τ≥−mE. Then
{Em}m∈Z forms an inverse system in D(X). Let n be as in Fact 3.1.9. Then for
every open subset U ⊂ X, any integers p(> n) and q, one hasHp(U,Hq(E)) = 0.
Then by [Sta23, Tag 0D64], the canonical morphism E → R limmEm is an
isomorphism inD(X). Since F commutes with countable products, from [Sta23,
Tag 08U1], in D(Ab) one has RF (E)

∼−→ R limmRF (Em). For every integer i,
by [Sta23, Tag 08U5], there is a short exact sequence in the category Ab

0→ R1 lim
m
Hi−1(RF (Em))→ Hi(RF (E))→ lim

m
Hi(RF (Em))→ 0. (4)

We claim that R1 limmH
i−1(RF (Em)) = 0.

For every integer m ≥ N − i, by [Sta23, Tag 08J5], there is an exact triangle

H−m(E)[m]→ Em → Em−1
+1→ H−m(E)[m+ 1] (5)

in D(X). By assumption, one has

Hi(RF (H−m(E)[m])) = Ri+mF ((H−m(E)) = 0;

Hi(RF (H−m(E)[m+ 1])) = Ri+m+1F ((H−m(E)) = 0.

Taking the long exact sequence associated with (5), one concludes that the
canonical morphism Hi(RF (Em))→ Hi(RF (Em−1)) in Ab is an isomorphism.
Since the inverse system {HiRF (Em)}m≥1 is constant starting with m = N −
i− 1, it satisfies the Mittag-Leffler condition in the sense of [Sta23, Tag 02N0].
From [Sta23, Tag 07KW (3)], one obtains

R1 lim
m
Hi(RF (Em)) = 0,

which proves the claim.
When i ≥ j, as the inverse system is constant from m = N − j − 1, one

has limmH
i(RF (Em)) = Hi[RF (EN−j−1)]. Then the sequence (4) induces an

isomorphism Hi(RF (E))→ Hi(RF (τ≥j−N+1E)).

Remark 3.1.13. In the statement of Lemma 3.1.12, because Mod(OX) is a
Grothendieck abelian category, it has enough injectives. By [Ver66, p.338],
the total right derived functor RF : D+(X) → D+(Ab) exists (even if F may
not be left exact).

Corollary 3.1.14. Let X,Y be complex manifolds (resp. complex analytic
spaces), with X compact and Y finite dimensional. If F is an object of Db

c(X×
Y ) (resp. Dgd(X × Y )), then ϕ

[X→Y ]
F restricts to a functor Db

c(X) → Db
c(Y )

(resp. Dgd(X)→ Dgd(Y )).

Proof. BecauseX is compact, its dimension is finite and the projectionX×Y →
Y is proper. Thus, X × Y is finite dimensional. The result is a combination
of Proposition 3.1.2 1 (resp. 2), Proposition 3.1.5 1 (resp. 2), Fact 3.1.7 and
Lemma 3.1.10 (resp. Theorem 3.1.6).
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Remark 3.1.15. Although we don’t need the functors RHom, f! and f !, it is
interesting to know whether they preserve goodness or not.

3.2 Base change theorems

As a replacement for the (algebraic) flat base change theorem (used in Mukai’s
proof of Fact 2.0.1), we give an analytic smooth base change theorem. It is a
consequence of Theorem 3.2.3 and Fact 3.2.2.

Consider a cartesian square in the category An:

X ′ X

S′ S.

g′

f ′ □ f

g

(6)

Then [Sta23, Tag 08HY] gives a natural transformation of functors D(X) →
D(S′)

Lg∗Rf∗ → Rf ′∗Lg
′∗, (7)

coming from the adjunction in [Sta23, Tag 079W].

Smooth base change

Definition 3.2.1. A morphism g : S′ → S of complex analytic spaces is called
locally product, if for every s′ ∈ S′, there is an open neighborhood U of s′ ∈ S′

and a complex analytic space Z, such that g(U) is open in S and there is a
g(U)-isomorphism U → g(U)× Z.

By [CD94, II, Cor. 2.7], a locally product morphism is flat.

Fact 3.2.2 ([Gro61b, Thm. 3.1]). A morphism of complex analytic spaces is
smooth (in the sense of in the sense of [Gro61b, Déf. 3.2]) if and only if it is a
submersion (in the sense of [Fis76, p.100]). In particular, a smooth morphism
is locally product.

Theorem 3.2.3. Consider the square (6) with both dimX and dimX ′ finite,
f : X → S proper and g : S′ → S locally product. Then (7) restricts to an
isomorphism of functors Dgd(X)→ Dgd(S

′).

We begin the proof with several lemmas.

Definition 3.2.4. A morphism of complex analytic spaces g : S′ → S is said
to satisfy property QS if for every proper morphism f : X → S of complex
analytic spaces, every coherent OX -module F and every integer i ≥ 0, the base
change morphism g∗Rif∗F → Rif ′∗(g

′∗F ) induced by (6) is an isomorphism in
Mod(OS′).

Lemma 3.2.5 shows that the property Q is local on the source and the target.

Lemma 3.2.5. Let g : S′ → S and be a morphism of complex analytic spaces.
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1. Let h : S′′ → S′ be another morphism of complex analytic spaces. If g
and h satisfy QS and QS′ respectively, then gh satisfies QS .

2. Assume that {S′
i}i∈I (resp. {Sj}j∈J) is an open covering of S′ (resp. S)

such that for every i ∈ I (resp. j ∈ J), the morphism g|S′
i
: S′

i → S (resp.

g−1(Sj)→ Sj) satisfies QS (resp. QSj ). Then g satisfies QS .

3. If g is an open embedding of complex analytic spaces, then g satisfies QS .

Proof. 1. The proof is similar to that of [Day23, Lem. 2.13 (2)].

2. It follows from the local nature of sheaves.

3. The proof is similar to that of [Har77, III, Cor. 8.2].

Lemma 3.2.6. Let f : X → S be a proper morphism of complex analytic
spaces, with S Stein. Then for every coherent OX -module F and every integer
n ≥ 0, one has Hn(X,F ) = H0(S,Rnf∗F ).

Proof. By properness of f and Fact 3.1.7, the OS-module Rnf∗F is coherent.
As S is Stein, from Cartan’s Theorem B (see, e.g., [KK83, Sec. 52, Thm. B]),
for every integer m > 0 one has Hm(S,Rnf∗F ) = 0. The conclusion follows
from [Sta23, Tag 01F4 (2)].

Lemma 3.2.7. Let X,Y be complex analytic spaces, with Y Stein. Let p :
X×Y → X be the projection. Then for every coherent OX -module F and every
integer i ≥ 0, the natural morphism Hi(X,F )⊗̂COY (Y ) → Hi(X × Y, p∗F ) of
locally convex topological vector spaces is an isomorphism.

Proof. Choose a Stein covering U of X. Let C• be the Čech complex of F
relative to U . Then Hi(C•) = Hi(X,F ). By [EP+96, Prop. 4.1.5], for every
integer q, the q-th term Cq of the complex C• is a Fréchet space. Moreover,
{U×Y : U ∈ U} forms a Stein covering ofX×Y . By [EP+96, Prop. 4.2.3; Thm.
4.2.4], the Čech complex of p∗F relative to this Stein covering is C•⊗̂CO(Y ).
Therefore, Hi(C•⊗̂CO(Y )) = Hi(X × Y, p∗F ). By [EP+96, Prop. 4.1.5], O(Y )
is a unital Fréchet nuclear algebra, so from [EP+96, Thm. A1.6 (d)], the functor
∗⊗̂CO(Y ) preserves exact sequences, hence commutes with taking cohomology
groups of the Čech complexes.

We consider the special case of products.

Corollary 3.2.8. Let S,Z be two complex analytic spaces. Then the projection
S × Z → S satisfies QS .

Proof. Fix a proper morphismX → S of complex analytic spaces and a coherent
OX -module F . By Lemma 3.2.5, we may assume that S,Z are Stein spaces.
Then the result follows from Lemma 3.2.6, Lemma 3.2.7 and [EP+96, Prop.
4.2.3; Thm. 4.2.4].
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Corollary 3.2.9. Every locally product morphism g : S′ → S of complex
analytic spaces satisfies QS .

Proof. Fix s′ ∈ S′, and let s = g(s′). Since g is locally product, there is an open
neighborhood U (resp. V ) of s′ ∈ S′ (resp. s ∈ S), a complex analytic space Z
and an isomorphism ψ : U → Z × V of complex analytic spaces such that the
diagram

U Z × V

V

g|U

ψ

p2

commutes, where p2 is the projection to the second factor. By Corollary 3.2.8,
g|U : U → V satisfies QV . By Lemma 3.2.5, the morphism g : S′ → S satisfies
QS .

Proof of Theorem 3.2.3. The morphism f ′ is a base change of f , hence a proper
morphism. Because dimX,dimX ′ are finite, by Theorem 3.1.6 and Proposition
3.1.2 2, the functors Lg∗Rf∗ andRf

′
∗Lg

′∗ restrict to functorsDgd(X)→ Dgd(S
′).

For everyK ∈ Dgd(X), we prove that the base change morphism Lg∗Rf∗K →
Rf ′∗Lg

′∗K in D(S′) is an isomorphism. By Lemma 3.1.10, the functors Rf∗ :
D(X) → D(S) and Rf ′∗ : D(X ′) → D(S′) are bounded. From [Har66, I,
Prop. 7.1 (iii)] and Lemma A.4.3 3, one may assume that K ∈ Good(X). For
every s′ ∈ S′, there is a relatively compact open neighborhood V ⊂ S of g(s′).
The preimage f−1(V ) is a relatively compact open subset of X. Consider the
base change of the square (6) along the open embedding V → S:

f−1(V )×V g−1V f−1(V )

g−1(V ) V.

v′

u′
□ u

v

Because g is locally product, so is v. One can write K|f−1(V ) = colimi∈IGi,
where {Gi}i∈I is a directed family of coherent submodules of K|f−1(V ). By
Lemma 3.1.8, the natural morphism

(g∗Rif∗K)|g−1(V ) → Rif ′∗(g
′∗K)|g−1(V ) (8)

in Mod(Og−1(V )) is the colimit of the morphisms

v∗Riu∗Gi → Riu′∗v
′∗Gi.

By Corollary 3.2.9, for all i ∈ I, they are isomorphisms. Then (8) is an
isomorphism.

Remark 3.2.10. In the proof of [BBR94, Lem. 5], an analytic flat base change
result is applied without further justification. In [MS08, p.153], a flat base
change theorem for cartesian squares in the category of complex manifolds is
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stated, referring to [Spa88] for the proof. However, the cited result [Spa88,
Prop. 6.20] is for cartesian squares in the category RingS. In general, a cartesian
square in the category of complex manifolds is not cartesian in RingS. For
example, the complex vector space C2 is the product of two copies of C in the
category of complex manifolds, but is not the product even in the subcategory
LRS ⊂ RingS of locally ringed space.4

In fact, by [Gil11, Cor. 5], the product E of two copies of C in LRS exists.
By the universal property of E, there is a unique morphism f : C2 → E in LRS
induced by the two projections pi : C2 → C. Let o = f(0) ∈ E. We claim that
the local ring OE,o is not Noetherian.

The local ring A := OC,0 = C{z} is the ring of convergent power series. Let
B = A ⊗C A. Let ϵ : B → A be the surjective (diagonal) morphism defined
by ϵ(f ⊗ g) = fg. Set I = ker(ϵ). Let c : A → C be the ring map taking the
constant term. Then cϵ : B → C is surjective, so m = ker(cϵ) is a maximal ideal
of B containing I. Set S = B \m. Then OE,o = S−1B. From [Tu97, p.367],
I/I2 is a free B/I-module of infinite rank. Thus, S−1(I/I2) = (S−1I)/(S−1I2)
is a free S−1(B/I) = (S−1B)/(S−1I)-module of infinite rank. In particular, the
ideal S−1I of the ring S−1B is not finitely generated. The claim is proved.

By [GH78, p.679], the ring C{x, y} is Noetherian. Thus, the local morphism

f#0 : OE,o → OC2,0 = C{x, y} is not an isomorphism. Hence, f is not an
isomorphism in LRS.

Non-smooth base change

Lemma 3.2.11 is used in the proof of Proposition 5.1.2.

Lemma 3.2.11 (Base change). Consider the cartesian square (6) with dimX,dimS′

finite and f flat proper. Then (7) induces an isomorphism Lg∗Rf∗ → Rf ′∗Lg
′∗

of functors Dgd(X)→ Dgd(S
′).

Proof. Because dimX is finite, by Theorem 3.1.6 and Proposition 3.1.2 2, the
functor Lg∗Rf∗ : D(X) → D(S′) restricts to a functor Dgd(X) → Dgd(S

′).
Consider the following commutative diagram

X ′ S′ ×X X

S′ S′ × S S,

i′

f ′

g′

IdS′×f
p′

f

i

g

p

where the morphism i : S′ → S′ × S is defined by i(s′) = (s′, g(s′)), and
p : S′ × S → S is the projection. Then i is a closed embedding of complex
analytic spaces.

4By contrast, every cartesian square in the category of schemes remains cartesian in LRS
([Sta23, Tag 01JN]).
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Because p is locally product, by Theorem 3.2.3, the natural transformation
Lp∗Rf∗ → R(IdS′ × f)∗Lp

′∗ : Dgd(X) → Dgd(S
′ × S) is an isomorphism.

Because f is flat proper, so is IdS′×f . Moreover, dim(S′×X) = dimS′+dimX
is finite. Thus, there are isomorphism of functors Dgd(X)→ Dgd(S

′)

Lg∗Rf∗ ∼= Li∗Lp∗Rf∗
∼−→ Li∗R(IdS′ × f)∗Lp′∗

(a)
∼−→Rf ′∗Li′∗Lp′∗ ∼= Rf ′∗Lg

′∗,

(9)

where the isomorphism (a) uses Lemma 3.2.12 2. By [Sta23, Tag 0E47], the
isomorphism (9) is induced by (7).

Lemma 3.2.12. In the cartesian square (6), assume that g is a closed embedding
of complex analytic spaces. Then:

1. The base change morphism f∗g∗OS′ → g′∗OX′ in Mod(OX) is an isomorphism.

2. If f is flat proper and X has finite dimension, then (7) is an isomorphism.

Proof. 1. Let I be the kernel of the canonical surjection OS → g∗OS′ in
Mod(OS). Since f

∗ : Mod(OS)→ Mod(OX) is right exact, the sequence

f∗I → OX → f∗g∗OS′ → 0

is exact in Mod(OX). Because g is a closed embedding, by [Gro61a,
Remarque 2.10], the square (6) is cartesian in the category RingS. Then
from [Gro61a, 9-05], the cokernel of the morphism f∗I → OX in Mod(OX)
is g′∗OX′ . Therefore, the morphism f∗g∗OS′ → g′∗OX′ is an isomorphism.

2. As g is a closed embedding, the functor g∗ : Ab(S′)→ Ab(S) is exact and
g−1g∗ = IdAb(S′). Therefore, the functor Rg∗ = g∗ : D(S′) → D(S) is
conservative. Thus, it suffices to show that the natural transformation

Rg∗Lg
∗Rf∗E → Rg∗Rf

′
∗Lg

′∗E
∼−→ Rf∗Rg

′
∗Lg

′∗E (10)

of functors D(X) → D(S) is an isomorphism. By [Sta23, Tag 0B55], the
natural morphisms

(Rg∗OS′)⊗LOS
Rf∗E → Rg∗Lg

∗Rf∗E,

(Rg′∗OX′)⊗LOX
E → Rg′∗Lg

′∗E

are isomorphisms. One has

Rg′∗OX′ = g′∗OX′

(a)
∼←− f∗g∗OS′

(b)

= Lf∗Rg∗OS′ ,

where (a) uses Point 1, and (b) uses the flatness of f . Thus, the natural
transformation (10) becomes

(Rg∗OS′)⊗LOS
Rf∗E → Rf∗(Lf

∗Rg∗OS′ ⊗LOX
E).

It is an isomorphism by the finiteness of dimX, the properness of f and
Fact 3.2.13.
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From Fact 3.1.9, one gets Fact 3.2.13 as a special case of [Spa88, Prop. 6.18].

Fact 3.2.13 (Projection formula). Let f : X → Y be a morphism of complex
analytic spaces. If dimX is finite, then there is a canonical isomorphism
(Rf!−)⊗LOY

(+)→ Rf!(−⊗LOX
Lf∗+) of bifunctors D(X)×D(Y )→ D(Y ).

3.3 Compatibility

For a complex algebraic varietyX, let ψX : Xan → X be its complex analytification.
With quasi-coherence condition, the algebraic and analytic integral transforms
are compatible.

Corollary 3.3.1. Let X,Y be two complex algebraic varieties, with X proper.
Then for every K ∈ Dqc(X × Y ), the natural square

D(X) D(Y )

D(Xan) D(Y an),

ϕ
[X→Y ]
K

ψ∗
X ψ∗

Y

ϕ
[Xan→Y an]
Kan

restricts to a commutative square

Dqc(X) Dqc(Y )

Dgd(X
an) Dgd(Y

an).

ϕ
[X→Y ]
K

ψ∗
X ψ∗

Y

ϕ
[Xan→Y an]
Kan

(11)

Proof. From [Sta23, Tag 08DW (1)], [Sta23, Tag 08DX (1)] and [Sta23, Tag

08D5 (1)], the functor ϕ
[X→Y ]
K restricts to a functor Dqc(X) → Dqc(Y ). By

Corollary 3.1.14 and compactness of Xan, the functor ϕ
[Xan→Y an]
Kan restricts to

a functor Dgd(X
an) → Dgd(Y

an). By [Liu24, Lem. 2.3], the functor ψ∗
X (resp.

ψ∗
Y ) restricts to a functor Dqc(X)→ Dgd(X

an) (resp. Dqc(Y )→ Dgd(Y
an)).

By [Sta23, Tag 0D5S] (resp. [Sta23, Tag 079U]), analytification commutes
with derived pullback (resp. tensor product). As X is proper over C, the
projection pY : X × Y → Y is proper. By [Liu24, Prop. 3.1], analytification
commutes with derived direct image. Thus, the square (11) is commutative.

4 Analytic Mukai duality

4.1 Statement

Let X be a complex torus of dimension g.
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Theorem 4.1.1 (Mukai, Ben-Bassat, Block, Pantev). There are natural isomorphisms
of functors

RS ◦RŜ ∼−→ [−1]∗X [−g] : Dgd(X)→ Dgd(X);

RŜ ◦RS ∼−→ [−1]∗
X̂
[−g] : Dgd(X̂)→ Dgd(X̂).

In particular, RS : Dgd(X̂) → Dgd(X) is an equivalence of categories, with a

quasi-inverse [−1]∗
X̂
RŜ[g].

Corollary 4.1.2. The functors RS : Db
c(X̂) → Db

c(X) and RŜ : Db
c(X) →

Db
c(X̂) are equivalences of triangulated categories.

Proof. It follows from Corollary 3.1.14 and Theorem 4.1.1.

Remark 4.1.3. A Mukai duality for complex tori similar to Corollary 4.1.2 is
stated in [Blo10, p.314], with Db(Coh(∗)) at the place of Db

c(∗). However,
Prof. Jonathan Block told the author that here we should stick to Db

c(∗). In
fact, in general the abelian category Coh(X) does not have enough injectives,
so it is unclear how to define the derived direct image involved in [Blo10, p.314].
Moreover, recently Prof. Alexey Bondal announced5 that for a generic complex
torus X of dimension > 2, the natural functor Db(Coh(X))→ Db

c(X) is not an
equivalence.

4.2 Proof

We follow the strategy of [BBBP07, Thm. 2.1] to prove Theorem 4.1.1.

Preliminaries

Lemma 4.2.1, an analytic analog of [Muk81, Example 1.2], exhibits the derived
pullback and direct image as particular examples of integral transforms.

Lemma 4.2.1. Let f : X → Y be a morphism of complex analytic spaces.
Let i : Γf → X × Y be the inclusion of the graph of f . Set F = i∗OΓf

∈
Mod(OX×Y ). Then there are canonical isomorphism of functors

ϕ
[X→Y ]
F

∼−→ Rf∗ : D(X)→ D(Y ); (12)

ϕ
[Y→X]
F

∼−→ Lf∗ : D(Y )→ D(X). (13)

Proof. Let g : Γf → X be the projection. Since g is an isomorphism of complex
analytic spaces, one has a canonical isomorphism

Lg∗
∼−→ R(g−1)∗ (14)

of functors D(X)→ D(Γf ). Consider the following diagram

5https://www.mathnet.ru/eng/present35371
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Γf X × Y

X Y.

i

g
pX

pY

f

As i is a closed embedding of complex analytic spaces, by [Sta23, Tag 0B55],
the natural transformation

Ri∗OΓf
⊗L Lp∗X(·)→ Ri∗Li

∗Lp∗X(·) (15)

is an isomorphism of functors D(X)→ D(X × Y ). One has

ϕ
[X→Y ]
F :=RpY ∗(F ⊗L p∗X ·) = RpY ∗(Ri∗OΓf

⊗L Lp∗X ·)
(a)
∼−→RpY ∗Ri∗Li

∗Lp∗X

(b)
∼−→ RpY ∗Ri∗Lg

∗

(c)
∼−→RpY ∗Ri∗R(g

−1)∗
(d)
∼−→ Rf∗,

where (a) (resp. (c)) uses (15) (resp. (14)), and (b), (d) are from [Spa88,
Thm. A (iii)].

Thus, (12) is proved. The proof of (13) is similar.

Proposition 4.2.2 is the first ingredient of the proof of Theorem 4.1.1, which
expresses the composition of two integral transforms as another integral transform.

Proposition 4.2.2. LetM,N,P be complex analytic spaces, withM,N compact
and dimP finite. Let pij be the projections of the product M × N × P . For
K ∈ Dgd(M ×N) and L ∈ D(N × P ), set

H = Rp13∗(p
∗
12K ⊗L p∗23L)(∈ D(M × P )).

Then there is a natural isomorphism ϕ
[N→P ]
L ϕ

[M→N ]
K

∼−→ ϕ
[M→P ]
H of functors

Dgd(M)→ D(P ).

Proof. Let

a :M ×N →M, b : N × P → P,

p :M ×N → N, q : N × P → N,

u :M × P →M, v :M × P → P

be projections.
The morphism q is locally product. Properness of p follows from the compactness

of M . By Propositions 3.1.2 2 and 3.1.5 2, the functor K ⊗L a∗· : D(M) →
D(M ×N) restricts to a functor Dgd(M)→ Dgd(M ×N). Then one can apply
Theorem 3.2.3 to the cartesian square

M ×N × P M ×N

N × P N,

p12

p23 □ p

q
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so the base change natural transformation induces an isomorphism

q∗Rp∗(K ⊗L a∗·)→ Rp23∗p
∗
12(K ⊗L a∗·) (16)

of functors Dgd(M)→ Dgd(N × P ). Thus, one has isomorphisms

ϕ
[N→P ]
L ϕ

[M→N ]
K =Rb∗[L⊗L q∗Rp∗(K ⊗L a∗·)]

(a)
∼−→Rb∗[L⊗L Rp23∗p∗12(K ⊗L a∗·)]
(b)
∼−→Rb∗Rp23∗[p∗23L⊗L p∗12(K ⊗L a∗·)]
∼=Rp3∗[p∗23L⊗L p∗12(K ⊗L a∗·)]
∼=Rv∗Rp13∗(p∗12K ⊗L p∗23L⊗L p∗1·)
(c)
∼←−Rv∗[H ⊗L u∗·] = ϕ

[M→P ]
H ,

of functors Dgd(M) → D(P ) where (a) uses (16), and (b) (resp. (c)) is from
the compactness of M (resp. N) and Fact 3.2.13.

Fact 4.2.3, the other ingredient of the proof of Theorem 4.1.1, calculates the
cohomology of the Poincaré bundle.

Fact 4.2.3 ([Kem91, Thm. 3.15]). Let X be a complex torus of dimension g.
Let pX : X × X̂ → X, pX̂ : X × X̂ → X̂ be the two projections. Then for
the normalized Poincaré bundle P, one has RpX∗P = C0[−g] in Db(X) and
RpX̂∗P = C0[−g] in Db(X̂).

Proof of Theorem 4.1.1

By Corollary 3.1.14, the functor RS (resp. RŜ) restricts to a functor Dgd(X̂)→
Dgd(X) (resp. Dgd(X)→ Dgd(X̂)). Let pij be the projections of X ×X × X̂.
Set

H = Rp12,∗(p
∗
13P ⊗L p∗23P).

By Propositions 3.1.2 1 and 3.1.5 1, Fact 3.1.7 and Lemma 3.1.10, one has
H ∈ Db

c(X ×X). By Proposition 4.2.2, one has an isomorphism of RS ◦RŜ ∼−→
ϕ
[X→X]
H of functors Dgd(X)→ Dgd(X). Let m : X ×X → X be the group law.

Since the OX×X×X̂ -module p∗13P is flat, one has p∗13P ⊗L p∗23P = p∗13P ⊗ p∗23P.
By [BL04, Lem. 14.1.7],6 the OX×X×X̂ -module p∗13P ⊗ p∗23P is isomorphic to

(m× IdX̂)∗P. Then H ∼−→ Rp12,∗(m× IdX̂)∗P.
Because the morphismm is smooth, applying Theorem 3.2.3 to the cartesian

square

X ×X × X̂ X × X̂

X ×X X

m×IdX̂

p12 □ pX

m

6It is stated for abelian varieties, but its proof works for complex tori.
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in the category An, one has an isomorphism m∗RpX,∗P → H in Db
c(X × X).

Let i : Γ[−1] → X ×X be the inclusion of the graph of [−1]X : X → X. From

Fact 4.2.3, one has H
∼−→ m∗C0[−g] = i∗OΓ[−1]

[−g]. By Lemma 4.2.1, there is

an isomorphism ϕ
[X→X]
H

∼−→ [−1]∗X [−g] of functors D(X)→ D(X), which shows

the isomorphism RS ◦ RŜ ∼−→ [−1]∗X [−g] of functors Dgd(X) → Dgd(X). The
proof of the second isomorphism is similar.

5 Properties of Fourier-Mukai transform

For later reference purposes, we check that each result starting from Theorem
2.2 to (3.12’) in [Muk81] has an analytic version. We only indicate the necessary
modifications in statements and proofs.

For a complex torus X, let gX be its dimension. Let (RSX , RŜX) be the
Fourier-Mukai transform of X. The subscripts are omitted when there is only
one complex torus in context. Let pX : X × X̂ → X, pX̂ : X × X̂ → X̂ be the

projections. For a morphism ϕ : X → Y of complex tori, let ϕ̂ : Ŷ → X̂ be the
dual morphism.

5.1 Functoriality

Exchange of translations and twists

For every point x of the complex torus X, let Tx : X → X, x′ 7→ x′+x be the
translation by x.

Proposition 5.1.1. For every x ∈ X and every x̂ ∈ X̂, there are canonical
isomorphisms

RS ◦ T ∗
x̂
∼= (· ⊗OX

P−x̂) ◦RS, (17)

RS ◦ (· ⊗OX̂
Px) ∼= T ∗

x ◦RS (18)

of funtors D(X̂)→ D(X).

Proof. We prove (17). From [BL04, Cor. A.9], one gets

T ∗
(0,−x̂)P

∼−→ P ⊗OX×X̂
p∗XP−x̂; (19)

T ∗
(x,0)P

∼−→ P ⊗OX×X̂
p∗
X̂
Px. (20)

22



Then there are isomorphisms

RS(T ∗
x̂ ·) =RpX∗(P ⊗OX×X̂

p∗
X̂
T ∗
x̂ ·)

=RpX∗(P ⊗OX×X̂
T ∗
(0,x̂)p

∗
X̂
·)

=RpX∗T
∗
(0,x̂)(T

∗
(0,−x̂)P ⊗OX×X̂

p∗
X̂
·)

∼−→RpX∗R(T(0,−x̂))∗(T
∗
(0,−x̂)P ⊗OX×X̂

p∗
X̂
·)

∼=RpX∗(T
∗
(0,−x̂)P ⊗OX×X̂

p∗
X̂
·)

(a)
∼−→RpX∗(p

∗
XP−x̂ ⊗ P ⊗OX×X̂

p∗
X̂
·)

(b)
∼←−P−x̂ ⊗RpX∗(P ⊗OX×X̂

p∗
X̂
·)

=P−x̂ ⊗RS(·)

of functors D(X̂)→ D(X), where (a) (resp. (b)) uses (19) (resp. Fact 3.2.13).
We prove (18) as follows:

RS(Px ⊗ ·) =RpX∗(P ⊗OX×X̂
p∗
X̂
(Px ⊗ ·))

=RpX∗(P ⊗OX×X̂
p∗
X̂
Px ⊗ p∗X̂ ·))

(a)
∼−→RpX∗(T

∗
(x,0)P ⊗OX×X̂

p∗
X̂
·)

=RpX∗T
∗
(x,0)(P ⊗OX×X̂

T ∗
(−x,0)p

∗
X̂
·)

∼−→RpX∗R(T(−x,0))∗(P ⊗OX×X̂
T ∗
(−x,0)p

∗
X̂
·)

∼=R(T−x)∗RpX∗(P ⊗OX×X̂
p∗
X̂
·)

∼=T ∗
xRS(·),

where (a) uses (20).

Exchange of the direct image and the inverse image

The Fourier-Mukai transform is functorial.

Proposition 5.1.2. For a morphism ϕ : Y → X of complex tori, there are
canonical isomorphisms of functors

Lϕ∗ ◦RSX ∼= RSY ◦Rϕ̂∗ : Dgd(X̂)→ Dgd(Y ), (21)

Rϕ∗ ◦RSY ∼= RSX ◦ Lϕ̂∗(·)[gX − gY ] : Dgd(Ŷ )→ Dgd(X). (22)
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Proof. The isomorphism (22) follows from (21) as follows. There are isomorphisms

Rϕ∗RSY

(a)
∼−→[−1]∗XRSXRŜXRϕ∗RSY (·)[gX ]

(b)
∼−→[−1]∗XRSXLϕ̂∗RŜYRSY (·)[gX ]

(c)
∼−→[−1]∗XRSXLϕ̂∗[−1]∗Y (·)[gX − gY ]

=RSXLϕ̂
∗(·)[gX − gY ]

of functors Dgd(Ŷ ) → Dgd(X), where (a) and (c) use Theorem 4.1.1, and (b)
uses (21).

To prove (21), we show

(ϕ× IdX̂)∗PX ∼= (IdY × ϕ̂)∗PY . (23)

Set L := (ϕ× IdX̂)∗PX ⊗OY ×X̂
(IdY × ϕ̂)∗P−1

Y . By definition, on the one hand

for every x̂ ∈ X̂, one has L|Y×x̂
∼−→ ϕ∗Px̂⊗P−1

ϕ̂(x̂)

∼−→ OY ; on the other hand, one

has L|0×X̂
∼−→ ϕ̂∗OŶ

∼−→ OX̂ . By the seesaw principle [BL04, Cor. A.9], these

imply L
∼−→ OY×X̂ .

By applying Theorem 3.2.3 to the cartesian square

Y × X̂ X̂

Y × Ŷ Ŷ

p2

IdY ×ϕ̂ □ ϕ̂

pŶ

in the category An, the base change natural transformation

p∗
Ŷ
Rϕ̂∗ → R(IdY × ϕ̂)∗p∗2 (24)

induces an isomorphism of functors Dgd(X̂) → Dgd(Y × Ŷ ). By Propositions

3.1.2 2 and 3.1.5 2, the functor PX ⊗ p∗X̂(·) : D(X̂) → D(X × X̂) restricts to

a functor Dgd(X̂) → Dgd(X × X̂). Because pX is smooth proper, by applying
Lemma 3.2.11 to the cartesian square

Y × X̂ X × X̂

Y X

p1

ϕ×IdX̂

□ pX

ϕ

in the category An, the base change natural transformation induces an isomorphism

Lϕ∗RpX∗(PX ⊗ p∗X̂ ·)→ Rp1∗L(ϕ× IdX̂)∗(PX ⊗ p∗X̂ ·) (25)

of functors Dgd(X̂)→ Dgd(Y ).
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There are isomorphisms

Lϕ∗ ◦RSX =Lϕ∗RpX∗(PX ⊗ p∗X̂ ·)
(a)
∼−→Rp1∗L(ϕ× IdX̂)∗(PX ⊗ p∗X̂ ·)
∼=Rp1∗[L(ϕ× IdX̂)∗PX ⊗L L(ϕ× IdX̂)∗p∗

X̂
·]

∼=Rp1∗[(ϕ× IdX̂)∗PX ⊗ p∗2·]
(b)
∼−→Rp1∗[(IdY × ϕ̂)∗PY ⊗ p∗2·]
∼=RpY ∗R(IdY × ϕ̂)∗[L(IdY × ϕ̂)∗PY ⊗ p∗2·]
(c)
∼←−RpY ∗[PY ⊗R(IdY × ϕ̂)∗p∗2·]
(d)
∼←−RpY ∗[PY ⊗ p∗ŶRϕ̂∗·]

=RSYRϕ̂∗

of functors Dgd(X̂) → Dgd(Y ), where (a) (resp. (b), resp. (c), resp. (d)) uses
(25) (resp. (23), resp. Fact 3.2.13, resp. (24)). This proves (21).

5.1.1 Commutativity with external tensor product

LetM,N be two complex analytic spaces. Let p :M×N →M and q :M×N →
N be the projections. The bifunctor D(M)×D(N)→ D(M ×N), (−,+) 7→
(p∗−)⊗L (q∗+) is denoted by (·)⊠L (·).

Proposition 5.1.3. Let X,Y be two complex tori and Z = X ×Y . Then there
is a canonical isomorphism RSZ(−⊠L +) = RSX(−)⊠L RSY (+) of bifunctors
Dgd(X̂)×Dgd(Ŷ )→ Dgd(Z).

Proof. By the seesaw principle, one has PZ
∼−→ PX ⊠L PY . Then there are

canonical isomorphisms

RSZ(−⊠L +) =RpZ∗[PZ ⊗L Lp∗Ẑ(−⊠L +)]
∼−→RpZ∗[(PX ⊠L PY )⊗L (Lp∗

X̂
(−)⊠L Lp∗

Ŷ
(+))]

∼−→R(pX × pY )∗[(PX ⊗L Lp∗X̂(−))⊠L (PY ⊗L Lp∗Ŷ (+))]

(a)
∼←−RpX∗(PX ⊗L Lp∗X̂(−))⊠L RpY ∗(PY ⊗L Lp∗Ŷ (+))

=RSX(−)⊠L RSY (+)

of bifunctors Dgd(X̂)×Dgd(Ŷ )→ Dgd(Z), where (a) uses Lemma 5.1.4 2.

Lemma 5.1.4.
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1. Let X,Y, T be complex analytic spaces, with X,T finite dimensional. Let
f : X → Y be a proper morphism. Then there is a canonical isomorphism

Rf∗(−)⊠L (+)→ R(f × IdT )∗(−⊠L +)

of bifunctors Dgd(X)×D(T )→ D(Y × T ).

2. Let fi : Xi → Yi (i = 1, 2) be proper morphism of complex analytic
spaces. If X1, X2 and Y1 are finite dimensional, then there is a canonical
isomorphism

(Rf1∗−)⊠L (Rf2∗+)→ R(f1 × f2)∗(−⊠L +)

of bifunctors Dgd(X1)×Dgd(X2)→ Dgd(Y1 × Y2).

Proof.

1. Consider the notation in the commutative diagram

X × T X

T Y × T Y,

u

f×IdT
v □ f

pq

where u, v, p and q are projections. Since v = q ◦ (f × IdT ), there is a
canonical isomorphism v∗

∼−→ L(f×IdT )∗q∗ of functorsD(T )→ D(X×T ).
As f× IdT is a base change of f , it is also proper. As dim(X×T ) is finite,
by Fact 3.2.13, the canonical morphism

[R(f × IdT )∗u
∗−]⊗L q∗+→ R(f × IdT )∗[u

∗ −⊗Lv∗+] (26)

of bifunctors D(X)×D(T )→ D(Y × T ) is an isomorphism.

By Theorem 3.2.3, one has a canonical isomorphism

p∗Rf∗ → R(f × IdT )∗u
∗ : Dgd(X)→ Dgd(Y × T ). (27)

Therefore, there are canonical isomorphisms

(Rf∗−)⊠L + =(p∗Rf∗−)⊗L q∗+
(a)
∼−→[R(f × IdT )∗u

∗−]⊗L q∗+
(b)
∼−→R(f × IdT )∗[u

∗ −⊗v∗+]

=R(f × IdT )∗(−⊠L +),

of bifunctors Dgd(X)×D(T )→ D(Y ×T ), where (a) (resp. (b)) uses (27)
(resp. (26)).
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2. Since dim(X1 ×X2) is finite, as in Corollary 3.1.14, the bifunctor R(f1 ×
f2)∗(−⊠L+) restricts to a bifunctor Dgd(X1)×Dgd(X2)→ Dgd(Y1×Y2).
As dimY1,dimX2 are finite, by Point 1, there are canonical isomorphisms
of bifunctors

(Rf1∗−)⊠L +→ R(f1 × IdX2
)∗(−⊠L +) : Dgd(X1)×D(X2)→ D(Y1 ×X2),

(Rf1∗−)⊠L (Rf2∗+)→ R(IdY1 × f2)∗[(Rf1∗−)⊠L +] : D(X1)×Dgd(X2)→ D(Y1 × Y2).

Then there is a canonical isomorphism of bifunctors

(Rf1∗−)⊠L (Rf2∗+)→ R(IdY1
× f2)∗[(Rf1∗−)⊠L +]

→R(IdY1
× f2)∗R(f1 × IdX2

)∗(−⊠L +)

→R(f1 × f2)∗(−⊠L +) : Dgd(X1)×Dgd(X2)→ Dgd(Y1 × Y2).

5.1.2 Skew commutativity with duality

We summarize classical facts about the duality theory on complex manifolds.

Fact 5.1.5. Let X be a complex manifold of pure dimension n, and let ωX =∧n
ΩX be the canonical line bundle.

1. ([RR70, p.81; p.90]) The dualizing functor DX = RHomX(·, ωX)[n] :
D(X) → D(X) restricts to a functor Dc(X) → Dc(X) and the natural
transformation Id → DX ◦ DX : Dc(X) → Dc(X) is an isomorphism. If
X is compact, then DX exchanges7 D+

c (X) with D−
c (X), and induces an

equivalence Db
c(X)→ Db

c(X).

2. ([RRV71, p.264]) There is a canonical isomorphism RHomX(−,+) →
DX(−⊗L DX+) of bifunctors Dc(X)×D+

c (X)→ D(X).

3. ([RRV71, p.264], [Bjö93, p.122]) Let f : X → Y be a proper morphism
of complex manifolds. Then there is a canonical isomorphism of functors
Rf∗DX → DYRf∗ : Dc(X)→ D(Y ).

Proposition 5.1.6 ([Muk81, (3.8)]). There are canonical isomorphisms of
functors

DX ◦RS
∼−→ ([−1]∗X ◦RS ◦DX̂)[g] : D+

c (X̂)→ D−
c (X);

DX̂ ◦RŜ
∼−→ ([−1]∗

X̂
◦RŜ ◦DX)[g] : D+

c (X)→ D−
c (X̂).

We make some preparation for the proof of Proposition 5.1.6. Lemma 5.1.7
is an adaption of [Har66, Ch.II, Prop. 5.8] and [Sta23, Tag 0C6I].

7By [FS13, p.4971], in general the functor RHomX(·, ωX) : D(X) → D(X) does not

exchange Db,≤0
c (X) and Db,≥0

c (X).
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Lemma 5.1.7. Let f : X → Y be a flat morphism of complex analytic spaces.
Then:

1. There is a canonical natural transformation of bifunctors

f∗RHomY (−,+)→ RHomX(f∗−, f∗+) : D(Y )×D(Y )→ D(X). (28)

2. The natural transformation (28) restricts to an isomorphism of bifunctors
D−
c (Y )×D(Y )→ D(X).

Proof. Set G ∈ D(Y ).

1. By [Spa88, Thm. D ], there is a functorial quasi-isomorphism G → G′,
where G′ is a K-injective complex over Mod(OY ). There are natural
transformations of functors D(Y )→ D(X)

f∗RHomY (·, G)→ f∗HomY (·, G′)→ HomX(f∗·, f∗G′)

→RHomX(f∗·, f∗G′)
∼←− RHomX(f∗·, f∗G).

2. By [Har66, I, Examples 1], the (contravariant) functors

f∗RHomY (·, G), RHomX(f∗·, f∗G) : D(Y )→ D(X)

are bounded below. Consider F ∈ D−
c (Y ). To show the natural morphism

f∗RHomY (F,G)→ RHomX(f∗F, f∗G) : D−
c (Y )→ D(X) is an isomorphism,

by [Har66, I, Prop. 7.1 (ii)], one may assume F ∈ Coh(Y ). By [Sta23, Tag
08DL], one may shrink Y to open subsets. Thus, from Lemma A.3.1,
one may assume that there is a quasi-isomorphism K → F , where K
is a complex of finite free OY -modules. The morphism f is flat, so
f∗K → f∗F → 0 is a globally free resolution of f∗F . The morphism
(28) is identified with f∗HomY (K,G) → HomX(f∗K, f∗G), which is an
isomorphism.

Lemma 5.1.8. Let E → X be a holomorphic vector bundle on a complex
manifold, and let E∨ be the dual vector bundle. Then there is an isomorphism
of functors E∨ ⊗DX · → DX(E ⊗ ·) : D(X)→ D(X).

Proof. Since E is a vector bundle, one has isomorphisms

E ⊗ · ∼−→ HomX(E∨, ·) ∼−→ RHomX(E∨, ·)

of functors D(X)→ D(X). Then

DX(E ⊗ ·) = RHomX(RHomX(E∨, ·), ωX)[dimX].

As E∨ is a perfect object ofD(X) (in the sense of [Sta23, Tag 08CM]), by [Sta23,
Tag 0G40], one has DX(E⊗·) = RHomX(·, ωX)[dimX]⊗LE∨ = E∨⊗DX ·.
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Corollary 5.1.9. Let f : X → Y be a flat morphism of complex manifolds
of relative dimension n. Write ωf = ωX ⊗OX

f∗ω∨
Y for the relative dualizing

line bundle. Then there is a canonical isomorphism of functors DXf
∗DY →

ωf ⊗OX
f∗(·)[n] : D−

c (Y )→ D−
c (X).

Proof. One has

DXf
∗DYOY = DX

(
f∗RHomY (OY , ωY )[dimY ]) = DX(f∗ωY [dimY ])

=RHomX(f∗ωY , ωX)[dimX − dimY ]
(a)

= HomX(f∗ωY , ωX)[n]

=f∗ω∨
Y ⊗OX

ωX [n] = ωf [n],

(29)

where (a) uses that f∗ωY is a line bundle on X.
By Fact 5.1.5 1 and 2, there is an isomorphism DY

∼−→ RHomY (·, DYOY )
of functors D−

c (Y )→ D+
c (Y ). From Lemma 5.1.7 2, there are isomorphisms

f∗DY
∼−→ f∗RHomY (·, DYOY )

∼−→ RHomX(f∗·, f∗DYOY )

of functors D−
c (Y ) → D+

c (X). Then by Fact 5.1.5 1 and 2 again, there are
isomorphisms

DXf
∗DY

∼−→ f∗(·)⊗L DXf
∗DYOY

(a)

=f∗(·)⊗LOX
ωf [n]

(b)

= f∗(·)⊗OX
ωf [n]

of functors D−
c (Y ) → D−

c (X), where (a) (resp. (b)) equality uses (29) (resp.
local freeness of ωf ).

Lemma 5.1.10. There is an isomorphism RpX∗(P−1 ⊗L p∗
X̂
·) = [−1]∗XRS of

functors D(X̂)→ D(X).

Proof. By [BL04, Cor. A.9], one has P−1 ∼−→ ([−1]X × [1]X̂)∗P. Since pX̂ ◦
([−1]X × [1]X̂) = pX̂ , there are isomorphisms

RpX∗(P−1 ⊗L p∗
X̂
·) ∼−→ RpX∗([−1]X × [1]X̂)∗(P ⊗L p∗

X̂
·)

∼←−[−1]∗XRpX,∗(P ⊗L p∗X̂ ·) = [−1]∗XRS

of functors D(X̂)→ D(X).

Proof of Proposition 5.1.6. By Fact 5.1.5 1 and 3, There are isomorphisms

DX ◦RS = DXRpX,∗(P ⊗L p∗X̂ ·)
∼−→ RpX,∗DX×X̂(P ⊗L p∗

X̂
·)

of functors D+
c (X̂) → D−

c (X). From Lemma 5.1.8, there is an isomorphism
DX×X̂(P ⊗L p∗

X̂
·) ∼−→ P−1 ⊗L DX×X̂p

∗
X̂
· of functors D(X̂) → D(X × X̂). By

Fact 5.1.5 1, the functor DX̂ restricts to a functor D+
c (X̂) → D−

c (X̂), whence
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Corollary 5.1.9 yields an isomorphism DX×X̂p
∗
X̂

= (p∗
X̂
DX̂ ·)[g] of functors

D+
c (X̂)→ D−

c (X × X̂). Therefore, there are isomorphisms

DX ◦RS
∼−→ RpX,∗(P−1 ⊗L p∗

X̂
DX̂ ·)[g]

(a)
∼−→ [−1]∗XRS(DX̂ ·)[g]

of functors D+
c (X̂)→ D−

c (X), where (a) uses Lemma 5.1.10.
The second isomorphism follows from the first by swapping X and X̂.

5.2 Unipotent vector bundles

Definition 5.2.1 ([Muk81, Def. 2.3]). We say that W.I.T. (weak index theorem)
holds for a coherent module F on the complex torus X if there is an integer i(F )
such that HiRŜ(F ) = 0 for every integer i ̸= i(F ). In that case, the integer
i(F ) is called the index of F and the coherent module F̂ := Hi(F )RŜ(F ) on X̂
is called the Fourier transform of F . We say that I.T. (index theorem) holds
for F if there is an integer i0 such that for every L ∈ Pic0(X) and every integer
i ̸= i0, one has Hi(X,F ⊗OX

L) = 0.

Definition 5.2.2. A vector bundle U on a complex analytic space M is called
unipotent if it has a filtration by vector subbundles

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un−1 ⊂ Un = U

such that Ui/Ui−1
∼= OM for all 1 ≤ i ≤ n. Denote the full subcategory of

Coh(M) consisting of unipotent vector bundles by Uni(M).

Proposition 5.2.3. 1. W.I.T. with index g holds for every unipotent vector
bundle on X.

2. The functor HgRŜ : Mod(OX) → Mod(OX̂) restricts to an equivalence

Uni(X) → Coh0(X̂), with a quasi-inverse H0RS = RS : Coh0(X̂) →
Uni(X).

Proof. 1. BecauseRŜ is a triangulated functor, the full subcategory of Coh(X)
comprised of modules satisfying W.I.T. of a fixed index is closed under
extensions. By Lemma 2.0.8 and Theorem 4.1.1, one has RŜ(OX) =
RŜRS(C0)

∼−→ C0[−g]. Then W.I.T. with index g holds for OX , so it
holds for every unipotent vector bundle on X.

2. By Point 1, one has an isomorphism of functorsHgRŜ
∼−→ RŜ[g] : Uni(X)→

Mod(OX̂). The full subcategory of Mod(OX) comprised of modules F

with Supp
(
HgRŜ(F )) ⊂ {0} is closed under extensions and contains

OX , so it contains UniX . Since Uni(X) ⊂ Coh(X), the functor HgRŜ :
Mod(OX)→ Mod(OX̂) restricts to a functor Uni(X)→ Coh0(X̂).

For every F ∈ Coh0(X̂), the restriction Supp(p∗
X̂
F ⊗ P) → X of pX

is finite. By [GR04, Thm. 4, p.47], one has RS(F ) = H0RS(F ). By
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Lemma 5.2.4 3, the OX̂ -module F has a filtration with successive quotients
isomorphic to C0. Then RS(F ) has a filtration with successive quotients
isomorphic to RS(C0) = OX . By [Gro60, Ch. 0, 5.4.9], every term of
this filtration is finite locally free. Therefore, RS(F ) ∈ Uni(X) and RS
restricts to a functor Coh0(X̂)→ Uni(X). By Theorem 4.1.1, the functor
HgRŜ : Uni(X)→ Coh0(X̂) is an equivalence with a quasi-inverse RS.

For a commutative ring R, let Modf (R) ⊂ Mod(R) be the full subcategory
comprised of R-modules of finite length. Lemma 5.2.4 1 confirms a guess in
[Gro61a, 9-12] for complex field.

Lemma 5.2.4. Let X be a complex analytic space. Let x ∈ X.

1. The functor i−1
x : Mod(OX) → Mod(OX,x) taking the stalk at x restricts

to a functor Cohx(X) → Modf (OX,x). In particular, if X is a singleton,
then dimCOX is finite.

2. The functor ix,∗ : D(OX,x)→ D(OX) restricts to a functor Modf (OX,x)→
Cohx(X).

3. The functor i−1
x : Cohx(X)→ Modf (OX,x) is an equivalence.

Proof. 1. For every F ∈ Cohx(X), to prove that Fx is a finite length OX,x-
module, one may assume that Fx ̸= 0. As F is a finite type OX -module, Fx
is a finite OX,x-module. Then SuppOX,x

(Fx) is nonempty. Let mx be the
maximal ideal of OX,x. For every f ∈ mx, there is an open neighborhood
U of x ∈ X such that f is the stalk of some f̄ ∈ OX(U). Then f̄ vanishes
on Supp(F ). By the Rückert Nullstellensatz (see, e.g., [GR84, p.67]),
there is an integer n ≥ 1 such that f̄nF = 0 near x. In particular,
f ∈

√
AnnOX,x

(Fx). Therefore,

mx ⊂
√
AnnOX,x

(Fx).

By [GR84, Corollary, p.44], the ideal mx is finitely generated, so there
is an integer N ≥ 1 with mN

x ⊂ AnnOX,x
(Fx). By [Sta23, Tag 00L6],

SuppOX,x
(Fx) is the unique closed point of Spec(OX,x). By [Sta23, Tag

00L5], the OX,x-module Fx has finite length. The second statement follows
from Lemma 5.2.5.

2. Up to isomorphism, the only simple OX,x-module is the residue field C.
Every M ∈ Modf (OX,x) has a composite series with successive quotients
isomorphic to C. Thus, Mx has a filtration with successive quotients
isomorphic to Cx. Since Cx is coherent, by [Sta23, Tag 01BY (4)], Mx is
coherent. Therefore, ix,∗ restricts to a functor Modf (OX,x)→ Cohx(X).

3. Let ix : (x,OX,x)→ (X,OX) be the canonical morphism of locally ringed

spaces. There is a canonical isomorphism i∗x(ix)∗
∼−→ IdMod(OX,x) of functors
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Mod(OX,x)→ Mod(OX,x). By adjunction, (ix)∗ : Mod(OX,x)→ Mod(OX)
is fully faithful. By Point 2, pushout (ix)∗ restricts to a functor Modf (OX,x)→
Cohx(OX). For every object F of Cohx(OX), by Point 1, Fx is an object of
Modf (OX,x). The adjunction morphism F → (ix)∗(Fx) is an isomorphism.
Thus, (ix)∗ : Modf (OX,x)→ Cohx(OX) is essentially surjective and hence
an equivalence. Therefore, the functor i∗x : Cohx(OX) → Modf (OX,x)
(taking the stalk at x) is an equivalence.

Lemma 5.2.5. Let F → A be a ring map, with F a field and (A,m) an Artinian
local ring. If dimF A/m is finite, then dimF A is finite.

Proof. Because A is an Artinian local ring ring, by [Ati69, Prop. 8.4], there
is an integer n > 0 with mn = 0. For every integer i ≥ 0, the A-module
mi is finitely generated, so the A/m-module mi/mi+1 is finitely generated.
Thus, dimF m

i/mi+1 = dimF A/m · dimA/mm
i/mi+1 is finite. Then dimF A =∑n

i=0 dimF m
i/mi+1 is finite.

5.3 Homogeneous vector bundles

Definition 5.3.1. A vector bundle E on the complex torusX is called homogeneous
if for every x ∈ X, one has T ∗

xE
∼= E. Let H(X) ⊂ Coh(X) be the full

subcategory comprised of homogeneous vector bundles.

For a complex analytic spaceM , let Cohf (M) ⊂ Coh(M) be the full subcategory
consisting of objects with finite support.

Proposition 5.3.2. 1. For every integer i, the functor HiRŜ : Mod(OX)→
Mod(OX̂) restricts to a functor H(X)→ Cohf (X̂).

2. W.I.T. holds for every homogeneous vector bundle on X with index g.

3. The functor HgRŜ : Mod(OX)→ Mod(OX̂) restricts to an equivalence of

categories H(X)→ Cohf (X̂).

Proof. 1. Let E be a homogeneous vector bundle on X. By Corollary 3.1.14,
the OX̂ -module HiRŜ(E) is coherent. For every x ∈ X, by Proposition

5.1.1, one has RŜ(E)
∼−→ RŜ(T ∗

−xE)
∼−→ P ∗

x ⊗ RŜ(E), so HiRŜ(E)
∼−→

P ∗
x ⊗HiRŜ(E). From Lemma 5.3.4, the support of HiRŜ(E) is finite.
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2. For every integer i ̸= g, by Point 1, one has HiRŜ(E) ∈ Cohf (X̂) and

0 =Hi−g([−1]∗XE)

=Hi([−1]∗XE[−g])
(a)
∼−→HiRS ◦RŜ(E)

=HiRpX∗(P ⊗L p∗X̂RŜ(E))

(b)
∼−→H0RpX∗(P ⊗L p∗X̂H

iRŜ(E))

=H0RS(HiRŜ(E)),

where (a) (resp. (b)) uses Theorem 4.1.1 (resp. [GR04, Thm. 4, p.47]).

It remains to prove that for every F ∈ Cohf (X̂) with H0RS(F ) = 0,
one has F = 0. Since F is the direct sum of finitely many coherent
submodules whose supports are singletons, one may assume that Supp(F )
is a singleton. By Proposition 5.1.1, one may assume that F ∈ Coh0(X̂).
From Proposition 5.2.3 2, one has F = 0.

3. By Point 1, the functor HgRŜ : Mod(OX) → Mod(OX̂) restricts to a

functor H(X) → Cohf (X̂). From Point 2, one has an isomorphism of

functors HgRŜ ∼= RŜ[g] : H(X)→ Cohf (X̂).

By Propositions 5.1.1 and 5.2.3, the functorH0RS : Mod(OX̂)→ Mod(OX)

restricts to a functor H0RS = RS : Cohf (X̂) → H(X). By Theorem

4.1.1, the functor HgRŜ : H(X) → Cohf (X̂) is an equivalence with a
quasi-inverse H0RS.

For a sheaf of module F on a complex analytic space, denote the torsion
part of F (in the sense of [CD94, p.60]) by T (F ).

Lemma 5.3.3. Let X be a compact Kähler manifold. Let F be a coherent
OX -module. Then for every irreducible component C ⊂ Supp(F ), there is a
connected compact Kähler manifold Z and a morphism h : Z → X, such that
h(Z) = C and h∗F/T (h∗F ) is a vector bundle on Z of positive rank.

Proof. By [GR84, p.76], Supp(F ) is an analytic subset of X. Because X is a
Kähler manifold, with the induced reduced complex structure, the subspace C
is a Kähler space in the sense of [Var89, II, 1.3]. Let i : C → X be the inclusion.
Set

D = {x ∈ C : i∗F is not locally free at x}.

From [Ros68, Prop. 3.1], D is a strict analytic subset of C. By Rossi’s theorem
(see, e.g. [Rie71, Thm. 2]), there is a reduced irreducible complex analytic space
W and a proper modification f : W → C, such that W \ f−1(D) → C \ D is
biholomorphic and E := N/T (N) is a vector bundle on W , where N = f∗i∗F .
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From [GD71, Cor. 5.2.4.1], one has Supp(N) =W . From [CD94, I, Thm. 9.12],
one gets Supp(T (N)) ̸= W . Therefore, the rank r of the vector bundle E is
positive.

Since f : W → C is bimeromorphic, the space W is in the Fujiki class
C (defined in [Fuj78, p.34]). By [Fuj78, Lem. 4.6, 1)], there is a connected
compact Kähler manifold Z with a surjective morphism g : Z → W . Denote

the composition Z
g→ W

f→ C
i→ X by h. Then h(Z) = C. As E is flat over

OW , by [Sta23, Tag 05NJ], applying g∗ to the natural short exact sequence

0→ T (N)→ N → E → 0

in Mod(OW ), one gets a short exact sequence in Mod(OZ):

0→ g∗T (N)→ h∗F → g∗E → 0.

As g∗E is torsion free, g∗T (N) ⊃ T (h∗F ). One has g∗T (N) ⊂ T (g∗N) =
T (h∗F ). Therefore, T (h∗F ) = g∗T (N) and h∗F/T (h∗F ) = g∗E is a vector
bundle on Z of rank r > 0.

Lemma 5.3.4. LetM be a coherent sheaf on the complex torus X. IfM⊗P ∼=
M for all P ∈ Pic0(X), then Supp(M) is finite.

Proof. Suppose the contrary that Supp(M) is infinite. With the reduced induced
complex structure, the complex subspace Supp(M) has positive dimension. Let
C be an irreducible component of Supp(M) of maximal dimension. Take a
morphism h : Z → X provided by Lemma 5.3.3. Then the rank r of the vector
bundle E := h∗M/T (h∗M) is positive. As h(Z) = C, the morphism of complex
tori h∗ : Pic0(X) → Pic0(Z) is nonzero. In particular, there is L ∈ Pic0(X)
such that the line bundle (h∗L)⊗r is nontrivial.

On the other hand, we claim that the line bundle (h∗L)⊗r is trivial. Indeed,
by assumption M ⊗ L ∼= M , so h∗M ⊗ h∗L ∼= h∗M . Since T (h∗M ⊗ h∗L) =
T (h∗M)⊗h∗L, one gets E⊗h∗L ∼= E. Taking the determinant of both sides, one
has det(E)⊗(h∗L)⊗r ∼= det(E). As det(E) is an invertible sheaf, the line bundle
(h∗L)⊗r on Z is trivial. The claim is proved, which gives a contradiction.

Remark 5.3.5. The proof of [Muk81, Lem. 3.3] (the algebraic counterpart of
Lemma 5.3.4) relies on the following fact: Every positive dimensional projective
variety contains a projective curve. By contrast, every simple non-algebraic
complex torus contains no 1-dimensional analytic subset ([Pil00, Lem. 4.3]).

The classification of homogeneous vector bundles on complex tori is due to
Matsushima [Mat59] and Morimoto [Mor59]. Using the Fourier-Mukai transform,
Mukai [Muk81, p.159] proves an analog for abelian varieties. We can similarly
recover Matsushima-Morimoto’s theorem.

Theorem 5.3.6. A vector bundle F on the complex torus X is homogeneous if
and only if there is an integer n ≥ 0, unipotent vector bundles U1, . . . , Un on X
and P1, . . . , Pn ∈ Pic0(X), such that F is isomorphic to ⊕ni=1Pi ⊗ Ui.

Proof. It follows from Propositions 5.1.1, 5.2.3 2 and 5.3.2 3.
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A Sheaves of modules

We recall some facts about sheaves of modules. Let (X,OX) be a ringed space.

A.1 Generalities

Definition A.1.1. An OX -module F is called

1. ([Sta23, Tag 01B5]) of finite type if every x ∈ X admits an open neighborhood
U such that F |U is generated by finitely many sections;

2. ([Sta23, Tag 01BN]) of finite presentation if for every x ∈ X, there is an
open neighborhood U ⊂ X, integers n,m ≥ 0 and an exact sequence of
OU -modules

OmU → OnU → F |U → 0;

3. ([Gro60, 5.1.3]) quasi-coherent if for every x ∈ X, there is an open neighborhood
U ⊂ X, two sets I, J and a morphism O⊕J

U → O⊕I
U whose cokernel is

isomorphic to F |U ;

4. ([Kas03, Def. A.5 (1)]) pseudo-coherent if for every open subset U ⊂ X,
every finite type OU -submodule of F |U is of finite presentation. Let
PCoh(X) ⊂ Mod(OX) be full subcategory of pseudo-coherent modules;

5. ([Kas03, Def. A.5 (2)]) K-coherent if F is pseudo-coherent and of finite
type;

6. ([Sta23, Tag 01BV]) coherent if F is of finite type and for every open
subset U ⊂ X and every finite collection {si}1≤i≤n in F (U), the kernel of
the associated morphism OnU → F |U is of finite type over OU .

Every property in Definition A.1.1 is local, in the sense that it restricts to
every open subset, and if it holds on each member of an open covering of X,
then it holds on X.

Lemma A.1.2. Let 0 → F
i→ G

r→ H → 0 be a short exact sequence in
Mod(OX). If F,H are of finite presentation, then so is G.

Proof. For every x ∈ X, by [Sta23, Tag 01B8], there is an open neighborhood

U of x such that the sequence G(U)
rU→ H(U)→ 0 is exact. Up to shrinking U ,

there exist integers m,n, p, q ≥ 0 and two exact sequences

OmU → OnU
f→ F |U → 0, OpU → OqU

h→ H|U → 0.

The morphism h is defined by q elements s1, . . . , sq of H(U). For each 1 ≤
i ≤ q, choose a preimage ti ∈ G(U) of si. Consider the morphism ϕ : On+qU →
G|U determined by if(e1), . . . , if(en), t1, . . . , tq ∈ G(U). Hence a commutative
diagram with two exact middle rows
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0 OmU ker(ϕ) OpU

0 OnU On+qU OqU 0

0 F |U G|U H|U 0

0 coker(ϕ) 0.

f ϕ g

By the snake lemma, ϕ is surjective and ker(ϕ) is finite type. Shrinking U
again, one may find an integer k ≥ 0 and a surjection OkU → ker(ϕ). The
induced sequence OkU → On+qU → G|U → 0 is exact. Therefore, G is of finite
presentation.

A.2 Pseudo-coherent modules

Lemma A.2.1.

1. Let 0 → F
i→ G

r→ H → 0 be a short exact sequence in Mod(OX). If
F,H are pseudo-coherent, then so is G.

2. Let I be a directed set. Let (Mi, fij) be a direct system over I consisting
of pseudo-coherent OX -modules. Then M := colimi∈IMi in Mod(OX) is
pseudo-coherent.

3. If {Mα}α∈A is a family of pseudo-coherentOX -modules, then S := ⊕α∈AMα

is also pseudo-coherent.

Proof. Let U be an open subset of X.

1. Let M be a finite type submodule of G|U . Then the kernel of r|M :M →
H|U is (F |U )∩M . Thus, r|M induces an injection M/(F |U ∩M)→ H|U .
As H is pseudo-coherent, the finite type OU -submoduleM/(F |U∩M) is of
finite presentation. By [Sta23, Tag 01BP (2)], F |U∩M is of finite type. As
F is pseudo-coherent, F |U ∩M is of finite presentation. By Lemma A.1.2
applied to the exact sequence 0→ F |U ∩M →M →M/(F |U ∩M)→ 0,
the OU -module M is of finite presentation. Thus, G is pseudo-coherent.

2. Let N be a finite type submodule of M |U . For every x ∈ U , from the first
three lines of the proof of [Sta23, Tag 01BB], there is an open neighborhood
V ⊂ U of x and i ∈ I such that N |V ⊂ Fi|V . Since Fi is pseudo-coherent,
N |V is of finite presentation. As finite presentation is a local property, N
is of finite presentation. Thus, M is pseudo-coherent.

3. Let I be the set of all finite subsets of A with the inclusion order. Then I is
a directed set. For B ∈ I, set FB = ⊕α∈BMα. By Point 1, FB is pseudo-
coherent. For B ≤ B′ in I, set fB,B′ : FB → FB′ to be the inclusion.
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Hence a direct system (FB , fB,B′) over I. By Point 2, the OX -module
S = colimB∈IFB is pseudo-coherent.

Lemma A.2.2. An OX -module is K-coherent if and only if it is coherent.

Proof. Let U ⊂ X be an open subset. Assume that F is a K-coherent module.
Let {si}1≤i≤n be a finite collection in F (U), and let f : OnU → F |U be the
associated morphism. Then im f is a finite type submodule of F |U . Because
F is pseudo-coherent, im f is of finite presentation over OU . From [Sta23, Tag
01BP (2)], ker f is of finite type over OU . Therefore, F is coherent.

Conversely, assume that F is a coherent OX -module. Let M be a finite type
submodule of F |U . By [Sta23, Tag 01BY (1)], M is coherent over OU . From
[Sta23, Tag 01BW],M is of finite presentation. Thus, F is pseudo-coherent and
hence K-coherent.

The module OX is quasi-coherent, but in general not pseudo-coherent. If it
is pseudo-coherent, then OX is called a coherent sheaf of rings ([Kas03, p.214],
[Bjö93, A:II, Def. 6.29]).

Lemma A.2.3. If X is a locally Noetherian scheme, then every quasi-coherent
module is pseudo-coherent.

Proof. By [Gro60, Cor. 9.4.9], a quasi-coherent module is a directed limit of
coherent modules, hence pseudo-coherent by Lemma A.2.1 2.

Example A.2.4. Let X = A1 be the affine line over a field. Let U = X \ {0},
and let j : U → X be the inclusion. By [Har77, II, Example 5.2.3], the OX -
module j!OU is not quasi-coherent. From [Har77, II, Exercise 1.19 (c)], it is a
submodule of the coherent module OX . Hence, j!OU is pseudo-coherent.

Definition A.2.5 defines a local property. It is weaker than [Bjö93, A:III,
2.24] and [Kas03, Def. A.7].

Definition A.2.5. Assume that OX is a coherent sheaf of rings. If for every
open subset U ⊂ X, every family of coherent ideal sheaves {Ii}i in OU , the
ideal sheaf

∑
i Ii is OU -coherent, then OX is called a quasi-Noetherian sheaf of

rings.

Example A.2.6. 1. If (X,OX) is a locally Noetherian scheme, then OX is
quasi-Noetherian.

2. If (X,OX) is a complex analytic space, then by the Oka-Cartan theorem
(see, e.g., [Kas03, Thm. A.12]), OX is quasi-Noetherian.
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A.3 Analytic coherent modules

LetX be a complex analytic space. We show that a coherent OX -module admits
a local free resolution, from which we deduce that coherence is preserved by
derived pullbacks and tensor products. An analog of Lemma A.3.1 for algebraic
varieties is [Har77, III, Example 6.5.1]. By local syzygies [GH78, p.696], on
complex manifolds, every coherent module local admits a finite-length, finite
free resolution.

Lemma A.3.1. Every x ∈ X admits an open neighborhood U , such that for
every coherent OX -module F , there is a (possibly infinite-length) resolution

· · · → On1

U → On0

U → F |U → 0,

where ni ≥ 0 are integers.

Proof. Shrinking X to an open neighborhood of x, one may assume that X is
Stein. By [GR04, Thm. 8, p.108], there is a compact neighborhood K ⊂ X of
x, such that Theorem B is valid on K in the sense of [GR04, Def. 1, p.100]. Let
U = K◦.

For a coherentOX -module F , we construct inductively a sequence of morphisms.
From [GR04, Cor. p.101], there is an integer n0 ≥ 0, an open neighborhood U0

of K ⊂ X and a morphism f0 : On0

U0
→ F |U0

in Mod(OU0
) such that f0|U is

an epimorphism in Mod(OU ). Set ker(f−1)|U0
= F |U0

. Given such a morphism
fj : O

nj

Uj
→ ker(fj−1)|Uj for an integer j ≥ 0 and an open neighborhood Uj ⊂ X

of K, by [Sta23, Tag 01BY (3)], the OUj -module ker(fj) is coherent. By [GR04,
Cor. p.101], there is an open neighborhood Uj+1 ⊂ Uj of K, an integer nj+1 ≥ 0
and a morphism fj+1 : O

nj+1

Uj+1
→ ker(fj)|Uj+1

in Mod(OUj+1
) such that fj+1|U

is an epimorphism. Thus, one gets a sequence

· · · → On2

U

f2|U→ On1

U

f1|U→ On0

U

f0|U→ F |U → 0

in Mod(OU ). By construction, it is exact, hence a resolution of F |U .

Example A.3.2. Assume that x ∈ X is a singular point. Then F := Cx is a
coherent OX -module, but for every open neighborhood U ⊂ X of x, there is no
finite-length resolution of F |U by finite locally free OU -modules. (Otherwise,
such a resolution induces a finite-length free resolution of the OX,x-module
Fx = C = OX,x/mx. From [Osb12, Ch. 4, Prop. 4.4], the projective dimension
pdOX,x

OX,x/mx is finite. By [Mat87, Lem. 1, p.154] and [Osb12, Prop. 4.9],
the global dimension of the ring OX,x is finite. By Serre’s theorem (see, e.g.,
[Osb12, p.332]), the local ring OX,x is regular. From [Ser56, p.6], x is a smooth
point of X, a contradiction.)

Therefore, Lemma A.3.1 fails if one consider only finite-length resolutions.
See also [EP+96, Thm. 4.1.2].

Lemma A.3.3. Let f : X → Y be a morphism of complex analytic spaces.
Then for every coherent OY -module F , the derived pullback Lf∗F ∈ Dc(X).
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Proof. For every x ∈ X, by Lemma A.3.1, there is an open neighborhood V
of f(x) ∈ Y , such that there is a resolution E• → F |V → 0 by finite free OV -
modules. Let g : f−1(V ) → V be the base change of f along the inclusion
V → Y . Then the morphism g∗E• → (Lf∗F )|f−1(V ) in D(f−1(V )) is an
isomorphism. For every integer j ≥ 0, the Of−1(V )-module g∗Ej is finite free.
Thus, the Of−1(V )-module (H−jLf∗F )|f−1(V ) is coherent. Since coherence is a
local property, the OX -module H−j(Lf∗F ) is coherent.

Lemma A.3.4. For any coherent OX -modules F and G, one has F ⊗LOX
G ∈

Dc(X).

Proof. For every x ∈ X, by Lemma A.3.1, there is an open neighborhood U ⊂
X of x and a resolution E• → F |U → 0 by finite free OU -modules. The
natural morphism E• ⊗OU

G|U → F |U ⊗LOU
G|U in D(U) is an isomorphism.

For every integer n, the OU -module Hn(E• ⊗LOU
G|U ) = Hn(E• ⊗OU

G|U ) is

coherent. Therefore, the OU -module Hn(F ⊗LOX
G)|U = Hn(F |U ⊗LOU

G|U ) is

coherent. Since coherence is a local property, the OX -module Hn(F ⊗LOX
G) is

coherent.

A.4 Good modules

Assume that the ringed space X is locally compact Hausdorff.

Definition A.4.1. [Kas03, Def. 4.22] An OX -module F is called good if for
every relatively compact open subset U ⊂ X, there exists a directed family
{Gi}i∈I of coherent OU -submodules of F |U such that F |U =

∑
i∈I Gi, where

{Gi}i∈I being a directed family means that for any i, i′ ∈ I, there is i′′ ∈ I
with Gi + Gi′ ⊂ Gi′′ (and hence F |U = colimi∈IGi). The full subcategory of
Mod(OX) consisting of good OX -modules is denoted by Good(X).

Lemma A.4.2 (Goodness vs. pseudo-coherence).

1. ([Kas03, p.77]) One has Coh(X) ⊂ Good(X) ⊂ PCoh(X).

2. Let E be a pseudo-coherent OX -module. If on every relatively compact
open subset U ⊂ X, the OU -module E|U is the sum of its finite type
submodules, then E is good.

Proof.

1. By definition, every coherent OX -module is good. Let E be a good OX -
module. Let W be an open subset of X, and let F ⊂ E|W be a finite
type OW -submodule. We show that F is of finite presentation over OW .
Replacing (X,E) with (W,E|W ), one may assume that W = X. Because
X is locally compact, for every x ∈ X, there exists a relatively compact
open neighborhood U ⊂ X of x and finitely many sections s1, . . . , sn ∈
F (U) generating F |U . As E is good, E|U =

∑
i∈I Gi is the sum of a

directed family of coherent submodules. There exists i0 ∈ I and an open

39



neighborhood V of x ∈ U with si|V ∈ Gi0(V ) for all 1 ≤ i ≤ n. Then
F |V is a finite type submodule of Gi0 |V . By [Sta23, Tag 01BY (1)], F |V
is OV -coherent. As coherence is a local property, F is coherent. From
[Sta23, Tag 01BW], F is of finite presentation.

2. The family of finite type submodules of E|U is directed, since the sum of
two finite type submodules is of finite type. For every relatively compact
open subset U ⊂ X, as E is pseudo-coherent, every finite type submodule
of E|U is pseudo-coherent and hence coherent. Thus, E is good.

Basic properties of good modules (similar to those of quasi-coherent modules
on algebraic varieties) are recapped in Lemma A.4.3.

Lemma A.4.3.

1. For every family of objects {Fi}i∈I in Good(X), the direct sum ⊕i∈IFi in
Mod(OX) is good.

2. The subcategory Dgd(X) is closed under direct sums in D(X). Moreover,
the inclusion functor Good(X)→ Dgd(X) commutes with direct sums.

Suppose that OX is quasi-Noetherian. Then:

3. The subcategory Good(X) ⊂ Mod(OX) is weak Serre and closed under
filtered colimits in Mod(OX). In particular, Good(X) is a locally Noetherian
category (in the sense of [Gab62, p.356]).

4. The inclusion functor Dgd(X)→ D(X) is a triangulated subcategory.

Proof.

1. Over every relatively compact open subset U ofX, the direct sum (⊕i∈IFi)|U
is the sum of its coherent OU -submodules. By Lemma A.2.1 3, the OX -
module ⊕i∈IFi is pseudo-coherent. By Lemma A.4.2 2, it is good.

2. Since Mod(OX) is a Grothendieck abelian category, by [Sta23, Tag 07D9],
the category D(X) has arbitrary direct sums and they are computed by
taking termwise direct sums of any representative complexes. Then by
[Wei95, Exercise 1.2.1], for every integer q, the functor Hq : D(X) →
Mod(OX) commutes with direct sums. The result follows from Point 1.

3. As OX is quasi-Noetherian, by [Sta23, Tag 0754] and the proof of [Kas03,
Prop. 4.23], Good(X) is a weak Serre subcategory of Mod(OX). From
[KS06, Thm. 18.1.6 (v)], the category Mod(OX) is a Grothendieck abelian
category. By Point 1 and [Sta23, Tag 002P], the filtered colimits in
Good(X) exist and agree with the filtered colimits in Mod(OX). Thus,
filtered colimits in Good(X) are exact.

Because of [Sta23, Tag 01BC], there is a set of coherent OX -modules
{Fi}i∈I such that each coherent OX -module is isomorphic to exactly one
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of the Fi. Then {Fi} is a family of Noetherian generators of Good(X).
Therefore, the category Good(X) is locally Noetherian.

4. It follows from [Yek19, Prop. 7.4.5] and Point 3.

Lemma A.4.4. A good module on a complex analytic space is quasi-coherent.

Proof. Let F be a good module on a complex analytic space X. From [Fri67,
Thm. I, 9; Rem. I, 10], every x ∈ X admits a neighborhood K that is a
Noetherian Stein compactum. There is a relative compact open subset U of
X containing K. As F is good, the OU -module F |U =

∑
i∈I Fi is the sum

of a directed family of coherent subsheaves. Applying the functor Γ(K, ·) to
the directed family {Fi}i∈I in Coh(U), by [Tay02, Prop. 11.9.2], one gets a
directed family of finitely generated Γ(K,OK)-submodule {Mi}i∈I of Γ(K,F ),
whose associated family in Mod(OK) is {Fi|K}i∈I . Let M be colimi∈IMi in
Mod(Γ(K,OK)). Since the localization functor Mod(Γ(K,OK))→ Mod(OK) is
left adjoint to Γ(K, ·) : Mod(OK)→ Mod(Γ(K,OK)), the localization preserves
colimits. Then F |K is associated to M . By [Liu23, Lem. 2.5], F is quasi-
coherent.

Remark A.4.5. The restriction of a good OX -module to an open subset U is a
good OU -module. Unlike quasi-coherence on schemes, goodness is not a local
property. In fact, by Lemma A.4.3 3, every free module on a complex manifold is
good, while Gabber [Con06, Eg. 2.1.6] gives a locally free (hence quasi-coherent
and pseudo-coherent), but not good module on the unit open disk in C. (In
particular, the converse of Lemma A.4.4 is wrong for noncompact complex
manifolds.) Still, given an OX -module F , if for every relatively compact open
subset U ⊂ X, the OU -module F |U is good, then F is good.

A.5 Sections of direct sum of sheaves

By [Har77, II, Exercise 1.11], on a Noetherian topological space, taking section
commutes with (possibly infinite) direct sum of sheaves. This fails on complex
manifolds, as Example A.5.1 shows.

Example A.5.1. Let X = C. Let F be the OX -module ⊕n≥0Cn. There
is a section s ∈ Γ(X,F⊕N), such that for every integer n ≥ 0, the stalk sn ∈
(F⊕N)n = (Fn)

⊕N = C⊕N is (1, 1, . . . , 1, 0, 0, . . . ), where the first n+1 entries are
1 and all the other entries are 0. Then s has no preimage under the canonical
map Γ(X,F )⊕N → Γ(X,F⊕N). For otherwise, let (tn)n≥0 ∈ Γ(X,F )⊕N be a
preimage of s. Then there are only finitely many integers n ≥ 0 with tn ̸= 0.
Every tn has only finitely many nonzero stalks. However, s has infinitely many
nonzero stalks, which is a contradiction.

Let X be a complex manifold. An OX -module is called privileged if for every
connected open subset U ⊂ X and every x ∈ U , the map Γ(U,F )→ Fx taking
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the stalk at x is injective. By the identity theorem (see, e.g., [GH78, p.7]), OX
is privileged.

Lemma A.5.2. Assume that X is connected. Let {Fi}i∈I be a family of
privileged OX -modules. Then the canonical map ⊕i∈IΓ(X,Fi)→ Γ(X,⊕i∈IFi)
is bijective.

Proof. Let P be the presheaf direct sum of {Fi}i∈I . Let θ : P → ⊕i∈IFi be the
sheafification morphism. Then P (X) = ⊕i∈IΓ(X,Fi) and θX : ⊕i∈IΓ(X,Fi)→
Γ(X,⊕i∈IFi) is the colimit of

θ
(J)
X : ⊕i∈JΓ(X,Fi)→ Γ(X,⊕i∈IFi),

where J runs through the finite subsets of I. For every such J , by [Sta23, Tag
01AH (4)], the presheaf direct sum of {Fi}i∈J is a subsheaf of ⊕i∈IFi, so the

map θ
(J)
X is injective. Therefore, their limit map θX is also injective. We prove

that θX is surjective.
By construction of sheafification in [Har77, p.64], for every s ∈ Γ(X,⊕i∈IFi),

there is a covering {Uα}α∈A of X by nonempty connected open subsets and an
element tα ∈ Γ(Uα, P ) for each α ∈ A such that sx = tα,x in (⊕i∈IFi)x =
⊕i∈IFi,x for every x ∈ Uα.

Fix x0 ∈ X and α0 ∈ A with x0 ∈ Uα0
. Then there is a finite subset I0 ⊂ I

such that tα0
∈ Γ(X,⊕i∈I0Fi) ⊂ Γ(X,P ). Let B ⊂ A be the subset of indices

α with tα /∈ Γ(Uα,⊕i∈I0Fi). Set V = ∪α∈BUα. Then V is open in X and its
complement

X \ V ⊂ ∪α∈A\BUα. (30)

For every α ∈ A \B, we claim that Uα ⊂ X \ V .
In fact, for every y ∈ Uα, every β ∈ A with y ∈ Uβ and every i ∈ I \ I0, the

stalk tiβ,y = siy = tiα,y = 0 in Fi,y. Since Fi is privileged and Uβ is connected,

the map Γ(Uβ , Fi) → Fi,y is injective. Thus, tiβ = 0 in Γ(Uβ , Fi). Therefore,
tβ ∈ Γ(X,⊕i∈I0Fi), i.e., β /∈ B. Hence y /∈ V .

From the claim and (30), the subset X \ V = ∪α∈A\BUα is also open in X
and contains Uα0 . Since X is connected, one has V = B = ∅. Consequently,
tα ∈ Γ(X,⊕i∈I0Fi) for every α ∈ A. Then the family {tα}α∈A glues to a
preimage of s in Γ(X,⊕i∈I0Fi) ⊂ Γ(X,P ). Thus, θX is surjective and hence a
group isomorphism.

Corollary A.5.3. If F is a locally free (possibly of infinite rank) OX -module,
then F is privileged.

Proof. Let U be a connected open subset of X. Fix x0 ∈ U . We prove that the
map Γ(U,F )→ Fx0

is injective. Take s ∈ Γ(U,F ) with sx0
= 0. By [Har77, II,

Exercise 1.14], the set Z := {x ∈ U : sx = 0} is open in U .
We claim that Z is closed in U . Let {xn}n≥1 be a sequence of points in

Z converging to y ∈ U . Because F is locally free, there is a connected open
neighborhood V ⊂ U of y, a set I and an isomorphism ϕ : F |V

∼−→ O⊕I
V of OV -

modules. There is an integer N > 0 with xN ∈ V . Because OV is privileged,
from Lemma A.5.2, the map on the bottom of the commutative square
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Γ(V, F ) FxN

Γ(V,O⊕I
V ) O⊕I

V,xN

ϕV ϕxN

is injective. Then so is the map on the top. Since sXN
= 0, one has s|V = 0

and sy = 0. Hence y ∈ Z. The claim is proved.
Because U is connected and x0 ∈ Z, by claim one has Z = U . Therefore,

s = 0 in Γ(U,F ).

Corollary A.5.4. Let X be a connected complex manifold. Let {Fi}i∈I be a
family of locally free OX -modules. Then the canonical map ⊕i∈IΓ(X,Fi) →
Γ(X,⊕i∈IFi) is bijective.

Proof. It follows from Lemma A.5.2 and Corollary A.5.3.
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Mathématique de France, 90:323–448, 1962.

[GD71] A. Grothendieck and J.A. Dieudonne. Eléments de Géométrie
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Publications de l’lnstitut de Mathématique de L’Université de
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