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Résumé

Cette thèse est une compilation de plusieurs résultats vaguement liés. Ils
concernent la non-densité des points entiers sur les variétés algébriques, la
méthode de Lawrence-Venkatesh-Sawin et la géométrie analytique complexe.

Dans Chapitre 2, parallèlement au principe alternatif d’Ullmo et Yafaev
sur les points rationnels des variétés de Shimura, nous montrons que la
conjecture de Lang sur les points intégraux des variétés de Shimura est soit
vraie, soit très fausse.

Le Chapitre 3 est un complément à la comparaison des monodromies
dans les travaux respectifs de Lawrence-Sawin et Krämer-Maculan. Nous
prouvons qu’il existe de nombreux caractères, tels que le groupe de
monodromie correspondant est normal dans le groupe tannakien générique.

Le Chapitre 4 contient un théorème de l’annulation générique pour les
variétés dans la classe Fujiki C. En particulier, cela s’applique aux variétés
algébriques complexes propres lisses ainsi qu’aux variétés kählériennes
compactes.

Dans Chapitre 5, nous prouvons un analogue de la formule d’inversion
de Fourier pour la transformation de Fourier-Mukai sur des tores complexes.
Il corrige une inexactitude dans la littérature. En application, nous
retrouvons la classification de Matsushima-Morimoto des fibrés vectoriels
homogènes sur des tores complexes.

Le Chapitre 6 est une transformation de Fourier-Mukai analytique sur
les D-modules, dont la version algébrique a été étudiée par Laumon et
Rothstein. Nous étendons leur résultat de dualité des variétés abéliennes
aux tores complexes. En application, nous réprouvons le théorème de
Morimoto, selon lequel sur un tore complexe, tout fibré vectoriel admettant
une connexion admet une connexion intégrable.

Mots-clés

Conjecture de Lang, groupe de monodromie, annulation générique, transformation
de Fourier-Mukai, D-module.
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Abstract

This dissertation is a compilation of several loosely related results. They
concern the nondensity of integral points on algebraic varieties, the Lawrence-
Venkatesh-Sawin’s method and complex analytic geometry.

In Chapter 2, parallel to Ullmo and Yafaev’s alternative principle on
rational points of Shimura varieties, we show that Lang’s conjecture about
integral points on Shimura varieties is either true or very false.

Chapter 3 is a complement to the monodromy comparison step in
Lawrence-Sawin’s and Krämer-Maculan’s respective work. We prove that
there are many characters, such that the corresponding monodromy group
is normal in the generic Tannakian group.

Chapter 4 contains a generic vanishing theorem for Fujiki class C. In
particular, it applies to smooth proper complex algebraic varieties as well as
compact Kähler manifolds.

In Chapter 5, we prove an analog of the Fourier inversion formula for
the Fourier-Mukai transform on complex tori. It corrects a misstatement
in the literature. As an application, we recover Matsushima-Morimoto’s
classification of homogeneous vector bundles on complex tori.

Chapter 6 is a lift of the analytic Fourier-Mukai to D-modules, whose
algebraic version is studied by Laumon and Rothstein. We extend their
duality result from abelian varieties to complex tori. As an application, we
reprove Morimoto’s theorem that on a complex torus, every vector bundle
admitting a connection admits a flat connection.

Keywords

Lang conjecture, monodromy group, generic vanishing, Fourier-Mukai
transform, D-module.
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Chapter 1

Introduction

1.1 Rational points

Intuitively, given an algebraic variety over a number field, the complexity
of its geometry affects how many rational points (over finite extensions
of the base field) it can posses. In Chapter 1, by an algebraic variety, we
mean a geometrically integral, finite type, separated scheme over a field.
An algebraic variety of dimension 1 is called a curve.

1.1.1 Mordell conjecture

LetK be a number field. Let S be a finite subset of places ofK containing all
infinite ones. By Siegel’s theorem [Sie29, p.252], on the projective line P 1

K

with at least three punctures, or on a genus 1 curve over K with at least one
puncture, there are at most finitely many OK,S-integral points. For curves of
higher genus, Faltings’s theorem (Fact 1.1.1.1) was conjectured by Mordell
[Mor22, (5), p.192].

Fact 1.1.1.1 (Faltings, [Fal83, Satz 7]). Let Y be a smooth projective curve
over K of genus ≥ 2. Then Y (K) is finite.

A sample application of Faltings’s theorem is a partial solution to
Fermat’s Last Theorem: for every integer n ≥ 4, there are only finitely many
pairwise coprime integer solutions to the equation xn+yn = zn. Indeed, the
projective plane curve (known as the n-th Fermat curve) in P 2

Q cut out by
this equation has genus (n−1)(n−2)/2 ≥ 2. It is more than a decade earlier
than Andrew Wiles’s complete solution in 1994 to Fermat’s conjecture.

Parshin [Par68] constructed a family of curves over Y , with which he
showed that Fact 1.1.1.1 is a consequence of Shafarevich’s conjecture for
curves. This conjecture in turn follows from Shafarevich’s conjecture for
abelian varieties and Torelli’s theorem.

We recall the statement of Shafarevich’s conjecture. A smooth proper
variety (resp. abelian variety) over a discrete valuation field E is said to

13



have good reduction if it is isomorphic to the generic fiber of a smooth
proper scheme (resp. abelian scheme) over the integer ring OE of E. By
[Mil20, Prop. 6.4], there is at most one such abelian scheme. A smooth
proper variety (resp. abelian variety) over K is said to have good reduction
at a finite place v of the number field K if its base change to Kv has good
reduction.

Fact 1.1.1.2 (Shafarevich conjecture, [Fal83, Korollar 1, p.365 (resp. Satz
6)]). For every integer g at least 2 (resp. 1), up to K-isomorphism there are
only finitely many smooth projective curves (resp. abelian varieties) defined
over K of genus (resp. dimension) g, with good reduction outside S.

In 1983, Faltings proved Shafarevich’s conjecture for abelian varieties
and hence Mordell’s conjecture, “opening thereby a new chapter in number
theory".1 Faltings’s proof can be decomposed into two parts, Facts 1.1.1.3
and 1.1.1.4.

Fact 1.1.1.3 ([Fal83, Satz 5]). For every integer g > 0, up to K-isogeny
there are only finitely many abelian varieties over K of dimension g, with good
reduction outside S.

Fact 1.1.1.3 is weaker than Shafarevich’s conjecture for abelian varieties.
Its proof is to consider the representations of the absolute Galois group ΓK
of K on the Tate modules of K-abelian varieties. For one thing, by Tate’s
conjecture over number fields [Fal83, Korollar 2], the Galois representation
on the Tate module determines the abelian variety up to K-isogeny. For
another, by Weil’s conjecture proved by Deligne [Del74, Thm. 1.6], there
are only finitely many such representations up to isomorphism.

Fact 1.1.1.4. Let A be an abelian variety over K. Then up to K-isomorphism,
there are only finitely many abelian varieties over K which are K-isogenous to
A.

Faltings introduced a differential height function, now known as Faltings’s
height, to measure the “complexity" of abelian varieties. Height function is
a tool of global nature, as it collects the information at every place of the
base number field. The core of the proof of Fact 1.1.1.4 is that Faltings’s
height does not change much under isogeny ([Fal83, Lem. 5]).

1.1.2 Lang conjectures

“One natural generalization to higher dimensions of the notion of ‘curve of
geometric genus g ≥ 2’ is ‘variety of general type’." ([CHM97, p.2]). For a
smooth projective variety X over a field, let ωX be its canonical line bundle.
For an integer d ≥ 0, let Pd(X) = h0(X,ω⊗d

X ) be the d-th plurigenus of

1quotation from [Blo84, p.41]
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X. The Kodaira dimension κ(X) is defined to be −∞ (or −1 depending on
the convention) if Pd(X) = 0 for every integer d > 0; otherwise, it is the
minimum real number r such that the sequence {Pd(X)/dr}d>0 is bounded.
Then Kodaira dimension is the “most basic" ([Laz04, Eg. 2.1.5]) integer
birational invariant of X. If κ(X) = dimX, then X is called of general type.
For instance, a smooth projective curve is of general type if and only of its
genus is at least 2.

A high-dimensional analog of Fact 1.1.1.1 is conjectured by Lang (see,
e.g., [CHM97, Conjecture A]).

Conjecture 1.1.2.1. Let X be a positive dimensional smooth projective variety
of general type over a number field K. Then X(K) is not Zariski dense in X.

Using techniques from Diophantine approximation, Faltings proves
Conjecture 1.1.2.1 for subvarieties2 of abelian varieties, which gives a
second proof of Fact 1.1.1.1. From [Hin98, p.95], a subvariety of an abelian
variety is of general type if and only if its stabilizer is finite.

Fact 1.1.2.2 ([Fal91, Thm. 1]). Let A be an abelian variety over a number
field K. Let X ⊂ A be a subvariety of general type. Then X(K) is finite.

Based on Faltings’s work [Fal94], Moriwaki proves another particular
case of Conjecture 1.1.2.1. A smooth projective variety with ample
cotangent bundle is of general type.

Fact 1.1.2.3 ([Mor95, p.114]). Let X be a smooth projective variety over a
number field K. If the cotangent bundle Ω1

X/K is ample and generated by
global sections, then X(K) is finite.

Conjecture 1.1.2.1 is stronger than the uniformity conjecture.

Fact 1.1.2.4 ([CHM97, Thm. 1.1]). Assume Conjecture 1.1.2.1 over every
number field. Then for every number L and every integer g ≥ 2, there is an
integer B(L, g) such that every smooth curve C over L of genus g, one has
#C(L) ≤ B(L, g).

Conjecture 1.1.2.1 for algebraic surfaces was independently raised by
Bombieri, so also known as the Bombieri-Lang conjecture. It gives a
conditional solution to the Erdös-Ulam problem.

A rational distance set in R2 is a subset such that every pairwise distance
between its points is rational. Erdös and Ulam conjectured in 1945 that
there is no dense rational distance set in R2.

Fact 1.1.2.5 ([Sha18, Cor. 1.4]). Assume Conjecture 1.1.2.1 for algebraic
surfaces over all number fields. Let S be an infinite rational distance set. Then
either all but at most 4 points of S are on a line, or all but at most 3 points of
S are on a circle.

2Subvarieties are assumed to be closed.
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A complex manifold M is called Brody hyperbolic if every morphism C→
M of complex manifolds is constant. For example, by [DR16, p.417], a
compact Riemann surface is Brody hyperbolic if and only if its genus is at
least 2.

Conjecture 1.1.2.6 ([Lan86, Conjeture 5.6], see also [BD21, Conjecture,
p.2]). A complex smooth projective variety is hyperbolic if and only if every
subvariety is of general type.

Conjecture 1.1.2.6 is known as the geometric Lang conjecture. It lies
between algebraic geometry and complex analytic geometry. Both directions
of it are unknown till now. For subvarieties of abelian varieties, Conjecture
1.1.2.6 is confirmed by [Yam19, Cor. 1.3] (and Brody’s theorem [Bro78,
p.213] that Brody hyperbolicity agrees with Kobayashi hyperbolicity for
compact complex manifolds).

Conjecture 1.1.2.7 would follow from Conjectures 1.1.2.1 and 1.1.2.6.

Conjecture 1.1.2.7 ([Lan74, (1.3)]). Let V be a smooth projective variety
over a number field F . If a complex analytification of V is Brody hyperbolic,
then V (F ) is finite.

1.1.3 Lang conjecture for Shimura varieties

Shimura varieties are higher-dimensional analogs of modular curves. As
Alex Youcis puts it, the reason to study Shimura varieties is multiple: They
are highly symmetrical objects with rich actions of various Lie groups;
Thy are moduli spaces of abelian varieties (with extra structures); They
are moduli spaces of motives; They are objects conjectured to realize the
global Langlands correspondence, etc. However, to define Shimura varieties
requires an exceptional amount of technical sophistication. See [Mil17b]
for a reference.

Let (G,X) be a Shimura datum, and let K ≤ G(Af ) be a sufficiently
small, neat, compact open subgroup. Let S be a connected component of the
complex manifold ShK(G,X). From Nadel’s work [Nad89, Thm. 0.2], the
Baily-Borel compactification S∗ of S is Brody hyperbolic. As the canonical
model of ShK(G,X) exists (see, e.g., [Mil17b, p.128]), S is naturally
a smooth quasi-projective variety defined over a number field F . Then
Conjecture 1.1.2.7 predicts that S(F ′) is finite for every finite extension
F ′/F . Similar speculation for integral points on Shimura varieties of abelian
type is confirmed by Ullmo. His proof relies on Faltings’s solution to
Shafarevich’s conjecture for abelian varieties (Fact 1.1.1.2).

Fact 1.1.3.1 ([Ull04, Thm. 3.2 (a)]). Suppose that the Shimura datum
(G,X) is of adjoint abelian type. Let Γ ≤ G(Q) be a net arithmetic lattice.
Then for every number field F , every finite set of places Σ of F and every
modelM of X+/Γ over OF,Σ, the setM(OF,Σ) is finite.
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Concerning the rational points on general Shimura varieties, Lang’s
conjecture (Conjecture 1.1.2.1) is related to an alternative principle [UY10,
Thm. 1.1]. For a projective variety Z over a number field, Ullmo and Yafaev
[UY10, (1)] define its Lang locus ZL to be the Zariski closure of ∪MZ(M)

>0
,

where M runs through finite extensions of the definition field of Z (inside
a fixed algebraic closure), and Z(M)

>0
is the union of positive-dimensional

irreducible components of the Zariski closure Z(M).
The Lang locus measures the failure of Lang’s conjecture, since ZL = ∅ if

and only if Z satisfies Conjecture 1.1.2.1. For Shimura varieties, Fact 1.1.3.2
shows that Lang’s conjecture is either true or very false.

Fact 1.1.3.2 (Ullmo-Yafaev’s all-or-nothing principle, [UY10, Thm. 1.1]).
Let S be a (connected) Shimura variety of sufficiently high level. Then S∩(S∗)L

is either ∅ or S.

As Shimura varieties are not proper in general, it is equally natural
to consider integral points instead of rational points. For quasi-projective
varieties over Q̄, we define an “integral Lang locus" measuring the infiniteness
of integral points by choosing an integral model. This locus is independent
of the choice of the model. It is empty if and only if the variety has only
finitely many integral points over each number field where the variety can
be defined. We give a result for integral points parallel to Fact 1.1.3.2. It
show that the Lang conjecture on integral points ([Lan91, IX, Conjecture
5.1]) is either true or very false for Shimura varieties.

Theorem (Theorem 2.5.0.12). The integral Lang locus of a (connected)
Shimura variety S is either ∅ or S.

In fact, we form several axioms for an abstract locus formation, and
prove that such an alternative principle results from the axioms. Both Lang
locus and integral Lang locus satisfy the axioms.

1.2 Lawrence-Venkatesh technique

Lawrence-Venkatesh’s new proof ([LV20]) of Faltings’s theorem (Fact 1.1.1.1)
sheds light on Conjecture 1.1.2.1. This technique, compared with Faltings’s
strategy, is of local nature. We give a highly sketchy review, and refer the
reader to [LV20] for more details.

1.2.1 Setting

LetK,S be as in Section 1.1.1. Let f : X → Y be a smooth proper morphism
of smooth algebraic varieties over K. By enlarging S, one may choose a
smooth proper morphism f̃ : X → Y between smooth OK,S-schemes whose
base change to K is exactly f . Lawrence-Venkatesh’s idea uses the induced
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variation of local Galois representations, to prove that Y(OK,S) is not Zariski
dense in Y .

Remark 1.2.1.1. If Y is as in Fact 1.1.1.1, then by properness of Y over
K and [Poo17, Thm. 3.2.13 (ii)], the natural map Y(OK,S) → Y (K) is
bijective. By dimY = 1, a subset of Y which is not Zariski dense is
necessarily finite. That is why one only needs nondensity of integral points
in this case. Lawrence and Venkatesh [LV20] apply the following machinery
to a sophisticated variant of the relative curve constructed by Parshin (and
of a construction due to Kodaira).

1.2.2 Galois representations

Choose a finite place v of K with underlying rational prime p, such that p is
unramified in K and no place dividing p is in S. Let Kv be the completion
of K at v. Let Ov ⊂ Kv be the integer ring. There is a natural inclusion
Y(OK,S) ⊂ Y(Ov). For every y ∈ Y(Ov), the fiber Xy is a smooth proper
scheme over Ov with generic fiber Xy:

Xy y

X Y

SpecOv

Xy y

XKv YKv

SpecKv.

Let RepQp(ΓKv) the category of (continuous) Qp-representations of the
absolute Galois group ΓKv . For every integer d ≥ 0, there is a local Galois
representation

ρdy : ΓKv → GL(Hd
ét(Xȳ/Kv,Qp))

on the d-th étale cohomology group. For a locally small category C, let C/ ∼
be the set of isomorphism classes of objects of C. Hence, one gets a map
ρ : Y(Ov) → RepQp(ΓKv)/ ∼. Representations are more or less “linear"
data.

1.2.3 p-adic Hodge theory

The functorDcris in p-adic Hodge theory induces a functor from the category
RepQp(ΓKv) to the category FVecKv of filtered vector spaces over Kv.
Because the Kv-algebraic variety Xy has a smooth proper model Xy over
Ov, the p-adic Galois representation ρdy is crystalline in the sense of [BC09,
p.133]. By Fontaine’s conjecture proved by Faltings [Fal88, Cor., p.69], this
functor sends ρdy to the d-th de Rham cohomology Hd

dR(Xy/Kv) equipped

18



with its Hodge filtration ([Sta24, Tag 0FM8]). The step is informally
depicted below.

Y(OS)
choosing a suitable place v|p

⊂ Y(Ov)
ρ→ RepQp(ΓKv)/ ∼

Dcris→ FVecKv/ ∼ .

Locally, one can interpret the map

Y(Ov)→ FVecKv/ ∼ (1.1)

as a period map. There is a vector bundle V = HddR(X/Y ) on Y , and a
decreasing Hodge filtration F •V by vector subbundles, whose fiber at every
y ∈ Y (Kv) is Hd

dR(Xy/Kv) with its Hodge filtration. There is a natural flat
connection ∇GM on V , the Gauss-Manin connection.

1.2.4 Complex period map

We begin with the complex analytic analog. Consider a variation of Hodge
structure (V, F •V,∇) on a connected complex manifold Y , where V is a
vector bundle, F •V is a decreasing filtration of V by vector subbundles, and
∇ is a flat connection on V . (On a complex manifold, by connection we
mean a holomorphic connection in the sense of [Huy05, Def. 4.2.17].) Take
a base point y0 ∈ Y and a small open disk Ω ⊂ Y around y0. As ∇ is flat, for
y ∈ Ω, the parallel transport induces a C-linear isomorphism Vy → Vy0 . In
general, the connection ∇ does not respect the filtration. Still, the fiberwise
filtration F •Vy is transported to a filtration on the fiber Vy0 , which has the
same dimensional data as the filtration F •Vy0 . Let Flag/C be the projective
variety parameterizing the filtrations of Vy0 of this common dimension data.
In this way, one gets a holomorphic map (only locally defined on Y ), called
a period map,

ΦC : Ω→ Flag, y 7→ transport of F •Vy to Vy0 .

1.2.5 p-adic period map

Let k/Qp be a finite extension of Qp. Let Ok be the integer ring of k. Let
mk be the maximal ideal of Ok. Let Y be a smooth Ok-scheme with generic
fiber Y . Let Ȳ be the special fiber of Y:

Y Y Ȳ

Spec k SpecOk SpecOk/mk.

Fix a base point y0 ∈ Y(Ok). Denote by Ω the fiber passing y0 of the
reduction map Y(Ok) → Ȳ(Ok/mk) to reside field, and call it the residue
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disk around y0. Then Ω is an open neighborhood of y0 in the k-analytic
manifold Y an. Consider a triple (V, F •V,∇), where V is a vector bundle on
Y , F •V be a decreasing filtration on V by vector subbundles, and ∇ a flat
connection. As in Section 1.2.4, one can similarly define a flag variety Flag
over k, and a p-adic period map Φp : Ω→ Flag which is k-analytic.

1.2.6 Ax-Schanuel property of period map

In the notation of Section 1.2.1, take k = Kv. Take the triple (V, F •V,∇) to
be (HddR(X/Y ) ⊗K Kv,Hodge filtration,∇GM) on YKv . When the fibers of
V on a residue disk Ω are identified by the Gauss-Manin connection ∇GM,
the restriction of the map (1.1) to Ω coincides with the p-adic period map
Φp. Because Y(Ov) is covered by finitely many residue disks, to prove that
Y(OK,S) is not Zariski dense in Y , it suffices to prove the nondensity of
Ω ∩ Y(OK,S). Fact 1.2.6.1 counts essentially on Bakker-Tsimerman’s Ax-
Schanuel type result [BT19]. Let Hp be the Zariski closure of Φp(Ω) in Flag.

Fact 1.2.6.1 ([KM23, Prop. 7.10 (4)]). Let Z ⊂ Hp be a subvariety with
dimHp ≥ dimZ + dimY . Then Φ−1

p (Z) is not Zariski dense in YKv .

The situation is summarized as follows.

Φ−1
p (Z) Z

Hp

YKv Ω Flag.

nondense

Φp

Take Z to be the Zariski closure of Φp(Ω(OK,S)) in Hp. If dimHp ≥ dimZ +
dimY , then by Fact 1.2.6.1, the subset Ω∩Y(OK,S) ⊂ Y is not Zariski dense.

1.2.7 Summary

To show nondensity of integral points in Lawrence-Venkatesh’s method, one
needs to show that the dimension of the image Hp of the p-adic period
map Φp is “large" when compared with that of OK,S-points. Let HC be
the image of the complex period map ΦC induced by fC : XC → YC.
For one thing, as the Gauss-Manin connection ∇GM is defined on K,
one gets dimHp ≥ dimHC. Using the corresponding variation of Hodge
structures, one proves that HC contains the orbit of the base point under the
monodromy action. For another thing, using Faltings’s finiteness theorem
(see, e.g., [LV20, Lem. 2.3]), one gets an upper bound (involving the
centralizer of the crystalline Frobenius operator arising from the comparison
of de Rham cohomology and crystalline cohomology) on Φp(Ω(OK,S)).
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1.3 Lawrence-Sawin technique

The technique of Lawrence-Venkatesh is a promising approach to Conjecture
1.1.2.1, because it is successfully applied in higher dimension. For example,
based on this technique, Lawrence and Sawin establish in an innovatory
way the Shafarevich conjecture for hypersurfaces in abelian varieties. Let
K,S be as in Section 1.1.1. Let A be an abelian variety over K of dimension
g with good reduction outside S. A subvariety V ⊂ A is said to have good
reduction at a place v /∈ S of K if the Zariski closure of V in the unique
abelian scheme A/OKv with generic fiber AKv is smooth.

Fact 1.3.0.1 (Lawrence-Sawin, [LS20, Thm. 1.1]). Suppose dimA ≥ 4. Fix
an ample class ϕ in the Néron-Severi group of A. Then there are only finitely
many hypersurfacesH ⊂ A overK representing ϕ, with good reduction outside
S, up to translation by points in A(K).

Using a similar technique, Krämer and Maculan obtained an analog
for subvarieties of dimension less than half the dimension of the ambient
abelian variety.

Fact 1.3.0.2 (Krämer-Maculan, [KM23, Cor., p.3]). Fix a polynomial P ∈
Q[z] of degree d < (g − 1)/2 and an ample line bundle L on A. Then up
to translation by points in A(K), there are only finitely many nondivisible
geometric complete intersections of ample divisors X ⊂ A over K, with good
reduction outside S, that have Hilbert polynomial P with respect to L and
satisfy 2χ(X ×X,ΩdX×X) ≤ χtop(X ×X).

In both cases of Facts 1.3.0.1 and 1.3.0.2, the dimension of the base
algebraic variety Y in Section 1.2 is grater than 1. So nondensity of the set of
integral points is strictly weaker than finiteness. An idea suggested in [LV20,
Sec. 10.2] is to iterate the Lawrence-Venkatesh argument by replacing Y
with the Zariski closure of integral points. In this manner, an estimate of
topological monodromy group that is uniform in subvarieties of the variety
under consideration is needed. The main novelty of [LV20] is to compare
the monodromy with a Tannakian group. (The comparison involved in the
proof of Fact 1.3.0.2 leans on [JKLM23].) This idea is similar to the study
of monodromy groups of variation of Hodge structures via Mumford-Tate
groups in [And92].

This Tannakian group arises from sheaf convolution developed fundamentally
by Krämer-Weissauer [KW15b]. We give a cursory review of the comparison.

1.3.1 Tannakian theory of sheaf convolution

Tannakian formalism is a way to reconstruct a group from its representation
theory. By the Tannaka–Krein duality, a compact group can be recovered
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from the abelian category of its complex representations together with the
tensor product operation.

Definition 1.3.1.1 ([DM22, Def. 2.19]). A rigid, symmetric, monoidal
abelian category (C,⊗) of unit object 1 is a neutral Tannakian category over
a field k if it admits an exact faithful k-linear tensor functor ω : C → Veck
(called a fiber functor) and if End(1) = k.

Fact 1.3.1.2 ([DM22, Thm. 2.11], [Del90, Sec. 9.2]). Let (C,⊗) be a neutral
Tannakian category over a field k with a fiber functor ω : C → Veck.
Then there is a natural affine group scheme Aut⊗(C,ω) over k (called the
Tannakian group of (C,⊗) at ω), such that ω factors through an equivalence
C → Repk(Aut

⊗(C,ω)) of symmetric monoidal categories. If k is algebraically
closed, then Aut⊗(C,ω) is independent of the choice of ω up to k-isomorphism.

We review the work of Krämer and Weissauer. Let A be a complex
abelian variety. Perverse sheaves on on algebraic variety are the singular
version of local systems. They form a full, abelian subcategory Perv(A) of
the triangulated category Db

c(A) of complexes of sheaves with bounded,
constructible cohomologies. This abelian category is Noetherian and
Artinian. For every smooth subvariety X ⊂ A, the complex of sheaves
CX [dimX] is a perverse sheaf on A.

Let a : A×A→ A be the group law. Let pi : A×A→ A (i = 1, 2) be the
projection to the i-th factor. The bifunctor

(·) ∗ (·) : Db
c(A)×Db

c(A)→ Db
c(A), (−,+) 7→ Ra∗(p

∗
1 −⊗Lp∗2+)

is called the convolution on A. In general, Perv(A) is not stable under
the convolution. Still, its quotient modulo the subcategory of “negligible
objects" is stable under the convolution. Let N(A) ⊂ Perv(A) be the
full subcategory comprised of (so-called negligible) objects with Euler
characteristic 0.

Fact 1.3.1.3 ([Krä22, 1.b]). The subcategory N(A) is Serre (in the sense
of [Sta24, Tag 02MO (1)]) in Perv(A). Let P̄ (A) be the quotient abelian
category (in the sense of [Sta24, Tag 02MS]). Then the convolution descends
to a bifunctor ∗ : P̄ (A) × P̄ (A) → P̄ (A). Moreover, (P̄ (A), ∗) is a neutral
Tannakian category.

Every object F ∈ Perv(A) generates a Tannakian subcategory ⟨F ⟩ of
P̄ (A). Let G(F ) be the (unique up to isomorphism) Tannakian group of
⟨F ⟩. The computation of the Tannakian group in [LS20] follows essentially
the general approach in Krämer’s work [Krä22, Krä21].
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1.3.2 Monodromy group and generic Tannakian group

In Lawrence-Sawin [LS20, Sec. 11], the strategy of Lawrence-Venkatesh is
applied to the universal family of hypersurfaces f : U → Hilb over the
corresponding Hilbert scheme:

U Hilb×A

Hilb

f

More generally, Krämer and Maculan [KM23, Sec. 1.4] consider the
following setting. We work over C. (One can similarly work over a base
field of characteristic 0 and use perverse sheaves with ℓ-adic coefficients.)
Let Y be a smooth integral variety. Let X ⊂ A ×C Y be a subvariety, such
that the projection f : X → Y is smooth of relative dimension d:

X Y ×A

A Y.

π

f

Then the flat vector bundle (HddR(X/Y ),∇GM) on the complex manifold
Y an is induced by the local system Rdf∗CX . To get “big monodromy", we
“twist" this local system as follows. Let

Π(A) := Hom(π1(A, 0),C∗)

denote the algebraic torus of characters of the fundamental group. For
every character χ ∈ Π(A), let Lχ be the corresponding rank 1 local system
on Aan. Consider the local system Vχ := Rdf∗π

∗Lχ on Y an. Then V1 =
Rdf∗CX . Let Mon(χ) be the Zariski closure of the image of the monodromy
representation of Vχ. We need to find χ such that the monodromy group
Mon(χ) is big enough to carry out Lawrence-Venkatesh-Sawin’s method.

Let η ∈ Y be the generic point. Denote the perverse sheaf CXη [d] on
Aη by Pη. By Krämer-Weissauer’s theorem (Fact 1.4.0.1), for a generic χ ∈
Π(A), the functor

ωχ : ⟨Pη⟩(⊂ P̄ (Aη))→ VecC, F 7→ H0(Aη̄, F ⊗L Lχ)

is a fiber functor. Using ωχ(Pη) = Vχ,η̄, one can compare Mon(χ) withG(Pη).

Lemma 1.3.2.1 ([JKLM23, p.28]). For a generic character χ ∈ Π(A), the
monodromy group Mon(χ) is a closed subgroup of G(Pη).

To apply Bakker-Tsimerman’s Theorem (Fact 1.2.6.1), we need a lower
bound on the monodromy group. Its proof uses the normality of the
geometric generic Tannakian group inside the generic Tannakian group.
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1.3.3 Normality of geometric generic Tannakian group

Let k be an algebraically closed field of characteristic 0 with an algebraic
closure k̄. Let A be an abelian variety over k. Let ℓ be a prime number. Let
Λ be an algebraic closure of Qℓ.

Fact 1.3.3.1 ([LS20, Lem. 3.7]). Let Gk (resp. Gk′) be the Tannakian
fundamental group of the category of geometrically semisimple perverse
sheaves on A with coefficients in Λ (resp. summands of the pullbacks to Ak̄ of
geometrically semisimple perverse sheaves on A), modulo the full subcategory
of “negligible objects". Then Gk′ is naturally a normal closed subgroup of Gk,
with quotient isomorphic to the Tannakian group of the neutral Tannakian
category (RepΛ(Γk),⊗).

The assumption of geometric semisimplicity in Fact 1.3.3.1 is removed
in [JKLM23]. Let K/k be a field extension. Let k′ be the algebraic closure
of k in K. Assume that k′/k is Galois. Let C ⊂ P̄ (A) be a full abelian
tensor subcategory. Let CK ⊂ Perv(AK)/N(AK) be the full subcategory of
subquotients of the pullbacks to AK of perverse sheaves on A. Fix a fiber
functor ω : CK → VecΛ.

Fact 1.3.3.2 ([JKLM23, Thm. 4.3]). There is a short exact sequence of
proalgebraic groups

1→ Aut⊗(CK , ω)→ Aut⊗(C, ω)→ Aut⊗(C ∩ RepΛ(Gal(k′/k)), ω)→ 1.

1.3.4 Monodromy group and geometric generic Tannakian group

Fact 1.3.3.1 and an analog of Larsen’s alternative ([LS20, Lem. 5.4])
permit one to get a lower bound on the monodromy group. Under certain
geometric condition on the family f : X → Y , by [LS20, Thm. 5.6] and
[JKLM23, Thm. 4.10], for a generic character χ ∈ Π(A), the corresponding
monodromy group contains the geometric generic Tannakian group, i.e.,
inclusions as follows:

Mon(χ) G(Pη)

G(Pη̄).

normal

1.3.5 Summary

In brief, in the work of Lawrence-Sawin and that of Krämer-Maculan,
the crucial uniform estimation on the monodromy group follows from a
comparison to the Tannakian group (of perverse sheaves on the geometric
generic fiber). In fact, both the monodromy group and the Tannakian group
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on the geometric generic fiber are embedded as closed subgroups in the
Tannakian group on the generic fiber. The geometric generic Tannakian
group is normal in the generic Tannakian group. This normality is used
to prove that for most characters, the corresponding monodromy group
contains the geometric generic Tannakian group.

1.3.6 Normality of monodromy group

Complementing Facts 1.3.3.1 and 1.3.3.2, we prove that for many characters,
the associated monodromy group is also normal in the generic Tannakian
group. This result poses a restriction on what the monodromy group can be.

One uses perverse sheaves on the generic fiber of an abelian scheme
in Section 1.3.2. Hansen and Scholze’s work [HS23] on relative perverse
sheaves provides a way to study a family of perverse sheaves. Let f : X → Y
be a morphism of algebraic varieties. Assume that the prime ℓ is invertible
in the base field. By [HS23, Thm. 1.1], the category Db

c(X,Λ) has a unique
t-structure, called the relative perverse t-structure, which restricts to the
perverse t-structure on every geometric fiber of f . The heart Perv(X/Y ) is
called the category of relative perverse sheaves. For every y ∈ Y , restricting
to the fiber over y induces a functor Perv(X/Y ) → Perv(Xy). An object of
Perv(X/Y ) should be thought as a family of perverse sheaves. However, in
general the abelian category Perv(X/Y ) is not Artinian.

To get an abelian category with many of the same properties familiar
in the absolute setting, Hansen and Scholze add a condition, the so-called
universal local acyclicity. Roughly, an object of Db

c(X,Λ) is universally
locally acyclic if it satisfies the base change theorem. (For precision, see
Definition 3.2.2.1.) The relative perverse t-structure preserves universally
locally acyclic complexes. The resulting abelian subcategory PervULA(X/Y ) ⊂
Perv(X/Y ) is Noetherian, Artinian and compatible with Verdier duality.
Moreover, if Y is smooth integral with generic point η, then the functor
PervULA(X/Y ) → Perv(Xη) exhibits a Serre subcategory. In this sense,
a universally locally acyclic relative perverse sheaf is determined by the
perverse sheaf on the generic fiber.

Let k be an algebraically closed field of characteristic 0. Let A/k be an
abelian variety. Let Y be an integral algebraic variety over k with generic
point η. Let PervULA(A×Y/Y ) be the abelian category of universally locally
acyclic relative perverse sheaves ([HS23]) with coefficients in Λ.

Theorem 1.3.6.1 (Theorem 3.1.2.2). Assume dimA > 0. Then there are
uncountably many characters χ : πét

1 (A) → Λ∗, such that the corresponding
generic Tannaka group is a reductive group containing the monodromy group
corresponding to χ as a closed reductive normal subgroup.

In spirit, Theorem 1.3.6.1 is similar to that of André’s normality theorem.
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Fact 1.3.6.2 ([And92, Thm. 1]). For a polarizable good variation of mixed
Hodge structure over a smooth, connected, complex algebraic variety X and
every x in the complement of some meager subset of X, the corresponding
connected monodromy group is a normal subgroup of the corresponding
derived Mumford-Tate group.

Fact 1.3.6.2 is proved via the theorem of the fixed part due to Griffiths-
Schmidt-Steenbrink-Zucker. In our case, an analog of the fixed part theorem
is Theorem 3.1.2.3.

1.4 Generic vanishing

In the construction of the Tannakian category (in Fact 1.3.1.3), the existence
of a fiber functor is deduced from Krämer-Weissauer’s generic vanishing
theorem.

Fact 1.4.0.1 (Krämer-Weissauer, [KW15b, Thm. 1.1]). Let P be a perverse
sheaf on a complex abelian variety A. Then there is a finite union S(P ) of
translates of strict algebraic subtori of Π(A), such that for every character
χ ∈ Π(A) \ S(P ) and every integer i ̸= 0, one has H i(A,P ⊗L Lχ) = 0.

The proof of Fact 1.4.0.1 relies on two ingredients. The first is
Deligne’s [Del02] characterization of rigid symmetric monoidal abelian
categories. It shows that a construction of André-Kahn [AKO02] leads
to a super Tannakian category. The other is Kashiwara’s conjecture for
semisimple perverse sheaves. Its solution [Dri01] in turn relies on de Jong’s
conjecture ([BK06, Gai07]). Fact 1.4.0.1 shows that the super Tannakian
category is in fact a neutral Tannakian category. As [KW15b, Sec. 3]
explains, Krämer-Weissauer’s theorem is a (partial) generalization of Green-
Lazarsfeld’s generic vanishing theorem.

Fact 1.4.0.2 ([GL87, Thm. 2]). Let X be a compact Kähler manifold. Let

w(X) = max{codimX Z(ω) : ω ∈ H0(X,Ω1
X) \ {0}},

where Z(ω) denotes the zero-locus of a holomorphic one form ω. Then for any
integers i, j ≥ 0 with i + j < w(X) and a generic line bundle L ∈ Pic0(X),
one has H i(X,ΩjX ⊗ L) = 0.

Green-Lazarsfeld’s theorem is an analog of the Kodaira-Nakano vanishing
theorem and answers a problem of Beauville [Uen83, Problem 8, p.620]
affirmatively. Fact 1.4.0.1 implies generic vanishing theorem for compact
Kähler manifolds whose Albanese manifolds are abelian varieties (for
example, projective manifolds). In this sense, it generalizes Fact 1.4.0.2
partially. The reason is that Fact 1.4.0.1 is stated for abelian varieties. To
recover generic vanishing for all compact Kähler manifolds, one needs a
generalization of Fact 1.4.0.1 for all complex tori.
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Fact 1.4.0.3 (Bhatt-Schnell-Scholze, [BSS18, Thm. 1.1]). Let P be a perverse
sheaf on a complex torus A. Then there is a strict Zariski closed subset S(P ) of
the algebraic torus Π(A) such that for every character χ ∈ Π(A) \ S(P ) and
every integer i ̸= 0, one has H i(A,P ⊗L Lχ) = 0.

Existing vanishing results are mainly stated for Kähler manifolds. Deligne
[Del68] shows that parallel to the Kähler setting, every complex smooth
proper algebraic variety (not necessarily Kähler) admits a Hodge theory. We
show that generic vanishing results hold for such varieties. Instead of giving
a demonstration parallel to the Kähler situation, one can give a uniform
proof in Fujiki class C.

A compact complex manifold is called in Fujiki class C if it is the
meromorphic image of a compact Kähler manifold. Compact Kähler
manifolds and smooth proper complex algebraic varieties are in this class.
Fujiki class C admits a Hodge theory. We give a generic vanishing theorem
for Fujiki class C.

Theorem 1.4.0.4 (Theorem 4.7.1.3). Let X be a complex manifold in Fujiki
class C with a flat unitary vector bundle F . Then for any two integers p, q ≥ 0
with dimX − p − q larger than the defect of semismallness of an Albanese
morphism of X, for a generic line bundle L ∈ Pic0(X), one has

Hq(X,ΩpX ⊗OX F ⊗OX L) = 0.

Corollary 1.4.0.5 (Corollary 4.7.2.6). Let X/C be a smooth proper algebraic
variety with a flat unitary vector bundle F . Then for any two integers p, q ≥ 0
with dimX − p − q larger than the defect of semismallness of an Albanese
morphism of X, the locus

{L ∈ Pic0(X) : Hq(X,ΩpX ⊗OX F ⊗OX L) ̸= 0} (1.2)

is contained in a finite union of translates of strict abelian subvarieties of the
Picard variety Pic0X/C.

The strategy of the proof of Theorem 1.4.0.4 is considering the unitary
local system corresponding to F (provided by the Riemann-Hilbert correspondence).
Its derived pushout along the Albanese morphism is a complex of constructible
sheaves on a complex torus. For this complex of abelian sheaves, by
estimating the perverse sheaf cohomologies, one deduces a generic vanishing
result from Fact 1.4.0.3. This result proves Theorem 1.4.0.4 for vector
bundles.

Fact 1.4.0.3 generalizes Krämer-Weissauer’s theorem (Fact 1.4.0.1) to
complex tori, but with a coarser control of the jump locus S(P ) of a perverse
sheaf P . The finer control in Krämer-Weissauer’s theorem results from
the classification of simple perverse sheaves of Euler characteristic zero
([KW15b, Prop. 10.1 (a)]).
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A question is that if Krämer-Weissauer’s theorem (Fact 1.4.0.1) and the
classification have generalizations to all complex tori. A positive answer
would allow one to describe the failure locus of generic vanishing theorem
for all compact Kähler manifolds. The proof of [KW15b, Prop. 10.1 (a)]
uses Poincaré’s reducibility theorem for abelian varieties, which fails for
complex tori. Still, there is an independent proof due to Schnell [Sch15,
Thm. 7.6] of Fact 1.4.0.1 as well as the classification. Schnell’s proof is
relatively elementary and makes profound use of a lift of Fourier-Mukai
transform to D-modules.

1.5 Fourier-Mukai transform

Fourier-Mukai transform on abelian varieties, initiated by Mukai [Muk81],
is an analog of the classical Fourier transform. For a ringed space (X,OX),
let Mod(OX) be the category of OX -modules. Let D(OX) be the derived
category of the abelian category Mod(OX).

1.5.1 Construction

Let k be an algebraically closed field. Let A be an abelian variety over k with
dual abelian variety B. Let pA : A ×k B → A (resp. pB : A ×k B → B) be
the projection to A (resp. B). Denote the normalized Poincaré bundle on
A×k B by P.

Definition 1.5.1.1. The pair of functors

RŜ : D(OA)→ D(OB), • 7→ RpB∗(P ⊗L p∗A•),
RS : D(OB)→ D(OA), • 7→ RpA∗(P ⊗L p∗B•)

is called the Fourier-Mukai transform between A and B.

The Fourier-Mukai transform has found many applications in algebraic
geometry: the Künneth decomposition for Chow motives [MD91], a new
proof of Torelli’s theorem [BP01], the study of stable bundles on elliptic
surfaces [Bri98], etc. Motivated by noncommutative geometry, Ben-Bassat,
Block and Pantev [BBBP07] study the Fourier-Mukai transform on complex
tori. Similar to the classical Fourier inversion, a duality result for the
Fourier-Mukai transform is stated in [Muk81, Thm. 2.2] (resp. [BBBP07,
Thm. 2.1]) in the algebraic (resp. analytic) case. However, both statements
are imprecise (Lemma 5.2.0.6). In the algebraic case, the minor problem is
bypassed by adding a quasi-coherence condition. Let Dqc(OA) ⊂ D(OA) be
the full subcategory of objects with quasi-coherent cohomologies.

Fact 1.5.1.2 (Mukai). The functor RŜ (resp. RS) restricts to a functor
Dqc(OA) → Dqc(OB) (resp. Dqc(OB) → Dqc(OA)). Moreover, there are
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canonical isomorphisms of functors

RS ◦RŜ ∼= T−g[−1]∗A : Dqc(OA)→ Dgood(OA);

RŜ ◦RS ∼= T−g[−1]∗B : Dqc(OB)→ Dgood(OB),

where T denotes the degree shift. In particular, RŜ : Dqc(OA) → Dqc(OB) is
an equivalence with a quasi-inverse T g[−1]∗ARS.

1.5.2 Complex tori

In the analytic setting, there are several competing definitions of “quasi-
coherent" sheaves. A choice is the so-called good sheaves proposed by
Kashiwara [Kas03, Def. 4.22]. With good sheaves, we give a way to correct
[BBBP07, Thm. 2.1] in Chapter 5. First, we show that good sheaves are
analytic analogs of quasi-coherent sheaves.

Proposition 1.5.2.1 (GAGA, Proposition B.3.0.2). Let X/C be a smooth
proper algebraic variety. Then analytification induces an equivalence from the
category of quasi-coherent OX -module to the category of good OXan-modules.

Let A be a complex torus of dimension g. Let B be its dual torus. Let
Dgood(OA) be the full subcategory of D(OA) comprised of objects with good
cohomologies. Notation for B are similarly understood. Set RS : D(OB)→
D(OA) and RŜ : D(OA) → D(OB) for the corresponding Fourier-Mukai
transform.

Theorem 1.5.2.2 (Mukai, Ben-Bassat, Block, Pantev, Theorem 5.4.1.1). The
functor RŜ (resp. RS) restricts to a functor Dgood(OA) → Dgood(OB) (resp.
Dgood(OB) → Dgood(OA)). Moreover, there are canonical isomorphisms of
functors

RS ◦RŜ ∼= T−g[−1]∗A : Dgood(OA)→ Dgood(OA);

RŜ ◦RS ∼= T−g[−1]∗B : Dgood(OB)→ Dgood(OB).

In particular, RŜ : Dgood(OA) → Dgood(OB) is an equivalence with a quasi-
inverse T g[−1]∗ARS.

Mukai’s proof for abelian varieties uses the flat base change theorem, of
which we need an analytic analogue to prove Theorem 1.5.2.2. Our analytic
replacement (Theorem 5.3.2.3) concerns only smooth base changes, but this
weak version suffices for our purpose.

1.5.3 Homogeneous vector bundles

As an application of the analytic Fourier-Mukai transform, we recover
Matsushima-Morimoto’s classification of homogeneous vector bundles on
complex tori ([Mat59, Mor59], see also [FL14, Thm. 7.1]).
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The classification of vector bundles on a complex manifoldX is completely
worked out by Grothendieck [Gro57a] if X is the Riemann sphere P 1

C, and
by Atiyah [Ati57b] if X is an elliptic curve. When X is an abelian variety of
higher dimension, “there are ‘too’ many vector bundles on X" ([Muk78,
p.239]). Still, there are classification results for some special classes of
vector bundles.

A vector bundle on a complex torus is called homogeneous if it is
invariant under all translations. For example, a line bundle on A is
homogeneous if and only if its isomorphism class is in Pic0(A).

An extension of finitely many OA is called a unipotent vector bundle on
A. By [FL14, Lem. 5.1], for every unipotent vector bundle U on A of rank
r, there is a unipotent representation3 ρ : π1(A) → GLr(C) inducing U .
More precisely, let Cρ be the local system of rank r on A corresponding to
ρ. Then Cρ ⊗CA OA is isomorphic to U . The extension of two homogeneous
vector bundles is still homogeneous, so every unipotent vector bundle is
homogeneous.

Theorem 1.5.3.1 (Matsushima-Morimoto, Theorem 5.5.3.6). A vector bundle
F on the complex torus A is homogeneous if and only F is isomorphic to
⊕ni=1Li⊗CX Cρi , where n ≥ 0 is an integer, Li ∈ Pic0(X) and ρi : π1(X, 0)→
GLri(C) is a unipotent representation of dimension ri.

1.6 Laumon-Rothstein transform

Laumon and Rothstein independently lift the Fourier-Mukai transform to D-
modules and establish a duality result similar to [Muk81, Thm. 2.2]. The
lift is referred to as the Laumon-Rothstein transform.

1.6.1 D-modules

On a complex manifold X, an OX -module with a flat connection is called
a DX -module. A DX -module is a flat vector bundle if and only if it is OX -
coherent. The reason that we need D-modules is twofold. For one thing,
by the Riemann-Hilbert correspondence (see, e.g., [HT07, Thm. 7.2.1]),
perverse sheaves on X are equivalent to regular holonomic DX -modules.
For another, Krämer-Weissauer’s convolution theory relies on [KW15b,
Prop. 10.1 (a)]. Its proof (resp. an independent proof of Schnell [Sch15])
uses characteristic cycles (resp. the Laumon-Rothstein transform) of D-
modules.

3An action of an abstract group G on a finite dimensional vector space V by unipotent
endomorphisms is called unipotent. By [Mil17a, Cor. 14.2], there is a basis of V for which
G acts through upper triangular matrices with ones on the diagonal.
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1.6.2 Construction

Let A be an abelian variety over an algebraically closed field. Let B be the
abelian variety dual to A. Set g = dimA.

A difficulty in the theory of D-modules is that, the modules are over
noncommutative ringed spaces. The Laumon-Rothstein transform turns
them to modules over a commutative ringed space: the universal vector
extension. By independent work of Rosenlicht [Ros58] and Serre [Ser88,
Ch. VII], there is a universal vectorial extension π : B♮ → B, where B♮ is
a connected commutative algebraic group of dimension 2g. Moreover, B♮

is the moduli space of flat line bundles on A, which allows Schnell [Sch15]
to apply Simpson’s nonabelian Hodge theory [Sim93] there. Let Db(DA) be
the bounded derived category of the category of left DA-modules, and let
Db

qc(DA) (resp. Db
c(DA)) be the full subcategory of Db(DA) of objects with

O-quasi-coherent (resp. D-coherent) cohomologies. Let Db
qc(OB♮) (resp.

Db
c(OB♮)) be the full subcategory of Db(OB♮) of objects with quasi-coherent

(resp. coherent) cohomologies.
Let P♮ be the pullback of the Poincaré bundle P along the morphism

π × IdA : B♮ ×A→ B ×A. By Mazur-Messing’s theorem (see, e.g., [Lau96,
Thm. 2.1.2]), B♮ is the moduli space of flat line bundles on A. Thus, there
is a flat connection ∇♮ relative B♮ on P♮. Then the pair (P♮,∇♮) is naturally
a DB♮×A/B♮-module. Let p̃r : B♮ × A → A and p̃r♮ : B♮ × A → B♮ be the
projections.

Definition 1.6.2.1 ([Lau96, p.14]). The Laumon-Rothstein transform between
A and B is a pair of functors

F̃ : Db
qc(DA)→ Db

qc(OB♮), • 7→ Rp̃r♮∗DRB♮×A/B♮((P♮,∇♮)⊗LO
B♮×A

p̃r∗•),

F̃ ♮ : Db
qc(OB♮)→ Db

qc(DA), • 7→ Rp̃r∗((P♮,∇♮)⊗LO
B♮×A

Lp̃r♮∗•).

The Laumon-Rothstein transform turns noncommutative DA-modules to
modules over the commutative ringed space B♮.

Fact 1.6.2.2 (Laumon-Rothstein, [Lau96, Thm. 3.2.1; Cor. 3.1.3], [Rot96,
Thm. 4.5; Thm. 6.2], [Rot97]). One has F̃ ♮F̃ ∼= T−g[−1]∗A on Db

qc(DA)

and F̃F̃ ♮ ∼= T−g[−1]∗
B♮

on Db
qc(OB♮). In particular, the functor F̃ :

Db
qc(DA) → Db

qc(OB♮) is an equivalence of categories. Moreover, it restricts
to an equivalence Db

c(DA)→ Db
c(OB♮).

1.6.3 Schnell’s proof of Fact 1.4.0.1

The Laumon-Rothstein transform is a geometric tool to study generic
vanishing theorems for perverse sheaves. Perverse sheaves on equivalent
ot regular, holonomic D-modules. The Riemann-Hilbert correspondence
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induces an isomorphism Φ : (B♮)an → Π(A)an of complex manifolds. For a
holonomic DA-module M , by [Sch15, Sec. 3], the support of F̃(M) in B♮ is
identified via Φ with the failure locus in Π(A) of generic vanishing for M .
Schnell “deforms" the Laumon-Rothstein transform to a transform for Higgs
bundles.

On a complex manifold X, in general a connection on a vector bundle
is not OX -linear. Higgs bundles can be regarded as degenerations of vector
bundles with flat “linear" connection.

Definition 1.6.3.1. A Higgs bundle is a vector bundle E with a holomorphic
one form ϕ ∈ Γ(X, End(E)) taking values in the bundle of endomorphisms
of E such that ϕ ∧ ϕ = 0.

Deligne’s λ-connection is a notion interpolating between flat bundles
and Higgs bundles.

Definition 1.6.3.2. For λ ∈ C, a λ-connection of a vector bundle E on X
is a C-linear morphism of sheaves ∇ : E → Ω1

X ⊗OX E such that for every
open subset U ⊂ X, every f ∈ OX(U) and every s ∈ Γ(U,E), one has
∇(f · s) = f · ∇s + λdf ⊗ s. A λ-connection is called flat if its OX -linear
curvature operator ∇ ◦∇ : E → Ω2

X ⊗OX E is equal to 0.

Then 1-connection is exactly a connection, and a vector bundle with a
flat 0-connection is the same as a Higgs bundle. The moduli spaces of λ-
connections on projective varieties are studied in Simpson’s work [Sim97].

For a complex abelian variety A, Schnell [Sch15, Sec. 10] analyzes
the moduli space E(A) of line bundles on A with λ-connections. Let
λ : E(A) → A1

C be the morphism taking the parameter of generalized
connections. By [Sch15, Lem. 10.7, 10.9], one has λ−1(1) = B♮ and
λ−1(0) is the moduli space (i.e., MDol(A) in [Sim93, p.363]) of rank 1 Higgs
bundles on A. The morphism λ is real-analytically trivial, recovering the
isomorphism MDol(A) → B♮ of real Lie groups in nonabelian Hodge theory
([Sim93, p.364]).

Schnell [Sch15, Sec. 11] introduces an “extended Fourier-Mukai transform"
taking values in D(OE(A)). Restricting to λ−1(1), it coincides with the
Laumon-Rothstein transform. Restricting to λ−1(0), it is essentially the
Fourier transform for Higgs bundles ([Bon06, Bon10]).

Schnell deforms the holonomic DA-module M to an OT ∗A-module M ′,
which is a “generalized" Higgs bundle (more precisely, a holonomic Higgs
module as [Sab07, Example 5.1.6 (1)] shows). By definition, SuppM ′ in
T ∗A has pure dimension g. Therefore, the support of the Fourier transform
of M ′ is a strict subset of λ−1(0). It is the intersection of the support of the
extended Fourier-Mukai transform of M in E(A) with λ−1(0). Using the real
analytic isomorphism λ−1(0) → λ−1(1), Schnell proves that the support of
F̃(M) is also a strict subset of B♮. Fact 1.4.0.1 follows from this strictness.
Details can be found in [Sch15, Prop. 18.2].
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1.6.4 Complex tori

An analytic Laumon-Rothstein transform may help to extend Schnell’s
method to all complex tori. By [Fav12, Thm. 3], an abelian variety A is
determined by the derived category of DA-modules. From Fact 1.6.2.2, it
is also determined by the derived category of OB♮-modules. However, this
fails in the analytic case. Let A,B be complex tori dual to each other, of
dimension g. By Proposition F.5.4.5 1, the universal vectorial extension
π : B♮ → B still exists. Contrary to the algebraic case, the complex Lie
group B♮ = (C∗)2g. Then B♮ can only tell the dimension of A. In particular,
one can no longer recover the complex structure of A from B♮! That is
why we need to replace B♮ by something else in an analytic version of Fact
1.6.2.2.

In fact, we construct an OB-subalgebra AB of π∗OB♮ , and define a pair
of functors

F̃ : D(DA)→ D(AB), F̃ ♮ : D(AB)→ D(DA).

A coherent DA-module is called good if it admits global good filtration. (In
the algebraic case, every coherent D-module admits a global good filtration.
The complex analytic analog is false.) Let Db

good(DA) (resp. DO−good(DA))
be the full subcategory of Db(DA) (resp. D(DA)) of objects with good (resp.
OA-good) cohomology. Theorem 1.6.4.1 is a “lift" of Theorem 1.5.2.2.

Theorem 1.6.4.1 (Theorem 6.1.2.2). 1. The pair (F̃ , F̃ ♮) is a lift of Fourier-
Mukai transform in the sense that the following squares are commutative:

D(DA) D(AB)

D(OA) D(OB),

F̃

RŜ

D(DA) D(AB)

D(OA) D(OB),

F̃♮

RS

where the vertical functors are forgetful.

2. One has F̃F̃ ♮ ∼= T−g[−1]∗B on DO−good(AB) and F̃ ♮F̃ ∼= T−g[−1]∗A on
DO−good(DA). Moreover, F̃ ♮F̃ preserves Db

good(DA).

1.6.5 Vector bundles with connection

A smooth vector bundle on a smooth manifold always admits a smooth
connection. In the complex analytic case, a vector bundle many not admit
any connection.

Fact 1.6.5.1 (Atiyah, [Ati57a, Theorems 2, 5, 6]). LetX be a compact Kähler
manifold. Let E be a vector bundle on X admitting a connection. Then for
every integer k > 0, the k-th Chern class ck(E) = 0 in H2k(X,R).
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Fact 1.6.5.1 leads to Question 1.6.5.2, which is attributed to Atiyah in
[BD24, p.1].

Question 1.6.5.2. Does every vector bundle on a compact Kähler manifold
admitting a connection also admit a flat connection?

Using the analytic Laumon-Rothstein transform, we recover a result
of Matsushima [Mat59, Thm. 1] and Morimoto [Mor59, Thm. 2], which
answers Question 1.6.5.2 affirmatively for complex tori.

Theorem. 1. (Theorem 6.3.3.1) Let E be a coherent module on a complex
torus with a connection ∇. Then E is a homogeneous vector bundle and
the pair (E,∇) is translation invariant.

2. (Proposition 6.5.2.1) A homogeneous vector bundle on a complex torus
admits a flat connection.

1.7 Future directions

Several possible topics for further research are as follows. Depending on
the limit author’s knowledge, they vary from a vague idea to a relatively
concrete plan.

1.7.1 Six-functor formalism of analytic quasi-coherent sheaves

As the proof of Theorem 1.5.2.2 needs a bit six-functor formalism in complex
analytic geometry, there are a few natural questions: Does Theorem 1.5.2.2
have an analog for analytic quasi-coherent sheaves in Scholze and Clausen’s
sense ([Sch19] and [Sch22])? What is the relation between the notions
of analytic quasi-coherence existing in the literature: the one of Scholze
and Clausen, good sheaves proposed by Kashiwara (Definition A.1.4.1) and
quasi-coherent sheaves in the sense of [RR74, p.100]?

1.7.2 Analytic Krämer-Weissauer’s vanishing theorem

With the analytic Laumon-Rothstein transform and Theorem 1.6.4.1 at our
disposal, we can study holonomic D-modules (instead of perverse sheaves
only) following Schnell [Sch15]. This shall lead to a convolution theory
on complex tori, extending that on abelian varieties. The resulting analytic
Krämer-Weissauer theorem would hopefully give a finer control of the loci
(1.2) for not only projective manifolds but also compact Kähler manifolds.

1.7.3 Lawrence-Venkatesh’s method

Faltings [Fal83] deduced Mordell’s conjecture (Fact 1.1.1.1) from Shafarevich’s
conjecture [Fal83, Satz 6]. By Shafarevich’s conjecture, for any integers
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g ≥ 1 and n ≥ 3, the Siegel variety Ag,n (a Shimura variety parametrizing
principally polarized abelian varieties of dimension g with a level n-
structure) has only finitely many integral points ([Ull04, Prop. 3.1 (a)]).
Now that Lawrence-Venkatesh’s method [LV20] can recover Faltings’s theorem,
a natural question is if it can also prove the finiteness of integral points of
Ag,n.

The situation should be compared to that in [LS20, p.7], where the
authors considered the universal hypersurface inside a constant abelian
scheme and compared its Tannakian group with the monodromy group.
Similarly, to study Shafarevich’s conjecture, we can consider the convolution
of relative perverse sheaves ([HS23]) on the universal abelian variety over
Ag,n. Then we may calculate the Tannakian group associated with the
universal theta divisor and try to relate it to the corresponding monodromy
group.

1.8 Overview

The thesis consists of several independent chapters. Chapter 2 contains an
arithmetic result related to Conjecture 1.1.2.1. The geometric foundation
of the work [LS20, KM23] has inspired the study in Chapters 3, 4 and 6.
Chapter 3 is related to the monodromy comparison part of [LS20, KM23].
Chapters 4, 5 and 6 are of complex analytic nature, completely independent
of arithmetic. Appendix A reviews generalities of sheaves of modules over
ringed spaces and supplements Chapter 5. Appendix B extend the classical
GAGA theorem from coherent sheaves to quasi-coherent sheaves. Appendix
C shows that quasi-coherent sheaves on complex analytic spaces form an
abelian category. Appendix D complements Chapter 4 by giving more
details. Appendix E concerns basics of D-modules and adds a detail on the
Laumon-Rothstein theorem (Fact 1.6.2.2). Appendix F details a construction
used in Chapter 6 and investigates related group-theoretic problems.
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Chapter 2

Integral points of Shimura
varieties: an “all or nothing"
principle

2.1 Introduction

A complex analytic space X is called Brody hyperbolic, if every morphism
C → X is constant. For example, by [Cos05, p.78], a genus g compact
Riemann surface is Brody hyperbolic if and only if g ≥ 2. Conjecture 2.1.0.1
predicts that hyperbolicity (geometric property) restricts the behavior of
rational points (arithmetic result).

Conjecture 2.1.0.1 (Lang, [Lan74, (1.3)], [Lan86, p.160]). Let X be an
integral projective variety over a number filed F (⊂ C). If the complex
analytification X(C) is Brody hyperbolic, then the set of rational points X(F )
is finite.

Ullmo and Yafaev [UY10] study Conjecture 2.1.0.1 in the case of
Shimura varieties. Let (G,X) be a Shimura datum (in the sense of
[Mil17b, Def. 5.5]). Let K ≤ G(Af ) be a compact open subgroup.
For every connected component S ⊂ ShK(G,X), denote the Baily-Borel
compactification of S be S∗. Fact 2.1.0.2 is derived from [Nad89, Thm. 0.2]
in the paragraph following [UY10, Thm. 2.1].

Fact 2.1.0.2 (Nadel). There is an open subgroup K ′ ≤ K, such that for every
induced finite étale cover S′ → S, the Baily-Borel compactification S′∗ is Brody
hyperbolic.

For one thing, by Fact 2.1.0.2, shrinking K to a sufficiently small open
subgroup, one may and will assume that the Shimura variety S is Brody
hyperbolic. For another, S∗ has a natural structure of projective variety
over a number field F (⊂ C). Then Conjecture 2.1.0.1 predicts S(F ′) to be
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finite for every finite extension F ′/F . Ullmo and Yafaev [UY10] introduce
“Lang locus" (Example 2.2.0.2) for algebraic varieties over Q̄ to measure the
failure of Conjecture 2.1.0.1. In particular, the Lang locus of an algebraic
variety over Q̄ is empty if and only if it has only finitely many rational points
over every number field where it can be defined. The Lang locus of Shimura
varieties satisfies an alternative principle.

Fact 2.1.0.3 ([UY10, Thm. 1.1]). Let S be a Shimura variety of sufficiently
high level. Then its Lang locus is either empty or full S.

As Ullmo and Yafaev put it, Fact 2.1.0.3 means that for Shimura varieties,
Conjecture 2.1.0.1 is either true or very false.

As Shimura varieties are not proper in general, it is natural to consider
integral points. Conjecture 2.1.0.1 predicts that S has only finitely many
integral points. We derive an analogue of Fact 2.1.0.3 for integral points.
We define a notion of “integral Lang locus" (Definition 2.5.0.1) for algebraic
varieties over Q̄ that measures the failure of finiteness of integral points.

Theorem (Theorem 2.5.0.12). The integral Lang locus of a Shimura variety
S is either empty or full S.

Notation and conventions

Let Q̄ be the algebraic closure of Q in C. Let Af be the ring of finite adèles
of Q. Unless otherwise specified, an algebraic variety means a finite type,
separated, geometrically reduced scheme over a field. The closure of a
subset of an algebraic variety is taken in the Zariski topology. A subvariety is
assumed to be Zariski closed. A Zariski-closed subset of a variety is endowed
with the reduced induced closed subscheme structure, hence a subvariety.

By an étale cover X → Y , we mean a finite étale morphism between
integral algebraic varieties. In particular, it is surjective. If Aut(X/Y )
acts transitively on each fiber, then X → Y is called a Galois cover, of
Galois group Aut(X/Y ). For a topological space X, we write X>0 for the
union of irreducible components of positive Krull dimension. Then for every
subspace Y ⊂ X, one has Y >0 ⊂ X>0.

2.2 Locus formation

We shall show that an alternative principle (Corollary 2.4.0.3) for an
abstract locus is a consequence of some axioms.

Suppose that for every integral algebraic variety X over Q̄, we define
a subvariety XL ⊂ X. For a reducible algebraic variety Z over Q̄, let
Z = ∪ni=1Zi be the decomposition into irreducible components. Set ZL :=
∪ni=1Z

L
i . Suppose that the formation (·)L satisfies Assumption 2.2.0.1.
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Assumption 2.2.0.1. For any integral algebraic varieties X,Y over Q̄:

1. (Dimension) If XL ̸= ∅, then every irreducible component of XL has
positive dimension;

2. (Inheritance) For every closed immersion i : X → Y over Q̄, one has
i(XL) ⊂ Y L;

3. (Cover) For every étale cover f : X → Y over Q̄, one has f(XL) ⊂ Y L;

4. (Iteration) One has XL ⊂ (XL)L;

5. (Birational) For every finite birational morphism f : X → Y over Q̄,
one has f(XL) ⊂ Y L.

For every integral algebraic variety X over Q̄, by Assumption 2.2.0.1 2,
one has XL ⊃ (XL)L. From Assumption 2.2.0.1 4, one has XL = (XL)L.

Example 2.2.0.2. The Lang locus defined in [UY10, Sec. 2.2] satisfies
Assumption 2.2.0.1. For every integral algebraic variety X over Q̄, by
[Sta24, Tag 01ZM (1), Tag 01ZQ], there exist a number field F , an algebraic
varietyXF over F and an isomorphismXF⊗F Q̄→ X over Q̄. For each finite
subextension M/F , let X(XF ,M) be the image of the natural injection1

XF (M) → X(Q̄). The Lang locus of X relative to XF is defined to be the
Zariski closure of

∪MX(XF ,M)
>0

in X, where M runs through all finite subextensions of F . By Lemma
2.2.0.3, the Lang locus depends only on X. From [UY10, Lemmes 2.3,
2.5], the Lang locus satisfies Assumption 2.2.0.1. It measures the failure of
finiteness of rational points, since XL = ∅ if and only if XF (M) is finite for
every finite subextension M/F .

Lemma 2.2.0.3. The Lang locus of X is independent of the choice of XF .

Proof. Take another model XF ′ over a number field F ′. There is a Q̄-
isomorphism XF ⊗F Q̄ → XF ′ ⊗F ′ Q̄. Because XF ′ is separated, by
[Gro65, Prop. 4.8.13], the morphism is defined over a number field F ′′

containing both F and F ′. For every finite extension M/F , there is a
number field M ′ containing M and F ′′. Then X(XF ,M) ⊂ X(XF ′ ,M ′),
so X(XF ,M)

>0 ⊂ X(XF ′ ,M ′)
>0

and hence the Lang locus relative to
XF is contained in that relative to XF ′ . The reverse inclusion follows by
symmetry.

1The natural map XF (M) → XF is not injective in general. For instance, let F = Q,
M = Q(

√
2) and XF = A1

Q. Then ±
√
2 ∈ XF (M) are mapped to the same closed point of

XF corresponding to the maximal ideal (x2 − 2) ⊂ Q[x].
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Remark 2.2.0.4. 1. The Lang locus XL in Example 2.2.0.2 is slightly
different from the “lieu de Lang" XL

F (a Zariski closed subset of XF )
defined by [UY10, (1)]. Let ϕ : X → XF be the natural morphism
of schemes. For every finite extension M/F , let XF [M ] be the image
of the natural map XF (M) → XF . Then ϕ(X(XF ,M)) = XF [M ].
Because ϕ is integral, and surjective integral morphisms preserve the
dimension, one has ϕ(X(XF ,M)) = XF [M ] and ϕ(X(XF ,M)

>0
) =

XF [M ]
>0

. Hence ϕ(XL) = XL
F .

2. For a finite birational morphism f : X → Y of integral algebraic
varieties over Q̄, it is not clear whether the Lang locus of Y is the
image of the Lang locus of X (even if this is stated in [UY10, p.697]).
That is why we require only inclusion but not equality in Assumption
2.2.0.1 5.

We gather some consequences of Assumption 2.2.0.1.

Lemma 2.2.0.5. Let X be an algebraic variety over Q̄.

1. If X = ∪ri=1Zi, where each Zi is a subvariety of X, then XL = ∪ri=1Z
L
i .

2. If Z is an irreducible component of XL, then ZL = Z.

3. If f : X → Y is Galois cover over Q̄, then f−1(f(XL)) = XL. If
Z ⊂ Y is an irreducible subvariety, and Z ′ is an irreducible component
of f−1(Z), then f(f−1(Z)L) = f(Z ′L).

Proof.

1. By Assumption 2.2.0.1 2, one has ∪ri=1Z
L
i ⊂ XL. If Y is an irreducible

component of X, then there exists an index i such that Y ⊂ Zi. From
Assumption 2.2.0.1 2, one has Y L ⊂ ZLi and hence XL ⊂ ∪ri=1Z

L
i .

2. WriteXL = ∪ni=1Zi for the decomposition into irreducible components
with Z1 = Z. By Assumption 2.2.0.1 4, one has

Z ⊂ XL = (XL)L = ∪ni=1Z
L
i .

As Z is irreducible, there is an index i such that Z ⊂ ZLi ⊂ Zi. As
Z = Z1 is an irreducible component of XL, one has i = 1 and Z = ZL.

3. For every x ∈ f−1(f(XL)), there is x′ ∈ XL with f(x′) = f(x). Let
Θ be the Galois group of f : X → Y . There is θ ∈ Θ with θ(x′) = x,
so x ∈ XL by Assumption 2.2.0.1 2. Therefore, f−1(f(XL)) = XL.
Since Θ permutes transitively the irreducible components of f−1(Z),
one has f−1(Z) = Θ · Z ′. By Part 1, one has f−1(Z)L = Θ · Z ′L and
hence f(f−1(Z)L) = f(Z ′L).
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Given an étale cover f : X → Y over Q̄, the induced morphism XL →
Y L may not be surjective. We introduce a sublocus that lifts along all étale
covers.

For an integral algebraic variety X over Q̄, define its locus at infinite level
by

XL∞ := ∩f :T→Xf(T
L),

where f : T → X runs through all étale covers of X. By Assumption 2.2.0.1
3, the sublocusXL∞ is a subvariety ofXL. AsX is topologically Noetherian,
and f(TL) ⊂ X is closed for every such f : T → X, there exists a particular
cover f1 : X1 → X with f1(X

L
1 ) = XL∞ . For every étale cover X2 → X1,

the composition XL
2 → XL

1
f1→ XL∞ is still surjective.

Remark 2.2.0.6. By Assumption 2.2.0.1 1, if XL∞ ̸= ∅, then its irreducible
components are positive dimensional.

For a reducible algebraic variety Y over Q̄, let Y = ∪ni=1Yi be the
decomposition into irreducible components. Define Y L∞ = ∪ni=1Y

L∞
i ,

which is a subvariety of Y L.

Lemma 2.2.0.7. Let f : T → S be an étale cover over Q̄. Then f−1(SL∞) =
TL∞ . In particular, TL∞ = T is equivalent to SL∞ = S, and SL∞ = SL

implies TL∞ = TL.

Proof. • We show TL∞ ⊂ f−1(SL∞).
Fix t ∈ TL∞ , and set s = f(t). For every étale cover g : S′ → S, there is

a commutative diagram

T ′

T S′

S

f ′

g′

f

g

where each arrow is an étale cover. There is t′ ∈ T ′L with g′(t′) = t. Then
by Assumption 2.2.0.1 3, one has s′ := f ′(t′) ∈ S′L and s = g(s′) ∈ g(S′L).
Hence s ∈ SL∞ .

• We show TL∞ ⊃ f−1(SL∞).

Take t ∈ f−1(SL∞). Then s := f(t) ∈ SL∞ . For every étale cover u : Z → T ,

there is an étale cover v : N → Z such that the composition N v→ Z
u→ T

f→
S is a Galois cover. One has

(u ◦ v)−1(t) ⊂ (f ◦ u ◦ v)−1(s) ⊂ (f ◦ u ◦ v)−1(SL∞)

⊂(f ◦ u ◦ v)−1((f ◦ u ◦ v)(NL))
(a)
= NL,
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where (a) uses Lemma 2.2.0.5 3. Thus, one has u−1(t) ⊂ v(NL) ⊂ ZL and
t ∈ u(ZL). Hence t ∈ TL∞ .

• The equality TL∞ = T is equivalent to SL∞ = S.

If TL∞ = T , then SL∞ = f(f−1(SL∞)) = f(TL∞) = f(T ) = S. Conversely,
if SL∞ = S, then TL∞ = f−1(SL∞) = f−1(S) = T .

• The equality SL∞ = SL implies TL∞ = f−1(SL∞) = f−1(SL)
(b)
⊃ TL,

where (b) uses Assumption 2.2.0.1 3. Hence TL∞ = TL.

2.3 Shimura varieties

We review some basic facts about Shimura varieties, the main objects of
interest in this note. We use essentially results on the geometry of Hecke
correspondences and special subvarieties from [UY10, UY14].

Basics

Let G be an affine algebraic group over Q.

Definition 2.3.0.1 ([Pin90, Sec. 0.1, p.13]). For every prime number p,
choose an embedding Q̄→ Q̄p.

1. For an element g = (gp)p ∈ GLn(Af ), let Γp ≤ Q̄×
p be the subgroup

generated by all eigenvalues of gp ∈ GLn(Qp). If the intersection of
the torsion subgroups

∩p(Q̄× ∩ Γp)tor = {1}

for p running through all primes, then g is called neat.

2. An element of G(Af ) is called neat if its image under some faithful
algebraic representation of G→ GLn/Q is neat.

3. A subgroup of G(Af ) is called neat if all its elements are neat.

Fact 2.3.0.2 ([Pin90, p.13]).

1. Let K ≤ G(Af ) be a compact open subgroup. Then there is an open
normal subgroup K ′ ≤ K that is neat.

2. Let K ≤ G(Af ) be a neat subgroup. Then K ∩G(Q) is a neat subgroup
of G(Q) (in the sense of [Mil17b, p.34]).
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Let (G,X) be a Shimura datum. The set G(R) is naturally a (real) Lie
group. For a Lie group L, let L+ be its identity component. Let Gad be
the quotient of G by its center. Set G(R)+ to be the preimage of Gad(R)+
under the natural morphism G(R)→ Gad(R) of Lie groups. Then G(Q)+ ⊂
G(Q)+ ⊂ G(Q). By [Noo06, p.168] and [Mil17b, Prop. 5.9], X is naturally
a finite disjoint union of isomorphic hermitian symmetric domains. Let X+

be a connected component of X. By [Mil17b, Prop. 5.7 (b)], the stabilizer
of X+ in G(Q) is G(Q)+ := G(Q) ∩G(R)+.

Let K ≤ G(Af ) be a compact open subgroup. From Fact 2.3.0.2 1, by
passing to an open subgroup of K, we may and always assume that K is
neat. Then by [Pin90, Prop. 3.3 (b)], ShK(G,X) := G(Q)\X × G(Af )/K
is naturally a complex manifold. For every g ∈ G(Af ), put Γg := gKg−1 ∩
G(Q)+ and Sg := Γg\X+. By Fact 2.3.0.2 2 and [Mil17b, Prop. 4.1], Γg
is a neat (hence torsion-free) arithmetic subgroup of G(Q) (in the sense
of [Mil17b, p.33]). From [Mil17b, Prop. 3.1], Sg = [X+, g]K is naturally
a connected complex manifold. Let C be a set of representatives for the
double coset space G(Q)+\G(Af )/K. From [Mil17b, Lemmas 5.12 and
5.13], the set C is finite, and as complex manifold2 ShK(G,X) = ⊔g∈CSg.

By [Mil17b, Thm. 3.12; Cor. 3.16], the complex manifold Sg has a
canonical structure of a complex algebraic variety. The algebraic variety
Sg is an irreducible, smooth arithmetic locally symmetric variety ([Mil17b,
p.58]). It is Zariski-open in its Baily-Borel compactification S∗

g ([Mil17b,
p.40]), which is a projective variety. Thus, ShK(G,X) is also a smooth
quasi-projective (reducible) complex algebraic variety.

Let E(G,X) ⊂ Q̄ be the reflex field of the Shimura datum (G,X) (in
the sense of [Mil17b, Def. 12.2]). By [Mil17b, Rk. 12.3 (a)], E(G,X)
is a number field. From [Mil99, Rk. 2.4 (b)] and [Mil17b, p.128],
ShK(G,X) admits a unique (up to a unique isomorphism) canonical model
over E(G,X) (in the sense of [Mil17b, Def. 12.8]). Hence a smooth quasi-
projective variety ShK(G,X) over E(G,X). By [Del71b, Cor. 5.4], for
every morphism of Shimura data f : (G′, X ′) → (G,X) and every compact
open subgroup K ≤ G(Af ) containing f(K ′), the induced morphism
ShK′(G′, X ′) → ShK(G,X) is defined over a number field. Assume that
f is the identity. Then the induced morphism (denoted by pK′,K) is
finite étale and defined over E(G,X). For every irreducible component
S′ ⊂ ShK′(G′, X ′), its image S ⊂ ShK(G,X) is an irreducible component,
and the restriction S′ → S is an étale cover defined over a finite extension
of E(G,X). From [CK16, p.1901], when K ′ is normal in K, this étale cover
is Galois.

By [Moo98b, p.282] and [GN20, Remark (3), p.56], every connected
component S ⊂ ShK(G,X) and its inclusion S → S∗ to the Baily-Borel
compactification are defined over a finite abelian extension of E(G,X).

2But compare with [EY03, Sec. 5, p.634] and [Noo06, p.169].
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Such an S is called a Shimura variety3 associated with (G,X,K).

Hecke correspondences

By [Mil17b, Thm. 13.6], for every g ∈ G(Af ), there is an isomorphism
T (g) : ShK(G,X) → Shg−1Kg(G,X) of algebraic varieties over E(G,X).
For every h ∈ G(Af ), the morphism T (g) sends the connected component
[X+, h]K ⊂ ShK(G,X) isomorphically to [X+, hg]g−1Kg ⊂ Shg−1Kg(G,X).
The algebraic correspondence

ShK(G,X)
pK∩gKg−1,K← ShK∩gKg−1(G,X)

pK∩gKg−1,gKg−1

→ ShgKg−1(G,X)
T (g)→ ShK(G,X)

over E(G,X) is denoted by TA
g , and called the adelic Hecke correspondence

induced by g.
Let S = (K ∩ G(Q)+)\X+. For every q ∈ G(Q)+, let Sq = (K ∩

q−1Kq ∩ G(Q)+)\X+. Then Sq is the connected component [X+, 1] of
ShK∩q−1Kq(G,X) (resp. ShK(G,X)). The map IdX+ (resp. X+ →
X+, x 7→ q · x) induces an étale cover αq : Sq → S (resp. βq : Sq → S).
There is a commutative diagram

S Sq S

ShK(G,X) ShK∩q−1Kq(G,X) ShK(G,X)

αq βq

pK∩q−1Kq,K T (q−1)pK∩q−1Kq,q−1Kq

of complex manifolds. Therefore, the correspondence

S
αq← Sq

βq→ S

is algebraic and defined over a number field. It is called the (rational) Hecke
correspondence induced by q, and denoted by Tq.

Let {qi}ni=1 be elements of G(Q)+ ∩KgK satisfying

G(Q)+ ∩KgK = ⊔ni=1Γq
−1
i Γ,Γ := K ∩G(Q)+.

By [KY14, p.881], the correspondence on [X+, 1] ⊂ ShK(G,X) induced by
TA
g decomposes as

∑n
i=1 Tqi . For instance, the correspondences TA

1 and T1
are the identity.

3By [Moo98b, Prop. 2.9] and [Mil17b, Thm. 5.17], when K is sufficiently small, S is a
connected Shimura variety (in the sense of [Mil17b, Def. 4.10]).
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Special subvarieties

Definition 2.3.0.3. [Moo98a, Def. 2.5] An irreducible subvariety Z ⊂
ShK(G,X) over C is called special, if there exists a connected, reductive
algebraic subgroup H ≤ G defined over Q, an element g ∈ G(Af ) and a
connected component D+

H of

DH := {x ∈ X|hx : ResC/R(Gm)→ GR factors through HR},

such that Z(C) is the image of D+
H × gK in ShK(G,X)(C) = G(Q)\X ×

G(Af )/K.

By [Moo98a, 2.4], DH is a finite union of H(R)-conjugacy classes. Let
C be the H(R)-conjugacy class containing D+

H . Then (H,C) is a Shimura
subdatum4 of (G,X). Then from [Del71b, Cor. 5.4] and [Moo98a, Rk. 2.6],
every special subvariety of ShK(G,X) is defined over a number field.

Example 2.3.0.4. 1. A complex point s ∈ ShK(G,X) is a special
subvariety, if and only if there is a special point x ∈ X (in the sense of
[Mil17b, Def. 12.5]) and g ∈ G(Af ) with s = [x, g]K .

2. When H = G, the corresponding special subvarieties of ShK(G,X)
are precisely the connected components.

For every g ∈ G(Af ) and every irreducible subvariety Z ⊂ ShK(G,X)
over C, Z is special if and only if T (g)(Z) is special in Shg−1Kg(G,X). By
[Moo98a, Sec. 2.9], an irreducible component of the intersection of a family
of special subvarieties of ShK(G,X) over C is again special. Therefore, for a
complex, irreducible subvariety Y ⊂ ShK(G,X), there is a smallest special
subvariety ZY ⊂ ShK(G,X) containing Y . We say that Y is Hodge generic
in ZY . Let S := ResC/RGm be the Deligne torus.

Definition 2.3.0.5. The generic Mumford-Tate group (denoted by MT(X))
of the Shimura datum (G,X) is the smallest closed subgroup H of G over
Q, such that every h : S → GR in X factors through HR. If MT(X) = G,
then the Shimura datum (G,X) is called irreducible.

The subgroup MT(X) ≤ G is normal, connected and reductive. By
[Che09, Def. 1.3.3], (MT(X), X) is a Shimura subdatum of (G,X). Fact
2.3.0.6 characterizes special subvarieties as Hecke image of irreducible
components of a Shimura subvariety. Recall that K ≤ G(Af ) is a neat,
compact open subgroup. For g ∈ G(Af ), the quotient Sg = Γg\X+ is an
irreducible component of ShK(G,X).

Fact 2.3.0.6 ([UY10, Lem. 2.7]). Let (H,XH) ⊂ (G,X) be an irreducible
Shimura subdatum. Let X+

H be a connected component of XH contained in

4in the sense of [CLZ16, p.894]
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X+. Set ΓH,g = gKg−1 ∩ H(Q)+ and Z̃g := ΓH,g\X+
H (an irreducible

component of ShgKg−1∩H(Af )(H,XH)). Then the image Zg of Z̃g under the
C-morphism

ShgKg−1∩H(Af )(H,XH)→ ShK(G,X), [x, h] 7→ [x, hg]

is a special subvariety of Sg. The induced morphism π : Z̃g → Zg is finite and
birational. Conversely, every special subvariety of Sg arises in this way.

Remark 2.3.0.7. If the special subvariety Zg in Fact 2.3.0.6 is normal, then
by Zariski’s main theorem (see, e.g., [Liu06, Cor. 4.6]), π : Z̃g → Zg is an
isomorphism.

Let S = Sg be a Shimura variety associated with (G,X,K).

Lemma 2.3.0.8. Let Z ⊂ S be a special subvariety over Q̄. Let π : Z̃ → Z be
a finite birational morphism given by Fact 2.3.0.6. Then there is a Galois cover
f : S′ → S over Q̄ with S′L = S′L∞ , such that for every irreducible component
Z ′ ⊂ f−1(Z), one has Z ′L = Z ′L∞ and f : Z ′ → Z factors through an étale
cover Z ′ → Z̃.

Proof. The Hecke isomorphism T (g) : ShgKg−1(G,X) → ShK(G,X) sends
[X+, 1]gKg−1 to Sg. It keeps the special subvarieties. Thus, one may assume
g = 1 (by replacing K with gKg−1). Let (H,XH) ⊂ (G,X) be an irreducible
Shimura subdatum inducing Z via Fact 2.3.0.6. Then the restriction

π : Z̃(:= [X+
H , 1]K∩H(Af ))→ Z

of ShK∩H(Af )(H,XH)→ ShK(G,X) is finite and birational.
The system {[X+

H , 1]U} (U running through all open subgroups of K ∩
H(Af )) is cofinal in all the étale covers of Z̃. So there is an open subgroup
K0,H ≤ K such that the étale cover g0 : Z̃0(:= [X+

H , 1]K0,H
) → Z̃ satisfies

g0(Z̃
L
0 ) = Z̃L∞ . Similarly, there is an open subgroup K1 ≤ K such that

K1 ∩H(Af ) ⊂ K0,H and the étale cover f1 : S1 := ([X+, 1]K1)→ S satisfies
f1(S

L
1 ) = SL∞ . By Lemma 2.2.0.7, one has SL1 = SL∞

1 .

• There is an open subgroup K2 ≤ K1, such that K2 ∩ H(Af ) =
K1 ∩ H(Af ) and the natural morphism i1 : ShK2∩H(Af )(H,XH) →
ShK2(G,X) is a closed immersion.5

Indeed, by [Del71b, Prop. 1.15], there is a compact open subgroup
Km ≤ G(Af ) containing K1 ∩H(Af ), such that the morphism

i2 : ShK∩H(Af )(H,XH)→ ShKm(G,X)

5In [DJK20, p.6], it is claimed to hold for K2 = K1. This is a typo, as the first paragraph
of [Mil17b, p.59] explains.
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is a closed immersion. Let K2 = K1 ∩Km. Then K2 ∩H(Af ) = K1 ∩H(Af )
and i2 = pK2,Kmi1. Since pK2,Km : ShK2(G,X)→ ShKm(G,X) is separated,
by magic square, i1 is a closed immersion.

Then the morphism Z̃2(:= [X+
H , 1]K2∩H) → S2(:= [X+, 1]K2) is a closed

immersion. The induced morphism π2 : Z̃2 → (f1f2)
−1(Z) is a closed

immersion.

• The closed immersion π2 identifies Z̃2 with an irreducible component
of (f1f2)−1(Z).

Since Z̃2 is irreducible, it is contained in an irreducible component C ⊂
(f1f2)

−1(Z). As π is birational, by [Sta24, Tag 0BAC], there is a nonempty
open subset Ũ ⊂ Z̃, such that U := π(Ũ) is open in Z and π|Ũ : Ũ → U is
an isomorphism. Consider the commutative square

g−1
2 (U) (f1f2)

−1(U)

Ũ U.
π|Ũ

The morphism g−1
2 (Ũ)→ (f1f2)

−1(U)
f1f2→ U (resp. f1f2 : (f1f2)−1(U)→ U)

is a base change of the étale morphism g2 : Z̃2 → Z2 (resp. f1f2 : S2 → S),
so it is étale. By [Sta24, Tag 03PC (10)], the morphism π2|g−1

2 (Ũ) : g
−1
2 (Ũ)→

(f1f2)
−1(U) is étale. From [Sta24, Tag 03PC (9)], g−1

2 (Ũ) is an open subset
of (f1f2)−1(U), hence a nonempty open subset of C. Since C is irreducible,
g−1
2 (Ũ) is dense in C. Therefore, C ⊂ Z̃2.

There is a normal, open subgroup K ′ ≤ K with K ′ ⊂ K2. Let f3 : S′(:=
[X+, 1]K′) → S2 be the induced étale cover. Since K ′ is normal in K, the
composition f(= f1f2f3) : S′ → S is a Galois cover. Since SL1 = SL∞

1 , by
Lemma 2.2.0.7, one has S′L = S′L∞ .

Let Z̃3 be an irreducible component of f−1
3 (Z̃2). The morphism f3 :

f−1
3 (Z̃2)→ Z̃2 is a base change of the étale cover f3 : S3 → S2, so it is finite

and étale. The algebraic variety Z̃2 is smooth, so is f−1
3 (Z̃2). Therefore, Z̃3

is open in f−1
3 (Z̃2). The morphism g3 : Z̃3 → Z̃2 is finite étale, and Z̃2 is

connected, so g3 is surjective. The situation is depicted as a commutative
diagram
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Z̃3 f−1
3 (Z̃2) f−1(Z) S′

Z̃2 (f1f2)
−1(Z) S2

Z̃0 S1

Z̃ Z S.

g3 □ □ f3

f

π2

g2 □

f2

g0 f1

π

Then Z̃3 is an étale cover of Z̃ and an irreducible component of f−1(Z).
The Galois group of the Galois cover f : S′ → S permutes the irreducible
components of f−1(Z), so they have similar properties.

Lemma 2.3.0.9 is used in the proof of Theorem 2.4.0.1.

Lemma 2.3.0.9. If SL∞ ̸= ∅ is a finite union of special subvarieties of S, then
SL = S.

Proof. Write SL∞ = ∪ni=1Zi for the decomposition into irreducible components.
By assumption, for every 1 ≤ i ≤ n, the subvariety Zi ⊂ S is special. Let
πi : Z̃i → Zi be a finite birational morphism given by Fact 2.3.0.6. Let
fi : Si → S be a Galois cover corresponding to πi given by Lemma 2.3.0.8.
There is a Galois cover f : S′ → S, such that for every 1 ≤ i ≤ n, there
is an étale cover gi : S′ → Si with figi = f . Then S′L = S′L∞ . Hence
S′L = (S′L)L = (S′L∞)L.

1. One has SL∞ ⊂ ∪ni=1πi(Z̃
L∞
i ).

Indeed, one has f(S′L) = SL∞ . For every irreducible component C ⊂ S′L,
the subset f(C) of SL∞ is irreducible. Then there is 1 ≤ i ≤ n with
f(C) ⊂ Zi. Thus, gi(C) is an irreducible subset of f−1

i (Zi). There is an
irreducible component Z ′ ⊂ f−1

i (Zi) containing gi(C). By Lemma 2.3.0.8,
the morphism fi : Z ′ → Zi factors through an étale cover Z ′ → Z̃i.
Therefore, Z ′ and g−1

i (Z ′) are smooth. One has

g−1
i (Z ′) ⊂ f−1(Zi) ⊂ f−1(SL∞)

(a)
= S′L,

where (a) uses Lemma 2.2.0.7. Then C is an irreducible component of
g−1
i (Z ′), hence an étale cover of Z ′. One has f(CL) ⊂ πi(Z̃

L∞
i ). Thus, 1 is

proved.

2. One has Z̃L∞
1 = Z̃1.
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From 1, one has Z1 ⊂ ∪ni=1πi(Z̃
L∞
i ). Since Z1 is irreducible, there is 1 ≤

j ≤ n with Z1 ⊂ πj(Z̃
L∞
j ) ⊂ Zj . As Z1 is an irreducible component of SL∞ ,

one has j = 1. Then dim Z̃L∞
1 ≥ dimZ1 = dim Z̃1. The irreducibility of Z̃1

proves 2.

3. For every q ∈ G(Q)+, one has TqZ1 ⊂ SL.

Let (H,XH) ⊂ (G,X) be an irreducible Shimura subdatum inducing
Z1 via Fact 2.3.0.6. Then Z̃1 = [X+

H , 1]K∩H(Af ). For every irreducible
component Zq ⊂ α−1

q (Z1), there is an irreducible component Z̃q of
ShK∩q−1Kq∩H(Af )(H,XH) with the following properties:

• The morphism ShK∩q−1Kq∩H(Af )(H,XH)→ ShK∩H(Af )(H,XH) restricts
to an étale cover α′

q : Z̃q → Z̃1.

• The image of Z̃q under the morphism ShK∩q−1Kq∩H(Af )(H,XH) →
ShK∩q−1Kq(G,X) is Zq.

Conjugating by q gives another irreducible Shimura subdatum (qHq−1, q ·
XH) ⊂ (G,X), and a morphism of Shimura data (H,XH) → (qHq−1, q ·
XH). Let Z̃ ′

q be the image of Z̃q under the induced morphism ShK∩q−1Kq∩H(Af )(H,XH)→
ShK∩qH(Af )q−1(qHq−1, q ·XH). Then Z̃ ′

q is an irreducible component of

ShK∩qH(Af )q−1(qHq−1, q ·XH),

and the restriction β′q : Z̃q → Z̃ ′
q is an étale cover. By Fact 2.3.0.6, the

morphism ShK∩qH(Af )q−1(qHq−1, q · XH) → ShK(G,X) restricts to a finite
birational morphism π′q : Z̃

′
q → βq(Zq). Consider the commutative diagram

Z̃q

Z̃q Zq Z̃ ′
q

Z1 βq(Zq).

α′
q

β′
q

π1 αq

βq
π′
q

From 2 and Lemma 2.2.0.7, one has Z̃ ′
q = Z̃ ′L∞

q = Z̃ ′L
q . Then βq(Zq) =

π′q(Z̃
′
q) = π′q(Z̃

′L
q )

(a)
⊂ βq(Zq)

L, where (a) uses Assumption 2.2.0.1 5. By
Assumption 2.2.0.1 2, one has βq(Z̃q) ⊂ SL. Thus, 3 is proved.

Since Z1 is a special subvariety of S, from [KUY18, Lem. 2.5], Z1

contains a special point z. By [LZ19, Rk. 2.7], {Tqz}q∈G(Q)+ is dense in
the complex manifold S(C). By 3, the Zariski closed subset SL ⊂ S contains
{Tqz}q∈G(Q)+ . Hence SL = S.
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2.4 Ullmo-Yafaev alternative principle

In Theorem 2.4.0.1, we show that an alternative principle results from
Assumption 2.2.0.1. Let S = Sg = (gKg−1 ∩ G(Q)+)\X+ be a Shimura
variety associated with (G,X,K).

Theorem 2.4.0.1 (Ullmo-Yafaev alternative). Either SL∞ = ∅ or SL∞ = S.

Proof. By Hecke isomorphisms, one may assume g = 1 and S = [X+, 1]K .
By Lemma 2.2.0.7, one may replace S by an étale cover induced by an
open subgroup of K. One may thereby assume SL = SL∞ ̸= ∅. For every
irreducible component Z ⊂ SL, by Assumption 2.2.0.1 1 (resp. Lemma
2.2.0.5 2), one has dim(Z) > 0 (resp. ZL = Z).

1. The subvariety Z ⊂ S is special.

Let SM ⊂ S be the smallest special subvariety containing Z. From Fact
2.3.0.6, there is a Shimura subdatum (H,XH) ⊂ (G,X), such that the
restriction π : S̃M := [X+

H , 1]K∩H(Af ) → SM of ShK∩H(Af )(H,XH) →
ShK(G,X) is finite birational.

Take a Galois cover f : S′ → S given by Lemma 2.3.0.8 for the special
subvariety SM ⊂ S. Since f is finite surjective, there is an irreducible
component T ⊂ f−1(Z) with f(T ) = Z.

Since Z ⊂ SL is an irreducible component, T is an irreducible
component of

f−1(SL) = f−1(SL∞)
(a)
= S′L∞

(b)
= S′L.

Here (a) and (b) use Lemma 2.2.0.7. Then by Lemma 2.2.0.5 2, one has
TL = T . There is an irreducible component S′

M ⊂ f−1(SM ) containing T .

By Lemma 2.3.0.8, one has S′L
M

(c)
= S′L∞

M , and f : S′
M → SM factors

through an étale cover
g : S′

M → S̃M .

2. One has g(T ) ⊂ S̃L∞
M .

Consider the commutative diagram

T S′
M f−1(SM ) S′

S̃M SM S.

g □ f

π

One has
T = TL ⊂ S′L

M = S′L∞
M .

Hence g(T ) ⊂ g(S′L∞
M ) = S̃L∞

M . Thus, 2 is proved.
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3. The nonempty, irreducible, closed subset g(T ) ⊂ S̃L∞
M is Hodge generic

in S̃M .

Since π is finite surjective, there is an irreducible component Z̃ ⊂ π−1(Z)
with π(Z̃) = Z. For every special subvariety V ⊂ S̃M containing g(T ), by
[KY14, p.879], π(V ) ⊂ S is a special subvariety containing πg(T ) = f(T ) =
Z. Hence π(V ) = SM . Therefore, dimV ≥ dimSM = dim S̃M . Since S̃M is
irreducible, one has V = S̃M . Thus, 3 is proved.

By 2, 3 and Lemma 2.4.0.2, one has S̃M = S̃L∞
M = S̃LM . One has SM =

π(S̃M ) = π(S̃LM )
(a)
⊂ SLM ⊂ SL, where (a) uses Assumption 2.2.0.1 5. Since

Z is an irreducible component of SL and SM is irreducible, one has Z = SM .
Thus, 1 is proved.

By 1, the locus SL is a finite union of special subvarieties. From Lemma
2.3.0.9, one has SL∞ = S.

Lemma 2.4.0.2 (Ullmo-Yafaev). Let S = [X+, 1]K ⊂ ShK(G,X). If SL∞

contains a nonempty, irreducible closed subset that is Hodge generic in S, then
SL∞ = S.

Proof. For every q ∈ G(Q)+, by Lemma 2.2.0.7, one has TqS
L∞ =

βq(α
−1
q (SL∞)) = βq(S

L∞
q ) = SL∞ . Write SL∞ = U1 ∪ U2, where U1 is

the union of irreducible components of SL∞ that are Hodge generic in S,
and U2 is the union of the remaining irreducible components. By Remark
2.2.0.6 and assumption, one has dimU1 > 0.

Let C be an irreducible component of TqU2. Then there is an irreducible
subvariety Cq ⊂ Sq with βq(Cq) = C and αq(Cq) ⊂ U2. Then αq(Cq) is
not Hodge generic in S. Thus, there is a strict, special subvariety V ⊂ S
containing αq(Cq). Then C ⊂ Tq(αq(Cq)) ⊂ TqV . There is an irreducible
component W ⊂ TqV containing C. By [LZ19, Remark 2.7], W is a special
subvariety of S. Since dimW ≤ dimV < dimS, the subvariety C ⊂ S is
not Hodge generic. As every irreducible component of TqU2 is not Hodge
generic in S, and U1 ⊂ TqS

L∞ = TqU1 ∪ TqU2, one has U1 ⊂ TqU1. By
dimU1 > 0 and [UY10, Thm. 1.2], one has U1 = S and SL∞ = S.

Corollary 2.4.0.3 ([UY10, Thm. 1.1]). If a Shimura variety S over Q̄ is of
sufficiently high level, then either SL = ∅ or SL = S.

Proof. As the level is high, one has SL = SL∞ . The result follows from
Theorem 2.4.0.1.

2.5 “All or nothing" principle for integral points

We define an locus concerning integral points, analogous to the Lang locus
concerning rational points. We verify Assumption 2.2.0.1 for this locus.
Then an alternative principle follows.
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Let X be an integral algebraic variety over Q̄. As in Example 2.2.0.2,
there is a number field F ⊂ Q̄, an integral algebraic variety XF over F and
an isomorphism XF ⊗F Q̄ → X over Q̄. For every finite set Σ of places of
F including all archimedean ones, let OF,Σ be the ring of Σ-integers. When
Σ is sufficiently large, there exists an integral scheme X that is finite type
and separated over OF,Σ, whose generic fiber is XF . (From [Har77, III,
Prop. 9.7], X is flat over OF,Σ.) We call X an integral model for X relative
to (F,Σ). By a finite extension (M,Ω)/(F,Σ) , we mean a finite extension
M/F together with a finite set Ω of places of M containing all the places
above Σ.

For every (M,Ω)/(F,Σ), let X(X ,M,Ω) be the image of the injection

X (OM,Ω)→ X(Q̄), x 7→ x|Spec Q̄.

Definition 2.5.0.1. Let X I be the Zariski closure of

∪(M,Ω)/(F,Σ)X(X ,M,Ω)
>0

inside X, where (M,Ω) runs though all finite extensions of (F,Σ). We call
X I the integral Lang locus of X relative to (X , F,Σ).

The integral Lang locus X I is a subvariety of the Lang locus of X.

Lemma 2.5.0.2. Given models Xi over OFi,Σi (i = 1, 2) for X, one has X I1 =
X I2 .

Proof. By [Gro66, Cor. 8.8.2.5], there is a common finite extension (F3,Σ3)
of (Fi,Σi) (i = 1, 2), such that there is an OF3,Σ3-isomorphism

X1 ⊗OF1,Σ1
OF3,Σ3 → X2 ⊗OF2,Σ2

OF3,Σ3

extending the isomorphism between the generic fibers. For every finite
extension (M1,Ω1)/(F1,Σ1), there is a common finite extension (M2,Ω2)
of (F3,Σ3) and (M1,Ω1). Then

X1(OM1,Ω1) ⊂ X1(OM2,Ω2) = X2(OM2,Ω2),

so X(X1,M1,Ω1) ⊂ X(X2,M2,Ω2). Therefore,

X(X1,M1,Ω1)
>0 ⊂ X(X2,M2,Ω2)

>0 ⊂ X I2 .

Hence X I1 ⊂ X I2 . The other inclusion follows by symmetry.

By Lemma 2.5.0.2, one may use the notation XI for X I and call it
integral Lang locus of X. We extend the definition to reducible algebraic
varieties as in Section 2.2.
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Remark 2.5.0.3. Assume that X is proper over Q̄. Then there is an integral
model (X , F,Σ) for X, such that X is proper over OF,Σ. By [Poo17,
Thm. 3.2.13 (ii)], XI coincides with the Lang locus of X.

Definition 2.5.0.4. [Ull04, Déf. 2.3] An integral algebraic variety X over Q̄
is called arithmetically hyperbolic if XI = ∅.

An integral algebraic variety X over Q̄ is arithmetically hyperbolic if and
only if for one (hence for every by Lemma 2.5.0.2) model (X , F,Σ), the set
of integral points X (OM,Ω) is finite for every finite extension (M,Ω)/(F,Σ)
(so [Ull04, Lem. 2.4] follows from Lemma 2.5.0.2).

Example 2.5.0.5. Let X = P1 \ {0, 1,∞} = Y (2) be a modular curve over
Q̄. Its Baily-Borel compactification is X∗ = P1, and the Lang locus of X
is full. By the Siegel-Mahler theorem (see, e.g., [HS00, Thm. D.8.1]), X is
arithmetically hyperbolic.

A complex analytic space is called Kobayashi hyperbolic, if its Kobayashi
pseudo-distance (in the sense of [Kob98, p.50]) is a metric. Every Kobayashi
hyperbolic, complex analytic space is Brody hyperbolic. Conversely, Brody
[Bro78, p.213] proves that every compact, Brody hyperbolic complex
analytic space is Kobayashi hyperbolic. In view of Remark 2.5.0.3, Conjecture
2.5.0.6 implies Conjecture 2.1.0.1.

Conjecture 2.5.0.6 ([Lan91, IX, Conjecture 5.1], [Ull04, Conjecture 2.5]).
Let X be a quasi-projective, integral algebraic variety over Q̄. If the
complex analytic space X(C) is Kobayashi hyperbolic, then X is arithmetically
hyperbolic.

Fact 2.5.0.7 is an evidence of Conjecture 2.5.0.6. It relies on Faltings’s
solution [Fal83, Satz 6] to Shafarevich’s conjecture.

Fact 2.5.0.7 ([Ull04, Thm. 3.2 (a)]). Let (G,X) be an adjoint Shimura
datum of abelian type (in the sense of [Ull04, p.4118]). Let K ≤ G(Af )
be a neat compact open subgroup. Then every irreducible component of
ShK(G,X)Q̄ is arithmetically hyperbolic.6

We prove that an alternative principle holds for integral points on
Shimura varieties, by checking Assumption 2.2.0.1. Since an irreducible
component of XI with dimension 0 is an isolated point, Assumption 2.2.0.1
1 holds. Lemma 2.5.0.8 verifies Assumptions 2.2.0.1 2, 3 and 5.

Lemma 2.5.0.8. Let f : Z1 → Z2 be a morphism of integral algebraic varieties
over Q̄. If f has finite geometric fibers, then f(ZI1 ) ⊂ ZI2 .

6By [Moo98b, 2.17], the model over Q̄ defined by Faltings [Fal82] (used in [Ull04,
Thm. 3.2 (a)]) is the scalar extension of the canonical model along E(G,X) → Q̄.

52



Proof. One may choose a number field F , a finite set Σ of places of F
containing all the archimedean ones, a model Zi over OF,Σ for Zi (i = 1, 2)
and an OF,Σ-morphism f ′ : Z1 → Z2 whose base change to F is f . For
every finite extension (M,Ω)/(F,Σ), one has f ′(Z1(OM,Ω)) ⊂ Z2(OM,Ω), so
f(Z1(Z1,M,Ω)) ⊂ Z2(Z2,M,Ω). Hence

f(Z1(Z1,M,Ω)) ⊂ Z2(Z2,M,Ω).

Let C ⊂ Z1(Z1,M,Ω) be an irreducible component of positive dimension.
Then f(C) is irreducible but not a singleton. (For otherwise, C is a finite set
by assumption, which is a contradiction). Hence

f(C) ⊂ Z2(Z2,M,Ω)
>0 ⊂ ZI2 .

Therefore, f(Z1(Z1,M,Ω)
>0

) ⊂ ZI2 and f(ZI1 ) ⊂ ZI2 .

Corollary 2.5.0.9 ([Ull04, Prop. 2.6]). A locally closed subvariety of an
arithmetically hyperbolic variety is also arithmetically hyperbolic.

Proof. It follows from Lemma 2.5.0.8.

Lemma 2.5.0.10 verifies Assumption 2.2.0.1 4 for integral Lang loci.

Lemma 2.5.0.10. Let X be an integral algebraic variety over Q̄. Then XI ⊂
(XI)I .

Proof. Write XI = ∪ni=1Yi as the union of irreducible components. Take
a model (X , F,Σ) for X. Let Yi be the scheme-theoretic image of the
composition Yi → X → X , which is model of Yi relative to (F,Σ). For every
finite extension (M,Ω)/(F,Σ), the Zariski closed subset X(X ,M,Ω) ⊂ X is
the disjoint union of X(X ,M,Ω)

>0
with a finite set {p1, . . . , pt} ⊂ X(Q̄).

Consider x ∈ X (OM,Ω), i.e., a section x : Spec(OM,Ω) → X to the
structure morphism X → Spec(OM,Ω). If x|Spec Q̄ /∈ {p1, . . . , pt}, then

x|Spec Q̄ ∈ X(X ,M,Ω)
>0 ⊂ XI .

Thus, there exists an index 1 ≤ i ≤ n with x|Spec Q̄ ∈ Yi. Since Yi is Zariski
closed in X , the section x factors through Yi, i.e., x ∈ Yi(OM,Ω). Therefore,

X(X ,M,Ω) ⊂ ∪ni=1Yi(Yi,M,Ω) ∪ {p1, . . . , pt}.

Then

X(X ,M,Ω)
>0 ⊂ ∪ni=1Yi(Yi,M,Ω)

>0 ⊂ ∪ni=1Y
I
i = (XI)I ,

so XI ⊂ (XI)I .

Lemma 2.5.0.11 implies [Ull04, Prop. 2.8].
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Lemma 2.5.0.11 (Chevalley-Weil). If f : X → Y is an étale cover over Q̄,
then f(XI) = Y I . In particular, XI∞ = XI . Moreover, XI = X (resp.
XI = ∅) is equivalent to Y I = Y (resp. Y I = ∅).

Proof. By Lemma 2.5.0.8, one has f(XI) ⊂ Y I . There is a number field F , a
finite set Σ of places of F containing all the archimedean ones, and a finite
étale OF,Σ-morphism f ′ : X → Y between models whose base change to the
generic fiber recovers f .

For every finite extension (M,Ω)/(F,Σ), by the Chevalley-Weil theorem
(see, e.g., [SBW89, p.50]), there is a finite extension (M ′,Ω′)/(M,Ω)
with Y (Y,M,Ω) ⊂ f(X(X ,M ′,Ω′)). Since zero dimensional schemes are
discrete,

Y (Y,M,Ω)
>0 ⊂ f(X(X ,M ′,Ω′)

>0
) ⊂ f(XI).

Hence Y I ⊂ f(XI).

Theorem 2.5.0.12. The integral Lang locus of a Shimura variety S is either
empty or whole S.

Proof. By Lemmas 2.5.0.8 and 2.5.0.10, the formation of the integral Lang
locus (·)I satisfies Assumption 2.2.0.1. The result is a combination of
Theorem 2.4.0.1 and Lemma 2.5.0.11.
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Chapter 3

Normality of monodromy
group in generic Tannakian
group

3.1 Introduction

3.1.1 Background

Constructing local systems (or ℓ-adic lisse sheaves) with a prescribed
monodromy group is an important problem having a long history.

In positive characteristics, Katz and his collaborators exhibit local
systems whose monodromy groups are the simple algebraic group G2

([Kat88, 11.8]), 2.J2 ([KRL19]), the finite symplectic groups ([KT19b]),
the special unitary groups ([KT19a]), etc. In particular, the exceptional Lie
groups appear unexpectedly in algebraic geometry.

In characteristic 0, such constructions help to understand Galois groups
of number fields. Dettweiler and Reiter [DR10] prove the existence of a
local system on P1

Q \ {0, 1,∞} whose monodromy group is G2. It produces
a motivic Galois representations with image dense in G2. Their proof relies
on Katz’s middle convolution of perverse sheaves. Yun [Yun14] constructs
local systems with some other exceptional groups as monodromy groups. As
applications, he answers a long standing question of Serre, and solves new
cases of the inverse Galois problem. His construction uses the geometric
Langlands correspondence.

A new proof of Mordell’s conjecture [LV20], and its potential generalization
to higher dimensional varieties over number fields, rely on the existence of
local systems with big monodromy over the variety in question. Lawrence
and Sawin [LS20] use this technique to prove Shafarevich’s conjecture for
hypersurfaces in abelian varieties. Krämer and Maculan [KM23] apply
roughly the same strategy to obtain an arithmetic finiteness result for
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very irregular varieties of dimension less than half the dimension of their
Albanese variety. In both cases, the construction of local systems uses
perverse sheaves.

In [LS20], that construction rests on comparing the monodromy group
with the Tannakian group from Krämer-Weissauer’s convolution theory
[KW15b]. As [JKLM23, p.4] comments, this comparison is similar to the
study of monodromy groups via Mumford-Tate groups in [And92].

We briefly outline their argument. On an abelian variety A, a quotient of
the abelian category Perv(A) (of perverse sheaves) is a Tannakian category
under sheaf convolution. Let X be an irreducible algebraic variety with
generic point η. LetK be a universally locally acyclic, relative perverse sheaf
on the constant abelian scheme pX : A × X → X (intuitively, a family of
perverse shaves on A parameterized by X). The Tannakian group G(K|Aη̄)
of K|Aη̄ ∈ Perv(Aη̄) is normal in the Tannakian group G(K|Aη) of K|Aη ∈
Perv(Aη) ([LS20, Lem. 3.7], [JKLM23, Thm. 4.3]). This normality is used
to prove that for most character sheaves Lχ on A, the monodromy groups
Mon(K ⊗ p∗ALχ) contain G(K|Aη̄). Then Lawrence-Venkatesh’s machinery
works for these twists K ⊗ p∗ALχ.

3.1.2 Statements

In the main result (Theorem 3.1.2.2), we prove that the generic Tannakian
group of a semisimple, relative perverse sheaf is reductive. Moreover,
for many characters, the monodromy group is a normal subgroup of this
reductive group. This normality puts further restriction on the monodromy
group. Using Krämer’s method ([Krä22, Thm. 6.2.1]), Lawrence and Sawin
[LS20, Lem. 4.6] even show that the geometric generic Tannakian group is
simple.

Setting 3.1.2.1. Let k be an algebraically closed field of characteristic 0. Let
X be an integral algebraic variety over k with generic point η. Let A be an
abelian variety over k. Denote by pX : A×X → X and pA : A×X → A the
projections.

Let ℓ be a prime number. Let Q̄ℓ be an algebraic closure of Qℓ. Let
Db
c(A×X) be the triangulated category of bounded constructible Q̄ℓ-sheaves

on A × X. Let PervULA(A × X/X) ⊂ Db
c(A × X) be the full subcategory

of pX -universally locally acyclic (ULA, Definition 3.2.2.1) relative perverse
sheaves (Definition 3.2.3.2). It is an abelian category. Let πét

1 (A) be the
étale fundamental group of A based at the geometric origin point. For every
character χ : πét

1 (A) → Q̄×
ℓ , let χη : πét

1 (Aη) → Q̄×
ℓ be the pullback of χ

along (pA|Aη) : πét
1 (Aη) → πét

1 (A). Fix K ∈ PervULA(A × X/X) which is
a semisimple object of Db

c(A × X) (in the sense of Definition 3.2.1.3). Let
Mon(K,χη) be the corresponding monodromy group (Definition 3.4.3.4).
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Let Gωχ(K|Aη) be the Tannakian monodromy group (Definition 3.4.2.1) of
K|Aη , referred to as the generic Tannakian group.

Theorem 3.1.2.2 (Theorems 3.5.1.1, 3.5.3.1). Assume dimA > 0. Then
there are uncountably many characters χ : πét

1 (A) → Q̄×
ℓ , such that

Gωχ(K|Aη) is a well-defined reductive group. It contains Mon(K,χη) as a
closed, reductive, normal subgroup.

The line of the proof of Theorem 3.1.2.2 is similar to that of André’s
normality theorem [And92, Thm. 1]. André proves that for a polarizable
good variation of mixed Hodge structure, the connected monodromy group
outside a meager locus is normal in the derived Mumford-Tate group. As
[And92, p.10] explains, the normality is a consequence of the theorem of
the fixed part due to Griffiths-Schmidt-Steenbrink-Zucker. In our case, an
analog of the theorem of the fixed part is Theorem 3.1.2.3.

Let C(A)ℓ be the cotorus parameterizing pro-ℓ characters of πét
1 (A)

(Definition 3.3.2.2). For every χℓ′ ∈ C(A)ℓ′ and every χℓ ∈ C(A)ℓ, set
χ = χℓ′χℓ.

Theorem 3.1.2.3 (Theorem 3.5.2.1). Assume that X is smooth. Then there
is a subobject K0 ⊂ K in PervULA(A × X/X) with the following property:
For every character χℓ′ : πét

1 (A) → Q̄×
ℓ of finite order prime to ℓ, there is a

nonempty Zariski open subset U ⊂ C(A)ℓ, such that for every χℓ ∈ U , one has

H0(Aη̄,K
0|Aη̄ ⊗L Lχη) = H0(Aη̄,K|Aη̄ ⊗L Lχη)Γk(η) .

The proof of Theorem 3.1.2.3 uses the projection pA : A×X → A, which
restricts our results to constant abelian schemes. We leave the question
whether Theorem 3.1.2.2 has an analog for relative perverse sheaves on an
arbitrary (non-constant) abelian scheme.

Notation and conventions

An object of an abelian category is semisimple if it is the direct sum of finitely
many simple objects. An abelian category is semisimple if every object is
semisimple. For a field k, its absolute Galois group is denoted by Γk. An
algebraic variety means a scheme of finite type and separated over k. A
linear algebraic group is reductive, if its identity component is reductive (in
the sense of [Mil17a, 6.46, p.135]). For a topological group, Q̄ℓ-characters
are assumed to be continuous. For an irreducible algebraic variety X (on
which ℓ is invertible) and a Q̄ℓ-character χ of its étale fundamental group
πét
1 (X), let Lχ be the corresponding rank one lisse Q̄ℓ-sheaf on X.

3.2 Recollections on constructible sheaves

No originality is claimed in Section 3.2. Let k be a field. Let ℓ be a prime
number invertible in k. Fix an algebraic closure k̄ of k. For every algebraic

57



variety X over k, denote by Db
c(X) := Db

c(X, Q̄ℓ) the triangulated category
of complexes of Q̄ℓ-sheaves on X with bounded constructible cohomologies
defined in [BBDG82, p.74]. Let DX : Db

c(X) → Db
c(X)op be the Verdier

duality functor. The heart of the standard t-structure on Db
c(X) is denoted

by Cons(X), which is the category of constructible Q̄ℓ-sheaves on X. For
F ∈ Cons(X), set SuppF := {x ∈ X|Fx ̸= 0} to be its support. Then
SuppF is a quasi-constructible subset of X in the sense of [Gro66, 10.1.1].
Let Loc(X) ⊂ Cons(X) be the full subcategory of lisse Q̄ℓ-sheaves on X. For
every integer n, let Hn : Db

c(X) → Cons(X) be the functor taking the n-th
cohomology sheaf.

For every subset S ⊂ X, let S̄ be its Zariski closure. Let pD≤0(X) ⊂
Db
c(X) be the full subcategory of objects K with dimSuppHnK ≤ −n for

every integer n. Let pD≥0(X) ⊂ Db
c(X) be the full subcategory of objects K

with DXK ∈ pD≤0(X). Then (pD≤0(X), pD≥0(X)) defines the (absolute)
perverse t-structure on Db

c(X), whose heart is denoted by Perv(X). The
functor DX interchanges pD≤0(X) and pD≥0(X). For every integer n,
let pHn : Db

c(X) → Perv(X) be the functor taking the n-th perverse
cohomology sheaf. For a morphism f : X ′ → X of schemes and K ∈ Db

c(X),
set K|X′ := f∗K.

3.2.1 Basics

Fact 3.2.1.1 (Projection formula, [FK88, Rk. (2), p.100], [Sta24, Tag 0F10
(1)]). Let f : X → Y be a morphism of algebraic varieties over k̄. Let L ∈
Db
c(Y ) be an object with HnL ∈ Loc(X) for every integer n. Then there is a

natural isomorphism (Rf∗−) ⊗L L → Rf∗(− ⊗L f∗L) of functors Db
c(X) →

Db
c(Y ).

Let X be an algebraic variety over k.

Fact 3.2.1.2 ([FK88, Prop. 12.10]). For every F ∈ Cons(X), there is a
nonempty Zariski open subset U ⊂ X with F |U ∈ Loc(U).

Definition 3.2.1.3 ([BC18, Def. 78]). An object K ∈ Db
c(X) is called

semisimple if it is isomorphic to a finite direct sum of degree shifts of
semisimple objects of Perv(X).

If K ∈ Db
c(X) is semisimple, then it is isomorphic to ⊕n∈ZpHn(K)[−n]

in Db
c(X), and each pHn(K) is a semisimple object of Perv(X). A degree

shift of a semisimple object of Db
c(X) is still semisimple.

Example 3.2.1.4. Every perverse cohomology sheaf of a semisimple object
of Db

c(X) is semisimple. By contrast, its cohomology sheaves may be no
longer semisimple in Db

c(X).
Consider k = C and X = A1. Let j : U = A1 \ {0, 1} → X be the

inclusion. Then the topological fundamental group πtop1 (Uan,−1) is the free
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group generated by two loops a and b, surrounding 0 and 1 respectively.
There is a unique morphism

πtop1 (Uan,−1)→ SL2(Z) (3.1)

sending a, b to

A =

(
−1 −2
0 −1

)
, B =

(
−1 0
−2 −1

)
respectively. By Grauert-Remmert’s theorem (see, e.g., [GR71, XII, Cor. 5.2]),
the étale fundamental group πét

1 (U,−1) is the profinite completion of
πtop1 (Uan,−1). Since SL2(Zℓ) is a profinite group, the morphism (3.1)
extends naturally to a continuous morphism

πét
1 (U,−1)→ SL2(Zℓ) ↪→ GL2(Q̄2

ℓ ). (3.2)

The representation (3.2) is irreducible. Otherwise, assume that v :=
(x, y)T ̸= 0 ∈ Q̄2

ℓ generates a 1-dimensional subrepresentation. Then Av =
(−x−2y,−y)T is parallel to v. Therefore, y = 0. Similarly, Bv = (−x,−2x−
y)T is parallel to v, then x = 0, a contradiction.

Let L be the rank two simple lisse Q̄ℓ-sheaf on U corresponding to (3.2).
Then Lan is the local system on Uan corresponding to (3.1). For every small
open ball B0 ⊂ Xan centered at 0, the C-vector space H0(B0, j

an
∗ Lan) is

the kernel of the linear operator A − 1 on the stalk Lan
−1. Since A − 1 is

invertible, one has H0(B0, j
an
∗ Lan) = 0. Therefore, the stalk (jan∗ Lan)0 = 0.

Similarly, the stalk (jan∗ Lan)1 = 0. In conclusion, the natural morphism
jan! Lan → jan∗ Lan is an isomorphism in Cons(Xan).

We prove that H1(Uan, Lan) = H1(πtop1 (Uan,−1), Lan
−1) is nonzero.

Define a map f : πtop1 (Uan,−1) → Q̄2
ℓ inductively. Set f(e) = 0, f(a) =

f(b) = (1, 0)T , f(a−1) = −A−1f(a), and f(b−1) = −B−1f(b). Once f is
defined for every element of πtop1 (Uan,−1) with length n ≥ 1, we define it
on elements of length n+1 as follows. For every element g ∈ πtop1 (Uan,−1)
of length n, set

f(ag) = Af(g) + f(a), f(bg) = Bf(g) + f(b),

f(a−1g) = A−1f(g) + f(a−1), f(b−1g) = B−1f(g) + f(b−1).

The map f is a crossed homomorphism. It is not a boundary, because the
equation (A− 1)x = (B − 1)x = (1, 0)T admits no solution in Q̄2

ℓ .
Therefore, Lan is in the cohomology support loci of Uan (in the sense

of [BLSW17, p.295]). From [HT07, Example 8.1.35 (ii)], one has j!L[1] ∈
Perv(X). By [BLSW17, p.299], jan! Lan[1] is not semisimple in Perv(Xan).

By [BBDG82, Thm. 4.3.1 (ii)], the intermediate extension K := j!∗L[1]
is a simple object of Perv(X). We claim that H−1K is not semisimple
in Db

c(X). From [HT07, Prop. 8.2.11], K is isomorphic to τ≤−1Rj∗L[1],
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where τ≤−1 : Db
c(X)→ Db

c(X) is the truncation functor with respect to the
standard t-structure. Thus, H−1K is isomorphic to H−1(Rj∗L[1]) = j∗L in
Cons(X). Then (H−1K)an is isomorphic to jan! Lan in Cons(Xan). From
[Kat90, p.375], one has (H−1K)[1] ∈ Perv(X). Since (H−1K)an[1] is
not semisimple in Perv(Xan), by [Kat90, Lem. 12.7.1.1], (H−1K)[1] is not
semisimple in Perv(X). The claim is proved.

Lemma 3.2.1.5 is used in the proof of Theorem 3.5.1.1.

Lemma 3.2.1.5. Let U ⊂ X be an open subset of X. Then the functor (−)|U :
Perv(X) → Perv(U) sends every simple object of Perv(X) to a simple or zero
object of Perv(U). In particular, the functor (−)|U : Db

c(X)→ Db
c(U) preserves

semisimplicity.

Proof. Let K be a simple object of Perv(X). By [BBDG82, Thm. 4.3.1 (ii)],
there is an irreducible, locally closed and geometrically smooth subvariety
j : V → X and a simple lisse Q̄ℓ-sheaf on V , such that K is isomorphic
to j!∗L[dimV ]. If V is disjoint from U , then K|U = 0. Otherwise, take
a geometric point x̄ on V ∩ U . From [GR71, V, Prop. 8.2], the morphism
πét
1 (U ∩ V, x̄) → πét

1 (V, x̄) is surjective. Thus, the composite representation
πét
1 (U∩V, x̄)→ GL(Lx̄) is also simple, i.e., the lisse Q̄ℓ-sheaf L|U∩V is simple.

Let h : U ∩ V → U be the base change of j : V → X along the inclusion
U → X. Then K|U is isomorphic to h!∗L|U∩V [dim(U ∩ V )], hence simple in
Perv(U).

When k = C, Fact 3.2.1.6 1 follows from Kashiwara’s conjecture
for semisimple perverse sheaves and the paragraph following [BBDG82,
Thm. 6.2.5]. Kashiwara’s conjecture is formulated in [Kas98, Sec. 1]; see
also [Dri01, Sec. 1.2, 1]. It is reduced to de Jong’s conjecture by Drinfeld
[Dri01], which in turn is proved in [BK06] and [Gai07]. The case of general
k follows via Fact 3.2.1.7.

Fact 3.2.1.6. Let k be an algebraically closed field of characteristic 0. Let
f : X → Y be a proper morphism of algebraic varieties over k. Let K be a
semisimple object of Db

c(X).

1. (Decomposition theorem) Then Rf∗K is a semisimple object of Db
c(Y ).

2. (Global invariant cycle theorem, [BBDG82, Cor. 6.2.8]) Let i be an
integer. By Fact 3.2.1.2, there is a nonempty connected open subset V ⊂
Y such that HiRf∗K|V is a lisse sheaf. Then for every y ∈ V (k), the
canonical map

H i(X,K)→ H i(Xy,K|Xy)π
ét
1 (V,y)

is surjective.
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Fact 3.2.1.7. Let E/F be an extension of algebraically closed fields. Let X be
an algebraic variety over F . Then:

1. ([JKLM23, proof of Lem. A.1]) The functor (−)|XE : Db
c(X)→ Db

c(XE)
is fully faithful. It induces an exact functor Perv(X)→ Perv(XE).

2. ([BBDG82, Thm. 4.3.1 (ii)]) An object of Perv(X) is simple if and only
if its image under (−)|XE : Perv(X)→ Perv(XE) is simple.

Lemma 3.2.1.8. Let L be a lisse Q̄ℓ-sheaf of rank one on X. Then − ⊗L L :
Db
c(X) → Db

c(X) is an equivalence of categories. It is t-exact for the perverse
t-structures.

Proof. Let L−1 be the lisse sheaf dual to L. By associativity of the derived
tensor product⊗L, the pair of functors (−⊗LL,−⊗LL−1) is an equivalence.

1. Right t-exactness: The functor is t-exact for the standard t-structures.
Thus, for every K ∈ pD≤0(X) and every integer n, one has Hn(K ⊗L
L) = Hn(K) ⊗L L. Therefore, one has SuppHn(K ⊗L L) =
SuppHn(K). Thus, K ⊗L L ∈ pD≤0(X).

2. Left t-exactness: By Part 1, for every K ∈ pD≥0(K), one has L−1 ⊗L
DXK ∈ pD≤0(X). By [KW01, II, Cor. 7.5 f)], one has isomorphisms

DX(K ⊗L L)→ RHom(L,DXK)→ L−1 ⊗L DXK

in Db
c(X). Therefore, one gets K ⊗L L ∈ pD≥0(X).

3.2.2 Universal local acyclicity

In Section 3.2.2, all schemes are assumed to be quasi-compact and quasi-
separated. For a scheme X and a geometric point x̄ on X, denote by Osh

X,x̄

the strict henselization (in the sense of [Sta24, Tag 04GQ (3)]) of OX,x̄. Set
X(x̄) := SpecOsh

X,x̄.
Let f : X → S be a separated morphism of finite presentation between

Z[1/ℓ]-schemes.

Definition 3.2.2.1 ([Sta24, Tag 0GJM], [Bar23, Def. 1.2]). Let K be an
object of Db

c(X).

• If for every geometric point x̄ on X and every geometric point t̄ on S(s̄)
with s̄ = f(x̄), the canonical morphism RΓ(X(x̄),K)→ RΓ(X(x̄) ×S(s̄)

t,K) is an isomorphism, then K is called f -locally acyclic.
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• If for every morphism S′ → S of schemes, in the cartesian square

X ′ X

S′ S

g′

f ′ □ f

g

(3.3)

g′∗K is f ′-locally acyclic, then K is called f -universally locally acyclic
(f -ULA). Let DULA(X/S) ⊂ Db

c(X) be the full subcategory of f -ULA
objects.

By [HS23, Thm. 4.4], an object K ∈ Db
c(X) is f -ULA if and only if

K is universally locally acyclic in the sense of [HS23, Def. 3.2]. Thus,
the notation DULA(X/S) agrees with that in [HS23]. It is a triangulated
subcategory of Db

c(X).

Fact 3.2.2.2.

1. ([Bar23, Lem. 3.4]) If S = Spec k, then DULA(X/k) = Db
c(X).

2. ([Bar23, Cor. 3.10 (i)]) If f : X → S is an isomorphism, then
DULA(X/S) ⊂ Db

c(X) is the full subcategory of objects whose cohomology
sheaves are lisse.

3. ([HS23, Prop. 3.4 (i)]) Let g : S′ → S be a morphism of Z[1/ℓ]-schemes.
Then in the notation of (3.3), the functor g′∗ : Db

c(X) → Db
c(X

′)
restricts to a functor DULA(X/S)→ DULA(X ′/S′).

4. ([Ric14, Lem. 3.15], [Bar23, Lem. 3.3 (i), (ii)]) Let f ′ : Y → S be a
separated morphism of finite presentation between Z[1/ℓ]-schemes. Let
h : X → Y be a morphism of S-schemes. If h is smooth (resp. proper),
then the functor h∗ : Db

c(Y ) → Db
c(X) (resp. Rh∗ : Db

c(X) → Db
c(Y ))

restricts to a functor DULA(Y/S)→ DULA(X/S) (resp. DULA(X/S)→
DULA(Y/S)).

5. ([HS23, p.643]) Let g : S → T be a smooth morphism of Z[1/ℓ]-
schemes. Then DULA(X/S) ⊂ DULA(X/T ).

6. ([Zhu17, Thm. A.2.5 (4)]) Let fi : Xi → S (i = 1, 2) be a separated
morphism of finite presentation between Z[1/ℓ]-schemes. Let Ki ∈
DULA(Xi/S). Then K1 ⊠S K2 ∈ DULA(X1 ×S X2/S).

Although the derived external tensor prodcut preserves universal local
acyclicity (Fact 3.2.2.2 6), Example 3.2.2.3 shows that the derived tensor
product of two ULA complexes may not be ULA.
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Example 3.2.2.3. Let f : X → S be the morphism A2
C → A1

C, (a, b) 7→ a+
b. Let i : A→ X (resp. j : B → X) be the inclusion of a-axis (resp. b-axis) of
X. Then fi : A→ S (resp. fj : B → S) is an isomorphism. Let K = i∗Q̄ℓ,A

and K ′ = j∗Q̄ℓ,B. By Fact 3.2.2.2 2 and 4, one has K,K ′ ∈ DULA(X/S).
As K ⊗L K ′ is the skyscraper supported at the origin of X with stalk Q̄ℓ, it
is not f -ULA. (Otherwise, from Remark 3.2.2.4, the skyscraper viewed as a
sheaf on A is fi-ULA, which contradicts Fact 3.2.2.2 2.)

Remark 3.2.2.4. Let i : Z → X be a closed immersion. Let K ∈ Db
c(Z). By

definition, if i∗K is f -locally acyclic, then K is fi-locally acyclic. Therefore,
by the base change theorem, if i∗K is f -ULA, then K is fi-ULA.

Lemma 3.2.2.5. Assume that S is irreducible with generic point η. Let K ∈
DULA(X/S). If K|Xη̄ = 0 in Db

c(Xη̄), then K = 0.

Proof. It suffices to prove that for every s ∈ S, one has K|Xs̄ = 0 in Db
c(Xs̄).

By [Gro61c, Prop. 7.1.9], there is a discrete valuation ringR and a separated
morphism g : Spec(R) = S′ → S, sending the generic (resp. closed) point
ξ (resp. r) of S′ to η (resp. s). Let i : R → Rh be the henselization of
R (in the sense of [Sta24, Tag 04GQ (1)]). By [Sta24, Tag 0AP3], Rh is a
discrete valuation ring. From [Mil80, I, Exercise 4.9], the local morphism i
is injective. Then i∗ : Spec(Rh) → S′ preserves the generic (resp. closed)
point. Replacing R by Rh, one may assume further that R is henselian.

Consider the following cartesian squares

X ′
r̄ X ′

(r̄) X ′
ξ̄

r̄ S′
(r̄) ξ̄,

ī

□ □

j̄

where every vertical morphism is a base change of f : X → S. In the
notation of (3.3), let RΦ : D+(X ′) → D+(X ′

r̄) be the vanishing cycle
functor. Let RΨ : D+(X ′) → D+(X ′

r̄) be the nearby cycle functor. Set
K ′ = g′∗K. By definition, one has RΨ(K ′) = ī∗Rj̄∗(K

′|X′
ξ̄
). As R is

henselian, from [Ill06, (1.1.3)], there is a natural exact triangle K ′|X′
r̄
→

RΨ(K ′) → RΦ(K ′)
+1→ in D+(X ′

r̄). Since K ′|X′
ξ̄

is a pullback of K|Xη̄ = 0,

one has K ′|X′
ξ̄
= 0 and RΨ(K ′) = 0. By [Ill06, Cor. 3.5], the universal local

acyclicity of K implies RΦ(K ′) = 0. Therefore, one gets K ′|X′
r̄
= 0.

Since K ′|X′
r̄

is the pullback of K|Xs̄ under the field extension k(r̄)/k(s̄),
by Fact 3.2.1.7 1, one gets K|Xs̄ = 0.

3.2.3 Relative perverse sheaves

Let f : X → S be a morphism of algebraic varieties over k. In particular, f
is separated and of finite presentation. Set KX/S := Rf !Q̄ℓ ∈ Db

c(X) to be
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the relative dualizing complex. The functor

DX/S(−) = RHomQ̄ℓ(−,KX/S) : D
b
c(X)→ Db

c(X)op

is called the relative Verdier duality. There is a canonical morphism of
functors IdDbc(X) → DX/S ◦ DX/S ([KL85, (1.1.5)]).

Fact 3.2.3.1 is stated for ∞-categories in [HS23], but holds for the
underlying triangulated categories (described in [HRS23, Lem. 7.9]) by
[HS23, Footnote 1].

Fact 3.2.3.1.

1. ([HS23, Thm. 1.1]) There is a unique t-structure (p/SD≤0(X/S), p/SD≥0(X/S))
on Db

c(X), called the relative perverse t-structure, with the following
property: An objectK ∈ Db

c(X) lies in p/SD≤0(X/S) (resp. p/SD≥0(X/S))
if and only if for every geometric point s̄→ S, the restriction K|Xs̄ lies in
pD≤0(Xs̄) (resp. pD≥0(Xs̄)). In particular, for every s ∈ S, the functor
(−)|Xs : Db

c(X) → Db
c(Xs) is t-exact, where the source (resp. target) is

equipped with the relative (resp. absolute) perverse t-structure.

2. ([HS23, Thm. 1.9]) The relative perverse t-structure on Db
c(X) restricts

to a t-structure (p/SDULA,≤0(X/S), p/SDULA,≥0(X/S)) onDULA(X/S).

3. ([HS23, Prop. 3.4]) The functor DX/S preserves DULA(X/S), and the
morphism IdDULA(X/S) → DX/S ◦ DX/S of functors DULA(X/S) →
DULA(X/S) is an isomorphism. The formation of DX/S : DULA(X/S)→
DULA(X/S)op commutes with any base change in S, so DX/S exchanges
p/SDULA,≤0(X/S) with p/SDULA,≥0(X/S).

Definition 3.2.3.2. Let Perv(X/S) (resp. PervULA(X/S)) be the heart of
the relative perverse t-structure on Db

c(X) (resp. DULA(X/S)).

By Fact 3.2.3.1 1, an object K ∈ Db
c(X) lies in Perv(X/S) if and only if

for every geometric point s̄→ S, one has K|Xs̄ ∈ Perv(Xs̄).

Example 3.2.3.3.

1. ([HS23, p.632]) If S = Spec(k), then Perv(X/k) = Perv(X).

2. If f is universally injective, then Perv(X/S) = Cons(X).

3. ([Bar23, Cor. 3.10 (ii)]) If f is smooth of relative dimension r, then
the functor (−)[r] : Loc(X)→ Db

c(X) factors through PervULA(X/S).

Example 3.2.3.4. Let i : Y → X be a closed immersion of S-schemes, with
Y → S smooth of relative dimension d and with geometrically connected
fibers. If L is a lisse Q̄ℓ-sheaf on Y , then i∗L[d] ∈ PervULA(X/S).
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Indeed, by Fact 3.2.2.2 2, one has L ∈ DULA(Y/Y ). From the
smoothness of Y → S and Fact 3.2.2.2 5, one has L ∈ DULA(Y/S).
Using the properness of i : Y → X and Fact 3.2.2.2 4, one has i∗L[d] ∈
DULA(X/S). For every geometric point s̄ → S, let is̄ : Ys̄ → Xs̄ be
the base change of i along the morphism Xs̄ → X. By the proper
base change theorem, i∗L[d]|Xs̄ = (is̄)∗(L|Ys̄)[d] ∈ Perv(Xs̄). Therefore,
i∗L[d] ∈ PervULA(X/S).

Fact 3.2.3.5 ([HS23, Thm. 1.10 (ii)]). Assume that S is geometrically
unibranch and irreducible with generic point η. Then the functor

(−)|Xη : PervULA(X/S)→ Perv(Xη)

is exact and fully faithful, and its essential image is stable under subquotients.

Lemma 3.2.3.6. If S is geometrically unibranch and irreducible, then PervULA(X/S)
is a Serre subcategory of Perv(X/S).

Proof. By definition, PervULA(X/S) is a strictly full subcategory of Perv(X/S).
By Fact 3.2.3.1 2 and [BBDG82, Thm. 1.3.6], PervULA(X/S) ⊂ Perv(X/S)
is an abelian subcategory and closed under extensions in DULA(X/S).
As DULA(X/S) ⊂ Db

c(X) is a triangulated subcategory, PervULA(X/S)
is closed under extensions in Perv(X/S). Because S is geometrically
unibranch, from the proof of [HS23, Thm. 6.8 (ii)], PervULA(X/S) is closed
under subquotients in Perv(X/S). By [Sta24, Tag 02MP], it is a Serre
subcategory.

Lemma 3.2.3.7 is stated without proof for regular schemes S in [HS23,
p.636].

Lemma 3.2.3.7. Assume that S is smooth over k of equidimension d. Then
the shifted inclusion

(−)[d] : DULA(X/S)→ Db
c(X) (3.4)

is t-exact, where DULA(X/S) (resp. Db
c(X)) is equipped with the relative

(resp. absolute) perverse t-structure. In particular, it induces an exact functor

(−)[d] : PervULA(X/S)→ Perv(X). (3.5)

Proof. 1. The functor (−)[d] : Db
c(X) → Db

c(X) is right t-exact, where
the source (resp. target) is equipped with the relative (resp. absolute)
perverse t-structure. For every geometric point s̄ on S, the functor
(−)|Xs̄ : Db

c(X) → Db
c(Xs̄) is t-exact for the standard t-structures.

Then for every integer n and every K ∈ p/SD≤0(X/S), one has
Hn(K[d])|Xs̄ = Hn+d(K|Xs̄). Hence

Xs̄ ∩ SuppHn(K[d]) = SuppHn+d(K|Xs̄).
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As K|Xs̄ ∈ pD≤0(Xs̄), one has dimSuppHn+d(K|Xs̄) ≤ −n − d. By
Lemma 3.2.3.10 3, one has

dimSuppHn(K[d]) ≤ −n.

From Lemma 3.2.3.10 1, the Zariski closure of SuppHn(K[d]) in X
has dimension at most −n. Hence K[d] ∈ pD≤0(X).

2. The functor (3.4) is left t-exact. One may assume that k is algebraically
closed. For every K ∈ p/SDULA,≥0(X/S), by smoothness of S
and the proof of [Bar23, Cor. 3.8], DX(K[d]) is (noncanonically)
isomorphic to (DX/SK)[d] in Db

c(X). From Fact 3.2.3.1 3, DX/SK ∈
p/SDULA,≤0(X/S). By Part 1, one has (DX/SK)[d] ∈ pD≤0(X). Hence
K[d] ∈ pD≥0(X).

Remark 3.2.3.8. In Lemma 3.2.3.7, the functor (−)[d] : Db
c(X) → Db

c(X)
may not send Perv(X/S) to Perv(X). Indeed, let k = C, and let f :
X = 0 → S = A1

C be the inclusion of the origin. By Example 3.2.3.3
1, the relative perverse t-structure on Db

c(X) coincides with the standard
one (which is also the absolute perverse t-structure). Then Perv(X/S) =
Perv(X).

Lemma 3.2.3.9. If S is integral with generic point η and dimS = d, then
the functor (−)|Xη [−d] : Db

c(X)→ Db
c(Xη) is t-exact for the absolute perverse

t-structures. In particular, it restricts to an exact functor

(−)|Xη [−d] : Perv(X)→ Perv(Xη). (3.6)

Proof. 1. Right t-exactness: For every K ∈ pD≤0(X) and every integer n,
one has SuppHn(K|Xη [−d]) = SuppHn−d(K|Xη) = Xη∩SuppHn−d(K).
By Lemma 3.2.3.10 4, one has

dimSuppHn(K|Xη [−d]) ≤ dimSupp(Hn−d(K))− d ≤ −n.

From Lemma 3.2.3.10 1, one has K|Xη [−d] ∈ pD≤0(Xη).

2. Left t-exactness: For every K ∈ Db
c(X) and every integer n, one has

SuppHn(DXη(K|Xη [−d])) = SuppHn((DXK)|Xη [−d]). (3.7)

Indeed, from [Del77, Thm. 2.13, p.242], by shrinking S to a nonempty
open subset, one may assume that K ∈ DULA(X/S). By the proof
of [Bar23, Cor. 3.8], one has DXK = (DX/SK)(d)[2d]. From Fact
3.2.3.1 3, (DXK)|Xη [−d] is a Tate twist of DXη(K|Xη [−d]), which
proves (3.7).
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Now assume K ∈ pD≥0(X). Then DXK ∈ pD≤0(X). From Part 1, one
has (DXK)|Xη [−d] ∈ pD≤0(Xη). By (3.7), one has DXη(K|Xη [−d]) ∈
pD≤0(Xη), or equivalently, K|Xη [−d] ∈ pD≥0(Xη).

By convention, the dimension of an empty space is −∞.

Lemma 3.2.3.10. Let X be a scheme of finite type over a field F . Let C be a
quasi-constructible subset of X.

1. Then dimC = dim C̄.

2. Let {Bi}ni=1 be finitely many locally closed subsets of X and B = ∪ni=1Bi.
Then dimB = maxni=1 dimBi.

Let f : X → Y be a morphism between schemes of finite type over F .

3. Let n ≥ 0 be an integer such that dim(C ∩ f−1(y)) ≤ n for every y ∈ Y .
Then dimC ≤ dimY + n.

4. Assume that Y is integral with generic point η. Then dimY + dim(C ∩
Xη) ≤ dimC.

Proof.

1. AsX is a Noetherian scheme, the topological subspaceC is Noetherian.
Therefore, C is the union of finitely many irreducible components.
Thus, one may assume further that C is nonempty and irreducible.
Then the reduced induced closed subscheme C̄ of X is integral and
of finite type over F . By [Bor91, AG. Prop. 1.3], C contains a
nonempty open subset of C̄. By [Har77, II, Exercise 3.20 (e)], one
has dimC = dim C̄.

2. For every 1 ≤ i ≤ n, since Bi ⊂ B, one has dimBi ≤ dimB. Then
maxi dimBi ≤ dimB. As Bi is quasi-constructible in X, by 1, one has
dimBi = dimBi. As {Bi}ni=1 is a finite closed cover of B̄, one gets
dimB ≤ dim B̄ = maxi dimBi = maxi dimBi.

3. By 2, one may assume that C is locally closed in X. Taking irreducible
components, one may assume further that C is irreducible. Let Z be
the Zariski closure of f(C) in Y . Then Z is irreducible. With reduced
induced subscheme structures, one views C and Z as integral schemes
of finite type over F . Moreover, f : X → Y induces a dominant
morphism g : C → Z over F . By [Har77, II, Exercise 3.22 (b)], for
every y ∈ f(C) = g(C), one has

n ≥ dimC ∩ f−1(y) = dim g−1(y) ≥ dimC − dimZ.

Hence dimC ≤ dimZ + n ≤ dimY + n.
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4. As in the proof of 3, one may assume that C is an irreducible, locally
closed subset ofX and view C as an integral scheme of finite type over
F . One may assume that C ∩Xη is nonempty. As Cη is homeomorphic
to C ∩ Xη, the morphism C → Y induced by f is dominant. Thus,
by [Har77, II, Exercise 3.22 (c)], one gets dimC ∩ Xη = dimCη =
dimC − dimY .

Lemma 3.2.3.11. Assume that S is smooth over k, integral with generic point
η and dimS = d. Then:

1. Let A ∈ PervULA(X/S), and let B[d] be a subquotient of A[d] in
Perv(X). If the image B|Xη ∈ Perv(Xη) of B[d] under the functor (3.6)
is zero, then B[d] = 0 in Perv(X).

2. The functor (3.5) identifies PervULA(X/S) as a Serre subcategory of
Perv(X).

Proof.

1. By regularity of S and [HS23, Cor. 1.12], one has B ∈ DULA(X/S).
Since B|Xη = 0, by Lemma 3.2.2.5, one has B = 0.

2. It follows from the definition that the functor (3.5) is fully faithful.
Its essential image is closed under extensions in Perv(X), because
PervULA(X/S) is closed under extensions in the triangulated subcategory
DULA(X/S) of Db

c(X).

We claim that the essential image is closed under taking subobjects.
Take K ∈ PervULA(X/S) and a subobject L[d] of K[d] ∈ Perv(X). As
S is integral, Lemma 3.2.3.9 shows that L|Xη ⊂ K|Xη is a subobject in
Perv(Xη). By smoothness of S and Fact 3.2.3.5, there is a subobject
L′ ⊂ K in PervULA(X/S) with L′|Xη = L|Xη . Set M = K/L′ ∈
PervULA(X/S). Let N [d] be the image of L[d] under the morphism
K[d]→M [d] in Perv(X). As the sequence

0→ L′[d] ∩ L[d]→ L[d]→ N [d]→ 0

is exact in Perv(X), by Lemma 3.2.3.9, the sequence

0→ L′|Xη ∩ L|Xη → L|Xη → N |Xη → 0

is exact in Perv(Xη). Hence N |Xη = 0. Since N [d] is a subobject
of M [d] ∈ Perv(X), by Part 1, one has N [d] = 0. Then L[d] ⊂
L′[d] is a subobject in Perv(X). Since (L′[d])/(L[d]) is a quotient
of L′[d] in Perv(X) and (L′|Xη)/(L|Xη) = 0 in Perv(Xη), one gets
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(L′[d])/(L[d]) = 0 in Perv(X). Therefore, L[d] = L′[d]. The claim is
proved.

Similarly, the essential image is closed under taking quotients. By
[Sta24, Tag 02MP], the essential image is a Serre subcategory of
Perv(X).

3.3 Cotori

We review the contents of [GL96, Sec. 3.2]. For a commutative ring R
and an ideal I ⊂ R, let VR(I) = SpecR/I(⊂ SpecR). For r ∈ R, let
VR(r) = VR(rR). For an integer m ≥ 1, let µℓm be the set of ℓm-roots of
unity in Q̄ℓ. Set µℓ∞ = ∪m≥1µℓm . LetM = ∪EmE , where E runs through
all finite subextensions of Qℓ ⊂ Q̄ℓ, and mE is the maximal ideal of the ring
of integers of E.

3.3.1 ℓ-adic characters

By [Rob00, p.127], there is a canonical absolute value on Q̄ℓ extending the
discrete absolute value | · |ℓ on Qℓ. It induces a topology on Q̄ℓ which is
totally disconnected. A subset A ⊂ Q̄ℓ is closed if and only if for every finite
subextension E/Qℓ of Q̄ℓ, the subset A∩E is closed in the discrete valuation
field E.

Lemma 3.3.1.1.

1. Let C be a compact subset of Q̄ℓ. Then there is a finite subextension E of
Q̄ℓ/Ql with C ⊂ E.

2. Let G ≤ Q̄×
ℓ be a compact subgroup. Then there is a finite subextension

E of Q̄ℓ/Ql with G ⊂ O×
E .

3. In 2, let G(ℓ) (resp. G(ℓ′)) be the ℓ-Sylow subgroup (resp. maximal
prime-to-ℓ quotient) of G. Then the topological group G ∼−→ G(ℓ)×G(ℓ′),
and G(ℓ′) is finite.

Proof. 1. Otherwise, there is a sequence of elements x1, x2, . . . in C with
[Ql(xn+1) : Ql] > [Ql(xn) : Ql] for every integer n > 0. Let B ⊂ C be
the (infinite) set of elements of this sequence. For every subset S ⊂ B,
every finite subextension F/Qℓ, the set S ∩ F is finite, so closed in
F . Therefore, S is closed in Q̄ℓ. In particular, the set B is closed and
hence compact in C. Every subset of B is closed in B, so B is discrete.
Thus, B is finite, a contradiction.
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2. By 1, there is a finite subextension E of Q̄ℓ/Ql containing G. By
[Ser64, Thm. 1 2, p.122], one has G ⊂ O×

E .

3. By 2 and [Ser64, Cor., p.155], G is an ℓ-adic Lie group. From Lazard’s
theorem (see, e.g., [GSK09, p.711]), there is a pro-ℓ open subgroup
U ≤ G. By [RZ10, Cor. 2.3.6 (b)], there is an ℓ-Sylow subgroup H ≤
G containing U . Since G is compact, [G : U ] is finite. Thus, the
group G/H is finite of order prime to ℓ. By [RZ10, Prop. 2.3.8], G is
isomorphic to G/H×H. Since G is commutative, by [RZ10, Cor. 2.3.6
(c)], G has exactly one ℓ-Sylow subgroup.

For a profinite group G, let C(G) be the group of ℓ-adic characters, i.e.,
continuous morphisms G → Q̄×

ℓ . Let C(G)ℓ′ (resp. C(G)ℓ) be the subgroup
of characters of finite order prime to ℓ (resp. that are pro-ℓ). Then there is a
canonical isomorphism C(G)ℓ

∼−→ C
(
(G(ℓ))ab

)
. By Lemma 3.3.1.1 3, one has

C(G) = C(G)ℓ′ × C(G)ℓ. The group of ℓ-adic characters of Zℓ is well-known.

Lemma 3.3.1.2. There is a group isomorphism C(Zℓ)→ 1+M, χ 7→ χ(1).

Proof. For every 1 ≤ i ≤ n, when m→ +∞, one has ℓm → 0 in Zℓ. For every
character χ : Zℓ → Q̄×

ℓ , by continuity, one has χ(ℓm) = χ(1)ℓ
m → χ(0) = 1.

Then |χ(1)|ℓmℓ → 1. Hence |χ(1)|ℓ = 1. There is a finite subextension E/Qℓ

with χ(1) ∈ OE . In the residue field of E, one has (χ(1)−1)ℓ
m ≡ χ(1)ℓm−1,

which is zero when m is large. Hence χ(1) − 1 ∈ mE . The morphism is
well-defined. Because 1 is a topological generator of Zℓ, the morphism is
injective.

For every u ∈ 1 +M, there is a finite subextension E/Qℓ with u − 1 ∈
mE . Every successive quotient of the filtration 1 + mE ⊃ 1 + m2

E ⊃ . . .
is isomorphic to the finite residue field of E, so the multiplicative group
1 + mE is pro-ℓ. As Zℓ is the pro-ℓ completion of Z, the group morphism
Z→ 1 +mE , m 7→ um extends to a unique Q̄ℓ-character of Zℓ. Therefore,
the morphism is an isomorphism.

3.3.2 Definition and basic properties

Fix an integer n ≥ 0. Let An be a free Ẑ-module of rank n. Let {γ1, . . . , γn}
be a Zℓ-basis of A(ℓ)

n . Let R = {OE : E/Qℓ is a finite subextension of Q̄ℓ},
which is a directed set under inclusion. For every R ∈ R, let mR be
the maximal ideal of R. Let R[[A(ℓ)

n ]] := lim←−i,j≥1
(R/mi

R)[A
(ℓ)
n /ℓj ] be the

completed group ring. There is a canonical injective morphism A
(ℓ)
n →

R[[A
(ℓ)
n ]]× of groups.

Fact 3.3.2.1 ([GL96, p.509]). The ring R[[A
(ℓ)
n ]] is a Noetherian, regular,

complete, local domain of Krull dimension 1 + n. There is an isomorphism of
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topological rings

R[[A(ℓ)
n ]]→ R[[X1, . . . , Xn]], γi 7→ 1 +Xi. (3.8)

Gabber and Loeser introduce a scheme of ℓ-adic characters.

Definition 3.3.2.2. WriteRn = Q̄ℓ ⊗Zℓ Zℓ[[A
(ℓ)
n ]]. Define the “cotorus"

associated with An to be Cℓ := Spec(Rn).

By [GL96, Prop. A.2.2.3 (ii)], the scheme Cℓ is integral and regular. Its
set of closed points coincides with Cℓ(Q̄ℓ), and is Zariski dense in Cℓ. When
n > 0, the Q̄ℓ-scheme Cℓ is not locally of finite type.

Lemma 3.3.2.3. Every character χ : A
(ℓ)
n → Q̄×

ℓ extends canonically to a
surjective morphism Rn → Q̄ℓ of Q̄ℓ-algebras.

Proof. There is a finite subextension E/Qℓ in Q̄ℓ containing all the χ(γi).
Then for every f =

∑
α∈Nn cαX

α ∈ Zℓ[[X1, . . . , Xn]], by completeness of E,
the series

∑
α∈Nn cα

∏n
i=1(χ(γi) − 1)αi converges in E. Denote its limit by

f(χ(γ1)−1, . . . , χ(γn)−1). The composition Zℓ[[A
(ℓ)
n ]]→ E of (3.8) followed

by Zℓ[[X1, . . . , Xn]] → E, f 7→ f(χ(γ1) − 1, . . . , χ(γn) − 1) extends χ. It
induces the stated surjection. The construction is independent of the choice
of the Zℓ-basis of A(ℓ)

n .

For every χ ∈ C(An)ℓ, by Lemma 3.3.2.3, the corresponding character
A

(ℓ)
n → Q̄×

ℓ induces a surjection Rn → Q̄ℓ. Let Ψ(χ) be the assigned element
of Cℓ(Q̄ℓ). Hence a map

Ψ : C(An)ℓ → Cℓ(Q̄ℓ). (3.9)

Fact 3.3.2.4 ([GL96, p.519]). The map (3.9) is bijective.

Set Sn := Q̄ℓ ⊗Zℓ Zℓ[[X1, . . . , Xn]]). By [GL96, Prop. 3.2.2 (1)], the
natural morphism Sn → Q̄ℓ[[X1, . . . , Xn]] is injective. Then the isomorphism
(3.8) identifies Rn with the Q̄ℓ-subalgebra Sn ⊂ Q̄ℓ[[X1, . . . , Xn]]. Let
C(An)ℓ,tor be the torsion subgroup of C(An)ℓ.

3.3.3 Cotori are Baire

The objective of Section 3.3.3 is Lemma 3.3.3.10, used in the proof of
Theorem 3.5.3.1. We show that over an uncountable algebraically closed
field, a reasonable scheme has uncountably many rational points outside a
countable union of strict closed subsets. Fix an uncountable, algebraically
closed field k.
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Baire schemes

Definition 3.3.3.1. A k-scheme X is called k-Baire, if its dimension dimX
is finite and X(k) \ ∪i≥1Zi(k) is uncountable for every countable sequence
{Zi}i≥1 of closed subschemes of X with dimZi < dimX for all i. A k-
algebra R is called k-Baire if Spec(R) is k-Baire.

The underlying reduced induced closed subscheme Xred → X induces
a bijection Xred(k) → X(k), so X is k-Baire if and only Xred is k-Baire.
A Noetherian k-scheme of dimension 1 with uncountably many k-points is
k-Baire.

Remark 3.3.3.2. Let k = C. Let X be a complex algebraic variety with
dimX > 0. The analytification Xan of X is locally compact Hausdorff. Then
by the Baire category theorem (see, e,g., [Wil70, Cor. 25.4 a)]),X is C-Baire.

Lemma 3.3.3.3. Let f : X → Y be a finite surjective morphism of k-schemes.
If Y is k-Baire, then so is X.

Proof. Let {Zi}i be a sequence of closed subschemes of X with dimZi <
dimX. Then for every integer i ≥ 1, since f is a closed morphism, Yi :=
f(Zi) is closed in Y . Endow each Yi with the reduced induced structure.
Let Z ′

i := f−1(Yi) = Yi ×Y X. Then there is a canonical closed immersion
Zi → Z ′

i. The restriction Zi → Yi of f is a finite surjective morphism.
By [Sta24, Tag 0ECG], one has dimX = dimY and dimYi = dimZi. In
particular, dimX is finite and dimYi < dimY .

As k is algebraically closed, the induced map X(k)→ Y (k) is surjective.
Then the induced map

X(k) \ (∪i≥1Z
′
i(k))→ Y (k) \ (∪iYi(k))

is surjective. Because Y is k-Baire, the target is uncountable. Then X(k) \
(∪i≥1Zi(k)) is also uncountable, as it contains the source.

Lemma 3.3.3.4. Let X be a Noetherian k-scheme.

1. Then X is k-Baire if and only if X has an irreducible component C
with dimC = dimX, such that the underlying reduced induced closed
subscheme C is k-Baire.

2. Assume that n := dimX − 1 is finite. If X has uncountably
many (pairwise set-theoretically distinct) irreducible, k-Baire, closed
subschemes of dimension n, then X is k-Baire.

Proof. 1. Assume that there is such a component C. Consider a sequence
of closed subschemes {Zi}i≥1 of X with dimZi < dimX for all i ≥
1. Then for every i ≥ 1, one has dimC ∩ Zi ≤ dimZi < dimX =
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dimC. Since C is k-Baire, the set C(k) \∪i(C ∩Zi)(k) is uncountable.
Therefore, X(k) \ ∪iZi(k) is also uncountable.

Assume that every component of X of maximum dimension is not k-
Baire. As X is Noetherian, one can write X = ∪nj=1Cj as a finite union
of the irreducible components. For every j with dimCj = dimX,
the scheme Cj is not k-Baire. Therefore, there is a sequence {Zji }i≥1

of closed subschemes of Cj such that dimZji < dimCj for all i and
Cj(k) \ ∪iZji (k) is countable. The finite family of components Ck
with dimCk < dimX, joint with the sequences {Zji }i for all j with
dimCj = dimX, gives a countable family {Zs}s of closed subschemes
of X with dimZs < dimX for all s. Then X(k) \ (∪sZs(k)) is
countable, so X is not k-Baire.

2. Consider a sequence of closed subschemes {Zi}i≥1 of X with dimZi <
dimX for all i ≥ 1. Every Zi is a Noetherian scheme, so it has
only finitely many irreducible components. The set of irreducible
components of the family {Zi}i is countable. Thus, one may assume
that every Zi is irreducible. By assumption, X has an n-dimensional,
irreducible, k-Baire closed subscheme X ′ which is set-theoretically
distinct from any Zi. For every i ≥ 1, because dimX ′ = n ≥ dimZi
and Zi is irreducible, one has X ′ ̸⊂ Zi and X ′ ∩ Zi ̸= X ′. Since X ′

is irreducible, one has dim(X ′ ∩ Zi) < dimX ′. As X ′ is k-Baire, the
set X ′(k) \ ∪i≥1(X

′ ×X Zi)(k) is uncountable, which is a subset of
X(k) \ ∪i≥1Zi(k). Therefore, X is k-Baire.

Lemma 3.3.3.5 is well-known.

Lemma 3.3.3.5. If X is a finite type k-scheme with dimX > 0, then X is
k-Baire.

Proof. Since X is of finite type over k, its dimension m is finite and X has
only finitely many irreducible components. Replacing X with an irreducible
component of dimension m, one may that assume X is irreducible. Then
by [Har77, Exercise 3.20 (e), p.94], every nonempty open subset of X has
dimension m. Replacing X by an affine open, one may assume that X
is affine. By Noether’s normalization lemma, there is a finite surjective
morphism p : X → Am

k over k. By Lemma 3.3.3.3, one may assume
X = Am

k .
By induction on m > 0, we prove that Am

k is k-Baire. When m = 1,
dimA1

k = 1 and A1
k(k) is uncountable, so A1

k is k-Baire. Assume the
statement for m − 1 with m ≥ 2. The set of hyperplanes in Am

k is
uncountable. By the inductive hypothesis, every hyperplane is k-Baire. From
Lemma 3.3.3.4 2, so is Am

k . The induction is completed.
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Baireness of cotori

We show that every positive dimensional cotorus is Q̄ℓ-Baire.

Definition 3.3.3.6 ([BGR84, Def. 1, p.205]). Let A be a k-algebra, and let
A[X] → B be an injective ring map. We say that B is k-Rückert over A if
there is a nonempty family W of monic polynomials in A[X] such that the
following axioms are fulfilled:

1. If f, g ∈ A[X] are monic polynomials with fg ∈W , then f, g ∈W .

2. For every w ∈W , the A-algebra B/w is isomorphic to A[X]/w.

3. For every b ∈ B \ {0}, there is an automorphism σ of the k-algebra B
and a unit u ∈ B× such that uσ(b) ∈W .

Remark 3.3.3.7. From Axiom 1, one gets 1 ∈W . If W = {1}, then by Axiom
3, for every b ∈ B \ {0}, one has b ∈ B×, i.e., B is a field. Conversely, if B is
a field, then B is k-Rückert over A with W = {1}.

If W ̸= {1}, then Spec(B) → Spec(A) is surjective. Indeed, take w(̸=
1) ∈ W . By Axiom 2, there is an A-isomorphism B/w → A[X]/w, hence
an isomorphism Spec(A[X]/w)→ Spec(B/w) of Spec(A)-schemes. Because
w is a monic polynomial different from 1, the ring map A → A[X]/w is
injective and finite. The induced morphism Spec(A[X]/w) → Spec(A) is
surjective, so Spec(B/w)→ Spec(A) is surjective.

Lemma 3.3.3.8 is used in the induction step of the proof of Lemma
3.3.3.10.

Lemma 3.3.3.8. Let A be Noetherian k-algebra of dimension n. Let B be a
domain, but not a field, containing A[X]. Assume that B is k-Rückert over A.

1. The ring B is Noetherian of dimension n+ 1.

2. Suppose that A is k-Baire. Let S be an uncountable subset of A such that
for every s ∈ S, one has dimVA(s) = n − 1. Suppose that the family
{VA(s)}s∈S is pairwise disjoint. Then B is k-Baire.

Proof. For every b ∈ B \ (B× ∪ {0}), by Axiom 3, there is an automorphism
σ of the k-algebra B and a unit u ∈ B× such that w := uσ(b) is in W .
Since b is not a unit, one has w ̸= 1. By Axiom 2, the A-algebra B/w is
isomorphic to A[X]/w. Since w(̸= 1) is a monic polynomial over A, the ring
map A→ A[X]/w is injective finite.

1. One has

dimB/b = dimB/w = dimA[X]/w
(a)
= dimA = n, (3.10)

where (a) uses [Sta24, Tag 00OK]. The domain B is not a field, so
dimB = n+ 1. By [BGR84, Prop. 2, p.206], the ring B is Noetherian.
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2. The morphism SpecA[x]/w → SpecA is finite surjective. Then by
Lemma 3.3.3.3, the algebra A[X]/w is k-Baire. As σ is over k, the
k-algebra B/b is isomorphic to B/w. Then B/b is k-Baire.

For every s ∈ S, one has dimVA(s) < dimA, so s ̸= 0. As B is not
a field, from Remark 3.3.3.7, the morphism Spec(B) → Spec(A) is
surjective. The preimage of VA(s) under the surjection Spec(B) →
Spec(A) is VB(s), so VB(s) is nonempty. In particular, s /∈ B× and B/s
is k-Baire. Moreover, the family {VB(s)}s∈S is pairwise disjoint. By
(3.10), one gets dimVB(s) = n.

By Part 1, B is Noetherian. Then for every s ∈ S, by Lemma 3.3.3.4 1,
there is a k-Baire irreducible component Cs ⊂ Spec(B/s) of dimension
n. The family {Cs}s∈S is pairwise disjoint. From Lemma 3.3.3.4 2, B
is k-Baire.

Fact 3.3.3.9. For every integer n ≥ 0,

1. ([GL96, Thm. A.2.1, Prop, A.2.2.1]) the ring Sn is a Noetherian,
regular, Jacobson domain of Krull dimension n;

2. ([GL96, Prop A.2.2.2, proof of A.2.2.3 (ii)]) Sn+1 is Q̄ℓ-Rückert over
Sn.

Lemma 3.3.3.10. For every integer n ≥ 1, the algebra Sn is Q̄ℓ-Baire.

Proof. Since Q̄ℓ is a flat Zℓ-module, the injection Zℓ[X1, . . . , Xn]→ Zℓ[[X1, . . . , Xn]]
induces an injection Q̄ℓ[X1, . . . , Xn]→ Sn. The natural morphism

Spec(Q̄ℓ[[X1, . . . , Xn]])→ An
Q̄ℓ (3.11)

of Q̄ℓ-schemes factors through a morphism pn : Spec(Sn)→ An
Q̄ℓ

.

ThenM is the maximal ideal of the integral closure Zℓ of Zℓ inside Q̄ℓ.
By [Rob00, Prop., p.128], the residue field Zℓ/M is an algebraic closure of
the finite field Fℓ, so it is countable. As Zℓ is uncountable, so is the setM.

For every (a1, . . . , an) ∈ Mn, there is a surjective morphism of Q̄ℓ-
algebras:

Q̄ℓ[[X1, . . . , Xn]]→ Q̄ℓ, f 7→ f(a1, . . . , an).

Its kernel is a Q̄ℓ-point of Spec(Q̄ℓ[[X1, . . . , Xn]]), whose image under (3.11)
is (a1, . . . , an) ∈ AnQ̄ℓ

(Q̄ℓ). Hence Mn ⊂ pn(Spec(Sn)(Q̄ℓ)). In particular,
Spec(Sn)(Q̄ℓ) is uncountable.

By induction on n > 0, we prove that Sn is Q̄ℓ-Baire, and {VSn(X1 −
a)}a∈M is a pairwise disjoint family of (n − 1)-dimensional subsets. When
n = 1, by Fact 3.3.3.9 1, S1 is Q̄ℓ-Baire. Moreover, {VS1(X1 − a)}a∈M is a
pairwise distinct family of closed point of Spec(S1). The statement is proved
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for n = 1. Assume the statement for n − 1 with n ≥ 2. By Fact 3.3.3.9,
(3.10), and Lemma 3.3.3.8 2, the statement holds for n. The induction is
completed.

3.4 Krämer-Weissauer theory

Let k be a field of characteristic 0. Let Veck be the category of finite
dimensional k-vector spaces. Choose an algebraic closure k̄ of k. Let
RepQ̄ℓ(Γk) be the category of continuous, finite dimensional Q̄ℓ-representations
of Γk. Let A be an abelian variety over k. Recall that πét

1 (Ak̄) is a free Ẑ-
module of rank 2 dimA. With the notation of Section 3.3, set

• C(A) = C(πét
1 (Ak̄)): the group of characters πét

1 (Ak̄)→ Q̄∗
ℓ ;

• C(A)ℓ′ = C(πét
1 (Ak̄))ℓ′: the group of characters of finite order prime to

ℓ;

• C(A)ℓ: the cotorus assigned to πét
1 (Ak̄).

3.4.1 Generic vanishing theorem

For an object K ∈ Perv(A), set

S(K) := {χ ∈ C(A)|H i(Ak̄,K ⊗L Lχ) ̸= 0 for some integer i ̸= 0}.

Fact 3.4.1.1 ([KW15b, Thm. 1.1], [Wei16, Vanishing Theorem, p.561;
Thm. 2]). For every perverse sheaf K ∈ Perv(A) and every character χℓ′ ∈
C(A)ℓ′ , the set

{χℓ ∈ C(A)ℓ(Q̄ℓ)|χℓ′χℓ ∈ S(K)}

is the set of Q̄ℓ-points of a strict Zariski closed subset of the scheme C(A)ℓ.

We review [KW15a, p.725]. For every K ∈ Perv(A), its Euler
characteristic satisfies

χ(A,K) :=
∑
i∈Z

(−1)i dimQ̄ℓ H
i(Ak̄,K) ≥ 0. (3.12)

Let N(A) ⊂ Perv(A) be the full subcategory of objects K with χ(A,K) = 0.
From the additivity of the function χ(A,−) : Ob(Perv(A))→ N and (3.12),
N(A) is a Serre subcategory of Perv(A). Let P̄ (A) := Perv(A)/N(A) be the
quotient abelian category. For every χ ∈ C(A), set

Eχ(Ak̄) = {K ∈ Perv(Ak̄)|H i(Ak̄,K ⊗L Lχ) = 0, ∀i ∈ Z \ {0}}.

Then Eχ(Ak̄) is closed under extensions in Perv(Ak̄). Let Pχ(A) ⊂ Perv(A)
be the full subcategory of objects K with Q ∈ Eχ(Ak̄) for every simple
subquotient Q of K|Ak̄ in Perv(Ak̄).
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By [BBDG82, Thm. 4.3.1 (i)], every object K ∈ Perv(A) is Noetherian
and Artinian. For every χℓ′ ∈ C(A)ℓ′ , by Fact 3.4.1.1 and Lemma 3.4.1.2 1,
the set {χℓ ∈ C(A)ℓ(Q̄ℓ)|K ∈ Pχℓ′χℓ(A)} is the set of Q̄ℓ-points of a strict
Zariski closed subset of C(A)ℓ.

Lemma 3.4.1.2. Let A be an abelian category, and let X ∈ A be a Noetherian
and Artinian object.

1. Let Y be a simple subquotient of X. Then there is a composite series of X
with one graded piece isomorphic to Y . In particular, up to isomorphism
X has only finitely many simple subquotients.

2. If every subobject ofX admits a direct complement, thenX is semisimple.

Proof.

1. There is a subobject i : X0 ⊂ X and a quotient q : X0 → Y in
A. Let N = ker(q). By [Sta24, Tag 0FCH, Tag 0FCI], both N and
X/X0 are Noetherian and Artinian. From [Sta24, Tag 0FCJ], they
admit composite series. A composite series of X/X0 is equivalent to
a filtration X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X by subobjects such
that Xi/Xi−1 is simple for every 1 ≤ i ≤ n. This filtration and every
composite series of N glue to a composite series of X with a step
N ⊂ X0, whose factor is isomorphic to Y . By the Jordan-Hölder
lemma [Sta24, Tag 0FCK], up to isomorphism Y has finitely many
choices.

2. One may assume that X ̸= 0. Let P be the family of nonzero
semisimple subobjects of X. By [Sta24, Tag 0FCJ], X has a nonzero
simple subobject, so P is nonempty. Since X is Noetherian, the family
P has a maximal element i : X0 → X. By assumption, there is a
subobject F ⊂ X with X0 ⊕ F = X. Then F = 0. (Otherwise,
by [Sta24, Tag 0FCJ], F has a nonzero simple subobject F0. Then
X0 ⊕ F0 ∈ P is strictly larger than X0, which is a contradiction.)
Therefore, i is an isomorphism and X is semisimple.

Remark 3.4.1.3. In a Noetherian and Artinian abelian category, an object
may have infinitely many distinct (non semisimple) subobjects up to
isomorphism.

Lemma 3.4.1.4. Let A be a Noetherian and Artinian abelian category. Let E
be a class of objects of A closed under isomorphisms. Let S ⊂ A be the full
subcategory of objects every nonzero simple subquotient of which is in E .

1. Then S is a Serre subcategory of A.
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2. If further E is closed under extensions, then S ⊂ E .

Proof.

1. (a) We prove that S is closed under subquotients. Let X be an object
of S with a subquotient Y . Every simple subquotient of Y is that
of X, hence in E . Thus, Y ∈ S.

Let 0 → L
f→ M

g→ N → 0 be a short exact sequence in A with
L,N ∈ S. Let Q be a nonzero simple subquotient of M . We prove that
Q ∈ E .

(b) First, assume that Q is a quotient of M . The natural morphism
L → Q is either an epimorphism or zero, in which case Q is a
simple quotient of L or N respectively. Hence Q ∈ E .

(c) Now assume that Q is general. There is a subobject M0 ⊂M and
an epimorphism M0 → Q. Then

0→ f−1(M0)→M0 → g(M0)→ 0

is a short exact sequence in A with f−1(M0) (resp. g(M0)) a
subobject of L (resp. N). From Part 1a, both f−1(M0) and g(M0)
are in S. From Part 1b, one has Q ∈ E .

From Part 1c, one has M ∈ S and S is closed under extensions. The
result follows from [Sta24, Tag 02MP].

2. By [Sta24, Tag 0FCJ], every object X ∈ S admits a filtration in A

0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = X

by subobjects such that each Xi/Xi−1 is a simple subquotient of X.
Then Xi/Xi−1 ∈ E . As E is closed under extensions, one has X ∈ E .

By Lemma 3.4.1.4 1, for every χ ∈ C(A), Pχ(A) ⊂ Perv(A) is a Serre
subcategory. From Lemma 3.4.1.4 2, for every K ∈ Pχ(A) and every integer
i ̸= 0, one has

H i(Ak̄,K ⊗L Lχ) = 0. (3.13)

From the proof of [LS20, Lem. 3.4 (3)], the functor

ωχ : Pχ(A)→ VecQ̄ℓ , K 7→ H0(Ak̄,K ⊗L Lχ) (3.14)

is exact. Let Nχ(A) be the full subcategory of Pχ(A) of objects in N(A). For
every K ∈ Nχ(A), by [KW15b, Cor. 4.2], one has χ(A,K ⊗L Lχ) = 0. From
(3.13), one has H0(Ak̄,K ⊗L Lχ) = 0. By [Sta24, Tag 02MS], the functor
ωχ factors uniquely through an exact functor (still denoted by ωχ)

Pχ(A)/Nχ(A)→ VecQ̄ℓ . (3.15)
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3.4.2 Tannakian groups

Let (C,⊗) a neutral Tannakian category (in the sense of [DM22, Def. 2.19])
over an algebraically closed field Q of characteristic 0, with a fiber functor
ω : C → VecQ. Let Aut⊗(C, ω) be the corresponding affine group scheme
over Q. By [Del90, Sec. 9.2, p.187], up to isomorphism of group schemes,
Aut⊗(C, ω) is independent of the choice of ω. (See [Wib22, Thm. 1.2] for
an elementary proof.)

For an object K ∈ C, let ι : ⟨K⟩ ↪→ C be the full subcategory whose
objects are the subquotients of {(K⊕K∨)⊗n}n≥1. Then (⟨K⟩,⊗) is a neutral
Tannakian subcategory of C (in the sense of [Mil07, 1.7]), for which ωι :
⟨K⟩ → VecQ is a fiber functor. The group scheme Aut⊗(⟨K⟩, ωι) is the
image of the natural morphism Aut⊗(C, ω)→ GL(ω(K)).

Definition 3.4.2.1. The algebraic group Aut⊗(⟨K⟩, ωι) is called the Tannakian
monodromy group of K at ω and is denoted by Gω(K).

By [Sim92, p.69], Gω(K) is reductive if and only if K is semisimple in
C.

Example 3.4.2.2. With tensor product, RepQ̄ℓ(Γk) is a neutral Tannakian
category over Q̄ℓ. The forgetful functor ω : RepQ̄ℓ(Γk) → VecQ̄ℓ is a fiber
functor. The Tannakian monodromy group of an object ρ : Γk → GL(V ) at
ω is the Zariski closure of ρ(Γk) ⊂ GL(V ).

3.4.3 Sheaf convolution

Let m : A ×k A → A be the group law on A. Let pi : A ×k A → A be the
projection to i-th factor (i = 1, 2). The bifunctor

∗ : Db
c(A)×Db

c(A)→ Db
c(A), − ∗+ := Rm∗(p

∗
1 −⊗Lp∗2+)

is called the convolution on A.

Example 3.4.3.1. For every closed reduced subvariety i : X → A, let δX :=
i∗Q̄ℓ,X ∈ Db

c(A). Then for every closed point x ∈ A, one has δx ∗ δX = δx+X .

By [Wei11] and [JKLM23, Sec. 3.1], the pair (Db
c(A), ∗) is a rigid,

symmetric monoidal category, with unit δ0. For every K ∈ Db
c(A), its adjoint

dual is K∨ := [−1]∗ADAK.

Fact 3.4.3.2 ([KW15b, proof of Thm. 13.2], [LS20, Lem. 3.4 (4)], [JKLM23,
Prop. 3.1]). The convolution on Db

c(A) induces a bifunctor P̄ (A) × P̄ (A) →
P̄ (A), (−,+) 7→ pH0(− ∗+) fitting into a commutative square

Perv(A)× Perv(A) Db
c(A)

P̄ (A)× P̄ (A) P̄ (A).

∗

pH0
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It makes P̄ (A) a neutral Tannakian category over Q̄ℓ. For every χ ∈ C(A),
the subcategory Pχ(A)/Nχ(A) ⊂ P̄ (A) is a Tannakian subcategory, on which
(3.15) is a fiber functor.

Example 3.4.3.3. [KW15a, Example 7.1] Fix a closed point x ∈ A. Then
δx ∈ Perv(A). The spectrum S(δx) is empty and for every χ ∈ C(A), one has
δx ∈ Pχ(A). If x is a torsion point of order n, then Gωχ(δx) is isomorphic to
Z/n. If x is not a torsion point, then Gωχ(δx) is isomorphic to Gm/Q̄ℓ .

Let ψ : πét
1 (A)→ Q̄×

ℓ be a character, and set ψ′ = ψ|πét
1 (Ak̄)

. The functor

ωψ : Perv(A)→ RepQ̄ℓ(Γk), K 7→ H0(Ak̄,K ⊗L Lψ)

fits into a commutative square

Perv(A) RepQ̄ℓ(Γk)

Pψ
′
(A) VecQ̄ℓ

ωψ

ω

(3.14)

The quotient functor Pψ
′
(A)/Nψ′

(A) → RepQ̄ℓ(Γk) of ωψ|Pψ′ (A) induces a
morphism of affine groups schemes

ω∗
ψ : Aut⊗(RepQ̄ℓ(Γk), ω)→ Aut∗(Pψ

′
(A)/Nψ′

(A), ωψ′). (3.16)

Definition 3.4.3.4. For everyK ∈ Perv(A), let Mon(K,ψ) be the Tannakian
monodromy group of ωψ(K) in RepQ̄ℓ(Γk).

For every K ∈ Pψ′
(A), the functor ωψ|⟨K⟩ : ⟨K⟩ → ⟨ωψ(K)⟩ induces a

closed immersion of linear algebraic groups ω∗
ψ : Mon(K,ψ) → Gωψ′ (K),

which is the projection of (3.16) in GL(ωψ′(K)).

3.5 Main results

Consider Setting 3.1.2.1. For every character χ ∈ C(A), denote the pullback
of χ along (pA|Aη)∗ : πét

1 (Aη) → πét
1 (A) by χη : πét

1 (Aη) → Q̄×
ℓ . Then

the restriction χη|πét
1 (Aη̄)

is identified with χ via the isomorphism (pA|Aη̄)∗ :

πét
1 (Aη̄)→ πét

1 (A). LetK ∈ Perv(A×X/X) be an object which is semisimple
in Db

c(A×X).
We shall prove that the monodromy group of K is normal in its

Tannakian group. By the normality criterion (Lemma 3.5.0.1), it suffices
to show that the monodromy is reductive, and to consider the monodromy
fixed part of all the representations of the Tannakian group. Such representations
are from perverse sheaves.
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Lemma 3.5.0.1. Let G be a linear algebraic group over an algebraically closed
field C. Let H be a closed, reductive subgroup of G. If for every V ∈ RepC(G),
the subspace V H is G-stable, then H is normal in G.

Proof. By [Gro06, Cor. 2.4] and reductivity, H is observable in G (in the
sense of [BBHM63, p.134]). From [And21, Prop. C.3], H is normal in G.

3.5.1 Reductivity

Theorem 3.5.1.1. For every χ ∈ C(A) \ S(K|Aη), the monodromy group
Mon(K|Aη , χη) is reductive.

Proof. By Lemma 3.2.1.5, when X is replaced by a nonempty open subset,
the semisimplicity of K in Db

c(A × X) is preserved. Moreover, the Γk(η)-
representation ωχη(K|Aη) and hence the group Mon(K|Aη , χη) remain
unchanged. Thus, by [Sta24, Tag 056V], one may assume that X is smooth.
As K is semisimple in Db

c(A × X), from Lemma 3.2.1.8, so is K ⊗L p∗ALχ.
By Fact 3.2.1.6 1, the object RpX∗(K ⊗L p∗ALχ) is semisimple in Db

c(X).
By the proper base change theorem (see, e.g., [Sta24, Tag 095T]), for

every integer n, one has

HnRpX∗(K ⊗L p∗ALχ)η̄ = Hn(Aη̄,K|Aη̄ ⊗L Lχ).

Since χ /∈ S(K|Aη), when n ̸= 0, one has Hn(Aη̄,K|Aη̄ ⊗L Lχ) = 0. By
Fact 3.2.1.2, there is a nonempty open subset U0 (resp. Un for every integer
n ̸= 0) of X such that [H0RpX∗(K ⊗L p∗ALχ)]|U0 is a lisse Q̄ℓ-sheaf (resp.
[HnRpX∗(K ⊗L p∗ALχ)]|Un = 0). The set

J := {n ∈ Z : HnRpX∗(K ⊗L p∗ALχ) ̸= 0}

is finite and X is irreducible, so U := U0 ∩ ∩n∈JUn is a nonempty open
subset of X. Shrinking X to U , one may assume further thatHnRpX∗(K⊗L
p∗ALχ) = 0 for every integer n ̸= 0, and that H0RpX∗(K ⊗L p∗ALχ) is a lisse
Q̄ℓ-sheaf on X.

Thus, the semisimple object RpX∗(K ⊗L p∗ALχ)[dimX] of Db
c(X) lies in

Perv(X), so it is semisimple in Perv(X). By [Ach21, Prop. 3.4.1], the object
RpX∗(K ⊗L p∗ALχ) of Loc(X) is semisimple. Therefore, the corresponding
representation

πét
1 (X, η̄)→ GL(H0(Aη̄,K|Aη̄ ⊗L Lχ))

is semisimple. Because X is smooth, the natural morphism η∗ : Γk(η) →
πét
1 (X, η̄) is surjective. Then the composition Γk(η) → GL(H0(Aη̄,K|Aη̄ ⊗L
Lχ)), i.e., the representation ωχη(K|Aη), is semisimple. Consequently, the
algebraic group Mon(K|Aη , χη) is reductive.
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Example 3.5.1.2. In Theorem 3.5.1.1, the algebraic group Mon(K|Aη , χη)
may not be semisimple. Let X be a smooth, projective, integral algebraic
curve over k of genus 1. Then πét

1 (X, η̄)
∼= Ẑ2. There exists a character

σ : πét
1 (X, η̄)→ Q̄×

ℓ of infinite order. Let A = Spec(k). Then C(A) = {1} and
Mon(Lσ|Aη , 1) = Gm/Q̄ℓ is an algebraic torus.

Remark 3.5.1.3. In view of Example 3.2.1.4, the semisimplicity ofH0RpX∗(K⊗L
p∗ALχ) in Db

c(X) is not clear a priori. That is why we exclude characters in
the spectrum S(K|Aη) in Theorem 3.5.1.1.

Remark 3.5.1.4. Let i : Y → A × X be a closed subvariety, such that the
induced morphism f : Y → X is smooth with connected fibers of dimension
d:

Y A×X

X A.

i

f
pX

pA

By Example 3.2.3.4, one has K := i∗Q̄ℓ,Y [d] ∈ PervULA(A×X/X). By Fact
3.2.1.6 1, it is semisimple in Db

c(A × X). Assume that X is smooth. Then
for every χ ∈ C(A) \ S(K|Aη), the algebraic group Mon(K|Aη , χη) coincides
with the Zariski closure of the image of the monodromy representation of
the lisse Q̄ℓ-sheaf Rdf∗i∗p∗ALχ on X, which is studied in [KM23, Sec. 1.4]
(but with coefficient C instead of Q̄ℓ).

3.5.2 Fixed part

Theorem 3.1.2.3 follows from Theorem 3.5.2.1 and Fact 3.4.1.1, because
the union in Condition 1 of Theorem 3.5.2.1 is in fact a finite union.

Theorem 3.5.2.1. Assume that X is smooth and K ∈ PervULA(A × X/X).
Then there exists a subobject K0 ⊂ K in PervULA(A × X/X) such that for
every χ ∈ C(A) with

1. χ /∈ ∪j∈ZS(pHj(RpA∗K)),

2. K|Aη ∈ Pχ(Aη) and

3. pH0(RpA∗K) ∈ Pχ(A),

one has ωχη(K0|Aη) = ωχη(K|Aη)Γk(η) .

Proof. By properness of pX : A × X → X and Fact 3.2.2.2 4, one has
RpX∗K ∈ DULA(X/X). Then from Fact 3.2.2.2 2, the sheaf H0RpX∗K
is lisse. Since X is smooth, by [Sta24, Tag 0BQM], the canonical morphism
Γk(η) → πét

1 (X, η̄) is surjective. Thus, from Fact 3.2.1.6 2, the natural map

H0(A×X,K ⊗L p∗ALχ)→ ωχη(K|Aη̄)Γk(η) (3.17)
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is surjective.
By Fact 3.2.1.1, one has

H0(A×X,K ⊗L p∗ALχ) = H0(A, (RpA∗K)⊗L Lχ). (3.18)

By Condition 1, for any integers i ̸= 0 and j, one has

H i(A, pHj(RpA∗K)⊗L Lχ) = 0.

By Lemma 3.2.1.8, the spectral sequence in [Max19, Rk. 8.1.14 (6)]
becomes

Ei,j2 = H i(A, pHj(RpA∗K)⊗L Lχ)⇒ H i+j(A, (RpA∗K)⊗L Lχ).

It degenerates at page E2. Hence

H0(A, (RpA∗K)⊗L Lχ) = H0(A, (pH0RpA∗K)⊗L Lχ). (3.19)

Set K1 := p∗A
pH0(RpA∗K) ∈ Db

c(A × X). By Fact 3.2.2.2 1, one
has pH0(RpA∗K) ∈ DULA(A/k). From Fact 3.2.2.2 3, one gets K1 ∈
DULA(A×X/X). For every x ∈ X(k), the restriction pA|Ax : Ax → A is an
isomorphism of abelian varieties over k, so the functor (pA|Ax)∗ : Perv(A)→
Perv(Ax) is an equivalence of abelian categories. It sends pH0(RpA∗K) to
K1|Ax , so K1|Ax ∈ Perv(Ax) and hence K1 ∈ PervULA(A × X/X). From
K1|Aη = (pA|Aη)∗pH0(RpA∗K) and Condition 3, one has K1|Aη ∈ Pχ(Aη).
Then

ωχ(K
1|Aη) = H0(A, pH0(RpA∗K)⊗L Lχ). (3.20)

Every fiber of pA : A × X → A has dimension dimX, so by [BBDG82,
4.2.4], the functor

RpA∗[−dimX] : Db
c(A×X)→ Db

c(A)

is left t-exact for the absolute perverse t-structures. From smoothness of X
and Lemma 3.2.3.7, one has K[dimX] ∈ Perv(A × X) and so RpA∗K ∈
pD≥0(A). Taking the perverse truncation, one has pτ≤0(RpA∗K) =
pH0(RpA∗K). Via the adjunction formula (see, e.g., [KW01, p.107]), the
natural morphism

pτ≤0(RpA∗K)→ RpA∗K

in Db
c(A) (from the definition of t-structure) induces a morphism h : K1 →

K inDb
c(A×X). Then h is a morphism in PervULA(A×X/X). LetK0 be the

image of h in the abelian category PervULA(A × X/X). By Fact 3.2.3.1 1,
the functor Perv(A ×X/X) → Perv(Aη) is exact. Then K0|Aη is the image
of h|Aη : K1|Aη → K|Aη in Perv(Aη).

Because Pχ(Aη) is an abelian subcategory of Perv(Aη), by Condition 2,
the image of h|Aη in Pχ(Aη) is still K0|Aη . As the functor (3.14) is exact,
the image of ωχ(h|Aη) : ωχ(K

1|Aη) → ωχ(K|Aη) is ωχ(K0|Aη). Combining
(3.17), (3.18), (3.19) with (3.20), one gets ωχ(K0|Aη) = ωχη(K|Aη)Γk(η) .
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3.5.3 Normality

By [JKLM23, Thm. 4.3], for every character χ ∈ C(A), the geometric generic
Tannakian group Gωχ(K|Aη̄) is a normal closed subgroup of the generic
Tannakian group Gωχ(K|Aη). Theorem 3.5.3.1 shows that for uncountably
many characters, the corresponding monodromy group is also a normal
closed subgroup of the generic Tannakian group.

For every χℓ′ ∈ C(A)ℓ′ and every χℓ ∈ C(A)ℓ, set χ = χℓ′χℓ.

Theorem 3.5.3.1. Assume K ∈ PervULA(A × X/X) and dimA > 0. Then
for every χℓ′ ∈ C(A)ℓ′ , there is an uncountable subset E ⊂ C(A)ℓ(Q̄ℓ), such
that for every χℓ ∈ E,

• one has K|Aη ∈ Pχ(Aη),

• the algebraic group Gωχ(K|Aη) is reductive,

• and Mon(K|Aη , χη) is a normal closed subgroup of Gωχ(K|Aη).

We sketch the proof of Theorem 3.5.3.1. For every representation V of
the Tannakian group G(K|Aη) and every χℓ′ ∈ C(A)ℓ′ , by Theorem 3.1.2.3,
there is a strict Zariski closed subset BV of the cotorus C(A)ℓ, such that for
every χℓ ∈ (C(A)ℓ \ BV )(Q̄ℓ), the monodromy invariant V Mon(K|Aη ,χη) is
a G(K|Aη)-subrepresentation. Choose E = C(A)ℓ(Q̄ℓ) \ ∪VBV (Q̄ℓ). From
Lemma 3.5.0.1, normality holds when χℓ ∈ E.

Proof. Both Mon(K|Aη , χη) andGωχ(K|Aη) depend only on the generic fiber
of pX : A × X → X. Therefore, shrinking X to a nonempty open subset
does not change them. Thus, one may assume that X is smooth.

Claim 3.5.3.2. The object K|Aη ∈ Perv(Aη) is semisimple.

From Claim 3.5.3.2 and Lemma 3.5.3.6 1, the object K|Aη ∈ P̄ (Aη)
is also semisimple. Therefore, a (hence every) Tannakian group of the
neutral Tannakian category ⟨K|Aη⟩(⊂ P̄ (Aη)) is a reductive, algebraic group
over Q̄ℓ. Then by Lemma 3.5.3.5, there is a countable sequence of objects
{K̄i}i≥1, such that every object of ⟨K|Aη⟩ is isomorphic to some K̄i. To apply
Theorem 3.1.2.3, we need semisimple objects of Db

c(A×X).

Claim 3.5.3.3. For every objectN ∈ ⟨K|Aη⟩, there is L ∈ PervULA(A×X/X)
that is semisimple in Db

c(A×X), such that L|Aη isomorphic to N in P̄ (Aη).

From Claim 3.5.3.3, for every integer i ≥ 1, there is Ki ∈ PervULA(A ×
X/X) that is semisimple in Db

c(A × X) with Ki|Aη isomorphic to K̄i in
P̄ (Aη). From smoothness of X and Theorem 3.1.2.3, there is a subobject
K0
i ⊂ Ki in PervULA(A×X/X) and a strict Zariski closed subsetBi ⊂ C(A)ℓ,

such that for every χℓ ∈ (C(A)ℓ \Bi)(Q̄ℓ), one has Ki|Aη ∈ Pχ(Aη) and

ωχη(Ki|Aη)Γk(η) = ωχη(K
0
i |Aη). (3.21)
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Set E := C(A)ℓ(Q̄ℓ) \ ∪i≥1Bi(Q̄ℓ). From Lemma 3.3.3.10 and the
assumption dimA > 0, the set E is uncountable. For every χℓ ∈ E,
one has K|Aη ∈ Pχ(Aη). For every i ≥ 1, by χℓ /∈ Bi(Q̄ℓ) and (3.21),
the subspace ωχη(Ki|Aη)Mon(K|Aη ,χη) is Gωχ(K|Aη)-stable. By Theorem
3.5.1.1 and Lemma 3.5.0.1, the subgroup Mon(K|Aη , χη) of Gωχ(K|Aη) is
normal.

Proof of Claim 3.5.3.2. For every subobject M ⊂ K|Aη in Perv(Aη), by
Fact 3.2.3.5 and the smoothness of X, there is a subobject K ′ ⊂ K in
PervULA(A × X/X) with K ′|Aη = M . By Lemma 3.2.3.7, the morphism
K ′[dimX] → K[dimX] is a monomorphism in Perv(A ×X). Because K is
semisimple in Db

c(A×X), its shift K[dimX] is semisimple in Perv(A×X).
Thus, there is a subobject N ⊂ K[dimX] in Perv(A×X) with

K[dimX] = (K ′[dimX])⊕N.

Then K = K ′⊕ (N [−dimX]) in Db
c(A×X). For every integer j, let p/XHj :

Db
c(A × X) → Perv(A × X/X) be the j-th cohomology functor associated

with the relative perverse t-structure. If j ̸= 0, then

0 = p/XHj(K) = 0⊕ p/XHj(N [−dimX])

in Perv(A×X/X). Hence p/XHj(N [−dimX]) = 0 and

N [−dimX] ∈ Perv(A×X/X).

Consequently, K|Aη = M ⊕ (N |Aη [− dimX]) in Perv(Aη). By [BBDG82,
Thm. 4.3.1 (i)], the abelian category Perv(Aη) is Noetherian and Artinian.
As every subobject of K|Aη in Perv(Aη) admits a direct complement, the
semisimplicity follows from Lemma 3.4.1.2 2.

Proof of Claim 3.5.3.3. From Lemma 3.5.3.5, the object N ∈ P̄ (Aη) is
semisimple. There is an integer n ≥ 0 such that N is a subquotient of
(K|Aη ⊕K|∨Aη)

∗n in P̄ (Aη).
We “globalize" the fiberwise convolution functors as follows. Define a

bifunctor
∗X :Db

c(A×X)×Db
c(A×X)→ Db

c(A×X),

(−,+) 7→ R(m× IdX)∗(p
∗
13 −⊗Lp∗23+),

(3.22)

where pij are the projections on A × A × X. By the proper base change
theorem, for every x ∈ X(k), one has (− ∗X +)|Ax

∼−→ (−|Ax) ∗ (+|Ax) as
bifunctors Db

c(A × X) × Db
c(A × X) → Db

c(Ax). Therefore, one has (− ∗X
+)|Aη

∼−→ (−|Aη) ∗ (+|Aη) as bifunctors Db
c(A×X)×Db

c(A×X)→ Db
c(Aη).

The bifunctor (3.22) restricts to a bifunctorDULA(A×X/X)×DULA(A×
X/X) → DULA(A×X/X). Indeed, for any K ′,K ′′ ∈ DULA(A×X/X), by
Fact 3.2.2.2 6, one has

p∗13K
′ ⊗L p∗23K ′′ ∈ DULA(A×A×X/X).
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By Fact 3.2.2.2 4, one gets K ′ ∗X K ′′ ∈ DULA(A×X/X).
Set K∨ := ([−1]A × IdX)

∗DA×X/XK. By Fact 3.2.3.1 3, one has K∨ ∈
PervULA(A×X/X) and (K∨)|Aη = (K|Aη)∨. Then

(K ⊕K∨)∗Xn) ∈ DULA(A×X/X).

Set M := p/XH0((K ⊕ K∨)∗Xn) ∈ PervULA(A × X/X). Then M |Aη =
pH0([K|Aη ⊕ (K|Aη)∨]∗n) in Perv(Aη). By Lemma 3.5.3.6 3, there is a
semisimple subquotient L′ of M |Aη in Perv(Aη), whose image in P̄ (Aη) is
N . By smoothness of X and Fact 3.2.3.5, there is a semisimple subquotient
L of M in PervULA(A × X/X) with L|Aη = L′. By smoothness of X and
Lemma 3.2.3.11 2, the object L[dimX] is semisimple in Perv(A×X). Then
L is semisimple in Db

c(A×X).

Remark 3.5.3.4. When A = Spec(k), the bifunctor (3.22) becomes ⊗L :
Db
c(X) × Db

c(X) → Db
c(X). The derived tensor product may not preserve

semisimplicity in the category Db
c(X). That is why we need semisimplicity

in PervULA(A×X/X) in the last paragraph of the proof of Claim 3.5.3.3.
In fact, consider k = C, X = A1 and U = X \ {0}. Let j : U → X

be the inclusion. Then πét
1 (U, 1) = Ẑ. The unique surjective morphism

πét
1 (U, 1) → Z/2 corresponds to a rank one lisse Q̄ℓ-sheaf L on U . Then
L⊗L L ∼= Q̄ℓ,U , and Lan is a Q̄ℓ-local system on Uan = C \ {0}.

Let U0 be a punctured ball in Xan = C centered at 0 containing 1. One
has H0(U0, L

an) = (Lan)π
top
1 (U0,1) = 0, and H1(U0, L

an) coincides with the
group cohomology H1(πtop1 (U0, 1), L

an
1 ), where the πtop1 (U0, 1) = Z-action

on the stalk Lan
1 is the monodromy. For every crossed homomorphism f :

Z→ Lan
1 , every integer j, one has f(1 + j) = f(1)− f(j). Therefore, when

j is even (resp. odd), f(j) is 0 (resp. f(1)). In particular, f is a boundary
and hence H1(πtop1 (U0, 1), L

an
1 ) = 0. Thus, Lan is not in the cohomology

support loci of U0. From [BLSW17, p.299], jan! Lan[1] is a simple object of
Perv(Xan). Set M := j!L[1]. By [BBDG82, p.150], the natural morphism
j!∗L[1]→M is an isomorphism in Db

c(X). In particular, M is a simple object
of Perv(X).

From [KW01, II, Cor. 7.5 g)], one has

N :=M ⊗LM = j!(L⊗L j∗j!L)[2] = j!Q̄ℓ,U [2].

By [HT07, Example 8.1.35 (ii)], one has N [−1] ∈ Perv(X). Let i : 0 → A1

be the inclusion. From the short exact sequence

0→ j!Q̄ℓ,U → Q̄ℓ,X → i∗(Q̄ℓ,0)→ 0

in Cons(X), one gets an exact sequence

pH0(Q̄ℓ,X)→ pH0(i∗(Q̄ℓ,0))→ pH1(j!Q̄ℓ,U )→ pH1(Q̄ℓ,X)→ pH1(i∗(Q̄ℓ,0))
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in Perv(X). Since i∗(Q̄ℓ,0), Q̄ℓ,X [1] ∈ Perv(X), it gives a short exact
sequence

0→ i∗(Q̄ℓ,0)→ N [−1]→ Q̄ℓ,X [1]→ 0

in Perv(X). This sequence does not split as N [−1] is supported on U .
Therefore, N [−1] is not a semisimple object of Perv(X). It follows that
M ⊗L M is not semisimple in Db

c(X). (This sequence also shows that the
support of a perverse sheaf may be smaller than that of a subquotient.)

For a category C, let C/ ∼ be the class of isomorphism classes of objects
in C.

Lemma 3.5.3.5. Let (C,⊗) be a neutral Tannakian category over k with a
fiber functor ω : C → Veck. Assume that Aut⊗(C, ω) is a reductive, algebraic
group over k. Then the underlying abelian category is semisimple, and C/ ∼ is
countable.

Proof. Set G = Aut⊗(C, ω). Let Rep(G) be the category of k-rational
representations of G. Then C is equivalent to Rep(G). Because k has
characteristic zero, by [Mil17a, Cor. 22.43], the abelian category Rep(G)
is semisimple. As k is algebraically closed, by [AHR20, Thm. 2.16], there
is an at most countable set X+ and for every λ ∈ X+, a unital k-algebra
A λ with the following property: The set Irr(G) of isomorphism classes of
simple objects of Rep(G) is in bijection with the set of pairs (λ,E), where
λ ∈ X+ and E is an isomorphism class of simple left A λ-modules. For
every λ ∈ X+, from [AHR20, Lem. 2.19], the algebra A λ is semisimple.
Then by [Lan02, XVII, Thm. 4.3, Cor. 4.5], the set of isomorphism classes
of simple left A λ-modules is finite. Therefore, Irr(G) is at most countable.
Consequently, Rep(G)/ ∼ is countable.

Lemma 3.5.3.6. Let A be an abelian category. Let B ⊂ A be a Serre
subcategory. Consider the quotient functor F : A → A/B.

1. Let X ∈ A. Let i : Y → F (X) be a monomorphism in A/B. Then there
is a monomorphism j : Z → X in A and an isomorphism u : Y → F (Z)
in A/B fitting into a commutative diagram in A/B

F (Z)

Y F (X).

F (j)u

i

Dually, up to isomorphism every quotient in A/B lifts to a quotient in A.
In particular, if X ∈ A is a simple object, then F (X) is either simple or
zero in A/B.
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2. Let V ∈ A be a Noetherian and Artinian object. If F (V ) is simple in
A/B, then there is a simple subquotient W of V in A such that F (W ) is
isomorphic to F (V ) in A/B.

3. Assume that A is Noetherian and Artinian. Let X ∈ A. If Y is a simple
subquotient of F (X) in A/B, then there is a simple subquotient W of X,
with F (W ) isomorphic to Y in A/B.

Proof.

1. By the construction in the proof of [Sta24, Tag 02MS] and the right
calculus of fractions in [Sta24, Tag 04VB], there is a diagram

M

Y X

g

f

in A, such that F (f) is an isomorphism and F (g) = i ◦ F (f) in
A/B. Therefore, F (g) is a monomorphism. Since F is exact, one has
F (ker(g)) = ker(F (g)) = 0, so ker(g) ∈ B. Let q : M → M/ ker(g)
be the epimorphism in A, and let j : M/ ker(g) → X be the
monomorphism in A induced by g. Then F (q) is an isomorphism in
A/B. Set u : Y → F (M/ ker(g)) to be the morphism F (q) ◦ F (f)−1 in
A/B. Then u is an isomorphism with the stated property.

2. Let P be the family of subobjects V ′ of V in A with V/V ′ ∈ B.
Then P is nonempty since V ∈ P . As V is Artinian in A, there is
a minimal object U ∈ P. Moreover, the morphism F (U) → F (V ) is
an isomorphism in A/B. Let Q be the family of subobjects of U ∈ A
lying in B. Then Q is nonempty since 0 ∈ Q. As V is Noetherian
in A, so is U . Thus, Q has a maximal object U0. Then W := U/U0

is a subquotient of V ∈ A and the morphism F (U) → F (W ) is an
isomorphism in A/B. In particular, W ̸= 0 in A.

We claim that W is simple in A. Indeed, let U ′ → W be a subobject
in A. Then there is a subobject U ′′ of U in A containing U0 with
U ′′/U0 = U ′. As F (U ′′) is a subobject of a simple object F (U) in A/B,
either the morphism F (U ′′)→ F (U) is an isomorphism or F (U ′′) = 0.
If F (U ′′) = 0, then U ′′ ∈ B and U ′′ ∈ Q. Since U0 is maximal in Q,
one has U0 = U ′′, so U ′ = 0. If F (U ′′) → F (U) is an isomorphism,
then U/U ′′ ∈ B. Since the sequence

0→ U/U ′′ → V/U ′′ → V/U → 0

is exact in A, and B is closed under extensions, one gets V/U ′′ ∈ B
and U ′′ ∈ P. Since U is minimal in P, one has U ′′ = U . The morphism
U ′ →W is thus an isomorphism in A. The claim is proved.

88

https://stacks.math.columbia.edu/tag/02MS
https://stacks.math.columbia.edu/tag/04VB


3. By 1, there is a subquotient Z of X in A with F (Z) isomorphic to
Y . Then F (Z) is simple in A/B. By assumption, Z is Noetherian and
Artinian in A. Thus from 2, there is a simple subquotient W of Z in A
with F (W ) isomorphic to F (Z) and to Y in A/B.

Example 3.5.3.7. Let s : X → A × X be a section to pX : A × X → X.
Let F be a lisse Q̄ℓ-sheaf on X, and let σ : πét

1 (X, η̄) → GL(Fη̄) be the
corresponding monodromy representation. By Fact 3.2.2.2 2, one has F ∈
DULA(X/X). Then from Fact 3.2.2.2 4, one has K := Rs∗F ∈ DULA(A ×
X/X). For every x ∈ X(k), by the proper base change theorem, K|Ax ∈
Db
c(Ax) is the skyscraper supported at the closed point s(x) ∈ Ax with stalk

Fx. Thus, K|Ax ∈ Perv(Ax) andK ∈ PervULA(A×X/X). Moreover, K|Aη̄ is
the skyscraper supported at s(η̄) ∈ Aη̄ with stalk Fη̄. Therefore, the generic
and the geometric generic Tannakian groups agree and are computed in
Example 3.4.3.3.

For every χ ∈ C(A), by Fact 3.2.1.1, one has K ⊗L p∗ALχ = Rs∗(F ⊗L
s∗p∗ALχ). Thus, RpX∗(K ⊗L p∗ALχ) = F ⊗L s∗p∗ALχ is a lisse Q̄ℓ-sheaf on X.
The corresponding πét

1 (X, η̄)-representation is the tensor product of σ with
the character

πét
1 (X, η̄)

(pA◦s)∗→ πét
1 (A, pAs(η̄))

∼−→ πét
1 (A, 0)

χ→ Q̄×
ℓ .

The Γk(η)-representation induced by pulling back along η∗ : Γk(η) →
πét
1 (X, η̄) is ωχη(K|Aη).

Assume that F is semisimple in Loc(X). Then F [dimX] is a semisimple
object of Perv(X). By Fact 3.2.1.6 1, the object K is semisimple in Db

c(A ×
X).
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Chapter 4

Generic vanishing theorem for
Fujiki class C

4.1 Introduction

Recall the historical origin of generic vanishing results. In the last
paragraph of [Enr39], Enriques gave an upper bound on the dimension
of the paracanonical system of curves on some class of algebraic surfaces.
However, in [Enr49, p.354] he pointed out a mistake in the proof of his
result as well as a similar theorem by Severi [Sev42]. Catanese [Cat83,
p.103] posed Conjecture 4.1.0.1.

Conjecture 4.1.0.1. For a smooth projective surface S/C without irrational
pencils, the dimension of the paracanonical system {KS} is at most the
geometric genus pg(S).

In 1987, Green and Lazarsfeld [GL87, Theorem 4.2] provided a positive
answer to Conjecture 4.1.0.1. Its proof uses a result ([GL87, Prop. 4.1]) of
generic vanishing type.

As is explained in [Uen83, pp.619–620], the dimension of {KS} in
Conjecture 4.1.0.1 is related to Conjecture 4.1.0.2, which is also of generic
vanishing type.

Conjecture 4.1.0.2 ([Uen83, Problem 8, p.620]). Let X be a projective
manifold and α : X → Alb(X) be an Albanese morphism. If dimα(X) > 1,
then H1(X,L) = 0 for generic L ∈ Pic0(X).

Green and Lazarsfeld [GL87] proved a strengthening of Conjecture
4.1.0.2. Since then, the theory of generic vanishing results has been
very much investigated and numerous authors have contributed to its
development, so the overview in Section 4.1.1 is by no means complete.

For a finitely generated Z-module H, let Htor be the submodule of H
comprised of torsion elements and Hfree := H/Htor. Let F → X be a
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(holomorphic) vector bundle1 on a complex manifold. The dimension of a
complex space always means the complex dimension. For any three integers
p, q,m ≥ 0, the corresponding jumping locus is defined as

Sp,qm (X,F ) := {L ∈ Pic0(X) : hq(X,ΩpX ⊗OX L⊗OX F ) ≥ m}.

For simplicity, p (resp. m, resp. F ) is omitted when p = 0 (resp. m = 1, resp.
F = OX). Roughly speaking, generic vanishing results show that these loci
are small (in some sense) and study their structure when F is flat unitary
(in the sense of Definition 4.2.2.2).

4.1.1 Known results

Let X be a connected compact Kähler manifold, α : X → Alb(X) be the
Albanese map associated with some base point and F → X be a flat unitary
vector bundle. Each locus Sp,qm (X,F ) is an analytic subset of the complex
torus Pic0(X) (see the proof of Theorem 4.7.1.3 1) and “generic" means
outside a strict analytic subset. In the literature, generic vanishing results
concerning Sq(X,F ) (resp. Sp,q(X,F )) are usually called of Kodaira type
(resp. Nakano type). Such results typically involve the following invariants:

• dimα(X);

• w(X) := max{codim(Z(η), X) : 0 ̸= η ∈ H0(X,Ω1
X)}, where Z(η)

denotes the zero-locus of the 1-form η;

• the defect of semismallness r(α) of α (Section 4.5.2).

Using deformation theory of cohomology groups, Green and Lazarsfeld
[GL87, Remarks (1), p.401] proves Fact 4.1.1.1, which is of Kodaira type
and implies Conjecture 4.1.0.2.

Fact 4.1.1.1. For every integer k ≥ 0, one has

codimPic0(X)(S
k(X,F )) ≥ dimα(X)− k.

In particular, if k < dimα(X), then Hk(X,F ⊗OX L) = 0 for a generic line
bundle L ∈ Pic0(X).

Green and Lazarsfeld also give a Nakano-type generic vanishing theorem.

Fact 4.1.1.2 ([GL87, Remarks (1), p.404]). For any integers i, j ≥ 0 with
i+ j < w(X), one has Si,j(X,F ) ̸= Pic0(X).

In another direction, there are known results concerning the structure of
the jumping loci.

1We use the words “locally free sheaf" and “vector bundle" interchangeably.
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Fact 4.1.1.3 ([GL91, Thm. 0.1 (1)]). For any two integers k,m ≥ 0, the
subset Skm(X) is a finite union of translates of subtori of Pic0(X).

Beauville and Catanese conjectured that for every integer q ≥ 0, Sq(X)
is a finite union of torsion translates of subtori of Pic0(X) ([Cat91, Problem
1.25] and [Bea92, p.1]). When X is a projective manifold, this conjecture
is proved by Simpson [Sim93, Sec. 5].

Fact 4.1.1.4 (Simpson). If X is furthermore projective, then for any two
integers k,m ≥ 0, the locus Skm(X) is a finite union of torsion translates
of subtori of Pic0(X).

Some arguments of [Sim93] are of arithmetic nature, so they do not
apply to the Kähler case. Campana [Cam01, Sec. 1.5.2] provided a partial
answer for not only Kähler manifolds but also for Fujiki class C (Definition
4.7.1.1).

Later on, Wang [Wan16, Cor. 1.4] answered affirmatively Beauville and
Catanese’s conjecture in full generality.

Fact 4.1.1.5 (Wang). For any three integers p, q,m ≥ 0, the subset Sp,qm (X) of
Pic0(X) is a finite union of torsion translates of subtori.

Hacon [Hac04, Cor. 4.2] uses Fourier-Mukai transforms of coherent
modules on complex abelian varieties to recover Fact 4.1.1.1 when X is
a projective manifold. This algebraic viewpoint sheds new insight on this
topic. Similarly, as a byproduct of the theory on convolution of perverse
sheaves on abelian varieties, Krämer and Weissauer obtain a Nakano-type
generic vanishing theorem. The proof of [KW15b, Thm. 3.1] gives Fact
4.1.1.6.

Fact 4.1.1.6. If furthermore the Albanese torus Alb(X) is algebraic, then for
any two integers p, q ≥ 0 with p + q < dimX − r(α), the locus Sp,q(X,F ) is
contained in a finite union of translates of strict subtori of Pic0(X).

Around the same time, by different methods Popa and Schnell [PS13,
Thm. 1.2] obtained precise codimension bounds.

Fact 4.1.1.7. If furthermore X is a projective manifold, then

codimPic0(X)(S
p,q(X)) ≥ |p+ q − dimX| − r(α)

for any two integers p, q ≥ 0. Moreover, for every X there exist p and q for
which the inequality becomes an equality.
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4.1.2 The main result and a sketch

Even though not necessarily Kähler, a complex smooth proper algebraic
variety2 also admits Hodge theory ([Del68, Prop. 5.3], [Del71a, Thm. 3.2.5]).
It is natural to ask if generic vanishing results also hold for such varieties.
The aim of this note is to show that generic vanishing result is not only true
for Kähler manifolds, but also for complex manifolds in Fujiki class C. This
class contains compact Kähler manifolds as well as smooth proper algebraic
varieties.

Here is the main result that is of Nakano type.

Theorem (Theorem 4.7.1.3). Let X be an n-dimensional complex manifold
in Fujiki class C with an Albanese morphism3 α : X → Alb(X), and let F be
a flat unitary vector bundle on X. Then for any two integers p, q ≥ 0 with
p+ q < n− r(α), the locus Sp,q(X,F ) is a strict analytic subset of the complex
torus Pic0(X).

For smooth proper algebraic varieties, the following finer result follows
from Corollary 4.7.2.6 and Lemma 4.6.1.2. It is not immediate from
previously known generic vanishing results.

Corollary 4.1.2.1. Let X/C be an n-dimensional smooth proper algebraic
variety with an algebraic Albanese morphism4 α : X → Alb(X). Let L be a
unitary local system on the analytification Xan, and let F = L⊗COXan be the
corresponding holomorphic vector bundle. Then, for any two integers p, q ≥ 0
with p + q < n − r(α), the subset Sp,q(X,F ) is contained in a finite union of
translates (torsion translates if L is semisimple of geometric origin5) of strict
abelian subvarieties of the Picard varietyfootnote 4 Pic0X/C.

Here is the outline of the proof of Theorem 4.7.1.3. By the Riemann-
Hilbert correspondence restricted to unitary objects, we pass from flat
unitary vector bundles to unitary local systems. The corresponding cohomology
groups are related by Hodge decomposition (Fact 4.7.1.2). In this way, the
initial generic vanishing problem for a flat unitary vector bundle twisted by
line bundles is reduced to a generic vanishing problem for a unitary local
system twisted by rank 1 local systems.

By pushing forward along the Albanese map, the problem about the
local system on a manifold in Fujiki class C is converted to a problem about
a complex of sheaves on a complex torus. The last problem is solved by
Krämer and Weissauer [KW15b] for perverse sheaves (on complex abelian
varieties) and by the subsequent generalization (to all complex tori) due to
Bhatt, Schnell and Scholze [BSS18].

2An algebraic variety means an integral scheme of finite type and separated over a field.
3reviewed in (4.18)
4recalled in Section 4.7.2
5in the sense of [BBDG82, p.163]
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This text is organized as follows. Sections 4.2 reviews the unitary
Riemann-Hilbert correspondence. Section 4.3 and 4.4 construct the Jacobian
and the Albanese map for regular manifolds, relaxing the usual Kähler
condition. Several definitions of defect of semismallness are proved to be
equivalent in Section 4.5. The work of Krämer and Weissauer on generic
vanishing for perverse sheaves is recalled in Section 4.6. Finally in Section
4.7, the previous results are applied to prove the main result, Theorem
4.7.1.3, for Fujiki class C.

4.2 Riemann-Hilbert correspondence

In Section 4.2, we review how the classical Riemann-Hilbert correspondence
restricts to an equivalence between unitary local systems and flat unitary
vector bundles on complex manifolds. The reason to introduce this
restricted equivalence is that unitary local systems on manifolds in Fujiki
class C admit Hodge decomposition (Fact 4.7.1.2).

4.2.1 Unitary local systems

Let X be a path-connected, locally path-connected and locally simply
connected topological space with a base point x0 ∈ X. Let Loc(X) be the
category of local systems (of finite dimensional C-vector spaces) on X. Let
π1(X,x0) be the fundamental group of X at x0 and RepC(π1(X,x0)) be
the category of its finite dimensional complex representations. By [Del70,
Cor. 1.4, p.4], the functor taking the stalk at x0 gives rise to an equivalence

Loc(X)→ RepC(π1(X,x0)) (4.1)

compatible with tensor products. The image under (4.1) of a local system
on X is called the corresponding monodromy representation.

Let RepuC(π1(X,x0)) ⊂ RepC(π1(X,x0)) be the full subcategory of
unitary representations. That means representations ρ : π1(X,x0)→ GL(V )
satisfying the following equivalent6 conditions:

1. The closure of ρ(π1(X,x0)) inside GL(V ) is compact;

2. There is a hermitian inner product h : V ⊗C V̄ → C such that
ρ(π1(X,x0)) is contained in the corresponding unitary group U(V, h).

Let Locu(X) be the full subcategory of Loc(X) corresponding to RepuC(π1(X,x0))
via the equivalence (4.1). Its objects are called unitary local systems on X.
Every unitary local system is semisimple, since every unitary representation
is so.

6since every compact subgroup of GLr(C) can be conjugated into the unitary subgroup
Ur(C)
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4.2.2 Flat unitary bundles

Let E → X be a holomorphic vector bundle on a complex manifold with
a hermitian metric h. By [Huy05, Prop. 4.2.14], there exists a unique
hermitian connection ∇h that is compatible with the holomorphic structure
(in the sense of [Huy05, Def. 4.2.12], i.e., ∇0,1 = ∂̄E), which is called
the Chern connection of (E, h). The corresponding curvature form, called
the Chern curvature, is an End(E, h)-valued (1, 1)-form, (see, e.g., [Huy05,
Prop. 4.3.8 iii)]).

For every integer k ≥ 0 (resp. any two integers i, j ≥ 0), let AkX (resp.
Ai,jX ) be the sheaf of smooth k (resp. (i, j)) forms on X. Then there is a
direct sum decomposition AkX = ⊕i+j=kAi,jX . In general, a (smooth) flat
connection ∇ on E that is compatible with the holomorphic structure needs
not to be a holomorphic connection (in the sense of [Huy05, Def. 4.2.17]).

Lemma 4.2.2.1. Let E → X be a holomorphic vector bundle with a flat
connection ∇ : E → E ⊗A0

X
A1
X . If ∇ is compatible with the holomorphic

structure, then ∇ is a holomorphic connection.

Proof. Take a local holomorphic frame {e1, . . . , er} of E, and denote the
corresponding local smooth connection matrix 1-form by Ω. As ∇0,1 = ∂̄E ,
one has Ω0,1 = 0. By flatness, dΩ + Ω ∧ Ω = 0. Taking the (1, 1) part of
it, one gets ∂̄Ω = 0, i.e., Ω is a holomorphic form. This shows that ∇ is
holomorphic.

Let Mod(OX) be the category of OX -modules, and let VB(X) ⊂
Mod(OX) be the full subcategory of finite locally free OX -modules. Let
DE(X) be the category of holomorphic vector bundles with a flat holomorphic
connection. Forgetting the connection gives a functor DE(X) → VB(X).
Let DEu(X) ⊂ DE(X) be the full subcategory comprised of objects (F,∇)
such that there exists a hermitian metric on F whose Chern connection is
∇.

Definition 4.2.2.2. An object in the essential image of DEu(X) under the
forgetful functor DE(X) → VB(X) is called a flat unitary vector bundle on
X.

From [Huy05, Eg. 4.2.15], the trivial line bundle OX is flat unitary. By
Lemma 4.2.2.1, a holomorphic vector bundle is flat unitary if and only if it
admits a hermitian metric whose Chern connection is flat.

95



4.2.3 An equivalence

LetX be a connected complex manifold. By the Riemann-Hilbert correspondence
([Del70, Thm. 2.17, p.12]), the pair of functors

Loc(X)→ DE(X), L 7→ (L ⊗C OX , IdL ⊗ d); (4.2)

DE(X)→ Loc(X), (E,∇) 7→ ker(∇) (4.3)

forms an equivalence of categories. It is compatible with tensor products
and preserves the rank.

Theorem 4.2.3.1 (Unitary Riemann-Hilbert correspondence). The equivalence
(4.2), (4.3) restricts to an equivalence between Locu(X) and DEu(X).

Proof. First, we prove that the functor (4.2) sends Locu(X) to DEu(X).
Consider a unitary local system L onX. Since the corresponding monodromy
representation is unitary, we may choose a hermitian inner product hx0 on
the stalk Lx0 such that the representation factors through U(Lx0 , hx0). For
any x ∈ X, choose a path γ from x0 to x and propagate hx0 along this curve,
i.e., using the linear isomorphism γ∗ : Lx0 → Lx induced by γ, we translate
hx0 to a hermitian inner product hx of Lx. This hx is independent of the
choice of γ by assumption. Hence a positive definite hermitian form h on L
that is invariant under the monodromy action. Then h extends naturally to a
(smooth) hermitian metric h′ on the associated holomorphic vector bundle
L ⊗C OX on X and the corresponding flat holomorphic connection IdL ⊗ d
is a hermitian connection. Therefore, IdL ⊗ d is the Chern connection of
(L ⊗C OX , h

′) and (L ⊗C OX , IdL ⊗ d) ∈ DEu(X).
Conversely, we prove that the functor (4.3) sends DEu(X) to Locu(X).

Consider a holomorphic hermitian vector bundle (E, h) on X whose Chern
connection ∇h is flat. Around every point we can find a local ∇h-horizontal
holomorphic frame {e1, . . . , er} of E. For any 1 ≤ i, j ≤ r, since the
connection ∇h is compatible with h, we have

d[h(ei, ej)] = h(∇hei, ej) + h(ei,∇hej) = 0.

Therefore, the local function h(ei, ej) is locally constant and the parallel
transport along every closed path on X preserves the hermitian inner
products on the fibers of E. The sheaf ker(∇h) of horizontal sections of
E forms a local system on X, whose stalks are exactly the fibers of E. Thus,
it admits a monodromy-invariant positive definite hermitian form and is
consequently unitary.7

7The definition of unitary local system in [Tim87, p.152] seems to forget this invariance.
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4.3 Hodge theory and Jacobian

In Section 4.3, we review the definition of Jacobian and show that for every
complex manifold admitting Hodge theory (Definition 4.3.1.1), its Jacobian
has nice expected properties.

4.3.1 Regular manifolds

Let X be a complex manifold. Let d : A•
X → A•+1

X be the exterior derivative.
Then d = ∂ + ∂̄, where ∂ : A•,•

X → A•+1,•
X and ∂̄ : A•,•

X → A•,•+1
X are the

(1, 0) and (0, 1) part of d respectively. For every E ∈ Locu(X), every integer
k ≥ 0, define a decreasing filtration of AkX ⊗C E by

F p = F p(AkX ⊗C E) := ⊕i≥pAi,k−iX ⊗C E . (4.4)

Then (d ⊗ IdE)(F
p) ⊂ F p. Therefore, this filtration induces a spectral

sequence, called the Frölicher spectral sequence:

Ep,q1 = Hq(X,ΩpX ⊗C E)⇒ Hp+q(X, E), (4.5)

where the differential dp,q1 : Ep,q1 → Ep+1,q
1 is induced by the operator ∂ :

Ap,qX → Ap+1,q
X on X. It is the classical notion in [Voi02, Sec. 8.3.3] when E

is the constant sheaf CX .
Although the Hodge theory for the first cohomology groups H1 suffices

for most properties of the Jacobian and the Albanese, in the sequel we
mainly work with manifolds admitting Hodge theory in all degrees. Such
manifolds are called “regular" for convenience.

Definition 4.3.1.1 (Regular manifold, [DGMS75, 5.21 (2)]). Assume that
X is compact. Let E ∈ Locu(X). If the following conditions are satisfied:

1. The corresponding spectral sequence (4.5) degenerates at page E1;

2. For every integer k ≥ 0, the filtration induced by F •(A•
X ⊗C E) on

Hk(X, E) gives a complex Hodge structure of weight k, in particular a
Hodge decomposition

Hk(X, E) = ⊕p+q=kHq(X,ΩpX ⊗C E); (4.6)

3. For any integers p, q ≥ 0, the conjugation map induces a C-anti-linear
isomorphism

Hq(X,ΩpX ⊗C E)→ Hp(X,ΩqX ⊗C E∨),

where E∨ = Hom(E ,CX) is the dual local system.

Then X is called E-regular (and simply regular when E = CX).
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For instance, classical Hodge theory asserts that compact Kähler manifolds
are regular (see e.g., [Voi02, Sec. 6.1.3]). Because of Fact 4.3.1.2, regular
manifolds are also called ∂∂̄-manifolds.

Fact 4.3.1.2 (∂∂̄-lemma, [DGMS75, 5.14, 5.21], [Var86, Prop. 3.4],
[Huy05, Cor. 3.2.10]). Assume that X is compact. Then X is regular if and
only if for every d-closed smooth (p, q)-form η on X, the following conditions
are equivalent:

1. η is d-exact;

2. η is ∂-exact;

3. η is ∂̄-exact;

4. η is ∂∂̄-exact.

If the above conditions hold and η is real, then there is a real smooth (p−1, q−
1)-form ρ on X with η = i∂∂̄ρ.

Remark 4.3.1.3. For Fact 4.3.1.2, it is important that the decomposition
(4.6) is induced by the filtration (4.4). In fact, [COUV16, Prop. 4.3]
constructs a non-regular, compact complex manifold X of dimension 3, such
that the spectral sequence (4.5) for E = CX degenerates at page E1, with
numerical Hodge symmetry hp,q(X) = hq,p(X) for any two integers p, q ≥ 0.
In this case, there is a non canonical decomposition of the form (4.6).

For the rest of Section 4.3.1, we assume that X is a regular manifold.
For every integer k ≥ 0 (resp. any two integers p, q ≥ 0), the space of global
∂-closed, ∂̄-closed smooth k (resp. (p, q)) forms on X is denoted by Zk(X)
(resp. Zp,q(X)). For any two integers p, q ≥ 0, the Dolbeault cohomology
group Hq(X,ΩpX) is denoted by Hp,q(X).

Corollary 4.3.1.4. For any integers p, q ≥ 0 and k := p+q, there is a canonical
commutative diagram

Zp,q(X) Zk(X)

Hp,q(X) Hk(X),
ιp,q

where the first row is the natural inclusion and each vertical map is surjective.
Moreover,

Hk(X,C) = ⊕p+q=kim(ιp,q), (4.7)

where each im(ιp,q) can be identified with Hp,q(X). The complex conjugation
map Zp,q(X)→ Zq,p(X) descends to a C-antilinear isomorphism Hp,q(X)→
Hq,p(X) (Hodge symmetry).
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Proof. For each ∂̄-closed (p, q)-form η on X, ∂η is a d-closed, ∂-exact (p +
1, q)-form. By Fact 4.3.1.2, there is a (p, q−1)-form ρ on X with ∂η+∂∂̄ρ =
0, then the (p, q)-form η + ∂̄ρ is in Zp,q(X). Therefore, the map taking
Dolbeault cohomology class Zp,q(X)→ Hp,q(X) is surjective.

Note that η + ∂̄ρ is d-closed. Its de Rham cohomology class is
independent of the choice of ρ. Indeed, if ρ′ is another (p, q − 1)-form with
η+ ∂̄ρ′ also d-closed, then ∂̄(ρ− ρ′) is d-closed and ∂̄-exact. By Fact 4.3.1.2,
it is d-exact.

Thus the map

ιp,q : Hq(X,ΩpX)→ Hp+q
dR (X,C), [η]→ [η + ∂̄ρ]

is a well-defined C-linear map. By a third application of Fact 4.3.1.2, the
map ιp,q is injective. Thus, Hp,q is identified with im(ιp,q).

We claim that the sum
∑

p+q=k im(ιp,q) is direct. In fact, if αp,q ∈ Zp,q(X)
for each pair (p, q) with p + q = k and the de Rham class of

∑
p+q=k α

p,q is
0 in Hk

dR(X,C), then there is a (k− 1)-form β on X with dβ =
∑

p+q=k α
p,q.

Thus,
αp,q = ∂(βp−1,q) + ∂̄(βp,q−1).

The ∂-exact form ∂(βp−1,q) is thereby ∂̄-closed, so d-closed. By Fact 4.3.1.2
again, ∂(βp−1,q) is ∂̄-exact, hence [αp,q] = 0 in Hp,q(X) for every (p, q). The
claim is proved.

By assumption,

dimCH
k(X,C) =

∑
p+q=k

dimCH
p,q(X),

hence the decomposition (4.7). In particular, the map taking de Rham
cohomology class Zk(X) → Hk(X,C) is surjective. The complex conjugate
of Zp,q(X) is exactly Zq,p(X), the Hodge symmetry follows.

Lemma 4.3.1.5 is used in the proof of Corollary 4.3.2.2.

Lemma 4.3.1.5. For every integer k ≥ 0, the map Hk(X,C) → Hk(X,OX)
induced by the inclusion C → OX coincides with the projection Hk(X,C) →
H0,k(X) given by the Hodge decomposition (4.7).

Proof. Consider the following commutative diagram

CX A0
X A1

X . . .

OX A0,0
X A0,1

X . . .

d

p0,0

d

p0,1

∂̄ ∂̄
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The first row is an acyclic resolution of CX by (smooth) Poincaré lemma,
and the second row is the Dolbeault resolution. The first vertical map is the
inclusion and each p0,j : AjX → A0,j

X is taking the (0, j)-part of a j-form. It is
a morphism of complexes. Taking global sections, the induced map on k-th
cohomology groups is the first map in the statement.

For a class [α] ∈ Hk(X,C), we may assume that the representative k-
form α is ∂-closed and ∂̄-closed by Corollary 4.3.1.4. Then its image under
the first map Hk(X,C) → Hk(X,OX) is represented by the (0, k)-part of
α, which is still ∂-closed and ∂̄-closed. This describes exactly the projection
induced by the Hodge decomposition (4.7).

4.3.2 Jacobian

For a connected compact complex manifold X, let b1(X) := dimCH
1(X,C)

be its first Betti number. The exponential short exact sequence

0→ Z→ OX
f 7→exp(2πif)−→ O∗

X → 1

induces a long exact sequence

H0(X,OX)
f 7→exp(2πif)−→ H0(X,O∗

X)→ H1(X,Z)→ H1(X,OX)→ H1(X,O∗
X)

δ→ H2(X,Z).
(4.8)

Set Pic(X) := H1(X,O∗
X) for the Picard group, NS(X) := im(δ) for the

Néron-Severi group, Pic0(X) = ker(δ) and Picτ (X) := δ−1(H2(X,Z)tor). As
X is compact connected, one has H0(X,OX) = C, H0(X,O∗

X) = C∗ and
the first map in (4.8) is surjective. Accordingly, the third map H1(X,Z) →
H1(X,OX) is injective and

Pic0(X) =
H1(X,OX)

H1(X,Z)
. (4.9)

If X is a complex torus, then H2(X,Z) is torsion free and

Pic0(X) = Picτ (X). (4.10)

For general X, let Loc1(X) (resp. Locu,1(X)) be the set of isomorphism
classes of rank-1 (resp. and unitary) local systems on X. Then Loc1(X)
is a group under tensor product and Locu,1(X) is a subgroup. For each
L ∈ Loc1(X), L := L ⊗C OX is a flat line bundle on X. By [Dem12, Ch. V,
§ 9], L ∈ Picτ (X), whence a group morphism

Loc1(X)→ Picτ (X), L 7→ L ⊗C OX . (4.11)

Remark 4.3.2.1. Theorem 4.2.3.1 implies that a line bundle on X is flat
unitary if and only if its class in Pic(X) lies in the image of the restriction of
(4.11):

Locu,1(X)→ Picτ (X). (4.12)
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The image of (4.12) may not to be contained in Pic0(X). For instance, let
X be an Enriques surface, then π1(X,x0) = Z/2, #Locu,1(X) = Z/2. By
Corollary 4.4.2.2 2 below, the map (4.12) is an isomorphism, while Pic0(X)
is trivial.

Corollary 4.3.2.2. Assume that X is regular. Then Picτ (X) has a natural
structure of compact complex Lie group with identity component Pic0(X) that
is a complex torus of dimension b1(X)/2. Moreover, π0(Picτ (X)) = NS(X)tor.

Proof. The inclusion R ⊂ OX induces an R-linear map

ϕ : H1(X,R)→ H1(X,OX). (4.13)

Because of Lemma 4.3.1.5 and the Hodge symmetry in Corollary 4.3.1.4,
taking complex conjugate inside H1(X,C) induces an R-linear map

ϕ̄ : H1(X,R)→ H0(X,Ω1
X). (4.14)

If ξ ∈ ker(ϕ), then the image of ξ under the injection H1(X,R)→ H1(X,C)
is ϕ(ξ) + ϕ̄(ξ) = 0, so ξ = 0. This shows that ϕ is injective. But
dimRH

1(X,R) = dimRH
1(X,OX) = b1(X), so ϕ is a linear isomorphism.

The map H1(X,Z) → H1(X,OX) in (4.8) factors through ϕ. Since
H1(X,Z) is a full lattice of H1(X,R), it remains a full lattice in H1(X,OX).
Therefore, the quotient Pic0(X) is a complex torus of dimension b1(X)/2.
The Z-module Pic0(X) is divisible, so the short exact sequence

0→ Pic0(X)→ Picτ (X)→ NS(X)tor → 0

spits. Therefore, there is a natural structure of compact complex Lie group
on Picτ (X) satisfying the stated properties.

The complex torus Pic0(X) in Corollary 4.3.2.2 is called the Jacobian of
the regular manifold X.

Example 4.3.2.3. Here are two examples showing how Corollary 4.3.2.2
fails for non-regular compact complex manifolds.

1. Let X be a Hopf surface ([Huy05, Example 3.3.2]). The Betti number
b1(X) = 1, H1(X,Z) = Z and H1(X,OX) = C, so the complex
manifold Pic0(X) = C/Z is not compact. However, by [Kod64], the
Frölicher spectral sequence of CX degenerates.

2. Let Y be a Calabi-Eckmann manifold ([BS17, Sec 1.2]). Then
H1(Y,OY ) = C and Y is simply connected, so H1(Y,Z) = 0
and b1(Y ) = 0, but Pic0(Y ) = C is not compact and b1(Y )/2 <
dimPic0(Y ).
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4.4 Albanese torus

We turn to the conception of Albanese torus and Albanese map. They help
to reduce some problems about general complex manifolds to those about
complex tori. They are also tools to study the Jacobian. Again, Section 4.4
conveys the fact that Hodge theory guarantees the usual properties of the
Albanese torus and Albanese map.

Fix a connected regular manifold X and a base point x0 ∈ X.

4.4.1 Basics of Albanese torus

From [Uen06, Cor. 9.5, p.101], every element of H0(X,Ω1
X) is d-closed, so

there is a well-defined natural map

ι : H1(X,Z)→ H0(X,Ω1
X)

∨, [γ] 7→ (β 7→
∫
γ
β), (4.15)

where γ runs through closed paths on X. Set

Alb(X) = H0(X,Ω1
X)

∨/im(ι). (4.16)

Lemma 4.4.1.1. On Alb(X), there is a natural structure of h1,0(X)-dimensional
complex torus with H1(Alb(X),Z) = im(ι).

Proof. Using the R-linear isomorphism (4.14) and de Rham isomorphism

H1
dR(X,R)→ H1(X,R),

the map (4.15) is identified with the natural map H1(X,Z)→ H1
dR(X,R)∨.

The latter extends to an R-linear isomorphism H1(X,R) → H1
dR(X,R)∨ by

Poincaré duality. Therefore,

ker(ι) = H1(X,Z)tor (4.17)

and im(ι) is a full lattice in H0(X,Ω1
X)

∨ isomorphic to H1(X,Z)free. Thus,
the quotient Alb(X) is a complex torus with the stated properties.

The complex torus Alb(X) in Lemma 4.4.1.1 is called the Albanese torus
of X. For each x ∈ X, choose two paths γx, γ′x connecting x0 to x. Then the
composition γ of γx followed by the reverse of γ′x is a closed path on X and∫

γx

• −
∫
γ′x

• =
∫
γ
• = ι([γ])

belongs to im(ι). Therefore, [
∫
γx
•] = [

∫
γ′x
•] in Alb(X). As [

∫
γx
•] is

independent of the choice of γx, we write it as
∫ x
x0
•. For the fixed base

point x0 ∈ X, the associated Albanese map is

αX,x0 : X → Alb(X), x 7→
∫ x

x0

•. (4.18)

The subscripts X and x0 are omitted when they are clear from the context.
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Proposition 4.4.1.2.

1. The Albanese map αX,x0 : X → Alb(X) is a morphism of complex
manifolds and the formation of Albanese map is functorial for the pair
(X,x0).

2. The induced morphism αx0,∗ : H1(X,Z) → H1(Alb(X),Z) is surjective
with kernel H1(X,Z)tor.

3. The morphism αx0 satisfies the following universal property: every
morphism of pointed complex manifolds (X,x0) → (A, 0) with A a
complex torus factors uniquely through a morphism of complex tori
Alb(X) → A. In particular, the complex subtorus of Alb(X) generated
by αx0(X) is Alb(X).

4. The pullback morphism α∗
x0 : H1(Alb(X),Z) → H1(X,Z) is an

isomorphism of weight 1 Z-Hodge structures independent of the choice
of x0.

5. The pullback α∗
x0 : Pic0(Alb(X)) → Pic0(X) is an isomorphism of

complex tori independent of the choice of x0. In particular, the complex
tori Alb(X) and Pic0(X) are dual to each other.8

Proof.

1. When X is Kähler, it is proved in [Huy05, Prop. 3.3.8]. The general
case is similar.

2. By Lemma 4.4.1.1, H1(Alb(X),Z) = im(ι). Let γ : [0, 1] → X be a
closed path on X based at x0. It defines a path

ζ : [0, 1]→ H0(X,Ω1
X)

∨, ζ(t) =

∫ γ(t)

γ(0)
•,

where the integral is along a part of γ. Then

ζ (mod im(ι)) = αx0 ◦ γ : [0, 1]→ Alb(X).

Therefore, αx0,∗[γ] = ζ(1)−ζ(0) =
∫
γ • = ι([γ]). Hence a commutative

triangle

im(ι) = H1(Alb(X),Z)

H1(X,Z) H0(X,Ω1
X)

∨

αx0,∗

ι

Therefore, αx0,∗ is surjective and ker(αx0,∗) = ker(ι) = H1(X,Z)tor,
where the last equality uses (4.17).

8in the sense of [BL04, p.34]
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3. The universal property follows from Point 1. Let T be the complex
subtorus of Alb(X) generated by αx0(X). Then the pointed morphism
αx0 : (X,x0) → (T, 0) factors through αx0 : (X,x0) → (Alb(X), 0), so
T = Alb(X).

4. From [BL04, Thm. 1.4.1 b)], the map α∗
x0 : H1,0(Alb(X)) → H1,0(X)

is a C-linear isomorphism. By [BL04, Sec 1.3, p.13], H1(Alb(X),Z) is
naturally isomorphic to Hom(im(ι),Z). By Poincaré duality, the latter
is identified with H1(X,Z), so

α∗
x0 : H1(Alb(X),Z)→ H1(X,Z)

is an isomorphism of weight 1 Z-Hodge structures. Up to translation,
different base points give rise to the same Albanese map. More
precisely, for x ∈ X, Tαx(x0) ◦ αx0 = αx, where

Ta : Alb(X)→ Alb(X), u 7→ u+ a

is the translation by a on Alb(X). The independence stated in Point 4
follows.

5. As the isomorphism (4.9) is functorial in X, there is a commutative
diagram with exact rows

H1(Alb(X),Z) H1(Alb(X), OAlb(X)) Pic0(Alb(X)) 0

H1(X,Z) H1(X,OX) Pic0(X) 0.

α∗
x0

α∗
x0

α∗
x0

By Point 4, the left two vertical maps are isomorphisms independent of
x0. Therefore, the right vertical map is an isomorphism independent
of x0. As Alb(X) is a complex torus, by [BL04, Proposition 2.4.1],
Pic0(Alb(X)) is the dual torus of Alb(X). As α∗

x0 : Pic0(Alb(X)) →
Pic0(X) is an isomorphism, Pic0(X) is dual to Alb(X).

Remark 4.4.1.3. By [Uen06, Cor. 9.5, p.101], for every connected regular
manifold X the formation of Alb(X) and αx0 agrees with the construction
in [Bla56, §2]. Then [Bla56, p.163] gives another proof of the universal
property stated in Proposition 4.4.1.2 3.

EXAMPLE 4.3.2.3 1 (CONTINUED). If X were a Hopf surface, then
H1(X,Z) = Z and H0(X,Ω1

X) = 0. Equation (4.16) would define a point
and Proposition 4.4.1.2 2 would fail.
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4.4.2 Back to Jacobian

Albanese torus helps to understand the Jacobian. Corollary 4.4.2.1 is used
to show the jumping loci are analytic subsets.

Corollary 4.4.2.1 (Universal line bundle). There exists a unique (up to
isomorphism) line bundle L on X × Pic0(X) such that its pullback module
to {x0} ×Pic0(X) is trivial and for every point y ∈ Pic0(X), the isomorphism
class of the pullback line bundle L|X×{y} in Pic(X) is y.

Proof. Consider the map

f = αx0 × IdPic0(X) : X × Pic0(X)→ Alb(X)× Pic0(X).

By Proposition 4.4.1.2 5 and [GH78, Lemma, p.328], there is a holomorphic
line bundle P on Alb(X) × Pic0(X) that is trivial on {0} × Pic0(X) such
that for every y ∈ Pic0(X), the line bundle P|Alb(X)×{y} is of class y in
Pic0(Alb(X)). Let L = f∗P, then L|{x0}×Pic0(X) = f∗(P|{0}×Pic0(X)) is
trivial. For every y ∈ Pic0(X), the line bundle

L|X×{y} = f∗(P|Alb(X)×{y}) = α∗
x0(P|Alb(X)×{y})

is of class y in Pic0(X). The existence is proved. The uniqueness follows
from [BL04, Cor. A.9].

Let
Char(X) = Hom(H1(X,Z),C∗)

be the group of characters of the first homology of X. By [Hat05, Cor. A.8,
A.9], the abelian groupH1(X,Z) is finitely generated. From [Mil17a, Ch. 12
b.], Char(X) has a natural structure of diagonalizable algebraic group over
C, with identity component Char◦(X) isomorphic to Gb1(X)

m . Moreover,
Charu(X) := Hom(H1(X,Z), S1) is a real Lie subgroup of Char(X) of
dimension b1(X). There is a canonical group isomorphism by taking
character sheaves

Charu(X)→ Locu,1(X), χ 7→ Lχ. (4.19)

Set T (X) := Hom(H1(X,Z)free, S1). Then T (X) is the identity component
of Charu(X). From Corollary 4.3.2.2, composing the isomorphism (4.19)
and the map (4.12) gives a morphism of real Lie groups

T (X)→ Pic0(X). (4.20)

In Corollary 4.4.2.2 1, the isomorphism allows one to identify certain
characters with topologically trivial line bundles. This identification is used
in the proof of Theorem 4.7.1.3. When X is in Fujiki Class C (resp. Kähler),
Corollary 4.4.2.2 2 is also in [Ara90, Lem. 2] (resp. the proof of [Wan16,
Cor. 1.4]).
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Corollary 4.4.2.2.

1. The morphism (4.20) is an isomorphism of real Lie groups.

2. The map (4.12) is a group isomorphism and NS(X)tor = H2(X,Z)tor.
In particular, every element of Picτ (X) is a flat unitary line bundle.

Proof.

1. Lemma 4.4.1.1 gives an identification H1(X,Z)free = im(ι). By [BL04,
Prop. 2.2.2], the natural group morphism

Hom(im(ι), S1)→ Pic0(Alb(X)) (4.21)

defined via factors of automorphy ([BL04, p.30]) is an isomorphism.
The map (4.20) is the composition of (4.21) with the isomorphism
α∗
x0 : Pic0(Alb(X))→ Pic0(X) in Proposition 4.4.1.2 5.

To sum it up:

Charu(Alb(X)) = Hom(im(ι), S1) T (X) Charu(X) = Locu,1(X)

Pic0(Alb(X)) Pic0(X) Picτ (X).

∼

(4.21) (4.20) (4.12)

α∗
x0

∼

2. The commutative diagram of abelian sheaves on X

0 Z R S1 0

0 Z OX O∗
X 0

Id

f 7→exp(2πif)

has exact rows. Moreover, the Z-module R is injective. Therefore,
there is a commutative diagram with exact rows

0 Hom(H1(X,Z)tor, S1) Ext1Z(H1(X,Z)tor,Z) 0

0 Hom(H1(X,Z),Z) Hom(H1(X,Z),R) Charu(X) Ext1Z(H1(X,Z),Z) 0

0 H1(X,Z) H1(X,R) H1(X,S1) H2(X,Z)

0 H1(X,Z) H1(X,OX) H1(X,O∗
X) H2(X,Z)

∼
ψ

r

ξ

∼

Id

∼

(4.13)

∼ ∼

Id
δ
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where r is the restriction, the vertical morphisms in the middle are
from [Hat05, Thm. 3.2] and im(ξ) = H2(X,Z)tor by [Hat05, p.196].
Hence an isomorphism ψ : Hom(H1(X,Z)tor, S1) → H2(X,Z)tor
fitting into a commutative diagram

0 T (X) Locu,1(X) Hom(H1(X,Z)tor, S1) 0

0 Pic0(X) Picτ (X) H2(X,Z)tor 0,

(4.20)

r

(4.12) ψ

δ

where the first row is exact. Thus, δ is surjective and the second row
is also exact. By the five lemma, the middle vertical map (4.12) is an
isomorphism.

4.5 Defect of semismallness

In this section, we review the defect of semismallness of a morphism, an
invariant introduced by de Cataldo and Migliorini that plays a crucial role
in the decomposition theorem and Lefschetz’s theorem. It appears in Fact
4.1.1.6 and Theorem 4.7.1.3. Its main property that we need is Proposition
4.5.3.2.

4.5.1 Stratifications and constructible sheaves

We refer to [BF84, Sec. 2.1] for the definitions of constructible stratifications
and Whitney stratifications of a complex analytic space.

Theorem 4.5.1.1 is about the semicontinuity of fiber dimension. Although
it is well-known, a short proof is included due to the lack of reference.
Its analogue in algebraic geometry is a celebrated theorem of Chevalley
[Gro66, Cor. 13.1.5].

Theorem 4.5.1.1 (Analytic Chevalley theorem). Let f : X → Y be a proper
morphism of reduced complex analytic spaces. For every integer n ≥ 0, let
Yn = {y ∈ Y : dim f−1(y) = n} and Y≥n = ∪m≥nYm. Then Y≥n is an
analytic subset of Y . In particular, {Yn}n∈N is a constructible stratification of
Y .

Proof. Let Fn := {x ∈ X : dimx f
−1(f(x)) ≥ n}. By [Fis76, Thm. 3.6,

p.137], Fn is an analytic subset of X. By the definition of global dimension
[GR84, p.94], one has Y≥n = f(Fn). By Remmert theorem (see, e.g.,
[Whi72, Thm. 4A, p.150]), the subset Y≥n is analytic in Y .
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Definition 4.5.1.2. ([BF84, p.125]) Let f : X → Y be a morphism of
complex analytic spaces. If two Whitney stratifications X : X = ⊔αXα and
Y : Y = ⊔λYλ satisfy that:

1. For each α, there is λ with f(Xα) ⊂ Yλ;

2. For each pair (α, λ) with f(Xα) ⊂ Yλ, the restricted morphism f :
Xα → Yλ is smooth.

Then such a pair (X,Y) is called a Whitney stratification of f .

Fact 4.5.1.3 ([Hir77, Thm. 1], [BF84, Lem. 2.4], [GM88, Thm, p.43]). Let
f : X → Y be a proper morphism of complex analytic spaces. Suppose that
X, (resp. Y) is a constructible stratification of X (resp. Y ), then there exists
a Whitney stratification (X′,Y′) of f such that X′ (resp. Y′) refines X (resp.
Y).

Corollary 4.5.1.4 is useful but implicit in the literature.

Corollary 4.5.1.4. Let X be a complex analytic space. For finitely many
constructible stratifications of X, there exists a Whitney stratification of X
refining all of them.

Proof. It suffices to consider the case of two constructible stratifications X1

and X2 of X. By Fact 4.5.1.3, there is a Whitney stratification (X,X′) of
IdX such that X (resp. X′) refines X1 (resp. X2). Moreover, X refines X′

by Definition 4.5.1.2. Hence a Whitney stratification X refining both X1 and
X2.

For a complex analytic spaceX, using analytic constructible stratifications,
one can define constructible sheaves. Let Db

c(X) be the triangulated
category of complexes of sheaves of C-vector spaces whose cohomology is
bounded and constructible (see, e.g., [Dim04, p.82]).

Fact 4.5.1.5 ([KS90, Prop. 8.5.7 (b)], [Dim04, Thm. 4.1.5 (b)]). Let f :
X → Y be a morphism of complex analytic spaces and K ∈ Db

c(X). If f is
proper on Supp(K), then Rf∗K ∈ Db

c(Y ).

Corollary 4.5.1.6. Let f : X → Y be a proper morphism of complex analytic
spaces and K ∈ Db

c(X). Then there exists a Whitney stratification (X,Y)
of f such that for every integer i and every stratum S of Y, the restriction
Hi(Rf∗K)|S is a local system on S.

Proof. By Fact 4.5.1.5, Rf∗K ∈ Db
c(Y ). In particular, there are only finitely

many j ∈ Z with Hj(Rf∗K) ̸= 0. For each such j, there is an admissible
partition (in the sense of [Dim04, p.81]) Pj on Y such that the restriction
of Hj(Rf∗K) to each stratum of Pj is a local system. By Corollary 4.5.1.4,
there exists a Whitney stratification Y0 of Y refining the finitely many Pj .
By Fact 4.5.1.3, there is a Whitney stratification (X,Y) of f satisfying the
properties.
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4.5.2 Equivalent definitions

The defect of semismallness measures how far a morphism of complex
manifolds is from being semismall (see, e.g., [KW01, Def. 7.3, p.156]).
However, in the literature there exist multiple seemingly different definitions.
We review some of them and show that they are equivalent.

Definition 4.5.2.1. Let f : X → Y be a proper morphism of complex
manifolds with dimX = n.

• ([EV89, Definition 1.1]) Define

r1(f) = max
Z

(dimZ − dim f(Z)− codimX(Z)), (4.22)

where Z runs through all irreducible analytic subsets of X.

• ([Max19, Definition 9.3.7]) For a Whitney stratification (X = ⊔Sα, Y =
⊔Tλ) of f , we choose a point yλ ∈ Tλ in each stratum, and define

r2(f) = max
λ
{2 dim f−1(yλ) + dimTλ − n}. (4.23)

(By convention, the empty space has dimension −∞.)

• ([dCM05, Definition 4.7.2]) For each integer i ≥ 0, let Yi = {y ∈ Y :
dim f−1(y) = i}. Define

r3(f) = max
i≥0

(2i+ dimYi − n).

• ([PS13, Definition 2.8]) For each integer i ≥ 0, let Y≥i = {y ∈ Y :
dim f−1(y) ≥ i} for each i ≥ 0. Define

r4(f) = max
i≥0

(2i+ dimY≥i − n).

• ([dCM09, Sec. 3.3.2, part 2]) Define

r5(f) = dimX ×Y X − n. (4.24)

• ([Wil16, Sec 3.2]) Define

r6(f) = max{i ∈ Z : pHi(Rf∗CX [n]) ̸= 0}.

Proposition 4.5.2.2. The first five numbers in Definition 4.5.2.1 are all equal.

This common integer is called the defect of semismallness of f and
denoted by r(f). We shall show r(f) = r6(f) in Proposition 4.5.3.2 2.

Proof.
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• r3(f) = r4(f): As each Yi is a subset of Y≥i, one has r3(f) ≤ r4(f).
There are only finitely many integers i ≥ 0 with Y≥i nonempty, so the
maximum defining r4(f) is attained at some i0(≥ 0). Then

2(i0 + 1) + dimY≥i0+1 ≤ 2i0 + dimY≥i0 .

Since Y≥i0 = Y≥i0+1 ∪ Yi0 , one has dimY≥i0 = dimYi0 . Then

r4(f) = 2i0 + dimY≥i0 − n ≤ r3(f).

Therefore, r3(f) = r4(f).

• r2(f) = r5(f): By Thom’s first isotopy lemma (see, e.g., [Mat12,
Prop. 11.1]), for every λ, the restriction f |f−1(Tλ) : f−1(Tλ) → Tλ
is a topologically locally trivial fibration. Therefore, dim f−1(yλ) is
independent of yλ ∈ Tλ and

dim f−1(Tλ)×Tλ f
−1(Tλ) = dimTλ + 2dim f−1(yλ). (4.25)

As {f−1(Tλ)×Tλ f−1(Tλ)}λ is a locally finite partition of X ×Y X into
locally closed subsets (in the analytic Zariski topology), one has

dimX ×Y X = max
λ

[dim f−1(Tλ)×Tλ f
−1(Tλ)]. (4.26)

Plugging (4.25) into (4.26) we get r5(f) = r2(f). In particular, r2(f)
is independent of the choice of the stratifications.

• r1(f) ≤ r2(f): For every irreducible analytic subset Z ⊂ X, f(Z)
is an irreducible analytic subset of Y . Then {Y \ f(Z), f(Z)} is
a constructible stratification of Y . Fact 4.5.1.3 yields a Whitney
stratification (X = ⊔Sα, Y = ⊔Tλ) of f with Y = ⊔Tλ refining
{Y \ f(Z), f(Z)}. There exists λ0 such that Tλ0 is an open subset
of f(Z), hence dimTλ0 ≤ dim f(Z). Then f−1(Tλ0)∩Z is a nonempty
open subset of Z. Therefore,

dimZ = dim(f−1(Tλ0) ∩ Z) ≤ dim f−1(Tλ0).

Then

2 dimZ−dim f(Z) ≤ 2 dim f−1(Tλ0)−dimTλ0 = 2dim f−1(yλ0)+dimTλ0 .

This shows r1(f) ≤ r2(f). In particular, the maximum in (4.22) is
indeed attained.

• r2(f) ≤ r1(f): Fix a Whitney stratification Y = ⊔λTλ defining r2(f).
For every λ with f−1(yλ) nonempty, Tλ is an analytic subset of Y of
dimension dimTλ. Then f−1(Tλ) is a nonempty analytic subset of
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X. Let Z0 be an irreducible component of f−1(Tλ) with dimZ0 =
dim f−1(Tλ). Then f(Z0) ⊂ Tλ and dim f(Z0) ≤ dimTλ. Therefore,

2 dim f−1(yλ)+dimTλ = 2dim f−1(Tλ)−dimTλ ≤ 2 dimZ0−dim f(Z0).

This shows r2(f) ≤ r1(f).

• r2(f) ≤ r3(f): By Theorem 4.5.1.1, {Yi} is a constructible stratification
of Y . By Fact 4.5.1.3, there is a Whitney stratification (X = ⊔Sα, Y =
⊔Tλ) of f such that the stratification Y = ⊔Tλ refines Y = ⊔iYi. For
every λ, there is i0 with Tλ ⊂ Yi0 . In particular, for every yλ ∈ Tλ, one
has dim f−1(yλ) = i0, so

2 dim f−1(yλ) + dimTλ ≤ 2i0 + dimYi0 .

This shows r2(f) ≤ r3(f).

• r3(f) ≤ r2(f): For every integer i ≥ 0 with Yi nonempty, Yi =
⊔λ(Yi ∩ Tλ) is a constructible stratification, so there is an index λ0
with dim(Yi ∩ Tλ0) = dimYi. Then dimYi ≤ dimTλ0 . One may take
yλ0 ∈ Yi ∩ Tλ0 . Then

2i+ dimYi ≤ 2 dim f−1(yλ0) + dimTλ0 ,

which shows r3(f) ≤ r2(f).

From the diagonal inclusion X → X ×Y X, one gets dimX ≤ dimX ×Y
X, so r(f) = r5(f) ≥ 0. If r(f) = 0, then f is said to be semismall.

Example 4.5.2.3.

1. If f : X → Y is a proper morphism of complex manifolds that is flat
of relative dimension r, then r(f) = r.

2. Let X be projective manifold such that −KX is nef and α : X →
Alb(X) be the Albanese map associated with some base point. Then
r(α) = dimX − dimα(X) by [LTZZ10, Theorem].

4.5.3 Direct image of local systems

Defect of semismallness is an important invariant appearing in the decomposition
of direct image of perverse sheaves. Proposition 4.5.3.2 is an elementary
instance. We begin with a well-known estimation of cohomological dimension
of a complex analytic space, used in the proof of Proposition 4.5.3.2. An
analogue for topological manifolds is [KS90, Prop. 3.2.2 (iv)].
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Lemma 4.5.3.1. Let X be a paracompact9 complex analytic space of complex
dimension n. Then Hq(X,F ) = 0 for every abelian sheaf F on X and every
integer q > 2n.

Proof. By [GR84, Prop., p.94], there is an open covering {Uα}α of X such
that for each α, there is a finite morphism fα : Uα → Bα of complex
analytic spaces to an open ball Bα ⊂ Cn. As X is Hausdorff paracompact,
by [Mun00, Lemma 41.6], there exists a locally finite open covering {Vα}
on X such that Vα ⊂ Uα for each α.

From [Mun00, p.314], for every α, the topological dimension ([Mun00,
Def., p.305]) covdim(Bα) = 2n. By [KK83, Prop. 51 A.2], the topological
space X is metrizable. From [Mun00, Thm. 32.2], each Uα is normal.
Therefore, by [Eng95, Thm. 3.3.10, p.200], covdim(Uα) ≤ 2n. By [Eng95,
Theorem 3.1.3, p.169], covdim(Vα) ≤ 2n. Similarly, X is normal, so
covdim(X) ≤ 2n by [Eng95, Thm. 3.1.10, p.172]. By Alexandroff theorem
(see, e.g., [Bre12, p.122]), the cohomological dimension ([Eng95, p.75])
dimZX ≤ 2n.

The category Db
c(X) has a natural perverse t-structure (p being the

middle perversity)
(pD≤0(X), pD≥0(X)),

whose heart Perv(X) is a C-linear abelian category ([BBDG82], see also
[HT07, Thm. 8.1.27]). An object of Perv(X) is called a perverse sheaf on
X. For every integer i, the functor taking the i-th perverse cohomology
sheaf is denoted by pHi : Db

c(X) → Perv(X). For any two integers a ≤ b,
set

pD[a,b](X) := {K ∈ Db
c(X) : pHi(K) = 0, ∀i /∈ [a, b]};

D[a,b](X) := {K ∈ Db
c(X) : Hi(K) = 0, ∀i /∈ [a, b]}.

Verdier duality DX : Db
c(X) → Db

c(X) is a contravariant auto-
equivalence that interchanges pD≤0(X) and pD≥0(X) (see, e.g., [HT07,
p.192]).

Proposition 4.5.3.2 is an analytic analogue of [dCM03, Prop. 10.0.7]. It
allows local coefficients and in our case permits to descend some problems
about local systems on X to problems about complexes of sheaves on Y .
The proof is different from that in [dCM03], in particular it does not use the
decomposition theorem [dCM03, Thm. 10.0.6].

Proposition 4.5.3.2. Let f : X → Y be a proper morphism of complex
manifolds, where X is of pure dimension n. Let L a local system on X. Then:

1. Rf∗(L[n]) ∈ pD[−r(f),r(f)](Y ). In particular, Rf∗L[n] ∈ Perv(Y ) when
f is moreover semismall.

9in the sense of [Mun00, Def., p.253]
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2. When L = CX , for j = ±r(f), one has pHj(Rf∗CX [n]) ̸= 0. In
particular,

r(f) = r6(f). (4.27)

Proof. From Corollary 4.5.1.6, there exists a Whitney stratifications (X =
⊔αXα, Y = ⊔λYλ) of f such that for every λ, every integer j, the restriction
Hj(Rf∗L[n])|Yλ is a local system. For each λ, choose a point yλ ∈ Yλ.

1. First, we show that Rf∗L[n] ∈ pD≤r(f)(Y ). Fix an integer i. If
dimYλ > r(f) − i, then by (4.23), one has i + n > 2 dim f−1(yλ).
Since the fiber f−1(yλ) is a compact complex analytic space, by Lemma
4.5.3.1,

H i+n(f−1(yλ),L|f−1(yλ)) = 0.

By proper base change theorem (see, e.g., [Mil13, Thm. 17.2]),

Hi(Rf∗L[n])yλ = H i+n(f−1(yλ),L|f−1(yλ)).

So Hi(Rf∗L[n]) = 0 on every stratum Yλ with dimYλ > r(f) − i.
Therefore, dimSuppHi(Rf∗L[n]) ≤ r(f) − i and hence Rf∗L[n] ∈
pD≤r(f)(Y ).

It remains to show Rf∗L[n] ∈ pD≥−r(f)(Y ). By what we have proved,
Rf∗L∨[n] ∈ pD≤r(f)(Y ). Since DX(L[n]) = L∨[n], one has

Rf∗L∨[n] = Rf∗DX(L[n]) = DY (Rf∗L[n]).

The last equality uses Verdier’s duality (see, e.g., [Max19, Prop. 5.3.9]).
This shows Rf∗L[n] ∈ pD≥−r(f)(Y ).

2. By (4.23), there exists λ0 with r(f) = 2 dim f−1(yλ0) + dimYλ0 − n.
In particular, f−1(yλ0) is nonempty. Let i0 = r(f) − dimYλ0 , then
i0 + n = 2dim f−1(yλ0). By proper base change theorem again,

Hi0(Rf∗C[n])yλ = H i0+n(f−1(yλ),C) ̸= 0.

Therefore, Yλ0 ⊂ SuppHi0(Rf∗C[n]) and hence

dimSuppHi0(Rf∗C[n]) ≥ dimYλ0 = r(f)− i0.

Then Rf∗C[n] /∈ pD≤r(f)−1(Y ). Together with Point 1, this shows

pHr(f)(Rf∗CX [n]) ̸= 0.

The other part follows from Verdier’s duality.
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4.6 Generic vanishing for constructible sheaves

In Section 4.6, we review the generic vanishing theorem for (complexes of)
constructible sheaves on a complex torus. The case of abelian varieties is
treated in [KW15b] and the general case in [BSS18]. We shall reduce the
generic vanishing problem on a manifold in Fujiki class C to results on its
Albanese torus.

4.6.1 Thin subsets

To state Krämer-Weissauer’s theorem, we recall the terminology “thin
subset" introduced in [KW15b, p.532 and p.536].

Fix a complex torus A. Then Char(A) has a natural structure of algebraic
torus over C of dimension 2 dimA and T (A) = Charu(A) is a real Lie
subgroup of Char(A). For each complex subtorus B ⊂ A, let K(B) be the
kernel of the morphism of algebraic tori Char(A) → Char(B) induced by
functoriality. The induced morphism π1(B, 0) → π1(A, 0) is injective with
torsion-free cokernel of rank 2 dimA − 2 dimB, so K(B) is an algebraic
subtorus of Char(A).

Definition 4.6.1.1. A thin subset of Char(A) is a finite union of translates
χi ·K(Ai) for certain characters χi ∈ Char(A) and certain nonzero complex
subtori Ai ⊂ A. If every χi can be chosen to be a torsion point of Char(A),
then such a thin subset is called arithmetic.

A thin subset of Char(A) is strict and Zariski closed. If the complex torus
A is nonzero and simple, then a subset of Char(A) is thin if and only if it is
finite.

For each complex subtorus B ⊂ A, we have a functorial commutative
diagram

Charu(A) Locu,1(A) Picτ (A) Pic0(A)

Charu(B) Locu,1(B) Picτ (A) Pic0(B)

(4.19)

ϕ

(4.12)

ψ

(4.10)

(4.28)

where all the horizontal maps are isomorphisms by Corollary 4.4.2.2 2.
A subset of Pic0(A) is called (arithmetic and) thin, if it is the intersection

of Charu(A) with a (arithmetic and) thin subset of Char(A) when Pic0(A)
is identified with Charu(A) via the diagram (4.28).

Lemma 4.6.1.2. Every thin subset of Pic0(A) is a finite union of translates of
strict complex subtori.

Proof. Let B be a subtorus of A. As the induced morphism π1(B, 0) →
π1(A, 0) is injective with torsion-free cokernel of rank 2(dimA − dimB),
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the restriction morphism ϕ : Charu(A) → Charu(B) in (4.28) is surjective,
and its kernel K(B) ∩ Charu(A) is the group of unitary characters of
π1(A, 0)/π1(B, 0). Therefore, the kernel of the morphism ψ : Pic0(A) →
Pic0(B) in (4.28) is a complex subtorus of dimension dimA− dimB.

For a connected regular manifold X, let α : X → Alb(X) be its Albanese
morphism corresponding to some base point. Then α induces a morphism
α∗ : Char(Alb(X)) → Char(X) of algebraic groups. By Proposition 4.4.1.2
2, this map identifies Char(Alb(X)) with the identity component Char◦(X)
of Char(X). Thus we can define thin subsets of Char◦(X). By Proposition
4.4.1.2 5, Pic0(X) is naturally identified with Pic0(Alb(X)), thus we can
define (arithmetic and) thin subsets of Pic0(X).

4.6.2 Generic vanishing result on regular manifolds

Roughly speaking, Krämer-Weissauer’s theorem controls the failure of
vanishing for perverse sheaves on complex tori, measured by the following
loci.

Let X be a compact complex manifold of dimension d. For any integers
k ≥ 0, i and for every K ∈ Db

c(X), consider the cohomology support locus

Σi(X,K) := {χ ∈ Char(X) : H i(X,Lχ ⊗K) ̸= 0}.

Let Σ̸=0(X,K) := ∪i ̸=0,i∈ZΣ
i(X,K). Similarly, let Σ>j(X,K) := ∪i>jΣi(X,K)

for every integer j. By Verdier’s duality, H2d−i(X,K∨⊗Lχ−1) is the C-linear
dual of H i(X,K ⊗ Lχ). Therefore,

Σ2d−i(X,K∨) = {χ−1 : χ ∈ Σi(X,K)}. (4.29)

Fact 4.6.2.1. Let X be a compact Kähler manifold, and let K ∈ Db
c(X). Then:

1. ([Wan16, p.547]) For every integer i, the subset Σi(X,K) of Char(X)
is Zariski closed.

2. ([BSS18, Thm. 1.1]) If X is a complex torus, and if K ∈ Perv(X), then
Σ ̸=0(X,K) is a strict subset of Char(X).

3. ([KW15b, Thm. 1.1 and Lem. 11.2 (c)]) If further X is a complex
abelian variety, then Σ ̸=0(X,K) is contained in a thin (and arithmetic
when K is semisimple of geometric originfootnote 5) subset of Char(X).

Corollary 4.6.2.2. Let X be a compact Kähler manifold, and let K ∈ Db
c(X).

Then:

1. There are only finitely many integers i such that Σi(X,K) ̸= ∅. In
particular, Σ ̸=0(X,K) and for every integer j, Σ>j(X,K) are Zariski
closed in Char(X).
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2. If X is a complex torus, and if K ∈ pD≤m(X) for some integer m, then
Σ>m(X,K) ̸= Char(X).

3. If X is a complex abelian variety, and K ∈ pD≤m(X) for some integer
m, then Σ>m(X,K) is contained in a thin (and arithmetic when K is
semisimple of geometric origin) subset of Char(X).

Proof. The proof is sketched in [KW15b, p.533].

1. There exist two integers c < d such that K ∈ D[c,d](X). Applying
[KS90, Proposition 10.2.12] to the proper morphism X → p, where
p is a point, one gets two integers a < b such that Rf∗(D[c,d](X)) ⊂
D[a,b](p). For every character sheaf L on X, the functor ∗ ⊗L L :
Db
c(X) → Db

c(X) is t-exact with respect to the standard t-structure.
Consequently, K⊗L L ∈ D[c,d](X) and hence Rf∗(K⊗L L) ∈ D[a,b](p).
For all integers i /∈ [a, b], Σi(X,K) = ∅. This shows the first part of the
assertion. The second part of the assertion follows from Fact 4.6.2.1
1.

2. By shifting degree, one may assume m = 0. For every character sheaf
L on X, the functor ∗⊗LL : Db

c(X)→ Db
c(X) is t-exact with respect to

the perverse t-structure ([KW15b, Prop. 4.1]). Hence for every integer
j, pHj(K ⊗L L) = pHj(K)⊗L L. Consider the subset

W = ∪j∈ZΣ ̸=0(X, pHj(K)) (4.30)

of Char(X). It is in fact a finite union, because by [Dim04, Remark
5.1.19], pHj(K) ̸= 0 for only finitely many integers j. By Fact 4.6.2.1
2, W ̸= Char(X).

For every χ ∈ Char(X) \ W , consider the Grothendieck spectral
sequence from [dCM09, p.545]

Ei,j2 = H i(X, pHj(K)⊗L Lχ)⇒ H i+j(X,K ⊗L Lχ). (4.31)

For any integers i ̸= 0 and j, one has H i(X, pHj(K) ⊗L Lχ) = 0, so
the spectral sequence (4.31) degenerates10 at page E2 and hence

Hj(X,K ⊗L Lχ) = H0(X, pHj(K)⊗L Lχ)

for every integer j. Now that K ∈ pD≤0(X), for every i > 0 one
has pHi(K) = 0 and hence H i(X,K ⊗L Lχ) = 0. This shows χ /∈
Σ>0(X,K). One concludes that Σ>0(X,K) ⊂W .

3. As pHj(K) ̸= 0 for only finitely many integers j, by Fact 4.6.2.1 3,
the subset W defined by (4.30) is contained in a thin (and arithmetic
when K is semisimple of geometric origin) subset of Char(X).

10in the sense of [Sta24, Tag 011O (2)]
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Theorem 4.6.2.3 is a generic vanishing result for local systems on a
manifold admitting Hodge theory. When X is a projective manifold, [PS13,
Theorem 1.5] gives a dimension estimate of Σk(X,CX).

Theorem 4.6.2.3. Let X be a connected regular manifold of dimension n. Let
α : X → Alb(X) be the Albanese map associated with some base point and E
be a local system on X. Let k be an integer either < n − r(α) or > n + r(α).
Then:

1. Σk(X, E) ∩ Char◦(X) is a strict Zariski closed subset of Char◦(X).

2. If furthermore Alb(X) is algebraic, then Σk(X, E) ∩ Char◦(X) is
contained in a thin subset of Char◦(X).

Proof. In view of (4.29), one may assume k > d+ r(α). Set K := Rα∗E [d+
r(α)]. We first prove

Σk(X, E) ∩ Char◦(X) = Σk−d−r(α)(Alb(X),K) ⊂ Σ>0(Alb(X),K). (4.32)

This is used in the proof of both 1 and 2.
Indeed, by Proposition 4.5.3.2, the complex of sheaves K lies in

pD≤0(Alb(X)). For every χ ∈ Char◦(X), let Dχ (resp. Lχ) be the
corresponding character sheaf on Alb(X) (resp. on X). Then α∗Dχ = Lχ.
By [KW01, Cor. 7.5 (g), p.109], Rα∗(E ⊗L Lχ) = (Rα∗E) ⊗L Dχ in
Db
c(Alb(X)). It follows that

Hk(X, E⊗Lχ) = Hk(Alb(X), (Rα∗E)⊗LDχ) = Hk−d−r(α)(Alb(X),K⊗LDχ),

whence (4.32). Now Point 1 follows from Fact 4.6.2.1 1 and Corollary
4.6.2.2 2, and Point 2 follows from Corollary 4.6.2.2 3.

4.7 Generic vanishing result for manifolds in Fujiki
class C

In Section 4.7.1, we recall the definition of Fujiki class C, the object of
central interest in this note. Then we restrict mainly to algebraic varieties in
Section 4.7.2.

4.7.1 Fujiki class C

Definition 4.7.1.1 (Fujiki class C, [Uen80, Def. 1]). A compact complex
manifold is called in Fujiki class C if it is the meromorphic image of a
compact Kähler manifold.
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Every compact Kähler manifold is in Fujiki class C. The reason why Fujiki
class C is interesting is two-fold. For one thing, this class is large enough in
practice. For another, in this class there is a Hodge theory with unitary local
systems as coefficients.

Fact 4.7.1.2 ([Tim87, Cor. 5.3], [Ara90, Thm. 1, Thm. 2, Cor. 2]). Let X be
a complex manifold in Fujiki class C. Then, for every unitary local system E on
X, X is E-regular.

In particular, from Fact 4.7.1.2, every manifold in Fujiki class C is regular.
As is explained in Section 4.3 and Section 4.4, the Jacobian and Albanese of
a complex manifold in Fujiki class C behave well.

Theorem 4.7.1.3. LetX be an n-dimensional complex manifold in Fujiki class
C, and let α : X → Alb(X) be the Albanese map associated with some base
point. Let E → X be a flat unitary holomorphic vector bundle. Then for any
integers p, q ≥ 0, one has:

1. The locus Sp,q(X,E) is an analytic subset of Pic0(X).

2. Sn−p,n−q(X,E∨) = {L ∈ Pic0(X)|L∨ ∈ Sp,q(X,E)}.

3. If p+ q < n− r(α) or p+ q > n+ r(α), then Sp,q(X,E) is contained in
a strict (and thin when Alb(X) is algebraic) subset of Pic0(X).

Proof.

1. The projection p2 : X × Pic0(X) → Pic0(X) is a regular family in
the sense of [GR84, p.207]. Let p1 : X × Pic0(X) → X be the other
projection. Let P be the universal line bundle on X × Pic0(X) given
by Corollary 4.4.2.1. Applying the upper semi-continuity theorem
([GR84, p.210]) to the vector bundle P⊗p∗1Ω

p
X and the regular family

p2, one gets that Sp,q(E) is an analytic subset of Pic0(X).

2. By Serre duality (see, e.g., [Huy05, Prop. 4.1.15]), for every L ∈
Pic(X), there is a perfect pairing

Hq(X,ΩpX ⊗OX L⊗OX E)×Hn−q(X,Ωn−pX ⊗OX L
∨ ⊗OX E

∨)→ C,

so L ∈ Sp,q(X,E) if and only if L∨ ∈ Sn−p,n−q(X,E∨).

3. By Theorem 4.2.3.1, there is a unitary local system E on X such that
E ⊗C OX is isomorphic to E. For each χ ∈ Char(X), let Lχ := Lχ ⊗C
OX . Then the isomorphism (4.20) of real Lie groups is given by χ 7→
Lχ. Moreover, the Hodge decomposition (4.6) for E ⊗C Lχ provided
by Fact 4.7.1.2 is

Hk(X, E⊗CLχ) = ⊕p+q=kHq(X,ΩpX⊗CE⊗CLχ) = Hq(X,ΩpX⊗OXE⊗OXLχ).
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Therefore, under the isomorphism (4.20), one has

Σk(X, E) ∩ T (X) = ∪p+q=kSp,q(X,E). (4.33)

The result follows from Theorem 4.6.2.3.

Remark 4.7.1.4. Theorem 4.7.1.3 3 extends Fact 4.1.1.6 from Kähler
manifolds to Fujiki class C. As dimX − r(α) ≤ dimα(X), the numerical
hypothesis in Theorem 4.7.1.3 is more restrictive than that in Fact 4.1.1.1.
An example from [GL87, Remark, p.401] is reconsidered in the last
paragraph of [KW15b, Sec. 3], to show that the bound p+q < dimX−r(α)
is optimal for Fact 4.1.1.6.

4.7.2 Moishezon manifolds

Moishezon manifolds are examples of manifolds in Fujiki class C.

Definition 4.7.2.1 (Moishezon manifold, [MM07, Def. 2.2.12]). A connected
compact complex manifoldX is called Moishezon if it has dimX algebraically
independent meromorphic functions.

In fact, according to [MM07, Thm. 2.2.16], for every Moishezon
manifold X, there is a proper modification π : X ′ → X with X ′ a
projective manifold. In particular, X is the meromorphic image of a
projective manifold, hence in Fujiki class C. Conversely, a connected
compact complex manifold that is the meromorphic image of a projective
manifold is Moishezon by the proof of [Voi02, Cor. 12.12]. For more
references, see [JM22, Sec. 1].

The intersection of the two subclasses, Kähler and Moishezon, is exactly
the class of projective manifolds. More precisely, Moishezon’s theorem
(see, e.g., [Voi02, Thm. 12.13]) asserts that a Moishezon manifold is
Kähler if and only if it is projective. A Moishezon manifold may not be
homotopy equivalent to a Kähler manifold ([Ogu94, Thm. 1]). Kodaira-
Spencer stability theorem (see, e.g., [Voi02, Thm. 9.1]) shows that small
deformations of a Kähler manifold are Kähler. Similarly, small deformations
of a regular manifold are regular ([AT13, Cor. 3.7]). By contrast, there is
a small deformation of a Moishezon manifold that is not in Fujiki class C
([Cam91, Sec. 0]). In particular, there exists a regular manifold that is not
in Fujiki class C.

Moishezon manifolds are abundant. For example, for every smooth
proper complex algebraic variety X, its analytification Xan is a Moishezon
manifold ([Har77, p.442]). Hironaka ([Hir60], see also [Har77, p.443])
gives examples of Moishezon manifolds that are not algebraic, and smooth
proper algebraic varieties that are not projective. The situation is depicted
below. Every inclusion in this graph is strict.
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Regular

Fujiki class C

Moishezon Kähler

Projective

Proper algebraic

We need Proposition 4.7.2.2 on the algebraicity of Picard torus and
Albanese torus to compare them with the Picard variety and Jacobian variety
of an algebraic variety.

Proposition 4.7.2.2. IfX is a Moishezon manifold, then Alb(X) and Pic0(X)
are complex abelian varieties dual to each other.

Proof. By [MM07, Thm. 2.2.16], X admits a proper modification π : X ′ →
X with X ′ a projective manifold. By [Voi02, Prop. 7.16], the Jacobian
Pic0(X ′) is projective. From Proposition 4.4.1.2 5, the torus Alb(X ′) is
dual to Pic0(X ′), so Alb(X ′) is algebraic. By [Uen06, Prop. 9.12, p.107],
the morphism π∗ : Alb(X ′) → Alb(X) given by Proposition 4.4.1.2 1 is an
isomorphism.

Remark 4.7.2.3. By [BL04, p.70], the analytic dual torus of a complex
abelian variety is an abelian variety. Moreover, by [MRM74, p.86],
the (algebraic) dual abelian variety (defined in [MRM74, p.78]) of a
complex abelian variety coincides with its analytic dual torus, so we do not
distinguish the two duals in this case.

Remark 4.7.2.4. Another proof of Proposition 4.7.2.2 is as follows. From
Lemma D.3.0.1, there is an integer n ≥ 1 such that Alb(X) is the image
of Xn under certain morphism. As the product of finitely many Moishezon
manifolds, Xn is a Moishezon manifold. Then the complex torus Alb(X) is
Moishezon, so projective by Moishezon Theorem.

Let X be a smooth proper complex algebraic variety of dimension n with
a base point x0 ∈ X(C). Let Sch/C (resp. Set) be the category of C-schemes
(resp. sets). The fppf-sheaf associated to the functor

PX/C : (Sch/S)op → Set, T 7→ Pic(X ×C T )
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is called the relative Picard functor of X ([BLR90, Def. 2, p.201]). From
[BLR90, p.211, p.231 and p.233], the relative Picard functor of X is
represented by a smooth group scheme PicX/C over C. In particular, the
group PicX/C(C) = Pic(X). By [BLR90, Thm. 3, p.232], the identity
component Pic0X/C of PicX/C is proper over C, hence a complex abelian
variety called the Picard variety of X.

From [Ser58, Thm. 5], there is a complex abelian variety Alb(X) with
a C-morphism αX,x0 : (X,x0) → (Alb(X), 0) of pointed varieties satisfying
the following universal property:11 every C-morphism of pointed varieties
(X,x0)→ (A, 0) with A a complex abelian variety factors uniquely through
a morphism of abelian varieties Alb(X)→ A. Such morphism αx0 is unique
up to a unique isomorphism. We call Alb(X) the algebraic Albanese variety
of X and αX,x0 : (X,x0) → (Alb(X), 0) the algebraic Albanese morphism
corresponding to x0.

For every OX -module F , let F an be the corresponding OXan-module
defined in [GR71, Exp. XII, 1.3]. Hence a functor

Mod(OX)→ Mod(OXan), F 7→ F an.

By Serre’s GAGA [GR71, Exp. XII, Thm. 4.4], the natural group morphism

Pic(X)→ Pic(Xan), L 7→ Lan

is an isomorphism. Corollary 4.7.2.5 2 of GAGA type compares the algebraic
Picard variety and the analytic Jacobian. Once again, it is well-known, but
a proof is given for the lack of reference.

Corollary 4.7.2.5.

1. The analytification of Alb(X) (resp. αX,x0 : X → Alb(X) ) is Alb(Xan)
(resp. αXan,x0 : Xan → Alb(Xan)).

2. The analytification of Pic0X/C is Pic0(Xan).

Proof.

1. Since Xan is a Moishezon manifold, by Proposition 4.7.2.2, its
Albanese torus Alb(Xan) is projective. By Chow’s theorem [BL04,
Cor. A.4], the map αXan,x0 is algebraic. By Proposition 4.4.1.2 3, every
algebraic morphism (X,x0) → (A, 0) to a complex abelian variety
A factors uniquely through an analytic (hence algebraic by Chow’s
theorem again) morphism of complex tori Alb(Xan) → Aan. The
result follows.

11similar to that stated in Proposition 4.4.1.2 3
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2. By [Moc12, Prop. A.6], the (algebraic) dual abelian variety of Pic0X/C
is Alb(X). By Proposition 4.4.1.2 5, Pic0(Xan) is the (analytic) dual
torus of Alb(Xan) = Alb(X)an, so Pic0(Xan) is the analytification of
Pic0X/C.

Identifying Pic0X/C with Pic0(Xan) via Corollary 4.7.2.5 2, one can
define thin subsets of Pic0X/C. Define the defect of semismallness of a
proper morphism f : M → N between complex algebraic varieties by
r(f) = r(fan). With this terminology, we get the following generic vanishing
result for smooth proper algebraic varieties.

Corollary 4.7.2.6. Let E be a unitary local system on Xan, and let E = E ⊗C
OXan be the corresponding holomorphic vector bundle. Then for any integers
p, q ≥ 0 with p+ q > n+ r(α) or p+ q < n− r(α), the locus Sp,q(Xan, E) is
contained in a thin (and arithmetic when E is semisimple of geometric origin
in Db

c(X
an)) subset of Pic0X/C.

Proof. By Corollary 4.7.2.5 1, the analytification αan
X,x0

: Xan → Alb(X)an

coincides with αXan,x0 : Xan → Alb(Xan), and by definition, r(α) = r(αan).
From Theorem 4.7.1.3 3, the locus Sp,q(Xan, E) is contained in a thin subset
of Pic0(X).

What remains to show is the assertion in the parentheses. Assume that E
is semisimple of geometric origin. By the decomposition theorem [BBDG82,
Thm. 6.2.5], K := Rα∗E [n + r(α)] is semisimple of geometric origin in
Db
c(Alb(X

an)). By Theorem 4.7.1.3 2, one may assume that p+q > n+r(α),
so that

Sp,q(Xan, E) ⊂ Σp+q(Xan, E) ∩ T (X) ⊂ Σ>0(Alb(X),K),

where the first inclusion follows from (4.33) and the second from (4.32).
From Corollary 4.6.2.2 3, Σ>0(Alb(X),K) is contained in an arithmetic thin
subset of Pic0X/C.

Remark 4.7.2.7. By Chow’s theorem, every analytic subset of Xan is
algebraic. Therefore, Db

c(X
an) coincides with Db

c(X(C),C) defined in
[BBDG82, p.66] using algebraic Whitney stratifications.
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Chapter 5

Fourier-Mukai transform on
complex tori, revisited

5.1 Introduction

For a ringed space (Z,OZ), let D(Z) be the derived category of the abelian
category of OZ -modules. A scheme of finite type and separated over a field
is called an algebraic variety. For two algebraic varieties (resp. complex
analytic spaces) M,N , let pM : M × N → M and pN : M × N → N
be the projections. For an object K ∈ D(M × N), the integral transform
ϕ
[M→N ]
K : D(M)→ D(N) with integral kernel K is defined as

ϕ
[M→N ]
K (·) = RpN,∗(K ⊗L p∗M ·). (5.1)

When Z is a complex analytic space, let Dgood(Z) ⊂ D(Z) be the full
subcategory consisting of complexes whose cohomology sheaves are good
(Definition A.1.4.1). Roughly speaking, an analytic sheaf of modules is good
if it can be approximated by coherent submodules. For a complex torus X
of dimension g, let X̂ be the dual complex torus. Let P be the normalized1

Poincaré line bundle on X × X̂. Define functors RS : D(X̂) → D(X) and

RŜ : D(X) → D(X̂) by RS = ϕ
[X̂→X]
P , RŜ = ϕ

[X→X̂]
P . The pair (RS,RŜ)

is called the Fourier-Mukai transform of X. Theorem 5.1.0.1 establishes an
analog of the Fourier inversion formula for this pair.

Theorem 5.1.0.1 (Theorem 5.4.1.1). The functor RŜ (resp. RS) restricts to
a functor Dgood(X) → Dgood(X̂) (resp. Dgood(X̂) → Dgood(X)). Moreover,
there are natural isomorphisms of functors

RS ◦RŜ ∼= [−1]∗X [−g] : Dgood(X)→ Dgood(X),

RŜ ◦RS ∼= [−1]∗
X̂
[−g] : Dgood(X̂)→ Dgood(X̂),

1i.e., both pullback modules P|X×0 and P|0×X̂ are trivial
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where [−g] denotes degree shift.

Theorem 5.1.0.1 is a complex analytic variant of [Muk81, Thm. 2.2]
(Statement 5.2.0.4, which has a minor problem for lack of quasi-coherence
condition). For complex tori, a parallel false assertion is made as [BBBP07,
Thm. 2.1] (Statement 5.2.0.5). Theorem 5.1.0.1 shows that “good sheaves"
on complex manifolds serve as substitutes for “quasi-coherent sheaves" on
algebraic varieties in this case. As an application, we recover Matsushima-
Morimoto’s classification of homogeneous vector bundles on complex tori.

Theorem (Theorem 5.5.3.6). A vector bundle F on the complex torus X
is translation invariant if and only if there is an integer n ≥ 0, unipotent
vector bundles2 U1, . . . , Un on X and P1, . . . , Pn ∈ Pic0(X), such that F is
isomorphic to ⊕ni=1(Pi ⊗ Ui).

Notation and conventions

For a topological space M , the category of abelian sheaves on M is denoted
by Ab(M). The category of ringed spaces is denoted by RingS. For a
ringed space (X,OX), let Mod(OX) be the category ofOX -modules. The full
subcategory of Mod(OX) comprised of quasi-coherent (resp. coherent) OX -
modules in the sense of Definition A.1.1.1 3 (resp. 6) is denoted by Qch(X)
(resp. Coh(X)). For a closed subset Z ⊂ X, let CohZ(X) ⊂ Coh(X) be the
full subcategory consisting of modules with support contained in Z.

Given a symbol ∗ ∈ {∅,+,−, b}, the notation D∗(X) refers to the
unbounded/bounded below/bounded above/bounded derived category of
Mod(OX) in order. The full subcategory of D∗(X) consisting of the
complexes whose cohomologies are coherent (resp. quasi-coherent) is
denoted by D∗

c (X) (resp. D∗
qc(X)). Denote by RHomX : D(X)op×D(X)→

D(X) the internal hom bifunctor constructed in [Sta24, Tag 08DH].
For a locally ringed space X and x ∈ X, let ix : (x,OX,x)→ (X,OX) be

the canonical morphism of locally ringed spaces. For an OX,x-module M ,
the OX -module (ix)∗M is denoted by Mx.

All complex analytic spaces (in the sense of [KK83, Def. 43.2]) are
assumed to be paracompact. Let An be the category of complex analytic
spaces. The dimension of a complex manifold always refers to the complex
dimension, which is assumed to be finite.

When X is an abelian variety (resp. complex torus), its dual abelian
variety (resp. complex torus) is denoted by X̂. The normalized Poincaré
bundle on X × X̂ is denoted by P. For y ∈ X̂ (resp. x ∈ X), let Py (resp.
Px) denote the line bundle P|X×y (resp. P|x×X̂).

2Definition 5.5.2.6
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5.2 Fourier-Mukai transform

Complex tori are generalizations of complex abelian varieties. Every
complex torus of dimension 1 is an abelian variety. By contrast, for every
integer g ≥ 2, a very general complex torus of dimension g is not3 an abelian
variety (see, e.g., [BZ23b, p.21]).

The Fourier-Mukai transform is an analog of the classical Fourier
transform. It is proposed by Mukai [Muk81] on abelian varieties and
complex tori. Let k be an algebraically closed field. Let X be an abelian
variety over k (resp. a complex torus) of dimension g. Write RS and RŜ for

ϕ
[X̂→X]
P and ϕ

[X→X̂]
P respectively. The pair (RS,RŜ) is called the Fourier-

Mukai transform of X. The functor RS (resp. RŜ) restricts to a functor
Db(X̂)→ Db(X) (resp. Db(X)→ Db(X̂)).

Let X be an abelian variety. The usual exchange of translation and time
shifting (resp. multiplication and convolution) of Fourier transform finds
analog for Fourier-Mukai transform, namely the exchange of translation
and line bundle twisting (resp. tensor product and Pontrjagin product) in
[Muk81, (3.1) (resp. (3.7))]. Moreover, Mukai proves a duality theorem
similar to the classical Fourier inversion formula.

Fact 5.2.0.1. [Algebraic Mukai duality] There are canonical isomorphisms of
functors

RS ◦RŜ ∼= [−1]∗X [−g] : Dqc(X)→ Dqc(X);

RŜ ◦RS ∼= [−1]∗
X̂
[−g] : Dqc(X̂)→ Dqc(X̂).

In particular, the functor RS : Dqc(X̂) → Dqc(X) is an equivalence of
categories, with a quasi-inverse [−1]∗

X̂
◦RŜ[g].

Example 5.2.0.2 ([Muk81, Eg. 2.6]). For every y ∈ X̂(k), one has
RS(ky) = Py and RŜ(Py) = k−y[−g].

Remark 5.2.0.3. Combining Fact 5.2.0.1, the natural equivalenceD(Qch(X))→
Dqc(X) ([BN93, Cor. 5.5]) with the compatibility of derived direct images
[TT90, Cor. B.9], one gets [Rot96, Mukai’s Theorem, p.569] stated for
Db(Qch(∗)) instead of Dqc(∗). The quasi-coherence restriction is essential
for Čech resolution with respect to affine covers in [Rot96, p.571].

The proof of Fact 5.2.0.1 uses projection formula and the flat base
change theorem ([Lip60, Prop. 3.9.4; Prop. 3.9.5]). Compared with Fact

3To the contrary, it is incorrectly implied in [BBR94, p.151] that every complex torus of
dimension 2 admits a compatible structure of algebraic complex surface. In fact, it fails for
each 2-dimensional complex torus X that is not a projective manifold. For otherwise, assume
there is a complex algebraic surface V with V an ∼= X. Then V is proper by [GR71, XII, Prop.
3.2 (v)]. In consequence, the algebraic variety V is projective by [Har77, p.357]. Thus, X
is a projective manifold, a contradiction.
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5.2.0.1, the original statement (Statement 5.2.0.4) has no quasi-coherence
restriction.

Statement 5.2.0.4 ([Muk81, Thm. 2.2]). The functorRS gives an equivalence
of categories between D(X̂) and D(X), and its quasi-inverse is [−1]∗

X̂
◦

RŜ[g].

In [BBBP07, Thm. 2.1], an assertion similar to Statement 5.2.0.4 is made
for complex tori.

Statement 5.2.0.5. Let X be a complex torus. Then the integral transform
RS : Db(X̂)→ Db(X) is an equivalence of triangulated categories.

However, Lemma 5.2.0.6 shows that Statement 5.2.0.4 (resp. Statement
5.2.0.5) holds if and only if g = 0.

Lemma 5.2.0.6 ([th16]). Let X be an abelian variety or a complex torus. If
the functor RS : Db(X̂)→ Db(X) is an equivalence of categories, then g = 0.

Proof. When X is a complex torus, let k = C. In both cases, let F = kN0 be
the product of a countable infinite family of k0 in Mod(OX̂). Since kN = k⊕I

as a k-module for some index set I, the direct sum sheaf k⊕I0 is isomorphic
to F . Therefore, by [Sta24, Tag 07D9 (2)], F is the direct sum of I copies
of k0 in Db(X̂). We claim that F is the product of N copies of k0 in Db(X̂).

By [Gro57b, p.129], the abelian category Mod(OX̂,0) satisfies the AB
4*) axiom. From [Sta24, Tag 07KC (2)], the inclusion Mod(OX̂,0) →
Db(Mod(OX̂,0)) commutes with countable products. Let i : 0 → X̂ be the
closed immersion. Since i∗ : Mod(OX̂,0) → Mod(OX̂) is exact, there is a
commutative square

Mod(OX̂,0) Mod(OX̂)

Db(Mod(OX̂,0)) Db(X̂).

i∗

Ri∗

Since Ri∗ : Db(Mod(OX̂,0)) → Db(X̂) has a left adjoint, it commutes with
products. As F = i∗(k

N), the claim is proved.
As RS : Db(X̂) → Db(X) is an equivalence, inside Db(X), the object

RS(F ) is the direct sum of I copies of RS(k0), as well as the product of
N copies of RS(k0). By Example 5.2.0.2 (when X is an abelian variety)
and Lemma 5.2.0.8 (when X is a complex torus), one has RS(k0) = OX .
Therefore, RS(F ) is isomorphic to O⊕I

X and to ON
X in Mod(OX).

Assume the contrary g > 0. Then there is a nonempty connected open
subset V ⊂ X, such that OX(V ) is an integral domain but not a field. In
particular, the ring OX(V ) is not Artinian. By [Har77, II, Exercise 1.11]
(when X is an abelian variety) and Corollary A.1.5.4 (when X is a complex
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torus), the OX(V )-module Γ(V,RS(F )) is isomorphic to OX(V )⊕I and to
OX(V )N. However, this contradicts Fact 5.2.0.7.

Fact 5.2.0.7 ([Len68, Thm, p.211]). If A is a commutative ring such that AN

is a free A-module, then A is Artinian.

For algebraic varieties, the analog of Lemma 5.2.0.8 follows from the flat
base change theorem and the projection formula.

Lemma 5.2.0.8. Let X,Y be two complex analytic spaces, let K ∈ D(X×Y ),
and let x ∈ X. Consider the closed embedding hx : Y → X × Y, y 7→ (x, y).
Then ϕ[X→Y ]

K (Cx) = Lh∗xK.

Proof. Let p : X×Y → X, q : X×Y → Y be the two projections. Denote the
closed embedding of complex analytic spaces x → X by jx. The cartesian
square

Y x

X × Y X

p0

hx □ jx

p

in the category An induces a natural morphism ϕ : p∗Cx → Rhx,∗OY in
Mod(OX×Y ). Both sheaves are supported on {x} × Y .

For two (Hausdorff) locally convex topological vector spaces E,F over
C, the completed projective topological tensor product E⊗̂CF is defined in
[Gro55, Ch. I, Déf. 2, p.32]. For every y ∈ Y , by [GR84, p.27], the stalk
OX×Y,(x,y) = OX,x⊗̂COY,y. Then

(p∗Cx)(x,y) = C⊗OX,x OX×Y,(x,y) = OY,y.

Therefore, ϕ(x,y) : (p∗Cx)(x,y) → (hx,∗OY )(x,y) is an isomorphism. Thus, ϕ is
an isomorphism.

By [Sta24, Tag 0B55], the natural morphism (Rhx,∗OY ) ⊗L K →
Rhx,∗(Lh

∗
xK) is an isomorphism. Then

ϕ
[X→Y ]
K (Cx) = Rq∗(p

∗Cx ⊗L K) ∼= Rq∗(Rhx,∗OY ⊗L K)
∼=Rq∗Rhx,∗(Lh∗xK) ∼= R(qhx)∗(Lh

∗
xK) = Lh∗xK.

The minor problem with Statement 5.2.0.4 occurs in the proof of
[Muk81, Prop. 1.3], when the flat base change theorem [Har66, Prop. 5.12]
stated for objects of Dqc(∗) is applied to objects in D−(∗). Similarly, the
minor problem with Statement 5.2.0.5 originates from a lack of certain
analytic quasi-coherence in the wrong Statement 5.2.0.9 (a counterpart of
[Muk81, Prop. 1.3]). A modification of Statement 5.2.0.9 is Proposition
5.4.2.3.
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Statement 5.2.0.9 ([BBBP07, p.427]). If M , N , and P are compact complex
manifolds and K ∈ Db(M ×N) and L ∈ Db(N ×P ), then one has a natural
isomorphism of functors from Db(M) to Db(P ):

ϕ
[N→P ]
L ◦ ϕ[M→N ]

K
∼= ϕ

[M→P ]
K∗L ,

where

K ∗ L = RpM×P∗(p
∗
M×NK ⊗L p∗N×PL) ∈ Db(M × P ),

and pM×N , pM×P , pN×P are the natural projections M ×N × P →M ×N ,
etc.

When X is an abelian variety of positive dimension, by Fact 5.2.0.1,
RS(F ) is the product of N copies of OX in Qch(X). It is not isomorphic to
ON
X by Lemma 5.2.0.10.

Lemma 5.2.0.10. Let X be an integral scheme with generic point η. If the
OX -module ON

X is quasi-coherent, then the natural morphism η → X is an
isomorphism.

Proof. Consider an arbitrary affine open U = Spec(A) ⊂ X. Then A is an
integral domain of fraction field κ(η). We show that the natural inclusion
A→ κ(η) is an isomorphism.

For otherwise, there exists f ∈ A \ (A∗ ∪ {0}). Let Df ⊂ U be
the corresponding standard open subset. Note Γ(U,ON

X) = AN and
Γ(Df , O

N
X) = (Af )

N. As ON
X ∈ Qch(X), the natural Af -module morphism

Γ(U,ON
X)f → Γ(Df , O

N
X) is an isomorphism. Or equivalently, the natural

map ϕ : (AN)f → (Af )
N is an isomorphism.

In particular, there exists a = (a0, a1, . . . ) ∈ AN and an integer m ≥ 0
such that ϕ(a/fm) = (1/f i)i≥0. Then am+1 = f−1 in Af . There exists an
integer n ≥ 0 such that (am+1f − 1)fn = 0 in A. Since A is a domain,
am+1f − 1 = 0 in A. This contradicts the fact that f /∈ A∗.

Therefore, the natural morphism η → U is an isomorphism. The proof is
completed as U is taken arbitrarily.

Lemma 5.2.0.11 computes the derived restriction of a relatively flat
module, which is a partial converse to [Huy06, Lemma 3.31] in the analytic
setting.

Lemma 5.2.0.11. Let f : S → X be a flat morphism of complex analytic
spaces, and let K be an OS-module flat over X. For x ∈ f(S), let ix : Sx → S
be the inclusion of the fiber over x. Then Li∗xK = i∗xK.

Proof. To simplify the notation, we denote ix by i. By [Sta24, Tag 0B55],
the natural morphism

Ri∗OSx ⊗LOS K → Ri∗(Li
∗K) (5.2)

128

https://stacks.math.columbia.edu/tag/0B55


is an isomorphism. They are supported on Sx, since for every integer n one
has

Hn(Ri∗(Li
∗K)) = Ri∗H

n(Li∗K) = i∗H
n(Li∗K).

For every s ∈ Sx, the morphism j : (s,OS,s) → S of ringed spaces is
flat and j∗ : Mod(OS) → Mod(OS,s) is taking the stalk at s. Let mx be the
maximal ideal of OX,x. As the ring map f#s : OX,x → OS,s is flat, one has

OSx,s = (OX,x/mx)⊗OX,x OS,s = (OX,x/mx)⊗LOX,x OS,s. (5.3)

By [Sta24, Tag 079U], one has

Lj∗(Ri∗OSx ⊗LOS K) = Lj∗Ri∗OSx ⊗LOS,s Lj
∗K

=OSx,s ⊗LOS,s Ks = [(OX,x/mx)⊗LOX,x OS,s]⊗
L
OS,s

Ks

=(OX,x/mx)⊗LOX,x (OS,s ⊗
L
OS,s

Ks)

=(OX,x/mx)⊗LOX,x Ks = (OX,x/mx)⊗OX,x Ks,

(5.4)

where the third (resp. fourth, resp. last) equality uses (5.3) (resp. Lemma
5.4.2.1, resp. the flatness of the OX,x-module Ks).

Then for every integer n ̸= 0, every s ∈ Sx, the stalk

[Hn(Ri∗OSx⊗LOSK)]s = Hn[Lj∗(Ri∗OSx⊗LOSK)] = Hn((OX,x/mx)⊗OX,xKs) = 0,

where the second equality uses (5.4). Hence

i∗H
n(Li∗K) = Hn[Ri∗(Li

∗K)] ∼= Hn(Ri∗OSx ⊗LOS K) = 0,

where the second equality uses (5.2). Thus, for every integer n ̸= 0,
Hn(Li∗K) = 0 in Mod(OSx).

Remark 5.2.0.12. Lemmas 5.2.0.8 and 5.2.0.11 yield an analytic version of
[Huy06, Eg. 5.4 vi)]: Let X,Y be two complex analytic spaces. Let x ∈ X
and K be an OX×Y -module flat over X. Then ϕ[X→Y ]

K (Cx) = K|{x}×Y .

Remark 5.2.0.13. Here is an example showing the necessity of the flatness
of f in Lemma 5.2.0.11.

Let A = C[t] and B = C[x, y]/xy. Then the B-module xB (resp. yB) is
isomorphic to B/y (resp. B/x). Let S = Spec(B) and X = Spec(A) = A1

C.
The morphism A → B of k-algebras defined by t 7→ x induces a morphism
f : S → X of schemes. Let K be the coherent OS-module corresponding
to the B-module B/y. Then K is flat over X, because the ring map
composition A → B → B/y is an isomorphism. Let i : S0 → S be the
inclusion of the fiber over 0 ∈ X(C). Then i is a closed immersion defined
by ideal xB ⊂ B, so Li∗K is induced by K ⊗LB (B/x). By [Osb12, Exercise
9, b), p.72],

TorB2 (B/y,B/x) = (yB)⊗B (xB) ∼= (B/x)⊗B (B/y) = B/(x, y) = C.
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In particular, Li∗K ̸= i∗K. Taking analytification one gets L(ian)∗Kan ̸=
(ian)∗Kan.

Corollary 5.2.0.14 follows from Lemma 5.2.0.11, and it is an analytic
counterpart of [Huy06, Example 5.4 vi)].

Corollary 5.2.0.14. In Lemma 5.2.0.8, if K ∈ Mod(OX×Y ) is flat over X,
then ϕ[X→Y ]

K (Cx) = i∗K.

By Corollary 5.2.0.14 and Theorem 5.4.1.1, Example 5.2.0.2 remains
true when X is a complex torus.

5.3 Good modules

As Section 5.2 explains, to obtain an analytic analogue of Fact 5.2.0.1, it
is necessary to find a substitute for quasi-coherence on complex manifolds.
We show that goodness introduced by Kashiwara (Definition A.1.4.1) can
be used as such.

5.3.1 Functoriality

In Corollary 5.3.1.16, we prove that goodness is preserved by integral
transforms. To prove this, we show that goodness is preserved by the
operations involved in (5.1).

Example 5.3.1.1. [Har66, Example 1., p.68] Let f : X → Y be a
morphism of ringed spaces. Then the derived pullback Lf∗ : D(Y )→ D(X)
(constructed in [Spa88, Prop. 6.7 (a)]) is bounded above (in the sense of
[Lip60, 1.11.1]), and the derived pushout Rf∗ : D(X)→ D(Y ) is bounded
below.

Proposition 5.3.1.2 (Pullback). Let f : X → Y be a morphism of complex
analytic spaces. Then Lf∗ : D(Y )→ D(X) restricts to a functor

1. Db
c(Y )→ Db

c(X) when Y is a complex manifold or f is flat;

2. Dgood(Y )→ Dgood(X).

Proof.

1. Because Y is smooth or f is flat, by Lemma 5.3.1.3, the morphism f
has finite tor-dimension. Thus, Lf∗ restricts to a functor Db(Y ) →
Db(X).

Consider F ∈ Db
c(Y ). To prove that Lf∗F ∈ Db

c(X), by [Har66, I,
Prop. 7.3 (i)], one may assume F ∈ Coh(Y ). This case is proved by
Lemma A.1.3.3.
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2. (a) Let G ∈ D−
good(Y ). By Example 5.3.1.1, Lemma A.1.4.3 3 and a

dual of [Har66, Prop. 7.3 (ii)], to prove Lf∗G ∈ Dgood(X), one
may assume G ∈ Good(Y ). Let U be a relatively compact open
subset of X. Then f(Ū) is a compact subset of Y , so contained
in a relatively compact open subset V of Y . Since G is good,
its restriction G|V =

∑
i∈I Gi is the sum of a directed family of

coherent OV -submodules of G|V . Let g : f−1(V ) → V be the
base change of f along the inclusion V → Y . As Lf∗ commutes
with colimits, one has

(Lf∗G)|f−1(V ) = colimi∈ILg
∗Gi.

For every integer n, in Mod(Of−1(V )) one has

Hn(Lf∗G)|f−1(V ) = Hn
(
(Lf∗G)|f−1(V )

)
=Hn(colimi∈ILg

∗Gi) = colimi∈IH
n(Lg∗Gi).

Since Gi is coherent, by Lemma A.1.3.3, the Of−1(V )-module
Hn(Lg∗Gi) is coherent. By Lemma A.1.4.3 3, the Of−1(V )-
module Hn(Lf∗G)|f−1(V ) is good. Since Ū is a compact subset
of f−1(V ), the subset U is relatively compact in f−1(V ). Hence,
Hn(Lf∗G)|U is the sum of a directed family of coherent submodules.
Hence Lf∗G ∈ Dgood(X).

(b) Then consider the general case C ∈ Dgood(Y ). For every
integer m ≥ 0, the m-th canonical truncation ([Sta24, Tag
0118 (4)]) Cm := τ≤mC is in D−

good(Y ). From the proof of
[Lip60, Prop. 2.5.5], there is a bounded above complex of flat
OY -modules Qm with a quasi-isomorphism Qm → Cm that is
functorial in Cm. Moreover, the complex Q := colimmQm is K-flat
(in the sense of [Spa88, Def. 5.1]), and the canonical morphism
Q → C is a quasi-isomorphism. Because Lf∗ : D(Y ) → D(X)
admits a right adjoint, it commutes with colimits. Thus, the
resulting morphisms

colimmLf
∗Qm → Lf∗Q→ Lf∗C

are isomorphisms in D(X).
Let Ch(Mod(OX)) be the category of chain complexes over
Mod(OX). The directed set N can be seen naturally as a category.
Define a functor N → Ch(Mod(OX)), m 7→ f∗Qm. Because
Mod(OX) is a Grothendieck abelian category, for every integer n,
by [Hov99, Lem. 1.5], the natural morphism

colimmH
n(f∗Qm)→ Hn(colimmf

∗Qm)
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in Mod(OX) is an isomorphism. Hence an isomorphismHn(Lf∗C) ∼=
colimmH

n(Lf∗Qm) in Mod(OX). Since Qm ∈ D−
good(Y ), by Case

2a, the OX -module Hn(Lf∗Qm) is good. By Lemma A.1.4.3 3, so
is the OX -module Hn(Lf∗C).

The tor-dimension tor-dim f of a morphism f : X → Y of ringed spaces
is defined to be the lower dimension (in the sense of [Lip60, 1.11.1]) of
the functor Lf∗ : D−(Y ) → D(X). If f is flat, then tor-dim f = 0. If f
has finite tor-dimension, then Lf∗ : D−(Y ) → D(X) restricts to a functor
Db(Y )→ Db(X). The weak dimension wgld(R) of a commutative ring R is
defined to be the supremum of flat dimension of all R-modules.

Lemma 5.3.1.3. Let f : X → Y be a morphism of complex analytic spaces,
with Y a complex manifold. Then f has finite tor-dimension.

Proof. From [Lip60, (2.7.6.4)], one only needs to show that for every x ∈ X,
the flat dimension of the OY,f(x)-module OX,x is uniformly bounded. By
definition, the flat dimension of every OY,f(x)-module is bounded by the
weak dimension of the ring OY,f(x). Because Y is a complex manifold, the
local ring OY,f(x) is Noetherian regular. By Lemma 5.3.1.4, wgldOY,f(x) is
the Krull dimension of OY,f(x), which coincides with the dimension of the
complex manifold Y near f(x).

Lemma 5.3.1.4 (Serre). Let R be a commutative, Noetherian, regular local
ring. Then wgld(R) coincides with the Krull dimension of R, hence finite.

Proof. From [Osb12, Cor. 4.21], the weak dimension coincides with the
global dimension of R. By Serre’s theorem (see, e.g., [Osb12, p.332]), the
global dimension equals the Krull dimension, which is finite.

Proposition 5.3.1.5 (Tensor product). Let X be a complex analytic space.
Then the bifunctor (constructed in [Spa88, Thm. A. (ii)]) ⊗L : D(X) ×
D(X)→ D(X) restricts to a bifunctor

1. Db(X)×Db(X)→ Db(X) (resp. Db
c(X)×Db

c(X)→ Db
c(X)) when X

is a complex manifold;

2. Dgood(X)×Dgood(X)→ Dgood(X).

Proof.

1. The weak dimension of a ringed space (M,OM ) is defined to be
supx∈M wgld(OM,x). By [HT07, (C.2.20)], to prove the statement for
Db(X), it suffices to bound the weak dimension of X. As X is smooth,
for every x ∈ X, the stalk OX,x is a Noetherian, regular local ring.
Thus, by Lemma 5.3.1.4, its weak dimension wgld(OX,x) is equal to
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the dimension of the complex manifold X near x. Therefore, the weak
dimension of X is at most dimX

Consider any F,G ∈ Db
c(X). To prove that F ⊗L G ∈ Db

c(X), by
[Har66, I, Prop. 7.3 (i)], one may assume F,G ∈ Coh(X). Then the
conclusion follows from [GH78, 4., p.700].

2. Take F,G ∈ Dgood(X). To prove that F ⊗L G ∈ Dgood(X), as in the
proof of Proposition 5.3.1.2 2, one may assume that F,G ∈ D−

good(X).
By a dual of [Har66, I, Prop. 7.3 (ii)], one may assume that F,G ∈
Good(X). Let U be a relatively compact open subset of X.

For every integer n, we claim that the OU -module Hn(F ⊗LOX G)|U
is good. By assumption, the restrictions F |U =

∑
i∈I Fi and G|U =∑

j∈J Gj can be written as sums of directed families of coherent
submodules. By [Sta24, Tag 08DJ], the functor ⊗LOU (G|U ) : D(U) →
D(U) has a right adjoint, so

(F ⊗L G)|U = colimi∈I [Fi ⊗L (G|U )]. (5.5)

By [Sta24, Tag 05NI (2)], there exists a complex C• of flat OU -
modules and a quasi-isomorphism C• → G|U . Then for every i ∈ I, in
D(U)

Fi ⊗OU C
• ∼−→ Fi ⊗LOU G|U . (5.6)

Define a functor I → Ch(Mod(OX)) by i 7→ Fi ⊗ C•. By [Hov99,
Lem. 1.5], the natural morphism

colimi∈IH
n(Fi ⊗ C•)→ Hn(colimi∈I(Fi ⊗ C•))

in Mod(OU ) is an isomorphism. Combining it with (5.5) and (5.6),
one gets an isomorphism in Mod(OU )

colimi∈IH
n(Fi ⊗LOU G|U )→ Hn(F ⊗LOX G)|U .

Because Good(U) is closed under colimits in Mod(OU ) by Lemma
A.1.4.3 3, one may assume that F |U is coherent. Similarly, one may
assume further that G|U is coherent. Then the claim follows from
Lemma A.1.3.4.

Remark 5.3.1.6. Proposition 5.3.1.5 2 can also be derived from Proposition
5.3.1.2 2 as in the proof of [Bjö93, Thm. 3.2.13 (3)].

As the proof of Theorem 5.3.1.7 is lengthy, we split it into a series of
lemmas.
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Theorem 5.3.1.7 (Pushout). Let f : X → Y be a proper morphism of
complex analytic spaces. If dimX is finite, then Rf∗ : D(X)→ D(Y ) restricts
to a functor Dgood(X)→ Dgood(Y ) (resp. Db

good(X)→ Db
good(Y )).

Proof. By Lemma 5.3.1.11, the functor Rf∗ restricts to a functor Db(X) →
Db(Y ). We show that Rf∗F ∈ Dgood(Y ) for every F ∈ Dgood(X). By
[Har66, I, Prop. 7.3 (iii)], Lemmas 5.3.1.11 and A.1.4.3 3, one may assume
that F ∈ Good(X). For every relatively compact open subset V ⊂ Y , its
closure V̄ is compact in Y . As f is proper, the preimage f−1(V̄ ) is compact.
Thus, U := f−1(V ) is a relatively compact open subset of X. Since F is
good, F |U = colimi∈IFi, where {Fi}i∈I is a directed family of coherent OU -
submodules of F |U . Let g : U → V be the base change of f . Fix an integer
n. By Lemma 5.3.1.9, in Mod(OV )

(Rnf∗F )|V = Rng∗(F |U ) = colimi∈IR
ng∗Fi.

As a base change of f , the morphism g is proper. Then by Fact 5.3.1.8, for
every i ∈ I, the OV -module Rng∗Fi is coherent. By Coh(V ) ⊂ Good(V ) and
Lemma A.1.4.3 3, the OV -module (Rnf∗F )|V is good. Therefore, Rf∗F ∈
Dgood(Y ).

Fact 5.3.1.8 (Grauert direct image theorem, see e.g., [GR84, p.207]). Let
f : X → Y be a proper morphism of complex analytic spaces. Then Rf∗ :
D(X)→ D(Y ) restricts to a functor Coh(X)→ Dc(Y ).

Lemma 5.3.1.9. Let f : X → Y be a proper map between locally compact,
Hausdorff spaces. Then for every integer n ≥ 0, the functor Rnf∗ : Ab(X) →
Ab(Y ) commutes with filtrant colimits.

Proof. Let (Fi, fij)i∈I be a filtrant inductive system with colimit F in
Ab(X). Since the abelian category Ab(Y ) is Grothendieck, the filtrant
colimit G = colimi∈IR

nf∗Fi exists and there is a canonical morphism
ϕ : G → Rnf∗F in Ab(Y ). For every y ∈ Y , the functor Ab(Y ) → Ab
taking the stalk at y commutes with colimits, so Gy = colimi∈I(R

nf∗Fi)y.
By [Mil13, Thm. 17.2], for every i the stalk (Rnf∗Fi)y = Hn(Xy, Fi|Xy).
Then by [God58, Thm. 4.12.1], the morphism ϕy : Gy → (Rnf∗F )y is an
isomorphism. Therefore, ϕ is an isomorphism.

The proof of Fact 5.3.1.10 is similar to that of [KS90, Prop. 3.2.2].

Fact 5.3.1.10. Let X be a locally compact, Hausdorff topological space which
is countable at infinity. Suppose that there is an integer n ≥ 0 such that every
point of X has an open neighborhood homeomorphic to a locally closed subset
of Rn. Then for every abelian sheaf F on X and every integer j > n, one has
Hj(X,F ) = 0.
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Lemma 5.3.1.11. Let X be a complex analytic space of finite dimension n.
Let f : X → Y be a proper morphism of complex analytic spaces. Then for
an object E ∈ D(X) with Hm(E) = 0 for every integer m > 0, one has
H i(Rf∗E) = 0 for every integer i > 2n. In particular, the functor Rf∗ :
D(X)→ D(Y ) is bounded.

Proof. For every open subset V ⊂ Y and every OX -module M , from i > 2n
and Fact 5.3.1.10, one has H i(f−1(V ),M) = 0. Applying Lemma 5.3.1.14
to the functor Γ(f−1(V ), ·) : Mod(OX)→ Ab, one gets

H i(RΓ(f−1(V ), E)) = H i(RΓ(f−1(V ), τ≥1E)) = 0.

By Lemma 5.3.1.13, the OY -module H i(Rf∗E) = 0.

Remark 5.3.1.12. The finite dimension condition in Lemma 5.3.1.11 is
necessary. For every integer m ≥ 1, let Tm be a complex torus of dimension
m, and let fm : Tm → SpecanC be the canonical morphism. Let f : X → Y
be ⊔m≥1fm : ⊔m≥1Tm → ⊔m≥1 SpecanC. Then f is proper. For every integer
q ≥ 1, the sheaf Rqf∗OX ̸= 0.

Lemma 5.3.1.13 is a derived version of [Har77, III, Prop. 8.1].

Lemma 5.3.1.13. Let f : X → Y be a continuous map of topological spaces.
Then for every integer i and every F ∈ D(Ab(X)), the sheaf H i(Rf∗F ) on Y
is the sheaf associated to the abelian presheaf V 7→ H iRΓ(f−1(V ), F ).

Proof. By [Spa88, Thm. D], there is a quasi-isomorphism F → I, where
I is a K-injective complex of abelian sheaves on X. Then the canonical
morphism Rf∗F → f∗I is an isomorphism in D(Ab(Y )). By [Mur06,
Lem. 3], H i(Rf∗F ) is the sheaf associated the presheaf

V 7→ H i
(
Γ(V, f∗I)) = H i

(
Γ(f−1(V ), I)) = H i

(
RΓ(f−1(V ), F )).

Lemma 5.3.1.14. Let X be a ringed space as in Fact 5.3.1.10. Let F :
Mod(OX) → Ab be an additive functor. Assume that F commutes with
countable products, and there is an integer N ≥ 0 with RpF (M) = 0 for
every integer p ≥ N and every M ∈ Mod(OX). Then the right derived functor
RF : D(X) → D(Ab) exists. Moreover, for any integers i ≥ j, the natural
transformation

H i(RF ·)→ H i(RF (τ≥j−N+1·)) : D(X)→ Ab

is an isomorphism.
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Proof. The existence of N and [Wei95, Cor. 10.5.11] show that RF :
D+(X)→ D+(Ab) extends to a right derived functor RF : D(X)→ D(Ab)
of F .

For every integer m and every E ∈ D(X), set Em := τ≥−mE. Then
{Em}m∈Z forms an inverse system in D(X). Let n be as in Fact 5.3.1.10.
Then for every open subset U ⊂ X, any integers p(> n) and q, one has
Hp(U,Hq(E)) = 0. Then by [Sta24, Tag 0D64], the canonical morphism
E → R limmEm is an isomorphism in D(X). Since F commutes with
countable products, from [Sta24, Tag 08U1], in D(Ab) one has RF (E)

∼−→
R limmRF (Em). For every integer i, by [Sta24, Tag 08U5], there is a short
exact sequence in the category Ab

0→ R1 lim
m
H i−1(RF (Em))→ H i(RF (E))→ lim

m
H i(RF (Em))→ 0.

(5.7)
We claim that R1 limmH

i−1(RF (Em)) = 0.
For every integer m ≥ N − i, by [Sta24, Tag 08J5], there is an exact

triangle
H−m(E)[m]→ Em → Em−1

+1→ H−m(E)[m+ 1] (5.8)

in D(X). By assumption, one has

H i(RF (H−m(E)[m])) = Ri+mF ((H−m(E)) = 0;

H i(RF (H−m(E)[m+ 1])) = Ri+m+1F ((H−m(E)) = 0.

Taking the long exact sequence associated with (5.8), one concludes
that the canonical morphism H i(RF (Em)) → H i(RF (Em−1)) in Ab is
an isomorphism. Since the inverse system {H iRF (Em)}m≥1 is constant
starting with m = N − i − 1, it satisfies the Mittag-Leffler condition in the
sense of [Sta24, Tag 02N0]. From [Sta24, Tag 07KW (3)], one obtains

R1 lim
m
H i(RF (Em)) = 0,

which proves the claim.
When i ≥ j, as the inverse system is constant from m = N − j − 1,

one has limmH
i(RF (Em)) = H i[RF (EN−j−1)]. Then the sequence (5.7)

induces an isomorphism H i(RF (E))→ H i(RF (τ≥j−N+1E)).

Remark 5.3.1.15. In the statement of Lemma 5.3.1.14, because Mod(OX)
is a Grothendieck abelian category, it has enough injectives. By [Ver66,
p.338], the total right derived functor RF : D+(X)→ D+(Ab) exists (even
if F may not be left exact).

Corollary 5.3.1.16. Let X,Y be complex manifolds (resp. complex analytic
spaces), with X compact and Y finite dimensional. If F is an object of Db

c(X×
Y ) (resp. Dgood(X ×Y )), then ϕ[X→Y ]

F restricts to a functor Db
c(X)→ Db

c(Y )
(resp. Dgood(X)→ Dgood(Y )).
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Proof. Because X is compact, its dimension is finite and the projection
X × Y → Y is proper. Thus, X × Y is finite dimensional. The result is a
combination of Proposition 5.3.1.2 1 (resp. 2), Proposition 5.3.1.5 1 (resp.
2), Fact 5.3.1.8 and Lemma 5.3.1.11 (resp. Theorem 5.3.1.7).

Remark 5.3.1.17. Although we don’t need the functors RHom, f! and f !, it
is interesting to know whether they preserve goodness or not.

5.3.2 Base change theorems

As a replacement for the (algebraic) flat base change theorem (used in
Mukai’s proof of Fact 5.2.0.1), we give an analytic smooth base change
theorem. It is a consequence of Theorem 5.3.2.3 and Fact 5.3.2.2.

Consider a cartesian square in the category An:

X ′ X

S′ S.

g′

f ′ □ f

g

(5.9)

Then [Sta24, Tag 08HY] gives a natural transformation of functors D(X)→
D(S′)

Lg∗Rf∗ → Rf ′∗Lg
′∗, (5.10)

coming from the adjunction in [Sta24, Tag 079W].

Smooth base change

Definition 5.3.2.1. A morphism g : S′ → S of complex analytic spaces is
called locally product, if for every s′ ∈ S′, there is an open neighborhood U
of s′ ∈ S′ and a complex analytic space Z, such that g(U) is open in S and
there is a g(U)-isomorphism U → g(U)× Z.

By [CD94, II, Cor. 2.7], a locally product morphism is flat.

Fact 5.3.2.2 ([Gro61b, Thm. 3.1]). A morphism of complex analytic spaces is
smooth (in the sense of in the sense of [Gro61b, Déf. 3.2]) if and only if it is a
submersion (in the sense of [Fis76, p.100]). In particular, a smooth morphism
is locally product.

Theorem 5.3.2.3. Consider the square (5.9) with both dimX and dimX ′

finite, f : X → S proper and g : S′ → S locally product. Then (5.10) restricts
to an isomorphism of functors Dgood(X)→ Dgood(S

′).

We begin the proof with several lemmas.
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Definition 5.3.2.4. A morphism of complex analytic spaces g : S′ → S is
said to satisfy property QS if for every proper morphism f : X → S of
complex analytic spaces, every coherent OX -module F and every integer
i ≥ 0, the base change morphism g∗Rif∗F → Rif ′∗(g

′∗F ) induced by (5.9)
is an isomorphism in Mod(OS′).

Lemma 5.3.2.5 shows that the property Q is local on the source and the
target.

Lemma 5.3.2.5. Let g : S′ → S and be a morphism of complex analytic
spaces.

1. Let h : S′′ → S′ be another morphism of complex analytic spaces. If g
and h satisfy QS and QS′ respectively, then gh satisfies QS .

2. Assume that {S′
i}i∈I (resp. {Sj}j∈J) is an open covering of S′ (resp. S)

such that for every i ∈ I (resp. j ∈ J), the morphism g|S′
i
: S′

i → S

(resp. g−1(Sj)→ Sj) satisfies QS (resp. QSj). Then g satisfies QS .

3. If g is an open embedding of complex analytic spaces, then g satisfies QS .

Proof. 1. The proof is similar to that of [Day23, Lem. 2.13 (2)].

2. It follows from the local nature of sheaves.

3. The proof is similar to that of [Har77, III, Cor. 8.2].

Lemma 5.3.2.6. Let f : X → S be a proper morphism of complex analytic
spaces, with S Stein. Then for every coherent OX -module F and every integer
n ≥ 0, one has Hn(X,F ) = H0(S,Rnf∗F ).

Proof. By properness of f and Fact 5.3.1.8, the OS-module Rnf∗F is
coherent. As S is Stein, from Cartan’s Theorem B (see, e.g., [KK83, Sec. 52,
Thm. B]), for every integer m > 0 one has Hm(S,Rnf∗F ) = 0. The
conclusion follows from [Sta24, Tag 01F4 (2)].

Remark 5.3.2.7. As an application of Lemma 5.3.2.6, we give an enhancement
of Lemma 5.3.1.11 for good modules. Let f : X → Y be a proper morphism
of complex analytic spaces with dimX finite. Then for every good OX -
module G and every integer n > dimX, one has Rnf∗G = 0.

Assume first thatG is coherent. For every Stein open subset V ⊂ Y , from
Cartan’s Theorem A (see e.g., [GR04, Theorem A, p.XVIII]), the restriction
Rnf∗G|V is generated by sections H0(V,Rnf∗G|V ). By Lemma 5.3.2.6, one
has

H0(V,Rnf∗G|V ) = Hn(f−1(V ), G|f−1(V )),

which vanishes by [Rei64, Cor., p.2333]. Thus, Rnf∗G|V = 0. Hence
Rnf∗G = 0.
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Assume now that G ∈ Good(X) is arbitrary. For every relatively compact
open subset W ⊂ Y , the open subset f−1(W ) of X is relatively compact.
Then there is a directed family of coherent submodules {Gi}i∈I of G|f−1(W )

such that G|f−1(W ) = colimi∈IGi. By Lemma 5.3.1.9, one gets (Rnf∗G)|W =
colimi∈IR

n(f |f−1(W ))∗Gi = 0. Hence Rnf∗G = 0.

Lemma 5.3.2.8. Let X,Y be complex analytic spaces, with Y Stein. Let p :
X×Y → X be the projection. Then for every coherentOX -module F and every
integer i ≥ 0, the natural morphism H i(X,F )⊗̂COY (Y ) → H i(X × Y, p∗F )
of locally convex topological vector spaces is an isomorphism.

Proof. Choose a Stein covering U of X. Let C• be the Čech complex of
F relative to U . Then H i(C•) = H i(X,F ). By [EP+96, Prop. 4.1.5], for
every integer q, the q-th term Cq of the complex C• is a Fréchet space.
Moreover, {U × Y : U ∈ U} forms a Stein covering of X × Y . By [EP+96,
Prop. 4.2.3; Thm. 4.2.4], the Čech complex of p∗F relative to this Stein
covering is C•⊗̂CO(Y ). Therefore, H i(C•⊗̂CO(Y )) = H i(X × Y, p∗F ). By
[EP+96, Prop. 4.1.5], O(Y ) is a unital Fréchet nuclear algebra, so from
[EP+96, Thm. A1.6 (d)], the functor ∗⊗̂CO(Y ) preserves exact sequences,
hence commutes with taking cohomology groups of the Čech complexes.

We consider the special case of products.

Corollary 5.3.2.9. Let S,Z be two complex analytic spaces. Then the
projection S × Z → S satisfies QS .

Proof. Fix a proper morphism X → S of complex analytic spaces and a
coherent OX -module F . By Lemma 5.3.2.5, we may assume that S,Z are
Stein spaces. Then the result follows from Lemma 5.3.2.6, Lemma 5.3.2.8
and [EP+96, Prop. 4.2.3; Thm. 4.2.4].

Corollary 5.3.2.10. Every locally product morphism g : S′ → S of complex
analytic spaces satisfies QS .

Proof. Fix s′ ∈ S′, and let s = g(s′). Since g is locally product, there is an
open neighborhood U (resp. V ) of s′ ∈ S′ (resp. s ∈ S), a complex analytic
space Z and an isomorphism ψ : U → Z × V of complex analytic spaces
such that the diagram

U Z × V

V

g|U

ψ

p2

commutes, where p2 is the projection to the second factor. By Corollary
5.3.2.9, g|U : U → V satisfies QV . By Lemma 5.3.2.5, the morphism g :
S′ → S satisfies QS .
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Proof of Theorem 5.3.2.3. The morphism f ′ is a base change of f , hence a
proper morphism. Because dimX,dimX ′ are finite, by Theorem 5.3.1.7 and
Proposition 5.3.1.2 2, the functors Lg∗Rf∗ and Rf ′∗Lg

′∗ restrict to functors
Dgood(X)→ Dgood(S

′).
For every K ∈ Dgood(X), we prove that the base change morphism

Lg∗Rf∗K → Rf ′∗Lg
′∗K in D(S′) is an isomorphism. By Lemma 5.3.1.11,

the functors Rf∗ : D(X) → D(S) and Rf ′∗ : D(X ′) → D(S′) are bounded.
From [Har66, I, Prop. 7.1 (iii)] and Lemma A.1.4.3 3, one may assume
that K ∈ Good(X). For every s′ ∈ S′, there is a relatively compact open
neighborhood V ⊂ S of g(s′). The preimage f−1(V ) is a relatively compact
open subset of X. Consider the base change of the square (5.9) along the
open embedding V → S:

f−1(V )×V g−1V f−1(V )

g−1(V ) V.

v′

u′ □ u

v

Because g is locally product, so is v. One can write K|f−1(V ) =
colimi∈IGi, where {Gi}i∈I is a directed family of coherent submodules of
K|f−1(V ). By Lemma 5.3.1.9, the natural morphism

(g∗Rif∗K)|g−1(V ) → Rif ′∗(g
′∗K)|g−1(V ) (5.11)

in Mod(Og−1(V )) is the colimit of the morphisms

v∗Riu∗Gi → Riu′∗v
′∗Gi.

By Corollary 5.3.2.10, for all i ∈ I, they are isomorphisms. Then (5.11) is
an isomorphism.

Remark 5.3.2.11. In the proof of [BBR94, Lem. 5], an analytic flat base
change result is applied without further justification. In [MS08, p.153], a
flat base change theorem for cartesian squares in the category of complex
manifolds is stated, referring to [Spa88] for the proof. However, the cited
result [Spa88, Prop. 6.20] is for cartesian squares in the category RingS.
In general, a cartesian square in the category of complex manifolds is not
cartesian in RingS. For example, the complex vector space C2 is the product
of two copies of C in the category of complex manifolds, but is not the
product even in the subcategory LRS ⊂ RingS of locally ringed space.4

In fact, by [Gil11, Cor. 5], the product E of two copies of C in LRS exists.
By the universal property of E, there is a unique morphism f : C2 → E in

4By contrast, every cartesian square in the category of schemes remains cartesian in LRS
([Sta24, Tag 01JN]).
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LRS induced by the two projections pi : C2 → C. Let o = f(0) ∈ E. We
claim that the local ring OE,o is not Noetherian.

The local ring A := OC,0 = C{z} is the ring of convergent power series.
Let B = A ⊗C A. Let ϵ : B → A be the surjective (diagonal) morphism
defined by ϵ(f ⊗ g) = fg. Set I = ker(ϵ). Let c : A → C be the ring map
taking the constant term. Then cϵ : B → C is surjective, so m = ker(cϵ) is a
maximal ideal of B containing I. Set S = B \m. Then OE,o = S−1B. From
[Tu97, p.367], I/I2 is a freeB/I-module of infinite rank. Thus, S−1(I/I2) =
(S−1I)/(S−1I2) is a free S−1(B/I) = (S−1B)/(S−1I)-module of infinite
rank. In particular, the ideal S−1I of the ring S−1B is not finitely generated.
The claim is proved.

By [GH78, p.679], the ring C{x, y} is Noetherian. Thus, the local
morphism f#0 : OE,o → OC2,0 = C{x, y} is not an isomorphism. Hence,
f is not an isomorphism in LRS.

Non-smooth base change

Remark 5.3.2.12. A base change theorem for algebraic varieties may not
have a direct generalization to complex analytic spaces. For example, the
affine base change theorem [Sta24, Tag 02KG] fails for morphism of Stein
manifolds. In the cartesian square (5.9), assume that S = SpecanC is a
point, X = C and S′ is a positive-dimensional complex manifold. Then
there is an open subset U ⊂ S′ isomorphic to an open ball in Cn with n > 0.
On the one hand, by Cartan’s Theorem B, Rf∗OX = f∗OX = OC(C). Thus,
g∗Rf∗OX is a free OS′-module of infinite rank dimCOC(C). From Corollary
A.1.5.4, Γ(U, g∗Rf∗OX) = OU (U) ⊗C OC(C). On the other hand, one has
f ′−1(U) = U × C and g′∗OX = OX′ , so

Γ(U, f ′∗g
′∗OX) = Γ(f ′−1(U), OX′)

=Γ(U × C, OU×C)
(a)
= OU (U)⊗̂COC(C),

where (a) uses [EP+96, p.75]. The natural morphism Γ(U, g∗Rf∗OX) →
Γ(U, f ′∗g

′∗OX) is not an isomorphism, so the base change morphism g∗f∗OX →
f ′∗g

′∗OX is not an isomorphism.

Lemma 5.3.2.13 is used in the proof of Proposition 5.5.1.2.

Lemma 5.3.2.13 (Base change). Consider the cartesian square (5.9) with
dimX,dimS′ finite and f flat proper. Then (5.10) induces an isomorphism
Lg∗Rf∗ → Rf ′∗Lg

′∗ of functors Dgood(X)→ Dgood(S
′).

Proof. Because dimX is finite, by Theorem 5.3.1.7 and Proposition 5.3.1.2
2, the functor Lg∗Rf∗ : D(X) → D(S′) restricts to a functor Dgood(X) →
Dgood(S

′). Consider the following commutative diagram

141

https://stacks.math.columbia.edu/tag/02KG


X ′ S′ ×X X

S′ S′ × S S,

i′

f ′

g′

IdS′×f
p′

f

i

g

p

where the morphism i : S′ → S′ × S is defined by i(s′) = (s′, g(s′)), and
p : S′ × S → S is the projection. Then i is a closed embedding of complex
analytic spaces.

Because p is locally product, by Theorem 5.3.2.3, the natural transformation
Lp∗Rf∗ → R(IdS′×f)∗Lp′∗ : Dgood(X)→ Dgood(S

′×S) is an isomorphism.
Because f is flat proper, so is IdS′ × f . Moreover, dim(S′ ×X) = dimS′ +
dimX is finite. Thus, there are isomorphism of functors Dgood(X) →
Dgood(S

′)

Lg∗Rf∗ ∼= Li∗Lp∗Rf∗
∼−→ Li∗R(IdS′ × f)∗Lp′∗

(a)
∼−→Rf ′∗Li′∗Lp′∗ ∼= Rf ′∗Lg

′∗,

(5.12)

where the isomorphism (a) uses Lemma 5.3.2.14 2. By [Sta24, Tag 0E47],
the isomorphism (5.12) is induced by (5.10).

Lemma 5.3.2.14. In the cartesian square (5.9), assume that g is a closed
embedding of complex analytic spaces. Then:

1. The base change morphism f∗g∗OS′ → g′∗OX′ in Mod(OX) is an
isomorphism.

2. If f is flat proper and X has finite dimension, then (5.10) is an
isomorphism.

Proof. 1. Let I be the kernel of the canonical surjection OS → g∗OS′

in Mod(OS). Since f∗ : Mod(OS) → Mod(OX) is right exact, the
sequence

f∗I → OX → f∗g∗OS′ → 0

is exact in Mod(OX). Because g is a closed embedding, by [Gro61a,
Remarque 2.10], the square (5.9) is cartesian in the category RingS.
Then from [Gro61a, 9-05], the cokernel of the morphism f∗I → OX
in Mod(OX) is g′∗OX′ . Therefore, the morphism f∗g∗OS′ → g′∗OX′ is
an isomorphism.

2. As g is a closed embedding, the functor g∗ : Ab(S′) → Ab(S) is exact
and g−1g∗ = IdAb(S′). Therefore, the functor Rg∗ = g∗ : D(S′) →
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D(S) is conservative in the sense of [Rie17, p.180]. Thus, it suffices
to show that the natural transformation

Rg∗Lg
∗Rf∗E → Rg∗Rf

′
∗Lg

′∗E
∼−→ Rf∗Rg

′
∗Lg

′∗E (5.13)

of functors D(X) → D(S) is an isomorphism. By [Sta24, Tag 0B55],
the natural morphisms

(Rg∗OS′)⊗LOS Rf∗E → Rg∗Lg
∗Rf∗E,

(Rg′∗OX′)⊗LOX E → Rg′∗Lg
′∗E

are isomorphisms. One has

Rg′∗OX′ = g′∗OX′

(a)
∼←− f∗g∗OS′

(b)
= Lf∗Rg∗OS′ ,

where (a) uses Point 1, and (b) uses the flatness of f . Thus, the natural
transformation (5.13) becomes

(Rg∗OS′)⊗LOS Rf∗E → Rf∗(Lf
∗Rg∗OS′ ⊗LOX E).

It is an isomorphism by the finiteness of dimX, the properness of f
and Fact 5.3.2.15.

From Fact 5.3.1.10, one gets Fact 5.3.2.15 as a special case of [Spa88,
Prop. 6.18]. A slight variant can also be derived from [KS90, Prop. 2.6.6]
and Lemma 5.4.2.1.

Fact 5.3.2.15 (Projection formula). Let f : X → Y be a morphism of complex
analytic spaces. If dimX is finite, then there is a canonical isomorphism
(Rf!−)⊗LOY (+)→ Rf!(−⊗LOX Lf

∗+) of bifunctors D(X)×D(Y )→ D(Y ).

5.3.3 Compatibility

For a complex algebraic variety X, let ψX : Xan → X be its complex
analytification. With quasi-coherence condition, the algebraic and analytic
integral transforms are compatible.

Corollary 5.3.3.1. Let X,Y be two complex algebraic varieties, with X
proper. Then for every K ∈ Dqc(X × Y ), the natural square

D(X) D(Y )

D(Xan) D(Y an),

ϕ
[X→Y ]
K

ψ∗
X ψ∗

Y

ϕ
[Xan→Y an]
Kan
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restricts to a commutative square

Dqc(X) Dqc(Y )

Dgood(X
an) Dgood(Y

an).

ϕ
[X→Y ]
K

ψ∗
X ψ∗

Y

ϕ
[Xan→Y an]
Kan

(5.14)

Proof. From [Sta24, Tag 08DW (1)], [Sta24, Tag 08DX (1)] and [Sta24, Tag
08D5 (1)], the functor ϕ[X→Y ]

K restricts to a functor Dqc(X) → Dqc(Y ). By
Corollary 5.3.1.16 and compactness of Xan, the functor ϕ[X

an→Y an]
Kan restricts

to a functor Dgood(X
an) → Dgood(Y

an). By Lemma B.2.0.2, the functor ψ∗
X

(resp. ψ∗
Y ) restricts to a functor Dqc(X) → Dgood(X

an) (resp. Dqc(Y ) →
Dgood(Y

an)).
By [Sta24, Tag 0D5S] (resp. [Sta24, Tag 079U]), analytification

commutes with derived pullback (resp. tensor product). As X is proper
over C, the projection pY : X × Y → Y is proper. By Proposition B.3.0.1,
analytification commutes with derived direct image. Thus, the square (5.14)
is commutative.

Remark 5.3.3.2. Fact B.2.0.1 (Theorem B.4.0.2) proves Corollary 5.4.1.2
(resp. Theorem 5.4.1.1) for complex tori that are algebraic. Because if X is
a complex abelian variety, then every functor in the square

Db
c(X) Db

c(X̂)

Db
c(X

an) Db
c(X̂

an)

RŜ

ψ∗
X

ψ∗
X̂

RŜ

Dqc(X) Dqc(X̂)

Dqc(X
an) Dqc(X̂

an)

RŜ

ψ∗
X

ψ∗
X̂

RŜ

is an equivalence. In fact, by [Huy06, Def. 5.1] and the natural equivalence
Db(Coh(X)) → Db

c(X) in [FJJ+71, Exp. II, Cor. 2.2.2.1], the functor RŜ :
D(X) → D(X̂) restricts to a functor Db

c(X) → Db
c(X̂). The functor on the

top of the square is an equivalence by Fact 5.2.0.1. From Fact B.2.0.1, the
vertical functors are also equivalences. From Corollary 5.3.1.16, the functor
RŜ restricts to a functor Db

c(X
an) → Db

c(X̂
an). The commutativity of the

square follows from Corollary 5.3.3.1.

5.4 Analytic Mukai duality

5.4.1 Statement

Let X be a complex torus of dimension g.
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Theorem 5.4.1.1 (Mukai, Ben-Bassat, Block, Pantev). There are natural
isomorphisms of functors

RS ◦RŜ ∼−→ [−1]∗X [−g] : Dgood(X)→ Dgood(X);

RŜ ◦RS ∼−→ [−1]∗
X̂
[−g] : Dgood(X̂)→ Dgood(X̂).

In particular, RS : Dgood(X̂) → Dgood(X) is an equivalence of categories,
with a quasi-inverse [−1]∗

X̂
RŜ[g].

Corollary 5.4.1.2. 5 The functors RS : Db
c(X̂)→ Db

c(X) and RŜ : Db
c(X)→

Db
c(X̂) are equivalences of triangulated categories.

Proof. It follows from Corollary 5.3.1.16 and Theorem 5.4.1.1.

Remark 5.4.1.3. A Mukai duality for complex tori similar to Corollary 5.4.1.2
is stated in [Blo10, p.314], with Db(Coh(∗)) at the place of Db

c(∗). However,
Prof. Jonathan Block told the author that here we should stick to Db

c(∗).
In fact, in general the abelian category Coh(X) does not have enough
injectives, so it is unclear how to define the derived direct image involved
in [Blo10, p.314]. Moreover, recently Prof. Alexey Bondal announced6

that for a generic complex torus X of dimension > 2, the natural functor
Db(Coh(X))→ Db

c(X) is not an equivalence.

5.4.2 Proof

We follow the strategy of [BBBP07, Thm. 2.1] to prove Theorem 5.4.1.1.

Preliminaries

Lemma 5.4.2.1 (Associativity). Let A,B be two sheaves of rings on a
topological space X. For M ∈ D(Mod(A)), N ∈ D(BiMod(A,B)),7 and
K ∈ D(Mod(B)), there is a canonical isomorphism M ⊗LA (N ⊗LB K) =
(M ⊗LA N)⊗LB K in D(BiMod(A,B)).

Proof. By [Sta24, Tag 06YF], there exists a quasi-isomorphism M ′ → M
(resp. K ′ → K) in D(Mod(A)) (resp. D(Mod(B))), where M ′ (resp. K ′) is
a K-flat complex of A (resp. B) modules. From [Sta24, Tag 06YH], one has

M ⊗LA (N ⊗LB K) =M ′ ⊗A (N ⊗LB K)

=M ′ ⊗A (N ⊗B K ′) = (M ′ ⊗A N)⊗B K ′

=(M ⊗L N)⊗B K ′ = (M ⊗LA N)⊗LB K.

5[PPS17, Thm. 13.1] relies on Statement 5.2.0.5.
6https://www.mathnet.ru/eng/present35371
7Here, BiMod(A,B) denotes the category of sheaves of (A,B)-bimodules.
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Lemma 5.4.2.2, an analytic analog of [Muk81, Example 1.2], exhibits
the derived pullback and direct image as particular examples of integral
transforms.

Lemma 5.4.2.2. Let f : X → Y be a morphism of complex analytic spaces.
Let i : Γf → X × Y be the inclusion of the graph of f . Set F = i∗OΓf ∈
Mod(OX×Y ). Then there are canonical isomorphism of functors

ϕ
[X→Y ]
F

∼−→ Rf∗ : D(X)→ D(Y ); (5.15)

ϕ
[Y→X]
F

∼−→ Lf∗ : D(Y )→ D(X). (5.16)

Proof. Let g : Γf → X be the projection. Since g is an isomorphism of
complex analytic spaces, one has a canonical isomorphism

Lg∗
∼−→ R(g−1)∗ (5.17)

of functors D(X)→ D(Γf ). Consider the following diagram

Γf X × Y

X Y.

i

g
pX

pY

f

As i is a closed embedding of complex analytic spaces, by [Sta24, Tag 0B55],
the natural transformation

Ri∗OΓf ⊗
L Lp∗X(·)→ Ri∗Li

∗Lp∗X(·) (5.18)

is an isomorphism of functors D(X)→ D(X × Y ). One has

ϕ
[X→Y ]
F :=RpY ∗(F ⊗L p∗X ·) = RpY ∗(Ri∗OΓf ⊗

L Lp∗X ·)
(a)
∼−→RpY ∗Ri∗Li

∗Lp∗X

(b)
∼−→ RpY ∗Ri∗Lg

∗

(c)
∼−→RpY ∗Ri∗R(g

−1)∗
(d)
∼−→ Rf∗,

where (a) (resp. (c)) uses (5.18) (resp. (5.17)), and (b), (d) are from
[Spa88, Thm. A (iii)].

Thus, (5.15) is proved. The proof of (5.16) is similar.

Proposition 5.4.2.3 is the first ingredient of the proof of Theorem 5.4.1.1,
which expresses the composition of two integral transforms as another
integral transform.
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Proposition 5.4.2.3. Let M,N,P be complex analytic spaces, with M,N
compact and dimP finite. Let pij be the projections of the product M×N×P .
For K ∈ Dgood(M ×N) and L ∈ D(N × P ), set

H = Rp13∗(p
∗
12K ⊗L p∗23L)(∈ D(M × P )).

Then there is a natural isomorphism ϕ
[N→P ]
L ϕ

[M→N ]
K

∼−→ ϕ
[M→P ]
H of functors

Dgood(M)→ D(P ).

Proof. Let

a :M ×N →M, b : N × P → P,

p :M ×N → N, q : N × P → N,

u :M × P →M, v :M × P → P

be projections.
The morphism q is locally product. Properness of p follows from the

compactness ofM . By Propositions 5.3.1.2 2 and 5.3.1.5 2, the functorK⊗L
a∗· : D(M)→ D(M ×N) restricts to a functor Dgood(M)→ Dgood(M ×N).
Then one can apply Theorem 5.3.2.3 to the cartesian square

M ×N × P M ×N

N × P N,

p12

p23 □ p

q

so the base change natural transformation induces an isomorphism

q∗Rp∗(K ⊗L a∗·)→ Rp23∗p
∗
12(K ⊗L a∗·) (5.19)

of functors Dgood(M)→ Dgood(N × P ). Thus, one has isomorphisms

ϕ
[N→P ]
L ϕ

[M→N ]
K =Rb∗[L⊗L q∗Rp∗(K ⊗L a∗·)]

(a)
∼−→Rb∗[L⊗L Rp23∗p∗12(K ⊗L a∗·)]
(b)
∼−→Rb∗Rp23∗[p∗23L⊗L p∗12(K ⊗L a∗·)]
∼=Rp3∗[p∗23L⊗L p∗12(K ⊗L a∗·)]
∼=Rv∗Rp13∗(p∗12K ⊗L p∗23L⊗L p∗1·)

(c)
∼←−Rv∗[H ⊗L u∗·] = ϕ

[M→P ]
H ,

of functors Dgood(M)→ D(P ) where (a) uses (5.19), and (b) (resp. (c)) is
from the compactness of M (resp. N) and Fact 5.3.2.15.

Fact 5.4.2.4, the other ingredient of the proof of Theorem 5.4.1.1,
calculates the cohomology of the Poincaré bundle.
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Fact 5.4.2.4 ([Kem91, Thm. 3.15]). Let X be a complex torus of dimension
g. Let pX : X × X̂ → X, pX̂ : X × X̂ → X̂ be the two projections. Then for
the normalized Poincaré bundle P, one has RpX∗P = C0[−g] in Db(X) and
RpX̂∗P = C0[−g] in Db(X̂).

Proof of Theorem 5.4.1.1

By Corollary 5.3.1.16, the functor RS (resp. RŜ) restricts to a functor
Dgood(X̂) → Dgood(X) (resp. Dgood(X) → Dgood(X̂)). Let pij be the
projections of X ×X × X̂. Set

H = Rp12,∗(p
∗
13P ⊗L p∗23P).

By Propositions 5.3.1.2 1 and 5.3.1.5 1, Fact 5.3.1.8 and Lemma 5.3.1.11,
one has H ∈ Db

c(X ×X). By Proposition 5.4.2.3, one has an isomorphism
of RS ◦ RŜ ∼−→ ϕ

[X→X]
H of functors Dgood(X) → Dgood(X). Let m : X ×

X → X be the group law. Since the OX×X×X̂ -module p∗13P is flat, one has
p∗13P⊗Lp∗23P = p∗13P⊗p∗23P. By [BL04, Lem. 14.1.7],8 theOX×X×X̂ -module
p∗13P ⊗ p∗23P is isomorphic to (m× IdX̂)

∗P. Then H ∼−→ Rp12,∗(m× IdX̂)
∗P.

Because the morphism m is smooth, applying Theorem 5.3.2.3 to the
cartesian square

X ×X × X̂ X × X̂

X ×X X

m×IdX̂

p12 □ pX

m

in the category An, one has an isomorphism m∗RpX,∗P → H in Db
c(X×X).

Let i : Γ[−1] → X × X be the inclusion of the graph of [−1]X : X → X.
From Fact 5.4.2.4, one has H ∼−→ m∗C0[−g] = i∗OΓ[−1]

[−g]. By Lemma

5.4.2.2, there is an isomorphism ϕ
[X→X]
H

∼−→ [−1]∗X [−g] of functors D(X)→
D(X), which shows the isomorphism RS ◦ RŜ ∼−→ [−1]∗X [−g] of functors
Dgood(X)→ Dgood(X). The proof of the second isomorphism is similar.

5.5 Properties of Fourier-Mukai transform

For later reference purposes, we check that each result starting from
Theorem 2.2 to (3.12’) in [Muk81] has an analytic version. We only indicate
the necessary modifications in statements and proofs.

For a complex torus X, let gX be its dimension. Let (RSX , RŜX) be
the Fourier-Mukai transform of X. The subscripts are omitted when there is
only one complex torus in context. Let pX : X×X̂ → X, pX̂ : X×X̂ → X̂ be

8It is stated for abelian varieties, but its proof works for complex tori.
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the projections. For a morphism ϕ : X → Y of complex tori, let ϕ̂ : Ŷ → X̂
be the dual morphism.

5.5.1 Functoriality

Exchange of translations and twists

For every point x of the complex torus X, let Tx : X → X, x′ 7→ x′ + x be
the translation by x.

Proposition 5.5.1.1. For every x ∈ X and every x̂ ∈ X̂, there are canonical
isomorphisms

RS ◦ T ∗
x̂
∼= (· ⊗OX P−x̂) ◦RS, (5.20)

RS ◦ (· ⊗OX̂ Px)
∼= T ∗

x ◦RS (5.21)

of funtors D(X̂)→ D(X).

Proof. We prove (5.20). From [BL04, Cor. A.9], one gets

T ∗
(0,−x̂)P

∼−→ P ⊗OX×X̂
p∗XP−x̂; (5.22)

T ∗
(x,0)P

∼−→ P ⊗OX×X̂
p∗
X̂
Px. (5.23)

Then there are isomorphisms

RS(T ∗
x̂ ·) =RpX∗(P ⊗OX×X̂

p∗
X̂
T ∗
x̂ ·)

=RpX∗(P ⊗OX×X̂
T ∗
(0,x̂)p

∗
X̂
·)

=RpX∗T
∗
(0,x̂)(T

∗
(0,−x̂)P ⊗OX×X̂

p∗
X̂
·)

∼−→RpX∗R(T(0,−x̂))∗(T
∗
(0,−x̂)P ⊗OX×X̂

p∗
X̂
·)

∼=RpX∗(T
∗
(0,−x̂)P ⊗OX×X̂

p∗
X̂
·)

(a)
∼−→RpX∗(p

∗
XP−x̂ ⊗ P ⊗OX×X̂

p∗
X̂
·)

(b)
∼←−P−x̂ ⊗RpX∗(P ⊗OX×X̂

p∗
X̂
·)

=P−x̂ ⊗RS(·)

of functors D(X̂) → D(X), where (a) (resp. (b)) uses (5.22) (resp. Fact
5.3.2.15).
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We prove (5.21) as follows:

RS(Px ⊗ ·) =RpX∗(P ⊗OX×X̂
p∗
X̂
(Px ⊗ ·))

=RpX∗(P ⊗OX×X̂
p∗
X̂
Px ⊗ p∗X̂ ·))

(a)
∼−→RpX∗(T

∗
(x,0)P ⊗OX×X̂

p∗
X̂
·)

=RpX∗T
∗
(x,0)(P ⊗OX×X̂

T ∗
(−x,0)p

∗
X̂
·)

∼−→RpX∗R(T(−x,0))∗(P ⊗OX×X̂
T ∗
(−x,0)p

∗
X̂
·)

∼=R(T−x)∗RpX∗(P ⊗OX×X̂
p∗
X̂
·)

∼=T ∗
xRS(·),

where (a) uses (5.23).

Exchange of the direct image and the inverse image

A result similar to Proposition 5.5.1.2 is stated as [Lau96, Prop. 1.3.1].
As Laumon omits its proof, we give one. The Fourier-Mukai transform is
functorial.

Proposition 5.5.1.2. For a morphism ϕ : Y → X of complex tori, there are
canonical isomorphisms of functors

Lϕ∗ ◦RSX ∼= RSY ◦Rϕ̂∗ : Dgood(X̂)→ Dgood(Y ), (5.24)

Rϕ∗ ◦RSY ∼= RSX ◦ Lϕ̂∗(·)[gX − gY ] : Dgood(Ŷ )→ Dgood(X). (5.25)

Proof. The isomorphism (5.25) follows from (5.24) as follows. There are
isomorphisms

Rϕ∗RSY

(a)
∼−→[−1]∗XRSXRŜXRϕ∗RSY (·)[gX ]
(b)
∼−→[−1]∗XRSXLϕ̂∗RŜYRSY (·)[gX ]
(c)
∼−→[−1]∗XRSXLϕ̂∗[−1]∗Y (·)[gX − gY ]
=RSXLϕ̂

∗(·)[gX − gY ]

of functors Dgood(Ŷ ) → Dgood(X), where (a) and (c) use Theorem 5.4.1.1,
and (b) uses (5.24).

To prove (5.24), we show

(ϕ× IdX̂)
∗PX ∼= (IdY × ϕ̂)∗PY . (5.26)

Set L := (ϕ×IdX̂)
∗PX⊗OY×X̂

(IdY ×ϕ̂)∗P−1
Y . By definition, on the one hand

for every x̂ ∈ X̂, one has L|Y×x̂
∼−→ ϕ∗Px̂ ⊗ P−1

ϕ̂(x̂)

∼−→ OY ; on the other hand,
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one has L|0×X̂
∼−→ ϕ̂∗OŶ

∼−→ OX̂ . By the seesaw principle [BL04, Cor. A.9],
these imply L ∼−→ OY×X̂ .

By applying Theorem 5.3.2.3 to the cartesian square

Y × X̂ X̂

Y × Ŷ Ŷ

p2

IdY ×ϕ̂ □ ϕ̂

pŶ

in the category An, the base change natural transformation

p∗
Ŷ
Rϕ̂∗ → R(IdY × ϕ̂)∗p∗2 (5.27)

induces an isomorphism of functors Dgood(X̂) → Dgood(Y × Ŷ ). By
Propositions 5.3.1.2 2 and 5.3.1.5 2, the functor PX ⊗ p∗

X̂
(·) : D(X̂) →

D(X × X̂) restricts to a functor Dgood(X̂)→ Dgood(X × X̂). Because pX is
smooth proper, by applying Lemma 5.3.2.13 to the cartesian square

Y × X̂ X × X̂

Y X

p1

ϕ×IdX̂

□ pX

ϕ

in the category An, the base change natural transformation induces an
isomorphism

Lϕ∗RpX∗(PX ⊗ p∗X̂ ·)→ Rp1∗L(ϕ× IdX̂)
∗(PX ⊗ p∗X̂ ·) (5.28)

of functors Dgood(X̂)→ Dgood(Y ).
There are isomorphisms

Lϕ∗ ◦RSX =Lϕ∗RpX∗(PX ⊗ p∗X̂ ·)
(a)
∼−→Rp1∗L(ϕ× IdX̂)

∗(PX ⊗ p∗X̂ ·)
∼=Rp1∗[L(ϕ× IdX̂)

∗PX ⊗L L(ϕ× IdX̂)
∗p∗
X̂
·]

∼=Rp1∗[(ϕ× IdX̂)
∗PX ⊗ p∗2·]

(b)
∼−→Rp1∗[(IdY × ϕ̂)∗PY ⊗ p∗2·]
∼=RpY ∗R(IdY × ϕ̂)∗[L(IdY × ϕ̂)∗PY ⊗ p∗2·]

(c)
∼←−RpY ∗[PY ⊗R(IdY × ϕ̂)∗p∗2·]

(d)
∼←−RpY ∗[PY ⊗ p∗ŶRϕ̂∗·]

=RSYRϕ̂∗
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of functors Dgood(X̂) → Dgood(Y ), where (a) (resp. (b), resp. (c), resp.
(d)) uses (5.28) (resp. (5.26), resp. Fact 5.3.2.15, resp. (5.27)). This
proves (5.24).

Remark 5.5.1.3. In Proposition 5.5.1.2, if ϕ is an isogeny, then

ϕ∗ ◦RSX ∼= RSY ◦ ϕ̂∗ : Dgood(X̂)→ Dgood(Y );

ϕ∗ ◦RSY ∼= RSX ◦ ϕ̂∗ : Dgood(Ŷ )→ Dgood(X).

In fact, ϕ is finite flat and gY = gX . By [GR04, Thm. 4, p.47], the functor
ϕ∗ : Mod(Y )→ Mod(X) is exact, so Rϕ∗ = ϕ∗ as a functor D(Y )→ D(X).
By the flatness, the inverse image ϕ∗ : Mod(X) → Mod(Y ) is exact and
Lϕ∗ = ϕ∗ as a functor D(X)→ D(Y ).

In [Muk81, (3.4)]), for an isogeny ϕ : Y → X of abelian varieties, the
derived functor Rϕ∗ : Dqc(Y ) → Dqc(X)) is also written as ϕ∗, but for a
different reason [Sta24, Tag 08D7].

For the first half of [Muk81, Prop. 3.11 (4)], the result [MRM74, Sec.
23, Lem. 3] cited in its proof still holds for complex tori, with a similar (and
simpler) proof.

Exchange of the Pontrjagin product and the tensor product

Let pi be the two projections X ×X → X. Define a bifunctor ∗R : D(X) ×
D(X) → D(X) by − ∗R + = Rm∗(p

∗
1 − ⊗Lp∗2+). As in Corollary 5.3.1.16,

the bifunctor ∗R restricts to a bifunctor Dgood(X) ×Dgood(X) → Dgood(X)
(resp. Db

c(X)×Db
c(X)→ Db

c(X)).

Fact 5.5.1.4 ([Muk81, (3.7)]). For every F ∈ Dgood(X̂), there are canonical
isomorphisms

RS(F ∗R ·) ∼= RS(F )⊗L RS(·),
RS(F ⊗L ·) ∼= RS(F ) ∗R RS(·)[g]

of functors Dgood(X̂)→ Dgood(X).

Commutativity with external tensor product

Let M,N be two complex analytic spaces. Let p : M × N → M and q :
M × N → N be the projections. The bifunctor D(M) × D(N) → D(M ×
N), (−,+) 7→ (p∗−)⊗L (q∗+) is denoted by (·)⊠L (·).

Proposition 5.5.1.5. Let X,Y be two complex tori and Z = X × Y . Then
there is a canonical isomorphism RSZ(− ⊠L +) = RSX(−) ⊠L RSY (+) of
bifunctors Dgood(X̂)×Dgood(Ŷ )→ Dgood(Z).
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Proof. By the seesaw principle, one has PZ
∼−→ PX ⊠L PY . Then there are

canonical isomorphisms

RSZ(−⊠L +) =RpZ∗[PZ ⊗L Lp∗Ẑ(−⊠L +)]
∼−→RpZ∗[(PX ⊠L PY )⊗L (Lp∗

X̂
(−)⊠L Lp∗

Ŷ
(+))]

∼−→R(pX × pY )∗[(PX ⊗L Lp∗X̂(−))⊠
L (PY ⊗L Lp∗Ŷ (+))]

(a)
∼←−RpX∗(PX ⊗L Lp∗X̂(−))⊠

L RpY ∗(PY ⊗L Lp∗Ŷ (+))

=RSX(−)⊠L RSY (+)

of bifunctors Dgood(X̂) × Dgood(Ŷ ) → Dgood(Z), where (a) uses Lemma
5.5.1.6 2.

Lemma 5.5.1.6.

1. Let X,Y, T be complex analytic spaces, with X,T finite dimensional.
Let f : X → Y be a proper morphism. Then there is a canonical
isomorphism

Rf∗(−)⊠L (+)→ R(f × IdT )∗(−⊠L +)

of bifunctors Dgood(X)×D(T )→ D(Y × T ).

2. Let fi : Xi → Yi (i = 1, 2) be proper morphism of complex analytic
spaces. If X1, X2 and Y1 are finite dimensional, then there is a canonical
isomorphism

(Rf1∗−)⊠L (Rf2∗+)→ R(f1 × f2)∗(−⊠L +)

of bifunctors Dgood(X1)×Dgood(X2)→ Dgood(Y1 × Y2).

Proof.

1. Consider the notation in the commutative diagram

X × T X

T Y × T Y,

u

f×IdT
v

□ f

pq

where u, v, p and q are projections. Since v = q ◦ (f × IdT ), there is
a canonical isomorphism v∗

∼−→ L(f × IdT )
∗q∗ of functors D(T ) →

D(X × T ). As f × IdT is a base change of f , it is also proper. As
dim(X × T ) is finite, by Fact 5.3.2.15, the canonical morphism

[R(f × IdT )∗u
∗−]⊗L q∗+→ R(f × IdT )∗[u

∗ −⊗Lv∗+] (5.29)
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of bifunctors D(X)×D(T )→ D(Y × T ) is an isomorphism.

By Theorem 5.3.2.3, one has a canonical isomorphism

p∗Rf∗ → R(f × IdT )∗u
∗ : Dgood(X)→ Dgood(Y × T ). (5.30)

Therefore, there are canonical isomorphisms

(Rf∗−)⊠L + =(p∗Rf∗−)⊗L q∗+
(a)
∼−→[R(f × IdT )∗u

∗−]⊗L q∗+
(b)
∼−→R(f × IdT )∗[u

∗ −⊗v∗+]

=R(f × IdT )∗(−⊠L +),

of bifunctors Dgood(X) × D(T ) → D(Y × T ), where (a) (resp. (b))
uses (5.30) (resp. (5.29)).

2. Since dim(X1 × X2) is finite, as in Corollary 5.3.1.16, the bifunctor
R(f1×f2)∗(−⊠L+) restricts to a bifunctor Dgood(X1)×Dgood(X2)→
Dgood(Y1 × Y2).
As dimY1,dimX2 are finite, by Point 1, there are canonical isomorphisms
of bifunctors

(Rf1∗−)⊠L +→ R(f1 × IdX2)∗(−⊠L +) : Dgood(X1)×D(X2)→ D(Y1 ×X2),

(Rf1∗−)⊠L (Rf2∗+)→ R(IdY1 × f2)∗[(Rf1∗−)⊠L +] : D(X1)×Dgood(X2)→ D(Y1 × Y2).

Then there is a canonical isomorphism of bifunctors

(Rf1∗−)⊠L (Rf2∗+)→ R(IdY1 × f2)∗[(Rf1∗−)⊠L +]

→R(IdY1 × f2)∗R(f1 × IdX2)∗(−⊠L +)

→R(f1 × f2)∗(−⊠L +) : Dgood(X1)×Dgood(X2)→ Dgood(Y1 × Y2).

Skew commutativity with duality

We summarize classical facts about the duality theory on complex manifolds.

Fact 5.5.1.7. Let X be a complex manifold of pure dimension n, and let ωX =∧nΩX be the canonical line bundle.

1. ([RR70, p.81; p.90]) The dualizing functor DX = RHomX(·, ωX)[n] :
D(X) → D(X) restricts to a functor Dc(X) → Dc(X) and the natural
transformation Id → DX ◦ DX : Dc(X) → Dc(X) is an isomorphism.
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If X is compact, then DX exchanges9 D+
c (X) with D−

c (X), and induces
an equivalence Db

c(X)→ Db
c(X).

2. ([RRV71, p.264]) There is a canonical isomorphism RHomX(−,+) →
DX(−⊗L DX+) of bifunctors Dc(X)×D+

c (X)→ D(X).

3. ([RRV71, p.264], [Bjö93, p.122]) Let f : X → Y be a proper morphism
of complex manifolds. Then there is a canonical isomorphism of functors
Rf∗DX → DYRf∗ : Dc(X)→ D(Y ).

Proposition 5.5.1.8 ([Muk81, (3.8)]). There are canonical isomorphisms of
functors

DX ◦RS
∼−→ ([−1]∗X ◦RS ◦DX̂)[g] : D

+
c (X̂)→ D−

c (X);

DX̂ ◦RŜ
∼−→ ([−1]∗

X̂
◦RŜ ◦DX)[g] : D

+
c (X)→ D−

c (X̂).

We make some preparation for the proof of Proposition 5.5.1.8. Lemma
5.5.1.9 is an adaption of [Har66, Ch.II, Prop. 5.8] and [Sta24, Tag 0C6I].

Lemma 5.5.1.9. Let f : X → Y be a flat morphism of complex analytic
spaces. Then:

1. There is a canonical natural transformation of bifunctors

f∗RHomY (−,+)→ RHomX(f
∗−, f∗+) : D(Y )×D(Y )→ D(X).

(5.31)

2. The natural transformation (5.31) restricts to an isomorphism of
bifunctors D−

c (Y )×D(Y )→ D(X).

Proof. Set G ∈ D(Y ).

1. By [Spa88, Thm. D ], there is a functorial quasi-isomorphism G→ G′,
where G′ is a K-injective complex over Mod(OY ). There are natural
transformations of functors D(Y )→ D(X)

f∗RHomY (·, G)→ f∗HomY (·, G′)→ HomX(f
∗·, f∗G′)

→RHomX(f
∗·, f∗G′)

∼←− RHomX(f
∗·, f∗G).

2. By [Har66, I, Examples 1], the (contravariant) functors

f∗RHomY (·, G), RHomX(f
∗·, f∗G) : D(Y )→ D(X)

are bounded below. Consider F ∈ D−
c (Y ). To show the natural

morphism f∗RHomY (F,G) → RHomX(f
∗F, f∗G) : D−

c (Y ) → D(X)

9By [FS13, p.4971], in general the functor RHomX(·, ωX) : D(X) → D(X) does not
exchange Db,≤0

c (X) and Db,≥0
c (X).
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is an isomorphism, by [Har66, I, Prop. 7.1 (ii)], one may assume
F ∈ Coh(Y ). By [Sta24, Tag 08DL], one may shrink Y to open
subsets. Thus, from Lemma A.1.3.1, one may assume that there is
a quasi-isomorphism K → F , where K is a complex of finite free
OY -modules. The morphism f is flat, so f∗K → f∗F → 0 is a
globally free resolution of f∗F . The morphism (5.31) is identified
with f∗HomY (K,G)→ HomX(f

∗K, f∗G), which is an isomorphism.

Lemma 5.5.1.10. Let E → X be a holomorphic vector bundle on a complex
manifold, and let E∨ be the dual vector bundle. Then there is an isomorphism
of functors E∨ ⊗DX · → DX(E ⊗ ·) : D(X)→ D(X).

Proof. Since E is a vector bundle, one has isomorphisms

E ⊗ · ∼−→ HomX(E
∨, ·) ∼−→ RHomX(E

∨, ·)

of functors D(X)→ D(X). Then

DX(E ⊗ ·) = RHomX(RHomX(E
∨, ·), ωX)[dimX].

As E∨ is a perfect object of D(X) (in the sense of [Sta24, Tag 08CM]), by
[Sta24, Tag 0G40], one has DX(E ⊗ ·) = RHomX(·, ωX)[dimX] ⊗L E∨ =
E∨ ⊗DX ·.

Corollary 5.5.1.11. Let f : X → Y be a flat morphism of complex manifolds
of relative dimension n. Write ωf = ωX ⊗OX f∗ω∨

Y for the relative dualizing
line bundle. Then there is a canonical isomorphism of functors DXf

∗DY →
ωf ⊗OX f∗(·)[n] : D−

c (Y )→ D−
c (X).

Proof. One has

DXf
∗DYOY = DX

(
f∗RHomY (OY , ωY )[dimY ]) = DX(f

∗ωY [dimY ])

=RHomX(f
∗ωY , ωX)[dimX − dimY ]

(a)
= HomX(f

∗ωY , ωX)[n]

=f∗ω∨
Y ⊗OX ωX [n] = ωf [n],

(5.32)
where (a) uses that f∗ωY is a line bundle on X.

By Fact 5.5.1.7 1 and 2, there is an isomorphismDY
∼−→ RHomY (·, DYOY )

of functorsD−
c (Y )→ D+

c (Y ). From Lemma 5.5.1.9 2, there are isomorphisms

f∗DY
∼−→ f∗RHomY (·, DYOY )

∼−→ RHomX(f
∗·, f∗DYOY )

of functors D−
c (Y )→ D+

c (X). Then by Fact 5.5.1.7 1 and 2 again, there are
isomorphisms

DXf
∗DY

∼−→ f∗(·)⊗L DXf
∗DYOY

(a)
=f∗(·)⊗LOX ωf [n]

(b)
= f∗(·)⊗OX ωf [n]
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of functors D−
c (Y ) → D−

c (X), where (a) (resp. (b)) equality uses (5.32)
(resp. local freeness of ωf ).

Lemma 5.5.1.12. There is an isomorphism RpX∗(P−1 ⊗L p∗
X̂
·) = [−1]∗XRS

of functors D(X̂)→ D(X).

Proof. By [BL04, Cor. A.9], one has P−1 ∼−→ ([−1]X × [1]X̂)
∗P. Since pX̂ ◦

([−1]X × [1]X̂) = pX̂ , there are isomorphisms

RpX∗(P−1 ⊗L p∗
X̂
·) ∼−→ RpX∗([−1]X × [1]X̂)

∗(P ⊗L p∗
X̂
·)

∼←−[−1]∗XRpX,∗(P ⊗L p∗X̂ ·) = [−1]∗XRS

of functors D(X̂)→ D(X).

Proof of Proposition 5.5.1.8. By Fact 5.5.1.7 1 and 3, There are isomorphisms

DX ◦RS = DXRpX,∗(P ⊗L p∗X̂ ·)
∼−→ RpX,∗DX×X̂(P ⊗

L p∗
X̂
·)

of functors D+
c (X̂) → D−

c (X). From Lemma 5.5.1.10, there is an
isomorphism DX×X̂(P ⊗

L p∗
X̂
·) ∼−→ P−1 ⊗L DX×X̂p

∗
X̂
· of functors D(X̂) →

D(X × X̂). By Fact 5.5.1.7 1, the functor DX̂ restricts to a functor
D+
c (X̂) → D−

c (X̂), whence Corollary 5.5.1.11 yields an isomorphism
DX×X̂p

∗
X̂

= (p∗
X̂
DX̂ ·)[g] of functors D+

c (X̂) → D−
c (X × X̂). Therefore,

there are isomorphisms

DX ◦RS
∼−→ RpX,∗(P−1 ⊗L p∗

X̂
DX̂ ·)[g]

(a)
∼−→ [−1]∗XRS(DX̂ ·)[g]

of functors D+
c (X̂)→ D−

c (X), where (a) uses Lemma 5.5.1.12.
The second isomorphism follows from the first by swapping X and X̂.

5.5.2 Unipotent vector bundles

Definition 5.5.2.1 ([Muk81, Def. 2.3]). We say that W.I.T. (weak index
theorem) holds for a coherent module F on the complex torus X if there
is an integer i(F ) such that H iRŜ(F ) = 0 for every integer i ̸= i(F ). In
that case, the integer i(F ) is called the index of F and the coherent module
F̂ := H i(F )RŜ(F ) on X̂ is called the Fourier transform of F . We say that
I.T. (index theorem) holds for F if there is an integer i0 such that for every
L ∈ Pic0(X) and every integer i ̸= i0, one has H i(X,F ⊗OX L) = 0.

Fact 5.5.2.2 ([Nak94, p.80]). Let F be a coherent OX -module, then I.T. holds
for F if and only if W.I.T holds for F and F̂ is locally free on X̂.

Example 5.5.2.4 show that that the word “Artinian" in Statement 5.5.2.3
is a typo. It should be “finite length" ([Muk78, Thm. 4.12 (1)]).
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Statement 5.5.2.3 ([Muk81, Eg. 2.9]). Let X be an abelian variety. Let
ModAr(OX̂,0) ⊂ Mod(OX̂,0) be the full subcategory comprised of Artinian
OX̂,0-modules. Then the functor Mod(OX) → Mod(OX̂,0) taking the stalk

at 0 restricts to an equivalence Coh0(X̂)→ ModAr(OX̂,0) of categories.

Example 5.5.2.4. When dimX = 1, the ring OX̂,0 is a discrete valuation

ring (DVR). Let C(X̂) be the fraction field of OX̂,0 (or equivalently, the

field of rational functions on X̂). By Lemma 5.5.2.5 2, the OX̂,0-module

C(X̂)/OX̂,0 is Artinian but not finitely generated, so cannot be the stalk at

0 ∈ X̂ of any coherent OX̂ -module.

Lemma 5.5.2.5. Let R be a DVR with a uniformizer π and fraction field K,
then:

1. For every nonzero proper R-submodule M ⊊ K, there is an integer n
such that M = πnR.

2. The R-module K/R is Artinian but not finitely generated.

Definition 5.5.2.6. A vector bundle U on a complex analytic space M is
called unipotent if it has a filtration by vector subbundles

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un−1 ⊂ Un = U

such that Ui/Ui−1
∼= OM for all 1 ≤ i ≤ n. Denote the full subcategory of

Coh(M) consisting of unipotent vector bundles by Uni(M).

By [FL14, Lem. 5.1], every unipotent vector bundle on a complex torus
admits a flat holomorphic connection whose underlying local system is
unipotent.

Proposition 5.5.2.7. 1. W.I.T. with index g holds for every unipotent
vector bundle on X.

2. The functor HgRŜ : Mod(OX) → Mod(OX̂) restricts to an equivalence
Uni(X) → Coh0(X̂), with a quasi-inverse H0RS = RS : Coh0(X̂) →
Uni(X).

3. For every unipotent vector bundle U → X and every integer i ≥ 0, one
has H i(X,U) = ExtiOX̂,0

(C, Û).

Proof. 1. Because RŜ is a triangulated functor, the full subcategory of
Coh(X) comprised of modules satisfying W.I.T. of a fixed index is
closed under extensions. By Lemma 5.2.0.8 and Theorem 5.4.1.1, one
has RŜ(OX) = RŜRS(C0)

∼−→ C0[−g]. Then W.I.T. with index g holds
for OX , so it holds for every unipotent vector bundle on X.
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2. By Point 1, one has an isomorphism of functors HgRŜ
∼−→ RŜ[g] :

Uni(X)→ Mod(OX̂). The full subcategory of Mod(OX) comprised of
modules F with Supp

(
HgRŜ(F )) ⊂ {0} is closed under extensions

and contains OX , so it contains UniX . Since Uni(X) ⊂ Coh(X),
the functor HgRŜ : Mod(OX) → Mod(OX̂) restricts to a functor
Uni(X)→ Coh0(X̂).

For every F ∈ Coh0(X̂), the restriction Supp(p∗
X̂
F ⊗ P) → X of pX

is finite. By [GR04, Thm. 4, p.47], one has RS(F ) = H0RS(F ). By
Lemma 5.5.2.8 3, the OX̂ -module F has a filtration with successive
quotients isomorphic to C0. Then RS(F ) has a filtration with
successive quotients isomorphic to RS(C0) = OX . By [Gro60, Ch. 0,
5.4.9], every term of this filtration is finite locally free. Therefore,
RS(F ) ∈ Uni(X) and RS restricts to a functor Coh0(X̂) → Uni(X).
By Theorem 5.4.1.1, the functor HgRŜ : Uni(X) → Coh0(X̂) is an
equivalence with a quasi-inverse RS.

3. It follows from [Muk81, Prop. 2.7] and Point 1.

For a commutative ringR, let Modf (R) ⊂ Mod(R) be the full subcategory
comprised of R-modules of finite length. Lemma 5.5.2.8 1 confirms a guess
in [Gro61a, 9-12] for complex field.

Lemma 5.5.2.8. Let X be a complex analytic space. Let x ∈ X.

1. The functor i−1
x : Mod(OX)→ Mod(OX,x) taking the stalk at x restricts

to a functor Cohx(X)→ Modf (OX,x). In particular, if X is a singleton,
then dimCOX is finite.

2. The functor ix,∗ : D(OX,x)→ D(OX) restricts to a functor Modf (OX,x)→
Cohx(X).

3. The functor i−1
x : Cohx(X)→ Modf (OX,x) is an equivalence.

Proof. 1. For every F ∈ Cohx(X), to prove that Fx is a finite length OX,x-
module, one may assume that Fx ̸= 0. As F is a finite typeOX -module,
Fx is a finite OX,x-module. Then SuppOX,x(Fx) is nonempty. Let mx

be the maximal ideal of OX,x. For every f ∈ mx, there is an open
neighborhood U of x ∈ X such that f is the stalk of some f̄ ∈ OX(U).
Then f̄ vanishes on Supp(F ). By the Rückert Nullstellensatz (see, e.g.,
[GR84, p.67]), there is an integer n ≥ 1 such that f̄nF = 0 near x. In
particular, f ∈

√
AnnOX,x(Fx). Therefore,

mx ⊂
√
AnnOX,x(Fx).
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By [GR84, Corollary, p.44], the ideal mx is finitely generated, so there
is an integer N ≥ 1 with mN

x ⊂ AnnOX,x(Fx). By [Sta24, Tag 00L6],
SuppOX,x(Fx) is the unique closed point of Spec(OX,x). By [Sta24, Tag
00L5], the OX,x-module Fx has finite length. The second statement
follows from Lemma 5.5.2.9.

2. Up to isomorphism, the only simple OX,x-module is the residue field
C. Every M ∈ Modf (OX,x) has a composite series with successive
quotients isomorphic to C. Thus, Mx has a filtration with successive
quotients isomorphic to Cx. Since Cx is coherent, by [Sta24, Tag
01BY (4)], Mx is coherent. Therefore, ix,∗ restricts to a functor
Modf (OX,x)→ Cohx(X).

3. Let ix : (x,OX,x) → (X,OX) be the canonical morphism of locally
ringed spaces. There is a canonical isomorphism i∗x(ix)∗

∼−→ IdMod(OX,x)

of functors Mod(OX,x) → Mod(OX,x). By adjunction, (ix)∗ :
Mod(OX,x) → Mod(OX) is fully faithful. By Point 2, pushout (ix)∗
restricts to a functor Modf (OX,x) → Cohx(OX). For every object
F of Cohx(OX), by Point 1, Fx is an object of Modf (OX,x). The
adjunction morphism F → (ix)∗(Fx) is an isomorphism. Thus,
(ix)∗ : Modf (OX,x) → Cohx(OX) is essentially surjective and hence
an equivalence. Therefore, the functor i∗x : Cohx(OX)→ Modf (OX,x)
(taking the stalk at x) is an equivalence.

Lemma 5.5.2.9. Let F → A be a ring map, with F a field and (A,m) an
Artinian local ring. If dimF A/m is finite, then dimF A is finite.

Proof. Because A is an Artinian local ring ring, by [Ati69, Prop. 8.4], there
is an integer n > 0 with mn = 0. For every integer i ≥ 0, the A-module mi is
finitely generated, so the A/m-module mi/mi+1 is finitely generated. Thus,
dimF m

i/mi+1 = dimF A/m · dimA/mm
i/mi+1 is finite. Then dimF A =∑n

i=0 dimF m
i/mi+1 is finite.

5.5.3 Homogeneous vector bundles

Definition 5.5.3.1. A vector bundle E on the complex torus X is called
homogeneous if for every x ∈ X, one has T ∗

xE
∼= E. Let H(X) ⊂ Coh(X)

be the full subcategory comprised of homogeneous vector bundles.

For a complex analytic space M , let Cohf (M) ⊂ Coh(M) be the full
subcategory consisting of objects with finite support.

Proposition 5.5.3.2. 1. For every integer i, the functorH iRŜ : Mod(OX)→
Mod(OX̂) restricts to a functor H(X)→ Cohf (X̂).

2. W.I.T. holds for every homogeneous vector bundle on X with index g.
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3. The functor HgRŜ : Mod(OX) → Mod(OX̂) restricts to an equivalence
of categories H(X)→ Cohf (X̂), with a quasi-inverse H0RS.

Proof. 1. Let E be a homogeneous vector bundle on X. By Corollary
5.3.1.16, the OX̂ -module H iRŜ(E) is coherent. For every x ∈ X, by
Proposition 5.5.1.1, one has RŜ(E)

∼−→ RŜ(T ∗
−xE)

∼−→ P ∗
x ⊗ RŜ(E),

so H iRŜ(E)
∼−→ P ∗

x ⊗H iRŜ(E). From Lemma 5.5.3.4, the support of
H iRŜ(E) is finite.

2. For every integer i ̸= g, by Point 1, one has H iRŜ(E) ∈ Cohf (X̂) and

0 =H i−g([−1]∗XE)

=H i([−1]∗XE[−g])
(a)
∼−→H iRS ◦RŜ(E)

=H iRpX∗(P ⊗L p∗X̂RŜ(E))

(b)
∼−→H0RpX∗(P ⊗L p∗X̂H

iRŜ(E))

=H0RS(H iRŜ(E)),

where (a) (resp. (b)) uses Theorem 5.4.1.1 (resp. [GR04, Thm. 4,
p.47]).

It remains to prove that for every F ∈ Cohf (X̂) with H0RS(F ) = 0,
one has F = 0. Since F is the direct sum of finitely many coherent
submodules whose supports are singletons, one may assume that
Supp(F ) is a singleton. By Proposition 5.5.1.1, one may assume that
F ∈ Coh0(X̂). From Proposition 5.5.2.7 2, one has F = 0.

3. By Point 1, the functor HgRŜ : Mod(OX) → Mod(OX̂) restricts to a
functor H(X) → Cohf (X̂). From Point 2, one has an isomorphism of
functors HgRŜ ∼= RŜ[g] : H(X)→ Cohf (X̂).

By Propositions 5.5.1.1 and 5.5.2.7, the functor H0RS : Mod(OX̂) →
Mod(OX) restricts to a functor H0RS = RS : Cohf (X̂) → H(X).
By Theorem 5.4.1.1, the functor HgRŜ : H(X) → Cohf (X̂) is an
equivalence with a quasi-inverse H0RS.

For a sheaf of module F on a complex analytic space, denote the torsion
part of F (in the sense of [CD94, p.60]) by T (F ).

Lemma 5.5.3.3. Let X be a compact Kähler manifold. Let F be a coherent
OX -module. Then for every irreducible component C ⊂ Supp(F ), there is a
connected compact Kähler manifold Z and a morphism h : Z → X, such that
h(Z) = C and h∗F/T (h∗F ) is a vector bundle on Z of positive rank.
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Proof. By [GR84, p.76], Supp(F ) is an analytic subset of X. Because X is a
Kähler manifold, with the induced reduced complex structure, the subspace
C is a Kähler space in the sense of [Var89, II, 1.3]. Let i : C → X be the
inclusion. Set

D = {x ∈ C : i∗F is not locally free at x}.

From [Ros68, Prop. 3.1], D is a strict analytic subset of C. By Rossi’s
theorem (see, e.g. [Rie71, Thm. 2]), there is a reduced irreducible complex
analytic space W and a proper modification f : W → C, such that
W \ f−1(D) → C \ D is biholomorphic and E := N/T (N) is a vector
bundle on W , where N = f∗i∗F . From [GD71, Cor. 5.2.4.1], one has
Supp(N) = W . From [CD94, I, Thm. 9.12], one gets Supp(T (N)) ̸= W .
Therefore, the rank r of the vector bundle E is positive.

Since f : W → C is bimeromorphic, the space W is in the Fujiki class C
(defined in [Fuj78, p.34]). By [Fuj78, Lem. 4.6, 1)], there is a connected
compact Kähler manifold Z with a surjective morphism g : Z →W . Denote

the composition Z
g→ W

f→ C
i→ X by h. Then h(Z) = C. As E is flat over

OW , by [Sta24, Tag 05NJ], applying g∗ to the natural short exact sequence

0→ T (N)→ N → E → 0

in Mod(OW ), one gets a short exact sequence in Mod(OZ):

0→ g∗T (N)→ h∗F → g∗E → 0.

As g∗E is torsion free, g∗T (N) ⊃ T (h∗F ). One has g∗T (N) ⊂ T (g∗N) =
T (h∗F ). Therefore, T (h∗F ) = g∗T (N) and h∗F/T (h∗F ) = g∗E is a vector
bundle on Z of rank r > 0.

Lemma 5.5.3.4. Let M be a coherent sheaf on the complex torus X. If M ⊗
P ∼=M for all P ∈ Pic0(X), then Supp(M) is finite.

Proof. Suppose the contrary that Supp(M) is infinite. With the reduced
induced complex structure, the complex subspace Supp(M) has positive
dimension. Let C be an irreducible component of Supp(M) of maximal
dimension. Take a morphism h : Z → X provided by Lemma 5.5.3.3.
Then the rank r of the vector bundle E := h∗M/T (h∗M) is positive. As
h(Z) = C, the morphism of complex tori h∗ : Pic0(X)→ Pic0(Z) is nonzero.
In particular, there is L ∈ Pic0(X) such that the line bundle (h∗L)⊗r is
nontrivial.

On the other hand, we claim that the line bundle (h∗L)⊗r is trivial.
Indeed, by assumption M ⊗ L ∼= M , so h∗M ⊗ h∗L ∼= h∗M . Since
T (h∗M ⊗ h∗L) = T (h∗M) ⊗ h∗L, one gets E ⊗ h∗L ∼= E. Taking the
determinant of both sides, one has det(E) ⊗ (h∗L)⊗r ∼= det(E). As det(E)
is an invertible sheaf, the line bundle (h∗L)⊗r on Z is trivial. The claim is
proved, which gives a contradiction.
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Remark 5.5.3.5. The proof of [Muk81, Lem. 3.3] (the algebraic counterpart
of Lemma 5.5.3.4) relies on the following fact: Every positive dimensional
projective variety contains a projective curve. By contrast, every simple non-
algebraic complex torus contains no 1-dimensional analytic subset ([Pil00,
Lem. 4.3]).

The classification of homogeneous vector bundles on complex tori is due
to Matsushima [Mat59] and Morimoto [Mor59]. Using the Fourier-Mukai
transform, Mukai [Muk81, p.159] proves an analog for abelian varieties.
We can similarly recover Matsushima-Morimoto’s theorem.

Theorem 5.5.3.6. A vector bundle F on the complex torus X is homogeneous
if and only if there is an integer n ≥ 0, unipotent vector bundles U1, . . . , Un on
X and P1, . . . , Pn ∈ Pic0(X), such that F is isomorphic to ⊕ni=1Pi ⊗ Ui.

Proof. It follows from Propositions 5.5.1.1, 5.5.2.7 2 and 5.5.3.2 3.
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Chapter 6

Sheaves with connection on
complex tori

6.1 Introduction

6.1.1 Background

Mukai [Muk81, Sec. 2] introduces an analog of the Fourier transform
for sheaves of modules on abelian varieties, known as the Fourier-Mukai
transform. Laumon [Lau96] and Rothstein [Rot96] study independently its
lift to sheaves with connection (integrable or not). They both prove the
Fourier inversion formula for the lift. Laumon [Lau96, Thm. 6.3.3] applies
it to investigate generalized 1-motives. Meanwhile, as an application,
Rothstein [Rot96, Thm. 3.2] recovers Matsushima’s theorem ([Mat59]):
every vector bundle on an abelian variety admitting a connection is
translation invariant. Schnell’s work [Sch15] about holonomic D-modules
on abelian varieties relies upon the lift of the Fourier-Mukai transform.

Let k be an algebraically closed field. Let A,B be abelian varieties over
k dual to each other. Set g = dimA. Let pA (resp. pB) denote the projection
from A × B to A (resp. B). Let P be the normalized Poincaré line bundle
on A × B. We adopt the following sign convention for the Fourier-Mukai
transform:

RS1 = RpA∗(P ⊗L p∗B·) : D(OB)→ D(OA);

RS2 = RpB∗(P−1 ⊗L p∗A·) : D(OA)→ D(OB),
(6.1)

For a triangulated category, let T denote the degree shift automorphism.
For an algebraic variety V over k, denote by Dqc(OV ) ⊂ D(OV ) (resp.
Db
c(OV ) ⊂ Db(OV )) the full subcategory of objects whose cohomologies are

quasi-coherent (resp. coherent) OV -modules. Mukai establishes an analog
of the Fourier inversion formula for this triangulated subcategory.
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Fact 6.1.1.1 (Mukai, [Muk81, Thm. 2.2], [Rot96, p.569]). 1. There are natural
isomorphisms of functorsRS1◦RS2 ∼= T−g onDqc(OA) andRS2◦RS1 ∼=
T−g on Dqc(OB). In particular, RS1 : Dqc(OB) → Dqc(OA) is an
equivalence of triangulated categories, with a quasi-inverse T gRS2.

2. The functor RS1 : D(OB) → D(OA) restricts to an equivalence
Db
c(OB)→ Db

c(OA).

Let 0→ H0(A,Ω1
A)→ B♮ p→ B → 0 be the universal vectorial extension

of B (constructed in [Ros58, Prop. 11]). For an algebraic variety V ,
denote the forgetful functor D(DV ) → D(OV ) by forV . Let Dqc(DA) ⊂
D(DA) (resp. Db

c(DA) ⊂ Db(DA)) be the full subcategory of objects
whose cohomologies are quasi-coherent OA-modules (resp. coherent DA-
modules). Laumon and Rothstein lift the Fourier-transform to D-modules
and establish a duality result similar to Fact 6.1.1.1.

Fact 6.1.1.2 (Laumon, Rothstein).

1. There are functors RS1 : D(OB♮) → D(DA) and RS2 : D(DA) →
D(OB♮) fitting into commutative squares

Dqc(OB♮) Dqc(DA)

Dqc(OB) Dqc(OA),

RS1

Rp∗ forA

RS1

Dqc(OB♮) Dqc(DA)

Dqc(OB) Dqc(OA).

Rp∗

RS2

forA

RS2

2. (Remark 6.1.1.4) There are natural isomorphisms of functorsRS1RS2 ∼=
T−g onDqc(DA) andRS2RS1 ∼= T−g onDqc(OB♮), hence an equivalence
RS1 : Dqc(OB♮)→ Dqc(DA).

3. ([Lau96, Cor. 3.1.3], [Rot96, Thm. 6.2]) The functor RS1 : D(OB♮)→
D(DA) restricts to an equivalence RS1 : Db

c(OB♮)→ Db
c(DA).

Remark 6.1.1.3. Laumon and Rothstein use apparently different definitions
for the functors on D-modules. We sketch why the two definitions agree.

In the notation of [Lau96, p.14] and [Vig21, Sec. 2.1.1], one has functors
F̃ : Db

qc(DA) → Db
qc(OB♮) and F̃ ♮ : Db

qc(OB♮) → Db
qc(DA) defined by

composition

Db
qc(DA) Db

qc(OB♮)

Db
qc(DB♮×A/B♮) Db

qc(DB♮×A/B♮);

F̃

p̃r!(B
♮)

(P̃,∇̃)⊗LO
B♮×A

·

p̃r♮
+/B♮

Db
qc(OB♮) Db

qc(DA)

Db
qc(DA×B♮/B♮) Db

qc(DA×B♮/B♮).

F̃♮

p̃r♮,♭
/B♮

(P̃,∇̃)⊗LO
A×B♮

·

p̃r
(B♮)
+

Applying the projection formula (to IdA × p : A×B♮ → A×B) and the flat
base change to the cartesian square
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A×B♮ A×B

B♮ B,

IdA×p

p
B♮ pB

p

one gets an isomorphism forAF̃ ♮ ∼= F ′Rp∗ of functorsDb
qc(OB♮)→ Db

qc(OA).
This shows the compatibility with the Fourier-Mukai transform, as well as
that [−1]∗AF̃ ♮ is the restriction of [Rot96, (4.16)] to Db

qc(OB♮). (The sign is
due to different conventions.) Fact 6.1.1.2 2 is not mentioned in [Lau96],
and is implicitly used in the derivation of [Rot96, (2.25)]. For Rothstein’s
definition, the compatibility can be proved as in Proposition 6.3.1.2.

Remark 6.1.1.4. The direct image functor pA∗ : Mod(OA×B) → Mod(OA)
restricts to a left exact functor pA∗ : Qch(OA×B) → Qch(OA). Let
R(qc)pA∗ : D(Qch(OA×B)) → D(Qch(OA)) be the right derived functor
of the restriction. Denote the functor

R(qc)pA∗(P ⊗OA×B p
∗
Bπ∗·) : D(Qch(OB♮))→ D(Modqc(DA))

by R(qc)S1. Strictly speaking, [Rot96, Thm. 4.5] and [Rot97] demonstrate
that the functor R(qc)S1 is an equivalence. In comparison, Laumon’s result
[Lau96, Thm. 3.2.1] is stated for bounded derived categories Db

qc and needs
the characteristic of k to be 0.

We sketch how to get Fact 6.1.1.2 2 from Rothstein’s original statement.
For every algebraic variety V , by [Sta24, Tag 077P (1)], the abelian
category Qch(OV ) has enough injectives. Furthermore, from [Con00,
Lem. 2.1.3], the inclusion ιV : Qch(OV ) → Mod(OV ) preserves injectives.
Let Mod(OB)sp be as in Example 6.2.1.5 (resp. Mod(OA×B)−1−cxn denote
Mod(OA×B)πB ,−π∗

B1−cxn ). Let Qch(OB)sp (resp. Qch(OA×B)−1−cxn) be the
full subcategory of quasi-coherent objects.

Then the exact functor π∗ : Qch(OB♮) → Qch(OB)sp is the restriction of
Rπ∗ : D(OB♮)→ D(Mod(OB)sp). Using [Lip60, Prop. 3.9.2] and [Har66, I,
Prop. 7.1 (iii)], one proves that the canonical square

D(Qch(OB♮)) Dqc(OB♮)

D(Qch(OB)sp) Dqc(Mod(OB)sp)

Lι
B♮

π∗ Rπ∗

is commutative. Similarly, using [Kas04, Remark 3.2], one proves that the
canonical square

D(Qch(OA×B)−1−cxn) Dqc(Mod(OA×B)−1−cxn)

D(Modqc(DA)) Dqc(DA)

pA∗ RpA∗

Lι′A
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is commutative. Therefore, the following square is commutative

D(Qch(OB♮)) D(Modqc(DA))

Dqc(OB♮) Dqc(DA).

R(qc)S1

Lι
B♮ Lι′A

RS1

(6.2)

By [Sta24, Tag 09T4] and Theorem E.1.0.4, the two vertical functors in
(6.2) are equivalences. As R(qc)S1 is an equivalence, so is the bottom row.

Remark 6.1.1.5. From [Sch14, p.97] and the square in [HT07, p.38],
the bifunctor ⊗O on relative D-modules is compatible with that on the
underlying O-modules. However, the following triangles

Db
qc(DA×B♮/B♮) Db

qc(DA×B♮/B♮)

Db
qc(OA×B♮),

for

(P̃,∇̃)⊗LO
A×B♮

·

(P̃,∇̃)⊗LO
A×B♮

·

Db
qc(OA×B♮) Db

qc(DA×B♮/B♮)

Db
qc(OA×B♮)

P̃⊗LO
A×B♮

·

(P̃,∇̃)⊗LO
A×B♮

·

for

are not commutative in general. Thus, the first remark in [Vig21, p.58] is
not true. In particular, the last but one equations in the proofs of [Vig21,
Propositions 2.2.12 and 2.2.13] are wrong. Similarly, in [Lau96, p.14], the
relative integrable connection on (P̃, ∇̃) ⊗O

B♮×A
p̃r♮∗M ♮ is induced by not

only ∇̃, but also the canonical relative connection on p̃r♮∗M ♮.

6.1.2 Extension to complex tori

Let X,Y be complex tori dual to each other and of dimension g. Define
the analytic Fourier-Mukai transform RS1 : D(OX) → D(OY ) and RS2 :
D(OY ) → D(OX) by formulae similar to (6.1). For a complex manifold
Z, let Dgood(OZ) ⊂ D(OZ) be the full subcategory of objects whose
cohomologies are good OZ -modules (in the sense of [Kas03, Def. 4.22]).
In [BBBP07, Thm. 2.1], a result similar to Fact 6.1.1.1 is established for
complex tori.

Fact 6.1.2.1 (Mukai, Ben-Bassat, Block, Pantev).
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1. (Theorem 5.4.1.1) There are natural isomorphisms of functors

RS1RS2 ∼= T−g : Dgood(OY )→ Dgood(OY ),

RS2RS1 ∼= T−g : Dgood(OX)→ Dgood(OX).

In particular, RS1 : Dgood(OX) → Dgood(OY ) is an equivalence of
categories with a quasi-inverse T gRS2.

2. ([PPS17, Thm. 13.1]) The functor RS1 : D(OX) → D(OY ) restricts to
an equivalence Db

c(OX)→ Db
c(OY ).

We lift the analytic Fourier-Mukai transform to D-modules, and give an
analog of Fact 6.1.1.2. Good D-modules are reviewed in Section 6.6.1. For
a complex manifold Z and an OZ -algebraR, let DO−good(R) ⊂ D(R) (resp.
Db

good(R) ⊂ Db(R)) be the full subcategory of objects whose cohomologies
are good over OZ (resp. R).

Theorem 6.1.2.2.

• (Prop. 6.5.1.2) There is a canonical commutative OX -algebra AX , such
that the functors RS1 and RS2 lift naturally to triangulated functors
RS1 : D(AX)→ D(DY ) and RS2 : D(DY )→ D(AX) respectively.

• (Thm. 6.5.1.3) The functorsRSi restrict to equivalencesRS1 : DO−good(AX)→
DO−good(DY ) and RS2 : DO−good(DY )→ DO−good(AX).

• (Thm. 6.6.3.1) The functorsRSi restricts to equivalencesRS1 : Db
good(AX)→

Db
good(DY ) and RS2 : Db

good(DY )→ Db
good(AX).

Remark 6.1.2.3. Arinkin [Fav12, Thm. 3] uses Fact 6.1.1.2 3 to show that an
abelian variety A can be recovered from the triangulated category Db

c(DA).
By Proposition F.5.4.7, however, for a complex abelian variety A, the
complex Lie group (A♮)an (associated with A♮) is isomorphic to (C∗)2g. So
an analytic version of Fact 6.1.1.2 3 needs a modification.

The proof of Fact 6.1.1.2 due to Laumon [Lau96] and that of Rothstein
[Rot97] are different. Let π♮ : A♮ → Spec(k) be the structural morphism. As
an immediate step, Laumon [Lau96, Thm. 2.4.1] proves that the adjunction
morphism OSpec(k) → Rπ♮∗OA♮ is an isomorphism in Db

qc(OSpec(k)). By
contrast, when k = C, the adjunction morphismOSpecan(C) → R(π♮)an∗ O(A♮)an

is not an isomorphism. Still, the proof of [Rot97] works for complex tori.
We follow it closely, except that the underived Fourier-Mukai transforms
[Rot97, (2.14), (2.15)] are ignored. Instead, we define the corresponding
functors on the derived categories directly. We should notice four misprints
therein.

• [Rot97, (2.11)] should be

π̃12
∗P = [(1X × m̃)∗P]⊗OX×Y×Ỹ

[π̃13
∗P̃−1],
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where π̃ij denotes the projections onX×Y ×Ỹ and Ỹ is the first-order
neighborhood of 0 in Y .

• [Rot97, (2.23)] should be

π∗13P−1 ⊗ π∗23P = (ϵX × 1Y )
∗P,

where πij denotes the projections on X ×X × Y .

• In [Rot97, (2.24)], the starting equation should be

π̃∗12O∆ ⊗ π̃∗13P̃−1 ⊗ π̃∗23P̃.

• In [Rot97, Prop. 2.4], the notation Mod(X × X)(−1,1)−sp should be
Mod(X ×X)(1,−1)−sp.

Notation and convention

For a sheaf F on a topological space, let SuppF be its support. For a (not
necessarily commutative) ringed space (X,R), let Mod(R) be the category
of left R-modules. Let Coh(R) ⊂ Mod(R) be the full subcategory of
coherent R-modules. Given a symbol ∗ ∈ {∅,+,−, b}, the notation D∗(R)
refers to the unbounded/bounded below/bounded above/bounded derived
category of the abelian category Mod(R) in order. Let D∗

c (R) ⊂ D∗(R) be
the full subcategory of objects whose cohomologies are coherentR-modules
(in the sense of [Sta24, Tag 01BV]).

Let k be an algebraically closed field. An algebraic variety refers to an
integral scheme of finite type and separated over k. For a complex manifold
Z and z ∈ Z, let iz : (z,C) → (Z,OZ) be the closed embedding of complex
manifolds. Set Cz := (iz)∗C, which is a coherent OZ -module. Let X,Y be
complex tori dual to each other and of dimension g.

6.2 Preliminaries

For the convenience of the reader, we recall the notation of [Rot97, Sec.
2.1].

6.2.1 Categories of splittings

For a complex manifold Z and a (holomorphic) vector bundle M → Z, by
[Har77, III, Prop. 6.3 (c)], one has H1(Z,M) = Ext1(OZ ,M). Thus, every
α ∈ H1(Z,M) determines a short exact sequence in Mod(OZ)

0→M → Eα
µα→ OZ → 0. (6.3)
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Since OZ is a flat OZ -module, by [Sta24, Tag 05NJ], for every F ∈
Mod(OZ), the sequence (6.3) remains exact after tensored with F :

0→M ⊗OZ F → Eα ⊗OZ F
µα⊗IdF→ F → 0. (6.4)

Definition 6.2.1.1. Define a category Mod(OZ)α−sp as follows: the objects
are pairs (F,ψ), where F ∈ Mod(OZ) and ψ : F → Eα ⊗OZ F is an α-
splitting on F , i.e., an OZ -linear splitting of µα ⊗ IdF . The morphisms in
Mod(OZ)α−sp are required to be compatible with the splittings.

Example 6.2.1.2. When α = 0, the sequence (6.3) identifies E0 with M ⊕
OZ . There is a natural functor Mod(OZ) → Mod(OZ)0−sp defined by F 7→
(F,ψ), where ψ : F → E0 ⊗ F = (M ⊗OZ F ) ⊕ F is the canonical injection
to the second factor. If further M = Ω1

Z , then an α-splitting ϕ on a vector
bundle E → Z is exactly a holomorphic 1-form on Z with values in End(E).
The pair (E, ϕ) is a Higgs bundle (in the sense of [Sim92, p.6]) if and only
if [ϕ, ϕ] = 0.

Lemma 6.2.1.3. For an OZ -module F , there is an α-splitting on F if and
only if the map i∗ : H1(Z,M) → H1(Z,M ⊗OZ End(F )) (induced by the
natural morphism OZ → End(F )) sends α to 0. In that case, the set of α-
splittings on F has a natural simple transitive action of the abelian group
HomOZ (F,M ⊗OZ F ).

Proof. The natural morphism OZ → End(F ) induces a morphism i : M →
HomOZ (F,M ⊗OZ F ), i(m)(f) = m ⊗ f . There is a canonical evaluation
morphism ev : HomOZ (F,M ⊗OZ F )⊗ F →M ⊗OZ F, ev(ϕ⊗ f) = ϕ(f).
The five-term exact sequence of the spectral sequence

Ei,j2 = Exti(OZ , Extj(F,M ⊗OZ F ))⇒ Exti+j(F,M ⊗OZ F )

gives an injection ι : Ext1(OZ ,Hom(F,M ⊗OZ F )) → Ext1(F,M ⊗OZ F ),
which is Ext1(F, ev) ◦ (· ⊗ F ):

Ext1(F,M ⊗OZ F )

Ext1(OZ ,M) Ext1(F,M ⊗OZ F ) Ext1(F,Hom(F,M ⊗OZ F )⊗ F )

Ext1(OZ ,Hom(F,M ⊗OZ F )).

(i⊗IdF )∗
=

·⊗F

i∗

Ext1(F,ev)

·⊗F
ι

One has

ev ◦ (i⊗ IdF )(m⊗ f) = ev(i(m)⊗ f) = i(m)(f) = m⊗ f,
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so ev◦(i⊗IdF ) = IdM⊗OZF as morphisms M⊗OZ F →M⊗OZ F . Therefore,
the diagram is commutative. Then F admits an α-splitting if and only if
α ⊗ F = 0 if and only if i∗(α) = 0. Any two α-splittings on F differ by a
unique element of Hom(F,M ⊗OZ F ).

To each object (F,ψ) ∈ Mod(OZ)α−sp, we assign an element

[ψ,ψ] ∈ Γ(Z, (∧2M)⊗OZ End(F )) (6.5)

as follows. The sequence (6.3) induces a short exact sequence

0→ ∧2M → ∧2Eα
ωα→M → 0,

where
ωα(ρ1 ∧ ρ2) = µα(ρ1)ρ2 − µα(ρ2)ρ1.

The flatness of M ensures the exactness when tensoring with F :

0→ (∧2M)⊗ F → (∧2Eα)⊗ F
ωα⊗IdF→ M ⊗OZ F → 0. (6.6)

Let a : Eα ⊗ Eα → ∧2Eα be the morphism defined by e⊗ e′ 7→ e ∧ e′. Let ψ1

be the composition

Eα ⊗ F
IdEα⊗ψ→ Eα ⊗ (Eα ⊗ F )

∼−→ (Eα ⊗ Eα)⊗ F
a⊗IdF→ (∧2Eα)⊗ F,

where the isomorphism in the middle is from the associativity of tensor
product.

Lemma 6.2.1.4. One has (ωα ⊗ IdF )ψ
1ψ = 0.

Proof. Locally, the vector bundle Eα has a (holomorphic) frame {e1, . . . , er}.
For a local section f ∈ F , write ψ(f) =

∑r
i=1 ei ⊗ fi, where fi are local

sections of F . For every 1 ≤ i ≤ r, write ψ(fi) =
∑r

j=1 ej ⊗ f
(i)
j , where f (i)j

are local sections of F . As ψ is a section to µα ⊗ IdF , one has

f = (µα ⊗ IdF )ψ(f) =

r∑
i=1

µα(ei)fi; (6.7)

fi = (µα ⊗ IdF )ψ(fi) =

r∑
j=1

µα(ej)f
(i)
j . (6.8)

Thus,

ψ(f)
(6.7)
=

r∑
i=1

µα(ei)ψ(fi). (6.9)
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By construction, ψ1ψ(f) =
∑r

i,j=1(ei ∧ ej)⊗ f
(i)
j . Then

(ωα ⊗ IdF )ψ
1ψ(f) =

r∑
i,j=1

[µα(ei)ej − µα(ej)ei]⊗ f (i)j

=

r∑
i=1

µα(ei)

r∑
j=1

ej ⊗ f (i)j −
r∑
i=1

ei ⊗ [

r∑
j=1

µα(ej)f
(i)
j ]

(6.8)
=

r∑
i=1

µα(ei)ψ(fi)−
r∑
i=1

ei ⊗ fi

(6.9)
= ψ(f)− ψ(f) = 0.

From Lemma 6.2.1.4 and (6.6), one has ψ1ψ(F ) ⊂ (∧2M) ⊗ F . The
morphism ψ1ψ : F → (∧2M)⊗F gives an element [ψ,ψ] ∈ Γ(Z, (∧2M)⊗OZ
End(F )).

Example 6.2.1.5. For the complex torus X, set g = H1(X,OX). Then

H1(X, g∗ ⊗C OX) = g∗ ⊗C g = End(g).

Hence a category Mod(OX)T−sp for each T ∈ End(g). The identity element
1 ∈ End(g) corresponds to the tautological exact sequence [Rot96, (1.3)]:

0→ g∗ ⊗C OX → E → OX → 0. (6.10)

We also write Mod(OX)sp for Mod(OX)1−sp. For (F,ψ) ∈ Mod(OX)sp, the
element [ψ,ψ] lies in

Γ(X,∧2g∗ ⊗C OX ⊗OX End(F )) = ∧
2g∗ ⊗C End(F ),

and we recover [Rot96, (4.8)]. Similarly, H1(X×X, g∗⊗OX×X) = End(g)⊕
End(g), so for every pair T1, T2 ∈ End(g), the category Mod(OX×X)(T1,T2)−sp

is defined.

6.2.2 Categories of twisted connection

We continue to review the twisted (relative) connection introduced in
[Rot97, p.206]. Consider a smooth morphism of complex manifolds f :
Z → S, with relative cotangent sheaf Ω1

f . As f is smooth, Ω1
f is a vector

bundle on Z. Let df : OZ → Ω1
f denote the differential relative to f . An

element α ∈ H1(Z,Ω1
f ) determines an extension

0→ Ω1
f → Eα

µα→ OZ → 0. (6.11)
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Definition 6.2.2.1. On an OZ -module F , an α-connection is an f−1(OS)-
linear splitting ∇ : F → Eα ⊗OZ F to µα ⊗ IdF , satisfying the Leibniz rule

∇(hϕ) = h∇(ϕ) + df (h)⊗ ϕ, (6.12)

where h and ϕ are local sections ofOZ and F respectively. Let Mod(OZ)f,α−cxn

be the category of pairs (F,∇), where F ∈ Mod(OZ) and ∇ is an α-
connection on F .

Example 6.2.2.2. If α = 0, then α-connection are exactly f -relative
connection. Define a sheaf D̃Z/S of noncommutative OZ -algebras by gluing
the following local data. If {ξ1, . . . , ξn} is a local frame of (Ω1

f )
∨ (the

vector bundle dual to Ω1
f ) on an open subset U ⊂ Z, then a multiplication

law on OU{ξ1, . . . , ξn} is introduced by imposing the commutation relation
[ξi, h] = ξi(h) for local sections h of OZ . Let it be D̃Z/S |U . Then
Mod(Z)f,0−cxn = Mod(D̃Z/S). The category Mod(OZ)f,0−cxn is denoted by
Mod(OZ)cxn when f is the structure morphism Z → Specan(C).

Remark 6.2.2.3. In fact, a twisted connection is a particular splitting. Define
another extension

0→ Ω1
f → Eα′ → OZ → 0 (6.13)

in Mod(OZ) as follows. As an extension of abelian sheaves, (6.13) is same
as (6.11). Let h (resp. s′) be a local section of OZ (resp. Eα′) and s denote
the local section of Eα induced by s′. The OZ -module structure on Eα′ is
defined such that the local section hs + µα(s)dfh of Eα induces the local
section hs′ of Eα′ .

We claim this indeed defines an OZ -module structure on Eα′ . For local
sections h1, h2 of OZ , let t be the local section of Eα induced by h2s′. Then
t = h2s + µα(s)dfh2, so µα(t) = h2µα(s). Thus, the local section of Eα
corresponding to h1(h2s′) is

h1t+µα(t)dfh1 = h1h2s+h1µα(s)dfh2+h2µα(s)dfh1 = (h1h2)s+µα(s)df (h1h2).

Therefore, h1(h2s′) = (h1h2)s
′. The claim is proved.

By construction, the morphisms in (6.13) are OZ -linear. Then (6.13)
is indeed an extension in Mod(OZ), hence a new extension class α′ ∈
Ext(OZ ,Ω

1
f ). An α-connection on F ∈ Mod(OZ) is equivalent to an α′-

splitting on F . Hence an equivalence of categories

Mod(OZ)f,α−cxn → Mod(OZ)α′−sp.

There is a notion of integrable α-connection ([Rot97, Remark, p.206]).
Let Mod(OZ)f,α−cxn,fl be the full subcategory of Mod(OZ)f,α−cxn comprised
of objects whose connection are integrable. Then Mod(OZ)f,0−cxn,fl coincides
with MIC(f) defined in [ABC20, 4.3.7], which is further equivalent to
Mod(DZ/S). Here DZ/S is the sheaf of ring of relative differential operators
on Z/S defined in [SS94, p.9].
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Example 6.2.2.4. For the dual complex tori X,Y , consider the projection
pX : X × Y → X. Since Ω1

pX
= p∗X(g

∗ ⊗C OX), there is a natural morphism

p∗X : End(g) = H1(X, g∗ ⊗C OX)→ H1(X × Y,Ω1
pX

).

For every T ∈ End(g), the category Mod(OX×Y )pX ,p∗XT−cxn (resp. Mod(OX×Y )pX ,p∗XT−cxn,fl)
is also written as Mod(OX×Y )T−cxn (resp. Mod(OX×Y )T−cxn,fl).

Fact 6.2.2.5 is taken from the two remarks in [Rot97, pp.206–207].

Fact 6.2.2.5. The Poincaré bundle P is naturally an object of Mod(OX×Y )−1−cxn,fl.

In local coordinates, the p∗X(−1)-connection on P is explained in [Rot96,
(1.10) and p.575ff.] (except that we use a Stein open cover of X instead of
Rothestein’s affine open cover).

6.2.3 Functors between them

Recall that the Fourier-Mukai transform (6.1) is the composition of the
pullback, the tensor product with P as well as the derived direct image.
Rothstein’s lift to modules with connection keeps an extra track of the
splittings and connection.

Remark 6.2.3.1. Combining [Rot97, (2.21)] with the fact that twisted
relative connection are kinds of splittings (Remark 6.2.2.3), the categories
under consideration (Mod(OX)sp, Mod(OX×Y )T−cxn, etc.) are equivalent
to categories of modules over sheaves of certain noncommutative flat O-
algebras. In particular, each of them is a Grothendieck abelian category.
Each has enough K-injectives ([Sta24, Tag 079P]) and enough objects flat
over O ([HT07, Lem. 1.5.2 (ii)]), cf. [Rot97, Cor. 2.3]. Thus, all the (left
exact) direct image functors involved below admit right derived functors on
the unbounded derived categories (see [Sta24, Tag 070K] and [Sta24, Tag
079P]).1

From splittings to connection

Given T ∈ End(g) and (F,ψ) ∈ Mod(OX)T−sp, the induced morphism

p−1
X ψ : p−1

X F → p−1
X E ⊗p−1

X OX
p−1
X F

is p−1
X OX -linear. By Example 6.2.2.4, the sequence (6.10) induces a short

exact sequence in Mod(OX×Y )

0→ Ω1
pX
→ p∗XE → OX×Y → 0.

1Rothstein [Rot97, Sec. 2.2] uses Čech resolutions for quasi-coherent sheaves, while we
are dealing with all O-modules.
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Its extension class is p∗XT ∈ H1(X × Y,Ω1
pX

). Define another p−1
X OX -linear

morphism

∇ψ : p∗XF = (OX×Y ⊗p−1
X OX

p−1
X F )→ p∗XE ⊗OX×Y p

∗
XF (=

p∗XE ⊗p−1
X OX

p−1
X F = OX×Y ⊗p−1

X OX
p−1
X E ⊗p−1

X OX
p−1
X F )

by
∇ψ(h⊗ s) = dpX (h)⊗ s+ h⊗ [(p−1

X ψ)(s)],

where h (resp. s) is a local section of OX×Y (resp. p−1
X F ). By construction,

∇ψ satisfies the Leibniz rule (6.12). So it is a p∗XT -connection on p∗XF .
Thus, we get the exact functor in [Rot97, (2.5)]:

p∗X : Mod(OX)T−sp → Mod(OX×Y )T−cxn. (6.14)

Tensoring with Poincaré bundle

By Fact 6.2.2.5 and [Rot97, (2.10)], the functor

· ⊗OX×Y P : Mod(OX×Y )1−cxn → Mod(OX×Y )0−cxn (6.15)

restricts to a functor Mod(OX×Y )1−cxn,fl → Mod(OX×Y )0−cxn,fl(∼= Mod(DX×Y/X)).
The functor (6.15) is an equivalence of abelian categories, with a quasi-
inverse · ⊗OX×Y P−1.

From connection to splittings

For every (F,∇) ∈ Mod(OX×Y )1−cxn, the morphism

∇ : F → p∗XE ⊗OX×Y F (= p−1
X E ⊗p−1

X OX
F )

is a p−1
X OX -splitting to (p−1

X µ1)⊗ IdF . By projection formula (see e.g, [KS90,
Prop. 2.6.6]), the induced morphism

pX∗∇ : pX∗F → E ⊗OX pX∗F

is an OX -linear splitting to µ1 ⊗OX IdpX∗F . Hence (pX∗F, pX∗∇) ∈
Mod(OX)sp. Thus, we get a left exact functor (a special case of [Rot97,
(2.13)]):

pX∗ : Mod(OX×Y )1−cxn → Mod(OX)sp. (6.16)

If (F,∇) is integrable, then [pX∗∇, pX∗∇] defined in (6.5) is zero.
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Between connection

We define the inverse image and the direct image of relative connection on
changing bases. Consider a cartesian square of complex manifolds

W Z

T S,

g′

f ′ □ f

g

(6.17)

where f is smooth. For every (F,∇) ∈ Mod(OZ)f,0−cxn, by [ABC20,
Sec. 4.2], the relative connection ∇ is equivalent to an OZ -linear splitting
to the natural projection P 1

f ⊗OZ F → F , where P 1
• denotes the sheaf

of first order jets (defined in [ABC20, Sec. 4.1.2]). Applying g′∗ to the
induced splitting, we get an OW -linear splitting to the natural projection
P 1
f ′⊗OW g′∗F → g′∗F . This is equivalent to an f ′-connection on g′∗F . Hence

an inverse image functor

g′∗ : Mod(OZ)f,0−cxn → Mod(OW )f ′,0−cxn. (6.18)

It is right exact. By [ABC20, Sec. 5.1], the connection induced by ∇ is
integrable if ∇ is so.

Now for direct image. Fix α ∈ F 1(Z,Ω1
f ). For every

(F,∇) ∈ Mod(OW )f ′,g′∗α−cxn,

by projection formula (see e.g, [Har77, II, Ex. 5.1 (d)]), one has

g′∗(F ⊗OW g′∗Eα) = (g′∗F )⊗OZ Eα.

Then the induced morphism

g′∗∇ : g′∗F → (g′∗F )⊗OZ Eα

is f−1(OS)-linear. Since df ′ : OW → Ω1
f ′ and df : OZ → Ω1

f are related by
g′∗df = df ′ , the induced map g′∗∇ satisfies the Leibniz rule (6.12). Hence,
the pair (g′∗F, g

′
∗∇) ∈ Mod(OZ)f,α−cxn. In this manner, we get a left exact

functor
g′∗ : Mod(OW )f ′,g′∗α−cxn → Mod(OZ)f,α−cxn. (6.19)

When α = 0, the functor (6.19) sends MIC(f ′) to MIC(f).

Example 6.2.3.2. Take (6.17) to be

X × Y Y

X Specan(C),

pY

pX □
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then p∗Y : Mod(OY )cxn → Mod(OX×Y )0−cxn sits on the left of the diagram
[Rot97, (2.15)] and

pY ∗ : Mod(OX×Y )0−cxn → Mod(Y )cxn (6.20)

is [Rot97, (2.12)]. They restrict respectively to functors

pY ∗ : MIC(pX)→ Mod(DY ); (6.21)

p∗Y : Mod(DY )→ MIC(pX). (6.22)

Remark 6.2.3.3. Take α = 0 ∈ H1(Z,Ω1
f ). From another point of view, the

morphism OZ → g′∗OW between sheaves of rings extends to a morphism
D̃Z/S → g′∗D̃W/T . Then (6.18) and (6.19) are respectively the pullback and
the pushout along the induced morphism (W, D̃W/T )→ (Z, D̃Z/S) of ringed
spaces. By [Sta24, Tag 0096], the functor (6.18) is the left adjoint to (6.19).
Then from [Sta24, Tag 09T5], the derived functor

Lg′∗ : D(Mod(Z)f,0−cxn)→ D(Mod(W )f ′,0−cxn)

is the left adjoint to

Rg′∗ : D(Mod(W )f ′,0−cxn)→ D(Mod(Z)f,0−cxn).

6.3 Rothstein transform on modules with connection

6.3.1 Construction

Definition 6.3.1.1. Define functorsRS1 : D(Mod(OX)sp)→ D(Mod(OY )cxn)
and RS2 : D(Mod(OY )cxn)→ D(Mod(OX)sp) by

RS1 = RpY ∗(P ⊗OX×Y p
∗
X ·),

RS2 = RpX∗(P−1 ⊗OX×Y p
∗
Y ·).

HereRpY ∗ (resp. RpX∗) is the right derived functor of (6.20) (resp. (6.16)).
The pair (RS1, RS2) is called the Rothstein transform.

LetDO−good(Mod(OY )cxn) ⊂ D(Mod(OY )cxn) (resp. DO−good(Mod(OX)sp) ⊂
D(Mod(OX)sp)) be the full subcategory of objects whose cohomologies are
good O-modules (in the sense of [Kas03, Def. 4.22]). In view of Proposition
6.3.1.2, Rothstein transform is compatible with Fourier-Mukai transform.

Proposition 6.3.1.2. There are commutative squares

D(Mod(OX)sp) D(Mod(OY )cxn)

D(OX) D(OY ),

RS1

RS1

D(Mod(OY )cxn) D(Mod(OX)sp)

D(OY ) D(OX),

RS2

RS2
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where the vertical functors are forgetful. In particular, RS1 and RS2

restrict to functors DO−good(Mod(OX)sp) → DO−good(Mod(OY )cxn) and
DO−good(Mod(OY )cxn)→ DO−good(Mod(OX)sp)).

Proof. All the functors p∗X : Mod(OX)→ Mod(OX×Y ), (6.14), (6.15) and

P ⊗OX×Y · : Mod(OX×Y )→ Mod(OX×Y )

are exact. To prove the commutativity of the first square, it remains to do so
for the square

D(Mod(OX×Y )0−cxn) D(Mod(OY )cxn)

D(OX×Y ) D(OY ).

RpY ∗

forX×Y forY

RpY ∗

(6.23)

Since the forgetful functor forY : Mod(OY )cxn → Mod(OY ) is exact, the
composition forYRpY ∗ : D(Mod(OX×Y )0−cxn)→ D(OY ) is the right derived
functor of

forY ◦ pY ∗ : Mod(OX×Y )0−cxn → Mod(OY ).

From Remark 6.2.3.1, [Sta24, Tag 0096] and [Sta24, Tag 08BJ],
the functor forX×Y : Mod(OX×Y )0−cxn → Mod(OX×Y ) preserves K-
injective complexes. By Lemma E.1.0.12, the composition RpY ∗forX×Y :
D(Mod(OX×Y )0−cxn)→ D(OY ) is the right derived functor of

pY ∗forX×Y : Mod(OX×Y )0−cxn → Mod(OY ).

Since forY ◦ pY ∗ = pY ∗ ◦ forX×Y , the first square is indeed commutative.
By the commutativity of the first square and Corollary 5.3.1.16, the

transform RS1 preserves O-goodness. The other half about RS2 is
similar.

6.3.2 Rothstein’s theorem

Theorem 6.3.2.1 (Rothstein). There are natural isomorphisms RS1RS2
∼=

T−g onDO−good(Mod(OY )cxn) andRS2RS1
∼= T−g onDO−good(Mod(OX)sp).

We begin the proof of Theorem 6.3.2.1 with Lemma 6.3.2.2, a direct
adaption of [Rot97, Prop. 2.4] for complex tori.

Lemma 6.3.2.2. Let ∆ ⊂ X × X be the diagonal. Define a morphism of
complex tori ϵX : X ×X → X, (x1, x2) 7→ x2 − x1. Then

Rp12∗(ϵX × 1Y )
∗P ∼= O∆[−g]

in Db(Mod(OX×X)(1,−1)−sp), where p12 : X × X × Y → X × X is the
projection.
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Proof. The identification RpX∗P ∼= C0[−g] in Db(OX) from [Kem91,
Thm. 3.15] can be lifted to an isomorphism in Db(Mod(OX)−1−sp). As
stated in the last sentence of the proof of [Vig21, Prop. 2.1.21], a morphism
of modules with splittings (or connection) is an isomorphism whenever the
underlying morphism of O-modules is so. Then apply Theorem 5.3.2.3 to
the cartesian square

X ×X × Y X × Y

X ×X X.

ϵX×1Y

p12 pX

ϵX

Arguing as in Lemma 6.3.2.2, we can prove the analytic version of
[Rot97, Prop. 2.5; Prop. 3.1]. These three results are used in the proof
of Theorem 6.3.2.1 below.

Proof of Theorem 6.3.2.1. Repeat the proof of [Rot97, Thm. 3.2], which
requires the projection formula and smooth base change theorem for
modules with connection. For this, we first construct the corresponding
comparison morphism that is compatible with the underlying O-module
comparison morphism. The construction reduces to the adjunction between
derived inverse image and derived direct image of relative connection in
Remark 6.2.3.3.

The compatibility with O-module comparison morphism can be proved
in a way similar to Proposition 6.3.1.2. On the level of O-modules, the
comparison morphism is an isomorphism by Fact 5.3.2.15 and Theorem
5.3.2.3. (This type of arguments can also be found in the proof of [Vig21,
Prop. 2.1.21; Thm. 2.1.33].)

Remark 6.3.2.3. Rothstein’s first proof ([Rot96, Thm. 2.2]) is based on a
problematic lemma [Rot96, Lem. 2.3]. the problem is explained in [Rot97,
Sec. 1]. To save his first proof, one may attempt to replace this “lemma" by
its close variant, the bounded way-out lemma (see e.g., [Lip60, Lem. 1.11.3
(i)]). The difficulty is that, a priori, there is no canonical choice of a natural
transformation between the two functors to be compared, which is required
by way-out argument. For instance, in the end of the proof of Proposition
5.4.2.3, there are isomorphism arrows of opposite directions.

6.3.3 Matsushima’s theorem

A holomorphic vector bundle H → Y is called homogeneous if T ∗
yH is

isomorphic to H for all y ∈ Y , where Ty : Y → Y is the translation by
y. The first half of Theorem 6.3.3.1 is a special case of [Mat59, Thm. 1].
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Theorem 6.3.3.1 (Matsushima). Let E be a coherent OY -module with a
connection ∇. Then E is a homogeneous vector bundle and the pair (E,∇)
is translation invariant.

Proof. By Proposition 6.3.1.2, for every integer i, the coherent OX -module
H iRS2(E) admits a 1-splitting. By Lemma 6.3.3.2, the support ofH iRS2(E)
is finite. Consequently, in Db

c(OX) there is an isomorphism RS2(E) ∼=
⊕i∈ZT−iH iRS2(E). From Proposition 5.5.3.2 3 and Fact 6.1.2.1 2, it
induces an isomorphism in Db

c(OY )

T−gE → ⊕i∈ZT−iH0RS1(H
iRS2(E)),

and eachH0RS1(H
iRS2(E)) is a homogeneous vector bundle on Y . ThenE

is isomorphic to H0RS1(H
gRS2(E)), hence a homogeneous vector bundle.

We adopt the argument in [BK09, Footnote (6), p.388]. For every y ∈ Y ,
T ∗
y∇ is a connection on T ∗

yE
∼−→ E and T ∗

0∇ = ∇. The map

Y → H0(Y,Ω1
Y ⊗ End(E)), y 7→ T ∗

y∇−∇

is holomorphic. It is constantly 0 since Y is compact and H0(Y,Ω1
Y ⊗

End(E)) is a finite-dimensional vector space (Cartan-Serre’s theorem).
Hence T ∗

y (E,∇) = (E,∇) for all y ∈ Y .

Lemma 6.3.3.2 ([Rot96, Lem. 3.1]). Let F be a coherent module with a
1-splitting on the complex torus X, then F is finitely supported.

Proof. Suppose to the contrary that Supp(F ) is infinite. By [GR84, p.76],
Supp(F ) is an analytic set in X. Then dimSupp(F ) ≥ 1. Let C be an
irreducible component of Supp(F ) of maximal dimension. Write i : C → X
for the inclusion. Take a morphism h : Z → X provided by Lemma 5.5.3.3.
Then h(Z) = C and F ′′ := F ′/T (F ′) is a vector bundle on Z of positive rank
r, where F ′ = h∗F and T (∗) denotes the torsion part of a sheaf of modules.
In consequence, the morphism of complex tori h∗ : Pic0(X) → Pic0(Z)
is nonzero. However, we claim that its tangent map at origin h∗ : g →
H1(Z,OZ) is zero.

Let E ′ = h∗E . Because OX is flat over itself, pulling back (6.10) to Y and
tensoring with F ′′, by [Sta24, Tag 05NJ] we get a short exact sequence

0→ g∗ ⊗C F
′′ → E ′ ⊗OZ F

′′ → F ′′ → 0. (6.24)

Since E ′ is a vector bundle on Z, one has

E ′ ⊗ F ′

T (E ′ ⊗ F ′)
= E ′ ⊗ F ′′.

Then the splitting on F induces a splitting F ′′ ψ′
→ E ′ ⊗ F ′′ of (6.24). Let

β be the natural morphism β : OZ → End(F ′′). By Lemma 6.2.1.3, the
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composition

End(g)
Idg∗⊗h∗→ g∗ ⊗C H

1(Z,OZ)
Idg∗⊗H1(Z,β)
→ g∗ ⊗C H

1(Z, End(F ′′))

sends 1 ∈ End(g) to 0. Therefore, the mapH1(Z, β)h∗ : g→ H1(Z, End(F ′′))
is zero. Taking trace, we get a morphism τ : End(F ′′) → OZ with
τβ = r · IdOZ . Then h∗ = 1

r τ∗H
1(Z, β)h∗ = 0 as a map g → H1(Z,OZ).

The claim follows. The claim gives a contradiction.

Corollary 6.3.3.3. Every local system (of finite dimensional C-vector spaces)
on a complex torus is translation invariant.

Proof. Let L be a local system on Y . By Theorem 6.3.3.1, the pair (L ⊗C
OY , IdL ⊗ d) is translation invariant. The result follows from the Riemann-
Hilbert correspondence [Del70, I, Thm. 2.17].

6.4 Laumon-Rothstein sheaf of algebras

6.4.1 Construction

To lift the Fourier-Mukai transform to D-modules, we recall (in Definition
6.4.1.1) the sheaf AX from [Rot96, p.576]. In the notation of (6.10), fix a
C-basis {ω1, . . . , ωg} of the C-vector space

H0(Y,Ω1
Y ) = g∗ = Γ(X, g∗ ⊗C OX) ⊂ Γ(X, E).

For each Stein open subset U ⊂ X, by Cartan’s Theorem B (see, e.g., [KK83,
Sec. 52, Thm. B]) one has H1(U, g∗ ⊗C OX) = 0. Thence (6.10) induces a
short exact sequence

0→ g∗ ⊗C OX(U)→ E(U)
µ→ OX(U)→ 0.

Whence, there is ρ ∈ E(U) with µ(ρ) = 1 ∈ OX(U). For two such pairs
(U, ρ) and (Ũ , ρ̃) with U ∩ Ũ ̸= ∅, one has µ(ρ̃ − ρ) = 0 ∈ OX(U ∩ Ũ), so
ρ̃−ρ ∈ g∗⊗COX(U∩Ũ). There exists a unique tuple f1, . . . , fg ∈ OX(U∩Ũ)
such that

ρ̃− ρ =

g∑
i=1

ωi ⊗ fi

in E(U ∩ Ũ).

Definition 6.4.1.1. For each chosen pair (U, ρ) as above, introduce independent
variables xρ1, . . . , x

g
ρ and put

AX |U = OU [x
ρ
1, . . . , x

ρ
g].
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For another choice (Ũ , ρ̃) with the tuple (f1, . . . , fg) as above, we glue AX |U
and AX |Ũ by the rule

xρi − x
ρ̃
i |U∩Ũ = fi. (6.25)

The resulting sheaf AX is a sheaf of commutative OX -algebra.

Let
0→ g∗ → X♮ π→ X → 0 (6.26)

be the universal vectorial extension2 of X constructed in (F.22). In
coordinate-free terms, AX is the OX -subalgebra of π∗OX♮ of sections whose
restriction to each fiber of π is a polynomial on g∗. For every integer m ≥ 0,
let OX♮(m) ⊂ OX♮ denote the subsheaf of sections whose restriction to the
fibers of π are homogeneous polynomials of degree m. Similar to [Bjö93,
Def 1.6.1], there exists a sheaf of graded rings O[X♮] := ⊕m≥0OX♮(m)(⊂
OX♮) on X♮. Then AX = π∗O[X♮] and Γ(X,AX) = C.

Remark 6.4.1.2. Unlike the analytic case, if X is an abelian variety, then the
notation AX in [Rot96, p.576] is the algebraic direct image π∗OX♮ . Morally,
such difference also lies between algebraic and analytic D-modules. For a
complex manifold or a smooth algebraic variety V , let p : T ∗V → V be the
natural projection of the cotangent bundle. Denote by GDV the associated
graded ring of the degree filtration on DV . Then GDV = p∗OT ∗V in the
algebraic case ([HT07, p.57]). By contrast, in the analytic case, GDV is the
OV -submodule of p∗OT ∗V of sections whose restriction to each fiber of p is
a polynomial.

Remark 6.4.1.3. The sheaf of rings AX is functorial in X in the following
sense. Let ϕ : X ′ → X be a morphism of complex tori. Let ϕ̂ : Y → Y ′

be the morphism dual to ϕ. By Proposition F.5.4.7, it induces a morphism
ϕ♮ : X ′♮ → X♮ of complex Lie groups fitting into a commutative diagram

0 H0(Y ′,Ω1
Y ′) X ′♮ X ′ 0

0 H0(Y,Ω1
Y ) X♮ X 0.

ϕ̂∗

π′

ϕ♮ ϕ

π

For each local section of O[X♮], its ϕ♮-pullback (a local section of OX′♮)
restricts to a polynomial on each fiber of π′. Indeed, this restriction is the
ϕ̂∗-pullback of a restriction to a fiber of π. Therefore, the natural morphism
OX♮ → ϕ♮∗OX′♮ restricts to a morphism O[X♮] → ϕ♮∗O[X′♮]. The resulting
morphism of ringed spaces (X ′♮, O[X′♮]) → (X♮, O[X♮]) descends to another
morphism of ringed spaces

ϕ̃ : (X ′,AX′)→ (X,AX), (6.27)
2By [Rot96, p.567], it is also the g∗-principal bundle associated to the tautological

extension (6.10).
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which is compatible with ϕ. In particular, the following square

D(AX′) D(AX)

D(OX′) D(OX)

Rϕ̃∗

Rϕ∗

(6.28)

is commutative, where the vertical functors are forgetful. If M is an OX -
module, then

Lϕ̃∗(AX ⊗OX M) = AX′ ⊗OX′ Lϕ
∗M. (6.29)

6.4.2 Basic properties

Notice that AX has a natural degree filtration {AX(m)}m∈Z, where

AX(m) = π∗(⊕mj=0OX♮(j))

is the OX -submodule of AX of polynomials of degree at most m. See also
[Rot96, Sec. 5.3] and the end of [Lau96, p.10]. Then AX(0) = OX ,
AX(1) = E∨ (cf. the start of [Lau96, p.10]), and every AX(m) is a locally
free OX -module of finite rank. Moreover, for any integers m,n ≥ 0, one has

AX(n)AX(m) = AX(n+m). (6.30)

Thus, AX is a sheaf of positively filtered rings (in the sense of [Bjö93, p.459;
p.464]) on the complex torus X.

We review some terminology from [Bjö93, A:III]. A coherent sheaf of
rings on a locally compact Hausdorff space is called noetherian if every
increasing sequence of ideal sheaves is stationary over relatively compact
subsets ([Bjö93, 2.24, p.470]). Let R be a commutative filtered ring. If
the subring ⊕v∈ZRvT v of R[T, T−1] is a noetherian ring, then R is called a
noetherian filtered ring.

Definition 6.4.2.1 ([Bjö93, A.III, 1.7; Def. 1.11; 1.19]). A filtration on an
R-module M is a family of additive subgroups {Mv}v∈Z such that

Mv ⊂Mv+1; RkMv ⊂Mk+v; ∪vMv =M.

This filtration is called separated if ∩v∈ZMv = 0, and called good if
⊕v∈ZMvT

v is a finitely generated ⊕v∈ZRvT v-module.

A zariskian filtered ring is a noetherian filtered ring such that all the good
filtrations on every finitely generated module are separated. A filtered sheaf
of rings is called stalkwise zariskian if every stalk is a zariskian filtered ring
([Bjö93, Def. 2.6, p.465]).
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Lemma 6.4.2.2. The sheaf of rings AX is coherent and noetherian. The sheaf
of filtered rings AX is stalkwise zariskian.

Proof. By (6.25), the graded ring associated to the degree filtration of AX
is

GAX := ⊕m≥0AX(m)/AX(m− 1) = Sym(g)⊗C OX = OX [x1, . . . , xg].
(6.31)

Here for each chosen pair (U, ρ) as above, xi|U ∈ Γ(U,AX(1)/AX(0)) ⊂
Γ(U,GAX) is the image of xρi ∈ Γ(U,AX(1)). From [Bjö79, Thm. 1.26,
p.460], AX is stalkwise zariskian. The other part follows from [Bjö79,
Prop. 1.27, p.460; Thm. 2.7, p.465]. (See also the proof of [Bjö93,
Thm. 1.2.5].)

In view of the difference mentioned in Remark 6.4.1.2, the statement of
[Rot96, Prop. 4.4] is slightly modified as Fact 6.4.2.3. For every AX -module
F and every chosen pair (U, ρ) as above, define ψρU : F (U) → E(U) ⊗OX(U)

F (U) by

ψρU (s) = ρ⊗ s+
g∑
i=1

ωi|U ⊗ (xρi s).

Then (µ1 ⊗ IdF )(ψ
ρ
U (s)) = s. In light of (6.25), the family {ψρU}(U,ρ) glue to

a 1-splitting ψ on F . By the commutativity of AX and [Rot96, (4.9)], one
has [ψ,ψ] = 0.

Fact 6.4.2.3. The resulting functor Mod(AX) → Mod(OX)sp, F 7→ (F,ψ)
induces an equivalence from Mod(AX) to the full subcategory of Mod(OX)sp
comprised of objects (F,ψ) with [ψ,ψ] = 0.

From Fact 6.4.2.3 and the proof of [Rot96, Prop. 4.1], the functor (6.14)
restricts to an exact functor p∗X : Mod(AX)→ Mod(OX×Y )1−cxn,fl. Similarly
by [Rot96, Prop. 4.2], the functor (6.16) restricts to a functor

pX∗ : Mod(OX×Y )1−cxn,fl → Mod(AX). (6.32)

6.5 Laumon-Rothstein transform

6.5.1 Construction and properties

Definition 6.5.1.1. Define functors

RS1 = RpY ∗(P ⊗LOX×Y p
∗
X ·) : D(AX)→ D(DY ); (6.33)

RS2 = RpX∗(P−1 ⊗LOX×Y p
∗
Y ·) : D(DY )→ D(AX), (6.34)

whereRpY ∗ : D(MIC(pX))→ D(DY ) (resp. RpX∗ : D(Mod(OX×Y )1−cxn,fl)→
D(AX)) is the right derived functor of (6.21) (resp. (6.32)). The pair is
called the Laumon-Rothstein transform.
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The situation is depicted below.

Mod(AX) Mod(DY )

Mod(OX×Y )1−cxn,fl Mod(OX×Y )0−cxn,fl;

p∗X

H0RS1

P⊗·

pY ∗

Mod(DY ) Mod(AX)

Mod(OX×Y )0−cxn,fl Mod(OX×Y )1−cxn,fl.

p∗Y

H0RS2

P−1⊗·

pX∗

Proposition 6.5.1.2. There are commutative squares

D(AX) D(DY )

D(OX) D(OY );

RS1

RS1

D(DY ) D(AX)

D(OY ) D(OX),

RS2

RS2

where the vertical functors are forgetful. In particular, RS1 (resp. RS2) sends
DO−good(AX) (resp. DO−good(DY )) to DO−good(DY ) (resp. DO−good(AX)).

Proof. The proof is similar to that of Proposition 6.3.1.2, as AX (resp. DY )
is flat over OX (resp. OY ).

With Proposition 6.5.1.2, the proof of Theorem 6.5.1.3 is similar to that
of Theorem 6.3.2.1.

Theorem 6.5.1.3 (Laumon, Rothstein). There are natural isomorphisms
of functors RS1RS2 ∼= T−g on DO−good(DY ) and RS2RS1 ∼= T−g on
DO−good(AX).

Proposition 6.5.1.4 follows from Proposition 6.5.1.2, Theorem 6.5.1.3
and Fact 6.1.1.1 1 as in the proof of [Rot96, Thm. 6.1], cf. [Lau96, Prop.
3.1.2; Cor. 3.2.4].

Proposition 6.5.1.4. There are natural isomorphisms of functors

RS2(DY ⊗LOY ·) ∼= AX ⊗
L
OX

RS2(·) : Dgood(OY )→ DO−good(AX);
RS1(AX ⊗LOX ·) ∼= DY ⊗LOY RS1(·) : Dgood(OX)→ DO−good(DY ).

For x ∈ X (resp. y ∈ Y ), let Px = P|x×Y (resp. Py = P|X×y) be the
pullback line bundle on Y (resp. X). For a closed analytic subset S of a
complex manifold Z, [Kas03, (3.30), p.51] defines a DZ -module BS|Z .

Corollary 6.5.1.5. For any x ∈ X and y ∈ Y , one has

RS2(DY ⊗OY Cy) = AX ⊗OX P−y;

T gRS1(AX ⊗OX P−y) = DY ⊗OY Cy = iy+C = B{y}|Y ;
RS1(AX ⊗OX Cx) = DY ⊗OY Px;
T gRS2(DY ⊗OY Px) = AX ⊗OX Cx.

Proof. By [HT07, Example 1.6.4], one has DY ⊗OY Cy = B{y}|Y . The result
follows from Theorem 6.5.1.3, Proposition 6.5.1.4, Fact 6.1.2.1 and Lemma
5.2.0.8.
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6.5.2 Matsushima-Morimoto theorem

Proposition 6.5.2.1, due to Matsushima [Mat59, Thm. 1] and Morimoto
[Mor59, Thm. 2], is a converse to Theorem 6.3.3.1. For abelian varieties,
Nakayashiki [Nak94, Prop. 5.9] gives a proof using the Fourier-Mukai
transform.

Proposition 6.5.2.1. A homogeneous vector bundle on a complex torus admits
an integrable connection.

Proof. Let E → Y be a homogeneous vector bundle. Set Ê = HgRS2(E).
According to Proposition 5.5.3.2 and Fact 6.1.1.1, one has E = H0RS1(Ê)
and Supp(Ê) is finite. By Lemma 6.5.2.2, Ê has an AX -module structure.
By Proposition 6.5.1.2, the OY -module underlying H0RS1(Ê) is E. The
DY -module H0RS1(Ê) carries naturally an integrable connection.

The proof of Proposition 6.5.2.1 needs Lemma 6.5.2.2, a converse to
Lemma 6.3.3.2.

Lemma 6.5.2.2. If F is an OX -module with finite support on the complex
torus X, then F admits a 1-splitting ψ with [ψ,ψ] = 0.

Proof. There is a decomposition F = ⊕mi=1Fi, where Supp(Fi) is a singleton
for each i. Thus, one may assume that Supp(F ) is a singleton. Then there
exists an open neighborhood U ⊂ X of Supp(F ) and a morphism of complex
manifolds s : U → X♮ that is a local section to (6.26). Let ι : U → X be
the inclusion. Applying π∗ to the morphism of sheaves of rings OX♮ →
s∗OU , one gets a morphism π∗OX♮ → ι∗OU . As AX is an OX -subalgebra
of π∗OX♮ , this endows ι∗OU an AX -module structure.3 Since the canonical
OX -morphism IdF ⊗ ι# : F → F ⊗OX ι∗U is an isomorphism, F also obtains
an AX -module structure. This induces such a splitting by Fact 6.4.2.3.

Proposition 6.5.2.1, together with Theorem 6.3.3.1, yields (a slight
generalization of) Morimoto’s theorem [Mor59, Thm. 2, p.91].

Corollary 6.5.2.3 (Morimoto). A coherent module admitting a connection on
a complex torus is a vector bundle admitting an integrable connection.

6.6 Good modules

6.6.1 Definition

We define good AX -modules. We also review several definitions of good
D-modules in the literature, and show that they are equivalent.

Let Z be a complex manifold.
3This example shows that Lemma 6.3.3.2 fails without coherent condition.
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Definition 6.6.1.1. [Bjö93, 2.5, p.465] Let R be a positively filtered sheaf
of rings on Z such that the associated graded ring GR is coherent. Let M
be a coherent left R-module. A filtration on M is an increasing sequence
of subsheaves {Mv}v∈Z satisfying ∪v∈ZMv = M and RkMv ⊂ Mk+v for all
integers k ≥ 0 and v. This filtration is called

• B-good ([Bjö93, Remark 2.16, p.467]) if for every x ∈ Z, there exists
an open neighborhood U , a finite set {m1, . . . ,ms} ⊂ Γ(U,M) and
integers k1, . . . , ks such that Mv|U =

∑s
i=1Rv−kimi for all integers v.

• locally good ([Meb89, Prop. 2.1.12 (i)]) if every Mv is coherent over
OZ , and if for every x ∈ Z, there is an open neighborhood U of x and
an integer k0 ≥ 0 such that RmMk0 = Mm+k0 on U for all integers
m ≥ 0.

The proof of Lemma 6.6.1.2 is similar to that of [HT07, Prop. 2.1.1; Def.
2.1.2].

Lemma 6.6.1.2. Let M· = (Mv)v∈Z be a filtration on a coherent AX -module
M . Then M· is B-good if and only if M· is locally good. (In that case, we call
M· a good filtration on M .)

Proof. • Assume that M· is B-good. By Lemma 6.4.2.2 and [Bjö93,
Thm. 2.17, p.467], the GAX -module ⊕v∈ZMv/Mv−1 is coherent.
Because of (6.31) and the proof of [Bjö93, Prop. 1.4.5], for every
integer v, the OX -module Mv/Mv−1 is coherent. From [Bjö93,
Prop. 2.23, p.470], the filtration M· is locally bounded blow. Then by
induction on v ∈ Z, one proves that the OX -module Mv is coherent.

For every x ∈ X, by definition, there is an open neighborhood U ⊂ X
of x, sections m1, . . . ,ms ∈ Γ(U,M) and integers k1, . . . , ks such that
Mv|U =

∑s
i=1AX(v−ki)mi for all integers v. Put k0 = maxsj=1 kj . For

every integer k ≥ 0, one has AX(k)Mk0 ⊂Mk+k0 . Moreover,

Mk+k0 |U =
s∑
i=1

AX(k+k0−ki)mi

(a)
⊂

s∑
i=1

AX(k)AX(k0−ki)mi ⊂ AX(k)Mk0 ,

where (a) uses (6.30). Hence AX(k)Mk0 =Mk+k0 on U .

• Conversely, assume that M· is locally good. For a fixed x ∈ X, take
U and k0 provided by the definition of local goodness. Since Mk0

is coherent over OX , by shrinking U , one may assume that the OU -
module Mk0 |U is generated by sections s1, . . . , sm ∈ Γ(U,Mk0). Define
a morphism of AX -modules ϕ : AmX |U → M |U , (f1, . . . , fm) 7→∑m

j=1 fjsj . Since M· is a filtration, for every integer v, one has
AX(v−k0)Mk0 ⊂Mv. Hence ϕ(AX(v−k0)m) ⊂Mv. By construction,
one has ϕ(AX(0)m) =Mk0 |U . For every integer k ≥ k0, on U one has

Mk = AX(k − k0)Mk0 = AX(k − k0)ϕ(AX(0)m) ⊂ ϕ(AX(k − k0)m).
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Therefore, the filtration M· is B-good.

From [HT07, Thm. 2.1.3 (i)], a coherent DV -module on a smooth
algebraic variety V admits a globally defined good filtration. By contrast,
Malgrange [Mal04, p.405] gives a coherent D-module on the complex
manifold C∗ × CP1 that does not admit any global good filtration.

Definition 6.6.1.3. An OZ -module F is called

• countably quasi-good ([KS97, p.942]) if every compact subset of Z has
an open neighborhood U such that F |U is the union of an increasing
sequence of coherent OU -submodules.

• quasi-good ([KS16, p.12]) if for every relatively compact open subset
U ⊂ Z, the restriction F |U is a sum of coherent OU -submodules.

A DZ -module M is called

• good coherent if for every relatively compact open subset U of Z, there
is a finite filtration {Mk}k∈Z of M |U such that each quotient Mk/Mk−1

is a coherentDU -modules admitting a good filtration. ([Sai89, p.369],
[SS94, p.10] and [KS96, p.43].)

• S-quasi-good ([KS96, p.43]) if for every relatively compact open subset
U ⊂ Z, the restriction M |U admits a filtration {Mv}v∈Z by coherent
DU -submodule such that each quotient Mv/Mv−1 admits a good
filtration and Mv = 0 for v ≪ 0.

Proposition 6.6.1.4. Let M be a coherent DZ -module. Then the following are
equivalent.

1. For every relatively compact open subset U of Z, there is a coherent OU -
submodule F ⊂M |U with DU · F =M |U .

2. For every relatively compact open subset U of Z, the DU -module M |U
admits a good filtration.

3. The DZ -module M is good coherent.

4. The DZ -module M is S-quasi-good.

5. The OZ -module M is countably quasi-good.

6. The OZ -module M is good.

7. The OZ -module M is quasi-good.

Proof. We follow the circular chain.
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1 implies 2 See [Bjö93, 1.4.10].

2 implies 3 For every relatively compact open subset U of Z, define a finite
filtration of M |U by M0 = 0 and M1 = M |U . Then the graded piece
M1/M0 admits a good filtration over U .

3 implies 4 For every relatively compact open subset U of Z, consider the filtration
{Mk} in the definition. By induction on k, one proves that each Mk is
DU -coherent.

4 implies 5 Every quotient Mv/Mv−1 admits a good filtration, then by [Bjö93,
Cor. 1.4.6], it is countably quasi-good. By induction on v and using
[KS97, Lem. 2.1.1], one proves that every Mv is countably quasi-
good. Therefore, for every integer v, there is an increasing sequence
{Mk

v }k≥1 of coherent OU -submodules of Mv with Mv = ∪k≥1M
k
v . For

every integer k ≥ 1, let Mk :=
∑

i≤k,v≤kM
i
v. By [Sta24, Tag 01BY],

Mk is a coherent OU -submodule of Mk. Then

M = ∪v∈ZMv = ∪v∈Z ∪i≥1 M
i
v = ∪k≥1M

k,

so M is countably quasi-good.

5 implies 6 An increasing sequence forms a directed family.

6 implies 7 By definition.

7 implies 1 Let U be a relatively compact open subset of Z. Because M is a finite
type DZ -module, for every x ∈ Ū , there is a relatively compact open
neighborhood U(x) ⊂ Z of x, an integer n(x) ≥ 1 and sections

{sxi }1≤i≤n(x) ⊂ Γ(U(x),M)

generating the DU(x)-module M |U(x). By compactness of Ū , the open
cover {U(x)}x∈Ū of Ū has a finite subcover {U(xj)}1≤j≤r. Then V =
∪rj=1U(xj) is a relatively compact open subset of Z containing U . By
Condition 7, one may write M |V =

∑
α∈I Gα, where I is an index set,

and each Gα is a coherent OV -submodule of M |V .

For every x ∈ Ū , there is an open neighborhood V (x) ⊂ U(x)
of x, such that for each 1 ≤ i ≤ n(x), the restriction sxi |V (x) ∈
Γ(V (x), Gα(x,i)) for some index α(x, i) ∈ I. By compactness of Ū
again, the open cover {V (x)}x∈Ū has a finite subcover {V (x′k)}1≤k≤m.
Then

F :=
∑

1≤k≤m,1≤i≤n(x′k)

Gα(x′k,i)

is a finite type OV -submodule of M |V . By Lemma 6.6.2.7, it is
coherent over OV . Moreover, DU · F |U =M |U .
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The proof of Proposition 6.6.1.5 is similar to that of Proposition 6.6.1.4.

Proposition 6.6.1.5. Let M be a coherent AX -module on the complex torus
X. Then the OX -module M is good if and only if there is a coherent OX -
submodule F ⊂M with AX · F =M .

Let the sheaf of rings R be either DZ or AX on the fixed complex torus
X.

Definition 6.6.1.6. [Kas03, Def. 4.24] A coherent R-module is good if the
underlying O-module is good.

For example, by Lemma 6.4.2.2 and [Bjö93, Thm. 1.2.5], the left
R-module R is good. Let Good(R) ⊂ Coh(R) (resp. Db

good(R) ⊂
Db
O−good(R)) be the full subcategory of good R-modules (resp. objects

whose cohomologies are good R-modules). By Proposition 6.6.1.4, the
category Db

good(DZ) is what Björk denotes by Db
coh(DZ)f in [Bjö93, p.119].

Fact 6.6.1.7 (GAGA).

• ([HK84, Thm. 1.1 (2)]) Let V be a smooth proper complex algebraic
variety. Then the analytification functor induces an equivalence Coh(DV )→
Good(DV an).

• Let A be a complex abelian variety. Then the analytification functor
induces an equivalence Coh(AA)→ Good(AAan)

A coherent DZ -module is called holonomic if its characteristic variety is
of (minimal) dimension dimZ ([Bjö93, Def. 3.1.1]). Malgrange ([Mal94,
p.35], [Mal96, p.367], see also [Sab11, Thm. 4.3.4 (2)]) claims to have
proved that every holonomic DZ -module is generated by a coherent OZ -
submodule, so it is a good DZ -module. Let Db

h(DZ) ⊂ Db(DZ) be the full
subcategory of objects with holonomic cohomologies.

6.6.2 Basic properties

Let R be either DZ on a complex manifold Z or AX on the fixed complex
torus X.

Lemma 6.6.2.1 (Induced modules). The functor R ⊗OZ · : Mod(OZ) →
Mod(R) is exact. It restricts to a functor R⊗OZ · : Coh(Z)→ Good(R), and
induces a t-exact functor R⊗LOZ · : D

b
c(OZ)→ Db

good(R).

Proof. As R is flat over OZ , the functor is exact. Consider the degree
filtration {R(m)}m≥0 of R, where R(m) ⊂ R is the OZ -submodule of
polynomials of degree at most m. Each R(m) is vector bundle on Z and
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R = colimmR(m). Therefore, the O-module R is good. By Proposition
5.3.1.5 2, for every coherent OZ -module F , the O-moduleR⊗OZ F is good.
Because F is an OZ -module of finite presentation, R⊗OZ F is an R-module
of finite presentation. Then it is R-coherent by [Bjö93, Thm. 1.2.5] and
Lemma 6.4.2.2. The other part follows.

Lemma 6.6.2.2. The category Good(R) is a weak Serre subcategory of
Mod(R). In particular, Db

good(R) is a triangulated subcategory of Db(R).

Proof. The first half is a combination of [Kas03, Prop. 4.23], [Sta24, Tag
01BY] and [Sta24, Tag 0754]. The second half follows from [Yek19,
Prop. 7.4.5].

For a morphism of complex manifolds f : M → N , the direct image of
D-modules f+ : D(DM )→ D(DN ) is constructed in [Bjö93, 2.3.12].

Fact 6.6.2.3 ([Bjö93, Thm. 2.8.1, 2.8.7]). Let f : W → Z be a morphism of
complex manifolds. For every M ∈ Db

good(DW ), if f |Supp(M) : Supp(M) → Z

is proper, then f+M ∈ Db
good(DZ).

Lemma 6.6.2.4. Let f :W → Z be a proper morphism of complex manifolds.
Then the direct image functor f+ : D(DW ) → D(DZ) restricts to a functor
DO−good(DW )→ DO−good(DZ).

Proof. Take M ∈ DO−good(DW ). By [Sab11, Remark 3.3.4 (4)], the functor
f+ has finite cohomological dimension. So to prove f+M ∈ DO−good(DZ),
by [Har66, I, Prop. 7.3 (iii)], one may assume that M ∈ Mod(DW ). Define a
morphism i : W → W × Z, w 7→ (w, f(w)), which is a closed embedding.
Let q : W × Z → Z be the projection. By [Sab11, Thm. 3.3.6 (1)], one has
f+ = q+i+. The restriction q|W : W → Z is proper. By [Bjö93, Prop. 2.4.8],
one has f+M = Rq∗DRW×Z/Z(i+M)[dimZ]. As each term of the (relative)
de Rham complex DRW×Z/Z(i+M) is OW×Z -good and supported on W , by
Theorem 5.3.1.7, Rq∗[DRW×Z/Z(i+M)] ∈ Dgood(OZ).

For a closed embedding i : M → N of complex manifolds, the inverse
image i∗ : Mod(DN ) → Mod(DM ) may not preserve D-coherence ([HT07,
Rk. 1.5.10]). For smooth morphisms, Fact 6.6.2.5 can be proved by applying
[Kas03, Thm. 4.7] or repeating the proof of [HT07, Prop. 1.5.13 (ii)].

Fact 6.6.2.5. Let f : M → N be a smooth morphism of complex manifolds.
Then Lf∗ : Db(DN )→ Db(DM ) restricts to functors Db

c(DN )→ Db
c(DM ) and

Db
good(DN )→ Db

good(DM ).

Lemma 6.6.2.6 concerns the local existence of good filtrations on
coherent AX -modules.
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Lemma 6.6.2.6. Let M be a coherent AX -module on the complex torus X.
For every x ∈ X, there is an open neighborhood U of x and a positive good
filtration on M |U .

Proof. Let AqX |U
ϕ→ ApX |U

ϵ→ M |U → 0 be a local presentation of M on
a relatively compact open neighborhood U of x. For every integer v, set
Mv = ϵ(AX(v)p), which is an OU -submodule of M |U . Then Mv = 0 when
v < 0. Moreover, ∪v∈ZMv = M |U and for any integers m, k ≥ 0, one has
AX(m)Mk ⊂ Mk+m. Thus, {Mv}v∈Z is a positive filtration of M |U . For
every integer k ≥ 0, one has AX(k)M0 = Mk. It remains to prove that Mk

is coherent over OU .
We claim that ϕ(AX(m)q) ∩ AX(k)p is coherent over OU . In fact, for

every y ∈ U , there is an integer s ≥ max(0, k −m) such that ϕ(AX(m)q) ⊂
AX(m + s)p near y. In side the coherent OX -module AX(m + s)p, the two
OX -submodules ϕ(AX(m)q) and AX(k)p are finite type. By [Sta24, Tag
01BY], their intersection ϕ(AX(m)q)∩AX(k)p is coherent near y. The claim
is proved.

Because AX(k)p is a noetherian OX -module, the increasing sequence of
submodules {ϕ(AX(m)q) ∩ AX(k)p}m≥0 is stationary on U . Therefore, the
union ϕ(AqX) ∩ AX(k)p = ker(ϵ) ∩ AX(k)p is coherent over OU . Since the
sequence

0→ ker(ϵ) ∩ AX(k)p → AX(k)p →Mk|U → 0

is exact in Mod(OU ), the restriction Mk|U is OU -coherent. The constructed
filtration is therefore good.

When R = DZ , Lemma 6.6.2.7 is [Sab11, Exercise E.2.4 (4)]. On
a complex manifold Z, an OZ -module F is pseudo-coherent if for every
open subset U of X, every finite type OU -submodule of F |U is of finite
presentation ([Kas03, Def. A.5]).

Lemma 6.6.2.7. If M is a coherent R-module, then M is pseudo-coherent
over OZ .

Proof. Let F ⊂ M be a finite type O-submodule. For every point x, by
[Meb89, Prop. 2.1.9] (in the case R = DZ) and Lemma 6.6.2.6 (in the case
R = AX), there exists an open neighborhood U of x and a good filtration
on M |U . By [Bjö93, Cor. 1.4.6] (in the case R = DZ) and Lemma 6.6.1.2
(in the caseR = AX), M |U is the sum of an increasing sequence of coherent
OU -submodules. Hence M |U is good over OU . By Lemma A.1.4.2 1, the OU -
module M |U is pseudo-coherent. As pseudo-coherence is a local property,
M is pseudo-coherent over OZ .

Lemma 6.6.2.8. Let M be a good R-module. Let N be a finite type R-
submodule of M . Then N is good over R.
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Proof. By [Sta24, Tag 01BY (1)], N is coherent over R. For every
relatively compact open subset U of X and every x ∈ Ū , there is an
open neighborhood U(x) ⊂ X of x, an integer n(x) > 0 and sections
{si(x)}n(x)i=1 ⊂ Γ(U(x), N) generating the R|U(x)-module N |U(x). The open
cover {U(x)}x∈Ū of Ū has a finite subcover {U(xj)}mj=1. Let N0 be the OU -
submodule of N |U generated by the finitely many local sections

{si(xj)}1≤j≤m,1≤i≤n(xj).

Then N0 is a finite type OU -module. Because M |U is good over R|U , by
Lemma 6.6.2.7, the OU -module N0 is coherent. By construction, one has
R|U ·N0 = N |U . Therefore, theR-module N is good by Propositions 6.6.1.4
(in the case R = DZ) and 6.6.1.5 (in the case R = AX).

6.6.3 Preservation of goodness

Theorem 6.6.3.1. The functor RS1 : D(AX) → D(DY ) restricts to
an equivalence Db

good(AX) → Db
good(DY ), with a quasi-inverse T gRS2 :

Db
good(DY )→ Db

good(AX).

Proof. 1. For every coherent OY -module F , one has RS2(DY ⊗LOY F ) ∈
Db

good(AX).
By Proposition 6.5.1.4, one has RS2(DY ⊗LOY F ) = AX ⊗

L
OX

RS2(F ). By
Fact 6.1.2.1 2, one has RS2(F ) ∈ Db

c(OX). From Lemma 6.6.2.1, one gets
AX ⊗LOX RS2(F ) ∈ D

b
good(AX).

2. For every M ∈ Good(DY ) and every integer i, the AX -module
H iRS2(M) is good.

Descending induction on i ∈ Z. The OX -module underlying H iRS2(M) is
H iRS2(M). By Lemma 6.6.3.2, one has H iRS2(M) = 0 when i > 2g. In
particular, H iRS2(M) is good over AX .

Assume the statement for i+1. By Proposition 6.6.1.4, there is a coherent
OY -submodule F ⊂M withDY ·F =M . LetM ′ be the kernel of the natural
epimorphism DY ⊗OY F →M . Then

0→M ′ → DY ⊗OY F →M → 0 (6.35)

is a short exact sequence in Mod(DY ). By Lemma 6.6.2.1, the DY -module
DY ⊗OY F is good. By Lemma 6.6.2.2, so is M ′. From (6.35), one gets an
exact sequence in Mod(AX)

H iRS2(M
′)→ H iRS2(DY⊗OY F )→ H iRS2(M)→ H i+1RS2(M

′)→ H i+1RS2(DY⊗OY F ).
(6.36)

By 1, the AX -module HjRS2(DY ⊗OY F ) is good for j ∈ {i, i + 1}. By the
inductive hypothesis, so is H i+1RS2(M

′).
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Let G = ker[H i+1RS2(M
′)→ H i+1RS2(DY ⊗OY F )]. By Lemma 6.6.2.2,

the AX -module G is good (hence of finite type). The sequence (6.36) yields
an exact sequence

H iRS2(DY ⊗OY F )→ H iRS2(M)→ G→ 0,

so H iRS2(M) is a finite type AX -module for every coherent DY -module M .
In particular, H iRS2(M

′) is a finite type AX -module.
Let N = im(H iRS2(M

′) → H iRS2(DY ⊗OY F )). It is a finite type AX -
submodule of the good AX -module H iRS2(DY ⊗OY F ). By Lemma 6.6.2.8,
the AX -module N is a good. The sequence (6.36) yields an exact sequence

0→ N → H iRS2(DY⊗OY F )→ H iRS2(M)→ H i+1RS2(M
′)→ H i+1RS2(DY⊗OY F ).

By Lemma 6.6.2.2, the AX -module H iRS2(M) is good. The induction is
completed.

From 2, Lemma 6.6.2.2 and [Har66, I, Prop. 7.3 (i)], the functor RS2
restricts to a functor Db

good(DY )→ Db
good(AX). Similarly, using Proposition

6.6.1.5, one can prove that RS1 restricts to a functor Db
good(AX) →

Db
good(DY ). By Theorem 6.5.1.3, the restrictions are equivalences.

The proof of Theorem 6.6.3.1 needs a cohomological dimension estimation.

Lemma 6.6.3.2. For an OX -module F , we have RS1(F ) ∈ D[0,2g](OY ).
Similarly, for an OY -module G, we have RS2(G) ∈ D[0,2g](OX).

Proof. By left exactness of the functor pY ∗ : Mod(OX×Y ) → Mod(OY ), one
has RiS1(F ) = 0 for every integer i < 0. For every y ∈ Y , let M be the
restriction (as sheaves) of P ⊗OX×Y p∗XF to X × y. For every integer j,
by the proper base change theorem (see e.g., [Mil13, Thm. 17.2]), one has
RjS1(F )y = Hj(X × y,M). When j > 2g, by [KS90, Prop. 3.2.2 (iv)],
one has Hj(X × y,M) = 0. Therefore, RjS1(F ) = 0. The other part is
similar.

6.7 Relations with other functors

The properties [Muk81, (3.1), (3.4), (3.8)] of the Fourier-Mukai transform
have analogs for the Laumon-Rothstein transform.

6.7.1 Exchange of translation and multiplication

For every y ∈ Y , we view Py as an object of Mod(OX)0−sp via Example
6.2.1.2. There is a canonical isomorphism T ∗

(0,y)P ∼= P ⊗OX×Y p∗XPy in
Mod(X × Y )−1−cxn, where p∗X : Mod(OX)0−sp → Mod(OX×Y )0−cxn is
defined in (6.14) and the functor

P ⊗OX×Y (·) : Mod(OX×Y )0−cxn → Mod(OX×Y )−1−cxn
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is from [Rot97, (2.10)]. Arguing as in [Muk81, (3.1)], we get Proposition
6.7.1.1 from the projection formula.

Proposition 6.7.1.1.

RS2 ◦ T ∗
y
∼= (· ⊗OX Py) ◦RS2 : D(DY )→ D(AX);

RS2 ◦ (· ⊗OY Px) ∼= T ∗
−x ◦RS2 : D(DY )→ D(AX);

RS1 ◦ (· ⊗OX Py) ∼= T ∗
y ◦RS1 : D(AX)→ D(DY );

RS1 ◦ T ∗
x
∼= (· ⊗OY P−x) ◦RS1 : D(AX)→ D(DY ).

Similar results hold for RS1 and RS2.

Remark 6.7.1.2. Goodness over O is not necessary in Proposition 6.7.1.1, as
the proof does not use the smooth base change.

6.7.2 Duality

Let Z be a complex manifold. Denote by ∆OZ the duality (contravariant)
functor RHomOZ (·, ω

−1
Z )[dimZ] : Db

c(OZ) → Db
c(OZ). The duality functor

on DZ -modules ∆DZ : D(DZ) → D(DZ) is defined by ∆DZF = G[dimZ],
where G is the complex of left DZ -modules associated with the complex
RHomDZ (F,DZ) of right DZ -modules. By [Bjö93, Def. 2.11.1], ∆DZ

restricts to a functor Db
c(DZ) → Db

c(DZ), and the natural transformation
Id→ ∆DZ ◦∆DZ is an isomorphism of functors Db

c(DZ)→ Db
c(DZ).

Lemma 6.7.2.1 ([KS16, p.16]). The functor ∆DZ : D(DZ) → D(DZ)
restricts to a functor Db

good(DZ)→ Db
good(DZ).

Proof. Suppose F is a coherent OZ -module and N = DZ ⊗OZ F , then by
[Bjö93, (ii), p.122], there is G ∈ Db

c(OZ) with ∆DZN = DZ ⊗OZ G. By
Lemma 6.6.2.1, ∆DZN ∈ Db

good(DZ).
Take M ∈ Db

good(DZ). To prove ∆DZM ∈ Db
good(DZ), by [Har66,

I, Prop. 7.3 (i)], one may assume M ∈ Good(DZ). For every relatively
compact open subset U ⊂ Z, by [Bjö93, Thm. 1.5.8] and Proposition 6.6.1.4
, there is a finite length exact sequence in Mod(DU ):

0→ DU ⊗OU F
−n → · · · → DU ⊗OU F

0 →M |U → 0,

where each F i is a coherent OU -module. For every i, one has ∆DU (DU ⊗OU
F i) ∈ Db

good(DU ). By Lemma 6.6.2.2, one has (∆DZM)|U = ∆DU (M |U ) ∈
Db

good(DU ). Hence ∆DZM ∈ Db
good(DZ).

For algebraic varieties, an analogue of Fact 6.7.2.2 is stated as [HT07,
Cor. 2.6.8 (iii), Prop. 3.2.1]. From [HT07, p.101], all the arguments in
[HT07, Sec. 2.6] are valid for analytic D-modules.
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Fact 6.7.2.2.

1. The contravariant functor ∆DZ : Db
h(DZ)→ Db

h(DZ) an equivalence.

2. Let M be a coherent DZ -module. Then M is holonomic if and only if
H i(∆DZM) = 0 for all integers i ̸= 0.

Fact 6.7.2.3. Let f :W → Z be a morphism of complex manifolds. Then:

1. [Bjö93, Thm. 3.2.13 (1)] The inverse image Lf∗ : Db(DZ)→ Db(DW )
restricts to a functor Db

h(DZ)→ Db
h(DW ).

2. [Sab11, Thm. 4.4.1] If F ∈ Db
h(DW ) is such that f |Supp(F ) is proper,

then f+F ∈ Db
h(DZ).

3. [Bjö93, Thm. 3.2.13 (3)] The bifunctor − ⊗LOW + : Db(DW ) ×
Db(DW ) → Db(DW ) restricts to a bifunctor Db

h(DW ) × Db
h(DW ) →

Db
h(DW ).

Restricted to the complex torus Y , [Bjö93, (ii), p.122] becomes [Rot96,
(6.12)]:

∆DY (DY ⊗LOY ·) ∼= DY ⊗LOY ∆OY · : Db
c(OY )→ Db

c(DY ).

Define the duality (contravariant) functor ∆AX : Db(AX)→ Db(AX) as

∆AX = T gRHomAX (·,AX).

It restricts to a functor Db
c(AX) → Db

c(AX). Similar to Lemma 6.7.2.1, it
restricts to a functor Db

good(AX) → Db
good(AX). Theorem 6.7.2.4 follows

from Proposition 6.7.2.5 and Fact 6.7.2.2 2, in the same way how Theorem
6.5 follows from Propositions 6.3 and 6.4 in [Rot96].

Theorem 6.7.2.4 (Rothstein). Let F ∈ Db
good(AX) be an object such that

RS1(F ) is concentrated in a single degree i ∈ Z. Then H iRS1(F ) is holonomic
if and only if RS1∆AXF is concentrated in degree g − i.

Proposition 6.7.2.5 can be deduced from Corollary 6.7.2.8, Proposition
6.5.1.4 and Proposition 5.5.1.8, in the same way that [Rot96, Prop. 6.3] is
proved.

Proposition 6.7.2.5.

RS2∆
DY = [−1]∗XT−g∆AXRS2 : D

b
good(DY )→ Db

good(AX); (6.37)

∆DY RS1 = [−1]∗Y T gRS1∆AX : Db
good(AX)→ Db

good(DY ). (6.38)

Remark 6.7.2.6. Both [Rot96, (6.13), (6.14)] miss a factor [−1]∗, due to
a missing [−1]∗X in [Rot96, (6.15)]. Still, this sign does not affect the
statement of [Rot96, Thm. 6.5].
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Lemma 6.7.2.7 ([Huy06, (3.13)]). For any objects K,L ∈ D(OZ) and M ∈
D−
c (OZ), the natural morphism (provided by [Sta24, Tag 0BYS])

K ⊗LOZ RHomOZ (M,L)→ RHomOZ (M,K ⊗LOZ L) (6.39)

is an isomorphism in D(OZ).

Proof. By [Har66, I, Prop. 7.1 (ii)], one may assume that M ∈ Coh(OZ).
By [Sta24, Tag 08DL] and [GH78, p.696], one may shrink Z such that M
admits a globally free resolution F →M , where the complex F is

0→ OknZ → · · · → Ok1Z → Ok0Z → 0

with OkiZ placed in degree −i. The morphism (6.39) becomes

K ⊗LOZ HomOZ (F,L)→ HomOZ (F,K ⊗
L
OZ

L),

which is an isomorphism.

Corollary 6.7.2.8 proves the analytic counterpart of [Rot96, (6.12)].

Corollary 6.7.2.8. There is a canonical isomorphism ∆AX (AX ⊗LOX ·)
∼=

AX ⊗LOX ∆OX · of functors Db
c(OX)→ Db

c(AX).

Proof. By [Rot96, (6.2)], one has

∆AX (AX ⊗LOX ·) = T gRHomAX (AX ⊗
L
OX
·,AX) = T gRHomOX (·,AX).

By Lemma 6.7.2.7, it equals T gRHomOX (·, OX)⊗LOX AX = AX ⊗LOX ∆OX ·.

Example 6.7.2.9. Let F = T gAX ∈ Db
good(AX). By Corollary 6.5.1.5,

one has RS1(F ) = DY ⊗OY C0. One has ∆AXF = AX , and RS1∆
AXF

is concentrated in degree g. Then by Theorem 6.7.2.4, the DY -module
DY ⊗OY C0 is holonomic.

Example 6.7.2.9 leads to a question: When is an induced D-module
holonomic? A full answer is in Proposition E.2.0.1.

Remark 6.7.2.10. There is seemingly a paradox. Suppose g = 1 and let
i : 0 → Y be the inclusion. Then the OY -modules pullback i∗C0 = C and
i∗(DY ⊗OY C0) = (i∗DY ) ⊗C (i∗C0) = i∗DY is the fiber of DY at 0, which
is nonzero. On the other hand, by [Bjö93, p.87] the derived inverse image
i+(DY ⊗OY C0) is a complex of D0 = C-modules concentrated in degree
−1. From [Bjö93, 2.3.7], its underlying complex of O0 = C-modules is
Li∗(DY ⊗OY C0). Its 0-th cohomology i∗(DY ⊗OY C0) is zero, a contradiction!
We suggest catching the mistake.

In fact, DZ has two different structures of OZ -modules. Consider local
sections h (resp. δ) of OZ (resp. DZ). One module structure defines h · δ as
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hδ, the product in DZ . This OZ -module is denoted by Dl
Z . Then forZ(DZ) =

Dl
Z .

The other OZ -module structure defines h · δ as the reversed product δh
in DZ . Denote this OZ -module by Dr

Z . Given an OZ -module F , which one is
used in the tensor product defining the induced left DZ -module DZ ⊗OZ F?
In fact, it relies on the (DZ , OZ)-bimodule structure on Dr

Z . But M :=
forZ(DZ ⊗OZ F ) is NOT the OZ -module tensor product of F with neither
Dr
Z nor Dl

Z .
Return to the special case F = C0 = OY /I on Y , where I ⊂ OY is

the coherent ideal sheaf corresponding to the closed embedding i : 0 → Y .
Take a local coordinate z around 0 ∈ Y such that OY,0 = C{z} and the
maximal ideal m0 = (z) ⊂ OY,0. Let ∂ be the corresponding local vector
field near 0 ∈ Y . Let M = forY (DY /DY I). The C-vector space M0 = C[∂],
and its OY,0-action is defined by z · v = zv for all v ∈ M0. The O0-module
for0(H

0i+(DY ⊗OY C0)) = i∗M =M0/m0M0.
By [∂, z] = 1, for every integer k ≥ 0, one has ∂k = 1

k+1(∂
k+1z−z∂k+1) ∈

DY,0m0 +m0DY,0. So, M0/m0M0 = 0, even though the O-module pullback
to 0 of both Dl

Y ⊗OY C0 and Dr
Y ⊗OY C0 are nonzero.

6.7.3 Pullback and pushout

Proposition 6.7.3.1 ([Lau96, Prop. 3.3.2]). Let f : X ′ → X be a morphism
of complex tori, with dimX ′ = g′. Let f̂ : Y → Y ′ be the morphism dual to f .
Let f̃ : (X ′,AX′)→ (X,AX) be the induced morphism (6.27). Then there are
canonical isomorphisms of functors

1.

Lf̂∗RS′
1
∼= RS1Rf̃∗ : DO−good(AX′)→ DO−good(DY ); (6.40)

Rf̃∗RS
′
2
∼= T g−g

′
RS2Lf̂

∗ : DO−good(DY ′)→ DO−good(AX). (6.41)

2.

RS′
2f̂+
∼= Lf̃∗RS2 : D

b
good(DY )→ Db

good(AX′); (6.42)

f̂+RS1 ∼= T g
′−gRS′

1Lf̃
∗ : Db

good(AX)→ Db
good(DY ′). (6.43)

Proof. 1. The isomorphism (6.41) follows from (6.40) as follows:

Rf̃∗RS
′
2

(a)
∼=T gRS2RS1Rf̃∗RS′

2

(b)
∼=T gRS2Lf̂∗RS′

1RS
′
2

(c)
∼=T g−g

′
RS2Lf̂

∗,
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where (6.40) (resp. Theorem 6.5.1.3) is used in (b) (resp. (a) and
(c)). Then we prove (6.40).

By (6.28) (resp. the proof of [HT07, Prop. 1.5.8]), the derived direct
image (resp. inverse image) functor of A-modules (resp. D-modules)
regards that of the underlying O-modules. From Proposition 5.3.1.2
2, the functor P ′ ⊗LOX′×Y ′ p

∗
X′ · : D(AX′) → D(OX′×Y ′) restricts to a

functor DO−good(AX′) → Dgood(OX′×Y ′). An application of Lemma
5.3.2.13 to the cartesian square

X ′ × Y X ′ × Y ′

Y Y ′

1X′×f̂

p2 □ pY ′

f̂

yields a canonical isomorphism of functors

Lf̂∗RpY ′ → Rp2∗L(1X′ × f̂)∗ : Dgood(OX′×Y ′)→ Dgood(OY ). (6.44)

Applying Theorem 5.3.2.3 to the cartesian square

X ′ × Y X ′

X × Y X,

p1

f×1Y □ f

pX

of complex manifolds, one gets a natural isomorphism

p∗XRf̃∗ → R(f × 1Y )∗p
∗
1 (6.45)

of functors DO−good(AX′)→ D(Mod(OX×Y )1−cxn,fl).

Then

Lf̂∗RS′
1 =Lf̂

∗RpY ′(P ′ ⊗LOX′×Y ′ p
∗
X′ ·)

(a)
∼=Rp2∗L(1X′ × f̂)∗(P ′ ⊗LOX′×Y ′ p

∗
X′ ·)

∼=Rp2∗[L(1X′ × f̂)∗P ′ ⊗LOX′×Y
L(1X′ × f̂)∗p∗X′ ·]

∼=Rp2∗[(1X′ × f̂)∗P ′ ⊗LOX′×Y
p∗1·]

(b)
∼=Rp2∗[(f × 1Y )

∗P ⊗LOX′×Y
p∗1·]

∼=RpY ∗R(f × 1Y )∗[(f × 1Y )
∗P ⊗LOX′×Y

p∗1·]
(c)
∼=RpY ∗[P ⊗LOX×Y R(f × 1Y )∗p

∗
1·]

(d)
∼=RpY ∗[P ⊗LOX×Y p

∗
XRf̃∗·]

=RS1Rf̃∗,
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where (a), (b), (c) and (d)) use (6.44), (5.26), Fact 5.3.2.15 and
(6.45) respectively. This proves (6.40).

2. The isomorphism (6.43) follows from (6.42) as follows:

f̂+RS1
(a)
∼=T g

′
RS′

1RS
′
2f̂+RS1

(b)
∼=T g

′
RS′

1Lf̃
∗RS2RS1

(c)
∼=T g

′−gRS′
1Lf̃

∗,

where (a) and (c) use Theorem 6.6.3.1, and (b) uses (6.42). Then we
prove (6.42).

Using (6.29), one can prove that Lf̃∗ : D(AX) → D(AX′) restricts
to a functor Db

good(AX) → Db
good(AX′). From Fact 6.6.2.3, the

direct image functor f̂+ : Db(DY ) → Db(DY ′) restricts to a functor
Db

good(DY ) → Db
good(DY ′). There are canonical isomorphism of

bifunctors Db
good(DY )

op ×Db
good(AX′)→ Ab:

HomDbgood(AX′ )(RS
′
2f̂+−,+)

(a)
∼= HomDbgood(DY ′ )(f̂+−, T

g′RS′
1+)

(b)
∼= HomDbgood(DY )(−, T

gLf̂∗RS′
1+)

(c)
∼= HomDbgood(DY )(−, T

gRS1Rf̃∗+)

(d)
∼= HomDbgood(AX)(RS2−, Rf̃∗+)

∼=HomDbgood(AX′ )(Lf̃
∗RS2−,+),

where (a) and (d) use Theorem 6.6.3.1, (a) uses [Bjö93, Thm. 2.11.8],
and (c) uses (6.40). From Yoneda’s lemma, there is a canonical
isomorphismRS′

2f̂+
∼= Lf̃∗RS2 of functorsDb

good(DY )→ Db
good(AX′).

6.7.4 External tensor product

For two complex manifolds U, V , recall the (exact) external tensor product
bifunctor

(·)⊠O (·) : Mod(DU )×Mod(DV )→ Mod(DU×V ) (6.46)

defined in [Bjö93, 2.4.4]. By exactness, it descends to

D(DU )×D(DV )→ D(DU×V ). (6.47)
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Remark 6.7.4.1. By [Bjö93, 2.4.13], the bifunctor (6.46) restricts to bifunctors
Coh(DU ) × Coh(DV ) → Coh(DU×V ) and Good(DU ) × Good(DV ) →
Good(DU×V ). Then by [Har66, I, Prop. 7.3 (i)], the bifunctor (6.47)
restricts to bifunctors Db

c(DU ) × Db
c(DV ) → Db

c(DU×V ) and Db
good(DU ) ×

Db
good(DV ) → Db

good(DU×V ). By [Bjö93, p.139], it also restricts to a
bifunctor Db

h(DU )×Db
h(DV )→ Db

h(DU×V ).

Using Lemma 5.5.1.6 (at the place of [HT07, Lem. 1.5.31]), Lemma
6.6.2.4 and [Sab11, Thm. 3.3.6 (1)], one can argue as in [HT07, Prop. 1.5.30]
to get Fact 6.7.4.2.

Fact 6.7.4.2.

1. Let U, V, Z be complex manifolds. Let f : U → V be a proper morphism.
Then the natural transformation

f+(−)⊠O(+)→ (f×IdZ)+(−⊠O+) : DO−good(DU )×D(DZ)→ D(DV×Z)

is an isomorphism.

2. Let fi : Ui → Vi (i = 1, 2) be two proper morphisms of complex
manifolds. Then the natural transformation

(f1+−)⊠O(f2++)→ (f1×f2)+(−⊠O+) : DO−good(DU1)×DO−good(DU2)→ DO−good(DV1×V2)

is an isomorphism.

For a complex torus X, let forX : Mod(AX)→ Mod(OX) be the forgetful
functor. Let X ′ be another complex torus. Set X ′′ = X × X ′. Write u :
X ′′ → X and u′ : X ′′ → X ′ for the projections. Let Y ′, Y ′′ be the dual of X ′

and X ′′ respectively. For an AX -module F and an AX′-module G, denote
ũ∗F ⊗AX′′ ũ′

∗
G by F ⊠AX G. As

F ⊠AX G = u−1F ⊗u−1AX AX′′ ⊗u′−1AX′ u
′−1G,

and AX′′ is flat over u−1AX and over u′−1AX′ , the bifunctor

−⊠AX + : Mod(AX)×Mod(AX′)→ Mod(AX′′)

is exact in both arguments. Consider the diagonal morphism δ : X → X2.
There is a canonical isomorphism of bifunctors

Lδ̃∗[−⊠AX +] ∼= (−)⊗LAX (+) : D(AX)×D(AX)→ D(AX). (6.48)

Although the tensor product of two AX -modules is different from the tensor
product of the underlying OX -module, Lemma 6.7.4.3 shows that external
products do agree. It is used in the proof of Lemma 6.7.4.5.
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Lemma 6.7.4.3. There is a natural isomorphism of bifunctors

forX′′(−⊠A+)→ (forX−)⊠O(forX′+) : Mod(AX)×Mod(AX′)→ Mod(OX′′).

Proof. By construction, one has

AX′′ = AX ⊠O AX′ = u−1AX ⊗u−1OX u
′∗AX′ . (6.49)

There are natural isomorphisms of functors Mod(AX)→ Mod(OX′′):

forX′′ ũ∗ :=u−1 · ⊗u−1AXAX′′

(a)
=u−1 · ⊗u−1AX (u

−1AX ⊗u−1OX u
′∗AX′)

∼=u−1 · ⊗u−1OXu
′∗AX′

∼=(u−1 · ⊗u−1OXOX′′)⊗OX′′ u
′∗AX′

∼=u∗forX · ⊗OX′′u
′∗AX′ ,

where (a) uses (6.49). Similarly, there is a natural isomorphism of functors
forX′′ ũ′

∗ ∼= u∗AX⊗OX′′u
′∗forX′ · : Mod(AX′)→ Mod(OX′′). One has natural

isomorphisms of bifunctors

forX′′(−⊠AX +) :=ũ∗ −⊗AX′′ ũ′
∗
+

∼=(u∗forX −⊗OX′′u
′∗AX′)⊗u∗AX⊗OX′′ u

′∗AX′ (u
∗AX ⊗OX′′ u

′∗forX′+)

∼=(u∗forX−)⊗OX′′ (u
′∗forX′+)

:=(forX−)⊠O (forX′+).

Remark 6.7.4.4. We can reprove (6.49) as follows:

AX ⊠O AX′
(a)
=for(RS2(DY ⊗OY C0))⊠O for(RS′

2(DY ′ ⊗OY ′ C0))

(b)
=RS2(DY ⊗OY C0)⊠O RS ′2(DY ′ ⊗OY ′ C0)

(c)
=RS ′′2 ((DY ⊗OY C0)⊠O (DY ′ ⊗ C0))

=RS ′′2 ((DY ⊠O DY ′)⊗OY ′′ (C0 ⊠O C0))

(d)
=RS ′′2 (DY ′′ ⊗ C0)

(e)
=for(RS′′

2 (DY ′′ ⊗ C0))

(f)
=AX′′ ,

where (a) and (f) use Corollary 6.5.1.5, (b) and (e) use Proposition 6.5.1.2,
and (c) (resp. (d)) uses Proposition 5.5.1.5 (resp. [Bjö93, 2.4.4, (i)]).
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Lemma 6.7.4.5. There are canonical isomorphisms of bifunctors

RS′′
2 [−⊠O +] ∼= RS2 −⊠ARS

′
2+ : DO−good(DY )×DO−good(DY ′)→ DO−good(AX′′);

(6.50)

RS′′
1 [−⊠A +] ∼= RS1 −⊠ORS

′
1+ : DO−good(AX)×DO−good(AX′)→ DO−good(DY ′′).

(6.51)

Proof. It follows from Proposition 5.5.1.5, Lemma 6.7.4.3 and Proposition
6.5.1.2.

6.7.5 Convolution and tensor product

For the dual complex tori X and Y , let m : X2 → X and µ : Y 2 → Y be
their respective group law.

Definition 6.7.5.1 (Convolution, [Lau96, p.22]). Define bifunctors

∗D : D(DY )×D(DY )→ D(DY ), − ∗D + = µ+[−⊠O +],

∗A : D(AX)×D(AX)→ D(AX), − ∗A + = Rm̃∗[−⊠A +].

As µ is proper, by Fact 6.6.2.3, Lemma 6.6.2.4 and Fact 6.7.2.3 2,
the direct image µ+ restricts to functors Db

good(DY 2) → Db
good(DY ),

DO−good(DY 2) → DO−good(DY ) and Db
h(DY 2) → Db

h(DY ). Together with
Remark 6.7.4.1, this implies that the bifunctor ∗D restricts to bifunctors
Db

good(DY ) × Db
good(DY ) → Db

good(DY ), DO−good(DY ) × DO−good(DY ) →
DO−good(DY ) and Db

h(DY )×Db
h(DY )→ Db

h(DY ).

Lemma 6.7.5.2. The pair (D(DY ), ∗D) is a symmetric tensor triangulated
category (in the sense of [Bal10, Def. 3]) with unit DY ⊗OY C0.

Proof. Let i : Specan(C)→ Y be the inclusion of 0 ∈ Y . Then DY ⊗OY C0 =
i+C. There are canonical isomorphisms

(i+C) ∗D · :=µ+[(i+C)⊠O ·]
=µ+[(i+C)⊠O (IdY+·)]
(a)
∼=µ+(i× IdY )+(C⊠O ·)
(b)
∼=IdY+ = IdD(DY )

of functors D(DY ) → D(DY ), where (a) and (b) use Fact 6.7.4.2 1 and
[Sab11, Thm. 3.3.6 (1)] respectively, Therefore, DY ⊗OY C0 is the unit. The
other axioms can be verified as in [Wei07, pp. 10-11].

Proposition 6.7.5.3 ([Wei11]). For every M ∈ Db
good(DY ), the functor · ∗D

M : Db
good(DY )→ Db

good(DY ) admits a right adjoint ([−1]∗Y∆DYM) ∗D ·.
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Proof. Define an automorphism f : Y 2 → Y 2 of the complex torus Y 2 by
f(a, b) = (a + b,−a). Then p1f = µ, p2f = [−1]Y p1 and µf = p2. One has
Lf∗OY 2 = OY 2 in Db(DY 2).

For any objects F,G ∈ Db
good(DY ), there are canonical bijections

HomDbgood(DY )(F ∗DM,G) := HomDbgood(DY )(µ+(F ⊠OM), G)

(a)
= HomD(DY 2 )(F ⊠OM,T gµ∗G)

(b)
= HomD(DY 2 )(OY 2 ,∆DY 2 (F ⊠OM)⊗LOY 2

T gµ∗G)

(c)
= HomD(DY 2 )(OY 2 , (∆DY F )⊠O (∆DYM)⊗LOY 2

T gµ∗G)

:=HomD(DY 2 )(OY 2 , p∗1∆
DY F ⊗LOY 2

p∗2∆
DYM ⊗LOY 2

T gµ∗G)

=HomD(DY 2 )(f
∗OY 2 , f∗[p∗1∆

DY F ⊗LOY 2
p∗2∆

DYM ⊗LOY 2
T gµ∗G])

=HomD(DY 2 )(OY 2 , µ∗∆DY F ⊗LOY 2
p∗1[−1]∗Y∆DYM ⊗LOY 2

T gp∗2G)

:=HomD(DY 2 )(OY 2 , T gµ∗∆DY F ⊗LOY 2
([−1]∗Y∆DYM ⊠O G))

(d)
= HomD(DY 2 )(OY 2 , T g∆DY (µ∗F )⊗LOY 2

([−1]∗Y∆DYM ⊠O G))

(e)
= HomD(DY 2 )(µ

∗F, T g([−1]∗Y∆DYM ⊠O G))

(f)
=HomD(DY )(F, µ+([−1]∗Y∆DYM ⊠O G))

(g)
= HomDbgood(DY )(F, ([−1]

∗
Y∆

DYM) ∗G),

where (a), (c), (d), (f) and (g) use [Bjö93, Thm. 2.11.8], Proposition
6.7.5.4, [Kas03, Thm. 4.12], [Kas03, Thm. 4.40] and Lemma 6.7.2.1 in
order, and both (b), (e) use [Kas03, (3.13)]. As the bijections are functorial
in F and G, the adjunction follows.

The proof of Proposition 6.7.5.3 needs the commutativity of duality with
external tensor product for D-modules.

Proposition 6.7.5.4. Let Zi (i = 1, 2) be two complex manifolds. Then there
is a canonical isomorphism

(∆DZ1−)⊠O(∆
DZ2+)→ ∆DZ1×Z2 (−⊠O+) : Db

c(DZ1)×Db
c(DZ2)→ Db

c(DZ1×Z2)
op.

Proof. For a complex manifold Z, the sheaf DZ ⊗CZ D
op
Z is naturally a CZ -

algebra, and DZ is naturally a left DZ ⊗CZ D
op
Z -module. For Ni ∈ D(DZop

i
),

by [HT07, p.39], there is a natural isomorphism in D(Dop
Z1×Z2

):

N1 ⊠O N2 = (N1 ⊠C N2)⊗DZ1
⊠CDZ2

DZ1×Z2 . (6.52)

First, we construct the natural transformation. Take Mi ∈ Db
c(DZi).
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Claim 6.7.5.5. Then there is a natural morphism in Db((DZ1 ⊠C DZ2)
op):

RHomDZ1
(M1, DZ1)⊠C RHomDZ2

(M2, DZ2)

→RHomDZ1
⊠CDZ2

(M1 ⊠C M2, DZ1 ⊠C DZ2).
(6.53)

Claim 6.7.5.6. There is a natural morphism in Db(Dop
Z1×Z2

):

RHomDZ1
⊠CDZ2

(M1 ⊠C M2, DZ1 ⊠C DZ2)⊗DZ1
⊠CDZ2

DZ1×Z2

→RHomDZ1
⊠CDZ2

(M1 ⊠C M2, DZ1×Z2).
(6.54)

Again, there is a natural morphism in Db(Dop
Z1×Z2

):

RHomDZ1
⊠CDZ2

(M1⊠CM2, DZ1×Z2)→ RHomDZ1×Z2
(M1⊠OM2, DZ1×Z2),

(6.55)
which can be defined by taking a DZ1×Z2 ⊗C D

op
Z1×Z2

-injective resolution of
DZ1×Z2 .

Composing the morphisms (6.52), (6.53), (6.54) and (6.55) in order,
one gets a natural morphism in Db(Dop

Z1×Z2
):

RHomDZ1
(M1, DZ1)⊠ORHomDZ2

(M2, DZ2)→ RHomDZ1×Z2
(M1⊠OM2, DZ1×Z2).

(6.56)
We prove that the constructed natural transformation is an isomorphism.

To show (6.56) is an isomorphism, by [Har66, I, Prop. 7.1 (i)], one may
assume Mi ∈ Coh(DZi) for i = 1, 2. By shrinking Zi and using [KS90,
Prop. 11.2.6], one may find a bounded resolution ofMi by freeDZi-modules
of finite rank. Thus, one may further assume thatMi = DZi . Since ωZ1×Z2 =
ωZ1 ⊠O ωZ2 in Mod(Dop

Z1×Z2
), by [HT07, Eg. 2.6.3], in this case (6.56) is an

isomorphism.

Proof of Claim 6.7.5.5. Take a DZi ⊗C D
op
Zi

-injective resolution DZi → I∗i .
Then I∗1 ⊠C I

∗
2 is a complex of modules over

(DZ1⊗CD
op
Z1
)⊠C (DZ2⊗CD

op
Z2
) = (DZ1⊠CDZ2)⊗C (DZ1⊠CDZ2)

op. (6.57)

By [Sta24, Tag 013K (2)], there exists an injective resolution I∗1 ⊠C I
∗
2 → I∗

(hence an induced injective resolution DZ1 ⊠C DZ2 → I∗) over (6.57). The
natural morphism DZi → DZi ⊗CD

op
Zi

is flat, so every injective DZi ⊗CD
op
Zi

-
module is injective over DZi . Similarly, every term of the complex I∗ is
injective over DZ1 ⊠C DZ2 . Then (6.53) is defined to be the composition of
the natural morphisms

HomDZ1
(M1, I

∗
1 )⊠C HomDZ2

(M2, I
∗
2 )→ HomDZ1

⊠CDZ2
(M1 ⊠C M2, I

∗
1 ⊠C I

∗
2 )

→ HomDZ1
⊠CDZ2

(M1 ⊠C M2, I
∗).
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Proof of Claim 6.7.5.6. Take an injective resolution DZ1 ⊠C DZ2 → J∗ over
(6.57). By [Sta24, Tag 013K (2)], over (DZ1 ⊠CDZ2)⊗CD

op
Z1×Z2

there exists
an injective resolution J∗ ⊗DZ1

⊠CDZ2
DZ1×Z2 → K∗. Then (6.54) is defined

to be the composition of the natural morphisms

HomDZ1
⊠CDZ2

(M1 ⊠C M2, J
∗)⊗DZ1

⊠CDZ2
DZ1×Z2

→HomDZ1
⊠CDZ2

(M1 ⊠C M2, J
∗ ⊗DZ1

⊠CDZ2
DZ1×Z2)

→HomDZ1
⊠CDZ2

(M1 ⊠C M2,K
∗).

Corollary 6.7.5.7 ([Lau96, Cor. 3.3.3]). The equivalenceRS2 : (Db
good(DY ), ∗D)→

(Db
good(AX),⊗LAX ) is a strong monoidal functor. In fact, there are canonical

isomorphisms of bifunctors

RS2(− ∗D +) ∼= (RS2−)⊗LAX (RS2+) : Db
good(DY )×Db

good(DY )→ Db
good(AX);

(6.58)

(RS1−) ∗D (RS1+) ∼= T−gRS1(−⊗LAX +) : Db
good(AX)×Db

good(AX)→ Db
good(DY );

(6.59)

RS1(− ∗A +) ∼= (RS1−)⊗LOY (RS1+) : DO−good(AX)×DO−good(AX)→ DO−good(DY );
(6.60)

(RS2−) ∗A (RS2+) ∼= T−gRS2(−⊗LOY +) : DO−good(DY )×DO−good(DY )→ DO−good(AX).
(6.61)

Proof. Let δX : X → X2 =: X ′ be the diagonal morphism. Its dual
morphism is µ : Y 2 → Y . There are canonical isomorphisms of bifunctors

RS2(− ∗D +) :=RS2µ+(−⊠O +)

(a)
∼=Lδ̃∗XRS′

2(−⊠O +)

(b)
∼=Lδ̃∗X(RS2 −⊠ARS2+)

(c)
∼=(RS2−)⊗LAX (RS2+),

where (a), (b) and (c) use (6.42), (6.50) and (6.48) respectively. This shows
(6.58).

By Corollary 6.5.1.5, the functor RS2 preserves units, so it is strong
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monoidal. In addition, (6.59) follows:

(RS1−) ∗D (RS1+)
(a)
∼=T gRS1RS2(RS1 − ∗DRS1+)

(b)
∼=T gRS1(RS2RS1 −⊗LAXRS2RS1+)

(c)
∼=T gRS1(T−g −⊗LAXT

−g+)

=T−gRS1(−⊗LAX +),

where (a) and (c) (resp. (b)) use Theorem 6.6.3.1, (resp. (6.58)).
Because the diagonal morphism δY : Y → Y 2 is dual to m : X ′ = X2 →

X, there are canonical isomorphisms of bifunctors

RS1(− ∗A +) :=RS1Rm̃∗(−⊠A +)

(a)
∼=Lδ∗YRS′

1(−⊠A +)

(b)
∼=Lδ∗Y (RS1 −⊠ORS1+)

(c)
∼=(RS1−)⊗LOY (RS1+),

where (a), (b) and (c) use (6.40), (6.51) and [HT07, p.39] respectively.
This demonstrates (6.60). Then (6.61) follows:

(RS2−) ∗A (RS2+)
(a)
∼=T gRS2RS1(RS2 − ∗ARS2+)

(b)
∼=T gRS2(RS1RS2 −⊗LOY RS1RS2+)

(c)
∼=T gRS2(T−g −⊗LOY T

−g+)

=T−gRS2(−⊗LOY +),

where (a) and (c) (resp. (b)) use Theorem 6.5.1.3 (resp. (6.60)).

Remark 6.7.5.8. We reprove Proposition 6.7.5.3 using the Laumon-Rothstein
transform as follows. By [Sta24, Tag 08DJ], for every object M ∈
Db

good(AX), the functor · ⊗LAX M : Db
good(AX)→ Db

good(AX) admits a right
adjoint RHomAX (M, ·). By [Huy06, p.84], the right adjoint is naturally
isomorphic to T−g∆AX (M)⊗LAX ·. Then combining Proposition 6.7.2.5 with
Corollary 6.7.5.7, one gets Proposition 6.7.5.3.
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Appendix A

Sheaves of modules

A.1 Sheaves of modules

We recall some facts about sheaves of modules. Let (X,OX) be a ringed
space.

A.1.1 Generalities

Definition A.1.1.1. An OX -module F is called

1. ([Sta24, Tag 01B5]) of finite type if every x ∈ X admits an open
neighborhood U such that F |U is generated by finitely many sections;

2. ([Sta24, Tag 01BN]) of finite presentation if for every x ∈ X, there
is an open neighborhood U ⊂ X, integers n,m ≥ 0 and an exact
sequence of OU -modules

OmU → OnU → F |U → 0;

3. ([Gro60, 5.1.3]) quasi-coherent if for every x ∈ X, there is an open
neighborhood U ⊂ X, two sets I, J and a morphism O⊕J

U → O⊕I
U

whose cokernel is isomorphic to F |U ;

4. ([Kas03, Def. A.5 (1)]) pseudo-coherent if for every open subset U ⊂
X, every finite type OU -submodule of F |U is of finite presentation.
Let PCoh(X) ⊂ Mod(OX) be full subcategory of pseudo-coherent
modules;

5. ([Kas03, Def. A.5 (2)]) K-coherent if F is pseudo-coherent and of finite
type;

6. ([Sta24, Tag 01BV]) coherent if F is of finite type and for every open
subset U ⊂ X and every finite collection {si}1≤i≤n in F (U), the kernel
of the associated morphism OnU → F |U is of finite type over OU .
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Every property in Definition A.1.1.1 is local, in the sense that it restricts
to every open subset, and if it holds on each member of an open covering of
X, then it holds on X.

Lemma A.1.1.2. Let 0 → F
i→ G

r→ H → 0 be a short exact sequence in
Mod(OX). If F,H are of finite presentation, then so is G.

Proof. For every x ∈ X, by [Sta24, Tag 01B8], there is an open neighborhood
U of x such that the sequence G(U)

rU→ H(U)→ 0 is exact. Up to shrinking
U , there exist integers m,n, p, q ≥ 0 and two exact sequences

OmU → OnU
f→ F |U → 0, OpU → OqU

h→ H|U → 0.

The morphism h is defined by q elements s1, . . . , sq of H(U). For each 1 ≤
i ≤ q, choose a preimage ti ∈ G(U) of si. Consider the morphism ϕ :
On+qU → G|U determined by if(e1), . . . , if(en), t1, . . . , tq ∈ G(U). Hence a
commutative diagram with two exact middle rows

0 OmU ker(ϕ) OpU

0 OnU On+qU OqU 0

0 F |U G|U H|U 0

0 coker(ϕ) 0.

f ϕ g

By the snake lemma, ϕ is surjective and ker(ϕ) is finite type. Shrinking U
again, one may find an integer k ≥ 0 and a surjection OkU → ker(ϕ). The
induced sequence OkU → On+qU → G|U → 0 is exact. Therefore, G is of finite
presentation.

A.1.2 Pseudo-coherent modules

Lemma A.1.2.1.

1. Let 0 → F
i→ G

r→ H → 0 be a short exact sequence in Mod(OX). If
F,H are pseudo-coherent, then so is G.

2. Let I be a directed set. Let (Mi, fij) be a direct system over I consisting
of pseudo-coherent OX -modules. Then M := colimi∈IMi in Mod(OX)
is pseudo-coherent.

3. If {Mα}α∈A is a family of pseudo-coherent OX -modules, then S :=
⊕α∈AMα is also pseudo-coherent.
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Proof. Let U be an open subset of X.

1. Let M be a finite type submodule of G|U . Then the kernel of r|M :
M → H|U is (F |U ) ∩M . Thus, r|M induces an injection M/(F |U ∩
M) → H|U . As H is pseudo-coherent, the finite type OU -submodule
M/(F |U ∩ M) is of finite presentation. By [Sta24, Tag 01BP (2)],
F |U ∩ M is of finite type. As F is pseudo-coherent, F |U ∩ M is of
finite presentation. By Lemma A.1.1.2 applied to the exact sequence
0 → F |U ∩M → M → M/(F |U ∩M) → 0, the OU -module M is of
finite presentation. Thus, G is pseudo-coherent.

2. Let N be a finite type submodule of M |U . For every x ∈ U , from the
first three lines of the proof of [Sta24, Tag 01BB], there is an open
neighborhood V ⊂ U of x and i ∈ I such that N |V ⊂ Fi|V . Since Fi is
pseudo-coherent, N |V is of finite presentation. As finite presentation
is a local property, N is of finite presentation. Thus, M is pseudo-
coherent.

3. Let I be the set of all finite subsets of A with the inclusion order. Then
I is a directed set. For B ∈ I, set FB = ⊕α∈BMα. By Point 1, FB is
pseudo-coherent. For B ≤ B′ in I, set fB,B′ : FB → FB′ to be the
inclusion. Hence a direct system (FB, fB,B′) over I. By Point 2, the
OX -module S = colimB∈IFB is pseudo-coherent.

Lemma A.1.2.2. An OX -module is K-coherent if and only if it is coherent.

Proof. Let U ⊂ X be an open subset. Assume that F is a K-coherent module.
Let {si}1≤i≤n be a finite collection in F (U), and let f : OnU → F |U be the
associated morphism. Then imf is a finite type submodule of F |U . Because
F is pseudo-coherent, imf is of finite presentation over OU . From [Sta24,
Tag 01BP (2)], ker f is of finite type over OU . Therefore, F is coherent.

Conversely, assume that F is a coherent OX -module. Let M be a finite
type submodule of F |U . By [Sta24, Tag 01BY (1)], M is coherent over OU .
From [Sta24, Tag 01BW], M is of finite presentation. Thus, F is pseudo-
coherent and hence K-coherent.

The module OX is quasi-coherent, but in general not pseudo-coherent.
If it is pseudo-coherent, then OX is called a coherent sheaf of rings ([Kas03,
p.214], [Bjö93, A:II, Def. 6.29]).

Lemma A.1.2.3. If X is a locally Noetherian scheme, then every quasi-
coherent module is pseudo-coherent.

Proof. By [Gro60, Cor. 9.4.9], a quasi-coherent module is a directed limit of
coherent modules, hence pseudo-coherent by Lemma A.1.2.1 2.
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Example A.1.2.4. Let X = A1 be the affine line over a field. Let U =
X \ {0}, and let j : U → X be the inclusion. By [Har77, II, Example 5.2.3],
the OX -module j!OU is not quasi-coherent. From [Har77, II, Exercise 1.19
(c)], it is a submodule of the coherent module OX . Hence, j!OU is pseudo-
coherent.

Definition A.1.2.5 defines a local property. It is weaker than [Bjö93,
A:III, 2.24] and [Kas03, Def. A.7].

Definition A.1.2.5. Assume that OX is a coherent sheaf of rings. If for every
open subset U ⊂ X, every family of coherent ideal sheaves {Ii}i in OU , the
ideal sheaf

∑
i Ii is OU -coherent, then OX is called a quasi-Noetherian sheaf

of rings.

Example A.1.2.6. 1. If (X,OX) is a locally Noetherian scheme, then OX
is quasi-Noetherian.

2. If (X,OX) is a complex analytic space, then by the Oka-Cartan
theorem (see, e.g., [Kas03, Thm. A.12]), OX is quasi-Noetherian.

A.1.3 Analytic coherent modules

Let X be a complex analytic space. We show that a coherent OX -module
admits a local free resolution, from which we deduce that coherence is
preserved by derived pullbacks and tensor products. An analog of Lemma
A.1.3.1 for algebraic varieties is [Har77, III, Example 6.5.1]. By local
syzygies [GH78, p.696], on complex manifolds, every coherent module local
admits a finite-length, finite free resolution.

Lemma A.1.3.1. Every x ∈ X admits an open neighborhood U , such that for
every coherent OX -module F , there is a (possibly infinite-length) resolution

· · · → On1
U → On0

U → F |U → 0,

where ni ≥ 0 are integers.

Proof. Shrinking X to an open neighborhood of x, one may assume that
X is Stein. By [GR04, Thm. 8, p.108], there is a compact neighborhood
K ⊂ X of x, such that Theorem B is valid on K in the sense of [GR04,
Def. 1, p.100]. Let U = K◦.

For a coherent OX -module F , we construct inductively a sequence of
morphisms. From [GR04, Cor. p.101], there is an integer n0 ≥ 0, an open
neighborhood U0 of K ⊂ X and a morphism f0 : On0

U0
→ F |U0 in Mod(OU0)

such that f0|U is an epimorphism in Mod(OU ). Set ker(f−1)|U0 = F |U0 .
Given such a morphism fj : O

nj
Uj
→ ker(fj−1)|Uj for an integer j ≥ 0 and an

open neighborhood Uj ⊂ X ofK, by [Sta24, Tag 01BY (3)], theOUj -module
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ker(fj) is coherent. By [GR04, Cor. p.101], there is an open neighborhood
Uj+1 ⊂ Uj of K, an integer nj+1 ≥ 0 and a morphism fj+1 : O

nj+1

Uj+1
→

ker(fj)|Uj+1 in Mod(OUj+1) such that fj+1|U is an epimorphism. Thus, one
gets a sequence

· · · → On2
U

f2|U→ On1
U

f1|U→ On0
U

f0|U→ F |U → 0

in Mod(OU ). By construction, it is exact, hence a resolution of F |U .

Example A.1.3.2. Assume that x ∈ X is a singular point. Then F := Cx
is a coherent OX -module, but for every open neighborhood U ⊂ X of x,
there is no finite-length resolution of F |U by finite locally free OU -modules.
(Otherwise, such a resolution induces a finite-length free resolution of the
OX,x-module Fx = C = OX,x/mx. From [Osb12, Ch. 4, Prop. 4.4], the
projective dimension pdOX,x OX,x/mx is finite. By [Mat87, Lem. 1, p.154]
and [Osb12, Prop. 4.9], the global dimension of the ring OX,x is finite. By
Serre’s theorem (see, e.g., [Osb12, p.332]), the local ring OX,x is regular.
From [Ser56, p.6], x is a smooth point of X, a contradiction.)

Therefore, Lemma A.1.3.1 fails if one consider only finite-length resolutions.
See also [EP+96, Thm. 4.1.2].

Lemma A.1.3.3. Let f : X → Y be a morphism of complex analytic spaces.
Then derived pullback Lf∗ : D(Y ) → D(X) restricts to a functor Coh(Y ) →
Dc(X).

Proof. Let F be a coherent OY -module. For every x ∈ X, by Lemma A.1.3.1,
there is an open neighborhood V of f(x) ∈ Y , such that there is a resolution
E• → F |V → 0 by finite free OV -modules. Let g : f−1(V ) → V be
the base change of f along the inclusion V → Y . Then the morphism
g∗E• → (Lf∗F )|f−1(V ) in D(f−1(V )) is an isomorphism. For every integer
j ≥ 0, the Of−1(V )-module g∗Ej is finite free. Thus, the Of−1(V )-module
(H−jLf∗F )|f−1(V ) is coherent. Since coherence is a local property, the OX -
module H−j(Lf∗F ) is coherent.

Lemma A.1.3.4. For any coherent OX -modules F and G, one has F ⊗LOX G ∈
Dc(X).

Proof. For every x ∈ X, by Lemma A.1.3.1, there is an open neighborhood
U ⊂ X of x and a resolution E• → F |U → 0 by finite free OU -modules. The
natural morphism E•⊗OU G|U → F |U ⊗LOU G|U in D(U) is an isomorphism.
For every integer n, the OU -module Hn(E•⊗LOU G|U ) = Hn(E•⊗OU G|U ) is
coherent. Therefore, theOU -moduleHn(F⊗LOXG)|U = Hn(F |U⊗LOUG|U ) is
coherent. Since coherence is a local property, the OX -module Hn(F ⊗LOX G)
is coherent.
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A.1.4 Good modules

Assume that the ringed space X is locally compact Hausdorff.

Definition A.1.4.1. [Kas03, Def. 4.22] An OX -module F is called good if for
every relatively compact open subset U ⊂ X, there exists a directed family
{Gi}i∈I of coherent OU -submodules of F |U such that F |U =

∑
i∈I Gi, where

{Gi}i∈I being a directed family means that for any i, i′ ∈ I, there is i′′ ∈ I
with Gi +Gi′ ⊂ Gi′′ (and hence F |U = colimi∈IGi). The full subcategory of
Mod(OX) consisting of good OX -modules is denoted by Good(X).

Lemma A.1.4.2 (Goodness vs. pseudo-coherence).

1. ([Kas03, p.77]) One has Coh(X) ⊂ Good(X) ⊂ PCoh(X).

2. Let E be a pseudo-coherent OX -module. If on every relatively compact
open subset U ⊂ X, the OU -module E|U is the sum of its finite type
submodules, then E is good.

Proof.

1. By definition, every coherentOX -module is good. LetE be a goodOX -
module. Let W be an open subset of X, and let F ⊂ E|W be a finite
type OW -submodule. We show that F is of finite presentation over
OW . Replacing (X,E) with (W,E|W ), one may assume that W = X.
Because X is locally compact, for every x ∈ X, there exists a relatively
compact open neighborhood U ⊂ X of x and finitely many sections
s1, . . . , sn ∈ F (U) generating F |U . As E is good, E|U =

∑
i∈I Gi is the

sum of a directed family of coherent submodules. There exists i0 ∈ I
and an open neighborhood V of x ∈ U with si|V ∈ Gi0(V ) for all
1 ≤ i ≤ n. Then F |V is a finite type submodule of Gi0 |V . By [Sta24,
Tag 01BY (1)], F |V is OV -coherent. As coherence is a local property,
F is coherent. From [Sta24, Tag 01BW], F is of finite presentation.

2. The family of finite type submodules of E|U is directed, since the sum
of two finite type submodules is of finite type. For every relatively
compact open subset U ⊂ X, as E is pseudo-coherent, every finite
type submodule of E|U is pseudo-coherent and hence coherent. Thus,
E is good.

Basic properties of good modules (similar to those of quasi-coherent
modules on algebraic varieties) are recapped in Lemma A.1.4.3. Point 3
should be compared to [Con06, Lemma 2.1.8 (1)].

Lemma A.1.4.3.
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1. For every family of objects {Fi}i∈I in Good(X), the direct sum ⊕i∈IFi in
Mod(OX) is good.

2. The subcategoryDgood(X) is closed under direct sums inD(X). Moreover,
the inclusion functor Good(X)→ Dgood(X) commutes with direct sums.

Suppose that OX is quasi-Noetherian. Then:

3. The subcategory Good(X) ⊂ Mod(OX) is weak Serre and closed under
filtered colimits in Mod(OX). In particular, Good(X) is a locally
Noetherian category (in the sense of [Gab62, p.356]).

4. The inclusion functor Dgood(X)→ D(X) is a triangulated subcategory.

Proof.

1. Over every relatively compact open subset U of X, the direct sum
(⊕i∈IFi)|U is the sum of its coherent OU -submodules. By Lemma
A.1.2.1 3, the OX -module ⊕i∈IFi is pseudo-coherent. By Lemma
A.1.4.2 2, it is good.

2. Since Mod(OX) is a Grothendieck abelian category, by [Sta24, Tag
07D9], the category D(X) has arbitrary direct sums and they are
computed by taking termwise direct sums of any representative
complexes. Then by [Wei95, Exercise 1.2.1], for every integer q, the
functor Hq : D(X) → Mod(OX) commutes with direct sums. The
result follows from Point 1.

3. As OX is quasi-Noetherian, by [Sta24, Tag 0754] and the proof
of [Kas03, Prop. 4.23], Good(X) is a weak Serre subcategory of
Mod(OX). From [KS06, Thm. 18.1.6 (v)], the category Mod(OX) is a
Grothendieck abelian category. By Point 1 and [Sta24, Tag 002P], the
filtered colimits in Good(X) exist and agree with the filtered colimits
in Mod(OX). Thus, filtered colimits in Good(X) are exact.

Because of [Sta24, Tag 01BC], there is a set of coherent OX -modules
{Fi}i∈I such that each coherent OX -module is isomorphic to exactly
one of the Fi. Then {Fi} is a family of Noetherian generators of
Good(X). Therefore, the category Good(X) is locally Noetherian.

4. It follows from [Yek19, Prop. 7.4.5] and Point 3.

Lemma A.1.4.4. A good module on a complex analytic space is quasi-coherent.

Proof. Let F be a good module on a complex analytic space X. From
[Fri67, Thm. I, 9; Rem. I, 10], every x ∈ X admits a neighborhood
K that is a Noetherian Stein compactum. There is a relative compact
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open subset U of X containing K. As F is good, the OU -module F |U =∑
i∈I Fi is the sum of a directed family of coherent subsheaves. Applying

the functor Γ(K, ·) to the directed family {Fi}i∈I in Coh(U), by [Tay02,
Prop. 11.9.2], one gets a directed family of finitely generated Γ(K,OK)-
submodule {Mi}i∈I of Γ(K,F ), whose associated family in Mod(OK) is
{Fi|K}i∈I . Let M be colimi∈IMi in Mod(Γ(K,OK)). Since the localization
functor Mod(Γ(K,OK))→ Mod(OK) is left adjoint to Γ(K, ·) : Mod(OK)→
Mod(Γ(K,OK)), the localization preserves colimits. Then F |K is associated
to M . By Lemma C.2.0.5, F is quasi-coherent.

Remark A.1.4.5. The restriction of a good OX -module to an open subset
U is a good OU -module. Unlike quasi-coherence on schemes, goodness is
not a local property. In fact, by Lemma A.1.4.3 3, every free module on a
complex manifold is good, while Gabber [Con06, Eg. 2.1.6] gives a locally
free (hence quasi-coherent and pseudo-coherent), but not good module on
the unit open disk in C. (In particular, the converse of Lemma A.1.4.4 is
wrong for noncompact complex manifolds.) Still, given an OX -module F ,
if for every relatively compact open subset U ⊂ X, the OU -module F |U is
good, then F is good.

Definition A.1.4.6 ([KS06, Def. 6.3.3]). In a category C with small filtered
colimits, an object X is of finite presentation, if HomC(X, ·) : C → Set
commutes with small filtered colimits.

Remark A.1.4.7. In an additive category with arbitrary direct sums, an object
of finite presentation is necessarily compact, but the converse is false. Let M
be a finite module but not of finite presentation over a commutative ring R.
By [Ren69, no. 2], M is a compact object of the abelian category Mod(R).
From [Sta24, Tag 0G8P], M is not an object of finite presentation.

Lemma A.1.4.8. Let (X,OX) be a ringed space. If the topology is Hausdorff
compact, then every OX -module of finite presentation is an object of finite
presentation of Mod(OX).

Proof. Let G = colimi∈IGi be a filtered colimit in Mod(OX). Let F be an
OX -module of finite presentation. By [Sta24, Tag 0GMV], the canonical
morphism colimi∈IHomOX (F,Gi) → HomOX (F,G) is an isomorphism.
By compactness of X and [God58, Thm. 4.12.1], the canonical map
colimi∈IH

0(X,HomOX (F,Gi))→ H0(X, colimi∈IHomOX (F,Gi)) is bijective.
Then the canonical map colimi∈I HomMod(OX)(F,Gi) → HomMod(OX)(F,G)
is bijective.

Lemma A.1.4.9. Let X be a compact complex analytic space. Then the objects
of finite presentation in Good(X) are precisely objects of Coh(X).

Proof. Let F ∈ Good(X) be an object of finite presentation. By compactness
of X, there is a directed family of coherent submodules {Fi}i∈I with F =
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∑
i∈I Fi. Then the canonical morphism colimi∈I Hom(F, Fi) → Hom(F, F )

of abelian groups is an isomorphism. Thus, there is i0 ∈ I and an element
Hom(F, Fi0) lying over IdF . As IdF factors through Fi0 , one has F = Fi0 ∈
Coh(X).

Conversely, by [Sta24, Tag 01BW], every object of Coh(X) is an OX -
module of finite presentation. From Lemma A.1.4.8 and compactness of X,
it is an object of finite presentation in Mod(OX). By Lemma A.1.4.3 3, it is
also an object of finite presentation in Good(X).

A.1.5 Sections of direct sum of sheaves

By [Har77, II, Exercise 1.11], on a Noetherian topological space, taking
section commutes with (possibly infinite) direct sum of sheaves. This fails
on complex manifolds, as Example A.1.5.1 shows.

Example A.1.5.1. Let X = C. Let F be the OX -module ⊕n≥0Cn. There
is a section s ∈ Γ(X,F⊕N), such that for every integer n ≥ 0, the stalk
sn ∈ (F⊕N)n = (Fn)

⊕N = C⊕N is (1, 1, . . . , 1, 0, 0, . . . ), where the first n + 1
entries are 1 and all the other entries are 0. Then s has no preimage under
the canonical map Γ(X,F )⊕N → Γ(X,F⊕N). For otherwise, let (tn)n≥0 ∈
Γ(X,F )⊕N be a preimage of s. Then there are only finitely many integers
n ≥ 0 with tn ̸= 0. Every tn has only finitely many nonzero stalks. However,
s has infinitely many nonzero stalks, which is a contradiction.

Let X be a complex manifold. An OX -module is called privileged if
for every connected open subset U ⊂ X and every x ∈ U , the map
Γ(U,F ) → Fx taking the stalk at x is injective. By the identity theorem
(see, e.g., [GH78, p.7]), OX is privileged.

Lemma A.1.5.2. Assume that X is connected. Let {Fi}i∈I be a family of
privilegedOX -modules. Then the canonical map⊕i∈IΓ(X,Fi)→ Γ(X,⊕i∈IFi)
is bijective.

Proof. Let P be the presheaf direct sum of {Fi}i∈I . Let θ : P → ⊕i∈IFi
be the sheafification morphism. Then P (X) = ⊕i∈IΓ(X,Fi) and θX :
⊕i∈IΓ(X,Fi)→ Γ(X,⊕i∈IFi) is the colimit of

θ
(J)
X : ⊕i∈JΓ(X,Fi)→ Γ(X,⊕i∈IFi),

where J runs through the finite subsets of I. For every such J , by [Sta24,
Tag 01AH (4)], the presheaf direct sum of {Fi}i∈J is a subsheaf of ⊕i∈IFi,
so the map θ(J)X is injective. Therefore, their limit map θX is also injective.
We prove that θX is surjective.

By construction of sheafification in [Har77, p.64], for every s ∈
Γ(X,⊕i∈IFi), there is a covering {Uα}α∈A ofX by nonempty connected open
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subsets and an element tα ∈ Γ(Uα, P ) for each α ∈ A such that sx = tα,x in
(⊕i∈IFi)x = ⊕i∈IFi,x for every x ∈ Uα.

Fix x0 ∈ X and α0 ∈ A with x0 ∈ Uα0 . Then there is a finite subset
I0 ⊂ I such that tα0 ∈ Γ(X,⊕i∈I0Fi) ⊂ Γ(X,P ). Let B ⊂ A be the subset of
indices α with tα /∈ Γ(Uα,⊕i∈I0Fi). Set V = ∪α∈BUα. Then V is open in X
and its complement

X \ V ⊂ ∪α∈A\BUα. (A.1)

For every α ∈ A \B, we claim that Uα ⊂ X \ V .
In fact, for every y ∈ Uα, every β ∈ Awith y ∈ Uβ and every i ∈ I\I0, the

stalk tiβ,y = siy = tiα,y = 0 in Fi,y. Since Fi is privileged and Uβ is connected,
the map Γ(Uβ, Fi) → Fi,y is injective. Thus, tiβ = 0 in Γ(Uβ, Fi). Therefore,
tβ ∈ Γ(X,⊕i∈I0Fi), i.e., β /∈ B. Hence y /∈ V .

From the claim and (A.1), the subset X \ V = ∪α∈A\BUα is also open
in X and contains Uα0 . Since X is connected, one has V = B = ∅.
Consequently, tα ∈ Γ(X,⊕i∈I0Fi) for every α ∈ A. Then the family {tα}α∈A
glues to a preimage of s in Γ(X,⊕i∈I0Fi) ⊂ Γ(X,P ). Thus, θX is surjective
and hence a group isomorphism.

Corollary A.1.5.3. If F is a locally free (possibly of infinite rank) OX -module,
then F is privileged.

Proof. Let U be a connected open subset of X. Fix x0 ∈ U . We prove that
the map Γ(U,F ) → Fx0 is injective. Take s ∈ Γ(U,F ) with sx0 = 0. By
[Har77, II, Exercise 1.14], the set Z := {x ∈ U : sx = 0} is open in U .

We claim that Z is closed in U . Let {xn}n≥1 be a sequence of points in
Z converging to y ∈ U . Because F is locally free, there is a connected open
neighborhood V ⊂ U of y, a set I and an isomorphism ϕ : F |V

∼−→ O⊕I
V

of OV -modules. There is an integer N > 0 with xN ∈ V . Because OV is
privileged, from Lemma A.1.5.2, the map on the bottom of the commutative
square

Γ(V, F ) FxN

Γ(V,O⊕I
V ) O⊕I

V,xN

ϕV ϕxN

is injective. Then so is the map on the top. Since sXN = 0, one has s|V = 0
and sy = 0. Hence y ∈ Z. The claim is proved.

Because U is connected and x0 ∈ Z, by claim one has Z = U . Therefore,
s = 0 in Γ(U,F ).

Corollary A.1.5.4. Let X be a connected complex manifold. Let {Fi}i∈I be a
family of locally free OX -modules. Then the canonical map ⊕i∈IΓ(X,Fi) →
Γ(X,⊕i∈IFi) is bijective.

Proof. It follows from Lemma A.1.5.2 and Corollary A.1.5.3.
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A.2 Gabber’s example

We present an example of a locally free module on the open unit disc that
is not good. It illustrates that goodness on complex manifolds, unlike quasi-
coherence on algebraic varieties, is not a local property. This construction
is already exhibited in the context of rigid geometry by [Con06, Example
2.1.6], which attributes the originality to Gabber. Furthermore, in [Con06,
p.1058] it is mentioned that Gabber’s example makes sense in complex-
analytic geometry as well. We reproduce this construction with a few extra
details.

Lemma A.2.0.1. Let X be a complex manifold, U be a dense open subset of
X. If F is a locally free OX -module, then the restriction map r : Γ(X,F ) →
Γ(U,F ) is injective.

Proof. Every x ∈ X admits a connected open neighborhood V such that F |V
is free OV -module. Then Γ(V, F ) is a free Γ(V,OX)-module by Corollary
A.1.5.4. By density of U , V ∩ U is nonempty. For every s ∈ ker(r), s|V ∩U =
0. As F |V is free and the map Γ(V,OX) → Γ(V ∩ U,OX) is injective, the
restriction s|V = 0. By local nature of sheaves, s = 0.

Lemma A.2.0.2. Let X be a Hausdorff locally compact space, K be a compact
subspace and j : K → X be the inclusion. Then for every q ∈ Z and every
F ∈ Ab(X), the canonical morphism ψq : colimUH

q(U,F ) → Hq(K, j−1F )
is an isomorphism, where U ranges through the family of open neighborhoods
of K in X. The two groups are written as Hq(K,F ).

Proof. We prove that both sides are the q-th right derived functor applied to
F of a same functor.

Define a category I as follows. The objects are the open subsets of
X containing K. For every U, V ∈ I, if U ⊃ V , then HomI(U, V ) is a
singleton; else HomI(U, V ) = ∅. Thus, I is a small category. Let AbI be the
category of functors from I to Ab. By [Wei95, Exercise 2.3.7], AbI is an
abelian category with enough injectives. Recall that Ab is a Grothendieck
abelian category, so colimI : AbI → Ab is exact. By [KS90, Prop 2.5.1], the
composition of the functor Φ : Ab(X)→ AbI defined by Φ(F )(U) = Γ(U,F )
with colimI : AbI → Ab is Γ(K, j−1·) : Ab(X) → Ab. Therefore, the q-th
right derived functor of Γ(K, j−1·) is colimI ◦RqΦ = colimUH

q(U, ·).
The functor Γ(K, j−1·) : Ab(X) → Ab is the composition of j−1 :

Ab(X) → Ab(K) with Γ(K, ·) : Ab(K) → Ab(X). Every injective object
G of Ab(X) is c-soft, so j−1G is c-soft by [KS90, Propositon 2.5.7 (i)]. By
[KS90, Proposition 2.5.10], j−1G is right acyclic for Γ(K, ·). By [Sta24, Tag
015M], Hq(K, j−1·) is also the q-th right derived functor of Γ(K, j−1·). We
conclude that ψq is an isomorphism.
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Definition A.2.0.3 (Compact Stein set). [Con06, p.1053]Let K be a
compact subset of a complex manifold X. If Hq(K,F ) = 0 for every open
neighborhood U of K ⊂ X, every coherent OU -module and every q ∈ N∗,
then K is called a compact Stein set in X.

Lemma A.2.0.4 ([Con06, p.1058]). Let K be a compact compact Stein set in
a complex manifold X, F be a good OX -module, then Hq(K,F ) = 0 for all
q ∈ N∗.

Proof. There is a relative compact open subset U ⊂ X containing K.
By definition, F |U = colimiFi, where {Fi} is a direct family of coherent
OU -submodules of F |U . By [God58, II, Thm. 4.12.1], Hq(K,F ) =
colimiH

q(K,Fi) = 0.

Example A.2.0.5 (Gabber). Let ∆ be the open unit disc in C and let K =
{z ∈ C : |z| ≤ 1/2}. Then B(0, 2/3) is a relatively compact open subset of
∆ containing K. By [Dou66, Thm. 3 (B), p.51; (a) p,53], K is a compact
Stein set in ∆.

Let x′, x′′ be two distinct points of the interior of K. Let U ′ = ∆ \ {x′},
U ′′ = ∆ \ {x′′} and define U = U ′ ∩ U ′′. Let

F ′ = ⊕n∈ZOU ′e′n, F ′′ = ⊕n∈ZOU ′′e′′n

be two free sheaves with countably infinite rank on U ′ and U ′′ respectively.
We glue F ′ and F ′′ to define a locally free O∆-module F as follows.

Define h ∈ O∆(U) by

h(z) = e
1

z−x′+
1

z−x′′ , ∀z ∈ U.

Then h has essential singularities at x′ and x′′. Define F by identifying F ′|U
and F ′′|U with the free sheaf ⊕n∈ZOUen via the conditions

e2m = e′2m|U = e′′2m|U + he′′2m+1|U ,
e2m+1 = e′′2m+1|U = e′2m+1|U + he′2m+2|U

for every m ∈ Z respectively.
We prove that Γ(K,F ) = 0. For every s ∈ Γ(K,F ), by Lemma A.2.0.2,

there is an open subset W of ∆ containing K such that s lifts to an element
of Γ(W,F ). By Corollary A.1.5.4, Γ(U,F ) = ⊕n∈ZΓ(U,O∆)en. So, s|U∩W =∑

n∈Z fnen with fn ∈ O∆(U ∩W ) that vanish for all but finitely many n.
Note that

s|U ′′ =
∑
n∈Z

(f2ne
′′
2n + (f2nh+ f2n+1)e

′′
2n+1)|U ′′ .

Therefore, f2n and f2nh + f2n+1 are holomorphic near x′ for all n ∈ Z.
Similarly, f2n+1 and f2n+1h+ f2n+2 are holomorphic near x′′ for all n ∈ Z.
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We claim that s|U∩W = 0. Otherwise, let n0 be the maximum with
fn0 ̸= 0. If n0 is odd (resp. even), fn0 and hfn0 are holomorphic near x′′

(resp. x′). The ratio h = hfn0/fn0 is meromorphic near x′′ (resp. x′). It
contradicts the choice of h. The claim is proved.

By Lemma A.2.0.1, the restriction map Γ(W,F ) → Γ(W ∩ U,F ) is
injective, so s = 0.

We prove that F is not good. Let t be the standard coordinate on ∆,
then 0 → F

t→ F → F/tF → 0 is a short exact sequence in Mod(O∆).
The associated cohomology sequence induces an injection H0(K,F/tF ) →
H1(K,F ) by Lemma A.2.0.2. As F/tF is the skyscraper supported at the
origin, we have H0(K,F/tF ) ̸= 0 and hence H1(K,F ) ̸= 0. By Lemma
A.2.0.4, the O∆-module F is not good. and F |K is not induced by a
Γ(K,OK)-module. In particular, F is not quasi-coherent in the sense of
last paragraph of [BBBP07, p.443]. Nevertheless, F is quasi-coherent in the
sense of [Gro60, 5.1.3] since it is locally free.
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Appendix B

Quasi-coherent GAGA

B.1 Introduction

Let X be a complex algebraic variety. Then the set of complex points X(C)
underlies a natural complex analytic space (in the sense of [Ser56, Déf. 1])
structure, denoted by Xan. When X is a projective variety, Serre [Ser56,
Théorèmes 2 et 3] proves that the abelian category of (algebraic) coherent
modules on X is naturally equivalent to that of (analytic) coherent modules
on Xan. Hall [Hal23] extends the equivalence to the bounded derived
category of coherent modules (Fact B.2.0.1).

A natural question is to find analogous equivalences for the larger
category of quasi-coherent sheaves on X. We show that good modules (in
the sense of Kashiwara, Definition A.1.4.1) is a analytic counterpart of quasi-
coherent sheaves on algebraic varieties.

For a ringed space (X,OX), let Mod(OX) be the abelian category of OX -
modules. Let D(X) be its unbounded derived category.

For an algebraic variety (resp. a complex analytic space) X, let
Qch(X) ⊂ Mod(OX) (resp. Good(X) ⊂ Mod(OX)) be the full subcategory
of quasi-coherent (resp. good) modules. Let Dqc(X) (resp. Dgood(X)) be
the full subcategory ofD(X) comprised of objects with quasi-coherent (resp.
good) cohomologies.

Theorem (Proposition B.3.0.2, Theorem B.4.0.2). If X is proper over C,
then the analytification functor Dqc(X) → Dgood(X

an) is an equivalence of
triangulated categories.

B.2 Review

We recall the work of Serre [Ser56] (known as “GAGA"), which gives an
equivalence of algebraic coherent modules and analytic coherent modules
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on complex, projective varieties. The theory is extended to complex, proper
algebraic varieties in [GR71, Exp. XII].

Let X be a complex algebraic variety. Let An (resp. Set) be the category
of complex analytic spaces (resp. sets). Let ΨX be the functor An → Set
sending a complex analytic space Y to the set HomC(Y,X) of morphisms
of spaces with a sheaf of C-algebras. By [GR71, Exp. XII, Thm. 1.1], the
functor ΨX is represented by a complex analytic space1 Xan (called the
analytification of X) and a flat morphism ψX ∈ HomC(X

an, X). Because X
is of finite type over C, from [GR71, Exp. XII, Prop. 2.1 (viii)], the dimension
of Xan is finite.

By [GR71, Exp. XII, 1.2], for every morphism f : X → Y of complex
algebraic varieties, there is a commutative square

Xan X

Y an Y

ψX

fan f

ψY

(B.1)

in the category of ringed spaces. In other words, the analytification induces
a functor (·)an from the category of complex algebraic varieties to An.

For a ringed space (Y,OY ), let Coh(Y ) ⊂ Mod(OY ) be the full
subcategory comprised of coherent modules (in the sense of [Sta24, Tag
01BV]). Let Dc(Y ) ⊂ D(Y ) be the full subcategory consisting of objects
with coherent cohomologies. The pullback functor

ψ∗
X : Mod(OX)→ Mod(OXan), F 7→ F an (B.2)

is exact and admits a right adjoint, so it commutes with colimits. It extends
to a functor D(X) → D(Xan), which is t-exact relative to the standard t-
structures. From [GR71, Exp. XII, 1.3], it restricts to a functor Db

c(X) →
Db
c(X

an) and Coh(X)→ Coh(Xan).
Fact B.2.0.1 can be retracted from [Hal23, Remark 1.1 and the proof of

Theorem A]. Neeman [Nee21, Example A.2] modifies Hall’s proof to some
extent.

Fact B.2.0.1. Assume that the complex algebraic variety X is proper. Then
the functor (B.2) induces an equivalence Db

c(X) → Db
c(X

an) of triangulated
categories. In particular, it restricts to an equivalence Coh(X)→ Coh(Xan) of
abelian categories.

By Lemma A.1.4.3, Good(X) is a weak Serre subcategory of Mod(OX),
and Dgood(X) is a triangulated subcategory of D(X).

1Strictly speaking, complex analytic spaces are allowed to be non-Hausdorff in [GR71,
Exp. XII]. In our case, the algebraic variety X is assumed to be separated over C, by [GR71,
Exp. XII, Prop. 3.1 (viii)], the topology of Xan is Hausdorff.
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Lemma B.2.0.2. For the complex algebraic variety X, the functor (B.2)
restricts to a functor

Qch(X)→ Good(Xan) (B.3)

and induces a functor
Dqc(X)→ Dgood(X

an). (B.4)

Proof. For every quasi-coherent OX -module F , by Fact B.2.0.3,

F =
∑
i∈I

Fi (B.5)

is the sum of a direct family of coherent OX -submodules. As ψ∗
X commutes

with colimits, one has
ψ∗
XF = colimi∈Iψ

∗
XFi (B.6)

in the category Mod(OXan). Since ψ∗
X is exact, each ψ∗

XFi is a coherent
OXan-submodule of ψ∗

XF . Therefore, the OXan-module ψ∗
XF is good.

For every G ∈ Dqc(X) and every integer n, because (B.2) is an exact
functor, the OXan-module Hn(ψ∗

XG) = ψ∗
X(H

nG) is good by last paragraph.
Hence ψ∗

XG ∈ Dgood(X
an).

Fact B.2.0.3 ([Gro60, Cor. 9.4.9], [Sta24, Tag 01PG]). On a Noetherian
scheme, every quasi-coherent sheaf is the sum of the directed family of all
coherent submodules.

B.3 GAGA for quasi-coherent modules

Using Fact B.2.0.3 and that ψ∗
X commutes with colimits, we extend GAGA

from coherent OX -modules to quasi-coherent OX -modules. When Y =
SpecC, Proposition B.3.0.1 generalizes [Ser56, Thm. 1].

Proposition B.3.0.1. Let f : X → Y be a proper morphism of complex
algebraic varieties. Then the base change natural transformation (Rf∗·)an →
Rfan∗ (·an) (induced by the commutative square (B.1)) induces an isomorphism
of functors Dqc(X)→ Dgood(Y

an).

Proof. For every F ∈ Dqc(X), by [Lip60, Prop. 3.9.2], one has Rf∗F ∈
Dqc(Y ). By Lemma B.2.0.2, one has F an ∈ Dgood(X

an) and (Rf∗F )
an ∈

Dgood(Y
an). Since f is proper, from [GR71, Exp. XII, Prop. 3.2 (v)], the

morphism fan : Xan → Y an is proper. As Xan has finite dimension, by
Theorem 5.3.1.7, one has Rfan∗ F an ∈ Dgood(Y

an). Therefore, both functors
(Rf∗·)an and Rfan∗ (·an) restrict to functors Dqc(X)→ Dgood(Y

an).
We prove that the morphism (Rf∗F )

an → Rfan∗ F an is an isomorphism.
By Lemma 5.3.1.11 (resp. [Lip60, Prop. 3.9.2]), the functor Rfan∗ :
D(Xan) → D(Y an) (resp. Rf∗ : Dqc(X) → Dqc(Y )) is bounded. From
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[Sta24, Tag 06YZ], the inclusion functor Qch(X) → Mod(OX) exhibits
Qch(X) as a weak Serre subcategory (in the sense of [Sta24, Tag 02MO])
of Mod(OX). Then by (way-out argument) [Har66, I, Prop. 7.1 (iii)],
one may assume F ∈ Qch(X). By [KS06, Prop. 13.1.5 (ii), p.320], it
suffices to check that for every integer n ≥ 0, the natural morphism
(Rnf∗F )

an → Rnfan∗ (F an) in Mod(OY an) is an isomorphism.
By Fact B.2.0.3, one can write F =

∑
i∈I Fi as the sum of a direct family

of coherent OX -submodules of F . By [Sta24, Tag 07TB], one has

colimi∈IR
nf∗Fi

∼−→ Rnf∗F.

The analytification commutes with colimits, so

colimi∈I(R
nf∗Fi)

an ∼−→ (Rnf∗F )
an.

By [GR71, XII, Thm. 4.2], the natural morphisms (Rnf∗Fi)an → Rnfan∗ (F an
i )

are isomorphisms. By Lemma 5.3.1.9, the natural morphism

colimi∈IR
nfan∗ (F an

i )→ Rnfan∗ (F an)

is an isomorphism.

Proposition B.3.0.2 shows that goodness on complex analytic spaces is
an analytic counterpart of quasi-coherence on complex algebraic varieties.

Proposition B.3.0.2. Suppose that the complex algebraic variety X is proper.
Then (B.3) is an equivalence of abelian categories.

Proof. • The functor (B.3) is essentially surjective: Indeed, because X
is proper over C, by [GR71, Exp. XII, Prop. 3.2 (v)], the complex
analytic spare Xan is compact. Then for every good OXan-module G,
one can write G =

∑
i∈I Gi as the sum of a directed family of coherent

OXan-submodules. From the equivalence ψ∗
X : Coh(X) → Coh(Xan)

([GR71, XII, Thm. 4.4]), there is a filtered inductive system {Hi}i∈I in
Coh(X) whose analytification is the filtered inductive system {Gi}i∈I .
By [Sta24, Tag 01LA (4)], the colimit H of {Hi} in Mod(OX) exists
and lies in Qch(X). Because ψ∗

X commutes with colimits, one has
Han = colimi∈IGi. In particular,Han is isomorphic toG in Good(Xan).

• The functor (B.3) is fully faithful: For any quasi-coherent OX -modules
F and G, we have to show that the canonical morphism

HomOX (F,G)→ HomOXan (F
an, Gan) (B.7)

is an isomorphism. Assume first that F is coherent.

– From [GW20, Exercise 7.20 (b)], one has

[HomOX (F,G)]
an = HomOXan (F

an, Gan).
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– As F is of finite presentation, the OX -module HomOX (F,G) is
quasi-coherent.

Therefore, by Proposition B.3.0.1, the canonical morphism

H0(X,HomOX (F,G))→ H0(Xan,HomOXan (F
an, Gan))

is an isomorphism, which is exactly (B.7).

By (B.5) and (B.6), the general case follows.

B.4 Derived category of quasi-coherent sheaves

By [Sta24, Tag 0BKN], for every ringed space Y , the derived category D(Y )
has products and derived limits. This plays an essential role in step 4 of the
proof of Theorem B.4.0.2.

Definition B.4.0.1. [Sta24, Tag 07LS] Let A be an additive category with
arbitrary direct sums. An object K ∈ A is called compact, if HomA(K, ·) :
A → Ab preserves direct sums.

Theorem B.4.0.2. If the complex algebraic variety X is proper, then the
functor (B.4) is an equivalence of triangulated categories.

Proof. Since Xan is compact, by Lemma B.4.0.6, the perfect complex OXan

is a compact object of D(Xan). Then from the proof of [Hal23, Lem. 4.3],
the functor ψ∗

X : Dqc(X) → D(Xan) admits a right adjoint functor Rψqc,∗ :
D(Xan)→ Dqc(X) which preserves small coproducts.

1. The functor ψ∗
X : Dqc(X)→ D(Xan) is fully faithful.

From Fact B.2.0.1, the unit of the adjunction η : Id → Rψqc,∗ψ
∗
X (a natural

transformation of functors Dqc(X) → Dqc(X)) restricts to an isomorphism
of functors Db

c(X)→ Db
c(X). By [BB03, Thm. 3.1.1 1], the compact objects

of Dqc(X) are precisely the perfect complexes. From [Nee96, Prop. 2.5],
Dqc(X) is generated by a family of perfect complexes {Ei}i∈I . By [Sta24,
Tag 0FXU (1)], every perfect complex in D(X) belongs to Db

c(X), so the ηEi
are isomorphisms. From Lemma B.4.0.5, η is an isomorphism of functors
Dqc(X)→ Dqc(X). Thus, 1 is proved.

2. The functor (B.4) restricts to an equivalence Db
qc(X)→ Db

good(X
an).

We prove that every F ∈ Db
good(X

an) is in the essential image of Db
qc(X)→

Db
good(X

an). Induction on the cohomological length of F . By Proposition
B.3.0.2, it holds when F has length zero. Suppose that it is true for objects
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of length ≤ n and F has length n + 1. There is an integer i such that
τ≤iF, τ>iF have length ≤ n. There is a canonical exact triangle

τ≤iF → F → τ>iF
+1→ τ≤iF [1]

in Db
good(X

an). By 1 and the inductive hypothesis, the morphism +1 :

τ>iF → τ≤iF [1] is in the essential image of Db
qc(X) → Db

good(X
an). Then

so is F . The essential surjectivity together with 1 proves 2.

3. The functor ψ∗
X : D+

qc(X)→ D+
good(X

an) is an equivalence.

For every F ∈ D+
good(X

an), by Lemma B.4.0.3, one has hocolimn>0 τ
≤nF

∼−→
F . Every τ≤nF is in Db

good(X
an). From 2, there is a system (Kn)n>0 of

objects of Db
qc(X), whose image under ψ∗

X is isomorphic to the system
(τ≤nF )n>0. Since (B.4) respects coproducts, it respects homotopy colimits.
Since Qch(X) is closed under filtered colimits in Mod(OX), the subcategory
Dqc(X) is closed under homotopy colimits in D(X).

Then F is isomorphic to the image of K := hocolimn>0Kn ∈ Dqc(X)
under ψ∗

X . There is an integer q, such thatH i(F ) = 0 for every integer i < q.
Then ψ∗

XH
i(K) = H i(ψ∗

XK) = 0. By Proposition B.3.0.2, one has H i(K) =
0. Hence K ∈ D+

qc(X). Thus, the functor ψ∗
X : D+

qc(X) → D+
good(X

an) is
essentially surjective. By 1, it is an equivalence.

4. Every Z ∈ Dgood(X
an) is in the essential image of (B.4).

By Lemma B.4.0.4, the canonical morphism Z → Rlimn>0 τ
≥−nZ is an

isomorphism in D(Xan). By 3, there is an inverse system (Y −n) of objects
of D+

qc(X), whose image is isomorphic to the inverse system (τ≥−nZ)n>0.
Let Y be Rlimn>0 Y

−n in D(X). For any integers n ≥ 1 and q, the
functor ψ∗

X transforms the morphism Hq(Y −n−1) → Hq(Y −n) in Qch(X)
to Hq(τ≥−n−1Z)→ Hq(τ≥−nZ) in Good(Xan).

The morphism Hq(τ≥−n−1Z) → Hq(τ≥−nZ) is surjective, and when
n ≥ −q, it is an isomorphism. By Proposition B.3.0.2, the morphism
Hq(Y −n−1) → Hq(Y −n) is surjective, and when n ≥ −q, it is an
isomorphism. By [Sta24, Tag 0A0J (1)], the canonical morphism Hq(Y )→
Hq(Y min(q,−1)) is an isomorphism. In particular, the OX -module Hq(Y ) is
quasi-coherent. Hence Y ∈ Dqc(X).

For every integer m > 0, the functor ψ∗
X transforms

∏
n>0 Y

−n → Y −m

to ψ∗
X(

∏
n>0 Y

−n) → τ≥−mZ. Hence a morphism ψ∗
X(

∏
n>0 Y

−n) →∏
n>0 τ

≥−nZ in D(Xan). It fits to a commutative diagram

ψ∗
X(

∏
n>0 Y

−n)[−1] ψ∗
X(

∏
n>0 Y

−n)[−1] ψ∗
XY ψ∗

X(
∏
n>0 Y

−n)

∏
n>0 τ

≥−nZ[−1]
∏
n>0 τ

≥−nZ[−1] Z
∏
n>0 τ

≥−nZ
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in D(Xan), where the rows are exact triangles. By TR3, it induces a
morphism of triangles. Hence a commutative square

Hq(ψ∗
XY ) Hq(ψ∗

XY
min(q,−1))

Hq(Z) Hq(τ≥min(q,−1)Z)

∼

∼

∼

in Mod(OXan). Therefore, for every integer q, the induced morphism
Hq(ψ∗

XY )→ Hq(Z) is an isomorphism. Therefore, the morphism ψ∗
XY → Z

is an isomorphism in Dgood(X
an). Thus, 4 is proved. By 4 and 1, the functor

(B.4) is an equivalence.

Lemma B.4.0.3. Let A be an abelian category, where colimits over N exist
and are exact. Then the natural transformation hocolimn>0 τ

≤n· → Id is an
isomorphism of functors A → A.

Proof. It follows from [Sta24, Tag 0949] and the construction of canonical
truncations.

Lemma B.4.0.4. Let X be a complex analytic space. Then the natural
transformation Id → Rlimn>0 τ

≥−n· is an isomorphism of functors D(X) →
D(X).

Proof. For every x ∈ X, there is an integer dx ≥ 0, and a fundamental
system Ux of open neighborhoods of x, such that every U ∈ Ux is a closed
complex subspace of a domain in Cdx . By Fact 5.3.1.10, for everyE ∈ D(X),
any integers p > 2dx and q, one has Hp(U,Hq(E)) = 0. By [Sta24, Tag
0D63], the canonical morphism E → Rlimn>0 τ

≥−nE is an isomorphism in
D(X).

Lemma B.4.0.5. Let C,D be triangulated categories. Assume that C has
direct sums. Let {Ei}i∈I be a family of compact objects of C such that ⊕i∈IEi
generates C. Let F,G : C → D be triangulated functors preserving direct sums.
Let η : F → G be a natural transformation. If for every i ∈ I, the morphism
ηEi : F (Ei)→ G(Ei) is an isomorphism in D, then η is an isomorphism.

Proof. From [Sta24, Tag 09SN], every object X ∈ C can be written as X =
hocolimn>0Xn, where

• X1 is a direct sum of shifts of the Ei,

• each transition morphism Xn → Xn+1 fits into an exact triangle Yn →
Xn → Xn+1 → Yn[1],

• and Yn is a direct sum of shifts of the Ei.
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Since F,G preserve direct sums, and the ηEi are isomorphisms, so are the
{ηYn}n>0 and ηX1 . By [Sta24, Tag 014A] and induction on n > 0, one proves
that the ηXn are isomorphisms. By [BN93, Lem. 4.1], F,G : C → D preserve
homotopy colimits. Therefore, ηX is an isomorphism.

Lemma B.4.0.6. Let X be a compact complex analytic space. Then every
perfect object of D(X) belongs to Db

c(X). It is a compact object of D(X) and
of Dgood(X).

Proof. Let E ∈ D(X) be a perfect object. By definition, there is an open
covering X = ∪i∈IUi, such that for each i ∈ I, there is a morphism of
complexes E•

i → E|U which is a quasi-isomorphism, with Eji = 0 for all
but finite many integers j, and every Eji is a direct summand of a finite free
OX -module. Since X is compact, one has E ∈ Db(X). By [Sta24, Tag 01BY
(1)], every Eji is coherent. Therefore, every Hj(E)|Ui is coherent over OUi .
Thus, Hj(E) is coherent over OX for all j. Hence E ∈ Db

c(X). In particular,
E is in Dgood(X).

Let E∨ := RHom(E,OX) ∈ D(X). From [Sta24, Tag 08DQ], there
is a natural isomorphism of functors HomD(X)(E, ·) → H0(X,E∨ ⊗LOX ·) :

D(X)→ Ab. The functor E∨ ⊗LOX · : D(X)→ D(X) commutes with direct
sums. Since X is compact, dimX is finite. Then by Lemma B.4.0.7, the
functor H0(X, ·) : D(X)→ Ab also commutes with direct sums. Therefore,
E is a compact object of D(X). By Lemma A.1.4.3 2, Dgood(X) is closed
under direct sums in D(X). Then E is also a compact object of Dgood(X).

Lemma B.4.0.7. Let f : X → Y be a proper morphism of complex analytic
spaces. If dimX is finite, then the functor Rf∗ : D(X) → D(Y ) commutes
with direct sums.

Proof. First, we prove that for every integer q, there is a natural isomorphism

Rqf∗
∼−→ Rqf∗τ≥q−2 dimX : D(X)→ Mod(OY ). (B.8)

Indeed, by [Sta24, Tag 08J5], for every object E ∈ D(X), there is an exact
triangle τ≤q−2 dimX−1E → E → τ≥q−2 dimXE → (τ≤q−2 dimX−1E)[1]. It
induces an exact sequence

Rqf∗τ≤q−2 dimX−1E → Rqf∗E → Rqf∗τ≥q−2 dimXE → Rq+1f∗τ≤q−2 dimX−1E

in Mod(OY ). From Lemma 5.3.1.11, one has

Rqf∗τ≤q−2 dimX−1E = Rq+1f∗τ≤q−2 dimX−1E = 0.

Hence an isomorphism Rqf∗E → Rqf∗τ≥−q−2 dimXE functorial in E.
Let {Ei : i ∈ I} be a family of objects of D(X). Set E = ⊕i∈IEi.

To prove that the canonical morphism ⊕i∈IRf∗Ei → Rf∗E in D(Y ) is
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an isomorphism, it suffices to show that for every integer q, the induced
morphism ⊕i∈IRqf∗Ei → Rqf∗E in Mod(OY ) is an isomorphism. Since
τ≥q−2 dimXE = ⊕i∈Iτ≥q−2 dimXEi, by (B.8), one may assume that E and
all the Ei are in D≥q−2 dimX(X). Then from [Sta24, Tag 015J], one has
canonical spectral sequences

Rsf∗H
t(E)⇒ Rs+tf∗E, Rsf∗H

t(Ei)⇒ Rs+tf∗Ei.

By Lemma 5.3.1.9, for any integers s and t, the canonical morphism
⊕i∈IRsf∗Ht(Ei)→ Rsf∗H

t(E) in Mod(OY ) is an isomorphism. Consequently,
the canonical morphism ⊕i∈IRqf∗Ei → Rqf∗E is an isomorphism.

Corollary B.4.0.8. If the complex algebraic variety X is proper, then the
functor ψ∗

X : Dc(X)→ Dc(X
an) is an equivalence of triangulated categories.

Proof. For every F ∈ Dc(X) and every integer i, the OXan-module
H i(ψ∗

XF ) = ψ∗
XH

i(F ) is coherent. Thus, the functors ψ∗
X : Dc(X) →

Dc(X
an) is well-defined. By Theorem B.4.0.2, the functor ψ∗

X : Dc(X) →
Dc(X

an) is fully faithful. For every F ∈ Dc(X
an), by Theorem B.4.0.2, there

is G ∈ Dqc(X) with ψ∗
XG isomorphic to F . Then ψ∗

XH
i(G) = H i(ψ∗

XG)
∼−→

H i(F ) is coherent over OXan . By Fact B.2.0.1 and Proposition B.3.0.2,
the OX -module H i(G) is coherent. Hence G ∈ Dc(X). Therefore, ψ∗

X :
Dc(X)→ Dc(X

an) is essential surjective and hence an equivalence.

B.5 Compact objects

Corollary B.5.0.1. Suppose that the complex algebraic variety X is proper.
Then the compact objects of Dgood(X

an) are precisely the perfect complexes in
D(Xan).

Proof. By compactness of Xan and Lemma B.4.0.6, prefect complexes are
compact objects of Dgood(X

an). Conversely, let F be a compact object of
Dgood(X

an). By Theorem B.4.0.2, there is a compact object G ∈ Dqc(X)
with ψ∗

XG isomorphic to F . By [Sta24, Tag 09M1], G is a perfect complex
in D(X). By definition, F is a perfect complex in D(Xan).

Let X be a compact complex manifold.

Question B.5.0.2. Does every compact object of Dgood(X) lie in Dc(X)?

Question B.5.0.3. Is the category Dgood(X) compactly generated?

When X is the analytification of a smooth proper complex algebraic
variety, Corollary B.5.0.1 (resp. Theorem B.4.0.2) answers Questions
B.5.0.2 (resp. B.5.0.3) affirmatively.

229

https://stacks.math.columbia.edu/tag/015J
https://stacks.math.columbia.edu/tag/09M1


Appendix C

Quasi-coherent sheaves on
complex analytic spaces

C.1 Introduction

Let (X,OX) be a ringed space. The category of OX -modules is denoted by
Mod(OX).

Definition C.1.0.1. An OX -module F is called quasi-coherent if for every
x ∈ X, there is an open neighborhood U ⊂ X of x, two sets I, J and
a morphism O⊕J

U → O⊕I
U whose cokernel is isomorphic to F |U . The full

subcategory of Mod(OX) comprised of quasi-coherent modules is denoted
by Qch(X).

According to [Sta24, Tag 01BD], in general Qch(X) is not an abelian
category. If X is a scheme, then by [Sta24, Tag 06YZ], Qch(X) is a weak
Serre subcategory (in the sense of [Sta24, Tag 02MO (2)]) of Mod(OX). We
show a complex analytic analog of this result.

Theorem C.1.0.2. If X is a complex analytic space, then the subcategory
Qch(X) ⊂ Mod(OX) is weak Serre. In particular, it is an abelian subcategory.
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C.2 Preliminaries

Example C.2.0.1 ([Sta24, Tag 01BI]). Let f : (X,OX) → ({∗}, OX(X)) be
the morphism of ringed spaces with f : X → {∗} the unique map and with
f ♮∗ : OX(X) → OX(X) the identity. Then f is flat. For an OX(X)-module
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M , its pullback f∗M is called the sheaf associated with M . This OX -module
is quasi-coherent. The functor f∗ : Mod(OX(X)) → Mod(OX) is called the
localization and denoted by ·̃.

From [Gro60, 4.1.1], on a scheme the direct sum of any family of quasi-
coherent modules is quasi-coherent. It fails for complex manifolds, shown
by Example C.2.0.2.

Example C.2.0.2. [hs] Let X ⊂ C be the unit open disk. For every integer
n ≥ 2, Gabber ([Con06, Eg. 2.1.6], see also Example A.2.0.5) constructs a
locally free (hence quasi-coherent) OX -module Fn of infinite rank, such that
for every open subset U ⊂ X containing {±1/n}, one has Γ(U,Fn) = 0. We
claim that F := ⊕n≥2Fn is not quasi-coherent.

Assume the contrary. Then there is an open neighborhood V of 0 ∈ X,
a set I and a quotient morphism q : O⊕I

V → F |V . There is an integer N ≥ 2
with {±1/N} ⊂ V . Let p : F |V → FN |V be the quotient morphism. Because
HomMod(OV )(OV , FN |V ) = Γ(V, FN ) = 0, the morphism pq = 0. However, it
contradicts FN |V ̸= 0. The claim is proved.

Let X be a complex analytic space in the sense of [GR04, p.18]. For an
inclusion i : K → X of a compact subset, let OK = i−1OX . Then OK is
naturally a sheaf of rings on K.

Definition C.2.0.3. A compact subset K ⊂ X is called a Stein compactum
if K has a fundamental system of open neighborhoods that are Stein
subspaces of X. A Stein compactum K is called Noetherian if OK(K) is
a Noetherian ring.

Fact C.2.0.4 ([Fri67, Thm. I, 9; Rem. I, 10]). Every x ∈ X admits a
neighborhood which is a Noetherian Stein compactum in X.

Lemma C.2.0.5. Let F be an OX -module. Then the following conditions are
equivalent:

1. ([BBBP07, Def. 5.1]) Every x ∈ X admits a neighborhood K which
is a Noetherian Stein compactum, such that F |K is associated with a
Γ(K,OK)-module.

2. The OX -module F is quasi-coherent.

Proof.

• Assume Condition 1. For every x ∈ X, take such a K and suppose
that F |K is associated with a Γ(K,OK)-module M . There is an exact
sequence Γ(K,OK)⊕I → Γ(K,OK)⊕J → M → 0 in the category
of Γ(K,OK)-modules. By [Sta24, Tag 01BH], it induces an exact
sequence O⊕I

K → O⊕J
K → F |K → 0 in Mod(OK). Then the OK◦-

module F |K◦ is quasi-coherent. Thus, Condition 2 is proved.
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• Assume Condition 2. Because X is locally compact Hausdorff, for
every x ∈ X, by [Sta24, Tag 01BK], there is an open neighborhood
U ⊂ X of x such that F |U is associated with a Γ(U,OX)-module.
From Fact C.2.0.4, there is a neighborhood K of x ∈ U which is a
Noetherian Stein compactum. By [Sta24, Tag 01BJ] applied to the
morphism (K,OK)→ (U,OU ) of ringed spaces, F |K is associated with
a Γ(K,OK)-module. Thus, Condition 1 is proved.

Lemma C.2.0.6. Let K be a Noetherian Stein compactum in X.

1. The natural transformation Id→ Γ(K, ·̃) of functors Mod(Γ(K,OK))→
Mod(Γ(K,OK)) is an isomorphism.

2. The localization functor ·̃ : Mod(OK(K)) → Mod(OK) is exact, fully
faithful.

3. For every OK(K)-module M and every integer q > 0, one has
Hq(K, M̃) = 0.

Proof.

1. Let M be a Γ(K,OK)-module. We prove that the morphism M →
Γ(K, M̃) is an isomorphism. Assume first that M is finitely generated.
Then the result follows from [Tay02, p.299]. Assume now that
M is arbitrary. Let {Mi}i∈I be the family of all finitely generated
submodules of M . This family is directed in the inclusion relation
and

M =
∑
i∈I

Mi. (C.1)

By [Sta24, Tag 01BH (4)], the localization functor preserves colimits.
Therefore,

M̃ = colimi∈IM̃i. (C.2)

By [God58, Thm. 4.12.1], one has

Γ(K, M̃) = colimi∈IΓ(K, M̃i) = colimi∈IMi =M.

2. The exactness is proved in [Tay02, Prop. 11.9.3 (ii)]. For any M,N ∈
Mod(O(K)), we prove that the natural morphism

HomO(K)(M,N)→ HomOK (M̃, Ñ) (C.3)

is an isomorphism.

Assume first that M is finitely generated. As the ring O(K) is
Noetherian, the O(K)-module M is of finite presentation. Then
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by [GW20, Exercise 7.20 (b), p.205], one has ˜HomO(K)(M,N) =

HomOK (M̃, Ñ). By Point 1, the morphism (C.3) is an isomorphism.
Assume now that M is arbitrary. By (C.1) and (C.2), the morphism
(C.3) is the inverse limit of the morphisms HomO(K)(Mi, N) →
HomOK (M̃i, Ñ), each of which is an isomorphism.

3. When M is finitely generated, it follows from [Tay02, Prop. 11.9.2]
and [Car57, Thm. 1 (B)]. Assume now that M is arbitrary. By (C.2)
and [God58, Thm. 4.12.1], one has Hq(K, M̃) = colimiH

q(K, M̃i) =
0.

C.3 Proof of Theorem C.1.0.2

• For every morphism f : F → G in Qch(X), we prove that ker(f), coker(f)
in Mod(OX) lie in Qch(X).

For every x ∈ X, by Lemma C.2.0.5, there is a neighborhood A (resp. B)
of x ∈ X which is a Noetherian Stein compactum and an OA(A)-module M
(resp. OB(B)-module N), such that F |A (resp. G|B) is associated with M
(resp. N). By Fact C.2.0.4, there is a neighborhood C of x ∈ A◦ ∩B◦ which
is a Noetherian Stein compactum. From [Sta24, Tag 01BJ], F |C (resp. G|C)
is associated with M ⊗OA(A) OC(C) (resp. N ⊗OB(B) OC(C)). By Lemma
C.2.0.6 2, there is a morphism ϕ : M ⊗OA(A) OC(C) → N ⊗OB(B) OC(C)
in Mod(OC(C)) whose localization is f |C : F |C → G|C . The restriction
functor Mod(OX) → Mod(OC◦) is exact, so ker(f)|C◦ (resp. coker(f)|C◦) is
the localization of ker(ϕ⊗OC(C) IdOX(C◦)) (resp. coker(ϕ⊗OC(C) IdOX(C◦)))
in Mod(OX(C

◦)). Therefore, the OX -modules ker(f), coker(f) are quasi-
coherent.

• Let
0→ F ′ → F → F ′′ → 0 (C.4)

be a short exact sequence in Mod(OX), with F ′, F ′′ quasi-coherent.
We prove that F is quasi-coherent.

For every x ∈ X, there is a neighborhood K ′ (resp. K ′′) of x which is a
Noetherian Stein compactum, and an OK′(K ′)-module M ′ (resp. OK′′(K ′′)-
module M ′′) whose localization is F ′|K′ (resp. F ′′|K′′). By Fact C.2.0.4,
there is a neighborhood K of x ∈ K ′◦ ∩ K ′′◦ that is a Noetherian Stein
compactum. From [Sta24, Tag 01BJ], F ′|K (resp. F ′′|K) is associated with
M ′ ⊗OK′ (K′) OK(K) (resp. M ′′ ⊗OK′′ (K′′) OK(K)).
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Let P = Γ(K,F ). By Lemma C.2.0.6 1 and 3, the sequence (C.4) induces
a short exact sequence in Mod(OK(K)):

0→M ′ ⊗OK′ (K′) OK(K)→ P →M ′′ ⊗OK′′ (K′′) OK(K)→ 0.

From Lemma C.2.0.6 2, its localization induces a shot exact sequence in
Mod(OK):

0→ ˜M ′ ⊗OK′ (K′) OK(K)→ P̃ → ˜M ′′ ⊗OK′′ (K′′) OK(K)→ 0.

By restriction to K◦ and [Sta24, Tag 01BJ], one has a commutative diagram

0 ˜M ′ ⊗OK′ (K′) OX(K◦) ˜P ⊗OK(K) OX(K◦) ˜M ′′ ⊗OK′′ (K′′) OX(K◦) 0

0 F ′|K◦ F |K◦ F ′′|K◦ 0

in Mod(OK◦), where the vertical morphisms are given by the adjunction of
·̃ : Mod(OX(K

◦))→ Mod(OK◦) and Γ(K◦, ·) : Mod(OK◦)→ Mod(OX(K
◦)).

The rows are exact, and the two outside vertical arrows are isomorphisms.
By the five lemma, the middle vertical morphism is an isomorphism.
Therefore, F |K◦ is quasi-coherent. Consequently, F is quasi-coherent.

By [Sta24, Tag 0754], Qch(X) is a weak Serre subcategory of Mod(OX).
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Appendix D

Complex analytic geometry

D.1 Dimension of the fiber product

Section D.1 aims at understanding the dimension of the fiber product of
algebraic varieties/complex analytic spaces. The proof in the analytic case is
inspired by that in the algebraic case. Therefore, we begin with the algebraic
situation.

D.1.1 Algebraic case

Fix a field k. Under flatness condition, the dimension of the fiber product
behaves well.

Lemma D.1.1.1. Let X,Y, Z be three schemes of finite type over k and f :
X → Z, g : Y → Z be k-morphisms. Assume that the schemes X,Z are
irreducible, Y is equidimensional, and g is flat. Put W = X ×Z Y . If W is
nonempty, then W is equidimensional of dimension dimX + dimY − dimZ.

Proof. Applying [Har77, Ch. III, Corollary 9.6] to the flat morphism g, we
find that g is of relative dimension dimY − dimZ. By virtue of [Sta24, Tag
02NK], its base change W → X is also flat of relative dimension dimY −
dimZ. Then the reverse direction of the cited [Har77, Ch. III, Corollary 9.6]
shows that W is equidimensional of dimension dimY − dimZ +dimX.

In the proof of Proposition D.1.1.2, the general case is reduced to the
case of a flat morphism.

Proposition D.1.1.2. Let X,Y, Z/k be three finite type schemes, f : X → Z,
g : Y → Z be dominant k-morphisms. Assume that X,Z are irreducible
and Y is equidimensional, and put W = X ×Z Y , then dimW + dimZ ≥
dimX + dimY .

Proof. Since the reduction Zred → Z is a universal homeomorphism, we may
assume that Z is an integral scheme. By generic flatness [Sta24, Tag 052A],
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there is a nonempty affine open subset U ⊂ Z such that the restriction
g−1(U) → U is flat. By [Sta24, Tag 01UA], the morphism g−1(U) → U is
open. By shrinking U , we may assume further that g−1(U)→ U is surjective.

Because f is dominant, f−1(U) is a nonempty open subset of X.
Therefore, by [Har77, Ch. II, Exercise 3.20 (e)] we have dimU = dimZ,
dim f−1(U) = dimX and g−1(U) is equidimensional of dimension dimY .
Hence, we may base change everything along U → Z which does not
increase dimW . In particular, we can assume that g is flat surjective. Then
W → X is also flat surjective. In particular, W ̸= ∅. We conclude by Lemma
D.1.1.1.

Example D.1.1.3 shows that the inequality in Proposition D.1.1.2 can be
strict.

Example D.1.1.3. If f : X → P 3
k is the blow up at a point p ∈ P 3(k), then

the morphism f is projective surjective, dimX = 3, dimX ×P 3
k
X = 4 and

the defect of semismallness r(f) = 1.

Corollary D.1.1.4. Let X,Y/k be two finite type schemes and f : X → Y be
a k-morphism. If the scheme X is irreducible, then dimX ×Y X ≥ 2 dimX −
dim f(X), where f(X) is the Zariski closure of f(X) in Y .

Proof. Because the reduction Xred → X is a universal homeomorphism, we
may assume that X is reduced. Let Z → Y be the scheme theoretic image
of f . By [Har77, Ch. II, Exercise 3.11 (d)], the induced morphism X → Z
is dominant and the underlying topological space of Z is f(X). Therefore,
Z is also irreducible. By magic square [Vak23, 1.3.S], the natural morphism
X ×Z X → X ×Y X is the base change of the diagonal isomorphism Z →
Z×Y Z, hence also an isomorphism. By Proposition D.1.1.2, dimX×Y X =
dimX ×Z X ≥ 2 dimX − dimZ.

D.1.2 Analytic case

The contents of this section is parallel to those of Section D.1.1. Lemma
D.1.2.1 is an analogue of [Har77, III, Corollary 9.6], whose proof is also
a direct adaptation. A complex analytic space is called equidimensional if
every irreducible component is of same dimension.

Lemma D.1.2.1. Let f : X → Y be a flat morphism of complex analytic
spaces, and assume that Y is irreducible. Then the following conditions are
equivalent:

1. X is equidimensional of dimension n+ dimY ;

2. for every y ∈ f(X), the fiber Xy is equidimensional of dimension n.

In that case, we say f is flat of relative dimension n.
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Proof. Assume 1. Given y ∈ f(X), let Z be an irreducible component
of Xy. Because the set of irreducible components of a complex analytic
space is locally finite, there is x ∈ Z which is not in any other irreducible
component of Xy. Applying [CD94, Proposition 2.11, p.113], we have
dimx Z+dimy Y = dimxX. As Y,Z are irreducible hence pure dimensional,
we have dimy Y = dimY and dimx Z = dimZ. Now that dimxX =
dimY + n, we have dimZ = n.

Conversely, assume 2. Let W be an irreducible component of X. Let
x ∈W be a point which is not contained in any other irreducible component
of X and y = f(x). Then we have dimxX = dimW and dimy Y = dimY .
Applying [CD94, Proposition 2.11, p.113], we obtain

dimx(Xy) + dimy Y = dimxX.

By assumption, dimx(Xy) = n. Thus dimW = dimY + n as required.

Lemma D.1.2.2 is similar to Lemma D.1.1.1.

Lemma D.1.2.2. Let f : X → Z, g : Y → Z be complex analytic space
morphisms. Assume that X,Z are irreducible, Y is equidimensional, and g
is flat. Put W = X ×Z Y . If W is nonempty, then W is equidimensional of
dimension dimX + dimY − dimZ.

Proposition D.1.2.3 is the main result of Section D.1.

Proposition D.1.2.3. Let X,Y, Z be irreducible complex analytic spaces. Let
f : X → Z, g : Y → Z be morphisms and put W = X ×Z Y . If f is surjective
and the (Euclidean) topology of X is second-countable, then dimW +dimZ ≥
dimX + dimY .

Proof. Because reduction does not change the dimension [GR84, p.96], we
may assume that X,Y, Z are reduced. Let A = {x ∈ X : f is not flat at x}.
By Frisch’s theorem [CD94, Theorem 2.8, p.112], A is an analytic subset
of X and f(A) ̸= Z. Then X \ f−1(f(A)) → Z \ f(A) is a surjective flat
morphism. By shrinking X,Y, Z suitably, we may assume further that f is
flat surjective. Then W is nonempty and we conclude by Lemma D.1.2.2.

The invariant dimX ×Y X considered in Corollary D.1.2.4 appears in
the definition of defect of semismallness (4.24).

Corollary D.1.2.4. Let f : X → Y be a proper morphism of irreducible
complex analytic spaces. If the (Euclidean) topology of X is second-countable,
then dimX ×Y X ≥ 2 dimX − dim f(X).

Proof. The image Z := f(X) is an analytic subset of Y . Endow Z with the
reduced structure of complex analytic space. Then Z is also irreducible and
the morphism f : X → Z is surjective. The natural morphism X ×Z X →
X ×Y X is an isomorphism. Then we conclude by Proposition D.1.2.3.
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D.2 Connection on line bundles

The purpose of Section D.2 is to show Lemma D.2.0.4. For one thing, it is
closely related to Corollary 4.4.2.2. For another, it implies the possibility
to extend the Donaldson-Uhlenbeck-Yau theorem and nonabelian Hodge
theory to manifolds more general than Kähler ones (Remarks D.2.0.6 and
D.2.0.7). For work towards this direction, see [BD23], which extends
nonabelian Hodge theory to Fujiki class C manifolds.

We begin the proof with a variation of the classical maximum principle.

Proposition D.2.0.1. Let U ⊂ Rn be a nonempty connected open subset, f :
U → C be a harmonic function. If |f | attains its maximum in U , then f is
constant.

Lemma D.2.0.2 concerns the uniqueness of solution to ∂̄∂-equation.

Lemma D.2.0.2. Let f : Xn → C be a smooth function on a compact
connected complex manifold X with ∂̄∂f = 0, then f is constant.

Proof. Since X is compact, the subset A = {x ∈ X : |f(x)| = maxt∈X |f(t)|}
is nonempty closed in X. For any p ∈ A, there exists a local holomorphic
coordinate (U ; z1, . . . , zn), where U is a connected open neighborhood of p
in X. With this chart, we identify U as an open subset of Cn. Since ∂̄∂f = 0,
we have ∂2f

∂z̄j∂zl
= 0 for all 1 ≤ j, l ≤ n. In particular,

∑n
j=1

∂2f
∂z̄j∂zj

= 0, or
equivalently, f is a harmonic function on U . By Proposition D.2.0.1, f is
constant on U and so U ⊂ A. Therefore, A is open in X. By connectedness
of X, A = X. So for any p ∈ X, f is locally constant near p. By
connectedness of X again, f is constant.

Let X be a regular manifold for the rest of Section D.2.
We need a comparison between the Atiyah class ([Huy05, Def. 4.2.18])

and the first Chern class. For Kähler manifolds, it is [Ati57a, Prop. 12].

Lemma D.2.0.3. Let X be a regular manifold. Let L → X be a holomorphic
line bundle. Let A(L) ∈ H1(X,Ω1

X) be the Atiyah class of L. Then

i

2π
A(L) = cR1 (L)

in H2(X,R). In particular, L admits a holomorphic connection if and only if
L ∈ Picτ (X).

Proof. By Corollary 4.3.1.4, we have a commutative diagram

Z1,1(X) Z2(X)

H1(X,Ω1
X) H2

dR(X;C),

ϕ ψ

ι1,1
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where ϕ is taking Dolbeault cohomology class and ψ is taking de Rham
cohomology class. Take a hermitian metric h on L. Let R be the
corresponding Chern curvature form. By [Huy05, Corollary 4.4.5], R ∈
Z1,1(X). Then by [Huy05, Proposition 4.3.10], A(L) = ϕ(R) and cR1 (L) =
i
2πψ(R). The equality follows. The second part follows from [Huy05,
Proposition 4.2.19].

Lemma D.2.0.4. Let X be a regular manifold, L ∈ Picτ (X), then:

1. L admits a unique (up to a positive scalar) hermitian metric whose Chern
connection is flat;

2. Every holomorphic connection on L is flat.

Proof. 1. We begin with the existence. By Corollary 4.4.2.2 2, there is a
unitary local system L ∈ Locu,1(X) on X with L⊗COX = L. Applying
Theorem 4.2.3.1 the existence of such metric follows.

Now for uniqueness. Let h, h′ be two hermitian metrics whose
respective Chern connections ∇,∇′ are flat holomorphic connections.
By Theorem 4.2.3.1, ker(∇), ker(∇′) ∈ Locu,1(X) have the same
induced line bundle. By Corollary 4.4.2.2 2, ker(∇) = ker(∇′) in
Locu,1(X). The hermitian metrics h, h′ restrict to two monodromy
invariant hermitian forms on the common local system ker(∇). Moreover,
by Theorem 4.2.3.1 one can recover the hermitian metric on the line
bundle L from the restricted hermitian form on the local system.
Since this local system is of rank 1, at one stalk these two hermitian
forms differ by a scalar. Globally they differ by this scalar as they are
monodromy invariant. Then the metrics h, h′ also differ by a scalar.

2. By Lemma D.2.0.3 and [Huy05, Prop. 4.2.19], L admits a holomorphic
connection. We show that the curvature forms (which are global
holomorphic 2 forms) of different holomorphic connections on L are
the same. In fact, for two such connections D,D′ on L, by [Huy05,
p.179], D′ − D ∈ H0(X,Ω1

X). This form is d-closed by [Uen06,
Corollary 9.5, p.101]. By [Huy05, Lemma 4.3.4], the curvature of
D′ equals that of D.

We adopt the argument in [BK09, Footnote (6), p.388]. By Cartan-
Serre theorem [Car53, Théorème], the complex vector spaceH0(X,Ω2

X)
is finite dimensional. Taking the curvature form of one (hence
every) holomorphic connection on elements of Pic0(X), we get a
holomorphic map Pic0(X) → H0(X,Ω2

X). As the complex torus
Pic0(X) is compact connected, this map is constant. The canonical
connection on the trivial line bundle OX(∈ Pic0(X)) is flat, so this
map is constantly zero. In other words, for every K ∈ Pic0(X), any
holomorphic connection on K is flat.
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As L ∈ Picτ (X), there is an integer n ≥ 1 such that L⊗n ∈ Pic0(X).
Take a holomorphic connection on L of curvature form R, then it
induces a holomorphic connection on L⊗n of curvature form nR. As
nR = 0, it holds that R = 0. The flatness follows from the first
paragraph and the existence in Point 1.

Remark D.2.0.5. Here is a second proof of Lemma D.2.0.4 1. Take a
hermitian metric h on L. Locally its Chern curvature is given by ∇ =
d + h−1∂h. More precisely, let s be a local holomorphic frame for L, and
by abuse of notation let h be the local (smooth positive) function h(s, s).
Then ∇(s) = (h−1∂h)⊗ s and the Chern curvature form R = ∂̄(h−1∂h) is a
d-closed smooth (1, 1)-form whose de Rham class is 0. Moreover iR is a real
form. (This is part of Chern-Weil theory, see [Huy05, Proposition 4.3.8 (iii);
4.3.10 and p.196].) Therefore, by Fact 4.3.1.2, there is a smooth function
f : X → R with

R+ ∂̄∂f = 0. (D.1)

Define a new hermitian metric h′ by

h′(s, s) = efh(s, s). (D.2)

Then the new Chern connection is given by ∇′(s) = ∇(s) + (∂f) ⊗ s. The
new curvature form R′ = R + ∂̄∂f = 0, i.e., the new Chern connection is
flat and compatible with the holomorphic structure, hence a holomorphic
connection.

So far we have established the existence of such metric. As for
uniqueness, any hermitian metric h′ with flat Chern connection is in the
form of (D.2) where f is a solution to (D.1). Lemma D.2.0.2 shows that
such a solution f is unique up to addition by constant. So such metric h′ is
unique up to a positive scalar.

Remark D.2.0.6. When X is a compact Kähler manifold, Lemma D.2.0.4 1
is a consequence of known results. In fact [Kob87, Proposition 5.7.7 (a)]
shows a holomorphic line bundle is slope stable. By Donaldson-Uhlenbeck-
Yau theorem [UY86, Corollary 8.1, p.292], there is L ∈ Locu,1(X) such
that L = L ⊗C OX , and L induces such a metric via Theorem 4.2.3.1. For
any such hermitian metric, its Chern connection is a Hermitian-Yang-Mills
connection. The uniqueness of such metric is mentioned in [Bea92, (3.2)
c)] and follows from [UY86, Theorem, p.262] and [Che22, Corollary 2.18].

Remark D.2.0.7. Lemma D.2.0.4 can be viewed as a step toward nonabelian
Hodge theory on regular manifolds. In fact, a semisimple local system on
a compact Kähler manifold is unitary if and only if the associated Higgs
bundle (E, θ) has θ = 0 ([Sim92, Example p.21]). The metric given by
Lemma D.2.0.4 is exactly the harmonic metric provided by Corlette Theorem
[GRR15, Theorem 1, p.151].
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D.3 Jacobi inversion theorem

In this section, we give a refinement of Proposition 4.4.1.2 3.

Lemma D.3.0.1. For a pointed regular manifold (X,x0), for every n ≥
h1,0(X), the holomorphic map fn : Xn → Alb(X) defined by (x1, . . . , xn) 7→∑n

i=1 αx0(xi) is surjective.

When X is a compact Riemann surface, then Lemma D.3.0.1 reduces to
(part of) Jacobi inversion theorem in [GH78, p.235].

Two proofs are provided. They are inspired by [Voi02, Lemma 12.11]
and [BL04, Proposition 11.11.8] respectively, but with an extra attention to
the feasible range of n. The first proof is shorter, while the second proof
provides a stronger result, Lemma D.3.2.1.

D.3.1 First proof

Lemma D.3.1.1. Let X be a compact complex manifold. Then there there is
subset S ⊂ X with #S ≤ h1,0(X) such that, for any η ∈ H0(X,Ω1

X) with
η(x) = 0 in the (holomorphic) cotangent space (T hxX)∨, we have η = 0.

Proof. For every x ∈ X, let Vx be the subspace {η ∈ H0(X,Ω1
X) : η(x) = 0}

of H0(X,Ω1
X). Then ∩x∈XVx = {0}. Hence, there is a subset S ⊂ X with

#S ≤ h1,0(X) and ∩x∈SVx = {0}.

Here is the first proof.

First proof of Lemma D.3.0.1. Consider the cotangent map (dpfn)
∗ : (T hfn(p)Alb(X))∨ →

(T hpX
n)∨ at p = (p1, . . . , pn) ∈ Xn. Since the cotangent bundle Ω1

Alb(X) is
trivial, this map is identified with the composition

H0(Alb(X),Ω1
Alb(X))→ (T hfn(p)Alb(X))∨ →

n∏
i=1

(T hpiX)∨.

By Proposition 4.4.1.2 4, it is further identified with the natural map

H0(X,Ω1
X)→

n∏
i=1

(T hpiX)∨. (D.3)

By Lemma D.3.1.1, there exist n0 ≤ h1,0(X) and x = (x1, . . . , xn0) ∈ Xn0

such that for any η ∈ H0(X,Ω1
X) with η(xi) = 0 for all i, we have η = 0.

Then for every n ≥ n0, the map (D.3) is injective when p = (x, x0, . . . , x0).
Or equivalently, fn is a submersion of smooth manifolds near p. From local
normal form theorem, the image fn(Xn) contains a nonempty open subset
of Alb(X). By Remmert theorem [Whi72, Theorem 4A, p.150], fn(Xn) is an
analytic subset of Alb(X). By [GR84, Theorem, p.168], fn(Xn) = Alb(X),
i.e, fn is surjective.
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D.3.2 Second proof

To certain extent, Lemma D.3.2.1 shows that a generating subset of a
complex torus generates the complex torus “uniformly".

Lemma D.3.2.1. Let A be a g-dimensional commutative complex Lie group.
LetM be a compact irreducible analytic subset ofA containing 0. If the complex
Lie subgroup of A generated by M is A, then for every integer n ≥ g, the map
fn :Mn → A defined by (x1, . . . , xn) 7→

∑n
i=1 xi is surjective. In particular, A

is a complex torus.

Proof. Since M is connected, the identity component of A contains M .
Therefore, A is connected.

The statement is true when g = 0. So we assume g > 0, then M ̸= {0}
and hence dimM ≥ 1. For every n ≥ 1, let An = fn(M

n), which is an
analytic subset of A by Remmert theorem [Whi72, Theorem 4A, p.150].
Since f1 : M → A is the inclusion, we find A1 = M ∋ 0. For every x ∈ Mn,
fn+1(x, 0) = fn(x), so An ⊂ An+1, hence an increasing sequence of analytic
subsets of A:

A1 ⊂ A2 ⊂ . . .

Consider the integer sequence of analytic dimensions {dim0An}n≥1.
By [GR84, p.96], this sequence is non-decreasing and bounded above by
dim0A = g. Therefore, there is n0 ≤ g such that dim0An0 = dim0An0+1.

By assumption, Mn is an irreducible complex analytic space. By [CD94,
(14.14), p.89], the complex analytic space An is irreducible and pure
dimensional for every n ≥ 1 and An0 = An0+1.

We claim that for every m > n0, An0 = Am.
We prove the claim by induction on m. It holds when m = n0 + 1. If

it is true for m − 1 with m ≥ n0 + 2, then for every (x1, . . . , xm) ∈ Mm,∑m−1
i=1 xi ∈ Am−1 = An0 , so there is (p1, . . . , pn0) ∈ Mn0 with

∑n0
j=1 pj =∑m−1

i=1 xi. Then

m∑
i=1

xi = xm +

n0∑
j=1

pj ∈ An0+1 = An0 .

Therefore, Am = An0 . The induction is completed.
For every x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Mn, we have fn(x) +

fn(y) = f2n(x, y), so An+An ⊂ A2n. In particular, An0 +An0 ⊂ A2n0 = An0 .
This shows An0 is closed under addition.

We are going to show that −An0 = An0 and then An0 would be a
subgroup of A.

As A is commutative connected, by [AK01, Proposition 1.1.2], its
universal covering is in the form of π : Cg → A and the lattice
ker(π) is identified with the fundamental group π1(A, 0). As π is locally

242



biholomorphic and every An is irreducible, the preimage π−1(An) is an
analytic subset of Cg, every irreducible component of whom is of dimension
dimAn. Any two different irreducible components are disjoint and differ by
a translation by an element of ker(π).

Let Vn be the unique irreducible component of π−1(An) containing 0,
then π(Vn) = An. Fix an integer k ≥ 1 and let [k] : A → A be the
multiplication by k. As An0 is closed under addition, we get [k]An0 ⊂ An0 .
As π is a group morphism, we have k ·π−1(An0) ⊂ π−1(An0). As k : Cg → Cg
is biholomorphic, kVn0 is an irreducible analytic subset of Cg isomorphic to
Vn0 . As 0 ∈ kVn, we have kVn0 ⊂ Vn0 . As dim kVn0 = dimVn0 , by [CD94,
(14.14), p.89] again, we get kVn0 = Vn0 , i.e., the morphism k : Vn0 → Vn0

is biholomorphic.
For every x( ̸= 0) ∈ An0 , we check that −x ∈ An0 . In fact, take v ∈

Vn0 ∩ π−1(x). Then v ̸= 0. By last paragraph, v/k ∈ Vn0 for every k ≥ 1.
Let l be the complex line in Cg spanned by v. By the identity theorem
for holomorphic functions on l, the smallest analytic subset of l containing
{v/k}k≥1 is l. Now that Vn0∩l is an analytic subset of l containing {v/k}k≥1,
we get l = Vn0 ∩ l ⊂ Vn0 . In particular, −v ∈ Vn0 and then −x ∈ An0 as
desired.

So far we have shown that An0 is a subgroup of A that is a complex
analytic subset. By Corollary F.2.0.5, An0 is an embedded complex Lie
subgroup of A. By assumption, An0 = A. From the claim we get the
surjectivity of fn for every n ≥ n0. In particular, A is compact, hence a
complex torus.

Example D.3.2.2. In Lemma D.3.2.1, we cannot remove the condition that
0 ∈ M . For example, consider A = C∗ and M = {2}. The irreducibility
of M is also necessary. For instance, take A to be the elliptic curve C/Z[i],
M = {0, x}, where x ∈ A \ Ator. Then fn is not surjective for all integers
n ≥ 1.

Second proof of Lemma D.3.0.1. Let M = αx0(X), which is an irreducible
analytic subset of Alb(X) by Remmert theorem [Whi72, Theorem 4A,
p.150] and [CD94, (14.14), p.89]. In addition, 0 ∈ M . The proof is
completed by citing Proposition 4.4.1.2 3 and Lemma D.3.2.1.
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Appendix E

D-modules

E.1 Unbounded Bernstein’s equivalence

In Section E.1, let X be a smooth algebraic variety over be an algebraically
closed field k of characteristic 0. Let Qch(OX) ⊂ Mod(OX) and Modqc(DX) ⊂
Mod(DX) be the full subcategories of objects quasi-coherent over OX . They
are weak Serre subcategories.

Fact E.1.0.1 (Bernstein, [B+87, VI, Thm. 2.10]). The natural functor

ι′X : Db(Modqc(DX))→ Db
qc(DX)

is an equivalence.

Remark E.1.0.2. The first sentence of the proof in [B+87] needs (implicitly)
[Mur07, Remark 64] and Fact E.1.0.3.

Fact E.1.0.3 can be proved as [B+87, I, Prop. 12.8; VI, Prop. 1.14].

Fact E.1.0.3. Let B be an weak Serre subcategory of an abelian category
A. Then the full class Ob(B) of objects in B is a generating class of Db

B(A)
(defined in [Sta24, Tag 06UP]) in the sense of [B+87, I, Def. 12.4].

Theorem E.1.0.4 is an unbounded generalization of Fact E.1.0.1. It is left
“to the reader to state and prove" in [Nee96, p.207]. We follow the strategy
pointed out in [gh], and do not claim originality here.

Theorem E.1.0.4. The functor

ι′X : D(Modqc(DX))→ Dqc(DX) (E.1)

induced by the inclusion Modqc(DX) → Mod(DX) is an equivalence of
categories.

We need a series of lemmas for the proof of Theorem E.1.0.4.
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Lemma E.1.0.5. Every object of Modqc(DX) is the inductive limit of its
coherent DX -submodules.

Proof. Let F be such an object. Then the family of coherent DX -submodules
of F is directed. In fact, if G1, G2 are coherent DX -submodules of F , then
both have finite type over DX . Their sum G1 + G2(⊂ F ) is of finite type
over DX . As Qch(OX) is an abelian subcategory of Mod(OX), the image
G1 +G2 of the natural morphism G1 ⊕G2 → F is quasi-coherent over OX .
By [HT07, Prop. 1.4.9 (ii)], the DX -submodule G1 +G2 of F is coherent.

We prove that F is the union of its coherent DX -submodules. (It is
stated as [HT07, Cor. 1.4.17 (iii)], whose poof is omitted.) Let U ⊂ X be
an affine open, s ∈ Γ(U,F ) be a section, andG ⊂ F |U be theDU -submodule
generated by s. By [HT07, Prop. 1.4.3, 1.4.4 and 1.4.13], the DU -module G
is coherent. By [Meb89, Prop. 2.5.7], there is a coherent DX -submodule
G′ ⊂ F with G′|U = G. Since X has a basis for the Zariski topology
consisting of affine opens, every local section of F is locally contained in
a coherent DX -submodule.

For an open immersion j : U → X, we have a natural morphism of
ringed spaces j : (U,DU ) → (X,DX). From [B+87, VI, 5.2] and [HT07,
Prop. 1.5.29], the functor j+ : D(DU ) → D(DX) is the right derived
functor of the corresponding (left exact) direct image j∗ : Mod(DU ) →
Mod(DX). By [Ber83, 2, p.12] and [Sta24, Tag 0096], the inverse image
j∗ : Mod(DX) → Mod(DU ) is left adjoint to j∗. Lemma E.1.0.6 2 helps to
construct a quasi-inverse to (E.1).

Lemma E.1.0.6.

1. The category Modqc(DX) is locally noetherian.

2. The inclusion functor ι′ : Modqc(DX) → Mod(DX) admits a right
adjoint Q′ = Q′

X : Mod(DX) → Modqc(DX). The unit natural
transform η′ : IdModqc(DX) → Q′ι′ is an isomorphism.

Proof. By [Sta24, Tag 01LA (4)], Qch(OX) ⊂ Mod(OX) is an abelian
subcategory closed under colimits. Then so is Modqc(DX) ⊂ Mod(DX).

1. When X is affine, by [HT07, Prop. 1.4.4 (ii)], the functor Γ(X, ·) :
Modqc(DX) → Mod(DX(X)) is an equivalence of abelian categories.
As the ring DX(X) is left noetherian, the category Mod(DX(X)) is
locally noetherian by the last paragraph of [Gab62, p.402].

For a general X, one may assume that there exists an open covering
X = U ∪ V , such that the statement holds for U and V . Arguing as in
[Gab62, Prop. 2, p.441], one can prove that Modqc(DX) is the gluing
of Modqc(DU ) and Modqc(DV ) along Modqc(DU∩V ) in the sense of
[Gab62, VI. 1]. Let j : U → X be the inclusion. Then

j∗ : Modqc(DX)→ Modqc(DU )
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is exact and left adjoint to

j∗ : Modqc(DU )→ Modqc(DX).

The (counit) natural transformation ϵ : j∗j∗ → IdModqc(DU ) is an
isomorphism. From [Gab62, Prop. 5, p.374], the subcategory ker(j∗)
is localizing in Modqc(DX) (in the sense of [Gab62, p372]) and j∗

induces an equivalence

Modqc(DX)/ ker(j
∗)→ Modqc(DU ).

A similar result holds for V . Then by [Gab62, Lem. 2, p.442], the
gluing category Modqc(DX) is locally noetherian.

2. It follows from 1 and Lemma E.1.0.8.

Remark E.1.0.7. For an affine (possibly singular) variety V , by [GR14, 4.7.1;
5.5], the abelian category Modqc(DV ) is still Grothendieck.

Lemma E.1.0.8. Let A be a Grothendieck abelian category. Let F : A → B be
a functor preserving all colimits.

1. Then F admits a right adjoint G : B → A.

2. If further F is fully faithful, then the unit natural transformation η :
IdA → GF is an isomorphism.

Proof. 1. Let Set be the category of sets. For each object Y ∈ B, consider
the functor

HomB(F (·), Y ) : Aop → Set.

It transforms colimits into limits. Then by [Sta24, Tag 07D7], it is
representable. From [ML78, Cor. 2, p.85], the functor F admits a
right adjoint.

2. If follows from Yoneda’s lemma.

By [Sta24, Tag 077P (2)], the inclusion ι = ιX : Qch(OX) → Mod(OX)
admits a right adjoint QX = Q : Mod(OX)→ Qch(OX), called the coherator
of X. To reduce the problem to the study of OX -modules, consider the
square

Mod(DX) Modqc(DX)

Mod(OX) Qch(OX),

Q′
X

forX forX

QX

(E.2)

where the vertical functors are forgetful.
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Lemma E.1.0.9. Suppose that X is affine. Write R = Γ(X,DX). Then:

1. The functor ·̃ := DX ⊗R · : Mod(R) → Mod(DX) is left adjoint to the
global section functor Γ(X, ·) : Mod(DX)→ Mod(R);

2. The square (E.2) is commutative.

Proof.

1. Let (σ, σ#) : (X,DX) → ({∗}, R) be the morphism of ringed spaces,
with σ : X → {∗} the unique map and σ# given by IdR. Then
Γ(X, ·) = σ∗ : Mod(DX) → Mod(R). By [Sta24, Tag 01BH], the
functor ·̃ = σ∗. The adjunction follows from [Sta24, Tag 0096].

2. From 1 and [HT07, Prop. 1.4.4 (ii)], the functor Q′ : Mod(DX) →
Modqc(DX) is the composition of Γ(X, ·) : Mod(DX)→ Mod(R) with
·̃ : Mod(R) → Modqc(DX). The largest rectangle in the following
diagram

Mod(DX) Mod(R) Modqc(DX) Mod(R)

Mod(OX) Mod(OX(X)) Qch(OX) Mod(OX(X))

Γ(X,·)

Q′

DX⊗R· Γ(X,·)

Γ(X,·)

Q

OX⊗OX (X)· Γ(X,·)

is same as the small square on the left, hence commutative. Moreover,
the two horizontal functors Γ(X, ·) on the right are equivalences, so
Q′ is compatible with Q.

The abelian categories Mod(DX) and Mod(OX) are Grothendieck. By
[Sta24, Tag 079P] and [Sta24, Tag 070K], the functor Q′ : Mod(DX) →
Modqc(DX) and Q : Mod(OX) → Qch(OX) admit right derived functors
RQ′ : D(DX)→ D(Modqc(DX)) and RQ : D(OX)→ D(Qch(OX)).

Lemma E.1.0.10. 1. The square (E.2) is commutative.

2. The square
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D(DX) D(Modqc(DX))

D(OX) D(Qch(OX)),

RQ′
X

forX forX

RQX

is commutative.

Proof.

1. We deduce a formula for Q′
X . Since X is quasi-compact, there is a

finite cover {Uα}α∈I of X by affine opens. For any α ̸= β in I, since
X is separated over k, the scheme Uαβ := Uα ∩ Uβ is affine. Denote
all the various open immersions Uαβ → X and Uα → X as j. For
every DX -module F , the sheaf axiom gives an equalizer diagram in
Mod(DX):

0→ F → ⊕αj∗(F |Uα) ⇒ ⊕(α,β)j∗(F |Uαβ ),

where the two right morphisms are induced by the inclusions Uαβ →
Uα and Uαβ → Uβ. By Lemma E.1.0.11, it induces another equalizer
diagram in Modqc(DX):

0→ Q′
XF → ⊕αj∗Q′

Uα(F |Uα) ⇒ ⊕(α,β)j∗Q
′
Uαβ

(F |Uαβ ). (E.3)

There is a natural transformation ι′Q′
X → IdMod(DX) : Mod(DX) →

Mod(DX). Applying forX : Mod(DX)→ Mod(OX), one gets a natural
transformation forX ◦ ι′ ◦Q′

X → forX : Mod(DX)→ Mod(OX). Since
forX ◦ ι′ = ι ◦ forX : Modqc(DX)→ Mod(OX) and QX is right adjoint
to ι, there is a natural transformation

µX : forX ◦Q′
X → QX ◦ forX

of functors Mod(DX) → Qch(OX). By Lemma E.1.0.9 2, it is an
isomorphism when X is affine.

For a generalX, by (E.3) and [TT90, (B.14.2)], there is a commutative
diagram of functors Mod(DX)→ Qch(OX):

0 forXQ
′
X ⊕αj∗forUαQ′

Uα
(·|Uα) ⊕(α,β)j∗forUαβQ

′
Uαβ

(·|Uαβ )

0 QX forX ⊕αj∗QUαforUα(·|Uα) ⊕(α,β)j∗QUαβ forUαβ (·|Uαβ ),

µX

where the two vertical arrows on the right are isomorphisms. Therefore,
µX is an isomorphism.
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2. The morphism (X,DX) → (X,OX) of ringed spaces is flat, and the
direct image functor is the forgetful functor forX : Mod(DX) →
Mod(OX). By [Sta24, Tag 08BJ], it preserves K-injective complexes.
The conclusion follows from Point 1, Lemma E.1.0.12 and [Sta24, Tag
070K].

Lemma E.1.0.11. Let j : U → X be an open immersion. Then the natural
transformation j∗ ◦ Q′

U → Q′
X ◦ j∗ : Mod(DU ) → Modqc(DX) is an

isomorphism.

Proof. As j∗ : Mod(DX) → Mod(DU ) restricts to a functor Modqc(DX) →
Modqc(DU ), one has ι′Uj

∗ = j∗ι′X as functors Modqc(DX) → Mod(DU ).
The functor j∗ : Mod(DU ) → Mod(DX) regards the direct image j∗ :
Mod(OU ) → Mod(OX), so it also restricts to a functor Modqc(DU ) →
Modqc(DX). As Q′ is right adjoint to ι′ and j∗ is right adjoint to j∗, the
isomorphism follows.

Lemma E.1.0.12. Let F : A → B and G : B → C be left exact functors of
abelian categories. Assume that A, B are Grothendieck. If for ever K-injective
complex I over A, the natural morphism GF (I) → RG(F (I)) in D(C) is
an isomorphism,1 then the canonical natural transformation (constructed in
[Sta24, Tag 05T2 (1)]) t : R(G◦F )→ RG◦RF is an isomorphism of functors
from D(A)→ D(C).

Proof. Let A be a complex over A. As A is Grothendieck, by [Sta24, Tag
079P], there is a quasi-isomorphism A → I such that I is a K-injective
complex. By [Sta24, Tag 070K], the morphism tA is the composition of
isomorphisms

R(G ◦ F )(A) = GF (I)→ RG(F (I)) = RG(RF (A)).

Proof of Theorem E.1.0.4. By [Sta24, Tag 09T5],RQ′ : D(DX)→ D(Modqc(DX))
is right adjoint to Lι′ = ι′ : D(Modqc(DX))→ D(DX). Let Ψ′ : Dqc(DX)→
D(Modqc(DX)) (resp. Ψ : Dqc(OX) → D(Qch(OX)) ) be the restriction
of RQ′ (resp. RQ). By Lemma E.1.0.10 2, there are natural commutative
squares

D(Modqc(DX)) Dqc(DX)

D(Qch(OX)) Dqc(OX),

Lι′

for for

Lι

Dqc(DX) D(Modqc(DX))

Dqc(OX) D(Qch(OX)),

Ψ′

for for

Ψ

1i.e., F (I) computes RG in the sense of [Sta24, Tag 05SX (1)]
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where Lι is induced by the inclusion ι : Qch(OX)→ Mod(OX).
Since Ψ is right adjoint to ι, the counit ϵ′ : ι′Ψ′ → IdDqc(DX) (resp.

unit η′ : IdD(Modqc(DX)) → Ψ′ι′) is compatible with the counit ϵ : ιΨ →
IdDqc(OX) (resp. unit η : IdD(Qch(OX)) → Ψι). The functor for : D(DX) →
D(OX) is conservative. By [Sta24, Tag 09T4], the counit ϵ and the unit η are
isomorphisms, so are the counit ϵ′ and the unit η′. In particular, the functor
(E.1) is an equivalence with a quasi-inverse Ψ′.

E.2 When is an induced D-module holonomic?

Proposition E.2.0.1. Let X be a complex manifold. Let F be an OX -module.
Then the following conditions are equivalent:

1. the induced module DX ⊗OX F is holonomic;

2. F is coherent with Supp(F ) discrete.

Lemma E.2.0.2 and Lemma E.2.0.3 are needed for the proof of Proposition
E.2.0.1.

Lemma E.2.0.2. Let A be a Gorenstein local ring (in the sense of [Sta24,
Tag 0DW7 (1)]) of Krull dimension n. Let M be a finite A-module. Then the
following conditions are equivalent:

1. For all integers i ̸= n, one has Exti(M,A) = 0;

2. the length of M is finite.

Proof. Let k be the residue field of A.

• Assume Condition 1. To prove 2, one may assume M ̸= 0. As A is
Gorenstein, A[0] is a dualizing complex of A. By [Mat87, Thm. 18.1,
p.141], one has RHomA(k,A[n]) = k[0], so A[n] is the normalized
dualizing complex of A (in the sense of [Sta24, Tag 0A7M]). Let d
be the depth of M . By [Sta24, Tag 0B5A], the module M is Cohen-
Macaulay and

M = Extn−dA (Extn−dA (M,A), A).

Thus, Extn−dA (M,A) ̸= 0. By Condition 1, one has n − d = n. Hence
dimSupp(M) = d = 0. By [Ati69, Exercise 19 v), p.46], one has
dimA/Ann(M) = 0. Then A/Ann(M) is an artinian ring. From
[Eis95, Cor. 2.17], the length of M is finite.

• Assume Condition 2. Induction on the length l(M) of M . When
l(M) = 0, one has M = 0 and Condition 1 holds. Now assume
l(M) > 0 and the statement holds for all modules of length less
than l(M). There is a submodule N of M such that M/N is a
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simple module and l(N) < l(M). By [Sta24, Tag 00J2], the module
M/N is isomorphic to k. For every integer i ̸= n, the short exact
sequence 0 → N → M → M/N → 0 induces an exact sequence
Exti(M/N,A) → Exti(M,A) → Exti(N,A). By the inductive
hypothesis, Exti(N,A) = 0. By [Mat87, Thm. 18.1, p.141], one has
Exti(M/N,A) = 0. Hence Exti(M,A) = 0.

Lemma E.2.0.3. Let X be a complex analytic space. Let F be a coherent OX -
module. Then the length of the OX,x-module Fx is finite for all x ∈ X if and
only if the subspace Supp(F ) ⊂ X is discrete.

Proof. The “if" part follows from Lemma 5.5.2.8 1. We prove the “only if"
part. By coherence of F and [GR84, p.76], Supp(F ) is a closed analytic
set of X. Assume to the contrary that Supp(F ) is not discrete. Then
dimSupp(F ) > 0. Let C be an irreducible component of Supp(F ) of
maximal dimension. Endow C with the reduced induced closed subspace
structure. Let i : C → X be the closed embedding of complex analytic
spaces.

For every x ∈ C, the morphism OX,x → OC,x is surjective. Then by
[Sta24, Tag 00IX], one has lOC,x(i

∗F )x = lOX,x(i
∗F )x. The morphism Fx →

(i∗F )x ofOX,x-modules is surjective, so lOX,x(i
∗F )x ≤ lOX,xFx. In particular,

the length of (i∗F )x over OC,x is finite. By [GD71, Cor. 5.2.4.1], the support
of i∗F is C. Replacing (X,F ) by (C, i∗F ), one may assume further that X is
irreducible with dimX > 0.

By the generic freeness [Ros68, Prop. 3.1], there is x0 ∈ X such that
Fx0 is a free OX,x0-module. As the support of F is X, from [RS17, p.238],
F is not a torsion sheaf. Then by irreducibility of X and [Ros68, p.69], the
OX,x0-module Fx0 has positive rank. Thus, OX,x0 has finite length over itself,
hence an artinian ring. The dimension formula in [GR84, p.96] and [CD94,
(14.14), p.89] yield dimX = dimx0 X = dimOX,x = 0, a contradiction.

Proof of Proposition E.2.0.1. LetM = DX⊗OXF and F̂ = RHomOX (F,OX).
By [Sta24, Tag 08DJ], one has

HomOX (ωX , F̂ ) = RHomOX (ωX ⊗OX F,OX). (E.4)

Provided that F is coherent, [Bjö93, (ii) p.122] gives

∆DXM = DX ⊗OX HomOX (ωX , F̂ )[dimX]. (E.5)

Plugging (E.4) into (E.5), one gets

∆DXM = DX ⊗OX RHomOX (ωX ⊗OX F,OX)[dimX].

251

https://stacks.math.columbia.edu/tag/00J2
https://stacks.math.columbia.edu/tag/00IX
https://stacks.math.columbia.edu/tag/08DJ


For every nonzero integer i, one has

H i(∆DXM) = DX ⊗OX Ext
i+dimX
OX

(ωX ⊗OX F,OX).

By [Sta24, Tag 01CB] and [GH78, 1. p.700], its stalk at x ∈ X is isomorphic
to

DX,x ⊗OX,x Ext
i+dimxX
OX,x

(Fx, OX,x)

.

• Assume Condition 2. By [Bjö93, 1.5.1], the DX -module M is
coherent. By Lemma E.2.0.3, the OX,x-module Fx has finite length.
As OX,x is a noetherian regular local ring of Krull dimension dimxX,
by Lemma E.2.0.2, one has Exti+dimxX

OX,x
(Fx, OX,x) = 0 for all x ∈ X.

Hence H i(∆DXM) = 0. From Fact 6.7.2.2 2, the DX -module M is
holonomic.

• Assume Condition 1. From [SS94, p.55], the OX -module F is
coherent. From Fact 6.7.2.2 2, for every nonzero integer i, one has
H i(∆DXM) = 0. As DX,x is a nonzero free OX,x-module, one gets
Exti+dimxX

OX,x
(Fx, OX,x) = 0. By Lemma E.2.0.2, the OX,x-module Fx

has finite length for every x ∈ X. From Lemma E.2.0.3, the support of
F is discrete.

The proof of Proposition E.2.0.4 (an algebraic analog of Proposition
E.2.0.1) is similar.

Proposition E.2.0.4. LetX be a smooth algebraic variety over an algebraically
closed field of characteristic 0. Let F be an OX -module. Then the following
conditions are equivalent:

1. the induced module DX ⊗OX F is holonomic;

2. F is coherent with Supp(F ) finite.
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Appendix F

Group extensions of complex
Lie groups

F.1 Introduction

In the history of cohomology theory of abelian varieties over positive
characteristic fields, the study of group extension problem played an
important role. For instance, Rosenlicht obtains Fact F.1.0.1 through
considering vectorial extensions of abelian varieties. Let k be an algebraically
closed field and A/k be an abelian variety with dimA = g. The dual abelian
variety of A is denoted by A∨.

Fact F.1.0.1 ([Ros58, Theorems 1 and 2]). The dimension of the k-vector
space H1(A,OA) is g.

A notable byproduct of Rosenlicht’s work is the existence of the following
object, the so-called universal vectorial extension.

Fact F.1.0.2 ([Ros58, Prop. 11]). There is a short exact sequence1 of
commutative algebraic groups over k: 0 → Gg

a → A♮ → A → 0, where A♮

is the moduli space of line bundles equipped with an integrable connection on
A∨.

In [Rot96, (1.17)] and [Lau96, Thm. 3.2.1], it is proved that the Fourier-
Mukai transform Db(Qch(OA)) → Db(Qch(OA∨)) lifts to an equivalence
Db(Qch(OA♮)) → Db(Qch(DA∨)), where for a smooth algebraic variety
M/k, Qch(OM ) (resp. Qch(DM )) refers to the category of OM (resp. left
DM) modules that are OM -quasi-coherent.

The cohomology theory of complex analytic analogue of abelian varieties,
namely complex tori, is elementary. By contrast, as far as we know, the
existence of universal vectorial extension in the analytic setting is not

1in the sense of [Ros58, Sec. 2, p.691]
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covered in the literature, though admittedly easier and should be known.
The main results are summarized as follows.

Proposition (Proposition F.4.3.1). For two commutative complex Lie groups
A,B, the commutative extensions of A by B are classified by the abelian group

Ext1Z(π0(A), π0(B))⊕HomAb(π1(A0), π0(B))⊕ coker(s).

Here s is the restriction morphism HomVec(L(A), L(B0))→ HomAb(π1(A0), B0),
A0 (resp. B0) signifies the identity component of A (resp. B), the notation
π1(∗) refers to the fundamental group, and A/A0 = π0(A) denotes the 0-th
homotopy group of A and similar for B.

Theorem. Let A be a complex torus of dimension g. Then:

• (Theorem F.5.2.4 (resp. F.5.3.2)) The dual torus Pic0(A) (resp. tangent
space T0A = H1(A,OA)) naturally classifies the extensions of A by the
multiplicative group C∗ (resp. additive group C).

• (Propositions F.5.4.5 1 and F.5.4.7) There is an extension

0→ H0(A∨,Ω1
A∨)→ (C∗)2g → A→ 0

that is universal among all vectorial extensions of A.

We emphasis some differences between the analytic case and the
algebraic case. For a complex torus A, let Div(A) be the group of analytic
divisors on A modulo linear equivalence. Let Pic(A) be the group of
isomorphic classes of line bundles on A. The natural map Div(A)→ Pic(A)
is surjective if and only if A is an abelian variety ([Deb05, Sec. 4.3, Cor. 4]).
This is why the Picard group is used in Theorem F.5.2.4 while divisor
group appears in its algebraic analogue ([Wei49, no. 2], [Ser88, Thm. 6]).
Discrete groups like Z are not (finite type) algebraic groups, but there is no
reason to exclude them as complex Lie groups. Plenty of important analytic
morphisms are not algebraic, like the universal covering (exponential map)
exp : C→ C∗.

The organization is as follows. The main goal of this text is to classify
extensions of complex Lie groups. Section F.2 contains preliminaries about
complex Lie groups. In Section F.3 we define complex Lie group extensions
and give several first results about the classification. Then we focus
on commutative extensions in Section F.4. Commutative extensions of
complex tori deserve extra attention, and they are discussed in Section F.5.
Some extensions with complex-tori base are automatically commutative, as
Section F.6 shows. Noncommutative extensions are treated superficially in
Section F.7.
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Convention and notation

A statement about Lie groups is understood to hold for both real and
complex Lie groups. The topology underlying a Lie group is always assumed
to be second countable.2

For every Lie group G, the identity component of G is denoted by G0.
The Lie algebra of G is written as L(G). And Z(G) denotes the center of
G. The automorphism group of G is denoted by Aut(G). Let Inn : G →
Aut(G) be the group morphism defined by taking conjugation g 7→ g • g−1.
Then the subgroup Inn(G) of inner automorphisms is normal in Aut(G). Let
Out(G) = Aut(G)/ Inn(G) be the group of outer automorphisms. Let Gop

be the Lie group opposite to G. (If G is complex, then so is Gop.) There
is a natural identification of real/complex manifolds G → Gop denoted by
g 7→ g∗. If G is connected, then the universal covering group of G is denoted
by G̃ and the fundamental group of G with the identity eG as the base point
is denoted by π1(G).

Complex Lie subgroups refer to embedded closed complex Lie subgroups.
IfG is a complex Lie group and S ⊂ G is a subset, by [HN11, Exercise 15.1.3
(b)] there is a smallest complex Lie subgroup of G containing S, called the
complex Lie subgroup generated by S.

Let Vec (resp. Ab, resp. C, resp. Set) be the category of finite
dimensional complex vector spaces (resp. abelian groups, resp. commutative
complex Lie groups, resp. sets). For a complex manifold X and a
commutative complex Lie group B, let BX be the abelian sheaf on X of
germs of holomorphic maps from X to B.

F.2 Generalities on complex Lie groups

Two fundamental facts about complex Lie groups are recalled.

Fact F.2.0.1 ([Bou72, Ch. III, §3, no. 8, Prop. 28]). Let f : G → H be a
morphism of complex Lie groups. Then:

1. ker(f) is a normal complex Lie subgroup of G and L(ker(f)) = ker(def :
L(G)→ L(H)).

2. If f(G) is closed in H, then f(G) is a complex Lie subgroup of H, and
f induces a complex Lie group isomorphism G/ ker(f) → f(G). In
particular, if f is surjective, then def : L(G) → L(H) is surjective. If
f bijective, then f is an isomorphism.

Remark F.2.0.2. Fact F.2.0.1 2 fails if the topology of G is not assumed to
be second countable. For example, let τ (resp. τ ′) be the discrete topology

2A partial reason for such restriction is that, in this case, Condition (2) of [Hoc51b,
Definition 1.1] is implied by Condition (1), showed in p.542 loc.cit.
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(resp. the Euclidean topology) of C, then Id : (C, τ) → (C, τ ′) is a bijective
morphism but not open.

Right principal bundle is defined in [Bou07, 6.2.1]. Left principal bundle
can be defined similarly.

Fact F.2.0.3 ([HBS66, Thm. 3.4.3], [Bou72, Ch. III, §1, Propositions 10
and 11]). Suppose G is a complex Lie group and K is a normal complex
Lie subgroup of G. Then the group G/K has a unique structure of complex
manifold, such that the quotient map π : G → G/K is a submersion.3 With
this structure, G/K is a complex Lie group and p is a left principal K-bundle
under the natural left group action K × G → G defined by (k, g) 7→ kg. In
particular, every surjective morphism of complex Lie groups is open.

We recall that principal bundles are classified by the first sheaf cohomology,
in the following way. Let X (resp. B) be a complex manifold (resp.
commutative complex Lie group). Let S be the set of isomorphism classes
of principal B-bundles4 over X. Define a map

Ψ : S → H1(X,BX) (F.1)

as follows. For every [p : P → X] ∈ S, there exists an open cover {Ui}i∈I
of X and a family of local trivializations fi : Ui × B → p−1(Ui) for every
i ∈ I. For any indices i, j ∈ I and every x ∈ Ui ∩ Uj , there exists a unique
element bij(x) ∈ B such that bij(x) · fi(y) = fj(y) for all y ∈ p−1(x). Hence
a morphism bij : Ui ∩ Uj → B of complex manifolds. Moreover, for any
indices i, j, k ∈ I and every x ∈ Ui ∩ Uj ∩ Uk, they satisfy the 1-cocycle
relation bij(x) + bjk(x) + bki(x) = 0. Thus, the family {bij}i,j∈I defines an
element Ψ(p) of H1(X,BX).

As per [HBS66, 3.2 b), p.41], the map Ψ is bijective. The structure of
abelian group on H1(X,BX) is translated to S via Ψ. The zero element of
S is the class of the trivial principal B-bundle. For every pair [p1 : P1 → X]
and [p2 : P2 → X] in S, by taking a family of trivialization for each pi, we
can define a morphism ϕ : P1 ×X P2 → P1 + P2 of principal B-bundles on
X such that or every b, b′ ∈ B, u ∈ P1, v ∈ P2 with p1(u) = p2(v), one has

ϕ(b · u, b′ · v) = (b+ b′) · ϕ(u, v). (F.2)

In particular, ϕ is surjective. Restricted to the fiber at some x ∈ X, ϕ is
induced by the group law of B and the chosen trivializations.

We need a complex version of Cartan’s subgroup theorem. Notice that a
real analytic closed subgroup of a complex Lie group may not be a complex
analytic subset.

3in the sense of [Bou07, 5.9.1]
4Here B is commutative, so it is unnecessary to specify the principal bundle to be left or

right.
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Lemma F.2.0.4 ([Bjö93, p.513]). Let X be a complex manifold, Y ⊂ X be
a complex analytic subset. If p ∈ Y is a smooth point of Y , then near p, the
subset Y is an embedded complex submanifold of X.

Proof. As the problem is local, we may assume that X is an open subset
Cn, there exist f1, . . . , fm ∈ OX(X) with OX,p/(f1, . . . , fm) = OY,p and
Y = Z(f1, . . . , fm). Let r = rankp(f1, . . . , fm). By reordering subscripts, one
may assume

det(
∂fi
∂zj

)1≤i,j≤r ̸= 0.

Then (f1, . . . , fr) : X → Cr is a holomorphic submersion near p. Therefore,
near p, the subset Z(f1, . . . , fr) is an embedded complex submanifold of X
of dimension n− r. By the Jacobian criterion (see, e.g., [GR84, p.114]), one
has embpY = n − r. By the criterion of smoothness ([GR84, p.116]), one
has dimp Y = n − r. Now that Y ⊂ Z(f1, . . . , fr), near p the subset Y is an
irreducible component of Z(f1, . . . , fr), hence also an embedded complex
submanifold of X.

Corollary F.2.0.5 contains [Lee01, Prop. 1.23] as a special case.

Corollary F.2.0.5 (Complex Cartan subgroup theorem). Let G be a complex
Lie group, and let H be a subgroup that is a complex analytic subset of G. Then
H is a complex Lie subgroup of G.

Proof. Endow H with the induced structure of reduced complex analytic
space. By [GR84, p.117], the complex analytic space H has a smooth point
p. For every q ∈ H, the left multiplication by qp−1 gives a biholomorphic
map G → G, which sends H to H and maps p to q. Therefore, q is also a
smooth point of H. By Lemma F.2.0.4, H is a complex submanifold of G
near q for all q ∈ H. Thus, H is a complex submanifold of G and hence a
complex Lie subgroup.

In Lemma F.2.0.6, if G is furthermore connected, then the result of is
contained in [Bou72, Ch.III, Sec. 6, no. 4, Cor. 4].

Lemma F.2.0.6. Let G be a complex Lie group. Then the center Z(G) is a
complex Lie subgroup of G.

Proof. The holomorphic map G × G → G defined by (x, y) 7→ yxy−1 is a
group action of G on itself. By [Bou72, Ch. III, Sec. 1, no. 7, Prop. 14], for
every x ∈ G, the stabilizer CG(x) of x ∈ G is a complex Lie subgroup of G.
Therefore, so is Z(G) = ∩x∈GCG(x) by [HN11, Exercise 15.1.3 (a)].

A complex Lie group isomorphic to a complex Lie subgroup of GLn(C)
for some integer n ≥ 1 is called linear. Proposition F.2.0.7, due to
Matsushima and Morimoto, is a characterization of commutative linear
complex Lie groups.
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Proposition F.2.0.7. Let B be a connected commutative complex Lie group.
Then the following conditions are equivalent:

1. B is isomorphic to Cm × (C∗)n for some integers m,n ≥ 0;

2. the complex Lie group B is linear;

3. B is a Stein group (i.e., the underlying complex manifold is a Stein
manifold).

In that case, the pair (m,n) is unique.

Proof. See [HN11, Exercise 15.3.1] for the fact that 1 implies 2. Since
GLn(C) is a Stein manifold, 2 implies 3. As per [MM60, Proposition
4], 3 implies 1. The uniqueness is contained in the Remmert-Morimoto
decomposition (see, e.g., [AK01, Thm. 1.1.5]).

Remark F.2.0.8. The commutativity of B in Proposition F.2.0.7 is important.
In fact, there is a connected Stein group that is not linear ([Ari19, Sec. 1]).
This differs from the algebraic case where every algebraic group that is an
affine variety is linear ([Mil17a, Cor. 4.10]).

In some sense, Definition F.2.0.9 is an antipode to Stein groups.

Definition F.2.0.9. A connected complex Lie group on which every holomorphic
function is constant is called a toroidal group.5

Complex tori are toroidal groups, but there exist toroidal groups that are
not compact ([AK01, p.1]). Every toroidal group is a semi-torus in the sense
of [NW13, Def. 5.1.5].

By [AK01, 1.1.5], every connected commutative complex Lie group G
is uniquely isomorphic to Cl × (C∗)m × X with a toroidal group X. In
particular, G can be presented as an extension of a complex torus by a
connected linear group. (From [NW13, pp.169-170], a semi-torus can admit
nonequivalent presentations, while semiabelian varieties admit exactly one
algebraic presentation.)

F.3 Group extensions

Given a surjective Lie group morphism p : E → Q, by Fact F.2.0.1, K :=
ker(p) is a normal Lie subgroup of E and the induced morphism E/K → Q
is an isomorphism. We write it as

1→ K
i→ E

p→ Q→ 1 (F.3)
5also known as a Cousin group
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and call it a short exact sequence. In that case, E is called an extension of
the base Q by the extension kernel K. Moreover, dep : L(E) → L(Q) is
surjective of kernel L(K), hence an extension of Lie algebras

0→ L(K)→ L(E)
dep→ L(Q)→ 0.

When K ⊂ Z(E), such an extension is called central. If (F.3) is a central
extension with Q commutative, as in [MRM74, p.222], using Fact F.2.0.3
one can construct a skew-symmetric bimorphism

e : Q×Q→ K, (F.4)

to measure the deviation of E from commutativity. Indeed, the group E is
commutative if and only if e is constant.

Several topological properties of Lie groups are preserved by extensions.

Fact F.3.0.1. If K,Q in (F.3) are compact (resp.connected, resp. discrete),
then so is E.

Proof. The statement concerning connectedness is in [Che46, Prop. 2, p.36].
The others are consequences of Fact F.2.0.3.

Fact F.3.0.2 ([HN11, Cor. 16.3.9]). If (F.3) is a central extension of complex
Lie groups, where K is finite and E is connected, then Q is linear if and only if
E is linear.

The finiteness of K in Fact F.3.0.2 is necessary. Consider the exact
sequence 0 → Z2 → C → A → 0 defining a complex torus A. Here Z2

and C are linear, while A is not.
Similarly, an extension E of a finite group Q by a linear group K is

linear. Indeed, let ρ : K → GLn(C) be a faithful representation, then the
induced representation IndEK ρ : E → GLmn(C) is also faithful, where m =
#Q. Again, the finiteness of Q is essential here. Example F.3.0.3 shows the
statement fails when Q is only discrete and linear but infinite.

Example F.3.0.3. Work of Deligne [Del78] (see also [KRW20, p.470])
shows that for any integers g ≥ 2, n ≥ 3, there is a central extension
1 → Z/n → G → Sp2g(Z) → 1 for which G is not residually finite. By
Malcev’s theorem ([Mal40, Thm. VII]; see also [Nic13, p.1]), the discrete
complex Lie group G is not linear, even though Z/n and Sp2g(Z) are linear.

We turn to the classification of extensions. Two Lie group extensions C
and C ′ of B by A are called equivalent if there exists a morphism f : C → C ′

making a commutative diagram

0 B C A 0

0 B C ′ A 0.

Id f Id
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In this case, f is bijective, hence an isomorphism by Fact F.2.0.1. The trivial
extension of Q by K refers to the equivalence class of the obvious sequence

1→ K → K ×Q→ Q→ 1.

Fact F.3.0.4 ([Bou72, Ch.III, no.4, Prop. 8]). The Lie group extension (F.3)
is trivial if and only if there is a morphism r : E → K with ri = IdK . The
extension is a semidirect product if and only if there is a morphism s : Q→ E
with ps = IdQ.

The extension (F.3) defines a group morphism ψ : Q → Out(K), called
the outer action corresponding to the extension. We call (K,ψ) the extension
kernel of (F.3). Equivalent extensions induce the same outer action. For two
complex Lie groups Q,K and a group morphism ψ : Q → Out(K), denote
by Ext(Q,K,ψ) the set of equivalence classes of extensions of Q by K with
outer action ψ.

Since the center Z(K) is a characteristic complex Lie subgroup of K by
Lemma F.2.0.6, there is a canonical group morphism Aut(K)→ Aut(Z(K))
which passes to another group morphism Out(K) → Aut(Z(K)). Hence a
group morphism

ψ0 : Q→ Aut(Z(K)) (F.5)

induced by ψ. When K is commutative, ψ = ψ0 and the construction of Baer
sum ((F.42) and [FLA19, p.444]) makes Ext(Q,K,ψ) an abelian group.

F.3.1 Pullback and pushout

Extensions can be pulled back.

Example F.3.1.1 (Pullback). Given a morphism g : Q′ → Q of complex Lie
groups, pulling (F.3) back along g gives an extension of Q′ by K as follows.

The map E × Q′ → Q defined by (x, h′) 7→ p(x)−1g(h′) is holomorphic,
so the preimage E′ of the identity element eQ ∈ Q is an analytic subset of
E ×Q′. As E′ = {(x, h′) ∈ E ×Q′ : p(x) = g(h′)} is a subgroup of E ×Q′,
by Corollary F.2.0.5, E′ is a complex Lie subgroup of E × Q′ (which is the
extension group). Let p′ : E′ → Q′ and ϵ : E′ → E be the projections. Then
the triple (E′, ϵ, p′) is the fiber product E ×Q Q′ in the category of complex
Lie groups.

For every h′ ∈ Q′, by surjectivity of p, there is x ∈ E with p(x) = g(h′).
Then (x, h′) ∈ E′ with p′(x, h′) = h′. Hence p′ is surjective.

Define a morphism i′ : K → E′ by i′(k) = (k, eQ′). Then i′ is injective.
Since p′i′ is trivial, i′(K) ⊂ ker(p′). Conversely, for every (x, h′) ∈ ker(p′),
h′ = eQ′ and p(x) = g(eQ′) = eQ. Thus, x ∈ K and (x, h′) = i′(x) ∈ i′(K).
Hence a commutative diagram with exact rows
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1 K E′ Q′ 1

1 K E Q 1.

i′

Id

p′

ϵ g

i
p

The first row is called the pullback extension of (F.3) along g. Its outer
action is ψg : Q′ → Out(K). Hence a map Ext(Q,K,ψ) → Ext(Q′,K, ψg).
It is a group morphism when K is commutative ([Hoc51a, p.99]).

The universal property of pullback shows that the first row of every such
commutative diagram is determined by the second row and g : Q′ → Q. By
construction, the pullback of a central extension is also central.

A pushout extension along a morphism f : K → K ′ of complex Lie
groups may not exist. When it exists, it satisfies a universal property.

Lemma F.3.1.2. Consider a commutative diagram of complex Lie groups,
where each row is exact

1 K E Q ‘

1 K ′ E′ Q 1.

f

p

m Id

ι π

(F.6)

Then the triple (E′,m, ι) has the following universal property: For every
commutative diagram of complex Lie groups

K E

K ′ E′

H

i

f

ϕ

m

ψ

ι

η

with ψ(m(c)−1bm(c)) = ϕ(c)−1ψ(b)ϕ(c) for every c ∈ E and b ∈ K ′, there
exists a unique morphism η : E′ → H keeping the diagram commutative.

In particular, up to a unique equivalence, the second row of (F.6) has at
most one choice when the first row and f : K → K ′ are given.

Proof. We construct a map η : E′ → H as follows. For every c′ ∈ E′, there
exists c ∈ E with p(c) = π(c′). Let b′ = m(c)−1c′. Then π(b′) = p(c)−1π(c′) =
eQ, so b′ ∈ K ′. Define η(c′) = ϕ(c)ψ(b′).

To show that η is well-defined, we claim that η(c′) is independent of the
choice of c. Indeed, take another c1 ∈ E with p(c1) = π(c′), then p(c−1c1) =
eQ, hence c−1c1 ∈ K. This time the element in K ′ is b′1 = m(c1)

−1c′, so b′ =
f(c−1c1)b

′
1 in K ′ and hence ψ(b′) = ϕ(c−1c1)ψ(b

′
1). Therefore, ϕ(c)ψ(b′) =

ϕ(c1)ψ(b
′
1) in H as claimed.
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We check that η is holomorphic near c′ ∈ E′. Indeed, by Fact F.2.0.3,
there is an open neighborhood U of π(c′) ∈ Q, and a holomorphic map
s : U → E with ps = IdU . The map

π−1(U)→ U ×K ′, x 7→ (π(x), [msπ(x)]−1x)

is biholomorphic. The map

U ×K ′ → H, (u, b′) 7→ ϕ(s(u))ψ(b′)

is holomorphic. The composition is exactly η|π−1(U).
We check that η is a group morphism. For c′i ∈ E′ (i = 1, 2), choose ci ∈

E with p(ci) = π(c′i). Then for c′1c
′
2 we can choose c1c2. Let b′1 = m(c1)

−1c′1
and b′2 = m(c2)

−1c′2. Then

b′ := m(c1c2)
−1c′1c

′
2 = m(c2)

−1b′1m(c2)b
′
2.

By the construction of η, one has

η(c′1c
′
2) = ϕ(c1c2)ψ(b

′)

=ϕ(c1)ϕ(c2)ψ[m(c2)
−1b′1m(c2)]ψ(b

′
2)

=ϕ(c1)ψ(b
′
1)ϕ(c2)ψ(b

′
2) = η(c′1)η(c

′
2)

Then η is a morphism of complex Lie groups. By construction, η is the
unique group morphism keeping the diagram commutative.

Example F.3.1.3. Assume that Q is connected. As the map p : E → Q in
(F.3) is open by Fact F.2.0.3, p(E0) is a nonempty open subgroup of Q and
hence p(E0) = Q by the connectedness of Q. Then the following diagram is
commutative and each row is exact

1 K ∩ E0 E0 Q 1

1 K E Q 1

Id

By Lemma F.3.1.2, the second row is determined by the inclusion K ∩E0 →
K (an open normal subgroup) and the first row.

F.3.2 Rudimentary classification

Let K,Q be complex Lie groups, where Q is discrete. Consider an abstract
group extension 1 → K → E → Q → 1. Then as a set E = ⊔xxK, where x
runs through a set of left representatives of E/K. Thus E admits a unique
complex manifold structure making the maps holomorphic. However, the
group law of E needs not to be holomorphic in this complex structure. The
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semidirect product sequence 1 → C → C ⋊ Z/2 → Z/2 → 1 serves as an
example, where Z/2 acts on C by complex conjugation. But when the base
is discrete and the outer action is trivial, the Lie group extension problem
reduces to the abstract group extension problem.

Proposition F.3.2.1. Let K,Q be complex Lie groups. If Q is discrete, then
the natural forgetful map ϕ : Ext(Q,K, 1) → ExtAbs(Q,K, 1) is bijective,
where ExtAbs(Q,K, 1) denotes the set of isomorphism classes of abstract group
extensions of Q by K with trivial outer action. In fact, for every abstract group
extension 1 → K → E → Q → 1, E admits a unique complex manifold
structure making the sequence an extension of complex Lie groups.

Proof. We prove that ϕ is injective. Consider E1, E2 ∈ Ext(Q,K, 1) with
ϕ(E1) = ϕ(E2). Then there is an abstract group isomorphism f : E1 → E2

making a commutative diagram

K E1

E2.

f

For every x ∈ E1, the restriction xK → f(x)K of f is holomorphic, since
the left multiplication K → xK (resp. K → f(x)K) by x (resp. f(x))
in E1 (resp. E2) is biholomorphic. Thus, f is holomorphic and hence an
equivalence of complex Lie group extensions.

We prove that ϕ is surjective. Given an abstract group extension
1 → K → E → Q → 1 in ExtAbs(Q,K, 1), we endow E with the
complex structure making the maps holomorphic. We show the group law
m : E × E → E is holomorphic. Choose a set-theoretic section s : Q → E.
Then the map K ×Q→ E defined by (a, b) 7→ as(b) is biholomorphic. With
this identification, m becomes the map

µ : K ×Q×K ×Q→ K ×Q, (a, b, a′, b′) 7→ (as(b)a′s(b′)s(bb′)−1, bb′) = (aρ(a′)s(b)s(b′))s(bb′)−1, bb′),

where ρ : K → K is x 7→ s(b)xs(b)−1. Since the outer action is trivial,
ρ ∈ Inn(K). Therefore, the map K ×K → K defined by (a, a′) 7→ aρ(a′) is
holomorphic. Because Q is discrete, µ (and hence m) is holomorphic. Then
E is a complex Lie group and the abstract extension lifts to Ext(Q,K, 1).

Corollary F.7.2.6 below is a result about discrete base with nontrivial
outer action. We turn to two other simple cases.

Proposition F.3.2.2. Every extension of C is a semidirect product. In
particular, every central extension of C trivial.

Proof. Let 0 → B → C
p→ C → 0 be an extension. Then 0 → L(B) →

L(C)
dep→ L(C)→ 0 is an exact sequence of Lie algebras. Take a C-linear map
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ds : L(C)→ L(C) with dep◦ds = IdL(C). Because dimC L(C) = 1, ds is a Lie
algebra morphism. As C is simply connected, there is a unique morphism
s : C → C with des = ds. Since de(ps) = IdL(C), one has ps = IdC.
Therefore, this extension is a semidirect product by Fact F.3.0.4.

Proposition F.3.2.3. Let B be a connected commutative complex Lie group.
Then every central extension of C∗ by B is trivial.

Proof. Let C be a central extension of C∗ by B. Consider the pullback
extension along exp(2πi•) : C → C∗. By Proposition F.3.2.2, there is a
morphism ρ : C → C ′ with p′ρ = IdC. Then pϵρ(1) = exp(2πi) = 1,
so ϵρ(1) ∈ B. As B is connected commutative, its exponential map
expB : L(B)→ B is surjective. Take v ∈ L(B) with expB(−v) = ϵρ(1).

Z

1 B C ′ C 0

1 B C C∗ 1

Id

p′

ϵ exp(2πi•)

ρ

p

Define a holomorphic map

ρ′ : C→ C ′, ρ′(z) = expB(zv)ρ(v).

We check that ρ′ is a group morphism. For every z, w ∈ C,

ρ′(z + w) = expB((z + w)v)ρ(z + w) = expB(zv) expB(wv)ρ(z)ρ(w)

= expB(zv)ρ(z) expB(wv)ρ(w) = ρ′(z)ρ′(w),

where the last but one equality uses B ⊂ Z(C).
Therefore, ρ′ is a complex Lie group morphism. Moreover, ρ′(1) =

expB(v)ρ(1) = ϵρ(−1)ρ(1). Then ϵρ′(1) = eC . Therefore, ρ′(Z) ⊂ ker(ϵ).
Thus, ρ′ induces a morphism s : C∗ → C making a commutative diagram

C C ′ C

C∗ C C∗

ρ′

exp(2πi•)

p′

ϵ exp(2πi•)

s p

Since p′ρ′ = IdC and exp(2πi•) : C→ C∗ is surjective, ps = IdC∗ . From Fact
F.3.0.4, the extension C is trivial.

Example F.7.1.7 gives a result about non-central extensions of C∗.
Now assume that the Lie group K is discrete and commutative. We recall

results6 from [Hoc51b, Sec. 3].
6They are stated for real Lie groups, but the proofs extend to the complex setting.
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Fact F.3.2.4 ([Hoc51b, p.545]). Let K,Q be Lie groups. If K is discrete
commutative and Q is connected, then the extension (F.3) of Lie groups is
central.

Corollary F.3.2.5. Let K,Q be commutative Lie groups. If Q is connected and
K is discrete, then every extension of Q by K is commutative.

Proof. Let (F.3) be such an extension. By Fact F.3.2.4, this extension is
central. Then consider the induced continuous map (F.4). Since Q is
connected and K is discrete, this map is constant, or equivalently, E is
commutative.

Let Abc be the abelian category of abelian groups that are at most
countable. Fact F.3.2.6 shows that the universal cover of a connected Lie
group is “universal" among all the extensions with discrete commutative
kernels.

Fact F.3.2.6 (Hochschild, [Hoc51b, Thm. 3.2 and Cor.]). Let Q be a
connected Lie group. Then the functor Ext(Q, ·, 1) : Abc → Ab is represented
by π1(Q) and the class of the universal cover sequence 1 → π1(Q) → Q̃ →
Q → 1 in Ext(Q, π1(Q), 1). Hence an isomorphism ΓK : Ext(Q,K, 1) →
HomAb(π1(Q),K) functorial in K ∈ Abc. Moreover, E ∈ Ext(Q,K, 1) is
connected if and only if ΓK(E) is surjective.

F.4 Commutative Extensions

F.4.1 Generalities

Lemma F.4.1.1. The category C is naturally additive with finite direct
products.

Proof. The Hom sets are commutative groups, and composition of morphisms
is bilinear. Moreover, the product G1 ×G2 of two commutative complex Lie
groups is both a product and a coproduct of G1 and G2 in C.

Although the category Alg of commutative complex algebraic groups is
an abelian category ([Mil17a, Thm. 5.62]), as Example F.4.1.2 and Example
F.4.1.3 show, C is NOT an abelian category.

Example F.4.1.2. The map i : Z2 → C defined by (a, b) 7→ a + b
√
2 is

injective. The image is not closed in C as it is dense in R. For every
morphism f : C→ X in C, with fi = 0, we have f = 0 by identity theorem
for holomorphic maps. Thus i is a monomorphism and epimorphism in C,
but not an isomorphism.
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Example F.4.1.3. Let p : C2 → C2/Z4 be the natural projection. Let i : C→
C2 be the closed embedding defined by z 7→ (z,

√
2z). Then the composition

pi : C → C2/Z4 is an injective morphism (hence a monomorphism) in C.
By [Lee13, Example 7.19], pi(C) is a connected dense subset of C2/Z4.
In particular, pi is an epimorphism in C. The cokernel of pi is the zero
morphism C2/Z4 → 0. However, pi is not an isomorphism in C.

Proposition F.4.1.4 3 is a special case of [Con14, Prop. D.2.1]. An
elementary proof is given.

Proposition F.4.1.4.

1. HomC(C∗,C) = 0.

2. For A ∈ C, the map

HomC(Cn, A)→ HomVec(L(Cn), L(A)), f 7→ def

is a group isomorphism.

3. Let f : C∗ → C∗ be a morphism in C. Then there is an integer k such that
f(z) = zk for every z ∈ C∗. Hence an isomorphism Z = HomC(C∗,C∗).

Proof. The Lie algebra of C∗ is C. The exponential map exp : C → C∗ is
normalized as w 7→ e2πiw.

1. Let f : C∗ → C be a morphism. Then def : C → C is linear. There
is a ∈ C with def(v) = av for all v ∈ C. Since 1 ∈ C = L(C∗)
is mapped to 1 ∈ C∗ under the exponential map exp(2πi•), one has
0 = f(1) = def(1) = a. Then def = 0 and f = 0.

2. It follows from the fact that Cn is simply connected and both groups
are commutative.

3. Consider the induced linear map on Lie algebras df : C→ C. There is
a unique complex number k such that df(w) = kw for all w ∈ C. Then

e2πik = exp(df(1)) = f exp(1) = f(1) = 1.

Therefore, k is an integer. For every z ∈ C∗, there is w ∈ C with
exp(w) = z. Then f(z) = f(exp(w)) = exp df(w) = exp(kw) = zk.

For A,B ∈ C, the set of isomorphism classes of commutative extensions
of A by B is denoted by Ext(A,B).

Proposition F.4.1.5.

1. Ext(•, •) : Cop × C → Set is a covariant functor.
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2. Let E be the collection of extensions in C. Then the pair (C, E) is an exact
category.7

Proof. 1. Fix A,B ∈ C and an element of Ext(A,B): 0 → B
i→ C

p→
A→ 0.

(a) If f : B → B′ is a morphism in C, then

g : B → C ×B′, b 7→ (−b, f(b))

is a morphism in C. It is injective and the (set-theoretic) image is
closed in C×B′. By Fact F.2.0.1 2, g identifies B as a complex Lie
subgroup of C×B′. Let f∗C be the quotient (C×B′)/B provided
by Fact F.2.0.3. The canonical map B′ → C × B′ induces an
injective morphism f∗i : B

′ → f∗C since B ∩ ({0} × B′) = {0}.
Moreover, B is in the kernel of the composition C × B′ → A by
(c, β) 7→ p(c), hence a surjective morphism f∗p : f∗C → A.
Note that f∗p ◦ f∗i = 0, so f∗i(B′) ⊂ ker(f∗p). For every element
x of ker(f∗p), take a representative (c, β) ∈ C × B′. As p(c) = 0,
c ∈ B. Then (0, β + f(c))− (c, β) = g(c). Therefore,

x = [(0, β + f(c))] = f∗i(β + f(c)) ∈ f∗(B′).

Thus, f∗i(B′) = ker(f∗p)

Therefore, the sequence

0→ B′ f∗i→ f∗C
f∗p→ A→ 0

is exact and f∗C ∈ Ext(A,B′). Hence a morphism f∗ :
Ext(A,B)→ Ext(A,B′) in the category Set.
Let F be the canonical morphism C → f∗C. By construction, the
extension f∗C ∈ Ext(A,B′) has the following universal property:
for every morphism h : A → A′ in C, every C ′ ∈ Ext(A′, B′),
every morphism G : C → C ′ making the diagram commutative

0 B C A 0

0 B′ f∗C A 0

0 B′ C ′ A′ 0,

f F

G

Id

Id u h

(F.7)

there exists a unique morphism u : f∗C → C ′ keeping the
diagram commutative.

7see [Sta24, Tag 05SF]
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(b) If h : A′ → A is a morphism in C, by Example F.3.1.1, we get a
morphism h∗ : Ext(A,B) → Ext(A′, B) in the category Set. Let
F be the canonical projection h∗C → C. By construction, the
extension g∗C has the following universal property: for every
morphism g : B′ → B, every extension C ′ ∈ Ext(A′, B′),
every morphism G : C ′ → C making the following diagram
commutative

0 B′ C ′ A′ 0

0 B h∗C A′ 0

0 B C A 0,

g v

G

Id

Id F h

(F.8)

there exits a unique morphism v : C ′ → h∗C keeping the diagram
commutative.

(c) Let f : B → B′, g : A → A′ be morphisms in C, C ∈ Ext(A,B),
andC ′ ∈ Ext(A′, B′). Then the relation f∗C = g∗C ′ in Ext(A,B′)
is equivalent to the existence of a morphism F : C → C ′ making
a commutative diagram

0 B C A 0

0 B′ C ′ A′ 0.

f F g

Indeed, it follows from the universal properties in Points (1a) and
(1b). For every X ∈ Ext(A′, B), in view of the diagram

0 B g∗X A 0

0 B X A′ 0

0 B′ f∗X A′ 0,

Id g

f Id

one has f∗g∗X = g∗f∗X. This completes the proof.

2. It follows from Point 1 and Lemma F.4.1.1.

Example F.4.1.6. If A is a complex torus with dimA = g, B is the discrete
group Q/Z, then Ext(A,B) is isomorphic to B2g by Fact F.3.2.6. Even
though B is an injective object of Ab, the functor Ext(·, B) : Cop → Ab
is nonzero.
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Example F.4.1.7. For an extension 0→ B
i→ C

p→ A→ 0 in C, the pushout
i∗C ∈ Ext(A,C) is the trivial extension. In fact, i∗C = C × C/B with the
embedding

B → C × C, b 7→ (−b, b).

The group law C × C → C descents to a morphism r : i∗C → C. Then
r ◦ i∗(i) = IdC . By Fact F.3.0.4, i∗C is trivial.

Similarly, as the diagonal inclusion C → C × C factors through a
morphism s : C → p∗C and p∗(p) ◦ s = IdC , the pullback p∗C ∈ Ext(C,B)
is also trivial.

Fact F.4.1.8 follows from Proposition F.4.1.5.

Fact F.4.1.8 ([Ros58, Prop. 5], [Ser88, Prop. 1, p.163]). 1. For everyA,B ∈
C, under the Baer sum Ext(A,B) is an abelian subgroup of Ext(A,B, 1).

2. The functor Ext(•, •) : Cop × C → Ab is an additive bifunctor.

3. For any C,C ′ ∈ Ext(A,B), the product C × C ′ is naturally an element
of Ext(A×A,B ×B).

4. Let d : A→ A×A the diagonal map of A and s : B×B → B the group
law of B. Then C + C ′ = d∗s∗(C × C ′) in Ext(A,B).

Corollary F.4.1.9. For every commutative complex Lie group A, the restriction
Ext(A, ·) : Vec→ Ab factors through a functor from Vec to the category of all
complex vector spaces.

By Example F.4.3.3 below, for every V ∈ Vec, dimC Ext(A, V ) is finite.
Hence an additive functor Ext(A, ·) : Vec→ Vec.

Example F.4.1.10. Endowing each object of Abc the discrete topology
gives a functor Abc → C, identifying Abc as a full subcategory of C. The
subcategory Abc is closed under extension by Fact F.3.0.1. From Proposition
F.3.2.1, the forgetful natural transformation Ext(−,+) → Ext1Z(−,+) is an
isomorphism of functors Abopc × C → Ab.

Example F.4.1.11. Analytification functor (•)an : Alg → C identifies Alg
as a subcategory of C (which is not full). The extension problem within
the subcategory Alg is discussed by Rosenlicht [Ros58] and Serre [Ser88,
Ch. VII]. They define a similar additive functor ExtAlg : Algop × Alg →
Ab. For every A,B ∈ Alg, there is a natural morphism ExtAlg(A,B) →
Ext(Aan, Ban). In general, this morphism is neither injective nor surjective.

By [MM66, Introduction, 1.], when A is a complex abelian variety, one
hasExtAlg(Ga, A) = 0 while ExtAlg(Gm, A) is (non-canonically) isomorphic
to the torsion subgroup Ator of A. But Ext(C∗, Aan) = 0 by Proposition
F.3.2.3, so the natural morphism ExtAlg(Gm, A) → Ext(C∗, Aan) is not
injective.
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For any two complex abelian varieties Xi (i = 1, 2) of positive
dimension, ExtAlg(X2, X1) is countable while Ext(Xan

2 , Xan
1 ) is uncountable.

In fact, the natural morphism ExtAlg(X2, X1) → Ext(Xan
2 , Xan

1 ) is an
embedding onto the torsion subgroup of Ext(Xan

2 , Xan
1 ) ([BL99, Ch. 1;

Prop. 6.1, Cor. 6.3]).

Lemma F.4.1.12 is mentioned at the bottom of [Hoc51b, p.546].

Lemma F.4.1.12. If G is a commutative connected Lie group, then G is a
divisible Z-module.

Proof. The exponential map exp : L(G)→ G is surjective. For every x ∈ G,
there is v ∈ L(G) with exp(v) = x. For every integer n ≥ 1, exp(v/n) ∈ G
and n(exp(v/n)) = x.

Corollary F.4.1.13. An extension 0 → B → C → A → 0 in C with B
connected and A discrete is trivial. In particular, for every G ∈ C, the natural
exact sequence

0→ G0 → G→ G/G0 → 0

is a trivial extension, hence a non-canonical isomorphism G→ G0 ×G/G0 in
C.

Proof. By Lemma F.4.1.12, the Z-module B is divisible, so the functor
Ext1Z(·, B) : Ab → Ab is zero. Since A is discrete, the result follows from
Example F.4.1.10.

Example F.4.1.14. The abelian group underlying a complex torus B
is divisible by Lemma F.4.1.12, hence an injective object of Ab and
Ext1Z(•, B) : Ab → Ab is zero. However, Ext(•, B) : Cop → Ab can be
nonzero. In fact, [BL04, (8) b), p.68] gives an example of a nontrivial exact
sequence of complex tori

0→ B → C → A→ 0

with dimA = dimB = 1.

F.4.2 Exact sequences of Ext

Let 0→ A′ i→ A
p→ A′′ → 0 be an exact sequence in C, i.e., A ∈ Ext(A′′, A′).

For f ∈ Hom(A′, B), there is f∗A ∈ Ext(A′′, B). Hence a map

d : Hom(A′, B)→ Ext(A′′, B), d(f) = f∗A.

Then d is a group morphism. The formation of d is functorial in B.
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Proposition F.4.2.1. Let B ∈ C. The sequence in Ab with obvious morphisms

0→ HomC(A
′′, B)→ HomC(A,B)→ HomC(A

′, B)
d→ Ext(A′′, B)

p∗→ Ext(A,B)→ Ext(A′, B)

is exact and functorial in B.

Proof.

• Exactness at Hom(A,B) follows from Fact F.2.0.1.

• Exactness at Hom(A′, B): By Example F.4.1.7, the composition

Hom(A,B)
i∗→ Hom(A′, B)→ Ext(A′′, B)

is zero. Now take ϕ ∈ ker(d). By Fact F.3.0.4, there is a morphism
r : ϕ∗A → B with rϕ∗(i) = IdB. Let F : A → ϕ∗A be the canonical
morphism. Then rF i = rϕ∗(i)ϕ = ϕ. Hence ϕ ∈ im(i∗).

• Exactness at Ext(A′′, B): By Example F.4.1.7, for every ϕ ∈ Hom(A′, B),
p∗dϕ = p∗ϕ∗A = ϕ∗p

∗A = 0, i.e., the composition

Hom(A′, B)
d→ Ext(A′′, B)

p∗→ Ext(A,B)

is zero.

Now take C ∈ ker(p∗) ⊂ Ext(A′′, B) with connecting morphisms f :
B → C and g : C → A′′. By Fact F.3.0.4, there is a morphism s :
A → p∗C with p∗(p) ◦ s = IdA. For every a′ ∈ A′, the image of s(a′)
in A′′ is p(a′) = 0, so the image of s(a′) in C lies in B. Thus, the
restriction of s to A′ is a morphism ϕ : A′ → B. By construction,
the extension group of d(ϕ) = ϕ∗A ∈ Ext(A′′, B) is A × B/D, where
D = {(−a′, ϕ(a′)) : a′ ∈ A′}.
Define ψ : A→ C by ψ = F ◦ s. Define

A×B → C, (a, b) 7→ ψ(a) + f(b).

For every a′ ∈ A′, ψ(−a′) + f(s(a′)) = 0, hence a factorization ϕ∗A→
C in the middle keeping the diagram commutative:

0 A′ A A′′ 0

0 B ϕ∗A A′′ 0

0 B C A′′ 0

0 B p∗C A 0.

i

ϕ

p

Id

ϕ∗i

Id Id

f

g

Id

p∗p

F p

s
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Then C = ϕ∗A = dϕ in Ext(A′′, B). Therefore, ker(p∗) = im(d).

• Exactness at Ext(A,B): As the composition A′ → A → A′′ is zero
and Ext(•, B) : Cop → Ab is an additive functor, the composition
Ext(A′′, B)→ Ext(A,B)→ Ext(A′, B) is zero.

Conversely, if C1 ∈ Ext(A,B) with i∗C1 = 0 in Ext(A′, B), then there
is a morphism s : A′ → i∗C1 with i∗g ◦ s = IdA′ . The composition
ϕ : A′ → C1 is injective. Indeed, if a′ ∈ ker(ϕ), then s(a′) = (a′, 0)
in A′ × C1. Thus, i(a′) = 0 by the construction of pullback extension.
Since i is injective, a′ = 0.

Let C1 → C = C1/ϕ(A
′) be the quotient morphism. Let f0 : B → C

be the induced morphism. Then f0 is injective. Indeed, if b ∈ ker(f0),
then f(b) = ϕ(a′) for some a′ ∈ A′. Then (a′, f(b)) ∈ i∗C1, so i(a′) =
gf(b) = 0. Hence a′ = 0 and f(b) = 0. Therefore, b = 0.

Because pgϕ = p ◦ i = 0, the morphism pg : C1 → A′′ descends to a
surjective morphism g0 : C → A′′. We prove that the bottom row of
the following diagram is exact:

0 B i∗C1 A′ 0

0 B C1 A 0

0 B C A′′ 0.

Id

i∗g

i

s

ϕ
f

Id

g

p

f0 g0

Since gf = 0, one has g0f0 = 0. Therefore, f0(B) ⊂ ker(g0).
Conversely, for c ∈ ker(g0), there is c1 ∈ C1 with [c1] = c. Since
pg(c1) = g0(c) = 0, one gets g(c1) ∈ A′. Then gϕg(c1) = gc1. So
c1 − ϕg(c1) ∈ ker(g) = B and

f0(c1 − ϕg(c1)) = [c1 − ϕg(c1)] = c.

Therefore, ker(g0) = f0(B). In particular, the bottom row is exact, i.e.,
C ∈ Ext(A′′, B). By the universal property showed in the diagram
(F.8), C1 = p∗C.

Example F.4.2.2. Let A be a complex torus, and let B be a finite abelian
group. Then HomC(A,B) = 0. Let integer n(≥ 1) be a multiple of #B.
Applying Proposition F.4.2.1 to the exact sequence in C

0→ A[n]→ A
[n]A→ A→ 0,
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one gets an exact sequence in Ab:

0→ Hom(A[n], B)→ Ext(A,B)
f→ Ext(A,B).

Since the morphism [n]B : B → B is zero in C, by Fact F.4.1.8, f = ([n]B)∗ =
0. Hence an isomorphism Hom(A[n], B) → Ext(A,B) that is functorial in
B, which is also confirmed by Fact F.3.2.6.

Let 0 → B′ → B → B′′ → 0 be an exact sequence in C. If A ∈ C and
ϕ ∈ Hom(A,B′′), then ϕ∗B ∈ Ext(A′, B). Define a map d : Hom(A,B′′) →
Ext(A,B′) by d(ϕ) = ϕ∗B.

Proposition F.4.2.3. Let 0 → B′ → B → B′′ → 0 be an exact sequence in C
and A ∈ C. Then the sequence

0→ Hom(A,B′)→ Hom(A,B)→ Hom(A,B′′)
d→ Ext(A,B′)→ Ext(A,B)→ Ext(A,B′′)

in Ab is exact and functorial in A.

The proof is analogous to that of Proposition F.4.2.1 and is thereby
omitted.

Consider the extension problem with connected bases. Corollary F.4.2.4
should be compared to [Sha49, Thm. 1]: for two compact connected real
Lie groups G,H, the cokernel of the restriction morphism Hom(H̃, Z(G))→
Hom(π1(H), Z(G)) is isomorphic to the group of extensions of H by G.

Corollary F.4.2.4. Let A,B be commutative complex Lie groups. Assume that
A is connected with universal cover ω : Ã→ A. Then there is a canonical exact
sequence in Ab:

0→ HomC(A,B)
·◦ω→ HomC(Ã, B)

r→ HomAb(π1(A), B)→ Ext(A,B)→ 0,
(F.9)

where r is induced by restriction.

Proof. By Proposition F.3.2.2, Fact F.3.2.6 and Corollary F.4.1.13, the
functor Ext(C, •) : C → Ab is zero. By Fact F.4.1.8,

Ext(Cn, •) = 0. (F.10)

The proof is concluded by Proposition F.4.2.1.

Example F.4.2.5. In Corollary F.4.2.4, if B discrete, then HomC(Ã, B) = 0
and the natural morphism Hom(π1(A), B)→ Ext(A,B) is an isomorphism,
which agrees with Fact F.3.2.6.
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F.4.3 Determination of commutative extension group

The commutative extension problem of complex Lie groups is answered by
Proposition F.4.3.1. Fix two commutative complex Lie groups A,B.

Proposition F.4.3.1. There is a non-canonical isomorphism in Ab:

Ext(A,B)→ Ext1Z(A/A0, B/B0)⊕HomAb(π1(A0), B/B0)⊕ Ext(A0, B0),

and Ext(A0, B0) is the cokernel of the natural restriction morphism

s : HomVec(L(A), L(B))→ HomAb(π1(A0), B0).

Proof. By Corollary F.4.1.13, there are non-canonical isomorphisms in C:
A → A/A0 × A0 and B → B/B0 × B0. Using Fact F.4.1.8, one gets an
isomorphism in Ab:

Ext(A,B)→ Ext(A/A0, B0)⊕Ext(A/A0, B/B0)⊕Ext(A0, B/B0)⊕Ext(A0, B0).

The first factor Ext(A/A0, B0) = 0 by Corollary F.4.1.13. By Example
F.4.1.10, the natural morphism Ext(A/A0, B/B0) → Ext1Z(A/A0, B/B0) is
an isomorphism. Fact F.3.2.6 gives a natural isomorphism HomAb(π1(A0), B/B0)→
Ext(A0, B/B0). Corollary F.4.2.4 identifies Ext(A0, B0) with the cokernel of
the restriction map r : HomC(Ã0, B0)→ HomAb(π1(A0), B0). By Proposition
F.4.1.4 2, the group morphism

t : HomC(Ã0, B0)→ HomVec(L(A), L(B)), ϕ 7→ deϕ

is an isomorphism. The proof is finished by setting s = rt−1.

For every C ∈ Ext(A,B), by Fact F.2.0.3, the morphism C → A is a
principal B-bundle. The bijection (F.1) gives rise to a canonical map

π : Ext(A,B)→ H1(A,BA). (F.11)

Fact F.4.3.2 is taken from [Ros58, pp.698-699] and the proof of [Ser88, Ch.
VII, no. 5, Prop. 5].

Fact F.4.3.2. The map (F.11) is a group morphism and the formation of π is
functorial, in the sense that it commutes with the morphisms f∗ : Ext(A,B)→
Ext(A,B′) defined by f : B → B′ and g∗ : Ext(A,B) → Ext(A′, B) defined
by g : A′ → A. When B is a vector group, the map π is C-linear.

Example F.4.3.3. Let X be a toroidal group, and let ω : X̃ → X be the
universal covering of kernel F . Then F is a discrete subgroup of the vector
space X̃. By Proposition F.4.2.1,

HomC(X,C)→ HomC(X̃,C)→ HomC(F,C)→ Ext(X,C)→ Ext(X̃,C)
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is an exact sequence in Ab. From Definition F.2.0.9, HomC(X,C) = 0. By
Proposition F.10, Ext(X̃,C) = 0. Hence the first exact row of Diagram
(F.12).

According to [AK01, p.48], there is a C-linear isomorphism HomC(X̃,C)→
H0(X,Ω1

X) and every global holomorphic 1-form on X is d-closed. So
taking de Rham cohomology class results in a linear map H0(X,Ω1

X) →
H1(X,C). The inclusion CX → OX induces a linear map H1(X,C) →
H1(X,OX). By universal coefficient theorem (see, e.g., [Hat05, Thm. 3.2]),
the natural morphism HomC(F,C)→ H1(X,C) is an isomorphism. Hence a
commutative diagram

0 HomC(X̃,C) HomC(F,C) Ext(X,C) 0

0 H0(X,Ω1
X) H1(X,C) H1(X,OX).

≃ ≃ (F.11)

(F.12)
Let b1(X) := dimCH

1(X,C) be the first Betti number of X, i.e., the Z-rank
of F . From [AK01, p.48], as a C-vector space

Ext(X,C) =
H1(X,C)
H0(X,Ω1

X)
(F.13)

is of dimension b1(X)− dimX.
If X is a toroidal theta group,8 then π : Ext(X,C) → H1(X,OX) is a

C-linear isomorphism by [AK01, Thm. 2.2.6 b)]. Otherwise, X is a toroidal
wild group8and H1(X,OX) is infinite dimensional by [AK01, Prop. 2.2.7].

A seemingly different way to compute the last factor in Proposition
F.4.3.1, i.e., the group of commutative extensions of two connected commutative
complex Lie groups, is given in Example F.4.3.4.

Example F.4.3.4. Start by the special case that X is a toroidal group and
B is a connected commutative complex Lie group. Denote the kernel of the
universal cover of B (resp. X) by ι : K → B̃ (resp. F → X̃). By (F.10) and
Proposition F.4.1.4 2, the sequence

0→ HomC(X̃,K)→ HomC(X̃, B̃)→ HomC(X̃, B)→ 0

is exact in Ab. As F is a free Z-module,

0→ HomC(F,K)→ HomC(F, B̃)→ HomC(F,B)→ 0

in Ab is also exact. Applying Proposition F.4.2.1 and the snake lemma to
the commutative diagram

8in the sense of [AK01, Def. 2.2.1]
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0 HomC(X̃,K) HomC(X̃, B̃) HomC(X̃, B) 0

0 HomC(F,K) HomC(F, B̃) HomC(F,B) 0,

one gets an exact sequence in Ab:

0→ HomC(X,B)
j→ Ext(X,K)

ι∗→ Ext(X, B̃)→ Ext(X,B)→ 0. (F.14)

SinceK is a free Z-module, by Fact F.3.2.6, Ext(X,K) = H1(X,Z)⊗ZK.
By Fact F.4.1.8 and (F.13), one has

Ext(X, B̃) =
H1(X,C)
H0(X,Ω1

X)
⊗C B̃.

The group morphism ι∗ is induced by the Z-bilinear map

H1(X,Z)×K → (
H1(X,C)
H0(X,Ω1

X)
)⊗C B̃, (η, x) 7→ [η]⊗ ι(x).

Thus we can compute Ext(X,B) from (F.14).
For a general connected commutative complex Lie group A, by [AK01,

1.1.5], A = Cl × (C∗)m × X0 for some integers l,m ≥ 0 and a toroidal
group X0. By Fact F.4.1.8, Proposition F.3.2.2 and Proposition F.3.2.3,
Ext(A,B) = Ext(X0, B), reducing to the previous case.

F.5 Commutative extensions of complex tori

F.5.1 Primitive cohomology classes

Every central extension of a compact real Lie group by a vector group is
trivial, shown by Fact F.5.1.1.

Fact F.5.1.1 (Iwasawa, [Iwa49, Lem. 3.7], [Hoc51a, Footnote 10, p.107]).
Let (F.3) be an exact sequence of real Lie groups. If K is a vector group and
Q is compact, then this extension is a semidirect product. In particular, if this
extension is central, then it is trivial.

Contrary to the real case, Example F.5.1.2 shows a commutative extension
of a complex torus by a vector group can be nontrivial.

Example F.5.1.2 ([MM60, p.145, Exemple], [lH76, Sec. I.3]). Set C =
C∗ × C∗. Then B = {(ez, eiz) : z ∈ C} is a complex Lie subgroup of C
(but not an algebraic subgroup of Gm ×Gm) isomorphic to C. The quotient
A = C/B is an elliptic curve. The exact sequence 0 → B → C → A → 0 is
a nontrivial extension, as C is not biholomorphic to B ×A.
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In the remainder of Section F.5, unless otherwise specified, let A be a
complex torus of dimension g and B be a commutative complex Lie group.
Let sA : A×A→ A be the group law of A. The dual of A is A∨ = Pic0(A).

The analogue of Proposition F.5.1.3 for abelian varieties is [Ros58,
Prop. 9].

Proposition F.5.1.3. The morphism (F.11) is injective.

Proof. Let C ∈ ker(π). The principal bundle C → A is trivial, so there is a
morphism s : A→ C of complex manifolds with ps = IdA. Then there exists
a unique b ∈ B with b · s(eA) = eC , where dot signifies the action of B on
the fiber p−1(eA). Define

s′ : A→ C, s(a) = b · s(a).

Then s′ is a complex manifold morphism with ps′ = IdA. Replacing s by s′,
we may suppose that s(eA) = eC . By [NW13, Thm. 5.1.36], s is a morphism
in C. By Fact F.3.0.4, C = 0 in Ext(A,B). Therefore, π is injective.

We propose to determine the image of (F.11). Let Mfd be the category
of complex manifolds. Define a functor

T : Mfdop → Ab, T (X) = H1(X,BX).

When X is a point, T (X) = 0. Let X1, X2 ∈ Mfd, and let pi : X1 ×X2 → Xi

(i = 1, 2) be the projection to the i-th factor. There is a morphism p∗1 ⊕ p∗2 :
T (X1)× T (X2)→ T (X1 ×X2).

Definition F.5.1.4. [Ser88, (29), no.14, Ch. VII] For A ∈ C, an element x ∈
T (A) = H1(A,BA) is called primitive if s∗A(x) = p∗1(x) + p∗2(x) in T (A×A).
Denote by PT(A) the subgroup of T (A) formed by the primitive elements.

Fact F.5.1.5 ([Ser88, Lem. 8, p.181]). The functor PT : Cop → Ab is
additive.

Theorem F.5.1.6 is an analytic analog of [Ser88, Thm. 5, p.181].

Theorem F.5.1.6. Assume that B0 is linear. Then the image of the morphism
(F.11) is the set of primitive elements of H1(A,BA).

Proof. Take C ∈ Ext(A,B) and put x = π(C). By Facts F.4.1.8 and F.4.3.2,

s∗A(x) = s∗Aπ(C) = πs∗A(C) = π(p∗1C+p∗2C) = p∗1π(C)+p
∗
2π(C) = p∗1x+p

∗
2x,

so x is primitive.
Conversely, let x ∈ H1(A,BA) be a primitive element and let p : C → A

be the corresponding principal B-bundle. We show that there exists a
structure of commutative complex Lie group on C which makes it an
extension of A by B.
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By Corollary F.4.1.13, every morphism of complex manifolds A → B is
constant. Let C ′ → A × A be the pull-back of C → A along sA : A × A →
A. As x is primitive, C ′ = p∗1C + p∗2C in T (A × A). Choose a surjection
p∗1C ×A×A p∗2C → C ′ satisfying (F.2). Since p∗1C = C ×A and p∗2C = A×C,
as a complex manifold p∗1C ×A×A p∗2C is isomorphic to C × C. Hence a
morphism g : C × C → C of complex manifolds:

C × C = p∗1C ×A×A p∗2C p∗1C + p∗2C = C ′ C

A×A A.

g

p

sA

(F.15)

By construction, it satisfies

g(b · c, b′ · c′) = (b+ b′) · g(c, c′) (F.16)

for every c, c′ ∈ C and b, b′ ∈ B.
Choose a point e ∈ p−1(eA). Since p(g(e, e)) = sA(eA, eA) = eA, there

exists a unique b ∈ B with b ·g(e, e) = e. Replacing e by b ·e, we can suppose
that

g(e, e) = e. (F.17)

We verify that (C, e, g) is a group.

Identity According to (F.15), there is a morphism h : C → B of complex
manifolds with g(c, e) = h(c) · c for all c ∈ C. By (F.17), h(e) = eB.
Furthermore, (F.16) shows that h(b ·c) = h(c) for all b ∈ B. Therefore,

h factors as C
p→ A

h̄→ B. The morphism h̄ of complex manifolds is
constant, so g(c, e) = c for all c ∈ C. The formula g(e, c) = c is proved
similarly.

Associativity According to (F.15), there is a complex manifold morphism u : C ×
C × C → B with

g(c, g(c′, c′′)) = u(c, c′, c′′) · g(g(c, c′), c′′)

for all c, c′, c′′ ∈ C. Then u(e, e, e) = eB. Equation (F.16) shows
that u factors through a morphism ū : A × A × A → B of complex
manifolds. Then ū is of constant value eB. Therefore, g(c, g(c′, c′′)) =
g(g(c, c′), c′′) for all c, c′, c′′ ∈ C.

Inverse Denote by iA : A → A (resp. iB : B → B) the inverse map of A
(resp. B). Let C− → A be the principal B-bundle corresponding to
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−x ∈ H1(A,BA). There is a morphism f : C → C− of principal B-
bundles over A, such that for every b ∈ B, c ∈ C, f(b · c) = (−b) · c.
Since 0A = iA + IdA, by Fact F.5.1.5, 0 = 0∗Ax = i∗Ax + x, hence
i∗Ax = −x. In other words, the pullback of p : C → A along iA is
C− → A.

C i∗AC C

A A

f

i

p

iA

The induced morphism i : C → C of complex manifolds is such that
for every c ∈ C, b ∈ B,

i(b · c) = (−b) · i(c). (F.18)

Since i(e) ∈ p−1(eA), there is b ∈ B with b · i(e) = e. Define i′ : C → C
by i′(x) = b · i(x) and replace i by i′. Then we may further assume that
i(e) = e. Because

p(g(c, i(c))) = sA(p(c), pi(c)) = sA(p(c), iA(p(c))) = eA,

there exists a morphism v : C → B of complex manifolds such that
g(c, i(c)) = v(c) · e and v(e) = eB. By (F.16) and (F.18), v factors
through v̄ : A → B, which is of constant value eB. Therefore,
g(c, i(c)) = e for all c ∈ C.

In conclusion, (C, e, g, i) is a complex Lie group and (F.15) shows that p :
C → A is a morphism. Define an injective map ι : B → C by b 7→ b · e. By
(F.16), then ι is a morphism. Since ι(B) = p−1(e), the sequence

0→ B
ι→ C

p→ A→ 0

is exact. By Proposition F.6.0.2 2 below, C is commutative and hence C ∈
Ext(A,B). (The commutativity of C can also be proved using an argument
of similar type.) Therefore, x = π(C) is in the image of π.

F.5.2 The case B = C∗

We review some basics about (holomorphic) line bundles on complex tori.

Definition F.5.2.1. [Wei48, Ch.VIII, n.58] Let L → A be a line bundle
on a complex torus. If for every a ∈ A, the pullback line bundle T ∗

aL is
isomorphic to L, then we write L ≡ OA. Here Ta : A → A is defined by
Ta(x) = x+ a.
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By [BL04, p.36], L induces a morphism

ϕL : A→ A∨, a 7→ T ∗
aL⊗ L−1.

Then L ≡ OA is equivalent to ϕL = 0. Then [BL04, Prop. 2.5.3] becomes
Fact F.5.2.2.

Fact F.5.2.2. Let L → A be a line bundle on a complex torus. The following
conditions are equivalent:

1. L is analytically equivalent to OA;

2. L ∈ Pic0(A);

3. L ≡ OA.

Proposition F.5.2.3. Let L → A be a line bundle on complex torus. Then
L ≡ OA if and only if s∗AL = p∗1L⊗ p∗2L.

Proof. If s∗AL = p∗1L ⊗ p∗2L, then for every a ∈ A, the line bundle T ∗
aL =

(s∗AL)|A×a = (p∗1L⊗ p∗2L)|A×a = L, i.e., L ≡ OA.
Conversely, if L ≡ OA, then for every a ∈ A, (s∗AL)|A×a = T ∗

aL =
L = (p∗1L)|A×a. Therefore, s∗L ⊗ p∗1L−1 → A × A is a line bundle, whose
restriction to A × a is trivial for all a ∈ A. By seesaw theorem [BL04,
A.8], there is a line bundle M → A such that s∗L ⊗ p∗1L−1 = p∗2M . Then
s∗L = p∗1L⊗p∗2M . Hence, L = s∗L|0×A = (p∗1L⊗p∗2M)|0×A =M . Therefore,
s∗L = p∗1L⊗ p∗2L.

Theorem F.5.2.4 is mentioned without proof in [KKN08, Sec. 1.2]. The
analogue for abelian varieties is in [Wei49, no. 2].

Theorem F.5.2.4 (Weil). If A is a complex torus, then π : Ext(A,C∗) →
Pic0(A) is an isomorphism.

Proof. For B = C∗, the sheaf BA = O∗
A and H1(A,BA) = Pic(A). The class

of a line bundle L→ A is primitive means the line bundle s∗AL is isomorphic
to p∗1L⊗p∗2L onA×A. By Proposition F.5.2.3 and Fact F.5.2.2, it is equivalent
to [L] ∈ Pic0(A). Then Proposition F.5.1.3 and Theorem F.5.1.6 complete
the proof.

With the identifications provided by Theorem F.5.2.4 and Proposition
F.4.1.4 3, [AK01, Remark 1.1.16] can be rephrased in a coordinate-free way
as follows. It is a criterion telling whether a semi-torus is a toroidal group.

Fact F.5.2.5. Let r ≥ 1 be an integer, and let 0→ (C∗)r → X → A→ 0 be an
extension in C. Denote by (L1, . . . , Lr) ∈ (A∨)r the point corresponding to the
equivalent class [X] ∈ Ext(A, (C∗)r). Then the following are equivalent:

• X is a toroidal group;
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• for all σ ∈ Zr \ {0},
∑r

i=1 σiLi ̸= 0 in A∨;

• for every nontrivial morphism f : (C∗)r → C∗, the pushout extension
f∗X of A by C∗ is nontrivial.

F.5.3 The case B = C

WhenB = C, the sheaf BA = OA. Fact F.5.3.1 can be found in, e.g., [Men20,
(3.1)].

Fact F.5.3.1 (Künneth formula). Let X,Y be connected complex manifolds.
Assume that Y is compact. Then there is a canonical decomposition H1(X ×
Y,OX×Y ) = H1(X,OX)⊕H1(Y,OY ).

The analogue of Theorem F.5.3.2 for abelian varieties is [Ros58, Theorem
1].

Theorem F.5.3.2 (Rosenlicht, Serre). If A is a complex torus, then the
canonical morphism π : Ext(A,C) → H1(A,OA) is a C-linear isomorphism.
In particular, dimC Ext(A,C) = dimA.

Proof. Let m1 (resp. m2) be the injection A → A× A defined by a 7→ (a, 0)
(resp. a 7→ (0, a)). Let pi : A × A → A (u = 1, 2) be the two projections.
By Fact F.5.3.1, p∗1 and p∗2 identify T (A×A) as the direct sum T (A)⊕ T (A).
The projection to ith factor is m∗

i . Because sA ◦mi = IdA, one has s∗A(x) =
p∗1x + p∗2x for every x ∈ T (A), i.e., x is primitive. Then Proposition F.5.1.3
and Theorem F.5.1.6 conclude the proof.

Remark F.5.3.3. Another way to prove Theorem F.5.3.2 is to use (F.13). In
this case, the diagram (F.12) can be completed into a commutative diagram
with exact rows

0 HomC(Ã,C) Hom(π1(A),C) Ext(A,C) 0

0 H0(A,Ω1
A) H1(A,C) H1(A,OA) 0.

π

(F.19)
The bottom row comes from the Hodge structure on H1(A,C) ([Huy05,
Lem. 3.3.1]).

Corollary F.5.3.4. Let A be a complex abelian variety, and let n(≥ 0) be
an integer. Then the natural morphism ExtAlg(A,Gn

a) → Ext(Aan,Cn) is an
isomorphism.

Proof. It is a combination of [Ser88, Thm. 7, p.185], Theorem F.5.3.2 and
[Ser56, Thm. 1].
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F.5.4 Universal vectorial extension

Definition F.5.4.1. [Ros58, p.705] Let H be a vector group. An extension

0→ H → G→ A→ 0 (F.20)

in C is called decomposable if there exists an extension

0→ H1 → G1 → A→ 0

in C of A by a vector subgroup H1 of H, and H ′ is a vector subgroup of
H of positive dimension with an isomorphism f : G1 ⊕ H ′ → G such that

the maps H1 → H → G and H1 → G1

f |G1→ G coincide. Otherwise, the
extension G is called indecomposable.

Proposition F.5.4.2. The extension (F.20) is decomposable if and only if there
is a strict vector subgroup H1 of H and an extension 0→ H1 → G1

p1→ A→ 0
with ι∗G1 = G, where ι : H1 → H is the inclusion.

Proof. IfG is decomposable, by definition, we can writeG = G1⊕H ′, where
H ′ ⊂ H is a positive-dimensional vector subgroup and 0 → H1 → G1 →
A → 0 is an extension in C of A by a vector subgroup H1 ⊂ H making a
commutative diagram

0 H1 G1 A 0

0 H G A 0

ι Id

By the universal property (F.7), G = ι∗G1. Moreover,

dimH1 = dimG1−dimA = dimG−dimH ′−dimA = dimH−dimH ′ < dimH.

Conversely, assume that ι∗G1 = G. Choose a vector subspace H ′ of H
with H = H ′ ⊕ H1, then dimH ′ = dimH − dimH1 > 0. The composed
morphism G1⊕H ′ pr1→ G1

p1→ A is surjective of kernel H1⊕H ′ = H, hence a
commutative diagram

0 H1 G1 A 0

0 H G1 ⊕H ′ A 0

ι Id

with exact rows. By the universal property (F.7), G = ι∗G1 = G1⊕H ′. This
identification makes the maps H1 → H → G and H1 → G1 → G coincide.
Therefore, G is decomposable.
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Proposition F.5.4.3. Let 0 → Cn → G → A → 0 be an extension in C. Let
qi : Cn → C be the i-th coordinate function. Then G is indecomposable if and
only if the family {qi,∗G}1≤i≤n of vectors in Ext(A,C) is linearly independent.

Proof. Assume that {qi,∗G} is linearly dependent. By changing of coordinate,
one may assume that qn,∗G = 0 in Ext(A,C). By Fact F.3.0.4, there is a
morphism r : qn,∗G→ C with inr = Id on qn,∗G.

0 Cn G A 0

0 C qn,∗G A 0

i

qn α Id

in

r

Then inrαi = αi = inqn. Since in is injective, one has

rαi = qn. (F.21)

Let q : Cn → Cn−1 be the projection to the first (n− 1) coordinates. Let
β : G→ q∗G be the canonical morphism. Define a morphism

ϵ : G→ q∗G⊕ C, g 7→ (β(g), rα(g)).

Then the right square of the following diagram is commutative.

0 Cn G A 0

0 Cn−1 ⊕ C q∗G⊕ C A 0

i

q⊕qn ϵ Id

By (F.21), the left square of the above diagram is commutative. Therefore,
ϵ is an equivalence of extensions and G = q∗G⊕ C is decomposable.

Conversely, assume that G is decomposable. By Proposition F.5.4.2,
there is a vector subgroup ι : H1 → Cn with dimH1 < n and an extension
0 → H1 → G1 → A → 0 with ι∗G1 = G. There is a linear combination
f =

∑n
i=1 aiqi : Cn → C, where a1, . . . , an ∈ C are not all zero, such that

fι = 0. Then
∑m

i=1 aiqi,∗G = f∗G = (fι)∗G1 = 0. Thus, the family {qi,∗G}i
is linearly dependent.

Corollary F.5.4.4 follows from Proposition F.5.4.3 and Theorem F.5.3.2.

Corollary F.5.4.4. Let 0→ V → G→ A→ 0 be an extension in C by a vector
group V . If dimC V > g, then G is decomposable.

Proposition F.5.4.5 is an analytic analogue of [Ros58, Prop. 11].

Proposition F.5.4.5.
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1. There is a C-vector group H with dimCH = g and an indecomposable
extension

0→ H → G→ A→ 0 (F.22)

such that for every V ∈ Vec, the map

ϕV : HomVec(H,V )→ Ext(A, V ), l 7→ l∗G (F.23)

is a linear isomorphism. In other words, H together with the extension
(F.22) represents the functor Ext(A, •) : Vec→ Vec.

2. A G′ ∈ Ext(A, V ) is indecomposable if and only if the corresponding
linear map ϕ−1

V (G′) : H → V is surjective.

Proof.

1. By Theorem F.5.3.2, dimC Ext(A,C) = g. Take a C-basis {G1, . . . , Gg}
of Ext(A,C). By Fact F.4.1.8, Ext(A,Cg) = ⊕gi=1Ext(A,C), so there
is an element G ∈ Ext(A,Cg) corresponding to (G1, . . . , Gg) ∈
⊕gi=1Ext(A,C). Hence an extension 0 → H → G → A → 0, where
H = Cg. By Proposition F.5.4.3, G is indecomposable.

When l ∈ H∨ is taking the i-th coordinate of H = Cg, l∗G =
Gi. Therefore, the image of the linear map ϕC contains a basis of
Ext(A,C). Thus, ϕC is surjective. Since dimCH

∨ = dimC Ext(A,C),
ϕC is a linear isomorphism. Since every V ∈ Vec is the direct sum of
finitely many copies of C and the formation of ϕV is functorial in V ,
ϕV is also a linear isomorphism.

2. By Proposition F.5.4.2, G′ is decomposable iff there is a proper linear
subspace ι : V1 → V with G′ in the image of the map ι∗ : Ext(A, V1)→
Ext(A, V ) iff there is a proper linear subspace ι : V1 → V with ϕ−1

V (G′)
in the image of the map ι∗ : HomVec(H,V1) → HomVec(H,V ) iff
ϕ−1
V (G′) : H → V factors through a proper linear subspace ι : V1 → V

iff ϕ−1
V (G′) : H → V is not surjective.

The extension (F.22) is called the universal vectorial extension of A. (As
a representing object, such an extension is unique up to equivalence.) By
(F.23) and Theorem F.5.3.2, H = H0(A∨,Ω1

A∨).

EXAMPLE F.5.1.2 (CONTINUED). Since dimExt(A,C) = 1, this nontrivial
extension is equivalent to the universal vectorial extension.

We proceed to give an explicit construction of the universal vectorial
extension.
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Proposition F.5.4.6. Let B♮1 be the group of isomorphic classes of rank 1 local
systems on A. Let B♮ be the group of isomorphic classes of pairs (L,∇), where
L → A is a holomorphic line bundle and ∇ is a flat holomorphic connection
on L. Then there exist natural identifications of groups

B♮ = B♮1 = HomAb(π1(A),C∗) = H1(A,C∗) =
H1(A,C)
H1(A,Z)

.

They are isomorphic to (C∗)2g.

Proof. By the Riemann-Hilbert correspondence [Del70, Théorème 2.17,
p.12], the map B♮ → B♮1 defined by (L,∇) 7→ ker(∇) is a group
isomorphism. By [Del70, Corollaire 1.4, p.4], there is an isomorphism
B♮1 → HomAb(π1(A),C∗). By the universal coefficient theorem [Hat05,
Thm. 3.2], there is a natural isomorphism H1(A,C∗) → Hom(π1(A),C∗).

The exact sequences 0 → Z → C exp(2πi•)→ C∗ → 0 of constant sheaves on A
gives rise to an exact sequence

H0(A,C)→ H0(A,C∗)→ H1(A,Z)→ H1(A,C)→ H1(A,C∗)→ H2(A,Z)→ H2(A,C).

Since the first map is surjective and the last map is injective, it breaks into a
short exact sequence

0→ H1(A,Z)→ H1(A,C)→ H1(A,C∗)→ 0

and hence an isomorphism H1(A,C)/H1(A,Z) → H1(A,C∗) functorial in
A. Moreover, there is a non-canonical isomorphism H1(A,C∗) → (C∗)2g.

For every (L,∇) ∈ B♮, the line bundle L ∈ Pic0(A) = A∨ by [Dem12,
Ch. V, §9]. The bottom row of (F.19) induces an exact sequence in C:

0→ H0(A,Ω1
A)→

H1(A,C)
H1(A,Z)

→ H1(A,OA)

H1(A,Z)
→ 0. (F.24)

Using the identifications B♮ ∼= H1(A,C)
H1(A,Z) from Proposition F.5.4.6 and A∨ =

Pic0(A) = H1(A,OA)/H
1(A,Z), (F.24) is an extension of A∨ by H0(A,Ω1

A)
and gives a morphism B♮ → Pic0(A), which sends (L,∇) to L. Hence a
commutative diagram

0 HomC(Ã,C∗) HomAb(π1(A),C∗) Ext(A,C∗) 0

0 H0(A,Ω1
A) B♮ Pic0(A) 0,

π

u
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where the first exact row is (F.9) and the second comes from (F.24). The
left vertical isomorphism uses Proposition F.4.1.4 2 and the isomorphism
L(A)∨ → H0(A,Ω1

A) given by [BL04, Thm. 1.4.1 b)]. The middle vertical
isomorphism is contained in Proposition F.5.4.6.

When A is an abelian variety, it is proved in [Mes73, p.260] that (F.24)
is the universal vectorial extension of A∨. The proof is based on [Ros58,
Thm. 1]. In a similar manner, Proposition F.5.4.7 follows from Theorem
F.5.3.2.

Proposition F.5.4.7. The extension (F.24) is the universal vectorial extension
of A∨ = Pic0(A). In particular, the extension group is isomorphic to (C∗)2g

(as a complex Lie group).

Proof. Let U = H0(A,Ω1
A). Pushing out the extension (F.24) defines

a natural transformation ψ : HomVec(U, •) → Ext(A∨, •) between two
functors on Vec.

We claim that ψC is an isomorphism. Choose u ∈ ker(ψC) ⊂
HomVec(U,C). As the push-out along u is trivial, by Fact F.3.0.4, there is a
morphism r : E → C with ir = IdE . Let u′ : H1(A,C)→ C be the morphism
in C induced by r. Then u′ = deu

′ is C-linear. Now that u′(H1(A,Z)) = 0
andH1(A,Z) contains a C-basis ofH1(A,C), one has u′ = 0. As the diagram
commutes, u = 0.

H1(A,C)

0 U H1(A,C)
H1(A,Z) A∨ 0

0 C E A∨ 0

u′

u

i

r

Therefore, ψC is injective. By Theorem F.5.3.2, dimC Ext(A∨,C) =
dimCHomVec(U,C). Therefore, ψC is a linear isomorphism. Similar to
the proof of Proposition F.5.4.5 1, ψ is a natural isomorphism of the two
functors.

Another construction of the universal vectorial extension is in [Nak94,
Prop. 2.4]9.

Remark F.5.4.8. The real Lie group extension underlying (F.24) is trivial by
Fact F.5.1.1. Indeed, consider the real analytic group morphism A∨ → B♮

defined by L 7→ (L,∇L), where ∇L is the unique flat Chern connection on
L given by Lemma D.2.0.4 1. This map is a real Lie group section to (F.24),
but not holomorphic.

9stated for complex abelian varieties but the proof extends to complex tori.
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Remark F.5.4.9. Let A be a complex abelian variety of dimension g. By
Corollary F.5.3.4, the extension (F.22) is equivalent to an algebraic one.
Thus, the analytification of the algebraic universal vectorial extension 0 →
Gg
a → E → A → 0 is exactly the analytic universal vectorial extension

. From [Bri09, Prop. 2.3 (i)] and the footnote in [MRM74, p.34], the
algebraic variety E is anti-affine, i.e., every morphism E → A1

C of algebraic
varieties is constant. On the other hand, by Proposition F.5.4.7, Ean is
isomorphic to (C∗)2g as a complex Lie group, so Ean is not a toroidal group.
Although E is not an affine variety, Ean is a Stein manifold. See also Serre’s
example [Har70, Exampe 3.2, p.232].

Remark F.5.4.10. Universal vectorial extensions can be defined for not only
complex tori but also toroidal groups. Consider a toroidal group X of
dimension n. Similar to Proposition F.5.4.5, the functor Ext(X, ·) : Vec →
Vec is represented by Ext(X,C)∨, which is the kernel of the natural linear
map H1(X,C)→ H0(X,Ω1

X)
∨ by (F.13).

An extrinsic description is possible. Choose a presentation

0→ (C∗)n−q → X → T → 0 (F.25)

according to [AK01, 1.1.14], where T is a complex torus of dimension q.
For every V ∈ Vec, by Proposition F.4.2.1, the induced sequence

HomC((C∗)n−q, V )→ Ext(T, V )→ Ext(X,V )→ Ext((C∗)n−q, V )

is exact in Vec. By Proposition F.4.1.4 1, HomC((C∗)n−q, V ) = 0. By
Proposition F.3.2.3, Ext((C∗)n−q, V ) = 0. Thus, the morphism Ext(T, V )→
Ext(X,V ) is a C-linear isomorphism. In other words, the natural transformation
Ext(T, ·) → Ext(X, ·) between the two functors on Vec is an isomorphism.
In this way, the case of toroidal groups is reduced to the case of complex
tori.

F.5.5 Application to the functor Ext(A, •)

Analogue of Proposition F.5.5.1 for abelian varieties is [Ros58, Cor., p.711].

Proposition F.5.5.1. IfB is a complex Lie subgroup (not necessarily connected)
of A, then there is a natural exact sequence in Ab:

0→ Ext(A/B,C)→ Ext(A,C)→ Ext(B,C)→ 0.

Proof. By Corollary F.4.1.13, there is an isomorphism B → B0 × B/B0

in C and Ext(B/B0,C) = 0. By Fact F.4.1.8, Ext(B,C) = Ext(B0,C).
Since B is compact and B0 is open in B, the quotient B/B0 is finite, thus
HomAb(B/B0,C) = 0. By the compactness of B0, HomC(B0,C) = 0. Then
Hom(B,C) = 0. Now that A,B0, A/B are complex tori, Theorem F.5.3.2
implies dimExt(A,C) = dimExt(A/B,C) + dimExt(B,C). This together
with Proposition F.4.2.1 proves the stated exactness.
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The proof of Theorem F.5.5.2 is shorter than that of its algebraic
analogue [Ser88, Thm. 12, p.195].

Theorem F.5.5.2. If 0→ B′ → B
ϕ→ B′′ → 0 is an exact sequence in C, then

the sequence10 in Ab

Ext(A,B′)→ Ext(A,B)
ϕ∗→ Ext(A,B′′)→ 0 (F.26)

is exact. If B′′
0 is linear, then the first map in (F.26) is injective.

Proof. By Proposition F.4.2.3, it suffices to prove that ϕ∗ : Ext(A,B) →
Ext(A,B′′) is surjective. From (F.10) and Proposition F.4.2.1, one obtains a
commutative square

Hom(π1(A), B) Hom(π1(A), B
′′)

Ext(A,B) Ext(A,B′′),
ϕ∗

where the vertical maps are surjective. Since π1(A) is a free Z-module, the
top row is surjective, then so is the bottom.

Now assume that B′′
0 is linear, then HomC(A,B

′′) = 0. By Proposition
F.4.2.3, the first map is injective.

Remark F.5.5.3. The linearity of B′′
0 is necessary to guarantee the injectivity

in Theorem F.5.5.2. For instance, let 0 → Cg → (C∗)2g → A → 0 be the
universal vectorial extension of A and assume g ≥ 1. By Proposition F.4.2.3,
the natural sequence 0 → HomC(A,A) → Ext(A,Cg) → Ext(A, (C∗)2g) is
exact. Thus, IdA is a nonzero element in the kernel of the first map of (F.26).

Example F.5.5.4. Applying Theorem F.5.5.2 to the exact sequence 0→ Z→
C exp(2πi•)→ C∗ → 1, and using Fact F.3.2.6, Theorems F.5.2.4 and F.5.3.2, one
gets an exact sequence

0→ Hom(π1(A),Z)→ H1(A,OA)→ Pic0(A)→ 0. (F.27)

In particular, Ext(A, ·) tuns the exponential map to the universal cover of the
complex torus A∨. Identifying Hom(π1(A),Z) with the sheaf cohomology
H1(A,Z), th sequence (F.27) is also induced by the exponential sequence of
sheaves on A:

0→ ZA → OA
exp(2πi)→ O∗

A → 1.

Theorem F.5.5.5 is an analytic version of [Ser88, Thm. 13, p.196]
10induced by Proposition F.4.2.3
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Theorem F.5.5.5. If 0 → L
i→ C → A → 0 is an exact sequence in C with L

connected and G ∈ Abc. Then there is a natural exact sequence

0→ Ext(A,G)→ Ext(C,G)
i∗→ Ext(L,G)→ 0.

Proof. As L is connected and G is discrete, HomC(L,G) = 0. By Proposition
F.4.2.1, it suffices to show that i∗ : Ext(C,G) → Ext(L,G) is surjective.
For every L′ ∈ Ext(L,G), by Theorem F.5.5.2, the map Ext(A,L′) →
Ext(A,L) is surjective. Thus, there exists C ′ ∈ Ext(A,L′) having image
C ∈ Ext(A,L).

0 0

0 G ker(α) 0

0 L′ C ′ A 0

0 L C A 0

0 0 0

β

α

i

By the snake lemma, α is surjective and β is an isomorphism. Therefore,
C ′ ∈ Ext(C,G) and i∗C ′ = L′ in Ext(L,G).

In Example F.5.5.6, we give another proof of [BL99, Prop. 5.7, p.21],
which computes the extension group of two complex tori.

Example F.5.5.6. LetXi = Cgi/ΠiZ2gi (i = 1, 2) be two complex tori, where
the chosen period matrix is of the form Πi = (τi, Igi) with τi ∈ Mgi(C) and
det(Im(τi)) ̸= 0. Define ξ : M(2g1 × 2g2,Z) → M(g1 × g2,C) by ξ(P ) =
Π1P

(
Ig2
τ2

)
.

Define a map ρ : M(g1 × g2,C) → Ext(X2, X̃1) as follows. For every
α ∈M(g1 × g2,C), let α′ = (α, 0) ∈M(g1 × 2g2,C). Consider the sequence

0→ Cg1 i→ Cg1+g2
{(α′v,Π2v) : v ∈ Z2g2}

p→ X2 → 0,

where i is induced by Cg1 → Cg1+g2 defined by x 7→ (x, 0) and p is induced
by the second projection Cg1+g2 → Cg2 . It is an exact sequence. Denote
its class by ρ(M) ∈ Ext(X2, X̃1). This sequence fits into a commutative
diagram
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0 X̃1
Cg1+g2

{(α′v,Π2v):v∈Z2g2} X2 0

0 X1 X X2 0,

where the second row is ψΠ1,Π2(α
′) ∈ Ext(X2, X1) defined in [BL99, p.20],

and

X =
Cg1+g2

{(Π1u+ α′v,Π2v) : u ∈ Z2g1 , v ∈ Z2g2}
.

Then ρ is a linear isomorphism by Theorem F.5.3.2.
Define a map ϕ : M(2g1 × 2g2,Z) → Ext(X2, π1(X1)) as follows. Given

P =

(
P1 P2

P3 P4

)
∈M(2g1×2g2,Z), with each Pi ∈M(g1×g2,Z), we set A =

τ1P2 + P4 ∈ M(g1 × g2,C) and α = ξ(P ). The linear map Cg1+g2 (I,−A)→ Cg1

sends (u, 0) to u for all u ∈ Cg1 and sends (α′v,Π2v) to Π1

(
P1 −P2

P3 −P4

)
v ∈

Π1Z2g1 for all v ∈ Z2g2 . Thus it descents to the vertical morphism in the
middle of the following commutative diagram

0 Cg1 Cg1+g2
{(α′v,Π2v):v∈Z2g2} X2 0

0 X1 X1 0 0,

(Ig1 ,−A)
(F.28)

where the first row is of class ρ(α) = ρ(ξ(P )). The snake lemma gives an
extension of X2 by π1(X1), whose class is denoted by ϕ(P ).

The image of ϕ(P ) under the pushout map Ext(X2, π1(X1))→ Ext(X2, X̃1)
is exactly the first row of (F.28), i.e., ρ(ξ(P )). Then ϕ is a group isomorphism
by Fact F.3.2.6. And there is a commutative diagram

M(g1 × 2g2,C)

M(2g1 × 2g2,Z) M(g1 × g2,C) M(g1×g2,C)
Im(ξ)

Ext(X2, π1(X1)) Ext(X2, X̃1) Ext(X2, X1) 0

ψΠ1,Π2

ξ

ϕ ρ

α 7→α′

where the second row is from (F.14) and the induced dotted isomorphism
is exactly the content of [BL99, Proposition 5.7, p.21].

To conclude Section F.5.5, we show that the groups of commutative
extensions of complex tori by linear groups are naturally complex Lie
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groups. Let T (resp. S) be the full subcategory of C comprised of
complex tori (resp. objects whose identity component is linear). Then
Ext : T op×S → Ab is an additive functor by Fact F.4.1.8. Theorem F.5.5.7,
an analytic analogue of [Wu86, Theorem 5], lifts this functor.

Theorem F.5.5.7 (Wu). There is a natural way to lift Ext : T op×S → Ab to
an additive functor Ext : T op × S → C.

Proof. First we define a complex Lie group structure on Ext(A,H), where
A ∈ T and H ∈ S. Let g = dimA.

If there is an isomorphism f : H → (C∗)n in S, then by Theorem F.5.2.4,
f gives rise to an isomorphism Ext(A,H) → (A∨)n making Ext(A,H) a
complex torus. The complex structure on Ext(A,H) is independent of the
choice of the isomorphism f .

If H is connected, by Proposition F.2.0.7, there is an isomorphism
u : H → V × Hm, where V ∈ Vec and Hm is a power of C∗. Then
u∗ : Ext(A,H)→ Ext(A, V )× Ext(A,Hm) is an isomorphism. By Theorem
F.5.3.2, the vector space Ext(A, V ) is finite dimensional. Together with
last paragraph, Ext(A,H) inherits a complex Lie group structure, which
is independent of the choice of u.

For a general object H ∈ S, the natural exact sequence 0 → H0 →
H → H/H0 → 0 in C is trivial by Corollary F.4.1.13. Thus, the resulting
exact sequence 0 → Ext(A,H0) → Ext(A,H) → Ext(A,H/H0) → 0 in
Ab is also trivial. Now that Ext(A,H/H0) = HomAb(π1(A), H/H0) by Fact
F.3.2.6, one regards it as a discrete group. From the complex structure on
Ext(A,H0), the group Ext(A,H) has a unique complex Lie group structure,
such that the identity component is Ext(A,H0).

It remains to show:

1. If A ∈ T is fixed, then Ext(A, ·) sends morphisms in S to morphisms
in C.

2. If H ∈ S is fixed, then Ext(·, H) sends morphisms in T to morphisms
in C.

To show 1, let h : H → H ′ be a morphism in S. By decomposing H,H ′

according to Corollary F.4.1.13 and Proposition F.2.0.7, one may assume
that each of H and H ′ is either discrete, C or C∗.

• If H is discrete, then so is Ext(A,H), hence Ext(A, h) is a morphism
in C.

• If H = H ′ = C, by Proposition F.4.1.4 2, h is a linear map. By
Corollary F.4.1.9, so is Ext(A, h).

• If H = C, H ′ = C∗. By Proposition F.4.1.4 2, h is the composition of
a linear map C → C followed by the exponential map exp(2πi·) :
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C → C∗. By Example F.5.5.4, Ext(A, h) is the composition of a
linear map H1(A,OA) → H1(A,OA) followed by the universal cover
H1(A,OA)→ A∨. Thus, Ext(A, h) is a morphism in C.

• If H ′ is discrete and H is connected, then h is trivial and so is
Ext(A, h).

• If H = C∗ and H ′ = C, then h is trivial by Proposition F.4.1.4 1 and
so is Ext(A, h).

• If H = H ′ = C∗, then h is a power map by Proposition F.4.1.4 3. Then
Ext(A, h) is a power map of A∨, hence a morphism in C.

This proves 1.
To show 2, let g : A→ A′ be a morphism in T . By decomposing H again,

we may divide the proof into three cases.

• H = C∗. By pulling back line bundles, g induces the dual morphism
g∗ : Pic0(A′)→ Pic0(A). It is identified with Ext(g,H) by Fact F.4.3.2
and Theorem F.5.2.4.

• H is discrete. Then so is Ext(A′, H) and thus Ext(g,H) is a morphism
in C.

• H = C. By pulling back, g induces a C-linear map H1(A′, OA′) →
H1(A,OA). It is identified with Ext(g,H) by Fact F.4.3.2 and Theorem
F.5.3.2.

This proves 2.

Remark F.5.5.8. In Theorem F.5.5.7, we cannot generalize from complex
tori to toroidal groups, nor remove the linear restriction.

Let X be a toroidal group. Then HomC(X,C∗) = 0, hence (F.14)
specializes to

0→ Ext(X,Z) i→ Ext(X,C)→ Ext(X,C∗)→ 0. (F.29)

Note that Ext(X,Z) = H1(X,Z) (Fact F.3.2.6), and by (F.13) the injection
i is the composition of the inclusion H1(X,Z) → H1(X,C) with the
projection H1(X,C)→ H1(X,C)

H0(X,Ω1
X)

.

When X is compact, the sequence (F.29) lifts to an exact sequence in
C by Theorem F.5.5.7. As opposed to the compact case, when X is not
compact and consider the presentation (F.25), one has 1 ≤ q < n, so

rankZExt(X,Z) = n+ q > 2q = dimR Ext(X,C).

Therefore, the image of i is not closed in the vector space Ext(X,C) (a
phenomenon seen in Example F.4.1.2). In particular, the sequence (F.29)
has no lift to an exact sequence in C.
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Let A,B be two complex tori, g = dimA, g′ = dimB and reconsider
(F.14):

0→ HomC(A,B)
j→ Ext(A, π1(B))→ Ext(A, B̃)→ Ext(A,B)→ 0.

Here, Ext(A, B̃) is a C-vector space of dimension gg′ by Theorem F.5.3.2.
Identifying Ext(A, π1(B)) with HomAb(π1(A), π1(B)) via Fact F.3.2.6, j is
the map ρr in [BL04, p.10]. The quotient Ext(A,π1(B))

HomC(A,B) is a free abelian group
of rank 4gg′− rankZHomC(A,B). As long as rankZHomC(A,B) < 2gg′ (say,
when A = B is an elliptic curve without complex multiplication, then Z =

HomC(A,B)), the image of the induced injection Ext(A,π1(B))
HomC(A,B) → Ext(A, B̃)

is not closed. In particular, Ext(A,B) has no structure of complex Lie group
making this sequence exact in C.

F.6 Extensions of complex tori are often commutative

In Section F.6, we prove that under suitable hypotheses, an extension of a
complex torus is commutative.

Proposition F.6.0.1. If 1 → B → C
p→ A → 1 is a central extension of

complex Lie groups, where A is a toroidal group, then C is commutative. Or
equivalently, for every B ∈ C, the natural injection Ext(A,B)→ Ext(A,B, 1)
is an isomorphism.

Proof. Consider the holomorphic mapA×A→ B given by (F.4). By [NW13,
Thm. 5.1.36], it is a group morphism, so constant. Thus, C is commutative.

An algebraic analogue of Proposition F.6.0.2 is [Wu86, Cor. 2, p.370].

Proposition F.6.0.2. Let 1 → K → E → A → 1 be an extension of complex
Lie groups, where A is a complex torus.

1. If Z(K)0 is Stein, then Z(K) = Z(E) ∩K.

2. If K is commutative and K0 is Stein, then E is commutative.

Proof.

1. Since Z(E) ∩ K ⊂ Z(K), it suffices to prove that Z(K) ⊂ Z(E).
Consider the group morphism (F.5): θ : A → Aut(Z(K)). For every
x ∈ Z(K), the map

ϕ : A→ Z(K), a 7→ θa(x)x
−1

is continuous. Moreover, ϕ(0) = eK . By the connectedness of A,
ϕ(A) ⊂ Z(K)0. As Z(K)0 is Stein and A is compact, ϕ(A) is the
singleton {eK}. Therefore, θa(x) = x for every x ∈ Z(K), which
proves Z(K) ⊂ Z(E).
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2. By 1, K ⊂ Z(E). By Proposition F.6.0.1, E is commutative.

In Proposition F.6.0.3, when B is isomorphic to Cn for some integer
n ≥ 0 or to C∗, we recover [BZ23a, Lem. 2.10].

Proposition F.6.0.3. Let 1 → B → C
p→ A → 1 be an exact sequence of

complex Lie groups, where A is a complex torus and B is commutative. If the
group B/B0 is torsion (i.e., every element of B/B0 has finite order), then C is
commutative.

Proof. Let Z be the center of C. By Proposition F.6.0.1, it suffices to check
B ⊂ Z.

The outer action induces a morphism A → Aut(B0)(≤ GL(L(B))). It
is trivial by the compactness of A, i.e., B0 ≤ Z. By Corollary F.4.1.13, one
may assume B = B0 ×D, where D is a discrete subgroup of B isomorphic
to B/B0 and D ∩ B0 = {eB}. Let q : B → D and r : B → B0 be the
corresponding projections.

It remains to show that 0×D(≤ B) is contained in Z. Fix d ∈ D and put
b = (0, d) ∈ B. The map

ν : C → C, c 7→ cbc−1

is holomorphic and ν(e) = b. For every b′ ∈ B, one has

ν(cb′) = cb′bb′−1c−1 = cbc−1 = ν(c).

The right multiplication action of B on the complex manifold C has quotient
A by Fact F.2.0.3, so ν factors through a morphism u : A → B of complex
manifolds. Then qu : A → D is continuous. Since A is connected, qu is
constant. Since qu(eA) = d, one gets qu ≡ d.

On the other hand, the map ru : A→ B0 is holomorphic. By assumption,
there is an integer n ≥ 1 (depending on d) such that dn = eD in D. Thus,
bn = eB. For every c ∈ C, one has ν(c)n = (cbc−1)n = cbnc−1 = eB.
Therefore, ru(A) is contained in the torsion subgroup B0,tor of B0. In view
of [AK01, Prop. 1.1.2], B0,tor is totally disconnected. Since A is connected,
ru is constant.

Since ru(eA) = 0, one has ru ≡ 0. Therefore, u ≡ b, i.e., b ∈ Z.
Therefore, 0×D ⊂ Z and the proof is completed.

Corollary F.6.0.4 follows immediately from Proposition F.6.0.3.

Corollary F.6.0.4. Given an extension

0→ (C∗)n → G→ A→ 0 (F.30)

of complex Lie groups, where A is a complex tours and n(≥ 1) is an integer,
then G is a semi-torus.
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Corollary F.6.0.5. In Corollary F.6.0.4, if A is algebraic, then G admits a
unique structure of semiabelian variety such that (F.30) defines a commutative
extension of algebraic groups.

Proof. From Corollary F.6.0.4, (F.30) defines an element of Ext(Aan, (C∗)n).
By [Ser88, Thm. 6, p.184] and Theorem F.5.2.4, the natural map ExtAlg(A,Gn

m)→
Ext(Aan, (C∗)n) is identified with the analytification map [Pic0(A)]n →
[Pic0(Aan)]n, hence a group isomorphism. In particular, there is a unique
exact sequence 0 → Gn

m → C → A → 0 in Alg whose analytification is
equivalent to (F.30).

Lemma F.6.0.6 is used in the proof of Proposition F.6.0.7.

Lemma F.6.0.6. Let G be a real Lie group with Lie algebra g.

1. If X,Y ∈ g are such that [X, [X,Y ]] = 0 and [Y, [X,Y ]] = 0, then

exp(X) exp(Y ) exp(−X) exp(−Y ) = exp([X,Y ]). (F.31)

2. If X ∈ g satisfies that exp(X) commutes with every element of G0 and
[X, g] ⊂ Z(g), then X ∈ Z(g).

Proof.

1. According to Baker-Campbell-Hausdorff formula (see, e.g., [Far08,
Cor. 3.4.5]), there is a symmetric open neighborhood U of 0 ∈ g such
that for every A,B ∈ U , exp(A) exp(B) = exp(Z), where

Z = Z(A,B) = A+B + [A,B]/2 + . . .

and "..." indicates terms involving higher commutators of A and B.
There is a symmetric open neighborhood V of 0 ∈ U such that
Z(A,B) ∈ U for every A,B ∈ V .

Define f : R→ G by

f(t) = exp(tX) exp(tY ) exp(−tX) exp(−tY ) exp(−t2[X,Y ]).

Then f is real analytic. There is ϵ > 0 such that tX, tY ∈ V for
all t ∈ (−ϵ, ϵ). By assumption, [Z(tX, tY ), Z(−tX,−tY )] = 0 and
Z(tX, tY ) + Z(−tX,−tY ) = t2[X,Y ]. Then

f(t) = exp(Z(tX, tY )) exp(Z(−tX,−tY )) exp(−t2[X,Y ]) = eG

for all t ∈ (−ϵ, ϵ) (see [Laz54, p.144]). By [ADGK23, Cor. A.5], f(1) =
eG.
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2. Let D = exp−1(eG). There is an open neighborhood W of 0 ∈ g such
that exp(W ) is open in G and exp :W → exp(W ) is a diffeomorphism.
Then D ∩ W = {0}. For every Y ∈ g, there is k > 0 with
[X,Y/k] ∈ W . By assumption, [X,Y/k] ∈ Z(g), so [X, [X,Y/k]] = 0
and [Y/k, [X,Y/k]] = 0. Since exp(Y/k) ∈ G0, it commutes with
exp(X). By 1, exp([X,Y/k]) = eG. Then [X,Y/k] ∈ D∩W . Therefore,
[X,Y ] = 0. Thus, X ∈ Z(g).

An algebraic analogue of Proposition F.6.0.7 is [Ros56, Cor. 2, p.433].

Proposition F.6.0.7. Let 1 → B → C
p→ A → 1 be an exact sequence of

complex Lie groups, with A complex torus and B commutative. Then C0 is
commutative.

Proof. We may assume that C is connected by replacing C (resp. B) with
C0 (resp. B ∩ C0). Let ω : Cg → A be the universal covering of A. Denote
by b (resp. c) the Lie algebra of B (resp. C). Let η : A → Aut(B) be the
outer action. Then η induces a holomorphic morphism η0 : A → Aut(B0).
Because Aut(B0) is complex Lie subgroup of GL(b), η0 is trivial.

Consider the pullback extension along ω.

0 ker(ϵ) ker(ω)

1 B E Cg 1

1 B C A 1

0

π|ker(ϵ)

Id

π

ϵ ω

p

By the snake lemma, ϵ is surjective and π restricts to an isomorphism
ker(π) → ker(ω). In particular, deϵ : L(E) → L(C) is an isomorphism.
By Fact F.2.0.3, the morphism ϵ is open. Since E0 is open in E, ϵ(E0) is
an open subgroup of C. By connectedness of C, ϵ(E0) = C. Similarly,
π(E0) = Cg. By Fact F.7.2.7 1 below, B ∩ E0 is connected. Therefore,
B ∩E0 ⊂ B0. Since B0 ⊂ B ∩E0, one has B0 = B ∩E0. Hence an extension
1→ B0 → E0 → Cg → 1. The outer action is η0ω : Cg → Aut(B0), so it is a
central extension. Then

0→ b→ c→ Cg → 0 (F.32)

is a central extension of Lie algebras. In particular, b ⊂ Z(c). We shall prove
the extension (F.32) is trivial.
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We show that expE : c→ E0 is surjective. Indeed, for every x ∈ E0, there
is v ∈ c with dep(v) = π(x). Then π(expE(v)) = π(x), so π(x expE(−v)) = 0
and hence x expE(−v) ∈ B0. As B0 is connected commutative, there
is u ∈ b with expB(u) = x expE(−v). Since u ∈ Z(c), one gets x =
expE(u) expE(v) = expE(u+ v).

By Corollary F.4.1.13, there is a decomposition B = B0 × D, where
D ∈ Abc is discrete. The natural morphism E0×D → E0 → Cg is surjective
of kernel B0 ×D, hence the first row of the diagram

1 B E0 ×D Cg 1

1 B0 E0 Cg 1

1 B E Cg 1

Id

Id

ϕ

By Lemma F.3.1.2, there is an equivalence of extensions ϕ : E → E0 ×D.
Fix x ∈ ker(ϵ), let ϕ(x) = (ϕ1(x), ϕ2(x)) ∈ E0 ×D. For every y ∈ E0,

(y, 1)ϕ(x)(y, 1)−1 = (yϕ1(x)y
−1, ϕ2(x)) ∈ ϕ(ker(ϵ)).

Hence, ϕ−1((yϕ1(x)y
−1, ϕ2(x))) ∈ ker(ϵ). The map

E0 → ker(ϵ), y 7→ ϕ−1((yϕ1(x)y
−1, ϕ2(x)))

is continuous. As E0 is connected and ker(ϵ) is discrete, this map is
constantly x. Thus, yϕ1(x)y−1 = ϕ1(x). Therefore, ϕ1(x) commutes with
every element of E0. As expE : c → E0 is surjective, there is X ∈ c with
expE(X) = ϕ1(x). Since Cg is an abelian Lie algebra, [c, c] is contained in
the kernel of dep : c → Cg, which is b. Then [c, c] ⊂ Z(c), i.e., [c, [c, c]] = 0.
By Lemma F.6.0.6 2, X ∈ Z(c).

Consider the commutative diagram

c Cg

E Cg

dep
expE Id

π

Then π(x) = π(ϕ1(x)) = dep(X) ∈ dep(Z(c)). Therefore, ker(ω) =
π(ker(ϵ)) ⊂ dep(Z(c)). Since dep is C-linear and ker(ω) contains a C-basis
of Cg, one has dep(Z(c)) = Cg. Consequently, there is a C-linear map
s : Cg → Z(c) with dep ◦ s = IdCg . As s : Cg → c is a Lie algebra morphism,
the central extension (F.32) is trivial and c is the direct sum of b and Cg. In
particular, c is abelian. As C is connected and its Lie algebra is abelian, C is
commutative.
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Example F.6.0.8 shows that the the condition that B/B0 is torsion (resp.
K0 is Stein) in Proposition F.6.0.3 (resp. Proposition F.6.0.2 2) is necessary.
Moreover, in Proposition F.6.0.7, the commutativity of C fails in general.

Example F.6.0.8. Let A be a complex torus and B = A× Z be the product
group. Consider the complex manifold morphism A × B → B defined by
(a, a′, k) 7→ (a′ + ka, k). It is a non trivial group action of A on B. Let C be
the corresponding semidirect product (see [Bou72, Ch.III, no. 4, Prop. 7]),
then the resulting complex Lie group extension 1→ B → C → A→ 1 is not
central.

F.7 Noncommutative extensions

F.7.1 Lifted extensions

The real Lie group extension problem is studied by G. Hochschild in
[Hoc51a] and [Hoc51b]. As Example F.7.1.1 shows, the case of real Lie
groups is different from the case of complex Lie groups.

Example F.7.1.1. Let G = C. The morphism of real Lie groups ρ : C →
C∗ = Aut(G) defined by z 7→ ez̄ is an action of G on itself which is real
analytic but not holomorphic. Hence an exact sequence of real Lie groups
1 → G → G ⋊ρ G → G → 1 by [Bou72, Ch. III, no. 4, Prop. 7].
However, the middle term has no structure of complex Lie group making
the maps holomorphic. Therefore, [Iwa49, Theorem 7] fails for complex Lie
groups. Besides, this shows that the real Lie group extension problem and
the complex one are different.

In Section F.7, we review Hochschild’s work, but in the context of
complex Lie groups. References to the original statement are given when
the proofs are similar modulo slight modifications. All results in the sequel
are essentially known.

In Section F.7.1, the goal is to derive Corollary F.7.1.6, a result about the
extensions of a commutative group by a connected group.

Let L be a complex Lie group and K ∈ C. For a fixed holomorphic group
action L×K → K, let ϕ : L→ Aut(K) denote the induced group morphism.
Let Z(L,K, ϕ) denote the set of crossed morphisms, i.e., morphisms ρ : L→
K of complex manifolds such that ρ(l1l2) = ρ(l1)ϕl1(ρ(l2)) for all l1, l2 ∈ L.
Then Z(L,K, ϕ) is an abelian group under addition. (When ϕ is trivial,
Z(L,K, ϕ) = Hom(L,K).)

For a normal complex Lie subgroup H of L, define

OphomL(H,K, ϕ) = {ψ ∈ Hom(H,K) : ψ(lhl−1) = ϕl(ψ(h)),∀l ∈ L, h ∈ H}.

Then OphomL(H,K, ϕ) is a subgroup of Hom(H,K). When H ⊂ Z(L), one
has

OphomL(H,K, ϕ) = HomC(H,K
ϕ(L)), (F.33)
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where Kϕ(L) = ∩l∈L{x ∈ K : ϕl(x) = x} is the set of elements fixed
by ϕ(L)(≤ Aut(K)). Here Kϕ(L) is indeed a complex Lie subgroup of
K by Corollary F.2.0.5. When ϕ is trivial, OphomL(H,K, ϕ) is the set of
morphisms H → K invariant under the conjugation action of L.

Proposition F.7.1.2. Assume that H is a normal complex Lie subgroup of L
contained in ker(ϕ). For every ρ ∈ Z(L,K, ϕ), ρ|H ∈ OphomL(H,K, ϕ), hence
a group morphism Z(L,K, ϕ) → OphomL(H,K, ϕ), whose image is denoted
by ZH(L,K, ϕ).

Proof. For every h, h′ ∈ H, ρ(hh′) = ρ(h)ϕh(ρ(h
′)) = ρ(h)ρ(h′) since h ∈

ker(ϕ). Thus ρ|H ∈ Hom(H,K). In particular, ρ(eL) = eK . For every l ∈ L,

eK = ρ(eL) = ρ(ll−1) = ρ(l)ϕl(ρ(l
−1)),

so ρ(l)−1 = ϕl(ρ(l
−1)). Then

ρ(lhl−1) = ρ(lh)ϕlh(ρ(l
−1))

=ρ(lh)ϕl(ρ(l
−1)) = ρ(lh)ρ(l)−1

=ρ(l)ϕl(ρ(h))ρ(l)
−1 = ϕl(ρ(h)).

The last equality uses the commutativity ofK. Therefore, ρ|H ∈ OphomL(H,K, ϕ).

Let ω : Q′ → Q be a surjective morphism of connected complex Lie
groups with kernel F . Let η : Q → Aut(K) be a group morphism such
that the induced group action Q × K → K is holomorphic. As K is
commutative, the pulling back map ω∗ : Ext(Q,K, η) → Ext(Q′,K, ηω)
is a group morphism. Fact F.7.1.3 gives a description of ker(ω∗).

Define a map σ : OphomQ′(F,K, ηω) → Ext(K,Q, ηω) as follows.
As the group action defined by η is holomorphic, the semidirect complex
Lie group K ⋊ηω Q

′ exists by [Bou72, Ch.III, no.4, Prop. 7]. For ψ ∈
OphomQ′(F,K, ηω), the morphism F → K ⋊ηω Q

′ defined by k 7→ (ψ(k), k)
identifies F as a normal complex Lie subgroup of K ⋊ηω Q

′. Let E =
K ⋊ηω Q

′/F . The projection K ⋊ηω Q
′ → Q′ descends to a morphism

E → Q. The injection K → K ⋊ηω Q
′ induces a morphism K → E. Then

the resulting sequence 1→ K → E → Q→ 1 is exact with outer action ηω,
whose equivalence class is denoted by σ(ψ).

Fact F.7.1.3 ([Hoc51a, Thm. 1.1]). The map σ is a group morphism and the
sequence

Z(Q′,K, ηω)→ OphomQ′(F,K, ηω)
σ→ Ext(Q,K, η)

ω∗
→ Ext(Q′,K, ηω)

is exact.
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The use of Fact F.7.1.3 is based on the existence of ω : Q′ → Q such that
every extension in Ext(Q,K, η) becomes a semidirect product when pulled
back to Ext(Q′,K, ηω) along ω.

Fact F.7.1.4 ([Hoc51a, Thm. 2.1]). Let Q be a connected complex Lie group.
Assume that η : Q → Aut(K) is a group morphism such that the induced
group action is holomorphic. Then there exists a simply connected complex
Lie group Q′ and a surjective morphism ω : Q′ → Q such that the pullback
morphism ω∗ : Ext(Q,K, η)→ Ext(Q′,K, ηω) is zero.

Remark F.7.1.5. The connectedness condition of the extension kernel in
[Hoc51a, Theorems 1.1 and 2.1] is in fact unnecessary.

Corollary F.7.1.6 follows from Fact F.7.1.3 and Fact F.7.1.4.

Corollary F.7.1.6 ([Hoc51a, Cor. 2.1]). In the notation of Fact F.7.1.4,
Ext(Q,K, η) = OphomQ′(F,K, ηω)/ZF (Q

′,K, ηω), where F = ker(ω).

Example F.7.1.7. Let Q = C∗, L = C and ω : L → Q be defined by
ω(z) = e2πiz. Then F = ker(ω) = Z. Let C∗ × K → K be a holomorphic
group action and η : C∗ → Aut(K) be the induced group morphism. Then
OphomL(F,K, ηω) = Hom(Z,Kη(C∗)) = Kη(C∗). By Proposition F.3.2.2 and
Corollary F.7.1.6, one has Ext(C∗K, η) = Kη(C∗)/ZZ(C,K, ηω).

F.7.2 Factor systems

It is well-known that extensions of abstract groups can be classified in terms
of factor systems, see [CE99, Ch. XIV, Sec. 4]. This description relies on
the existence of set-theoretical cross sections. In general, nevertheless, it is
not possible to find a continuous cross section to a surjective morphism of
topological groups.

Consider the extension (F.3) of complex Lie groups with outer action
ψ : Q→ Out(K).

Example F.7.2.1. Assume that there is a cross section to (F.3), i.e., a
morphism s : Q → E of complex manifolds with ps = IdQ. Replacing
s by s(eQ)

−1s when necessary, one may assume that s is normalized as
s(eQ) = eE . Define

f : Q×Q→ E, f(g, h) = s(g)s(h)s(gh)−1.

Then f is holomorphic. Since p(f(g, h)) = eQ, f(g, h) ∈ K, so f factors
through K. The map f measures the failure of s to be a morphism. If E is
commutative, then additionally f is symmetric in the sense of [Ser88, (16),
p.166]:

f(x, y) = f(y, x) ∀x, y ∈ Q. (F.34)
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Define ϕ : Q → Aut(K) by ϕg = Inns(g) |K . Then ϕ is a map (but not
necessarily a group morphism) lifting ψ, and the induced map

Q×K → K, (g, x) 7→ ϕg(x) (F.35)

is holomorphic. When K is commutative, ϕ = ψ is a group morphism
independent of the choice of s. When (F.3) is a central extension, ϕ is
constantly IdK .

Moreover, f and ϕ satisfy the following relations:

f(eQ, h) = f(g, eQ) = eK ;

ϕe = IdK ;

ϕgϕh = Innf(g,h) ϕgh;

f(g, h)f(gh, k) = ϕg(f(h, k))f(g, hk).

(F.36)

Example F.7.2.1 motivates Definition F.7.2.2.

Definition F.7.2.2 (Factor system). If a morphism f : Q × Q → K of
complex manifolds and a map ϕ : Q→ Aut(K) making (F.35) holomorphic
satisfy the relations (F.36), then f is called a ϕ-factor system (and simply a
factor system when ϕ is trivial, in which case the last relation in (F.36) is
f(g, h)f(gh, k) = f(h, k)f(g, hk).) A factor system f is called symmetric if
(F.34) holds.

When K is commutative, the set of ϕ-factor systems is an abelian group
under addition.

We examine how the ϕ-factor system f induced by s in Example F.7.2.1
depends on the choice of the cross section s.

Example F.7.2.3. Let s′ : Q → E be another normalized cross section still
inducing ϕ. Define

g : Q→ E, g(x) = s(x)−1s′(x).

Then g(eQ) = eE as s, s′ are normalized and g is holomorphic. For every
x ∈ Q, p(g(x)) = eQ, so g(x) ∈ K. For every k ∈ K, Inns(x) k =
ϕx(k) = Inns′(x) k, so g(x) ∈ Z(K), i.e., g factors through Z(K). Then
s′(x) = s(x)g(x). Let f ′ be the factor system induced by s′. Then

f ′(x, y) = s′(x)s′(y)s′(xy)−1

=s(x)g(x)s(y)g(y)[s(xy)g(xy)]−1

=ϕx(g(x))s(x)s(y)g(y)g(xy)
−1s(xy)−1

=ϕx(g(x))f(x, y)s(xy)g(y)g(xy)
−1s(xy)−1

=ϕx(g(x))f(x, y)ϕxy(g(y)g(xy)
−1)

=gϕ(x, y)f(x, y),
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where gϕ : Q×Q→ K is a morphism of complex manifolds defined by

gϕ(x, y) = ϕx(g(x))ϕxy(g(y)g(xy)
−1). (F.37)

When (F.3) is a central extension, ϕ is trivial, then (F.37) reduces to
[Ser88, (15), p.166]: gϕ(x, y) = g(x)g(y)g(xy)−1.

Example F.7.2.3 motivates Definition F.7.2.4.

Definition F.7.2.4. Let f, f ′ be two ϕ-factors systems. If there is a
holomorphic map g : Q → Z(K) with g(eQ) = eE such that f ′ = gϕf
with gϕ defined by (F.37), then f and f ′ are called ϕ-equivalent, denoted by
f ∼ϕ f ′.

In Definition F.7.2.4, ∼ϕ is an equivalent relation on the set of ϕ-factor
systems. When K is commutative, inside the group of all ϕ-factor systems,
the elements ϕ-equivalent to the zero form a subgroup. A result similar to
Proposition F.7.2.5 for algebraic groups is in [Ser88, Ch. VII, Sec. 1, no.4].

Proposition F.7.2.5. Let K,Q be complex Lie groups with a map ϕ : Q →
Aut(K) such that (F.35) is holomorphic and the induced map ψ : Q →
Out(K) is a group morphism. Then:

1. The set F of ∼ϕ-equivalence classes of ϕ-factor systems is canonically
identified with the subset E ⊂ Ext(Q,K,ψ) of equivalence classes of
extensions of Q by K which admit at least one normalized cross section
inducing ϕ.

2. When K is commutative, the identification in 1 is a group isomorphism.

3. If further Q is also commutative and ϕ = ψ = 1 is trivial, then the
subgroup of equivalence classes of symmetric factor systems corresponds
to the subgroup of equivalence classes of commutative extensions.

Proof. We only prove 1. Examples F.7.2.1 and F.7.2.3 construct a map Φ :
E → F . (Note that equivalent extensions induces the same ϕ-equivalence
class.)

Conversely, we define a map Ψ : F → E by the following construction.
Given a ϕ-factor system f , one can construct an exact sequence 1 → K →
Ef,ϕ → Q → 1 of complex Lie groups with a (holomorphic) normalized
cross section s : Q → Ef,ϕ as follows. Let Ef,ϕ = K × Q as a complex
manifold. Define a map

g : Ef,ϕ × Ef,ϕ → Ef,ϕ, g((k, x), (l, y)) = (kϕx(l)f(x, y), xy).

As f and the map (F.35) are holomorphic, so is g. Moreover, (F.36) shows
g defines an associative multiplication. The pair (1, 1) ∈ Ef,ϕ is the identity,
and the inverse of (k, x) is

(ϕ−1
x [k−1f(x, x−1)−1], x−1).
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Hence (Ef,ϕ, g) is a complex Lie group. The projection p : Ef,ϕ → Q is a
surjective morphism. The map i : K → Ef,ϕ by k 7→ (k, 1) is the kernel of
p. Moreover, define s : Q→ Ef,ϕ by s(g) = (1, g), then s is normalized cross
section. Put Ψ(f) = Ef,ϕ.

We check that ΨΦ = IdE . Indeed, the map Ef,ϕ → E defined by
(k, x) 7→ ks(x) is an equivalence of extensions. We check that ΦΨ = IdF , or
equivalently s induces f and ϕ. In fact, for every x ∈ Q, k ∈ K, one has

ϕx(k)s(x) = (ϕx(k), 1)(1, x) = (ϕx(k), x) = (1, x)(k, 1) = s(x)k,

so ϕx = Inns(x) |K , i.e., s induces ϕ. For every y ∈ Q,

s(x)s(y)s(xy)−1 = (1, x)(1, y)(1, xy)−1

=(f(x, y), xy)(ϕ−1
xy [f(xy, y

−1x−1)−1], y−1x−1)

=(f(x, y)ϕxyϕ
−1
xy (f(xy, y

−1x−1)−1)f(xy, y−1x−1), 1)

=(f(x, y), 1).

Therefore, s induces f .

When the base Q of (F.3) is discrete, then a set-theoretic cross section is
automatically holomorphic.

Corollary F.7.2.6. Let Q be a discrete complex Lie groups, and let η : Q →
Aut(K) be a group morphism. Then the group Ext(Q,K, η) is isomorphic to
the group of ∼η-equivalence classes of η-factor systems. Furthermore, if Q is
also commutative, then Ext(Q,K) is isomorphic to the group of ∼-equivalence
classes of symmetric factor systems.

Proof. Since Q is discrete, the group action Q × K → K induced by η is
holomorphic. The first (resp. second) half follows from Proposition F.7.2.5
2 (resp. 3).

Another important case where a cross section exists is with simply
connected bases. For this, we need a holomorphic version of Malcev’s
theorem ([Mal42, (E), p.12], [Hoc51a, Lemma 3.1], [Mac60, Theorem
3.2]).

Fact F.7.2.7 (Malcev, [Bou72, Ch. III, § 6, no. 6, Prop. 14; Cor. 2]). Let L be
a connected complex Lie group, N be a normal immersed complex Lie subgroup
of L.

1. If N is closed in L and L/N is simply connected, then N is connected.

2. If L is simply connected, N is connected, then N is closed in L and there
exists a biholomorphic map f : L → N × L/N making a commutative
diagram
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L N × L/N

L/N,

f

q
p2

where p2 is the projection to the second factor and q : L → L/N is the
quotient morphism.

In the same way that [Hoc51a, Theorem 3.1] follows from [Hoc51a,
Lemma 3.1], Fact F.7.2.8 can be deduced from Fact F.7.2.7.

Fact F.7.2.8. Let (F.3) be an exact sequence of complex Lie groups, where E
is connected and Q is simply connected. Then there exists a cross section, i.e.,
a holomorphic map s : Q → E with ps = IdQ. In particular, the principal
K-bundle p : E → Q is trivial.

Example F.7.2.9. Let A be a complex elliptic curve. Take a nonzero element
of A∨, which induces a nontrivial extension E of A by C∗ via Theorem
F.5.2.4. By Proposition F.5.1.3, the principal C∗-bundle E → A is nontrivial.
Therefore, Fact F.7.2.8 fails if the base is not simply connected.

Corollary F.7.2.10 follows immediately from Fact F.7.2.8 and Proposition
F.7.2.5.

Corollary F.7.2.10. Let K,Q be complex Lie groups, where K is connected
commutative and Q is simply connected. Let η : Q → Aut(K) be a complex
Lie group morphism11. Then Ext(Q,K, η) is isomorphic to the group of ∼η-
equivalence classes of η-factor systems.

Similar to [Hoc51a, Theorem 3.2], Fact F.7.2.11 can be proved using
Fact F.7.2.7 and Fact F.7.2.8,

Fact F.7.2.11. Let K,Q be complex Lie groups, where K is connected and Q
is simply connected. Then the map (on the set of equivalence classes) which
associates with each extension of Q by K the induced extension of L(Q) by
L(K) is injective. The image is the set of classes of those extensions 0 →
L(K)→ E→ L(Q)→ 0 in which the derivation

[x, •]E|L(K) ∈ Der(L(K)) = L(Aut(L(K)))

belongs to L(Aut(K)) for every x ∈ E. Furthermore, if K is commutative and
η : Q→ Aut(K) is a morphism, then the resulting map

Ext(Q,K, η)→ Ext(L(Q), L(K), deη)

is a group isomorphism.
11Here Aut(K) is a complex Lie subgroup of GL(L(K)) by [Lee01, Propositions 1.26 and

1.27].
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A connected Lie group is called semisimple if its Lie algebra is semisimple.
Analogue of Fact F.7.2.12 for semisimple real Lie groups H and real vector
groups G is contained in the proof of [Hoc51b, Theorem 5.1]. Fact F.7.2.12
can be proved in a similar way.

Fact F.7.2.12. Let G,H be connected complex Lie groups, where G is
commutative and H is semisimple. Let η : H → Aut(G) be a morphism
of complex Lie groups. If ϕ ∈ Z(H,G, η) is a crossed morphism, then there
exists g ∈ G such that ϕ(x) = ηx(g)g

−1 for all x ∈ H. In particular, ϕ ≡ eG
on ker(η).

Theorem F.7.2.13 is a complex version of [Hoc51a, Theorem 4.4].

Theorem F.7.2.13. In Fact F.7.2.12, Ext(H,G, η) is canonically isomorphic
to HomAb(π1(H), Gη(H)).

Proof. Let ω : H̃ → H be the universal covering of H. Then ker(ω) = π1(H)
is a discrete subgroup of H̃. By Fact F.3.2.4, π1(H) ⊂ Z(H̃). Then (F.33)
gives

OphomH̃(ker(ω), G, ηω) = Hom(π1(H), Gη(H)).

By Fact F.7.2.12, for every ρ ∈ Z(H̃,G, ηω), ρ|kerω = 1, i.e., Zker(ω)(H̃,G, ηω) =

0. By Fact F.7.2.11, the natural map Ext(H̃,G, ηω)→ Ext(L(H), L(G), deη)
is a group isomorphism. Since L(H) is a semisimple complex Lie algebra,
Levi’s theorem [Ser64, Theorem 4.1, p.48] affirms that Ext(L(H), L(G), deη) =
0. By Fact F.7.1.3, Ext(H,G, η) = Hom(π1(H), Gη(H)).

F.7.3 Non-abelian kernels and extensions of the center

For two complex Lie groups K,Q and a group morphism θ : Q→ Out(K), if
θ is induced by some extension of Q by K, then the extension kernel (K, θ)
is called extendible. The problem to determine the extendibility of a given
extension kernel is more difficult than that for abstract groups treated in
[EM47, Theorem 8.1], because of the obstruction to the existence of a cross
section. For extendible kernels, Corollary F.7.3.8 shows that the problem
for extensions by K can be reduced to that with an abelian kernel, namely
Z(K).

Let 1→ K → E
p→ Q→ 1 and 1→ K ′ → E′ p

′
→ Q→ 1 be two extension

of complex Lie groups. Denote their outer action by θ : Q → Out(K) and
θ′ : Q → Out(K ′) respectively. Assume that Z(K) = Z(K ′) := C and θ, θ′

induce a common center action12 θ0 : Q → Aut(C). Hence a commutative

12see (F.5)

305



diagram
Out(K)

Q Aut(C)

Out(K ′)

θ

θ′

θ0 (F.38)

We recall the multiplication of kernels defined in [EM47, Sec. 4]. The group
law C × C → C is holomorphic, so the subset

C∗ := {(x, x−1) : x ∈ C} (F.39)

is analytic in C×C. By Lemma F.2.0.6, C×C is an analytic subset ofK×K ′.
As C∗ is a central subgroup of K ×K ′, it is also a complex Lie subgroup of
K ×K ′ by Corollary F.2.0.5. Let K ′′ = K ×K ′/C∗. From [EM47, p.328],
the morphism C → K ′′ by g 7→ [(g, 1)] identifies C as the center of K ′′.

For every x ∈ Q, select automorphisms α ∈ θ(x)(⊂ Aut(K)) and α′ ∈
θ′(x)(⊂ Aut(K ′)). Because the diagram (F.38) is commutative, α × α′ is
an automorphism of K × K ′ sending C∗ into itself. It thus determines an
automorphism α′′ of K ′′. The class [α′′] ∈ Out(K ′′) depends only on θ, θ′,
but not the choices of α, α′. Hence a group morphism

θ′′ : Q→ Out(K ′′) (F.40)

that also induces θ0 : Q→ Aut(C).

Definition F.7.3.1. The pair (K ′′, θ′′) constructed above is called the C-
product of the two given extension kernels (K, θ) and (K ′, θ′).

Example F.7.3.2. If K ′ = C is commutative, it is asserted in [EM47, (4.4)]
that K ′ acts as an identity for the C-product. To make it explicit, we define a
surjective morphism ϕ : K×C → K of complex manifolds by ϕ(k, k′) = k′k.
Then ϕ is a morphism and C∗ = ker(ϕ). Thus, ϕ induces an isomorphism
σ : K ′′ → K satisfying [EM47, (4.2), (4.3)].

Then we review the multiplication of the given two extensions, contained
the proof of [EM47, Lem. 5.1].

As the map E × E′ → Q by (x, x′) 7→ p′(x′)p(x)−1 is holomorphic, the
preimage of eQ

D = Dp,p′(E,E
′) = {(x, x′) ∈ E × E′ : p(x) = p′(x′)}, (F.41)

is analytic in E ×E′. Since D is a subgroup of E ×E′, by Corollary F.2.0.5,
D is a complex Lie subgroup of E × E′.
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For every (x, x′) ∈ D with y = p(x) = p(x′), every g ∈ C, the element

(x, x′)(g, g−1)(x−1, x′−1) = (θ0(y)(g), θ0(y)(g)
−1)

is in C∗. Therefore, C∗ defined by (F.39) is normal in D.
As C∗ is a normal complex Lie subgroup of D, we can set E′′ = D/C∗.

The inclusion K × K ′ → D descends to an injective morphism K ′′ → E′′.
The map D → Q defined by (x, x′) 7→ p(x) induces a surjective morphism
p′′ : E′′ → Q whose kernel is K ′′. Hence an extension 1 → K ′′ → E′′ →
Q → 1. The induced outer action Q → Out(K ′′) is (F.40). We call (E′′, p′′)
the C-product of the two given extensions (E, p) and (E′, p′), written as
(E′′, p′′) = (E, p) ⊗ (E′, p′). Thus, [EM47, Lemmas 5.1 and 5.2] hold for
complex Lie groups.

Fact F.7.3.3. The C-product of two extendible kernels is extendible. The kernel
of the C-product (E, p)⊗ (E′, p′) of two extensions is the C-product of the two
kernels.

Proposition F.7.3.4. WhenK ′ = C, (E′, p′) is the semidirect product C⋊θ0Q,
then (E′′, p′′) is naturally equivalent to (E, p).

Proof. Consider the subgroup D ≤ E×E′ = E×(C⋊θ0Q) defined in (F.41).
Define a map ψ : D → E by (x, c, q) 7→ cx for x ∈ E and (c, q) ∈ C ⋊θ0 Q.
Then ψ is holomorphic.

We check that ψ is a group morphism. Take another (x, c′, q′) ∈ D. Since
θ0,q(c

′) = θp(x)(c
′) = xc′x−1, one has

ψ((x, c, q)(x′, c′, q′)) = ψ(xx′, cθ0,q(c
′), qq′)

=cθ0,q(c
′)xx′ = cxc′x′ = ψ(x, c, q)ψ(x′, c′, q′).

For every g ∈ C, ψ(g, g−1) = eE , so C∗ ⊂ kerψ. Thus, ψ induces a
morphism ϵ : E′′ → E. Together with σ defined in Example F.7.3.2, ϵ fits
into a commutative diagram.

1 K ′′ E′′ Q 1

1 K E Q 1

σ ϵ Id

Therefore, ϵ is an equivalence of extensions.

By construction, C-product defines a map Ext(Q,K, θ)×Ext(Q,K ′, θ′)→
Ext(Q,K ′′, θ′′). When K ′ = C, it specializes to

Ext(Q,K, θ)× Ext(Q,C, θ0)→ Ext(Q,K, θ), (F.42)

which defines an action of the abelian group Ext(Q,C, θ0) on the set
Ext(Q,K, θ). If further K is also commutative, by [Hoc51a, p.97], (F.42) is
exactly the group law defined by the Baer sum on Ext(Q,C, θ0).
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Definition F.7.3.5. [EM47, p.329] For every extension kernel (K, θ), let θ∗

be the composition of θ : Q→ Out(K) with the natural group isomorphism
Out(K) → Out(Kop). Then the extension kernel (Kop, θ∗) is called the
inverse of (K, θ).

For every (E, p) ∈ Ext(Q,K, θ), define p∗ : Eop → Q by p∗(x∗) = p(x−1),

then it is a surjective morphism. Since ker(p∗) = Kop, 1 → Kop → Eop p∗→
Q → 1 is an extension. The associated outer action is θ∗. Thus, we get
an element (Eop, p∗) ∈ Ext(Q,Kop, θ∗) of (E, p). It is called the inverse of
(E, p) and its extension kernel is the inverse of (K, θ).

It is a classical result that the group action (F.42) is simple transitive.
For abstract groups, see [EM47, Lem. 11.2 and 11.3]. For algebraic groups,
see [FLA19, Thm. 1.1]. It remains true for complex Lie groups. The first
half, Fact F.7.3.6, can be proved in the same way as in [Hoc51b, Thm. 1.1],
using the inverse in the group Ext(Q,C, θ0) and Proposition F.7.3.4.

Fact F.7.3.6. LetK,Q be complex Lie groups, C = Z(K). Let θ : Q→ Out(K)
be a group morphism that induces θ0 : Q → Aut(C). Then the action of
Ext(Q,C, θ0) on Ext(Q,K, θ) defined by (F.42) is free.

Theorem F.7.3.7 is analogue to [EM47, Lemma 11.2].

Theorem F.7.3.7. In the notation of Fact F.7.3.6, if Ext(Q,K, θ) is nonempty
(i.e., the extension kernel (K, θ) is extendible), then its Ext(Q,C, θ0)-action
defined by (F.42) is transitive. Equivalently, for every (E, p), (E1, p1) ∈
Ext(Q,K, θ), there exits F ∈ Ext(Q,C, θ0) with F ⊗ E equivalent to E1.

Proof. Define Dp1,p∗(E1, E
op) like (F.41). Set

S = {(x−1
1 , x∗) ∈ Dp1,p∗(E1, E

op) : x1kx
−1
1 = xkx−1, ∀k ∈ K}.

Then S is a subgroup of E1 × Eop. For every k ∈ K, the map

ϕk : E1 × Eop → K (x1, x
∗) 7→ x−1

1 kx1xk
−1x−1

is holomorphic, so ϕ−1
k (eK) is analytic inE1×Eop. Then S = Dp1,p∗(E1, E

op)∩
∩k∈Kϕ−1

k (eK) is analytic in E1 × Eop, by [Whi72, Theorem 9C, p.100]. By
Corollary F.2.0.5, S is a complex Lie subgroup of E1 × Eop.

The map K × Kop → K by (k, k′∗) 7→ kk′ is holomorphic, so K∗ =
{(k−1, k∗) : k ∈ K} is an analytic subset of K ×Kop. It is a subgroup of S,
hence a complex Lie subgroup of S by Corollary F.2.0.5.

For every (x−1
1 , x∗) ∈ S, k ∈ K, one has

(x−1
1 , x∗)(k−1, k∗)(x1, (x

∗)−1) = (x−1
1 k−1x1, x

∗k∗(x−1)∗)

=(x−1k−1x, (x−1kx)∗) ∈ K∗,
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so K∗ is a normal subgroup of S. Let F = S/K∗ and ν : S → F be the
quotient morphism. The map i : C → F defined by c 7→ [(c, 1)] is an
injective morphism.

The map ϕ̄ : S → Q defined by ϕ̄(x−1
1 , x∗) = p(x−1) is a morphism

with K∗ contained in the kernel. We check that ϕ̄ is surjective. For every
h ∈ Q, there exist x ∈ E and x1 ∈ E1 with p(x) = p1(x1) = h−1. Since
the two automorphisms of K, Innx |K and Innx1 |K have the same class θh−1

in Out(K), there exists k0 ∈ K such that Innx1 |K = Innx |K Innk0 . Then
(x−1

1 , (xk0)
∗) ∈ S and ϕ̄(x−1

1 , (xk0)
∗) = h.

If (x−1
1 , x∗) ∈ ker ϕ̄, then p1(x1) = p(x1) = eQ, so x1, x ∈ K. Moreover,

x1kx
−1
1 = xkx−1 for all k ∈ K. Then x−1

1 x ∈ C, so (x−1
1 , x∗) =

(x−1
1 x, 1∗)(x−1, x∗). Thus, [(x−1

1 , x∗)] = i(x−1
1 x) ∈ i(C).

Thus ϕ̄ induces a surjective morphism ϕ : F → Q with i(C) ⊃ kerϕ. In

addition, ϕi is trivial, so i(C) ⊂ ker(ϕ). Hence an extension 1 → C
i→ F

ϕ→
Q→ 1 with the induced action Q→ Aut(C) coinciding with θ0.

It remains to show that the C-product extension F ⊗ E is equivalent to
E1. By construction, F ⊗ E is represented by G = Dϕ,p(F,E)/C∗, where
C∗ = {(c, c−1) ∈ F × E : c ∈ C}. The pullback of Dϕ,p(F,E) along the
natural surjection S × E → F × E is Dϕν,p(S,E).

For every (a, b∗, x) ∈ Dϕν,p(S,E) ⊂ E1 × Eop × E, one has p1(a) =
p(b−1) = p(x), whence bx ∈ K and a · (bx) ∈ E1. Define a holomorphic map
τ : Dϕν,p(S,E)→ E1 by τ(a, b∗, x) = a · (bx).

E1

Dϕν,p(S,E) Dϕ,p(F,E) G

S × E F × E

E1 × Eop × E

τ
ν∗

ν×IdE

We check that τ is a group morphism. For every (a, b∗, x), (a′, b′∗, x′) ∈
Dϕν,p(S,E), since (a′, b′∗) ∈ S and bx ∈ K, one has a′−1(bx)a′ = b′(bx)b′−1.
Hence,

τ(a, b∗, x)τ(a′, b′∗, x′) = [a(bx)][a′(b′x′)]

=aa′[a′−1(bx)a′](b′x′) = aa′[b′(bx)b′−1](b′x′)

=aa′(b′bxx′) = τ(aa′, (b′b)∗, xx′) = τ(aa′, b∗b′∗, xx′).

We check that τ is surjective. For every x1 ∈ E1, p1(x1) ∈ Q. As ϕν :
S → Q is surjective, there is (a, b∗) ∈ S with ϕν(a, b∗) = p1(x1). Then
p1(a) = p1(x1). Thus, a−1x1 ∈ K. Let x = b−1(a−1x1) ∈ E. Then p(x) =
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p(b−1) = ϕν(a, b∗), so (a, b∗, x) ∈ Dϕν,p(S,E) and τ(a, b∗, x) = a(bx) =
a(a−1x1) = x1.

We check that ker(ν∗) ⊂ ker(τ). For every (x1, x
∗, y) ∈ ker(ν∗) ⊂ E1 ×

Eop ×E, there is c ∈ C with ([(x1, x
∗)], y) = (c, c−1) in F ×E. Equivalently,

y = c−1 in E and [(x1, x
∗)] = [(c, 1∗)] in F = S/K∗. Whence, (x1c−1, x∗) ∈

K∗, i.e., x ∈ K and x1 = x−1c. Therefore, (x1, x∗, y) = (x−1c, x∗, c−1) with
x ∈ K, c ∈ C. Thus, τ(x1, x∗, y) = x−1c(xc−1) = eE1 and (x1, x

∗, y) ∈
ker(τ).

Conversely, we check ker(τ) ⊂ ker(ν∗). For every (a, b∗, x) ∈ ker(τ), one
has a(bx) = eE1 , so a ∈ K. Because (a, b∗) ∈ Dp1,p∗(E1, E

op), we obtain
p(b−1) = p(a) = eQ and hence b ∈ K. Since Inna−1 = Innb ∈ Aut(K),
one has ab ∈ C. Therefore, [(a, b∗)] = [(ab, 1∗)] = i(ab) in F = S/K∗ and
(a, b∗, x) = (ab, (ab)−1) ∈ C∗ ≤ F × E. Then (a, b∗, x) ∈ ker(ν∗).

Therefore, ker(τ) = ker(ν∗), so τ induces an isomorphism G → E1 that
establishes an equivalence between the two elements of Ext(Q,K, θ).

Fact F.7.3.6 and Theorem F.7.3.7 yield Corollary F.7.3.8.

Corollary F.7.3.8. Let K,Q be complex Lie groups, C = Z(K), θ : Q →
Out(K) be a group morphism. Let θ0 : Q → Aut(C) be the induced
group morphism. If Ext(Q,K, θ) is nonempty, then Ext(Q,K, θ) is in (non-
canonical) bijection with Ext(Q,C, θ0).

F.8 Maximal morphisms

A result stronger than Proposition F.5.1.3 holds.

Definition F.8.0.1. [Ser88, Definition 1, p.125]. Let X be a complex
manifold, A be a complex torus. A morphism f : X → A is called maximal
if whenever f factors as X

g→ A′ h→ A, where A′ ∈ C is connected and
h − h(0) : A′ → A is a finite morphism, it holds that h − h(0) is an
isomorphism.

Proposition F.8.0.2. IfX is a regular manifold13, then the Albanese morphism
f : X → Alb(X) associated to some base point x ∈ X is maximal.

Proof. Assume that f factors as X
g→ A′ h→ Alb(X), where A′ ∈ C is a

connected and h − h(0) is a finite morphism. Then A′ is compact, hence
a complex torus. Choosing g(x) as the new zero element of A′, we get
a new structure of complex torus on A′, to which we stick from now
on. Then h is a finite morphism. By Proposition 4.4.1.2 3, there is a
morphism ϕ : Alb(X) → A′ with ϕf = g and the complex Lie subgroup
of Alb(X) generated by f(X) is Alb(X) itself. Then hϕf = f and hence

13in the sense of [Var86, p.233]
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hϕ = IdAlb(X). In particular, h is surjective. By Fact F.3.0.4, the exact

sequence 0 → ker(h) → A′ h→ A → 0 defines a trivial extension, so A′ is
isomorphic to ker(h) × A. By connectedness of A′, ker(h) = 0 and h is an
isomorphism.

When f = IdA, Proposition F.8.0.3 reduces to Proposition F.5.1.3.

Proposition F.8.0.3 ([Ser88, Prop. 14, p.188]). Let X be a connected
compact complex manifold, A be a complex torus, B ∈ C. Let f : X → A
be a maximal morphism. If B0 is linear, then the composed morphism

Ext(A,B)
π→ H1(A,BA)

f∗→ H1(X,BX) (F.43)

is injective.

Proof. Let C ∈ ker(f∗ ◦ π). Then the principal fiber bundle f∗p : f∗C → X
is trivial. Fix a point c ∈ f∗C lying over 0 ∈ C. Then there is a morphism
s : X → f∗C with f∗p ◦ s = IdX and s(f∗p(c)) = c. Let t : X → C be the
morphism induced by s.

f∗C X

0 B C A 0

0 B ∩A′ A′ A 0

f∗p

f

s

t

p

h−1

h

Id

By Remmert’s theorem [Whi72, Theorem 4A, p.150], t(X) is an analytic
subset of C. By [CD94, (14.14), p.89], the analytic space t(X) is irreducible.
Moreover, t(X) is compact and 0 = t(f∗p(c)) ∈ t(X). Let A′ be the complex
Lie subgroup of C generated by t(X). By Lemma D.3.2.1, A′ is a complex
torus. Then (A′ ∩B)0 is a compact. As a closed complex submanifold of B0,
(A′ ∩ B)0 is also a Stein manifold, hence a point. Thus, A′ ∩ B is discrete
and compact, hence finite. Therefore, h : A′ → A is a finite morphism. As
the maximal morphism f factors as X t→ A′ h→ A, h is an isomorphism.
Then h−1 : A→ C is a morphism and ph−1 = IdA. By Fact F.3.0.4, C = 0 in
Ext(A,B).

Example F.8.0.4. Let X be a regular manifold, f : X → A be the Albanese
morphism associated to some base point x ∈ X. When B = C, the
composed morphism (F.43) is a linear isomorphism f∗ : H1(A,OA) →
H1(X,OX). When B = C∗, it is the inclusion of the identity component
Pic0(A)→ Pic(X).
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F.9 Commutative extensions of real Lie groups

Let R be the category of commutative real Lie groups. The solution to the
extension problem within R is summarized in Proposition F.9.0.2. Similar
to Lemma F.4.1.1, the category R is additive but not abelian. Parallel to
the construction in Section F.4, we can define an additive functor ExtR :
Rop ×R → Ab by considering commutative extensions.

Proposition F.9.0.1 generalizes [lH76, Proposition 5, p.110] (which says
that C is isomorphic to A × B) and [HN11, Lemma 15.3.2] (which is for
real tori). The similar statement for complex tori is false, shown by Example
F.4.1.14.

Proposition F.9.0.1. Let 0 → B → C → A → 0 be an extension of
commutative real Lie groups. If A,B are connected, this extension is trivial.

Proof. Similar to Proposition F.3.2.2, every extension of R is a semidirect
product, hence ExtR(R, •) = 0 on R. Similar to Proposition F.3.2.3,
ExtR(S

1, B) = 0. According to [lH76, Proposition 4, p.109], A is
isomorphic to (S1)n × Rm for some m,n ∈ N. As the functor ExtR(•, B) :
R → Ab is additive, we get ExtR(A,B) = 0.

Proposition F.9.0.2. For everyA,B ∈ R, there is a non canonical isomorphism
in Ab:

ExtR(A,B)→ Ext1Z(A/A0, B/B0)⊕HomAb(π1(A0), B/B0).

Proof. By a real version of Corollary F.4.1.13, there are non canonical
isomorphisms in R: A→ A/A0 × A0 and B → B/B0 ×B0. By additivity of
the bifunctor ExtR, we get an isomorphism in Ab:

ExtR(A,B)→ ExtR(A/A0, B0)⊕ExtR(A/A0, B/B0)⊕ExtR(A0, B/B0)⊕ExtR(A0, B0).

Using Lemma F.4.1.12, one can prove that ExtR(A/A0, B0) = 0. Identical
to Example F.4.1.10, ExtR(A/A0, B/B0) = Ext1Z(A/A0, B/B0). Similar to
Corollary F.3.2.5 and [Hoc51b, Thm. 3.2], ExtR(A0, B/B0) = HomAb(π1(A0), B/B0).
By Proposition F.9.0.1, ExtR(A0, B0) = 0. The proof is completed.
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