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Abstract

We de�ne the integral Lang locus for algebraic varieties over number

�elds. It measures the failure of �niteness of integral points of the algebraic

variety. For Shimura varieties, Lang conjectures that the locus is empty

when the level structure is high, and we prove that the locus is either full

or empty.
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1 Introduction

A complex analytic spaceX is called Brody hyperbolic, if every morphism C→ X
is constant. For example, by [Cos05, p.78], a genus g compact Riemann surface is
Brody hyperbolic if and only if g ≥ 2. Conjecture 1.1 predicts that hyperbolicity
(geometric property) restricts the behavior of rational points (arithmetic result).

Conjecture 1.1 (Lang, [Lan74, (1.3)], [Lan86, p.160]). Let X be an integral
projective variety over a number �led F (⊂ C). If the complex analyti�cation
X(C) is Brody hyperbolic, then the set of rational points X(F ) is �nite.

Ullmo and Yafaev [UY10] study Conjecture 1.1 in the case of Shimura
varieties. Let (G,X) be a Shimura datum (in the sense of [Mil17, Def. 5.5]).
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Let K ≤ G(Af ) be a compact open subgroup. For every connected component
S ⊂ ShK(G,X), denote the Baily-Borel compacti�cation of S be S∗. Fact 1.2
is derived from [Nad89, Thm. 0.2] in the paragraph following [UY10, Thm. 2.1].

Fact 1.2 (Nadel). There is an open subgroup K ′ ≤ K, such that for every
induced �nite étale cover S′ → S, the Baily-Borel compacti�cation S′∗ is Brody
hyperbolic.

For one thing, by Fact 1.2, shrinkingK to a su�ciently small open subgroup,
one may and will assume that the Shimura variety S is Brody hyperbolic. For
another, S∗ has a natural structure of projective variety over a number �eld F (⊂
C). Then Conjecture 1.1 predicts S(F ′) to be �nite for every �nite extension
F ′/F . Ullmo and Yafaev [UY10] introduce �Lang locus" (Example 2.2) for
algebraic varieties over Q̄ to measure the failure of Conjecture 1.1. In particular,
the Lang locus of an algebraic variety over Q̄ is empty if and only if it has only
�nitely many rational points over every number �eld where it can be de�ned.
The Lang locus of Shimura varieties satis�es an alternative principle.

Fact 1.3 ([UY10, Thm. 1.1]). Let S be a Shimura variety of su�ciently high
level. Then its Lang locus is either empty or full S.

As Ullmo and Yafaev put it, Fact 1.3 means that for Shimura varieties,
Conjecture 1.1 is either true or very false.

As Shimura varieties are not proper in general, it is natural to consider
integral points. Conjecture 1.1 predicts that S has only �nitely many integral
points. We derive an analogue of Fact 1.3 for integral points. We de�ne a
notion of �integral Lang locus" (De�nition 5.1) for algebraic varieties over Q̄
that measures the failure of �niteness of integral points.

Theorem (Theorem 5.12). The integral Lang locus of a Shimura variety S is
either empty or full S.

Notation and conventions

Let Q̄ be the algebraic closure of Q in C. Let Af be the ring of �nite adèles of Q.
Unless otherwise speci�ed, an algebraic variety means a �nite type, separated,
geometrically reduced scheme over a �eld. The closure of a subset of an algebraic
variety is taken in the Zariski topology. A subvariety is assumed to be Zariski
closed. A Zariski-closed subset of a variety is endowed with the reduced induced
closed subscheme structure, hence a subvariety.

By an étale cover X → Y , we mean a �nite étale morphism between integral
algebraic varieties. In particular, it is surjective. If Aut(X/Y ) acts transitively
on each �ber, then X → Y is called a Galois cover, of Galois group Aut(X/Y ).
For a topological space X, we write X>0 for the union of irreducible components
of positive Krull dimension. Then for every subspace Y ⊂ X, one has Y >0 ⊂
X>0.
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2 Locus formation

We shall show that an alternative principle (Corollary 4.3) for an abstract locus
is a consequence of some axioms.

Suppose that for every integral algebraic variety X over Q̄, we de�ne a
subvariety XL ⊂ X. For a reducible algebraic variety Z over Q̄, let Z = ∪ni=1Zi

be the decomposition into irreducible components. Set ZL := ∪ni=1Z
L
i . Suppose

that the formation (·)L satis�es Assumption 2.1.

Assumption 2.1. For any integral algebraic varieties X,Y over Q̄:

1. (Dimension) If XL ̸= ∅, then every irreducible component of XL has
positive dimension;

2. (Inheritance) For every closed immersion i : X → Y over Q̄, one has
i(XL) ⊂ Y L;

3. (Cover) For every étale cover f : X → Y over Q̄, one has f(XL) ⊂ Y L;

4. (Iteration) One has XL ⊂ (XL)L;

5. (Birational) For every �nite birational morphism f : X → Y over Q̄, one
has f(XL) ⊂ Y L.

For every integral algebraic variety X over Q̄, by Assumption 2.1 2, one has
XL ⊃ (XL)L. From Assumption 2.1 4, one has XL = (XL)L.

Example 2.2. The Lang locus de�ned in [UY10, Sec. 2.2] satis�es Assumption
2.1. For every integral algebraic variety X over Q̄, by [Sta24, Tag 01ZM (1),
Tag 01ZQ], there exist a number �eld F , an algebraic variety XF over F and
an isomorphism XF ⊗F Q̄→ X over Q̄. For each �nite subextension M/F , let
X(XF ,M) be the image of the natural injection1 XF (M) → X(Q̄). The Lang
locus of X relative to XF is de�ned to be the Zariski closure of

∪MX(XF ,M)
>0

in X, where M runs through all �nite subextensions of F . By Lemma 2.3, the
Lang locus depends only on X. From [UY10, Lemmes 2.3, 2.5], the Lang locus
satis�es Assumption 2.1. It measures the failure of �niteness of rational points,
since XL = ∅ if and only if XF (M) is �nite for every �nite subextension M/F .

Lemma 2.3. The Lang locus of X is independent of the choice of XF .
1The natural map XF (M) → XF is not injective in general.
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Proof. Take another modelXF ′ over a number �eld F ′. There is a Q̄-isomorphism
XF ⊗F Q̄ → XF ′ ⊗F ′ Q̄. Because XF ′ is separated, by [Gro65, Prop. 4.8.13],
the morphism is de�ned over a number �eld F ′′ containing both F and F ′. For
every �nite extension M/F , there is a number �eld M ′ containing M and F ′′.

Then X(XF ,M) ⊂ X(XF ′ ,M ′), so X(XF ,M)
>0
⊂ X(XF ′ ,M ′)

>0
and hence

the Lang locus relative to XF is contained in that relative to XF ′ . The reverse
inclusion follows by symmetry.

Remark 2.4. 1. The Lang locus XL in Example 2.2 is slightly di�erent from
the �lieu de Lang" XL

F (a Zariski closed subset of XF ) de�ned by [UY10,
(1)]. Let ϕ : X → XF be the natural morphism of schemes. For every �nite
extension M/F , let XF [M ] be the image of the natural map XF (M) →
XF . Then ϕ(X(XF ,M)) = XF [M ]. Because ϕ is integral, and surjective
integral morphisms preserve the dimension, one has ϕ(X(XF ,M)) = XF [M ]

and ϕ(X(XF ,M)
>0

) = XF [M ]
>0
. Hence ϕ(XL) = XL

F .

2. For a �nite birational morphism f : X → Y of integral algebraic varieties
over Q̄, it is not clear whether the Lang locus of Y is the image of the
Lang locus of X (even if this is stated in [UY10, p.697]). That is why we
require only inclusion but not equality in Assumption 2.1 5.

We gather some consequences of Assumption 2.1.

Lemma 2.5. Let X be an algebraic variety over Q̄.

1. If X = ∪ri=1Zi, where each Zi is a subvariety of X, then XL = ∪ri=1Z
L
i .

2. If Z is an irreducible component of XL, then ZL = Z.

3. If f : X → Y is Galois cover over Q̄, then f−1(f(XL)) = XL. If Z ⊂ Y
is an irreducible subvariety, and Z ′ is an irreducible component of f−1(Z),
then f(f−1(Z)L) = f(Z ′L).

Proof.

1. By Assumption 2.1 2, one has ∪ri=1Z
L
i ⊂ XL. If Y is an irreducible

component of X, then there exists an index i such that Y ⊂ Zi. From
Assumption 2.1 2, one has Y L ⊂ ZL

i and hence XL ⊂ ∪ri=1Z
L
i .

2. Write XL = ∪ni=1Zi for the decomposition into irreducible components
with Z1 = Z. By Assumption 2.1 4, one has

Z ⊂ XL = (XL)L = ∪ni=1Z
L
i .

As Z is irreducible, there is an index i such that Z ⊂ ZL
i ⊂ Zi. As Z = Z1

is an irreducible component of XL, one has i = 1 and Z = ZL.

3. For every x ∈ f−1(f(XL)), there is x′ ∈ XL with f(x′) = f(x). Let
Θ be the Galois group of f : X → Y . There is θ ∈ Θ with θ(x′) = x,
so x ∈ XL by Assumption 2.1 2. Therefore, f−1(f(XL)) = XL. Since
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Θ permutes transitively the irreducible components of f−1(Z), one has
f−1(Z) = Θ · Z ′. By Part 1, one has f−1(Z)L = Θ · Z ′L and hence
f(f−1(Z)L) = f(Z ′L).

Given an étale cover f : X → Y over Q̄, the induced morphism XL → Y L

may not be surjective. We introduce a sublocus that lifts along all étale covers.
For an integral algebraic variety X over Q̄, de�ne its locus at in�nite level

by
XL∞ := ∩f :T→Xf(TL),

where f : T → X runs through all étale covers of X. By Assumption 2.1 3,
the sublocus XL∞ is a subvariety of XL. As X is topologically Noetherian,
and f(TL) ⊂ X is closed for every such f : T → X, there exists a particular
cover f1 : X1 → X with f1(X

L
1 ) = XL∞ . For every étale cover X2 → X1, the

composition XL
2 → XL

1
f1→ XL∞ is still surjective.

Remark 2.6. By Assumption 2.1 1, if XL∞ ̸= ∅, then its irreducible components
are positive dimensional.

For a reducible algebraic variety Y over Q̄, let Y = ∪ni=1Yi be the decomposition
into irreducible components. De�ne Y L∞ = ∪ni=1Y

L∞
i , which is a subvariety of

Y L.

Lemma 2.7. Let f : T → S be an étale cover over Q̄. Then f−1(SL∞) = TL∞ .
In particular, TL∞ = T is equivalent to SL∞ = S, and SL∞ = SL implies
TL∞ = TL.

Proof. � We show TL∞ ⊂ f−1(SL∞).
Fix t ∈ TL∞ , and set s = f(t). For every étale cover g : S′ → S, there is a

commutative diagram

T ′

T S′

S

f ′

g′

f

g

where each arrow is an étale cover. There is t′ ∈ T ′L with g′(t′) = t. Then by
Assumption 2.1 3, one has s′ := f ′(t′) ∈ S′L and s = g(s′) ∈ g(S′L). Hence
s ∈ SL∞ .

� We show TL∞ ⊃ f−1(SL∞).

Take t ∈ f−1(SL∞). Then s := f(t) ∈ SL∞ . For every étale cover u : Z → T ,

there is an étale cover v : N → Z such that the composition N
v→ Z

u→ T
f→ S
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is a Galois cover. One has

(u ◦ v)−1(t) ⊂ (f ◦ u ◦ v)−1(s) ⊂ (f ◦ u ◦ v)−1(SL∞)

⊂(f ◦ u ◦ v)−1((f ◦ u ◦ v)(NL))
(a)

= NL,

where (a) uses Lemma 2.5 3. Thus, one has u−1(t) ⊂ v(NL) ⊂ ZL and t ∈
u(ZL). Hence t ∈ TL∞ .

� The equality TL∞ = T is equivalent to SL∞ = S.

If TL∞ = T , then SL∞ = f(f−1(SL∞)) = f(TL∞) = f(T ) = S. Conversely, if
SL∞ = S, then TL∞ = f−1(SL∞) = f−1(S) = T .

� The equality SL∞ = SL implies TL∞ = f−1(SL∞) = f−1(SL)
(b)

⊃ TL,
where (b) uses Assumption 2.1 3. Hence TL∞ = TL.

3 Shimura varieties

We review some basic facts about Shimura varieties, the main objects of interest
in this note. We use essentially results on the geometry of Hecke correspondences
and special subvarieties from [UY10, UY14].

Basics

Let G be an a�ne algebraic group over Q.

De�nition 3.1 ([Pin90, Sec. 0.1, p.13]). For every prime number p, choose an
embedding Q̄→ Q̄p.

1. For an element g = (gp)p ∈ GLn(Af ), let Γp ≤ Q̄×
p be the subgroup

generated by all eigenvalues of gp ∈ GLn(Qp). If the intersection of the
torsion subgroups

∩p(Q̄× ∩ Γp)tor = {1}

for p running through all primes, then g is called neat.

2. An element ofG(Af ) is called neat if its image under some faithful algebraic
representation of G→ GLn/Q is neat.

3. A subgroup of G(Af ) is called neat if all its elements are neat.

Fact 3.2 ([Pin90, p.13]).

1. Let K ≤ G(Af ) be a compact open subgroup. Then there is an open normal
subgroup K ′ ≤ K that is neat.
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2. Let K ≤ G(Af ) be a neat subgroup. Then K ∩G(Q) is a neat subgroup of
G(Q) (in the sense of [Mil17, p.34]).

Let (G,X) be a Shimura datum. The set G(R) is naturally a (real) Lie
group. For a Lie group L, let L+ be its identity component. Let Gad be the
quotient of G by its center. Set G(R)+ to be the preimage of Gad(R)+ under
the natural morphism G(R)→ Gad(R) of Lie groups. Then G(Q)+ ⊂ G(Q)+ ⊂
G(Q). By [Noo06, p.168] and [Mil17, Prop. 5.9], X is naturally a �nite disjoint
union of isomorphic hermitian symmetric domains. Let X+ be a connected
component of X. By [Mil17, Prop. 5.7 (b)], the stabilizer of X+ in G(Q) is
G(Q)+ := G(Q) ∩G(R)+.

Let K ≤ G(Af ) be a compact open subgroup. From Fact 3.2 1, by passing
to an open subgroup of K, we may and always assume that K is neat. Then
by [Pin90, Prop. 3.3 (b)], ShK(G,X) := G(Q)\X × G(Af )/K is naturally a
complex manifold. For every g ∈ G(Af ), put Γg := gKg−1 ∩ G(Q)+ and
Sg := Γg\X+. By Fact 3.2 2 and [Mil17, Prop. 4.1], Γg is a neat (hence torsion-
free) arithmetic subgroup of G(Q) (in the sense of [Mil17, p.33]). From [Mil17,
Prop. 3.1], Sg = [X+, g]K is naturally a connected complex manifold. Let C
be a set of representatives for the double coset space G(Q)+\G(Af )/K. From
[Mil17, Lemmas 5.12 and 5.13], the set C is �nite, and as complex manifold
ShK(G,X) = ⊔g∈CSg.

By [Mil17, Thm. 3.12; Cor. 3.16], the complex manifold Sg has a canonical
structure of a complex algebraic variety. The algebraic variety Sg is an irreducible,
smooth arithmetic locally symmetric variety ([Mil17, p.58]). It is Zariski-open in
its Baily-Borel compacti�cation S∗

g ([Mil17, p.40]), which is a projective variety.
Thus, ShK(G,X) is also a smooth quasi-projective (reducible) complex algebraic
variety.

Let E(G,X) ⊂ Q̄ be the re�ex �eld of the Shimura datum (G,X) (in the
sense of [Mil17, Def. 12.2]). By [Mil17, Rk. 12.3 (a)], E(G,X) is a number
�eld. From [Mil99, Rk. 2.4 (b)] and [Mil17, p.128], ShK(G,X) admits a unique
(up to a unique isomorphism) canonical model over E(G,X) (in the sense
of [Mil17, Def. 12.8]). Hence a smooth quasi-projective variety ShK(G,X)
over E(G,X). By [Del71, Cor. 5.4], for every morphism of Shimura data
f : (G′, X ′)→ (G,X) and every compact open subgroup K ≤ G(Af ) containing
f(K ′), the induced morphism ShK′(G′, X ′) → ShK(G,X) is de�ned over a
number �eld. Assume that f is the identity. Then the induced morphism
(denoted by pK′,K) is �nite étale and de�ned over E(G,X). For every irreducible
component S′ ⊂ ShK′(G′, X ′), its image S ⊂ ShK(G,X) is an irreducible
component, and the restriction S′ → S is an étale cover de�ned over a �nite
extension of E(G,X). From [CK16, p.1901], when K ′ is normal in K, this étale
cover is Galois.

By [Moo98b, p.282] and [GN20, Remark (3), p.56], every connected component
S ⊂ ShK(G,X) and its inclusion S → S∗ to the Baily-Borel compacti�cation
are de�ned over a �nite abelian extension of E(G,X). Such an S is called a
Shimura variety2 associated with (G,X,K).

2By [Moo98b, Prop. 2.9] and [Mil17, Thm. 5.17], when K is su�ciently small, S is a
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Hecke correspondences

By [Mil17, Thm. 13.6], for every g ∈ G(Af ), there is an isomorphism T (g) :
ShK(G,X) → Shg−1Kg(G,X) of algebraic varieties over E(G,X). For every
h ∈ G(Af ), the morphism T (g) sends the connected component [X+, h]K ⊂
ShK(G,X) isomorphically to [X+, hg]g−1Kg ⊂ Shg−1Kg(G,X). The algebraic
correspondence

ShK(G,X)
pK∩gKg−1,K← ShK∩gKg−1(G,X)

pK∩gKg−1,gKg−1

→ ShgKg−1(G,X)
T (g)→ ShK(G,X)

over E(G,X) is denoted by TA
g , and called the adelic Hecke correspondence

induced by g.
Let S = (K ∩ G(Q)+)\X+. For every q ∈ G(Q)+, let Sq = (K ∩ q−1Kq ∩

G(Q)+)\X+. Then Sq is the connected component [X+, 1] of ShK∩q−1Kq(G,X)
(resp. ShK(G,X)). The map IdX+ (resp. X+ → X+, x 7→ q · x) induces an
étale cover αq : Sq → S (resp. βq : Sq → S). There is a commutative diagram

S Sq S

ShK(G,X) ShK∩q−1Kq(G,X) ShK(G,X)

αq βq

pK∩q−1Kq,K T (q−1)pK∩q−1Kq,q−1Kq

of complex manifolds. Therefore, the correspondence

S
αq← Sq

βq→ S

is algebraic and de�ned over a number �eld. It is called the (rational) Hecke
correspondence induced by q, and denoted by Tq.

Let {qi}ni=1 be elements of G(Q)+ ∩KgK satisfying

G(Q)+ ∩KgK = ⊔ni=1Γq
−1
i Γ,Γ := K ∩G(Q)+.

By [KY14, p.881], the correspondence on [X+, 1] ⊂ ShK(G,X) induced by TA
g

decomposes as
∑n

i=1 Tqi . For instance, the correspondences T
A
1 and T1 are the

identity.

Special subvarieties

De�nition 3.3. [Moo98a, Def. 2.5] An irreducible subvariety Z ⊂ ShK(G,X)
over C is called special, if there exists a connected, reductive algebraic subgroup
H ≤ G de�ned over Q, an element g ∈ G(Af ) and a connected component D+

H

of
DH := {x ∈ X|hx : ResC/R(Gm)→ GR factors through HR},

such that Z(C) is the image of D+
H × gK in ShK(G,X)(C) = G(Q)\X ×

G(Af )/K.

connected Shimura variety (in the sense of [Mil17, Def. 4.10]).
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By [Moo98a, 2.4], DH is a �nite union of H(R)-conjugacy classes. Let C be
the H(R)-conjugacy class containing D+

H . Then (H,C) is a Shimura subdatum3

of (G,X). Then from [Del71, Cor. 5.4] and [Moo98a, Rk. 2.6], every special
subvariety of ShK(G,X) is de�ned over a number �eld.

Example 3.4. 1. A complex point s ∈ ShK(G,X) is a special subvariety, if
and only if there is a special point x ∈ X (in the sense of [Mil17, Def. 12.5])
and g ∈ G(Af ) with s = [x, g]K .

2. When H = G, the corresponding special subvarieties of ShK(G,X) are
precisely the connected components.

For every g ∈ G(Af ) and every irreducible subvariety Z ⊂ ShK(G,X) over
C, Z is special if and only if T (g)(Z) is special in Shg−1Kg(G,X). By [Moo98a,
Sec. 2.9], an irreducible component of the intersection of a family of special
subvarieties of ShK(G,X) over C is again special. Therefore, for a complex,
irreducible subvariety Y ⊂ ShK(G,X), there is a smallest special subvariety
ZY ⊂ ShK(G,X) containing Y . We say that Y is Hodge generic in ZY . Let
S := ResC/R Gm be the Deligne torus.

De�nition 3.5. The generic Mumford-Tate group (denoted by MT(X)) of the
Shimura datum (G,X) is the smallest closed subgroup H of G over Q, such that
every h : S → GR in X factors through HR. If MT(X) = G, then the Shimura
datum (G,X) is called irreducible.

The subgroup MT(X) ≤ G is normal, connected and reductive. By [Che09,
Def. 1.3.3], (MT(X), X) is a Shimura subdatum of (G,X). Fact 3.6 characterizes
special subvarieties as Hecke image of irreducible components of a Shimura
subvariety. Recall that K ≤ G(Af ) is a neat, compact open subgroup. For
g ∈ G(Af ), the quotient Sg = Γg\X+ is an irreducible component of ShK(G,X).

Fact 3.6 ([UY10, Lem. 2.7]). Let (H,XH) ⊂ (G,X) be an irreducible Shimura
subdatum. Let X+

H be a connected component of XH contained in X+. Set
ΓH,g = gKg−1 ∩ H(Q)+ and Z̃g := ΓH,g\X+

H (an irreducible component of
ShgKg−1∩H(Af )(H,XH)). Then the image Zg of Z̃g under the C-morphism

ShgKg−1∩H(Af )(H,XH)→ ShK(G,X), [x, h] 7→ [x, hg]

is a special subvariety of Sg. The induced morphism π : Z̃g → Zg is �nite and
birational. Conversely, every special subvariety of Sg arises in this way.

Remark 3.7. If the special subvariety Zg in Fact 3.6 is normal, then by Zariski's
main theorem (see, e.g., [Liu06, Cor. 4.6]), π : Z̃g → Zg is an isomorphism.

Let S = Sg be a Shimura variety associated with (G,X,K).

Lemma 3.8. Let Z ⊂ S be a special subvariety over Q̄. Let π : Z̃ → Z be
a �nite birational morphism given by Fact 3.6. Then there is a Galois cover

3in the sense of [CLZ16, p.894]
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f : S′ → S over Q̄ with S′L = S′L∞ , such that for every irreducible component
Z ′ ⊂ f−1(Z), one has Z ′L = Z ′L∞ and f : Z ′ → Z factors through an étale
cover Z ′ → Z̃.

Proof. The Hecke isomorphism T (g) : ShgKg−1(G,X) → ShK(G,X) sends
[X+, 1]gKg−1 to Sg. It keeps the special subvarieties. Thus, one may assume
g = 1 (by replacing K with gKg−1). Let (H,XH) ⊂ (G,X) be an irreducible
Shimura subdatum inducing Z via Fact 3.6. Then the restriction

π : Z̃(:= [X+
H , 1]K∩H(Af ))→ Z

of ShK∩H(Af )(H,XH)→ ShK(G,X) is �nite and birational.
The system {[X+

H , 1]U} (U running through all open subgroups ofK∩H(Af ))
is co�nal in all the étale covers of Z̃. So there is an open subgroup K0,H ≤ K

such that the étale cover g0 : Z̃0(:= [X+
H , 1]K0,H

) → Z̃ satis�es g0(Z̃L
0 ) = Z̃L∞ .

Similarly, there is an open subgroup K1 ≤ K such that K1∩H(Af ) ⊂ K0,H and
the étale cover f1 : S1 := ([X+, 1]K1

) → S satis�es f1(SL
1 ) = SL∞ . By Lemma

2.7, one has SL
1 = SL∞

1 .

� There is an open subgroup K2 ≤ K1, such that K2∩H(Af ) = K1∩H(Af )
and the natural morphism i1 : ShK2∩H(Af )(H,XH) → ShK2

(G,X) is a
closed immersion.

Indeed, by [Del71, Prop. 1.15], there is a compact open subgroup Km ≤
G(Af ) containing K1 ∩H(Af ), such that the morphism

i2 : ShK∩H(Af )(H,XH)→ ShKm
(G,X)

is a closed immersion. Let K2 = K1 ∩Km. Then K2 ∩H(Af ) = K1 ∩H(Af )
and i2 = pK2,Km

i1. Since pK2,Km
: ShK2

(G,X)→ ShKm
(G,X) is separated, by

magic square, i1 is a closed immersion.
Then the morphism Z̃2(:= [X+

H , 1]K2∩H) → S2(:= [X+, 1]K2) is a closed
immersion. The induced morphism π2 : Z̃2 → (f1f2)

−1(Z) is a closed immersion.

� The closed immersion π2 identi�es Z̃2 with an irreducible component of
(f1f2)

−1(Z).

Since Z̃2 is irreducible, it is contained in an irreducible component C ⊂ (f1f2)
−1(Z).

As π is birational, by [Sta24, Tag 0BAC], there is a nonempty open subset
Ũ ⊂ Z̃, such that U := π(Ũ) is open in Z and π|Ũ : Ũ → U is an isomorphism.
Consider the commutative square

g−1
2 (U) (f1f2)

−1(U)

Ũ U.
π|Ũ
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The morphism g−1
2 (Ũ) → (f1f2)

−1(U)
f1f2→ U (resp. f1f2 : (f1f2)

−1(U) → U)
is a base change of the étale morphism g2 : Z̃2 → Z2 (resp. f1f2 : S2 → S),
so it is étale. By [Sta24, Tag 03PC (10)], the morphism π2|g−1

2 (Ũ) : g
−1
2 (Ũ) →

(f1f2)
−1(U) is étale. From [Sta24, Tag 03PC (9)], g−1

2 (Ũ) is an open subset
of (f1f2)−1(U), hence a nonempty open subset of C. Since C is irreducible,
g−1
2 (Ũ) is dense in C. Therefore, C ⊂ Z̃2.
There is a normal, open subgroup K ′ ≤ K with K ′ ⊂ K2. Let f3 : S′(:=

[X+, 1]K′) → S2 be the induced étale cover. Since K ′ is normal in K, the
composition f(= f1f2f3) : S′ → S is a Galois cover. Since SL

1 = SL∞
1 , by

Lemma 2.7, one has S′L = S′L∞ .
Let Z̃3 be an irreducible component of f−1

3 (Z̃2). The morphism f3 : f−1
3 (Z̃2)→

Z̃2 is a base change of the étale cover f3 : S3 → S2, so it is �nite and étale.
The algebraic variety Z̃2 is smooth, so is f−1

3 (Z̃2). Therefore, Z̃3 is open in
f−1
3 (Z̃2). The morphism g3 : Z̃3 → Z̃2 is �nite étale, and Z̃2 is connected, so g3
is surjective. The situation is depicted as a commutative diagram

Z̃3 f−1
3 (Z̃2) f−1(Z) S′

Z̃2 (f1f2)
−1(Z) S2

Z̃0 S1

Z̃ Z S.

g3 □ □ f3

f

π2

g2 □

f2

g0 f1

π

Then Z̃3 is an étale cover of Z̃ and an irreducible component of f−1(Z). The
Galois group of the Galois cover f : S′ → S permutes the irreducible components
of f−1(Z), so they have similar properties.

Lemma 3.9 is used in the proof of Theorem 4.1.

Lemma 3.9. If SL∞ ̸= ∅ is a �nite union of special subvarieties of S, then
SL = S.

Proof. Write SL∞ = ∪ni=1Zi for the decomposition into irreducible components.
By assumption, for every 1 ≤ i ≤ n, the subvariety Zi ⊂ S is special. Let
πi : Z̃i → Zi be a �nite birational morphism given by Fact 3.6. Let fi : Si → S
be a Galois cover corresponding to πi given by Lemma 3.8. There is a Galois
cover f : S′ → S, such that for every 1 ≤ i ≤ n, there is an étale cover
gi : S

′ → Si with figi = f . Then S′L = S′L∞ . Hence S′L = (S′L)L = (S′L∞)L.

1. One has SL∞ ⊂ ∪ni=1πi(Z̃
L∞
i ).

Indeed, one has f(S′L) = SL∞ . For every irreducible component C ⊂ S′L,
the subset f(C) of SL∞ is irreducible. Then there is 1 ≤ i ≤ n with f(C) ⊂

11
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Zi. Thus, gi(C) is an irreducible subset of f−1
i (Zi). There is an irreducible

component Z ′ ⊂ f−1
i (Zi) containing gi(C). By Lemma 3.8, the morphism

fi : Z
′ → Zi factors through an étale cover Z ′ → Z̃i. Therefore, Z ′ and g−1

i (Z ′)
are smooth. One has

g−1
i (Z ′) ⊂ f−1(Zi) ⊂ f−1(SL∞)

(a)

= S′L,

where (a) uses Lemma 2.7. Then C is an irreducible component of g−1
i (Z ′),

hence an étale cover of Z ′. One has f(CL) ⊂ πi(Z̃
L∞
i ). Thus, 1 is proved.

2. One has Z̃L∞
1 = Z̃1.

From 1, one has Z1 ⊂ ∪ni=1πi(Z̃
L∞
i ). Since Z1 is irreducible, there is 1 ≤ j ≤ n

with Z1 ⊂ πj(Z̃
L∞
j ) ⊂ Zj . As Z1 is an irreducible component of SL∞ , one has

j = 1. Then dim Z̃L∞
1 ≥ dimZ1 = dim Z̃1. The irreducibility of Z̃1 proves 2.

3. For every q ∈ G(Q)+, one has TqZ1 ⊂ SL.

Let (H,XH) ⊂ (G,X) be an irreducible Shimura subdatum inducing Z1 via
Fact 3.6. Then Z̃1 = [X+

H , 1]K∩H(Af ). For every irreducible component Zq ⊂
α−1
q (Z1), there is an irreducible component Z̃q of ShK∩q−1Kq∩H(Af )(H,XH)

with the following properties:

� The morphism ShK∩q−1Kq∩H(Af )(H,XH) → ShK∩H(Af )(H,XH) restricts

to an étale cover α′
q : Z̃q → Z̃1.

� The image of Z̃q under the morphism ShK∩q−1Kq∩H(Af )(H,XH)→ ShK∩q−1Kq(G,X)
is Zq.

Conjugating by q gives another irreducible Shimura subdatum (qHq−1, q·XH) ⊂
(G,X), and a morphism of Shimura data (H,XH) → (qHq−1, q ·XH). Let Z̃ ′

q

be the image of Z̃q under the induced morphism ShK∩q−1Kq∩H(Af )(H,XH) →
ShK∩qH(Af )q−1(qHq−1, q ·XH). Then Z̃ ′

q is an irreducible component of

ShK∩qH(Af )q−1(qHq−1, q ·XH),

and the restriction β′
q : Z̃q → Z̃ ′

q is an étale cover. By Fact 3.6, the morphism
ShK∩qH(Af )q−1(qHq−1, q · XH) → ShK(G,X) restricts to a �nite birational

morphism π′
q : Z̃ ′

q → βq(Zq). Consider the commutative diagram

Z̃q

Z̃q Zq Z̃ ′
q

Z1 βq(Zq).

α′
q

β′
q

π1 αq

βq

π′
q

12



From 2 and Lemma 2.7, one has Z̃ ′
q = Z̃ ′L∞

q = Z̃ ′L
q . Then βq(Zq) = π′

q(Z̃
′
q) =

π′
q(Z̃

′L
q )

(a)

⊂ βq(Zq)
L, where (a) uses Assumption 2.1 5. By Assumption 2.1 2,

one has βq(Z̃q) ⊂ SL. Thus, 3 is proved.
Since Z1 is a special subvariety of S, from [KUY18, Lem. 2.5], Z1 contains

a special point z. By [LZ19, Rk. 2.7], {Tqz}q∈G(Q)+ is dense in the complex
manifold S(C). By 3, the Zariski closed subset SL ⊂ S contains {Tqz}q∈G(Q)+ .
Hence SL = S.

4 Ullmo-Yafaev alternative principle

In Theorem 4.1, we show that an alternative principle results from Assumption
2.1. Let S = Sg = (gKg−1 ∩G(Q)+)\X+ be a Shimura variety associated with
(G,X,K).

Theorem 4.1 (Ullmo-Yafaev alternative). Either SL∞ = ∅ or SL∞ = S.

Proof. By Hecke isomorphisms, one may assume g = 1 and S = [X+, 1]K . By
Lemma 2.7, one may replace S by an étale cover induced by an open subgroup of
K. One may thereby assume SL = SL∞ ̸= ∅. For every irreducible component
Z ⊂ SL, by Assumption 2.1 1 (resp. Lemma 2.5 2), one has dim(Z) > 0 (resp.
ZL = Z).

1. The subvariety Z ⊂ S is special.

Let SM ⊂ S be the smallest special subvariety containing Z. From Fact 3.6,
there is a Shimura subdatum (H,XH) ⊂ (G,X), such that the restriction π :
S̃M := [X+

H , 1]K∩H(Af ) → SM of ShK∩H(Af )(H,XH) → ShK(G,X) is �nite
birational.

Take a Galois cover f : S′ → S given by Lemma 3.8 for the special subvariety
SM ⊂ S. Since f is �nite surjective, there is an irreducible component T ⊂
f−1(Z) with f(T ) = Z.

Since Z ⊂ SL is an irreducible component, T is an irreducible component of

f−1(SL) = f−1(SL∞)
(a)

= S′L∞
(b)

= S′L.

Here (a) and (b) use Lemma 2.7. Then by Lemma 2.5 2, one has TL = T . There
is an irreducible component S′

M ⊂ f−1(SM ) containing T .

By Lemma 3.8, one has S′L
M

(c)

= S′L∞
M , and f : S′

M → SM factors through an
étale cover

g : S′
M → S̃M .

2. One has g(T ) ⊂ S̃L∞
M .

Consider the commutative diagram

13



T S′
M f−1(SM ) S′

S̃M SM S.

g □ f

π

One has
T = TL ⊂ S′L

M = S′L∞
M .

Hence g(T ) ⊂ g(S′L∞
M ) = S̃L∞

M . Thus, 2 is proved.

3. The nonempty, irreducible, closed subset g(T ) ⊂ S̃L∞
M is Hodge generic in

S̃M .

Since π is �nite surjective, there is an irreducible component Z̃ ⊂ π−1(Z) with
π(Z̃) = Z. For every special subvariety V ⊂ S̃M containing g(T ), by [KY14,
p.879], π(V ) ⊂ S is a special subvariety containing πg(T ) = f(T ) = Z. Hence
π(V ) = SM . Therefore, dimV ≥ dimSM = dim S̃M . Since S̃M is irreducible,
one has V = S̃M . Thus, 3 is proved.

By 2, 3 and Lemma 4.2, one has S̃M = S̃L∞
M = S̃L

M . One has SM = π(S̃M ) =

π(S̃L
M )

(a)

⊂ SL
M ⊂ SL, where (a) uses Assumption 2.1 5. Since Z is an irreducible

component of SL and SM is irreducible, one has Z = SM . Thus, 1 is proved.
By 1, the locus SL is a �nite union of special subvarieties. From Lemma 3.9,

one has SL∞ = S.

Lemma 4.2 (Ullmo-Yafaev). Let S = [X+, 1]K ⊂ ShK(G,X). If SL∞ contains
a nonempty, irreducible closed subset that is Hodge generic in S, then SL∞ = S.

Proof. For every q ∈ G(Q)+, by Lemma 2.7, one has TqS
L∞ = βq(α

−1
q (SL∞)) =

βq(S
L∞
q ) = SL∞ . Write SL∞ = U1 ∪ U2, where U1 is the union of irreducible

components of SL∞ that are Hodge generic in S, and U2 is the union of the
remaining irreducible components. By Remark 2.6 and assumption, one has
dimU1 > 0.

Let C be an irreducible component of TqU2. Then there is an irreducible
subvariety Cq ⊂ Sq with βq(Cq) = C and αq(Cq) ⊂ U2. Then αq(Cq) is not
Hodge generic in S. Thus, there is a strict, special subvariety V ⊂ S containing
αq(Cq). Then C ⊂ Tq(αq(Cq)) ⊂ TqV . There is an irreducible component
W ⊂ TqV containing C. By [LZ19, Remark 2.7], W is a special subvariety
of S. Since dimW ≤ dimV < dimS, the subvariety C ⊂ S is not Hodge
generic. As every irreducible component of TqU2 is not Hodge generic in S, and
U1 ⊂ TqS

L∞ = TqU1 ∪ TqU2, one has U1 ⊂ TqU1. By dimU1 > 0 and [UY10,
Thm. 1.2], one has U1 = S and SL∞ = S.

Corollary 4.3 ([UY10, Thm. 1.1]). If a Shimura variety S over Q̄ is of su�ciently
high level, then either SL = ∅ or SL = S.

Proof. As the level is high, one has SL = SL∞ . The result follows from Theorem
4.1.
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5 �All or nothing" principle for integral points

We de�ne an locus concerning integral points, analogous to the Lang locus
concerning rational points. We verify Assumption 2.1 for this locus. Then an
alternative principle follows.

Let X be an integral algebraic variety over Q̄. As in Example 2.2, there
is a number �eld F ⊂ Q̄, an integral algebraic variety XF over F and an
isomorphism XF ⊗F Q̄ → X over Q̄. For every �nite set Σ of places of F
including all archimedean ones, let OF,Σ be the ring of Σ-integers. When Σ
is su�ciently large, there exists an integral scheme X that is �nite type and
separated over OF,Σ, whose generic �ber is XF . (From [Har77, III, Prop. 9.7],
X is �at over OF,Σ.) We call X an integral model for X relative to (F,Σ). By a
�nite extension (M,Ω)/(F,Σ) , we mean a �nite extension M/F together with
a �nite set Ω of places of M containing all the places above Σ.

For every (M,Ω)/(F,Σ), let X(X ,M,Ω) be the image of the injection

X (OM,Ω)→ X(Q̄), x 7→ x|Spec Q̄.

De�nition 5.1. Let X I be the Zariski closure of

∪(M,Ω)/(F,Σ)X(X ,M,Ω)
>0

inside X, where (M,Ω) runs though all �nite extensions of (F,Σ). We call X I

the integral Lang locus of X relative to (X , F,Σ).

The integral Lang locus X I is a subvariety of the Lang locus of X.

Lemma 5.2. Given models Xi over OFi,Σi (i = 1, 2) for X, one has X I
1 = X I

2 .

Proof. By [Gro66, Cor. 8.8.2.5], there is a common �nite extension (F3,Σ3) of
(Fi,Σi) (i = 1, 2), such that there is an OF3,Σ3

-isomorphism

X1 ⊗OF1,Σ1
OF3,Σ3 → X2 ⊗OF2,Σ2

OF3,Σ3

extending the isomorphism between the generic �bers. For every �nite extension
(M1,Ω1)/(F1,Σ1), there is a common �nite extension (M2,Ω2) of (F3,Σ3) and
(M1,Ω1). Then

X1(OM1,Ω1
) ⊂ X1(OM2,Ω2

) = X2(OM2,Ω2
),

so X(X1,M1,Ω1) ⊂ X(X2,M2,Ω2). Therefore,

X(X1,M1,Ω1)
>0
⊂ X(X2,M2,Ω2)

>0
⊂ X I

2 .

Hence X I
1 ⊂ X I

2 . The other inclusion follows by symmetry.

By Lemma 5.2, one may use the notation XI for X I and call it integral
Lang locus of X. We extend the de�nition to reducible algebraic varieties as in
Section 2.
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Remark 5.3. Assume that X is proper over Q̄. Then there is an integral model
(X , F,Σ) for X, such that X is proper over OF,Σ. By [Poo17, Thm. 3.2.13 (ii)],
XI coincides with the Lang locus of X.

De�nition 5.4. [Ull04, Déf. 2.3] An integral algebraic varietyX over Q̄ is called
arithmetically hyperbolic if XI = ∅.

An integral algebraic variety X over Q̄ is arithmetically hyperbolic if and
only if for one (hence for every by Lemma 5.2) model (X , F,Σ), the set of
integral points X (OM,Ω) is �nite for every �nite extension (M,Ω)/(F,Σ) (so
[Ull04, Lem. 2.4] follows from Lemma 5.2).

Example 5.5. Let X = P1 \ {0, 1,∞} = Y (2) be a modular curve over Q̄. Its
Baily-Borel compacti�cation is X∗ = P1, and the Lang locus of X is full. By
the Siegel-Mahler theorem (see, e.g., [HS00, Thm. D.8.1]), X is arithmetically
hyperbolic.

A complex analytic space is called Kobayashi hyperbolic, if its Kobayashi
pseudo-distance (in the sense of [Kob98, p.50]) is a metric. Every Kobayashi
hyperbolic, complex analytic space is Brody hyperbolic. Conversely, Brody
[Bro78, p.213] proves that every compact, Brody hyperbolic complex analytic
space is Kobayashi hyperbolic. In view of Remark 5.3, Conjecture 5.6 implies
Conjecture 1.1.

Conjecture 5.6 ([Lan91, IX, Conjecture 5.1], [Ull04, Conjecture 2.5]). Let X
be a quasi-projective, integral algebraic variety over Q̄. If the complex analytic
space X(C) is Kobayashi hyperbolic, then X is arithmetically hyperbolic.

Fact 5.7 is an evidence of Conjecture 5.6. It relies on Faltings's solution
[Fal83, Satz 6] to Shafarevich's conjecture.

Fact 5.7 ([Ull04, Thm. 3.2 (a)]). Let (G,X) be an adjoint Shimura datum
of abelian type (in the sense of [Ull04, p.4118]). Let K ≤ G(Af ) be a neat
compact open subgroup. Then every irreducible component of ShK(G,X)Q̄ is
arithmetically hyperbolic.4

We prove that an alternative principle holds for integral points on Shimura
varieties, by checking Assumption 2.1. Since an irreducible component of XI

with dimension 0 is an isolated point, Assumption 2.1 1 holds. Lemma 5.8
veri�es Assumptions 2.1 2, 3 and 5.

Lemma 5.8. Let f : Z1 → Z2 be a morphism of integral algebraic varieties
over Q̄. If f has �nite geometric �bers, then f(ZI

1 ) ⊂ ZI
2 .

Proof. One may choose a number �eld F , a �nite set Σ of places of F containing
all the archimedean ones, a model Zi over OF,Σ for Zi (i = 1, 2) and an OF,Σ-
morphism f ′ : Z1 → Z2 whose base change to F is f . For every �nite extension

4By [Moo98b, 2.17], the model over Q̄ de�ned by Faltings [Fal82] (used in [Ull04, Thm. 3.2
(a)]) is the scalar extension of the canonical model along E(G,X) → Q̄.
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(M,Ω)/(F,Σ), one has f ′(Z1(OM,Ω)) ⊂ Z2(OM,Ω), so f(Z1(Z1,M,Ω)) ⊂ Z2(Z2,M,Ω).
Hence

f(Z1(Z1,M,Ω)) ⊂ Z2(Z2,M,Ω).

Let C ⊂ Z1(Z1,M,Ω) be an irreducible component of positive dimension. Then
f(C) is irreducible but not a singleton. (For otherwise, C is a �nite set by
assumption, which is a contradiction). Hence

f(C) ⊂ Z2(Z2,M,Ω)
>0
⊂ ZI

2 .

Therefore, f(Z1(Z1,M,Ω)
>0

) ⊂ ZI
2 and f(ZI

1 ) ⊂ ZI
2 .

Corollary 5.9 ([Ull04, Prop. 2.6]). A locally closed subvariety of an arithmetically
hyperbolic variety is also arithmetically hyperbolic.

Proof. It follows from Lemma 5.8.

Lemma 5.10 veri�es Assumption 2.1 4 for integral Lang loci.

Lemma 5.10. Let X be an integral algebraic variety over Q̄. Then XI ⊂ (XI)I .

Proof. Write XI = ∪ni=1Yi as the union of irreducible components. Take a
model (X , F,Σ) for X. Let Yi be the scheme-theoretic image of the composition
Yi → X → X , which is model of Yi relative to (F,Σ). For every �nite extension
(M,Ω)/(F,Σ), the Zariski closed subset X(X ,M,Ω) ⊂ X is the disjoint union

of X(X ,M,Ω)
>0

with a �nite set {p1, . . . , pt} ⊂ X(Q̄).
Consider x ∈ X (OM,Ω), i.e., a section x : Spec(OM,Ω)→ X to the structure

morphism X → Spec(OM,Ω). If x|Spec Q̄ /∈ {p1, . . . , pt}, then

x|Spec Q̄ ∈ X(X ,M,Ω)
>0
⊂ XI .

Thus, there exists an index 1 ≤ i ≤ n with x|Spec Q̄ ∈ Yi. Since Yi is Zariski
closed in X , the section x factors through Yi, i.e., x ∈ Yi(OM,Ω). Therefore,

X(X ,M,Ω) ⊂ ∪ni=1Yi(Yi,M,Ω) ∪ {p1, . . . , pt}.

Then
X(X ,M,Ω)

>0
⊂ ∪ni=1Yi(Yi,M,Ω)

>0
⊂ ∪ni=1Y

I
i = (XI)I ,

so XI ⊂ (XI)I .

Lemma 5.11 implies [Ull04, Prop. 2.8].

Lemma 5.11 (Chevalley-Weil). If f : X → Y is an étale cover over Q̄, then
f(XI) = Y I . In particular, XI∞ = XI . Moreover, XI = X (resp. XI = ∅) is
equivalent to Y I = Y (resp. Y I = ∅).
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Proof. By Lemma 5.8, one has f(XI) ⊂ Y I . There is a number �eld F , a
�nite set Σ of places of F containing all the archimedean ones, and a �nite étale
OF,Σ-morphism f ′ : X → Y between models whose base change to the generic
�ber recovers f .

For every �nite extension (M,Ω)/(F,Σ), by the Chevalley-Weil theorem (see,
e.g., [Ser97, p.50]), there is a �nite extension (M ′,Ω′)/(M,Ω) with Y (Y,M,Ω) ⊂
f(X(X ,M ′,Ω′)). Since zero dimensional schemes are discrete,

Y (Y,M,Ω)
>0
⊂ f(X(X ,M ′,Ω′)

>0
) ⊂ f(XI).

Hence Y I ⊂ f(XI).

Theorem 5.12. The integral Lang locus of a Shimura variety S is either empty
or whole S.

Proof. By Lemmas 5.8 and 5.10, the formation of the integral Lang locus (·)I
satis�es Assumption 2.1. The result is a combination of Theorem 4.1 and Lemma
5.11.
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