Quasi-coherent GAGA

Haohao Liu

April 27, 2024

1 Introduction

Let X be a complex algebraic variety.¹ Then the set of complex points $X(\mathbb{C})$ underlies a natural complex analytic space (in the sense of [Ser56, Déf. 1]) structure, denoted by X^{an} . When X is a projective variety, Serre [Ser56, Théorèmes 2 et 3] proves that the abelian category of (algebraic) coherent modules on X is naturally equivalent to that of (analytic) coherent modules on X^{an} . Hall [Hal23] extends the equivalence to the bounded derived category of coherent modules (Fact 2.1).

A natural question is to find analogous equivalences for the larger category of quasi-coherent sheaves on X. We show that good modules (in the sense of Kashiwara, Definition 2.2) is a analytic counterpart of quasi-coherent sheaves on algebraic varieties.

For a ringed space (X, O_X) , let $Mod(O_X)$ be the abelian category of O_X -modules. Let D(X) be its unbounded derived category.

For an algebraic variety (resp. a complex analytic space) X, let $Qch(X) \subset Mod(O_X)$ (resp. $Good(X) \subset Mod(O_X)$) be the full subcategory of quasi-coherent (resp. good) modules. Let $D_{qc}(X)$ (resp. $D_{gd}(X)$) be the full subcategory of D(X) comprised of objects with quasi-coherent (resp. good) cohomologies.

Theorem (Proposition 3.2, Theorem 4.2). If X is proper over \mathbb{C} , then the analytification functor $D_{qc}(X) \to D_{gd}(X^{an})$ is an equivalence of triangulated categories.

2 Review

We recall the work of Serre [Ser56] (known as "GAGA"), which gives an equivalence of algebraic coherent modules and analytic coherent modules on complex, projective varieties. The theory is extended to complex, proper algebraic varieties in [GR71, Exp. XII].

Let X be a complex algebraic variety. Let An (resp. Set) be the category of complex analytic spaces (resp. sets). Let Ψ_X be the functor An \rightarrow Set sending a complex analytic space Y to the set $\operatorname{Hom}_{\mathbb{C}}(Y, X)$ of morphisms of spaces

¹An algebraic variety means a finite type, separated scheme over a field.

with a sheaf of \mathbb{C} -algebras. By [GR71, Exp. XII, Thm. 1.1], the functor Ψ_X is represented by a complex analytic space X^{an} (called the analytification of X) and a *flat* morphism $\psi_X \in \mathrm{Hom}_{\mathbb{C}}(X^{\mathrm{an}}, X)$. Because X is of finite type over \mathbb{C} , from [GR71, Exp. XII, Prop. 2.1 (viii)], the dimension of X^{an} is finite.

By [GR71, Exp. XII, 1.2], for every morphism $f : X \to Y$ of complex algebraic varieties, there is a commutative square

$$\begin{array}{cccc} X^{\mathrm{an}} & \stackrel{\psi_X}{\longrightarrow} X \\ & & \downarrow_{f^{\mathrm{an}}} & \downarrow_f \\ Y^{\mathrm{an}} & \stackrel{\psi_Y}{\longrightarrow} Y \end{array} \tag{1}$$

in the category of ringed spaces. In other words, the analytification induces a functor $(\cdot)^{an}$ from the category of complex algebraic varieties to An.

For a ringed space (Y, O_Y) , let $\operatorname{Coh}(Y) \subset \operatorname{Mod}(O_Y)$ be the full subcategory comprised of coherent modules (in the sense of [Sta24, Tag 01BV]). Let $D_c(Y) \subset D(Y)$ be the full subcategory consisting of objects with coherent cohomologies. The pullback functor

$$\psi_X^* : \operatorname{Mod}(O_X) \to \operatorname{Mod}(O_{X^{\operatorname{an}}}), \quad F \mapsto F^{\operatorname{an}}$$
 (2)

is exact and admits a right adjoint, so it commutes with colimits. It extends to a functor $D(X) \to D(X^{\text{an}})$, which is t-exact relative to the standard t-structures. From [GR71, Exp. XII, 1.3], it restricts to a functor $D_c^b(X) \to D_c^b(X^{\text{an}})$ and $\operatorname{Coh}(X) \to \operatorname{Coh}(X^{\text{an}})$.

Fact 2.1 can be retracted from [Hal23, Remark 1.1 and the proof of Theorem A]. Neeman [Nee21, Example A.2] modifies Hall's proof to some extent.

Fact 2.1. Assume that the complex algebraic variety X is proper. Then the functor (2) induces an equivalence $D_c^b(X) \to D_c^b(X^{an})$ of triangulated categories. In particular, it restricts to an equivalence $\operatorname{Coh}(X) \to \operatorname{Coh}(X^{an})$ of abelian categories.

For algebraic quasi-coherent sheaves, an analytic analog is introduced by Kashiwara.

Definition 2.2. [Kas03, Def. 4.22] On a complex analytic space X, an O_X module F called good if for every relatively compact open subset $U \subset X$, there exists a directed family $\{G_i\}_{i \in I}$ of coherent O_U -submodules of $F|_U$ such that $F|_U = \sum_{i \in I} G_i$, where $\{G_i\}_{i \in I}$ being a directed family means that for any $i, i' \in I$, there is $i'' \in I$ with $G_i + G_{i'} \subset G_{i''}$ (and hence $F|_U = \operatorname{colim}_{i \in I} G_i$).

By [Liu23, Lem. A.4.3], Good(X) is a weak Serre subcategory of $Mod(O_X)$, and $D_{gd}(X)$ is a triangulated subcategory of D(X).

Lemma 2.3. For the complex algebraic variety X, the functor (2) restricts to a functor

$$\operatorname{Qch}(X) \to \operatorname{Good}(X^{\operatorname{an}})$$
 (3)

and induces a functor

$$D_{\rm qc}(X) \to D_{\rm gd}(X^{\rm an}).$$
 (4)

Proof. For every quasi-coherent O_X -module F, by Fact 2.4,

$$F = \sum_{i \in I} F_i \tag{5}$$

is the sum of a direct family of coherent O_X -submodules. As ψ_X^* commutes with colimits, one has

$$\psi_X^* F = \operatorname{colim}_{i \in I} \psi_X^* F_i \tag{6}$$

in the category $\operatorname{Mod}(O_{X^{\operatorname{an}}})$. Since ψ_X^* is exact, each $\psi_X^* F_i$ is a coherent $O_{X^{\operatorname{an}}}$ submodule of $\psi_X^* F$. Therefore, the $O_{X^{\operatorname{an}}}$ -module $\psi_X^* F$ is good.

For every $G \in D_{qc}(X)$ and every integer n, because (2) is an exact functor, the $O_{X^{an}}$ -module $H^n(\psi_X^*G) = \psi_X^*(H^nG)$ is good by last paragraph. Hence $\psi_X^*G \in D_{gd}(X^{an})$.

Fact 2.4 ([Gro60, Cor. 9.4.9], [Sta24, Tag 01PG]). On a Noetherian scheme, every quasi-coherent sheaf is the sum of the directed family of all coherent submodules.

3 GAGA for quasi-coherent modules

Using Fact 2.4 and that ψ_X^* commutes with colimits, we extend GAGA from coherent O_X -modules to quasi-coherent O_X -modules. When $Y = \operatorname{Spec} \mathbb{C}$, Proposition 3.1 generalizes [Ser56, Thm. 1].

Proposition 3.1. Let $f: X \to Y$ be a proper morphism of complex algebraic varieties. Then the base change natural transformation $(Rf_*)^{\mathrm{an}} \to Rf_*^{\mathrm{an}}(\cdot^{\mathrm{an}})$ (induced by the commutative square (1)) induces an isomorphism of functors $D_{\mathrm{qc}}(X) \to D_{\mathrm{gd}}(Y^{\mathrm{an}})$.

Proof. For every $F \in D_{qc}(X)$, by [Lip60, Prop. 3.9.2], one has $Rf_*F \in D_{qc}(Y)$. By Lemma 2.3, one has $F^{an} \in D_{gd}(X^{an})$ and $(Rf_*F)^{an} \in D_{gd}(Y^{an})$. Since f is proper, from [GR71, Exp. XII, Prop. 3.2 (v)], the morphism $f^{an} : X^{an} \to Y^{an}$ is proper. As X^{an} has finite dimension, by [Liu23, Thm. 3.1.6], one has $Rf_*^{an}F^{an} \in D_{gd}(Y^{an})$. Therefore, both functors $(Rf_*\cdot)^{an}$ and $Rf_*^{an}(\cdot^{an})$ restrict to functors $D_{qc}(X) \to D_{gd}(Y^{an})$.

We prove that the morphism $(Rf_*F)^{\mathrm{an}} \to Rf_*^{\mathrm{an}}F^{\mathrm{an}}$ is an isomorphism. By [Liu23, Lem. 3.1.10] (resp. [Lip60, Prop. 3.9.2]), the functor $Rf_*^{\mathrm{an}} : D(X^{\mathrm{an}}) \to D(Y^{\mathrm{an}})$ (resp. $Rf_* : D_{\mathrm{qc}}(X) \to D_{\mathrm{qc}}(Y)$) is bounded. From [Sta24, Tag 06YZ], the inclusion functor $\mathrm{Qch}(X) \to \mathrm{Mod}(O_X)$ exhibits $\mathrm{Qch}(X)$ as a weak Serre subcategory (in the sense of [Sta24, Tag 02MO]) of $\mathrm{Mod}(O_X)$. Then by (way-out argument) [Har66, I, Prop. 7.1 (iii)], one may assume $F \in \mathrm{Qch}(X)$. By [KS06, Prop. 13.1.5 (ii), p.320], it suffices to check that for every integer $n \ge 0$, the natural morphism $(R^nf_*F)^{\mathrm{an}} \to R^nf_*^{\mathrm{an}}(F^{\mathrm{an}})$ in $\mathrm{Mod}(O_{Y^{\mathrm{an}}})$ is an isomorphism.

By Fact 2.4, one can write $F = \sum_{i \in I} F_i$ as the sum of a direct family of coherent O_X -submodules of F. By [Sta24, Tag 07TB], one has

$$\operatorname{colim}_{i \in I} R^n f_* F_i \xrightarrow{\sim} R^n f_* F.$$

The analytification commutes with colimits, so

$$\operatorname{colim}_{i \in I}(R^n f_* F_i)^{\operatorname{an}} \xrightarrow{\sim} (R^n f_* F)^{\operatorname{an}}$$

By [GR71, XII, Thm. 4.2], the natural morphisms $(R^n f_* F_i)^{an} \to R^n f_*^{an}(F_i^{an})$ are isomorphisms. By [Liu23, Lem. 3.1.8], the natural morphism

$$\operatorname{colim}_{i \in I} R^n f^{\operatorname{an}}_*(F^{\operatorname{an}}_i) \to R^n f^{\operatorname{an}}_*(F^{\operatorname{an}})$$

is an isomorphism.

Proposition 3.2 shows that goodness on complex analytic spaces is an analytic counterpart of quasi-coherence on complex algebraic varieties.

Proposition 3.2. Suppose that the complex algebraic variety X is proper. Then (3) is an equivalence of abelian categories.

- **Proof.** The functor (3) is essentially surjective: Indeed, because X is proper over \mathbb{C} , by [GR71, Exp. XII, Prop. 3.2 (v)], the complex analytic spare X^{an} is compact. Then for every good $O_{X^{\mathrm{an}}}$ -module G, one can write $G = \sum_{i \in I} G_i$ as the sum of a directed family of coherent $O_{X^{\mathrm{an}}}$ submodules. From the equivalence ψ_X^* : $\operatorname{Coh}(X) \to \operatorname{Coh}(X^{\mathrm{an}})$ ([GR71, XII, Thm. 4.4]), there is a filtered inductive system $\{H_i\}_{i \in I}$ in $\operatorname{Coh}(X)$ whose analytification is the filtered inductive system $\{G_i\}_{i \in I}$. By [Sta24, Tag 01LA (4)], the colimit H of $\{H_i\}$ in $\operatorname{Mod}(O_X)$ exists and lies in $\operatorname{Qch}(X)$. Because ψ_X^* commutes with colimits, one has $H^{\mathrm{an}} = \operatorname{colim}_{i \in I} G_i$. In particular, H^{an} is isomorphic to G in $\operatorname{Good}(X^{\mathrm{an}})$.
 - The functor (3) is fully faithful: For any quasi-coherent O_X -modules F and G, we have to show that the canonical morphism

$$\operatorname{Hom}_{O_X}(F,G) \to \operatorname{Hom}_{O_{X^{\operatorname{an}}}}(F^{\operatorname{an}},G^{\operatorname{an}})$$
(7)

is an isomorphism. Assume first that F is coherent.

- From [GW20, Exercise 7.20 (b)], one has

$$[\mathcal{H}om_{O_X}(F,G)]^{\mathrm{an}} = \mathcal{H}om_{O_X\mathrm{an}}(F^{\mathrm{an}},G^{\mathrm{an}}).$$

– As F is of finite presentation, the O_X -module $\mathcal{H}om_{O_X}(F,G)$ is quasi-coherent.

Therefore, by Proposition 3.1, the canonical morphism

$$H^0(X, \mathcal{H}om_{O_X}(F, G)) \to H^0(X^{\mathrm{an}}, \mathcal{H}om_{O_{X^{\mathrm{an}}}}(F^{\mathrm{an}}, G^{\mathrm{an}}))$$

is an isomorphism, which is exactly (7).

By (5) and (6), the general case follows.

4 Derived category of quasi-coherent sheaves

By [Sta24, Tag 0BKN], for every ringed space Y, the derived category D(Y) has products and derived limits. This plays an essential role in step 4 of the proof of Theorem 4.2.

Definition 4.1. [Sta24, Tag 07LS] Let \mathcal{A} be an additive category with arbitrary direct sums. An object $K \in \mathcal{A}$ is called compact, if $\operatorname{Hom}_{\mathcal{A}}(K, \cdot) : \mathcal{A} \to \operatorname{Ab}$ preserves direct sums.

Theorem 4.2. If the complex algebraic variety X is proper, then the functor (4) is an equivalence of triangulated categories.

Proof. Since X^{an} is compact, by Lemma 4.6, the perfect complex $O_{X^{\mathrm{an}}}$ is a compact object of $D(X^{\mathrm{an}})$. Then from the proof of [Hal23, Lem. 4.3], the functor $\psi_X^* : D_{\mathrm{qc}}(X) \to D(X^{\mathrm{an}})$ admits a right adjoint functor $R\psi_{\mathrm{qc},*} : D(X^{\mathrm{an}}) \to D_{\mathrm{qc}}(X)$ which preserves small coproducts.

1. The functor $\psi_X^*: D_{qc}(X) \to D(X^{an})$ is fully faithful.

From Fact 2.1, the unit of the adjunction η : Id $\to R\psi_{qc,*}\psi_X^*$ (a natural transformation of functors $D_{qc}(X) \to D_{qc}(X)$) restricts to an isomorphism of functors $D_c^b(X) \to D_c^b(X)$. By [BB03, Thm. 3.1.1 1], the compact objects of $D_{qc}(X)$ are precisely the perfect complexes. From [Nee96, Prop. 2.5], $D_{qc}(X)$ is generated by a family of perfect complexes $\{E_i\}_{i\in I}$. By [Sta24, Tag 0FXU (1)], every perfect complex in D(X) belongs to $D_c^b(X)$, so the η_{E_i} are isomorphisms. From Lemma 4.5, η is an isomorphism of functors $D_{qc}(X) \to D_{qc}(X)$. Thus, 1 is proved.

2. The functor (4) restricts to an equivalence $D^b_{qc}(X) \to D^b_{gd}(X^{an})$.

We prove that every $F \in D^b_{\mathrm{gd}}(X^{\mathrm{an}})$ is in the essential image of $D^b_{\mathrm{qc}}(X) \to D^b_{\mathrm{gd}}(X^{\mathrm{an}})$. Induction on the cohomological length of F. By Proposition 3.2, it holds when F has length zero. Suppose that it is true for objects of length $\leq n$ and F has length n+1. There is an integer i such that $\tau^{\leq i}F, \tau^{>i}F$ have length $\leq n$. There is a canonical exact triangle

$$\tau^{\leq i}F \to F \to \tau^{>i}F \xrightarrow{+1} \tau^{\leq i}F[1]$$

in $D^b_{\mathrm{gd}}(X^{\mathrm{an}})$. By 1 and the inductive hypothesis, the morphism $+1 : \tau^{>i}F \to \tau^{\leq i}F[1]$ is in the essential image of $D^b_{\mathrm{qc}}(X) \to D^b_{\mathrm{gd}}(X^{\mathrm{an}})$. Then so is F. The essential surjectivity together with 1 proves 2.

3. The functor $\psi_X^*: D^+_{\rm qc}(X) \to D^+_{\rm gd}(X^{\rm an})$ is an equivalence.

For every $F \in D^+_{\mathrm{gd}}(X^{\mathrm{an}})$, by Lemma 4.3, one has $\operatorname{hocolim}_{n>0} \tau^{\leq n} F \xrightarrow{\sim} F$. Every $\tau^{\leq n} F$ is in $D^b_{\mathrm{gd}}(X^{\mathrm{an}})$. From 2, there is a system $(K_n)_{n>0}$ of objects of $D^b_{\mathrm{qc}}(X)$, whose image under ψ^*_X is isomorphic to the system $(\tau^{\leq n} F)_{n>0}$. Since (4) respects coproducts, it respects homotopy colimits. Since Qch(X) is closed under filtered colimits in $Mod(O_X)$, the subcategory $D_{qc}(X)$ is closed under homotopy colimits in D(X).

Then F is isomorphic to the image of $K := \operatorname{hocolim}_{n>0} K_n \in D_{\operatorname{qc}}(X)$ under ψ_X^* . There is an integer q, such that $H^i(F) = 0$ for every integer i < q. Then $\psi_X^* H^i(K) = H^i(\psi_X^* K) = 0$. By Proposition 3.2, one has $H^i(K) = 0$. Hence $K \in D_{\operatorname{qc}}^+(X)$. Thus, the functor $\psi_X^* : D_{\operatorname{qc}}^+(X) \to D_{\operatorname{gd}}^+(X^{\operatorname{an}})$ is essentially surjective. By 1, it is an equivalence.

4. Every $Z \in D_{\mathrm{gd}}(X^{\mathrm{an}})$ is in the essential image of (4).

By Lemma 4.4, the canonical morphism $Z \to \operatorname{Rlim}_{n>0} \tau^{\geq -n} Z$ is an isomorphism in $D(X^{\operatorname{an}})$. By 3, there is an inverse system (Y^{-n}) of objects of $D^+_{\operatorname{qc}}(X)$, whose image is isomorphic to the inverse system $(\tau^{\geq -n}Z)_{n>0}$. Let Y be $\operatorname{Rlim}_{n>0} Y^{-n}$ in D(X). For any integers $n \geq 1$ and q, the functor ψ_X^* transforms the morphism $H^q(Y^{-n-1}) \to H^q(Y^{-n})$ in $\operatorname{Qch}(X)$ to $H^q(\tau^{\geq -n-1}Z) \to H^q(\tau^{\geq -n}Z)$ in $\operatorname{Good}(X^{\operatorname{an}})$.

The morphism $H^q(\tau^{\geq -n-1}Z) \to H^q(\tau^{\geq -n}Z)$ is surjective, and when $n \geq -q$, it is an isomorphism. By Proposition 3.2, the morphism $H^q(Y^{-n-1}) \to H^q(Y^{-n})$ is surjective, and when $n \geq -q$, it is an isomorphism. By [Sta24, Tag 0A0J (1)], the canonical morphism $H^q(Y) \to H^q(Y^{\min(q,-1)})$ is an isomorphism. In particular, the O_X -module $H^q(Y)$ is quasi-coherent. Hence $Y \in D_{qc}(X)$.

For every integer m > 0, the functor ψ_X^* transforms $\prod_{n>0} Y^{-n} \to Y^{-m}$ to $\psi_X^*(\prod_{n>0} Y^{-n}) \to \tau^{\geq -m}Z$. Hence a morphism $\psi_X^*(\prod_{n>0} Y^{-n}) \to \prod_{n>0} \tau^{\geq -n}Z$ in $D(X^{\mathrm{an}})$. It fits to a commutative diagram

in $D(X^{\text{an}})$, where the rows are exact triangles. By TR3, it induces a morphism of triangles. Hence a commutative square

$$\begin{array}{ccc} H^{q}(\psi_{X}^{*}Y) & \stackrel{\sim}{\longrightarrow} & H^{q}(\psi_{X}^{*}Y^{\min(q,-1)}) \\ & & \downarrow & & \downarrow \\ & & \downarrow & & \downarrow \\ & & H^{q}(Z) & \stackrel{\sim}{\longrightarrow} & H^{q}(\tau^{\geq \min(q,-1)}Z) \end{array}$$

in Mod $(O_{X^{\mathrm{an}}})$. Therefore, for every integer q, the induced morphism $H^q(\psi_X^*Y) \to H^q(Z)$ is an isomorphism. Therefore, the morphism $\psi_X^*Y \to Z$ is an isomorphism in $D_{\mathrm{gd}}(X^{\mathrm{an}})$. Thus, 4 is proved. By 4 and 1, the functor (4) is an equivalence.

Lemma 4.3. Let \mathcal{A} be an abelian category, where colimits over \mathbb{N} exist and are exact. Then the natural transformation $\operatorname{hocolim}_{n>0} \tau^{\leq n} \cdot \to \operatorname{Id}$ is an isomorphism of functors $\mathcal{A} \to \mathcal{A}$.

Proof. It follows from [Sta24, Tag 0949] and the construction of canonical truncations. \Box

Lemma 4.4. Let X be a complex analytic space. Then the natural transformation Id $\rightarrow \operatorname{Rlim}_{n>0} \tau^{\geq -n}$ is an isomorphism of functors $D(X) \rightarrow D(X)$.

Proof. For every $x \in X$, there is an integer $d_x \ge 0$, and a fundamental system \mathcal{U}_x of open neighborhoods of x, such that every $U \in \mathcal{U}_x$ is a closed complex subspace of a domain in \mathbb{C}^{d_x} . By [Liu23, Fact 3.1.9], for every $E \in D(X)$, any integers $p > 2d_x$ and q, one has $H^p(U, H^q(E)) = 0$. By [Sta24, Tag 0D63], the canonical morphism $E \to \operatorname{Rlim}_{n>0} \tau^{\ge -n}E$ is an isomorphism in D(X).

Lemma 4.5. Let \mathcal{C}, \mathcal{D} be triangulated categories. Assume that \mathcal{C} has direct sums. Let $\{E_i\}_{i \in I}$ be a family of compact objects of \mathcal{C} such that $\bigoplus_{i \in I} E_i$ generates \mathcal{C} . Let $F, G : \mathcal{C} \to \mathcal{D}$ be triangulated functors preserving direct sums. Let $\eta : F \to G$ be a natural transformation. If for every $i \in I$, the morphism $\eta_{E_i} : F(E_i) \to G(E_i)$ is an isomorphism in \mathcal{D} , then η is an isomorphism.

Proof. From [Sta24, Tag 09SN], every object $X \in C$ can be written as $X = \text{hocolim}_{n>0} X_n$, where

- X_1 is a direct sum of shifts of the E_i ,
- each transition morphism $X_n \to X_{n+1}$ fits into an exact triangle $Y_n \to X_n \to X_{n+1} \to Y_n[1]$,
- and Y_n is a direct sum of shifts of the E_i .

Since F, G preserve direct sums, and the η_{E_i} are isomorphisms, so are the $\{\eta_{Y_n}\}_{n>0}$ and η_{X_1} . By [Sta24, Tag 014A] and induction on n > 0, one proves that the η_{X_n} are isomorphisms. By [BN93, Lem. 4.1], $F, G : \mathcal{C} \to \mathcal{D}$ preserve homotopy colimits. Therefore, η_X is an isomorphism.

Lemma 4.6. Let X be a compact complex analytic space. Then every perfect object of D(X) belongs to $D_c^b(X)$. It is a compact object of D(X) and of $D_{\rm gd}(X)$.

Proof. Let $E \in D(X)$ be a perfect object. By definition, there is an open covering $X = \bigcup_{i \in I} U_i$, such that for each $i \in I$, there is a morphism of complexes $E_i^{\bullet} \to E|_U$ which is a quasi-isomorphism, with $E_i^j = 0$ for all but finite many integers j, and every E_i^j is a direct summand of a finite free O_X -module. Since X is compact, one has $E \in D^b(X)$. By [Sta24, Tag 01BY (1)], every E_i^j is coherent. Therefore, every $H^j(E)|_{U_i}$ is coherent over O_{U_i} . Thus, $H^j(E)$ is coherent over O_X for all j. Hence $E \in D_c^b(X)$. In particular, E is in $D_{gd}(X)$.

Let $E^{\vee} := R\mathcal{H}om(E, O_X) \in D(X)$. From [Sta24, Tag 08DQ], there is a natural isomorphism of functors $\operatorname{Hom}_{D(X)}(E, \cdot) \to H^0(X, E^{\vee} \otimes_{O_X}^L \cdot) : D(X) \to$ Ab. The functor $E^{\vee} \otimes_{O_X}^L \cdot : D(X) \to D(X)$ commutes with direct sums. Since X is compact, dim X is finite. Then by Lemma 4.7, the functor $H^0(X, \cdot) :$ $D(X) \to \operatorname{Ab}$ also commutes with direct sums. Therefore, E is a compact object of D(X). By [Liu23, Lem. A.4.3 2], $D_{\rm gd}(X)$ is closed under direct sums in D(X). Then E is also a compact object of $D_{\rm gd}(X)$.

Lemma 4.7. Let $f: X \to Y$ be a proper morphism of complex analytic spaces. If dim X is finite, then the functor $Rf_*: D(X) \to D(Y)$ commutes with direct sums.

Proof. First, we prove that for every integer q, there is a natural isomorphism

$$R^{q}f_{*} \xrightarrow{\sim} R^{q}f_{*}\tau_{\geq q-2\dim X} : D(X) \to \operatorname{Mod}(O_{Y}).$$
(8)

Indeed, by [Sta24, Tag 08J5], for every object $E \in D(X)$, there is an exact triangle $\tau_{\leq q-2 \dim X-1} E \to E \to \tau_{\geq q-2 \dim X} E \to (\tau_{\leq q-2 \dim X-1} E)[1]$. It induces an exact sequence

$$R^q f_* \tau_{\leq q-2 \dim X-1} E \to R^q f_* E \to R^q f_* \tau_{\geq q-2 \dim X} E \to R^{q+1} f_* \tau_{\leq q-2 \dim X-1} E$$

in $Mod(O_Y)$. From [Liu23, Lem. 3.1.10], one has

$$R^{q} f_{*} \tau_{\leq q-2 \dim X-1} E = R^{q+1} f_{*} \tau_{\leq q-2 \dim X-1} E = 0.$$

Hence an isomorphism $R^q f_* E \to R^q f_* \tau_{\geq -q-2 \dim X} E$ functorial in E.

Let $\{E_i : i \in I\}$ be a family of objects of D(X). Set $E = \bigoplus_{i \in I} E_i$. To prove that the canonical morphism $\bigoplus_{i \in I} Rf_*E_i \to Rf_*E$ in D(Y) is an isomorphism, it suffices to show that for every integer q, the induced morphism $\bigoplus_{i \in I} R^q f_*E_i \to R^q f_*E$ in $Mod(O_Y)$ is an isomorphism. Since $\tau_{\geq q-2 \dim X} E = \bigoplus_{i \in I} \tau_{\geq q-2 \dim X} E_i$, by (8), one may assume that E and all the E_i are in $D^{\geq q-2 \dim X}(X)$. Then from [Sta24, Tag 015J], one has canonical spectral sequences

$$R^{s}f_{*}H^{t}(E) \Rightarrow R^{s+t}f_{*}E, \quad R^{s}f_{*}H^{t}(E_{i}) \Rightarrow R^{s+t}f_{*}E_{i}.$$

By [Liu23, Lem. 3.1.8], for any integers s and t, the canonical morphism $\bigoplus_{i \in I} R^s f_* H^t(E_i) \rightarrow R^s f_* H^t(E)$ in $Mod(O_Y)$ is an isomorphism. Consequently, the canonical morphism $\bigoplus_{i \in I} R^q f_* E_i \rightarrow R^q f_* E$ is an isomorphism. \Box

Corollary 4.8. If the complex algebraic variety X is proper, then the functor $\psi_X^* : D_c(X) \to D_c(X^{\mathrm{an}})$ is an equivalence of triangulated categories.

Proof. For every $F \in D_c(X)$ and every integer i, the $O_{X^{\operatorname{an}}}$ -module $H^i(\psi_X^*F) = \psi_X^*H^i(F)$ is coherent. Thus, the functors $\psi_X^*: D_c(X) \to D_c(X^{\operatorname{an}})$ is well-defined. By Theorem 4.2, the functor $\psi_X^*: D_c(X) \to D_c(X^{\operatorname{an}})$ is fully faithful. For every $F \in D_c(X^{\operatorname{an}})$, by Theorem 4.2, there is $G \in D_{\operatorname{qc}}(X)$ with ψ_X^*G isomorphic to F. Then $\psi_X^*H^i(G) = H^i(\psi_X^*G) \xrightarrow{\sim} H^i(F)$ is coherent over $O_{X^{\operatorname{an}}}$. By Fact 2.1 and Proposition 3.2, the O_X -module $H^i(G)$ is coherent. Hence $G \in D_c(X)$. Therefore, $\psi_X^*: D_c(X) \to D_c(X^{\operatorname{an}})$ is essential surjective and hence an equivalence.

5 Compact objects

Corollary 5.1. Suppose that the complex algebraic variety X is proper. Then the compact objects of $D_{\rm gd}(X^{\rm an})$ are precisely the perfect complexes in $D(X^{\rm an})$.

Proof. By compactness of X^{an} and Lemma 4.6, prefect complexes are compact objects of $D_{gd}(X^{an})$. Conversely, let F be a compact object of $D_{gd}(X^{an})$. By Theorem 4.2, there is a compact object $G \in D_{qc}(X)$ with ψ_X^*G isomorphic to F. By [Sta24, Tag 09M1], G is a perfect complex in D(X). By definition, F is a perfect complex in $D(X^{an})$.

Let X be a compact complex manifold.

Question 5.2. Does the full subcategory of $D_{\text{gd}}(X)$ of compact objects coincide with $D_c^b(X)$?

Question 5.3. Is the category $D_{\rm gd}(X)$ compactly generated?

When X is the analytification of a smooth proper complex algebraic variety, Corollary 5.1 (resp. Theorem 4.2) answers Questions 5.2 (resp. 5.3) affirmatively.

Acknowledgments

I am grateful to my supervisor, Professor Anna Cadoret, for her support and help. The work is motivated by Question 5.2, raised by Professor Lie Fu. I thank him for the question. I express my gratitude to Professors Jack Hall and Amnon Neeman, for answering my questions. During the process, I received tremendous help from Long Liu on various aspects of category theory. I appreciate the inspiring discussions with Gabriel Ribeiro, Matteo Verni and Hui Zhang.

References

- [BB03] Alexei Bondal and Michel Van den Bergh. Generators and representability of functors in commutative and noncommutative geometry. *Moscow Mathematical Journal*, 3(1):1–36, 2003.
- [BN93] Marcel Bökstedt and Amnon Neeman. Homotopy limits in triangulated categories. Compositio Mathematica, 86(2):209–234, 1993.
- [GR71] Alexander Grothendieck and Michele Raynaud. Revêtements étales et groupe fondamental (SGA 1). Springer-Verlag, 1971.
- [Gro60] Alexander Grothendieck. Éléments de géométrie algébrique : I. Le langage des schémas (EGA I). Publications Mathématiques de l'IHÉS, 4:5–228, 1960.
- [GW20] Ulrich Görtz and Torsten Wedhorn. Algebraic Geometry I: Schemes. Springer, 2nd edition, 2020.

- [Hal23] Jack Hall. GAGA theorems. Journal de Mathématiques Pures et Appliquées, 175:109–142, 2023.
- [Har66] Robin Hartshorne. Residues and duality, volume 20. Springer, 1966.
- [Kas03] Masaki Kashiwara. *D-modules and microlocal calculus*, volume 217. American Mathematical Soc., 2003.
- [KS06] Masaki Kashiwara and Pierre Schapira. Categories and Sheaves, volume 332. Springer Berlin, Heidelberg, 2006.
- [Lip60] Joseph Lipman. Notes on derived functors and Grothendieck duality, pages 1–259. Springer, 1960.
- [Liu23] Haohao Liu. Fourier-Mukai transform on complex tori, revisited. https: //webusers.imj-prg.fr/~haohao.liu/OFM.pdf, 2023.
- [Nee96] Amnon Neeman. The Grothendieck duality theorem via Bousfield's techniques and Brown representability. Journal of the American Mathematical Society, 9(1):205–236, 1996.
- [Nee21] Amnon Neeman. Triangulated categories with a single compact generator and a Brown representability theorem, 2021. https://arxiv. org/pdf/1804.02240v4.pdf.
- [Ser56] Jean-Pierre Serre. Géométrie algébrique et géométrie analytique. Annales de l'institut Fourier, 6:1–42, 1956.
- [Sta24] The Stacks project authors. The stacks project. https://stacks. math.columbia.edu, 2024.