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1 Introduction

Let X be a complex algebraic variety.! Then the set of complex points X (C)
underlies a natural complex analytic space (in the sense of [Serb6, Déf. 1])
structure, denoted by X®*. When X is a projective variety, Serre [Ser56,
Théorémes 2 et 3] proves that the abelian category of (algebraic) coherent
modules on X is naturally equivalent to that of (analytic) coherent modules
on X?". Hall [Hal23] extends the equivalence to the bounded derived category
of coherent modules (Fact 2.1).

A natural question is to find analogous equivalences for the larger category
of quasi-coherent sheaves on X. We show that good modules (in the sense of
Kashiwara, Definition 2.2) is a analytic counterpart of quasi-coherent sheaves
on algebraic varieties.

For a ringed space (X,Ox), let Mod(Ox) be the abelian category of Ox-
modules. Let D(X) be its unbounded derived category.

For an algebraic variety (resp. a complex analytic space) X, let Qch(X) C
Mod(Ox) (resp. Good(X) € Mod(Ox)) be the full subcategory of quasi-coherent
(resp. good) modules. Let Dqc(X) (resp. Dgq(X)) be the full subcategory of
D(X) comprised of objects with quasi-coherent (resp. good) cohomologies.

Theorem (Proposition 3.2, Theorem 4.2). If X is proper over C, then the
analytification functor Dgc(X) — Dga(X®) is an equivalence of triangulated
categories.

2 Review

We recall the work of Serre [Ser56] (known as “GAGA”), which gives an equivalence
of algebraic coherent modules and analytic coherent modules on complex, projective
varieties. The theory is extended to complex, proper algebraic varieties in
[GR71, Exp. XII].

Let X be a complex algebraic variety. Let An (resp. Set) be the category of
complex analytic spaces (resp. sets). Let Ux be the functor An — Set sending
a complex analytic space Y to the set Homc(Y, X) of morphisms of spaces

L An algebraic variety means a finite type, separated scheme over a field.



with a sheaf of C-algebras. By [GR71, Exp. XII, Thm. 1.1}, the functor ¥ x is
represented by a complex analytic space X" (called the analytification of X)
and a flat morphism ¥ x € Home(X?", X). Because X is of finite type over C,
from [GR71, Exp. XII, Prop. 2.1 (viii)], the dimension of X" is finite.

By [GRT71, Exp. XII, 1.2], for every morphism f : X — Y of complex
algebraic varieties, there is a commutative square

lfa“ J{f (1)

in the category of ringed spaces. In other words, the analytification induces a
functor (-)2® from the category of complex algebraic varieties to An.

For a ringed space (Y, Oy), let Coh(Y) C Mod(Oy ) be the full subcategory
comprised of coherent modules (in the sense of [Sta24, Tag 01BV]). Let D.(Y) C
D(Y) be the full subcategory consisting of objects with coherent cohomologies.
The pullback functor

Py : Mod(Ox) = Mod(Oxan), F — F*" (2)

is exact and admits a right adjoint, so it commutes with colimits. It extends to a
functor D(X) — D(X?"), which is t-exact relative to the standard t-structures.
From [GR71, Exp. XII, 1.3], it restricts to a functor D(X) — DY(X®*") and
Coh(X) — Coh(X?").

Fact 2.1 can be retracted from [Hal23, Remark 1.1 and the proof of Theorem
A]. Neeman [Nee2l, Example A.2] modifies Hall’s proof to some extent.

Fact 2.1. Assume that the complex algebraic variety X is proper. Then the
functor (2) induces an equivalence D%(X) — D%(X31) of triangulated categories.
In particular, it restricts to an equivalence Coh(X) — Coh(X?") of abelian
categories.

For algebraic quasi-coherent sheaves, an analytic analog is introduced by
Kashiwara.

Definition 2.2. [Kas03, Def. 4.22] On a complex analytic space X, an Ox-
module F' called good if for every relatively compact open subset U C X, there
exists a directed family {G;}icr of coherent Op-submodules of F|y such that
Fly = > ,c; Gi, where {Gi}icr being a directed family means that for any
i,i" € I, there is i € I with G; + G C G;» (and hence F|y = colim;erG;).

By [Liu23, Lem. A.4.3], Good(X) is a weak Serre subcategory of Mod(Ox),
and Dgq(X) is a triangulated subcategory of D(X).

Lemma 2.3. For the complex algebraic variety X, the functor (2) restricts to
a functor
Qch(X) — Good(X™) (3)

and induces a functor
Dge(X) = Dga(X™). (4)
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Proof. For every quasi-coherent Ox-module F', by Fact 2.4,

F=>F (5)

i€l

is the sum of a direct family of coherent Ox-submodules. As 1% commutes
with colimits, one has
’(ﬂ;{F = colimiejw}Fi (6)

in the category Mod(Oxan). Since ¥% is exact, each % F; is a coherent O xan-
submodule of Y% F'. Therefore, the O xan-module 9% F' is good.

For every G € Dq.(X) and every integer n, because (2) is an exact functor,
the Oxan-module H" (9% G) = % (H"G) is good by last paragraph. Hence
Y% G € Dga(X™). O

Fact 2.4 ([Gro60, Cor. 9.4.9], [Sta24, Tag 01PG]). On a Noetherian scheme,
every quasi-coherent sheaf is the sum of the directed family of all coherent
submodules.

3 GAGA for quasi-coherent modules

Using Fact 2.4 and that 9% commutes with colimits, we extend GAGA from
coherent O x-modules to quasi-coherent O x-modules. When Y = Spec C, Proposition
3.1 generalizes [Ser56, Thm. 1].

Proposition 3.1. Let f: X — Y be a proper morphism of complezx algebraic
varieties. Then the base change natural transformation (Rf.)* — Rf2"(-*")
(induced by the commutative square (1)) induces an isomorphism of functors
Dgc(X) = Dga(Y?).

Proof. For every F' € Dy.(X), by [Lip60, Prop. 3.9.2], one has Rf,F € Dy (Y).
By Lemma 2.3, one has F*" € Dgq(X?") and (Rf.F)* € Dgq(Y?"). Since f
is proper, from [GR71, Exp. XII, Prop. 3.2 (v)], the morphism f*" : X" —
Y™ is proper. As X" has finite dimension, by [Liu23, Thm. 3.1.6], one has
Rf2Fa € Dgq(Y?"). Therefore, both functors (Rf.-)*" and Rf2"(-*") restrict
to functors Dgc(X) — Dga(Y?").

We prove that the morphism (Rf.F)** — Rf3*F" is an isomorphism. By
[Liu23, Lem. 3.1.10] (resp. [Lip60, Prop. 3.9.2]), the functor Rf2" : D(X?") —
D(Y?) (resp. Rfs: Dqc(X) = Dyc(Y)) is bounded. From [Sta24, Tag 06YZ],
the inclusion functor Qch(X) — Mod(Ox) exhibits Qch(X) as a weak Serre
subcategory (in the sense of [Sta24, Tag 02MO]) of Mod(Ox). Then by (way-out
argument) [Har66, I, Prop. 7.1 (iii)], one may assume F' € Qch(X). By [KS06,
Prop. 13.1.5 (ii), p.320], it suffices to check that for every integer n > 0, the
natural morphism (R" f, F)** — R" f2*(F?") in Mod(Oy=x) is an isomorphism.

By Fact 2.4, one can write F' = ), ; F; as the sum of a direct family of
coherent Ox-submodules of F. By [Sta24, Tag 07TB], one has

CO]imiE[Rnf*Fi l} Rnf*F
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The analytification commutes with colimits, so
colimer (R™ fo F)™ = (R f, F)™.

By [GRT71, XII, Thm. 4.2], the natural morphisms (R" f, F;)** — R" f2*(F?")
are isomorphisms. By [Liu23, Lem. 3.1.8], the natural morphism

colim;ef R" f2" (F) — R™f2"(F™)
is an isomorphism. O

Proposition 3.2 shows that goodness on complex analytic spaces is an analytic
counterpart of quasi-coherence on complex algebraic varieties.

Proposition 3.2. Suppose that the complex algebraic variety X is proper. Then
(8) is an equivalence of abelian categories.

Proof. e The functor (3) is essentially surjective: Indeed, because X is
proper over C, by [GR71, Exp. XII, Prop. 3.2 (v)], the complex analytic
spare X?" is compact. Then for every good Oxan-module G, one can
write G = ) . ; G; as the sum of a directed family of coherent O xan-
submodules. From the equivalence ¥% : Coh(X) — Coh(X?*") (|[GRT1,
XII, Thm. 4.4]), there is a filtered inductive system {H;};er in Coh(X)
whose analytification is the filtered inductive system {G,}ier. By [Sta24,
Tag O1LA (4)], the colimit H of {H;} in Mod(Ox) exists and lies in
Qch(X). Because 1% commutes with colimits, one has H*" = colim;¢1G;.
In particular, H2" is isomorphic to G in Good(X?").

e The functor (3) is fully faithful: For any quasi-coherent Ox-modules F
and G, we have to show that the canonical morphism

Homo  (F,G) = Homop un (7, G*") (7)
is an isomorphism. Assume first that F' is coherent.
— From [GW20, Exercise 7.20 (b)], one has

[Homoy (F, G)]™ = Homo o (F*, G™).

— As F'is of finite presentation, the O x-module Homo,, (F, G) is quasi-
coherent.

Therefore, by Proposition 3.1, the canonical morphism
H(X,Homoy (F,G)) = H°(X*™ Homo yan (F*™, G™))

is an isomorphism, which is exactly (7).

By (5) and (6), the general case follows.
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4 Derived category of quasi-coherent sheaves

By [Sta24, Tag 0BKN], for every ringed space Y, the derived category D(Y)
has products and derived limits. This plays an essential role in step 4 of the
proof of Theorem 4.2.

Definition 4.1. [Sta24, Tag 07LS] Let .4 be an additive category with arbitrary
direct sums. An object K € A is called compact, if Hom4(K,-) : A — Ab
preserves direct sums.

Theorem 4.2. If the complex algebraic variety X is proper, then the functor
(4) is an equivalence of triangulated categories.

Proof. Since X" is compact, by Lemma 4.6, the perfect complex Oxan is a
compact object of D(X?"). Then from the proof of [Hal23, Lem. 4.3], the functor
V% ¢ Dge(X) — D(X?") admits a right adjoint functor Rigc« @ D(X?) —
Dy (X) which preserves small coproducts.

1. The functor % : Dqc(X) — D(X?") is fully faithful.

From Fact 2.1, the unit of the adjunction 7 : Id — Ripqc %% (a natural
transformation of functors Dgye(X) — Dgc(X)) restricts to an isomorphism of
functors D%(X) — D?(X). By [BB03, Thm. 3.1.1 1], the compact objects of
Dy (X) are precisely the perfect complexes. From [Nee96, Prop. 2.5], Dqc(X) is
generated by a family of perfect complexes {E; };cr. By [Sta24, Tag OFXU (1)],
every perfect complex in D(X) belongs to D%(X), so the ng, are isomorphisms.
From Lemma 4.5, 7 is an isomorphism of functors Dqc(X) — Dqc(X). Thus, 1
is proved.

2. The functor (4) restricts to an equivalence D) (X) — D2, (X*").

We prove that every F' € ng(Xan) is in the essential image of D% (X) —
ng(X an)_ Induction on the cohomological length of F'. By Proposition 3.2, it
holds when F' has length zero. Suppose that it is true for objects of length < n
and F has length n + 1. There is an integer i such that 7<F, 7>¢F have length
< n. There is a canonical exact triangle

TSP 5 F o 7> 3 rSip)

in ng(Xan). By 1 and the inductive hypothesis, the morphism +1 : 7>'F —
7SF[1] is in the essential image of DZC(X) — ng(Xa“). Then so is F'. The
essential surjectivity together with 1 proves 2.

3. The functor ¢% : DI .(X) — ng(Xan) is an equivalence.

For every I € ng(Xa“), by Lemma 4.3, one has hocolim, s 7<"F = F.
Every 7<"F is in ng(X"m). From 2, there is a system (K,)n,>0 of objects of

*

D! (X), whose image under ¢% is isomorphic to the system (7="F),>0. Since
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(4) respects coproducts, it respects homotopy colimits. Since Qch(X) is closed
under filtered colimits in Mod(Ox ), the subcategory Dq.(X) is closed under
homotopy colimits in D(X).

Then F is isomorphic to the image of K := hocolim,,»q K, € Dgc(X) under
Y% . There is an integer g, such that H'(F) = 0 for every integer i < g.
Then ¢ H(K) = H'(¢%K) = 0. By Proposition 3.2, one has H'(K) = 0.
Hence K € D.(X). Thus, the functor ¢% : D (X) = DJy(X*") is essentially
surjective. By 1, it is an equivalence.

4. Every Z € Dgq(X®") is in the essential image of (4).

By Lemma 4.4, the canonical morphism Z — Rlim,,~q 72 "7 is an isomorphism
in D(X®"). By 3, there is an inverse system (Y ~") of objects of D}.(X), whose
image is isomorphic to the inverse system (727"2Z),~0. Let Y be Rlim,,~o Y ™"
in D(X). For any integers n > 1 and ¢, the functor % transforms the
morphism H(Y~"=1) = HY(Y ") in Qch(X) to HI(r>"""1Z) — HI(r>~"Z)
in Good(X?®").

The morphism HY(7="""1Z) — HI(r2""Z) is surjective, and when n >
—q, it is an isomorphism. By Proposition 3.2, the morphism H¢(Y ") —
H(Y ™) is surjective, and when n > —q, it is an isomorphism. By [Sta24, Tag
0A0J (1)], the canonical morphism H?(Y') — HI(Y™(%=1)) is an isomorphism.
In particular, the Ox-module H9(Y") is quasi-coherent. Hence Y € D (X).

For every integer m > 0, the functor 4% transforms [[,. Y™ — Y~ to
Vi (IT,s0Y ™) = 727™Z. Hence a morphism % ([1,,-0 Y ") = [[ha0 7= "2
in D(X?"). It fits to a commutative diagram

Vx Lm0 Y 7 —— % ([nso Y[ VY Ux (s Y™")
Lo "Z[1] —— [Log > "Z[-1] 7 [L.0m "2

in D(X?®"), where the rows are exact triangles. By TR3, it induces a morphism
of triangles. Hence a commutative square

HI($yY) —s HO(g Y mina=1)

HY(Z) —=— H(rzminle,=1) 7)

in Mod(Oxan). Therefore, for every integer ¢, the induced morphism H?(¢%Y) —

H9(Z) is an isomorphism. Therefore, the morphism %Y — Z is an isomorphism

in Dgq(X?"). Thus, 4 is proved. By 4 and 1, the functor (4) is an equivalence.
O

Lemma 4.3. Let A be an abelian category, where colimits over N exist and are
exact. Then the natural transformation hocolim,,~o 7" — Id is an isomorphism
of functors A — A.
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Proof. Tt follows from [Sta24, Tag 0949] and the construction of canonical
truncations. O

Lemma 4.4. Let X be a complex analytic space. Then the natural transformation
Id — Rlim,,~o 727" is an isomorphism of functors D(X) — D(X).

Proof. For every x € X, there is an integer d, > 0, and a fundamental system
U, of open neighborhoods of x, such that every U € U, is a closed complex
subspace of a domain in C%. By [Liu23, Fact 3.1.9], for every E € D(X), any
integers p > 2d,, and ¢, one has H?(U, H1(F)) = 0. By [Sta24, Tag 0D63], the
canonical morphism E — Rlim,,~o 72 ~"FE is an isomorphism in D(X). O

Lemma 4.5. Let C,D be triangulated categories. Assume that C has direct
sums. Let {F;}ier be a family of compact objects of C such that ®;crE;
generates C. Let F,G : C — D be triangulated functors preserving direct sums.
Let n : F — G be a natural transformation. If for every ¢ € I, the morphism
ng, : F(E;) — G(E;) is an isomorphism in D, then 7 is an isomorphism.

Proof. From [Sta24, Tag 09SN], every object X € C can be written as X =
hocolim,,~¢ X, where

e X is a direct sum of shifts of the E;,

e cach transition morphism X, — X, fits into an exact triangle Y,, —
Xn = Xnp1 — Yo[1],

e and Y, is a direct sum of shifts of the F;.

Since F,G preserve direct sums, and the ng, are isomorphisms, so are the
{nv, }n>0 and nx,. By [Sta24, Tag 014A] and induction on n > 0, one proves
that the nx, are isomorphisms. By [BN93, Lem. 4.1], F,G : C — D preserve
homotopy colimits. Therefore, nx is an isomorphism. O

Lemma 4.6. Let X be a compact complex analytic space. Then every perfect
object of D(X) belongs to D2(X). It is a compact object of D(X) and of
Dgq(X).

Proof. Let E € D(X) be a perfect object. By definition, there is an open
covering X = U;¢rU;, such that for each 7 € I, there is a morphism of complexes
E? — E|y which is a quasi-isomorphism, with EY = 0 for all but finite many
integers j, and every Ef is a direct summand of a finite free Ox-module. Since
X is compact, one has E € D’(X). By [Sta24, Tag 01BY (1)], every EJ is
coherent. Therefore, every HI(E)|y, is coherent over Op,. Thus, H(E) is
coherent over Ox for all j. Hence E € D%(X). In particular, E is in Dgq(X).
Let EY := RHom(E,Ox) € D(X). From [Sta24, Tag 08DQ)], there is a
natural isomorphism of functors Hompx(E,-) - H)(X,E¥V @§_-) : D(X) —
Ab. The functor EY @ -: D(X) — D(X) commutes with direct sums. Since
X is compact, dim X is finite. Then by Lemma 4.7, the functor H°(X,") :
D(X) — Ab also commutes with direct sums. Therefore, E is a compact object
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of D(X). By [Liu23, Lem. A.4.3 2|, Dgq(X) is closed under direct sums in
D(X). Then E is also a compact object of Dgg(X). O

Lemma 4.7. Let f : X — Y be a proper morphism of complex analytic spaces.
If dim X is finite, then the functor Rf, : D(X) — D(Y) commutes with direct
sums.

Proof. First, we prove that for every integer ¢, there is a natural isomorphism
qu* l> qu*TZq,QdimX : D(X) — MOd(Oy) (8)

Indeed, by [Sta24, Tag 08J5], for every object E € D(X), there is an exact
triangle T<q—2 dimx—1F —> FE — T2q72dimXE — (qu,Q dimelE)[l}- It induces
an exact sequence

Rifit<q—odimx—1E = RUf.E — RIf.m>q—2dimxE = R furcy 2dimx 1 E
in Mod(Oy ). From [Liu23, Lem. 3.1.10], one has
RUfiT<q—2dimx—1E = R forc i odim x—1E = 0.

Hence an isomorphism R?f,E — RYf,T>_;_24dim x £ functorial in E.

Let {E; : i € I} be a family of objects of D(X). Set E = @;cF;.
To prove that the canonical morphism @;c;Rf.F; — Rf.E in D(Y) is an
isomorphism, it suffices to show that for every integer ¢, the induced morphism
®ictRIf.E; — RIf.E in Mod(Oy) is an isomorphism. Since 7>q_2dim xF =
BicrT>q—2dim x i, by (8), one may assume that £ and all the E; are in Dza—2dim X (x),
Then from [Sta24, Tag 015J], one has canonical spectral sequences

Rf.HY(E) = R f,E, R°f.H'(E;) = R°"'f.E;.

By [Liu23, Lem. 3.1.8], for any integers s and ¢, the canonical morphism @;cR* f. H' (E;) —
R* f,H*(E) in Mod(Oy ) is an isomorphism. Consequently, the canonical morphism
PicrRUfE; — RIf,F is an isomorphism. O

Corollary 4.8. If the complex algebraic variety X is proper, then the functor
% : D.(X) — D.(X?") is an equivalence of triangulated categories.

Proof. For every F' € D.(X) and every integer 4, the O xan-module H(¢% F) =
Y3 H(F) is coherent. Thus, the functors % : D.(X) — D.(X™) is well-
defined. By Theorem 4.2, the functor 9% : D.(X) — D (X?") is fully faithful.
For every F' € D.(X®"), by Theorem 4.2, there is G € Dgy(X) with ¢%G
isomorphic to F. Then v% H'(G) = H'(y%G) = H*(F) is coherent over Oxan.
By Fact 2.1 and Proposition 3.2, the Ox-module H!(G) is coherent. Hence
G € D.(X). Therefore, ¥% : D.(X) — D.(X?") is essential surjective and
hence an equivalence. O
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5 Compact objects

Corollary 5.1. Suppose that the complex algebraic variety X is proper. Then
the compact objects of Dgq(X?") are precisely the perfect complexes in D(X?").

Proof. By compactness of X®" and Lemma 4.6, prefect complexes are compact
objects of Dgq(X?"). Conversely, let F' be a compact object of Dgq(X?"). By
Theorem 4.2, there is a compact object G € Dgyc(X) with %G isomorphic to
F. By [Sta24, Tag 09M1], G is a perfect complex in D(X). By definition, F' is
a perfect complex in D(X?"). O

Let X be a compact complex manifold.

Question 5.2. Does the full subcategory of Dgq(X) of compact objects coincide
with D%(X)?

Question 5.3. Is the category Dgq(X) compactly generated?

When X is the analytification of a smooth proper complex algebraic variety,
Corollary 5.1 (resp. Theorem 4.2) answers Questions 5.2 (resp. 5.3) affirmatively.
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