Feuille 1 : Calcul différentiel et sous-variétés

Exercice 1. Soient n, m, k des entiers et $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ et $W \subset \mathbb{R}^k$ des ouverts.

- 1. Soit $f: U \to V$ et $g: V \to W$ des fonctions lisses. Donner la formule précise pour $d(g \circ f)$ et la prouver.
- 2. Que se passe-t-il lorsque n=m=k=1? Dans le cas où n,m,k sont quelconques, réecrire la formule pour $d(g \circ f)$ en termes de dérivées partielles.
- 3. Supposons $n=2, m=1, k=3, U=\mathbb{R}^2, V=\mathbb{R}, W=\mathbb{R}^3, f(x,y)=\sin(x+y^3)$ et $g(z)=(z,z^2,\cos(z))$. Calculer $d(g\circ f)$ de deux manières.
- 4. Supposons que $f: U \to V$ est un difféomorphisme. Vérifier que n = m et calculer $d(f^{-1})$.

Exercice 2. Cet exercice récapitule quelques points autour des théorèmes d'inversion locale et des fonctions implicites.

- 1. Soit n un entier, $U, V \subset \mathbb{R}^n$ deux ouverts. Soit $f: U \to V$ une application lisse. Soit $x_0 \in U$. Supposons df_{x_0} inversible. Que garantit le théorème d'inversion locale?
- 2. Supposons U connexe et df_{x_0} inversible pour tout $x_0 \in U$. Est-ce que f est un difféomorphisme sur son image? Est-ce que f est injective? Si cela est faux, pouvez-vous donner un contre-exemple?
- 3. Supposons U connexe, n = 1 et df_{x_0} inversible pour tout $x_0 \in U$. Montrer que f est un difféomorphisme sur son image.
- 4. Rappeler la démonstration du théorème d'inversion locale.
- 5. Supposons U connexe, df_{x_0} inversible pour tout $x_0 \in U$ et f bijective. Montrer que f est un difféomorphisme sur son image. Ce résultat s'appelle le théorème d'inversion globale.
- 6. Soit $U \subset \mathbb{R}^m \times \mathbb{R}^p$ un ouvert et $f: U \to \mathbb{R}^p$ une application lisse. Rappeler la définition de la différentielle partielle $D_y f$. Comment peut-on l'écrire explicitement comme matrice ? Que se passe-t-il lorsque m = p = 1 ?
- 7. Soit $(x_0, y_0) \in U$ tel que $f(x_0, y_0) = 0$ et $(D_y f)_{(x_0, y_0)}$ est inversible. Que garantit le théorème des fonctions implicites?
- 8. Démontrer le théorème des fonctions implicites à partir du théorème d'inversion locale.
- 9. Montrer inversement que le théorème des fonctions implicites implique le théorème d'inversion locale.

Exercice 3. Ouverts difféomorphes. Dans chacun des cas suivants, déterminer si les deux ouverts de \mathbb{R}^n donnés sont difféomorphes. Pour tout $p \in \mathbb{R}^n$ et tout r > 0, B(p, r) désigne la boule euclidienne ouverte de \mathbb{R}^n de centre p et de rayon r, et $\bar{B}(p, r)$ la boule fermée correspondante.

```
1. B(0,1) et B(p,r);
```

2.
$$]-1,1[^n \text{ et } \mathbb{R}^n ;$$

3.
$$B(0,1)$$
 et \mathbb{R}^n ;

4.
$$B(0,1)$$
 et $]-1,1[^n;$

5.
$$\mathbb{R}^n \setminus \{0\} \text{ et } B(0,2) \setminus \bar{B}(0,1) ;$$

- 6. \mathbb{R}^n et \mathbb{R}^m avec n, m deux entiers ;
- 7. $\mathbb{R}^n \setminus \{0\}$ et \mathbb{R}^n ;
- 8. $\mathbb{R}^2 \setminus (\mathbb{R}_- \times \{0\})$ et $\mathbb{R}_+^* \times \mathbb{R}$ (ici n = 2).

Exercice 4. Difféomorphismes et changements de coordonnées.

- 1. À tout point p de l'ouvert $\mathbb{R}^2 \setminus (\mathbb{R}_- \times \{0\})$ du plan \mathbb{R}^2 on associe d'une part ses coordonnées cartésiennes (x,y) et d'autre part ses coordonnées polaires $(r,\theta) \in \mathbb{R}_+^* \times] \pi, \pi[$. Exprimer les coordonnées cartésiennes en fonction des coordonnées polaires, et montrer que l'application ainsi obtenue définit un difféomorphisme de $\mathbb{R}_+^* \times] \pi, \pi[$ dans $\mathbb{R}^2 \setminus (\mathbb{R}_- \times \{0\})$.
- 2. À tout point p de \mathbb{R}^n on associe d'une part ses coordonnées $(x_1,...,x_n)$ dans la base canonique, et d'autre part ses coordonnées $(y_1,...,y_n)$ dans une autre base. Exprimer les secondes en fonction des premières à l'aide d'une matrice de passage, et montrer que l'application correspondante définit un difféomorphisme de \mathbb{R}^n dans lui-même.

Exercice 5. La sphère comme sous-variété de \mathbb{R}^3 .

- 1. Donner les valeurs critiques de la fonction $\|.\|^2 : (x, y, z) \mapsto x^2 + y^2 + z^2$ de \mathbb{R}^3 dans \mathbb{R} . En déduire que la sphère unité \mathbb{S}^2 de \mathbb{R}^3 est une sous-variété de \mathbb{R}^3 .
- 2. Montrer que l'application

$$\phi: \ U = \{(x, y, z) \in \mathbb{R}^3 / z > 0\} \ \to \ \mathbb{R}^3$$
$$(x, y, z) \ \mapsto \ (x, y, \|(x, y, z)\|^2 - 1)$$

induit un difféomorphisme sur son image. Quelle est l'image par ϕ de $\mathbb{S}^2 \cap U$? À l'aide d'autres applications du même type, retrouver le résultat de la question précédente.

3. Retrouver encore une fois ce résultat à l'aide de l'application

$$\varphi: \{(x,y) \in \mathbb{R}^2/x^2 + y^2 < 1\} \to \mathbb{R}^3 \\ (x,y) \mapsto (x,y,\sqrt{1-x^2-y^2}).$$

On utilisera une troisième définition des sous-variétés. Faire le lien entre les questions 1 et 3 et le théorème des fonctions implicites.

Exercice 6. Et si on enlève des hypothèses...

- 1. (Si on enlève "submersion"...) Les sous-ensembles suivants sont-ils des sous-variétés de $\mathbb{R}^3:\{(x,y,z)/x^2+y^2-z^2=0\}$? $\{(x,y,z)/x^2+y^2-z^2=1\}$?
- 2. (Si on enlève "immersion"...) Montrer que le graphe de $x \in \mathbb{R} \mapsto |x|$ n'est pas une sous-variété lisse de \mathbb{R}^2 .
- 3. (Si on enlève "homéomorphisme sur son image"...) Montrer que l'application $t \in]-\pi,\pi[\mapsto (\sin t,\sin t\cos t) \in \mathbb{R}^2$ est une immersion injective. Son image est-elle une sous-variété de \mathbb{R}^2 ?

Exercice 7. Le tore de révolution. On appelle T la surface de révolution obtenue en faisant tourner autour de l'axe (Oz) le cercle $C_0 \subset \{y = 0\}$ de centre (2,0,0) et de rayon 1.

- 1. Trouver une équation de T de la forme F(x, y, z) = 0. En déduire que T est une sous-variété de \mathbb{R}^3 .
- 2. Retrouver ce résultat à l'aide de l'application

$$\begin{array}{ccc} h: & \mathbb{R}^2 & \to & \mathbb{R}^3 \\ & (\theta,\phi) & \mapsto & ((2+\cos\theta)\cos\phi, (2+\cos\theta)\sin\phi, \sin\theta). \end{array}$$

Exercice 8. Un "autre" tore.

- 1. Montrer que si M et N sont des sous-variétés de \mathbb{R}^m et \mathbb{R}^n respectivement, alors $M \times N$ est une sous-variété de \mathbb{R}^{m+n} (naturellement identifié à $\mathbb{R}^m \times \mathbb{R}^n$).
- 2. En déduire que $\mathbb{T}^n = (\mathbb{S}^1)^n$ est une sous-variété de $(\mathbb{R}^2)^n \simeq \mathbb{R}^{2n}$. On verra dans un prochain exercice que \mathbb{T}^2 est difféomorphe au T de l'exercice précédent, au sens des variétés.

Exercice 9. Groupes classiques.

- 1. Montrer que l'application déterminant de $M_n(\mathbb{R})$ dans \mathbb{R} est de classe C^1 . On note $E_{i,j}$ la matrice dont tous les coefficients sont nuls sauf celui d'indices (i,j) qui vaut 1. Calculer la dérivée de l'application $t \in \mathbb{R} \mapsto \det(I_n + tE_{i,j})$. En déduire la différentielle de det en l'identité, puis en toute matrice inversible. On l'exprimera à l'aide de la comatrice. Montrer que $GL_n(\mathbb{R})$ est dense dans $M_n(\mathbb{R})$ et en déduire la différentielle de det en tout point de $M_n(\mathbb{R})$.
- 2. Montrer que $GL_n(\mathbb{R})$ et $SL_n(\mathbb{R}) = \{M \in M_n(\mathbb{R}) / \det(M) = 1\}$ sont des sous-variétés de $M_n(\mathbb{R})$. Préciser leur dimension et expliciter leur plan tangent en I_n puis en tout point.
- 3. Montrer que l'application

$$M_n(\mathbb{R}) \rightarrow S_n(\mathbb{R})$$
 $M \mapsto {}^t MM$

est une submersion en tout point de $GL_n(\mathbb{R})$. En déduire que $O_n(\mathbb{R})$ est une sous-variété de $M_n(\mathbb{R})$ dont on précisera la dimension et le plan tangent en I_n .