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Abstract

We consider the complexity of two questions on polynomials given by arithmetic circuits:
testing whether a monomial is present and counting the number of monomials. We show
that these problems are complete for subclasses of the counting hierarchy which had few
or no known natural complete problems before. We also study these questions for circuits
computing multilinear polynomials and for univariate multiplicatively disjoint circuits.

1 Introduction

We study the complexity of two problems on polynomials represented by arithmetic circuits. The
first one is to decide whether a given monomial has zero coefficient, while the second consists in
counting the number of monomials. We characterize their complexity using the counting hierarchy.

The counting hierarchy refers to the family of classes PP∪PPPP ∪PPPPPP

∪ . . . It has appeared
in several recent papers. For example, Bürgisser [7] uses these classes to connect computing
integers to computing polynomials, while Jansen and Santhanam [15] — building on results by
Koiran and Perifel [19] — use them to derive lower bounds from derandomization. This hierarchy
was originally introduced by Wagner [36] to classify the complexity of combinatorial problems.
Curiously, after Wagner’s paper and another by Torán [30], this original motivation of the counting
hierarchy has to the best of our knowledge not been pursued for more than twenty years. Instead,
research focused on structural properties and the connection to threshold circuits [4]. As a result,
there are very few natural complete problems for classes in the counting hierarchy: for instance,
Kwisthout et al. give in [21] “the first problem with a practical application that is shown to be

FPPPPP

-complete”. The related class C=P appears to have no natural complete problems at all
(see [14, p. 293]). It is however possible to define generic complete problems by starting with a
#P-complete problem and considering the variant where an instance and a positive integer are
provided and the question is to decide whether the number of solutions for this instance is equal to
the integer. We consider these problems to be counting problems disguised as decision problems

∗Partially supported by DFG grants BU 1371/2-2 and BU 1371/3-1.
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and thus not as natural complete problems for C=P, in contrast to the questions studied here.
Note that the corresponding logspace counting class C=L is known to have interesting complete
problems from linear algebra [2].

In this paper we follow Wagner’s original idea and show that the counting hierarchy is a
helpful tool to classify the complexity of several natural problems on arithmetic circuits by showing
complete problems for the classes PPPP, PPNP and C=P.1 The common setting of these problems
is the use of circuits or straight-line programs to represent polynomials. Such a representation can
be much more efficient than giving the list of monomials, but common operations on polynomials
may become more difficult. An important example is the question of determining whether the
given polynomial is identically zero. This is easy to do when the polynomial is given as a list
of monomials. When the polynomial is given as a circuit however, this problem, called ACIT
for arithmetic circuit identity testing, is not known to be in P, though it is in coRP. In fact,
derandomizing this problem would imply circuit lower bounds, as shown in [16]. This question
thus plays a crucial part in complexity and it is natural to consider other problems on polynomials
represented as circuits. In this article we consider mainly two questions.

The first main problem, called ZMC for zero monomial coefficient, is to decide whether a given
monomial in a circuit has coefficient 0 or not. This problem has already been studied by Koiran
and Perifel [18]. They showed that when the formal degree of the circuit is polynomially bounded
the problem is complete for P#P. Unfortunately this result is not fully convincing, because it
is formulated with the rather obscure notion of strong non-deterministic Turing reductions. We
remedy this situation by proving a completeness result for the class C=P under more traditional
logarithmic-space many-one reductions. This also provides a natural complete problem for this
class. Koiran and Perifel also considered the general case of ZMC, where the formal degree of the
circuit is not bounded. They showed that ZMC is in the counting hierarchy. We provide a better
upper bound by proving that ZMC is in coRPPP. We finally study the case of monotone circuits
and show that the problem is then coNP-complete.

The second main problem is to count the number of monomials in the polynomial computed
by a circuit. This seems like a natural question whose solution should not be too hard, but in the
general case it turns out to be PPPP-complete, and the hardness holds even for weak circuits. We
thus obtain another natural complete problem, in this case for the second level of the counting
hierarchy. We remark that if a polynomial bound is given on the number of monomials, both the
problem ZMC and the one of counting monomials become easy since an explicit description of
the polynomial can be computed in polynomial time [11]. The related problem of enumerating
the monomials of a given polynomial, in the black-box model, is addressed in [29].

Then we study the two above problems in the case of circuits computing multilinear polynomi-
als. We show that our first problem becomes equivalent to the fundamental problem ACIT and
that counting monomials becomes PP-complete.

Finally, we consider the case of univariate multiplicatively disjoint circuits. We show that these
problems and several related ones are equivalent and complete for LOGCFL in the monotone case,
or close to C=LOGCFL in the general case.

A preliminary version of the present paper appeared in [10].

2 Preliminaries

Arithmetic circuits An arithmetic circuit is a labeled directed acyclic graph (DAG) con-
sisting of vertices or gates with indegree or fanin 0 or 2. The gates with fanin 0 are called input
gates and are labeled with −1 or variables X1, X2, . . . , Xn. The gates with fanin 2 are called
computation gates and are labeled with × or +. We can also consider circuits where computation
gates may receive more than two edges, in which case we say that they have unbounded fanin. The

1Observe that Hemaspaandra and Ogihara [14, p. 293] state that Mundhenk et al. [27] provide natural complete
problems for PPNP. This appears to be a typo as Mundhenk et al. in fact present complete problems not for PPNP

but for the class NPPP which indeed appears to have several interesting complete problems in the AI/planning
literature.
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polynomial computed by an arithmetic circuit is defined in the obvious way: an input gate com-
putes the value of its label, a computation gate computes the product or the sum of its children’s
values, respectively. We assume that a circuit has only one sink which we call the output gate. We
say that the polynomial computed by the circuit is the polynomial computed by the output gate.
The size of an arithmetic circuit is the number of gates. The depth of a circuit is the length of
the longest path from an input gate to the output gate in the circuit. A formula is an arithmetic
circuit whose underlying graph is a tree. Finally, a circuit or formula is called monotone if, instead
of the constant −1, only the constant 1 is allowed. When an arithmetic circuit is the input of a
problem, we consider that it is given as a graph with labels on the vertices, for instance as an
adjacency list.

It is common to consider so-called degree-bounded arithmetic circuits, for which the degree
of the computed polynomial is bounded polynomially in the number of gates of the circuit. In
our opinion this kind of degree bound has two problems. One is that computing the degree of
a polynomial represented by a circuit is suspected to be hard (see Section 6 and [3, 18, 17]), so
problems defined with this degree bound must often be promise problems. The other problem is
that the bound on the degree does not bound the size of computed constants, which by iterative
squaring can have exponential bitsize. Thus even evaluating circuits on a Turing machine becomes
intractable. The paper by Allender et al. [3] discusses problems that result from this. To avoid
all these complications, instead of bounding the degree of the computed polynomial, we choose to
bound the formal degree of the circuit or equivalently to consider multiplicatively disjoint circuits.
A circuit is called multiplicatively disjoint if, for each ×-gate, its two input subcircuits are disjoint
from one another. See [24] for a discussion of degree, formal degree and multiplicative disjointness
and how they relate.

Complexity classes We assume that the reader is familiar with basic concepts of compu-
tational complexity theory (see e.g. [5]). All reductions in this paper will be logspace many-one
unless stated otherwise.

We consider different counting decision classes in the counting hierarchy [36]. These classes
are defined analogously to the quantifier definition of the polynomial hierarchy but, in addition to
the quantifiers ∃ and ∀, the quantifiers C, C= and C6= are used.

Definition 2.1. Let C be a complexity class containing P.

• A ∈ CC if and only if there is B ∈ C, f ∈ FP and a polynomial p such that

x ∈ A⇔
∣∣∣{y ∈ {0, 1}p(|x|) | (x, y) ∈ B

}∣∣∣ ≥ f(x),

• A ∈ C=C if and only if there is B ∈ C, f ∈ FP and a polynomial p such that

x ∈ A⇔
∣∣∣{y ∈ {0, 1}p(|x|) | (x, y) ∈ B

}∣∣∣ = f(x),

• A ∈ C6=C if and only if there is B ∈ C, f ∈ FP and a polynomial p such that

x ∈ A⇔
∣∣∣{y ∈ {0, 1}p(|x|) | (x, y) ∈ B

}∣∣∣ 6= f(x).

Observe that C6=C = coC=C with the usual definition coC = {Lc | L ∈ C}, where Lc is the
complement of L. That is why the quantifier C6= is often also written as coC=, so C6=P is sometimes
called coC=P.

The counting hierarchy CH consists of the languages from all classes that we can get from P by
applying the quantifiers ∃, ∀, C, C= and C6= a constant number of times. Observe that with the
definition above PP = CP. Torán [31] proved that this connection between PP and the counting
hierarchy can be extended and that there is a characterization of CH by oracles similar to that
of the polynomial hierarchy. We state some such characterizations which we will need later on,
followed by other technical lemmas.
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Lemma 2.2. [31] PPNP = C∃P.

Lemma 2.3. PPPP = CC6=P.

Proof of Lemma 2.3. This is not stated in [31] nor is it a direct consequence, because Torán does
not consider the C6=-operator. It can be shown with similar techniques and we give a proof for

completeness. We show that CC6=P = CCP, the claim then follows, because CCP = PPPP by [31].

The direction from left to right is straightforward: From the definition we have CC6=P ⊆ PP#P.

By binary search we have PP#P = PPPP = CCP. The other direction needs a little more work.
Let L ∈ CCP, there are A ∈ P,f, g ∈ FP and a polynomial p such that

x ∈ L ⇔ there are more than f(x) values y ∈ {0, 1}p(|x|) such that∣∣∣{z ∈ {0, 1}p(|x|) | (x, y, z) ∈ A}∣∣∣ ≥ g(x, y)

⇔ there are more than f(x) values y ∈ {0, 1}p(|x|) such that

∀v ∈ {1, . . . , 2p(|x|)} :
∣∣∣{z ∈ {0, 1}p(|x|) | (x, y, z) ∈ A}∣∣∣ 6= g(x, y)− v (1)

⇔ there are more than 2p(|x|)(2p(|x|) − 1) + f(x) pairs (x, v) with

y ∈ {0, 1}p(|x|) and v ∈ {1, . . . , 2p(|x|)]} such that∣∣∣{z ∈ {0, 1}p(|x|) | (x, y, z) ∈ A}∣∣∣ 6= g(x, y)− v. (2)

From statement (2) we directly get L ∈ CC6=P and thus the claim. To see the last equivalence
we define r(x, y) :=

∣∣{z ∈ {0, 1}p(|x|) | (x, y, z) ∈ A}∣∣. Fix x, y, then obviously r(x, y) 6= g(x, y)−v
for all but at most one v. It follows that of the pairs (y, v) in the last statement 2p(|x|)(2p(|x|)− 1)
always lead to inequality. So statement (2) boils down to the question how many y there are such
that there is no v with r(x, y) = g(x, y) − v. We want these to be at least f(x), so we want at
least 2p(|x|)(2p(|x|) − 1) + f(x) pairs such that r(x, y) 6= g(x, y)− v.

Lemma 2.4. [12] ∃C6=P = C6=P.

Lemma 2.5. [28] For a large enough constant c > 0, it holds that for any integers n and x with
|x| 6 22n

and x 6= 0, the number of primes p smaller than 2cn such that x 6≡ 0 mod p is at least
2cn/cn.

Lemma 2.6. [14, p. 81] For every oracle X we have PPBPPX

= PPX .

3 Zero monomial coefficient

We first consider the question of deciding if a single specified monomial occurs in a polynomial.
In this problem and others regarding monomials, a monomial is encoded by giving the variable
powers in binary.

ZMC
Input: Arithmetic circuit C, monomial m.
Problem: Decide if m has the coefficient 0 in the polynomial computed by C.

Theorem 3.1. ZMC is C=P-complete for both multiplicatively disjoint circuits and formulas.

Proof. Using standard reduction techniques from the #P-completeness of the permanent (see
for example [5]), one define the following generic C=P-complete problem, as mentioned in the
introduction.

per=

Input: Matrix A ∈ {0, 1,−1}n, d ∈ N.
Problem: Decide if per(A) = d.

4



Therefore, for the hardness of ZMC it is sufficient to show a reduction from per=. On input

A = (aij) and d we compute the formula Q :=
∏n
i=1

(∑n
j=1 aijYj

)
. It is a classical observation

by Valiant [32]2 that the monomial Y1Y2 . . . Yn has the coefficient per(A). Thus the coefficient of
the monomial Y1Y2 . . . Yn in Q− dY1Y2 . . . Yn is 0 if and only if per(A) = d.

We now show that ZMC for multiplicatively disjoint circuits is in C=P. The proof is based on
the use of parse trees, which can be seen as objects tracking the formation of monomials during
the computation [24] and are the algebraic analog of proof trees [34].

Define inductively the parse trees of a circuit C in the following manner:

1. the only parse tree of an input gate is the gate itself,

2. the parse trees of an addition gate α with argument gates β and γ are obtained by taking
either a parse tree of β and adding the edge from β to α or by taking a parse tree of γ and
adding the edge from γ to α,

3. the parse trees of a multiplication gate α with argument gates β and γ are obtained by
taking a parse tree of β and a parse tree of γ and adding the edge from β to α and the edge
from γ to α, renaming vertices so that the chosen parse trees of β and γ are disjoint.

The value of a parse tree is defined as the product of the labels of each input gate in the parse
tree (note that in the parse tree there may be several copies of a given input gate of the circuit,
so that the corresponding label will have as power the number of copies of the gate). It is easy to
see that the polynomial computed by a circuit is the sum of the values of its parse trees:

C(x̄) =
∑

T parse tree of C

value(T ).

In the case of a multiplicatively disjoint circuit, any parse tree is a subgraph of the circuit. In
this case, a parse tree can be equivalently seen as a subgraph defined by a subset of T of the edges
satisfying the following properties:

1. it contains the output gate,

2. for any addition gate α, if T contains an edge with origin α, then T contains exactly one
edge with destination α,

3. for any multiplication gate α, if T contains an edge with origin α, then T contains both (all)
edges with destination α,

4. for any gate α, if T contains an edge with destination α, then T contains an edge with origin
α.

Consider a multiplicatively disjoint circuit C and a monomial m, where the input gates of C
are labeled either by a variable or by −1. A parse tree T contributes to the monomial m in the
output polynomial if, when computing the value of the tree, we get exactly the powers in m; this
contribution has coefficient +1 if the number of gates labeled −1 in T is even and it has coefficient
−1 if this number is odd. The coefficient of m is thus equal to 0 if and only if the number of trees
contributing positively is equal to the number of trees contributing negatively.

Let us represent a parse tree by a boolean word ε̄, by indicating which edges of C appear in
the parse tree (the length N of the words is therefore the number of edges in C). Some of these
words will not represent a valid parse tree, but this can be tested in polynomial time. Consider
the following language L composed of triples (C,m, ε0ε̄) such that:

1. ε0 = 0 and ε̄ encodes a valid parse tree of C which contribute positively to m,

2. or ε0 = 1 and ε̄ does not encode a valid parse tree contributing negatively to m.

2According to [35] this observation even goes back to [13].
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Then the number of ε̄ such that (C,m, 0ε̄) belongs to L is the number of parse trees contributing
positively to m and the number of ε̄ such that (C,m, 1ε̄) belongs to L is equal to 2N minus
the number of parse trees contributing negatively to m. Thus, the number of ε0ε̄ such that
(C,m, ε0ε̄) ∈ L is equal to 2N if and only if the number of trees contributing positively is equal to
the number of trees contributing negatively, if and only if the coefficient of m is equal to 0 in C.
Because L is in P, ZMC for multiplicatively disjoint circuits is in C=P.

Theorem 3.2. ZMC belongs to coRPPP.

Proof. Given a circuit C, a monomial m and a prime number p written in binary, CoeffSLP is
the problem of computing modulo p the coefficient of the monomial m in the polynomial computed
by C. It is shown in [17] that CoeffSLP belongs to FP#P.

We now describe a randomized algorithm to decide ZMC. Let c be the constant given in
Lemma 2.5. Consider the following algorithm to decide ZMC given a circuit C of size n and
a monomial m, using CoeffSLP as an oracle. First choose uniformly at random an integer p
smaller than 2cn. If p is not prime, accept. Otherwise, compute the coefficient a of the monomial
m in C with the help of the oracle and accept if a ≡ 0 mod p. Since |a| ≤ 22n

, Lemma 2.5
ensures that the above is a correct one-sided error probabilistic algorithm for ZMC. This yields
ZMC ∈ coRPCoeffSLP. Hence ZMC ∈ coRPPP.

We now consider ZMC on monotone circuits. Notice that in the univariate case, this problem
is equivalent to decide if the output of a circuit over sets of natural numbers with operations ∪
and + omits a given number. This was shown by McKenzie and Wagner to be coNP-complete for
both formulas and circuits. This result can be easily extended to the multivariate case and gives
the following.

Theorem 3.3. [25] ZMC is coNP-complete both for monotone formulas and monotone circuits.

We now give a result linking the ZMC problem to other questions on polynomials computed
by circuits. We define the following problem.

GapMonSLP
Input: Univariate arithmetic circuit C over X, a, b ∈ N.
Problem: Decide if the polynomial computed by C contains no monomial of
the form Xc for a ≤ c ≤ b.

GapMonSLP can be seen as a generalization of the degree problem, called DegSLP in [3]
(see also Section 6). This generalization can actually be shown to be hard as it has the same
complexity as ZMC.

Proposition 3.4. GapMonSLP is equivalent to ZMC.

Proof. The general case of ZMC easily reduces to ZMC for univariate circuits: we briefly explain
the argument below and refer to [3] for further details. Given a circuit C over the variables
X1, . . . , Xn and a monomial m = Xd1

1 . . . Xdn
n , we can compute a circuit C ′ over Y and a monomial

m′ = Y d such that the coefficient of m′ in C ′ is zero if and only if the coefficient of m in C is
zero. Indeed, define C ′ by substituting each variable Xi with YM

i

in C for M := 2|C| + 1 and let
d =

∑n
i=1 diM

i. The coefficient of m′ = Y d in C ′ is zero if and only if the coefficient of m in C in
zero. Since the univariate case of ZMC is a special case of GapMonSLP, this shows that ZMC
reduces to GapMonSLP.

For the other direction, consider (C, a, b) an instance of GapMonSLP over the variable X.
Let C ′ = C · (1 +XY )b−a. The circuit C ′ has polynomial size since (1 +XY )b can be computed
with a circuit of size O(log b). The coefficient P (Y ) of Xb in C ′ is the zero polynomial if and

only if (C, a, b) is a positive instance of GapMonSLP. Now replace Y in C ′ with B := 22|C′|2

(obtained by repeated squaring from 2) to obtain a circuit C ′′. Note that the polynomial P has

at most 2|C
′| monomials, with coefficients bounded by 222|C′|

. From the proof of [3, Prop. 2.2], it
follows that P (B) = 0 if and only if P is the zero polynomial. That is, the coefficient of Xb in C ′′

is zero if and only if (C, a, b) is a positive instance of GapMonSLP.
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4 Counting monomials

We now turn to the problem of counting the monomials of a polynomial represented by a circuit.

CountMon
Input: Arithmetic circuit C, d ∈ N.
Problem: Decide if the polynomial computed by C has at least d monomials.

To study the complexity of CountMon we will look at what we call extending polynomials.
Given two monomials M and m, we say that M is m-extending if M = mm′ and m and m′ have
no common variable. We start by studying the problem of deciding the existence of an extending
monomial.

ExistExtMon
Input: Arithmetic circuit C, monomial m.
Problem: Decide if the polynomial computed by C contains an m-extending
monomial.

Proposition 4.1. ExistExtMon is in RPPP. For multiplicatively disjoint circuits it is C6=P-
complete.

Proof. We first show the first upper bound. So let (C,m) be an input for ExistExtMon where
C is a circuit in the variables X1, . . . , Xn. Without loss of generality, suppose that X1, . . . , Xr

are the variables appearing in m. Let d = 2|C|: d is a bound on the degree of the polynomial
computed by C. We define C ′ =

∏n
i=r+1(1 + YiXi)

d for new variables Yi. We have that C has an
m-extending monomial if and only if in the product CC ′ the polynomial P (Yr+1, . . . , Yn), which is
the coefficient of m

∏n
i=r+1X

d
i , is not identically 0. Observe that P is not given explicitly but can

be evaluated modulo a random prime with an oracle for CoeffSLP. Thus it can be checked if P
is identically 0 with the classical Schwartz-Zippel-DeMillo-Lipton lemma (see for example [5]). It
follows that ExistExtMon ∈ RPPP.

The upper bound in the multiplicatively disjoint setting is easier: we can guess an m-extending
monomial M and then output the answer of an oracle for the complement of ZMC, to check
whether M appears in the computed polynomial. This establishes containment in ∃C6=P which by
Lemma 2.4 is C6=P.

For hardness we reduce to ExistExtMon the C6=P-complete problem per6=, i.e., the com-
plement of the per= problem introduced for the proof of Theorem 3.1. We use essentially the

same reduction constructing a circuit Q :=
∏n
i=1

(∑n
j=1 aijYj

)
. Observe that the only potential

extension of m := Y1Y2 . . . Yn is m itself and has the coefficient per(A). Thus Q − dY1Y2 . . . Yn
has an m-extension if and only if per(A) 6= d.

CountExtMon
Input: Arithmetic circuit C, d ∈ N, monomial m.
Problem: Decide if the polynomial computed by C has at least d m-extending
monomials.

Proposition 4.2. CountExtMon is PPPP-complete.

Proof. Clearly CountExtMon belongs to PPZMC and thus with Theorem 3.2 it is in PPcoRPPP

.
Using Lemma 2.6 we get membership in PPPP. To show hardness, we reduce the canonical CC6=P-

complete problem CC6=3SAT to CountExtMon. With Lemma 2.3 the hardness for PPPP follows.

CC6=3SAT
Input: 3SAT-formula F (x̄, ȳ), k, ` ∈ N.
Problem: Decide if there are at least k assignments to x̄ such that there are
not exactly ` assignments to ȳ such that F is satisfied.

7



Let (F (x̄, ȳ), k, `) be an instance for CC6=3SAT. Without loss of generality we may assume
that x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn) and that no clause contains a variable in both negated
and non-negated form. Let Γ1, . . . ,Γc be the clauses of F .

For each literal u of the variables in x̄ and ȳ we define a monomial I(u) in the variables
X1, . . . , Xn, Z1, . . . , Zc in the following way:

I(xi) = Xi

∏
{j | xi∈Γj}

Zj , I(¬xi) =
∏

{j | ¬xi∈Γj}

Zj ,

I(yi) =
∏

{j | yi∈Γj}

Zj , I(¬yi) =
∏

{j | ¬yi∈Γj}

Zj .

From these monomials we compute a formula C by

C :=

n∏
i=1

(I(xi) + I(¬xi))
n∏
i=1

(I(yi) + I(¬yi)) . (3)

We fix a mapping mon from the assignments of F to the monomials computed by C: Let ᾱ be
an assignment to x̄ and β̄ be an assignment to ȳ. We define mon(ᾱβ̄) as the monomial obtained
in the expansion of C by choosing the following terms. If αi = 0, choose I(¬xi), otherwise choose
I(xi). Similarly, if βi = 0, choose I(¬yi), otherwise choose I(yi).

The monomial mon(ᾱβ̄) has the form
∏n
i=1X

αi
i

∏c
j=1 Z

γj
j , where γj is the number of true

literals in Γj under the assignment ᾱβ̄. Then F is true under ᾱβ̄ if and only if mon(ᾱβ̄) has
the factor

∏c
j=1 Zj . Thus F is true under ᾱβ̄ if and only if mon(ᾱβ̄)

∏c
j=1

(
1 + Zj + Z2

j

)
has the

factor
∏n
i=1X

αi
i

∏c
j=1 Z

3
j . We set C ′ = C

∏c
j=1

(
1 + Zj + Z2

j

)
.

Consider an assignment ᾱ to x̄. The coefficient of the monomial
∏n
i=1X

αi
i

∏c
j=1 Z

3
j in C ′ is

the number of assignments β̄ such that ᾱβ̄ satisfies F . Thus we get

(F (x̄, ȳ), k, `) ∈ CC6=3SAT

⇔ there are at least k assignments ᾱ to x̄ such that the monomial

n∏
i=1

Xαi
i

c∏
j=1

Z3
j

does not have coefficient ` in C ′

⇔ there are at least k assignments ᾱ to x̄ such that the monomial

n∏
i=1

Xαi
i

c∏
j=1

Z3
j

occurs in C ′′ := C ′ − `
n∏
i=1

(1 +Xi)

c∏
j=1

Z3
j

⇔ there are at least k tuples ᾱ such that C ′′ contains the monomial

n∏
i=1

Xαi
i

c∏
j=1

Z3
j

⇔ C ′′ has at least k (

c∏
j=1

Z3
j )-extending monomials.

Theorem 4.3. CountMon is PPPP-complete. It is PPPP-hard even for unbounded fan-in for-
mulas of depth 4.

Proof. CountMon can be easily reduced to CountExtMon since the number of monomials of
a polynomial is the number of 1-extending monomials. Therefore CountMon belongs to PPPP.

To show hardness, it is enough to prove that instances of CountExtMon constructed in
Proposition 4.2 can be reduced to CountMon in logarithmic space. The idea of the proof is
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that we make sure that the polynomial for which we count all monomials contains all monomials
that are not m-extending. Thus we know how many non-m-extending monomials it contains and
we can compute the number of m-extending monomials from the number of all monomials. We
could use the same strategy to show in general that CountExtMon reduces to CountMon
but by considering the instance obtained in the proof of Proposition 4.2 and analyzing the extra
calculations below we get hardness for unbounded fanin formulas of depth 4.

So let (C ′′, k,m) be the instance of CountExtMon constructed in the proof of Proposition 4.2,
with m =

∏c
j=1 Z

3
j . We therefore need to count the monomials computed by C ′′ which are of the

form f(X1, . . . , Xn)
∏c
j=1 Z

3
j . The circuit C ′′ is multilinear in X, and the Zj can only appear with

powers in {0, 1, 2, 3, 4, 5}. So the non-m-extending monomials computed by C ′′ are all products
of a multilinear monomial in the Xi and a monomial in the Zj where at least one Zj has a power
in {0, 1, 2, 4, 5}. Fix j, then all monomials that are not m-extending because of Zj are computed
by the formula

C̃j :=

(
n∏
i=1

(Xi + 1)

)∏
j′ 6=j

5∑
p=0

Zpj′

(1 + Zj + Z2
j + Z4

j + Z5
j

)
. (4)

Thus the formula C̃ :=
∑
j C̃j computes all non-m-extending monomials that C ′′ can compute.

The coefficients of monomials in C ′′ cannot be smaller than −` where ` is part of the instance
of CC6=3SAT from which we constructed (C ′′, k,m) before. So the formula C∗ := C ′′ + (` + 1)C̃
contains all non-m-extending monomials that C ′′ can compute and it contains the same extending
monomials. There are 2n6c monomials of the form that C ′′ can compute, only 2n of which are
m-extending, which means that there are 2n(6c − 1) monomials computed by C∗ that are not
m-extending. As a consequence, C ′′ has at least k m-extending monomials if and only if C∗ has
at least 2n(6c − 1) + k monomials.

Theorem 4.4. CountMon is PPNP-complete both for monotone formulas and monotone circuits.

Proof. We first show hardness for monotone formulas. The argument is very similar to the proof
of Theorem 4.3. Consider the following canonical C∃P-complete problem C∃3SAT.

C∃3SAT
Input: 3SAT-formula F (x̄, ȳ), k ∈ N.
Problem: Decide if there are at least k assignments ᾱ to x̄ such that F (ᾱ, ȳ)
is satisfiable.

We reduce C∃3SAT to CountMon. With Lemma 2.2 the hardness for PPNP follows. Consider
a 3SAT-formula F (x̄, ȳ). Let n = |x̄| = |ȳ| and let c be the number of clauses of F . Define the
polynomial C∗ = C +

∑c
j=1 C̃j where C is defined by Equation 3 and C̃j by Equation 4. The

analysis is similar to the proof of Theorem 4.3. The polynomial C∗ is computed by a monotone
arithmetic formula and has at least 2n(6c − 1) + k monomials if and only if (F, k) is a positive
instance of C∃3SAT.

We now prove the upper bound. Recall that CountMon ∈ PPZMC. From Theorem 3.3, it
follows that CountMon on monotone circuits belongs to PPNP.

5 Multilinearity

In this section we consider the effect of multilinearity on our problems. We will not consider
promise problems and therefore the multilinear variants of our problems must first check if the
computed polynomial is multilinear. We start by showing that this step is not difficult, indeed, it
is equivalent to the problem ACIT.

ACIT
Input: Arithmetic circuit C.
Problem: Decide if the polynomial computed by C is the zero polynomial.

9



CheckML
Input: Arithmetic circuit C.
Problem: Decide if the polynomial computed by C is multilinear.

Proposition 5.1. CheckML is equivalent to ACIT.

Proof. Reducing ACIT to CheckML is easy: Simply multiply the input with X2 for an arbitrary
variable X. The resulting circuit is multilinear if and only if the original circuit was 0.

For the other direction the idea is to compute the second derivatives of the polynomial com-
puted by the input circuit and check if they are 0.

So let C be a circuit in the variables X1, . . . , Xn that is to be checked for multilinearity. For
each i we inductively compute a circuit Ci that computes the second derivative with respect to
Xi. To do so for each gate v in C the circuit C ′ has three gates vi, v

′
i and v′′i . The polynomial

in vi is that of v, v′i computes the first derivative and v′′i the second. For the input gates the
construction is obvious. If v is a +-gate with children u and w we have vi = ui +wi, v

′
i = u′i +w′i

and v′′i = u′′i + w′′i . If v is a ×-gate with children u and w we have vi = uiwi, v
′
i = u′iwi + uiw

′
i

and v′′i = u′′i wi + 2u′iw
′
i + uiw

′′
i . It is easy to see that the constructed circuit computes indeed the

second derivative with respect to Xi.
Next we compute C ′ :=

∑n
i=1 YiCi for new variables Yi. We have that C ′ is identically zero if

and only if C is multilinear. Also C ′ can easily be constructed in logarithmic space.

Next we show that the problem gets much harder if, instead of asking whether all the monomials
in the polynomial computed by a circuit are multilinear, we ask whether at least one of the
monomials is multilinear.

MonML
Input: Arithmetic circuit C.
Problem: Decide if the polynomial computed by C contains a multilinear
monomial.

The problem MonML lies at the heart of fast exact algorithms for deciding k-paths by Koutis
and Williams [20, 37] (although in these papers the polynomials are in characteristic 2 which
changes the problem a little). This motivated Chen and Fu [8, 9] to consider monML, show that
it is #P-hard and give algorithms for the bounded depth version. We provide further information
on the complexity of this problem.

Proposition 5.2. MonML is in RPPP. It is C6=P-complete for multiplicatively disjoint circuits.

Proof. For the first upper bound, let C be the input in variables X1, . . . , Xn. We set C ′ =∏n
i=1(1 +XiYi). Then C computes a multilinear monomial if and only if in the product CC ′ the

coefficient polynomial P (Y1, . . . , Yn) of
∏n
i=1Xi is not identically 0. This can be tested as in the

proof of Proposition 4.1, thus establishing MonML ∈ RPPP.
The C6=P-completeness in the multiplicatively disjoint case can be proved in the same way as

in Proposition 4.1.

We now turn to our first problem, namely deciding whether a monomial appears in the poly-
nomial computed by a circuit, in the multilinear setting.

ML-ZMC
Input: Arithmetic circuit C, monomial m.
Problem: Decide if C computes a multilinear polynomial in which the mono-
mial m has coefficient 0.

Proposition 5.3. ML-ZMC is equivalent to ACIT.

10



Proof. We first show that ACIT reduces to ML-ZMC. So let C be an input for ACIT. Allender
et al. [3] have shown that ACIT reduces to a restricted version of ACIT in which all inputs are
−1 and thus the circuit computes a constant. Let C1 be the result of this reduction. Then C
computes identically 0 if and only if the constant coefficient of C1 is 0. This establishes the first
direction.

For the other direction let (C,m) be the input, where C is an arithmetic circuit and m is a
monomial. First check if m is multilinear, if not output 1 or any other nonzero polynomial. Next
we construct a circuit C1 that computes the homogeneous component of degree deg(m) of C with
the classical method (see for example [6, Lemma 2.14]). Observe that if C computes a multilinear
polynomial, so does C1. We now plug in 1 for the variables that appear in m and 0 for all other
variables, call the resulting (constant) circuit C2. If C1 computes a multilinear polynomial, then
C2 is zero if and only if m has coefficient 0 in C1. The end result of the reduction is C∗ := C2+ZC3

where Z is a new variable and C3 is a circuit which is identically 0 iff C computes a multilinear
polynomial (obtained via Proposition 5.1). C computes a multilinear polynomial and does not
contain the monomial m if and only if both C2 and ZC3 are identically 0, which happens if and
only if their sum is identically 0.

In the case of our second problem, counting the number of monomials, the complexity falls to
PP.

ML-CountMon
Input: Arithmetic circuit C, d ∈ N.
Problem: Decide if the polynomial computed by C is multilinear and has at
least d monomials.

Proposition 5.4. ML-CountMon is PP-complete (for Turing reductions).

Proof. We first show ML-CountMon ∈ PP. To do so we use CheckML to check that the
polynomial computed by C is multilinear. Then counting monomials can be done in PPML-ZMC,
and ML-ZMC is in coRP. By Lemma 2.6 the class PPcoRP is simply PP.

For hardness we reduce the computation of the {0, 1}-permanent to ML-CountMon. The
proposition follows, because the {0, 1}-permanent is #P-complete for Turing reductions. So let A
be a 0-1-matrix and d ∈ N and we have to decide if per(A) ≥ d. We get a matrix B from A by
setting bij := aijXij . Because every entry of B is either 0 or a distinct variable, we have that,
when we compute the permanent of B, every permutation that yields a non-zero summand yields
a unique monomial. This means that there are no cancellations, so that per(A) is the number of
monomials in per(B).

The problem is now that no small circuits for the permanent are known and thus per(B) is not
a good input for ML-CountMon. But because there are no cancellations, we have that det(B)
and per(B) have the same number of monomials. So take a small circuit for the determinant
(for instance the one given in [23]) and substitute its inputs by the entries of B. The result is a
circuit C which computes a polynomial whose number of monomials is per(A). Observing that
the determinant, and thus the polynomial computed by C, is multilinear completes the proof.

6 Univariate circuits

In this section we briefly study the case of univariate circuits. One problem related to ZMC is
to compute the degree of a polynomial given by an arithmetic circuit. This problem was first
introduced in [3] under the name DegSLP.

DegSLP
Input: Arithmetic circuit C, d ∈ N.
Problem: Decide if the degree of the polynomial computed by C is smaller
than d.
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Allender et al. [3] also introduced the problem EquSLP, which is the problem ACIT restricted
to circuits with no indeterminates (i.e., computing integers).

EquSLP
Input: Arithmetic circuit C computing an integer.
Problem: Decide if the integer computed is 0.

In the general case, Allender et al. remark that EquSLP and ACIT are equivalent and they
are known to be in coRP. For DegSLP, the best known upper bound is coRPPP [17] and it is an
open problem to obtain a lower bound better than P which was obtained by Koiran and Perifel
[18]. For ZMC we have given a coRPPP upper bound and a C=P lower bound. Finally, we have
shown that CountMon is PPPP-complete.

In contrast to these differing complexities, we first show that in the case of univariate multiplica-
tively disjoint circuits, all these problems have equivalent complexities (the case of CountMon
is slightly different and treated after the others).

Proposition 6.1. For univariate multiplicatively disjoint circuits, the problems DegSLP, ZMC,
EquSLP and ACIT are equivalent under logspace reductions. This holds in the monotone and in
the general case.

Proof. The proof we give works both in the general case and in the monotone case. Clearly
EquSLP is a special case of ACIT and it can also be decided by asking for the constant coefficient
in the problem ZMC, or by asking whether the degree is smaller than 0 in DegSLP.

Conversely, we first remark that given a univariate multiplicatively disjoint circuit C of size
s, we can construct a multiplicatively disjoint circuit C ′ of size O(s3), with s + 1 output gates
computing the coefficients of the polynomial computed by C (the degree of C cannot be greater
than s). This is done by the classical argument for computing the homogeneous components of
a circuit, noting that if we start from a multiplicatively disjoint circuit we get a multiplicatively
disjoint circuit. Indeed, for each gate α in C, we have in C ′ the gates α0, . . . , αs computing
the relevant coefficients of the polynomial computed by α. Then if α is an addition gate with
arguments β and γ the gate αi in C ′ is also an addition gate with arguments βi and γi. If α is
a multiplication gate with arguments β and γ the gate αi in C ′ computes

∑i
k=0 βkγi−k. Each

product in this sum multiplies a “β” gate with a “γ” gate, so that multiplicatively disjointness is
maintained in the construction.

It is now easy to show the converse reductions. In particular it directly gives the reduction
from ZMC to EquSLP.

To reduce ACIT to EquSLP we apply the above construction, then square all the coefficients
of the polynomial and add them up, so that the resulting integer circuit computes 0 iff the starting
circuit computed the 0 polynomial.

To reduce DegSLP to EquSLP, we just need to check wether all coefficients of degree at least
d are 0, which can be done in a way similar to the reduction from ACIT to EquSLP.

We now show that, for univariate multiplicatively disjoint circuits, all the problems considered
above are complete for LOGCFL in the monotone case and C=LOGCFL in the general case. We
first recall basic facts about these classes.

LOGCFL is the class of all languages that can be reduced in logarithmic space to a context-free
language. We will use the characterization of LOGCFL by logspace-uniform semi-unbounded AC1

circuits [33], or by logspace-uniform circuits of bounded formal degree and therefore, as mentionned
at the end of the paragraph on circuits, also by logspace-uniform circuits where the AND gates
are disjoint [24]3.

In the non-monotone case we also need to consider the class C=LOGCFL = C=SAC
1. Instead

of using a machine-based definition as we did in Section 2 for C=C when the class C contains P,
it is simpler to define this class by arithmetizing a circuit definition of LOGCFL. Similarily to the

3This follows from the characterization by semi-unbounded fanin circuits of logarithmic depth, and then dupli-
cating gates to ensure that multiplications are disjoint.
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class GapP defined by the difference of two #P functions, we can define the class GapLOGCFL =
GapSAC1 [1], either by the difference of two semi-unbounded log-depth arithmetic circuits over N
or just by considering such a circuit over Z. Equivalently we can also consider the difference of two
multiplicatively disjoint circuits over N or a multiplicatively disjoint circuit over Z. A language L
then belongs to C=LOGCFL if there exists a function f in GapLOGCFL such that x ∈ L⇔ f(x) = 0.

Proposition 6.2. For monotone univariate multiplicatively disjoint circuits, the problems DegSLP,
ZMC, EquSLP, ACIT and CountMon are LOGCFL-complete.

Proof. For all of these problems apart from CountMon, it is enough to show that in the monotone
case the problem EquSLP is LOGCFL-complete. Note that a monotone arithmetic circuit counts
the number of satisfying parse trees of the corresponding Boolean circuit [1] (where a + gate is
replaced by and OR and a × gate by an AND): this number is non-zero iff the Boolean circuit
evaluates to true. The completeness follows since LOGCFL can also be characterized with circuits
with disjoint AND gates [24].

For the upper bound for CountMon, given a circuit C and an integer d, we start from the
construction given in Proposition 6.1 which yields a family of arithmetic circuits computing the
coefficients of the polynomial computed by C. By the remark above, in the monotone case each of
these circuits is non-zero iff the associated Boolean circuit is non-zero. We can then add a small
Boolean circuit which adds up these Boolean values and compares it to d, staying in LOGCFL.

Finally, the complement of EquSlp trivially reduces to CountMon by asking whether the
number of monomials is at least 1, so that CountMon is LOGCFL-hard.

Proposition 6.3. For univariate multiplicatively disjoint circuits, DegSLP, ZMC, EquSLP,
ACIT are C=LOGCFL-complete.

Proof. Once again we just need to consider EquSLP, and the result is then direct from the
definition given above for C=LOGCFL.

Proposition 6.4. For univariate multiplicatively disjoint circuits, CountMon is C=LOGCFL-
hard and is in LC=LOGCFL.

Proof. The hardness follows from the argument given at the end of the proof of Proposition 6.2.
The upper bound is clear using Proposition 6.3, since we only need to add up a small number of
answers to ZMC and then compare to d.

7 Conclusion

In this paper we have strengthened the known connection between the counting hierarchy and
arithmetic circuits by showing that natural questions on arithmetic circuits are complete for dif-
ferent classes in CH. We consider it as likely that other questions on arithmetic circuits could be
shown to be connected to CH with similar techniques.

Since the preliminary version of this paper [10] was published, several problems from this paper
have been considered by Mahajan, Rao and Sreenivasaiah [22] for very restricted circuit classes,
so-called read-once/twice formulas and branching programs. For these classes the complexity of
our problems often but not always drops considerably.

Let us also remark that the techniques from this paper have found an application in a recent
paper by Mittmann, Saxena and Scheiblechner [26]: The notion of degeneracy considered there,
to which algebraic independence in positive characteristic can be reduced, is shown to be hard by
reduction from ZMC. It would be interesting to see if a similar hardness result can be shown for
algebraic independence itself.

Let us close the paper with some open questions: The C=P lower bound for ZMC does not
match the upper bound of coRPPP completely. Can this upper bound be derandomized to show
that ZMC is in C=P also in the general case?

DegSLP is in our opinion one of the most puzzling open questions in arithmetic circuit com-
plexity. While it is widely believed to be hard, not even conditional hardness results are known
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for it. Our contribution to the understanding of DegSLP has been very modest, but we feel that
the direction it proposes might be promising. Maybe a better understanding of tractable classes
of polynomials computed by restricted classes of circuits will lead to a better understanding of the
general problem. So are there any other classes of circuits for which DegSLP is tractable? Are
there any multivariate classes?

Acknowledgments We would like to thank Sylvain Perifel for helpful discussions. The
results of this paper were conceived while the third author was visiting the Équipe de Logique
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