Examination

All documents are allowed.
Answers to be returned before March 13th, 2014 at 10h00

First part

Let E be a finite dimensional vector space over \mathbb{R}.

1. Let $q: E \rightarrow \mathbb{R}$ be a positive quadratic form. By using the symmetric bilinear form $\phi: E \times E \rightarrow \mathbb{R}$ associated to q, prove the following formula

$$
\forall x, y \in E, \quad q(x+y)+q(x-y)=2(q(x)+q(y)) .
$$

2. By using the result obtained in the previous question, prove that the isotopic cone

$$
H=\{x \in E \mid q(x)=0\}
$$

is a vector subspace of E.
3. Prove that, for any $x \in H$ and any $y \in E$ one has $\phi(x, y)=0$. One can use the Cauchy-Schwarz inequality for example.
4. Let \langle,$\rangle be a scalar product on E$ and $u: E \rightarrow E$ be an auto-adjoint endomorphism such that $q(x)=\langle x, u(x)\rangle$. Prove that for all x and y in E one has

$$
\phi(x, y)=\langle x, u(y)\rangle .
$$

5. Deduce that H identifies with the kernel of u.

Second part

Let $E=\mathbb{R}^{3}$ be equipped with the usual scalar product \langle,$\rangle such that$

$$
\langle x, y\rangle:=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2} .
$$

Consider the quadratic form $q: E \rightarrow \mathbb{R}$ such that

$$
q(x):=\frac{1}{3}\left(x_{2}^{2}-x_{3}^{2}+4 x_{1} x_{2}-4 x_{1} x_{3}\right) .
$$

6. Determine the symmetric bilinear form ϕ associated to the quadratic form q and write its matrix A with respect to the canonical basis.
7. Determine the kernel of the bilinear form ϕ. Is the quadratic form q non-degenerated (namely the kernel of ϕ is $\{0\}$)?
8. Determine the rank and the signature of the quadratic form q.
9. Write the quadratic form q into the sum of squares of linearly independent linear forms. Find an orthogonal basis of the bilinear form ϕ.
10. Let $B=A^{2}$. Prove that B is the matrix of a projection, namely the endomorphism $p: E \rightarrow E$ associated to B verifies the relation $p^{2}=p$. Prove that p is an orthogonal projection.
11. Find the image and the kernel of the endomorphism $p: E \rightarrow E$ associated to B and determine an orthonormal basis of E such that B is diagonalized under this basis.

Third part

In this exercice, we consider a matrix of size $n \times n$ with coefficients in \mathbb{R}. Let H be the matrix $A^{T} A$. We equip \mathbb{R}^{n} with the usual scalar product which sends $(X, Y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ to $X^{T} Y$.
12. By using a result of the course, prove that the vector space \mathbb{R}^{n} has an orthonormal basis which consisits of the eigenvectors of H.
13. Let $X \in \mathbb{R}^{n}$ be a vector. Prove that $X^{T} H X \geqslant 0$. Deduce that all eigenvalues of H are non-negative.
14. In and only in this question, we assume that

$$
A=\left(\begin{array}{ccc}
1 & 2 & 1 \\
-2 & -1 & -1 \\
-1 & -1 & -2
\end{array}\right)
$$

Compute H, and then find the eigenspaces of H. Determiner a basis of \mathbb{R}^{3} consisting of eigenvectors of H.
15. Verify that the trace of H equals to the sum of all eigenvalues of H (where we count the multiplicity).
16. Deduce that the function $\langle\rangle:, M_{n}(\mathbb{R}) \times M_{n}(\mathbb{R})$, which sends (M, N) to $\operatorname{Tr}\left(M^{T} N\right)$, is a scalar product, where $M_{n}(\mathbb{R})$ denotes the vector space of all matrix of size $n \times n$ with coefficients in \mathbb{R}.
17. We say that a matrix M is symmetric (resp. antisymmetric) if $M^{T}=M$ (resp. $\left.M^{T}=-M\right)$. Prove that, if M is symmetric and if N is antisymmetric, then $\langle M, N\rangle=0$.
18. Let $S_{n}(\mathbb{R})$ the set of all symmetric matrices in $M_{n}(\mathbb{R})$. Prove that $S_{n}(\mathbb{R})$ is a vector subspace of $M_{n}(\mathbb{R})$ and that $S_{n}(\mathbb{R})^{\perp}$ is the set of all antisymmetric matrices.
19. Prove that the map $\pi: M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R})$, which sends M to $\frac{1}{2}\left(M+M^{T}\right)$, is the orthogonal projection onto $S_{n}(\mathbb{R})$.
20. For the matrix A in Question 14, compute the distance of the matrix A and the vector subspace $S_{n}(\mathbb{R})$.

