Université Joseph Fourier L2 MAT241 MIN-INT 2013-2014

Examination of May 5th, 2014

Documents and electronic equipments are not allowed Duration : 2 hours

First part

Let E be an Euclidean space.

- 1. State the Cauchy-Schwarz inequality for the Euclidean product of E and precise the condition under which the inequality becomes an equality.
- **2.** Recall the definition of auto-adjoint endomorphisms of E. Prove that, if $u: E \to E$ is an auto-adjoint endomorphism and if x and y are eigenvectors associated to different eigenvalues, then x and y are orthogonal.
- **3.** Let $u: E \to E$ be an endomorphism and u^* be its adjoint. Prove that there exists an orthonomal basis of E consisting of eigenvectors of $u^* \circ u$.
- **4.** Let $u: E \to E$ be an endomorphism of E. We assume that $u^* \circ u = u \circ u^*$. Prove that any eigenspace of $u^* \circ u$ is stable by the action of u.

Second part

We equip \mathbb{R}^2 with the usual scalar product. Recall that an endomorphism $u : \mathbb{R}^2 \to \mathbb{R}^2$ is said to be *orthogonal* if u^* is the inverse u. In the following, we fix an orthogonal endomorphism u of \mathbb{R}^2 and let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be its matrix under the canonical basis of \mathbb{R}^2 . We denote by A^T the transposition of the matrix A and by $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ the identity matrix of size 2×2 .

- **5.** Prove that $A^T A = A A^T = I$.
- **6.** Deduce that there exists $\theta \in \mathbb{R}$ such that $a = \cos(\theta)$ and $b = \sin(\theta)$.
- 7. Prove that the determinant of A is either 1 or -1.
- 8. Assume that dét (A) = 1. Determine the values of c and d and represent the matrix A as a function of θ , which we denote by A_{θ} in what follows. What is the nature of u in this case?
- **9.** Assume that dét (A) = -1. Prove that the matrix A can be written in the form

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} A_{\theta}.$$

What is the nature of u in this case?

10. Let $v : \mathbb{R}^2 \to \mathbb{R}^2$ be an endomorphism such that $v^* \circ v = \lambda \operatorname{Id}_{\mathbb{R}^2}$, where λ is a non-negative number. Determine the matrix of v under the canonical basis in terms of λ and A_{θ} (for some $\theta \in \mathbb{R}$).

Third part

We consider the following quadratic form on \mathbb{R}^3 :

$$q(x, y, z) = x^2 + xy + xz - yz.$$

- **11.** Determine the polar form ϕ of q.
- 12. Write q into a linear combination of squares of linearly independent linear forms. Determine its rank and signature.
- 13. Determine the nature of the quadratic surface

$$\{(x, y, z) \in \mathbb{R}^3 \mid q(x, y, z) = 1\}.$$

14. Determine a basis of \mathbb{R}^3 with is orthogonal with respect to the bilinear form ϕ .

Fourth part

Let E and F be two finite dimensional vector spaces over \mathbb{R} , equipped with scalar products \langle , \rangle_E and \langle , \rangle_F respectively. Denote by $\|.\|_E$ and $\|.\|_F$ the corresponding Euclidean norms on E and on F respectively.

Let $f: E \to F$ be a linear map. Recall that the adjoint of f is defined as the linear map $f^*: F \to E$ such that

$$\forall x \in E, \xi \in F, \quad \langle f^*(\xi), x \rangle_E = \langle \xi, f(x) \rangle_F.$$

- **15.** Prove that $\operatorname{Ker}(f) \subset \operatorname{Ker}(f^* \circ f)$.
- **16.** Show that if $f^*(f(x)) = 0$ then $||f(x)||_F = 0$. Deduce that $\operatorname{Ker}(f) = \operatorname{Ker}(f^* \circ f)$
- **17.** Prove the equality $\operatorname{Im}(f^*) = \operatorname{Im}(f^* \circ f)$
- **18.** Prove that the eigenvalues of $f^* \circ f$ are positive real numbers.
- 19. Show that there exists an orthonormal basis of E which consisits of eigenvectors of $f^* \circ f$.
- **20.** Assume that $\dim(F) = 1$. Determine a polynomial P of degree 2 which satisfies $P(f^* \circ f) = 1$. Determine the eigenspaces of $f^* \circ f$.