Université Joseph Fourier

L2 MAT241 MIN-INT
2013-2014

Examination of May 5th, 2014

Documents and electronic equipments are not allowed
Duration : 2 hours

First part

Let E be an Euclidean space.

1. State the Cauchy-Schwarz inequality for the Euclidean product of E and precise the condition under which the inequality becomes an equality.
2. Recall the definition of auto-adjoint endomorphisms of E. Prove that, if $u: E \rightarrow E$ is an auto-adjoint endomorphism and if x and y are eigenvectors associated to different eigenvalues, then x and y are orthogonal.
3. Let $u: E \rightarrow E$ be an endomorphism and u^{*} be its adjoint. Prove that there exists an orthonomal basis of E consisiting of eigenvectors of $u^{*} \circ u$.
4. Let $u: E \rightarrow E$ be an endomorphism of E. We assume that $u^{*} \circ u=u \circ u^{*}$. Prove that any eigenspace of $u^{*} \circ u$ is stable by the action of u.

Second part

We equip \mathbb{R}^{2} with the usual scalar product. Recall that an endomorphism $u: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is said to be orthogonal if u^{*} is the inverse u. In the following, we fix an orthogonal endomorphism u of \mathbb{R}^{2} and let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be its matrix under the canonical basis of \mathbb{R}^{2}. We denote by A^{T} the transposition of the matrix A and by $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ the identity matrix of size 2×2.
5. Prove that $A^{T} A=A A^{T}=I$.
6. Deduce that there exists $\theta \in \mathbb{R}$ such that $a=\cos (\theta)$ and $b=\sin (\theta)$.
7. Prove that the determinant of A is either 1 or -1 .
8. Assume that dét $(A)=1$. Determine the values of c and d and represent the matrix A as a function of θ, which we denote by A_{θ} in what follows. What is the nature of u in this case?
9. Assume that dét $(A)=-1$. Prove that the matrix A can be written in the form

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) A_{\theta} .
$$

What is the nature of u in this case?
10. Let $v: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be an endomorphism such that $v^{*} \circ v=\lambda \operatorname{Id}_{\mathbb{R}^{2}}$, where λ is a non-negative number. Determine the matrix of v under the canonical basis in terms of λ and A_{θ} (for some $\theta \in \mathbb{R}$).

Third part

We consider the following quadratic form on \mathbb{R}^{3} :

$$
q(x, y, z)=x^{2}+x y+x z-y z .
$$

11. Determine the polar form ϕ of q.
12. Write q into a linear combination of squqres of linearly independent linear forms. Determine its rank and signature.
13. Determine the nature of the quadratic surface

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid q(x, y, z)=1\right\}
$$

14. Determine a basis of \mathbb{R}^{3} with is orthogonal with respect to the bilinear form ϕ.

Fourth part

Let E and F be two finite dimensional vector spaces over \mathbb{R}, equipped with scalar products \langle,\rangle_{E} and \langle,\rangle_{F} respectively. Denote by $\|\cdot\|_{E}$ and $\|\cdot\|_{F}$ the corresponding Euclidean norms on E and on F respectively.

Let $f: E \rightarrow F$ be a linear map. Recall that the adjoint of f is defined as the linear map $f^{*}: F \rightarrow E$ such that

$$
\forall x \in E, \xi \in F, \quad\left\langle f^{*}(\xi), x\right\rangle_{E}=\langle\xi, f(x)\rangle_{F}
$$

15. Prove that $\operatorname{Ker}(f) \subset \operatorname{Ker}\left(f^{*} \circ f\right)$.
16. Show that if $f^{*}(f(x))=0$ then $\|f(x)\|_{F}=0$. Deduce that $\operatorname{Ker}(f)=\operatorname{Ker}\left(f^{*} \circ\right.$ f)
17. Prove the equality $\operatorname{Im}\left(f^{*}\right)=\operatorname{Im}\left(f^{*} \circ f\right)$
18. Prove that the eigenvalues of $f^{*} \circ f$ are positive real numbers.
19. Show that there exists an orthonormal basis of E which consisits of eigenvectors of $f^{*} \circ f$.
20. Assume that $\operatorname{dim}(F)=1$. Determine a polynomial P of degree 2 which satisfies $P\left(f^{*} \circ f\right)=1$. Determine the eigenspaces of $f^{*} \circ f$.
