Université Joseph Fourier

MAT241 Bilinear Algebra (MIN-INT)

2013-2014

Exercice 1

Question 1 Let $V=\mathbb{R}^{3}$ and $\left(e_{i}\right)_{i=1}^{3}$ be the canonical basis of V. Denote by $\left(e_{i}^{\vee}\right)_{i=1}^{3}$ the dual basis of $\left(e_{i}\right)_{i=1}^{3}$. Write the following linear form as a linear combination of vectors in the dual basis.
(1) $\alpha(x, y, z)=3 x+4 y+5 z$.
(2) The differential at $(0,0,0)$ of the function $f(x, y, z)=\exp (x+y+z)$.
(3)

$$
\beta(x, y, z)=(1,1,1) A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right), \text { where } A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

Question 2 Let V be the vector space of all polynomials in $\mathbb{R}[T]$ of degree $\leqslant 2$. Let $e_{1}=1, e_{2}=1+T$ and $e_{3}=1+T+T^{2}$.
(1) Prove that $\left(e_{i}\right)_{i=1}^{3}$ is a basis of the vector space V.
(2) Prove that $I: V \rightarrow \mathbb{R}, I(f)=\int_{0}^{1} f(t) \mathrm{d} t$ is a linear form on V.
(3) Write I as a linear combination of the vectors in the dual basis of $\left(e_{i}\right)_{i=1}^{3}$.

Question 3 Let V be a finite dimensional vector space over $K=(\mathbb{R}$ or $\mathbb{C})$. Prove that the map from V to $V^{\vee \vee}$, which sends $x \in V$ to the linear form $\alpha \mapsto \alpha(x)$ on V^{\vee}, is a K-linear isomorphism.

Question 4 Are the following functions bilinear forms, symmetric bilinear forms?
(1) $\varphi: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}, \varphi(x, y)=x_{1} x_{2}+y_{1} y_{2}$.
(2) $\varphi: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}, \varphi(x, y)=x_{1} y_{2}+x_{2} y_{1}$.
(3) $\varphi: \mathbb{R}[T] \times \mathbb{R}[T] \rightarrow \mathbb{R}, \varphi(P, Q)=P^{\prime}(1) Q(0)+P^{\prime}(0) Q(1)$.
(4) $\varphi: C^{0}([0,1]) \times C^{0}([0,1]) \rightarrow \mathbb{R}, \varphi(f, g)=\int_{0}^{1} f(t) g(1-t) \mathrm{d} t$.
(5) $\varphi: M_{n}(\mathbb{R}) \times M_{n}(\mathbb{R}) \rightarrow \mathbb{R}, \varphi(A, B)=\operatorname{tr}(A B)$.

Question 5 (Oral test question) Let V be a vector space over $K=(\mathbb{R}$ or $\mathbb{C})$ and W be a vector subspace of V.
(1) Denote by \sim the binary relation on V defined as

$$
x \sim y \Longleftrightarrow x-y \in W .
$$

Prove that it is an equivalence relation.
(2) For any element $x \in V$, denote by $[x]$ the equivlence class of x with respect to the equivalence relation \sim. Let V / W be the quotient set V / \sim. Prove that the maps

$$
\begin{array}{ccc}
(V / W) \times(V / W) & \longrightarrow & V / W \\
([x],[y]) & \longmapsto & {[x+y]}
\end{array}
$$

and

$$
\begin{array}{ccc}
K \times(V / W) & \longrightarrow & V / W \\
(a,[x]) & \longmapsto & {[a x]}
\end{array}
$$

are well defined.
(3) Prove that the set V / W equipped with the above maps forms a vector space over K and that the projection $\pi: V \rightarrow V / W, \pi(x)=[x]$ is a K-linear map.
(4) Determine the kernel of π.
(5) Prove that $\pi^{\vee}:(V / W)^{\vee} \rightarrow V^{\vee}$ is an injective map.
(6) Let $\eta: W \rightarrow V$ be the inclusion map of W into V. Prove that η^{\vee} is a surjective map.
(7) Let $\Delta: V \times V^{\vee} \rightarrow \mathbb{R}$ be the bilinear map defined as $\Delta(x, \alpha)=\alpha(x)$. Denote by W_{Δ}^{\perp} the set of all $\alpha \in V^{\vee}$ such that $\alpha(x)=0$ for any $x \in W$. Prove that W_{Δ}^{\perp} identifies with the image of π^{\vee} and the kernel of η^{\vee}.
(8) Assume that V is finite dimensional. Prove that $\operatorname{dim}\left(W_{\Delta}^{\perp}\right)=\operatorname{dim}(V)-\operatorname{dim}(W)$.

Question 6 Determine the matrix of the following bilinear forms with respect to the basis assigned.
(1) $\varphi: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}, \varphi(x, y)=x_{1} y_{2}+x_{2} y_{1}+x_{1} y_{1}-x_{2} y_{2}$, canonical basis.
(2) $\varphi: \mathbb{R}[T]_{2} \times \mathbb{R}[T]_{2} \rightarrow \mathbb{R}, \varphi(P, Q)=\int_{0}^{1} P(t) Q(t) d t$, the basis $\left\{1, T, T^{2}\right\}$.

Question 7 Let $\varphi: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the bilinear form defined as

$$
\varphi(x, y)=x_{1} y_{1}-\frac{1}{2} x_{2} y_{1}+\frac{3}{2} x_{1} y_{2}-x_{2} y_{2}
$$

Is this bilinear form symmetric? If it is not the case, please decompose φ into the sum of a symmetric bilinear form and a anti-symmetric bilinear form

Question 8 Let $E=M_{n}(\mathbb{R})$ be the vector space of square matrices of size $n \times n$ and $\varphi: E \times E \rightarrow \mathbb{R}$ defined as $\varphi(A, B)=\operatorname{tr}(A B)$.
(1) Is the bilinear form φ symmetric?
(2) Determine the kernel and the dimension of the bilinear form φ.
(3) Let I be the identity matrix. Determine the vector space $\{I\}^{\perp}$.

