Université Joseph Fourier

MAT241 Bilinear Algebra (MIN-INT)

2013-2014

Exercice 2

Question 1 Transform the following quadratic forms into the sum of squares of independent linear forms. Determiner an orthogonal basis and the signature of each quadratic form.
(1) $q: \mathbb{R}^{2} \rightarrow \mathbb{R}, q(x)=5 x_{1}^{2}+2 x_{1} x_{2}+5 x_{2}^{2}$.
(2) $q: \mathbb{R}^{3} \rightarrow \mathbb{R}, q(x)=\left(x_{1}+x_{2}+x_{3}\right)^{2}+\left(x_{1}+2 x_{2}+x_{3}\right)^{2}+\left(x_{1}+x_{3}\right)^{2}$.
(3) $q: \mathbb{R}^{3} \rightarrow \mathbb{R}, q(x)=7 x_{1} x_{2}+8 x_{1} x_{3}+4 x_{2} x_{3}$.
(4) $q: \mathbb{R}[T]_{2} \rightarrow \mathbb{R}, q(P)=P(2) P(1)+P(1) P(0)$.

Question 2 Let $E=\mathbb{R}[T]_{n}$. We consider the map $q: E \rightarrow \mathbb{R}$ defined as

$$
q(P)=\int_{0}^{1} P(t) P^{\prime}(t) \mathrm{d} t
$$

(1) Prove that q is a quadratic form.
(2) Write q as the difference of squares of two linearly independent linear forms.
(3) Compute the kernel and the rank of the polar form of q (namely the symmetric bilinear form associated to q).
(4) Determine an orthogonal basis for the polar form of q.
(5) Determine the isotopic cone of q.

Question 3 Let $V=\mathbb{R}^{n}$ and let ℓ_{1} and ℓ_{2} be two non-zero linear forms on V. Let $q: V \rightarrow \mathbb{R}$ be the map defined as

$$
q(x)=\ell_{1}(x) \ell_{2}(x)
$$

(1) Prove that q is a quadratic form on V.
(2) Prove that the kernel of q equals $\operatorname{Ker}\left(\ell_{1}\right) \cap \operatorname{Ker}\left(\ell_{2}\right)$.
(3) Determine all possible values of the signatures of the quadratic form q.

Question 4 Let q be a quadratic form on a finite dimensional vector space V over \mathbb{R}, f_{1}, \ldots, f_{p} be linear forms on V and $\alpha_{1}, \ldots, \alpha_{p}$ be real numbers. Assume that q can be written as

$$
q=\alpha_{1} f_{1}^{2}+\cdots+\alpha_{p} f_{p}^{2}
$$

(1) Prove that $\operatorname{rk}\left(f_{1}, \ldots, f_{p}\right) \geqslant \operatorname{rk}(q)$.
(2) Prove that, if f_{1}, \ldots, f_{p} are linearly independent and if $\alpha_{1}, \ldots, \alpha_{p}$ are non-zero, then the rank of the quadratic form q is equal to p.

Question 5 (Oral test question) Let n and p be two integers in $\mathbb{Z}_{\geqslant 1}$. Let A be a matrix in $M_{n, p}(\mathbb{R})$ and B be the matrix $A A^{T}$.
(1) Prove that the matrix B is symmetric.
(2) Let $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the quadratic form defined as

$$
q(x)=\left(x_{1}, \cdots, x_{n}\right) B\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

Prove that q is positive.
(3) Determine the kernel of the quadratic form q.
(4) Determine the signature of q in terms of the rank of A.
(5) Detremine the signature of the quadratic form

$$
q_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad q_{1}(x)=\sum_{1 \leqslant i, j \leqslant n} x_{i} x_{j}
$$

(6) Determine the signature of the quadratic form

$$
q_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad q_{2}(x)=\sum_{1 \leqslant i, j \leqslant n} i j x_{i} x_{j}
$$

Question 6 Let $V=\mathbb{R}[T]_{n}$ be the vector space of all polynomials of degree $\leqslant n$. For P and Q in V, we define

$$
\varphi(P, Q)=\int_{0}^{1} P^{\prime}(t) Q^{\prime}(t) \mathrm{d} t
$$

(1) Prove that φ is a symmetric bilinear form on V.
(2) Let q be the quadratic form associated to φ. Prove that q is positive.
(3) Determine the isotropic cone of q.
(4) Prove that the kernel of φ is equal to the isotropic cone of q.
(5) Determine the rank of φ.
(6) Let $f: V \rightarrow \mathbb{R}$ be the map defined as

$$
f(P):=\int_{0}^{1} P^{\prime}(t) \mathrm{d} t
$$

Prove that f is a linear form on V.
(7) Let q_{1} be the quadratic form on V defined as

$$
q_{1}(P):=q(P)-f(P)^{2}
$$

Prove that

$$
q_{1}(P)=\int_{0}^{t}\left(P^{\prime}(t)-f(P)\right)^{2} \mathrm{~d} t
$$

(8) Determine the signature of q_{1}.

