Université Joseph Fourier MAT241 Bilinear Algebra (MIN-INT) 2013-2014

Exercice 3

Question 1 Determine the nature of the solution sets of the following equations and represent them on the plane \mathbb{R}^2 .

(1) $x^{2} + xy + y^{2} = 1$ (2) $x^{2} + 4xy + y^{2} = 1$ (3) $x^{2} + xy + y^{2} = -2$ (4) $x^{2} - 2xy + y^{2} = 1$

Question 2 Prove that the parametrized curve $x = \cos t$, $y = \cos t + \sin t$ $(t \in \mathbb{R})$ defines an ellipse. Determine its equation.

Question 3 Determine the nature of the solution sets of the following equations.

(1) $x^{2} + 9y^{2} + 4z^{2} - 6xy - 12yz + 4xz = -4$ (2) xy + xz + yz = -1(3) $x^{2} + y^{2} + z^{2} - 2xy + 2xz + 3x - y + z = -1$ (4) $2x^{2} + 2y^{2} + z^{2} + 2xz - 2yz + 4x - 2y - z = -3$ (5) (x - y)(y - z) + (y - z)(z - x) + (z - x)(x - y) + (x - y) = 0

Question 4 (Oral test question) Let V be a finite dimensional vector space over \mathbb{R} . (1) Let \langle , \rangle be a scalar product on V and $\|.\|: V \to [0, +\infty[$ be the function defined as

$$||x|| := \langle x, x \rangle^{1/2}.$$

Prove that, for any couple (x, y) of vectors in V, one has

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2}).$$

(2) Let $\phi : V \times V \to \mathbb{R}$ be a symmetric bilinear form on V and $q : V \to \mathbb{R}$ be the quadratic form on V defined as $q(x) := \phi(x, x)$. Prove that, for any $(x, y) \in V \times V$, one has

$$q(x + y) + q(x - y) = 2(q(x) + q(y))$$

(3) Let

$$\lambda := \sup_{0 \neq x \in V} \frac{q(x)}{\langle x, x \rangle}$$
 and $W := \{ y \in V | q(y) = \lambda \|y\|^2 \}.$

Prove that W is stable by multiplication by a scalar.

(4) Prove that W is stable by addition. Deduce that W is a vector subspace of V.

Question 5 (Oral test question) In this exercice, we consider \mathbb{C} as a vector space of dimension 2 over \mathbb{R} .

- (1) Prove that the map $\phi: \mathbb{C} \times \mathbb{C} \to \mathbb{R}, \ \phi(z, w) = \operatorname{Re}(\overline{z}w)$ is a scalar product on \mathbb{C} .
- (2) Denote by $|.|: \mathbb{C} \to \mathbb{R}$ the norm defined as $|z| := \phi(z, z)^{1/2}$. Prove the following inequality :

 $\forall\, z,w\in\mathbb{C},\quad \left||z|-|w|\right|\leqslant |z-w|.$

(3) Prove that, for all complex numbers z and w, one has

$$|1 - \overline{w}z|^2 - |z - w|^2 = (1 - |z|^2)(1 - |w|^2).$$

(4) Let D be the subset of \mathbb{C} consisting of complex numbers z such that |z| < 1. Prove that, for all complex numbers z and w in D, the complex number

$$T_w(z) := \frac{w-z}{1-\overline{w}z}$$

is well defined and lies in D.

(5) Let w be an element in D. Denote by $T_w : D \to D$ the map defined above. Determine $T_w^2(.) := T_w(T_w(.))$ and prove that T_w is a bijection.

Question 6 Are the following quadratic form positive? Do they define scalar products on the corresponding vector spaces?

- (1) $q: \mathbb{R}^3 \to \mathbb{R}, q(x, y, z) = x^2 + y^2 + 2z(x \cos \alpha + y \sin \alpha)$, where $\alpha \in \mathbb{R}$ is a parameter. (2) $q: \mathbb{R}^4 \to \mathbb{R}, q(x, y, z, t) = x^2 + 3y^2 + 4z^2 + t^2 + 2xy + xt$.
- (3) $q: \mathbb{R}^n \to \mathbb{R}$,

$$q(x_1,\ldots,x_n) = a\sum_{i=1}^n x_i^2 + b\sum_{i\neq j} x_i x_j,$$

where a and b are two parameters.

(4) $q: \mathbb{R}[T]_n \to \mathbb{R},$

$$q(P) = \sum_{k=0}^{n} P(k)^2.$$

Question 7 Find an orthonormal basis of $\mathbb{R}[T]_3$ with respect to the scalar product

$$\langle P, Q \rangle := \int_{-1}^{1} P(t)Q(t) \,\mathrm{d}t$$

Question 8 We equip \mathbb{R}^n with the standard scalar product. Denote by H the hyperplane

$$\{(x_1, \dots, x_n) \mid x_1 + \dots + x_n = 0\}$$

- (1) Determine an othonormal basis of H with respect to the restriction of the standard scalar product.
- (2) For any point $P = (x_1, \ldots, x_n)$ in \mathbb{R}^n , determine the distance between P and H.
- (3) Determine the matrix of the orthogonal projection of \mathbb{R}^n onto H (considered as an endomorphism of \mathbb{R}^n) with respect to the canonical basis.
- (4) Determine H^{\perp} .