Université Joseph Fourier

MAT241 Bilinear Algebra (MIN-INT)

2013-2014

Exercice 3

Question 1 Determine the nature of the solution sets of the following equations and reprensent them on the plane \mathbb{R}^{2}.
(1) $x^{2}+x y+y^{2}=1$
(2) $x^{2}+4 x y+y^{2}=1$
(3) $x^{2}+x y+y^{2}=-2$
(4) $x^{2}-2 x y+y^{2}=1$

Question 2 Prove that the parametrized curve $x=\cos t, y=\cos t+\sin t(t \in \mathbb{R})$ defines an ellipse. Determine its equation.

Question 3 Determine the nature of the solution sets of the following equations.
(1) $x^{2}+9 y^{2}+4 z^{2}-6 x y-12 y z+4 x z=-4$
(2) $x y+x z+y z=-1$
(3) $x^{2}+y^{2}+z^{2}-2 x y+2 x z+3 x-y+z=-1$
(4) $2 x^{2}+2 y^{2}+z^{2}+2 x z-2 y z+4 x-2 y-z=-3$
(5) $(x-y)(y-z)+(y-z)(z-x)+(z-x)(x-y)+(x-y)=0$

Question 4 (Oral test question) Let V be a finite dimensional vector space over \mathbb{R}.
(1) Let \langle,$\rangle be a scalar product on V$ and $\|\|:. V \rightarrow[0,+\infty[$ be the function defined as

$$
\|x\|:=\langle x, x\rangle^{1 / 2}
$$

Prove that, for any couple (x, y) of vectors in V, one has

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) .
$$

(2) Let $\phi: V \times V \rightarrow \mathbb{R}$ be a symmetric bilinear form on V and $q: V \rightarrow \mathbb{R}$ be the quadratic form on V defined as $q(x):=\phi(x, x)$. Prove that, for any $(x, y) \in V \times V$, one has

$$
q(x+y)+q(x-y)=2(q(x)+q(y)) .
$$

(3) Let

$$
\lambda:=\sup _{0 \neq x \in V} \frac{q(x)}{\langle x, x\rangle} \quad \text { and } \quad W:=\left\{y \in V \mid q(y)=\lambda\|y\|^{2}\right\} .
$$

Prove that W is stable by multiplication by a scalar.
(4) Prove that W is stable by addition. Deduce that W is a vector subspace of V.

Question 5 (Oral test question) In this exercice, we consider \mathbb{C} as a vector space of dimension 2 over \mathbb{R}.
(1) Prove that the map $\phi: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{R}, \phi(z, w)=\operatorname{Re}(\bar{z} w)$ is a scalar product on \mathbb{C}.
(2) Denote by $||:. \mathbb{C} \rightarrow \mathbb{R}$ the norm defined as $|z|:=\phi(z, z)^{1 / 2}$. Prove the following inequality :

$$
\forall z, w \in \mathbb{C}, \quad| | z|-|w|| \leqslant|z-w|
$$

(3) Prove that, for all complex numbers z and w, one has

$$
|1-\bar{w} z|^{2}-|z-w|^{2}=\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)
$$

(4) Let D be the subset of \mathbb{C} consisting of complex numbers z such that $|z|<1$. Prove that, for all complex numbers z and w in D, the complex number

$$
T_{w}(z):=\frac{w-z}{1-\bar{w} z}
$$

is well defined and lies in D.
(5) Let w be an element in D. Denote by $T_{w}: D \rightarrow D$ the map defined above. Determine $T_{w}^{2}():.=T_{w}\left(T_{w}().\right)$ and prove that T_{w} is a bijection.

Question 6 Are the following quadratic form positive? Do they define scalar products on the corresponding vector spaces?
(1) $q: \mathbb{R}^{3} \rightarrow \mathbb{R}, q(x, y, z)=x^{2}+y^{2}+2 z(x \cos \alpha+y \sin \alpha)$, where $\alpha \in \mathbb{R}$ is a parameter.
(2) $q: \mathbb{R}^{4} \rightarrow \mathbb{R}, q(x, y, z, t)=x^{2}+3 y^{2}+4 z^{2}+t^{2}+2 x y+x t$.
(3) $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
q\left(x_{1}, \ldots, x_{n}\right)=a \sum_{i=1}^{n} x_{i}^{2}+b \sum_{i \neq j} x_{i} x_{j}
$$

where a and b are two parameters.
(4) $q: \mathbb{R}[T]_{n} \rightarrow \mathbb{R}$,

$$
q(P)=\sum_{k=0}^{n} P(k)^{2}
$$

Question 7 Find an orthonormal basis of $\mathbb{R}[T]_{3}$ with respect to the scalar product

$$
\langle P, Q\rangle:=\int_{-1}^{1} P(t) Q(t) \mathrm{d} t
$$

Question 8 We equip \mathbb{R}^{n} with the standard scalar product. Denote by H the hyperplane

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}+\cdots+x_{n}=0\right\}
$$

(1) Determine an othonormal basis of H with respect to the restriction of the standard scalar product.
(2) For any point $P=\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n}, determine the distance between P and H.
(3) Determine the matrix of the orthogonal projection of \mathbb{R}^{n} onto H (considered as an endomorphism of \mathbb{R}^{n}) with respect to the canonical basis.
(4) Determine H^{\perp}.

