Huavi	CHEN
	·

COURS M1 PROBABILITÉS

$Huayi\ CHEN$

Université Grenoble Alpes, Institut Fourier (UMR5582), 38402 Saint Martin d'Hères, France.

 $E\text{-}mail: \verb|huayi.chen@ujf-grenoble.fr|$

CHAPITRE 2

INDÉPENDANCE

2.1. Produit de mesures σ -finies

Soient (E, \mathcal{E}) et (F, \mathcal{F}) deux espaces mesurables. On suppose donner des mesures σ -finies μ et ν sur ces deux espaces mesurables respectivement. Le but de ce paragraphe est de construire une mesure σ -finie sur l'espace mesurable produit $(E \times F, \mathcal{E} \otimes \mathcal{F})$, qui vérifie certaines bonnes propriétés. On commence par un critère de mesurabilité successive comme dans la proposition suivante.

Proposition 2.1.1. — Soit f une fonction sur $E \times F$ qui est $\mathcal{E} \otimes \mathcal{F}$ -mesurable. Pour tout $x \in E$, la fonction de F vers \mathbb{R} qui envoie $y \in F$ en f(x,y) est \mathcal{F} -mesurable.

Démonstration. — Sans perte de généralité, on peut supposer f positive et bornée. Soit \mathcal{H} l'ensemble des fonctions positives et bornées h sur $E \times F$ telles que $y \mapsto h(x,y)$ soit \mathcal{F} -mesurable. C'est une λ -famille de fonctions positives et bornées sur $E \times F$. En outre, \mathcal{H} contient l'ensemble \mathcal{C} des combinaisions linéaires à coefficients positifs de fonctions de la forme $(x,y) \mapsto h_1(x)h_2(y)$, où h_1 et h_2 sont des fonctions positives, bornées et mesurables sur (E,\mathcal{E}) et (F,\mathcal{F}) respectivement. La famille \mathcal{C} est certainement stable par la multiplication. Donc \mathcal{H} contient toute fonction positive, bornée et $\sigma(\mathcal{C}) = \mathcal{E} \otimes \mathcal{F}$ -mesurable. \square

Théorème 2.1.2. — Si f est une fonction positive et $\mathcal{E} \otimes \mathcal{F}$ -mesurable. Alors la fonction

$$x \longmapsto \int_F f(x,y) \, \nu(\mathrm{d}y)$$

est \mathcal{E} -mesurable. En outre, il existe une unique mesure σ -finie $\mu \otimes \nu$ sur $(E \times F, \mathcal{E} \otimes \mathcal{F})$ telle que

(2.1)
$$\int_{E\times F} h(x,y)(\mu\otimes\nu)(\mathrm{d}x,\mathrm{d}y) = \int_E \int_F h(x,y)\,\nu(\mathrm{d}y)\mu(\mathrm{d}x)$$

pour toute fonction positive et $\mathcal{E} \otimes \mathcal{F}$ -mesurable h.

Démonstration. — Soit $\mathcal H$ l'ensemble des fonctions h positives, bornées et $(\mathcal E\otimes \mathcal F)$ -mesurables telle que

$$x \longmapsto \int_{F} f(x,y) \, \nu(\mathrm{d}y)$$

soit \mathcal{F} -mesurable. La famille \mathcal{H} est une λ -famille. En outre, \mathcal{H} contient l'ensemble \mathcal{C} des combinaison linéaires à coefficients positifs de fonctions de la forme $(x,y) \mapsto h_1(x)h_2(y)$, où h_1 et h_2 sont des fonctions positives, bornées et mesurables sur (E,\mathcal{E}) et (F,\mathcal{F}) respectivement. La famille \mathcal{C} est stable par multiplication, donc \mathcal{H} contient toutes les fonctions positives, bornées et $(\mathcal{E} \otimes \mathcal{F})$ -mesurables, compte tenu du théorème 1.1.16.

On désigne par \mathcal{G}_0 la famille des sous-ensembles de $E \times F$ qui s'écrivent sous la forme $A \times B$, où $A \in \mathcal{E}$ et $B \in \mathcal{F}$. C'est un semi-anneau de sous-ensembles de $E \times F$ et l'application

$$A \times B \longmapsto \int_E \int_F \mathbb{1}_{A \times B}(x, y) \nu(\mathrm{d}y) \, \mu(\mathrm{d}x)$$

définit une fonction σ -additive sur \mathcal{G}_0 . D'après le théorème 1.2.27, cette application s'étend de façon unique en une mesure σ -finie sur $\mathcal{E} \otimes \mathcal{F}$ que l'on note comme $\mu \otimes \nu$. L'égalité (2.1) est vérifiée pour toute combinaison linéaire à coefficients positifs de fonctions de la forme $\mathbb{I}_{A \times B}$, où $A \in \mathcal{E}$ et $B \in \mathcal{F}$. D'après le théorème de classe monotone 1.1.16, on obtient que l'égalité (2.1) est véfrifiée pour toute fonction positive, bornée et $(\mathcal{E} \otimes \mathcal{F})$ -mesurable. Enfin, d'après la proposition 1.2.17, on obtient que l'égalité (2.1) est véfrifiée pour toute application $(\mathcal{E} \otimes \mathcal{F})$ -mesurable de $E \times F$ vers $[0, +\infty]$.

Corollaire 2.1.3 (Fubini). — Soit f une fonction sur $E \times F$ qui est $\mathcal{E} \otimes \mathcal{F}$ mesurable. Alors f est intégrable par rapport à $\mu \otimes \nu$ si et seulement si

$$\int_{E} \int_{F} |f(x,y)| \nu(\mathrm{d}y) \mu(\mathrm{d}x) < +\infty.$$

En outre, si $f \in \mathcal{L}^1(E \times F, \mathcal{E} \otimes \mathcal{F}, \mu \otimes \nu)$, alors on a

$$\int_{E \times F} f(x, y) (\mu \otimes \nu) (dx, dy)$$

$$= \int_{E} \int_{F} f(x, y) \nu(dy) \mu(dx)$$

$$= \int_{F} \int_{F} f(x, y) \mu(dx) \nu(dy).$$

Remarque 2.1.4. — On peut étendre naturellement les résultats présentés dans ce paragraphe au cas du produit d'un nombre fini d'espaces mesurables munis des mesures σ -finies.

2.2. Indépendance des événements

Dans ce paragraphe, on fixe un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$. Soit $(A_i)_{i \in I}$ une famille d'événements dans \mathcal{F} . Si, pour tout sous-ensemble fini J de I on a

$$\mathbb{P}\Big(\bigcap_{j\in J} A_j\Big) = \prod_{j\in J} \mathbb{P}(A_j),$$

on dit que les événements $(A_i)_{i\in I}$ sont mutuellement indépendants (sous la probabilité \mathbb{P}), ou que la famille $(A_i)_{i\in I}$ est mutuellement indépendante.

Soit $(A_i)_{i\in I}$ une famille de sous-ensembles de \mathcal{F} . Si toute famille $(A_i)_{i\in I}$ d'événements, telle que $A_i \in A_i$ quel que soit $i \in I$, est mutuellement indépendante, on dit que la famille $(A_i)_{i\in I}$ est mutuellement indépendante.

Dans ce cours, sauf mention au contraire, le mot «indépendant» signifie «mutuellement indépendant».

Proposition 2.2.1. — Soit $(A_i)_{i\in I}$ une famille indépendante de π -systèmes contenus dans \mathcal{F} . Alors la famille $(\sigma(A_i))_{i\in I}$ est aussi indépendante.

Démonstration. — Sans perte de généralité, on peut supposer que I est un ensemble fini, disons est $\{1,\ldots,n\}$, et que $\Omega \in \mathcal{A}_i$ pour tout i. Sous ces hypothèse, l'indépendance de la famille $(\mathcal{A}_i)_{i=1}^n$ est équivalente à la condition suivante

$$\forall (A_1, \dots, A_n) \in \mathcal{A}_1 \times \dots \times \mathcal{A}_n, \quad \mathbb{P}(A_1 \cap \dots \cap A_n) = \prod_{i=1}^n \mathbb{P}(A_i).$$

Dans la suite, on suppose $n \ge 2$ car le cas où n = 1 est trivial.

Montrons d'abord que la famille $(A_1, \ldots, A_{n-1}, \sigma(A_n))$ est indépendante. On désigne par \mathcal{G} l'ensemble des $B \in \mathcal{F}$ tel que, pour tout $(A_1, \ldots, A_{n-1}) \in A_1 \times \cdots \times A_{n-1}$

$$\mathbb{P}(A_1 \cap \cdots \cap A_{n-1} \cap B) = \mathbb{P}(A_1) \cdots \mathbb{P}(A_{n-1}) \mathbb{P}(B).$$

C'est un λ -système qui contient le π -système \mathcal{A}_n . Le corollaire 1.1.3 montre alors que $\mathcal{G} \supset \sigma(\mathcal{A}_n)$. On obtient donc l'indépendance de la famille $(\mathcal{A}_1, \ldots, \mathcal{A}_{n-1}, \sigma(\mathcal{A}_n))$. Si on applique ce résultat pour n fois, on obtient l'indépendance de la famille $(\sigma(\mathcal{A}_1), \ldots, \sigma(\mathcal{A}_n))$.

Soient $(X_i)_{i\in I}$ une famille de variables aléatoires \mathcal{F} -mesurables à valeurs dans des espaces mesurables $((E_i, \mathcal{E}_i))_{i\in I}$, on dit que la famille $(X_i)_{i\in I}$ est indépendante (ou que les variables aléatoires X_i , $i\in I$, sont indépendante) si la famille de tribus $(\sigma(X_i))_{i\in I}$ est indépendante.

Corollaire 2.2.2. — Soit $(X_i)_{i=1}^n$ une famille finie de variables aléatoires réelles. La famille $(X_i)_{i=1}^n$ est indépendante si et seulement si, pour tout $(x_1, \ldots, x_n) \in \mathbb{R}^n$, on a

$$\mathbb{P}(X_1 \leqslant x_1, \dots, X_n \leqslant x_n) = \prod_{i=1}^n \mathbb{P}(X_i \leqslant x_i).$$

 $D\acute{e}monstration$. — La tribu $\sigma(X_i)$ est engendré par le π -système

$$\left\{ \left\{ X_i \leqslant x_i \right\} \middle| x_i \in \mathbb{R} \right\}.$$

L'énoncé résulte donc de la proposition 2.2.1.

Proposition 2.2.3. — Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et $(X_i)_{i=1}^n$ une famille indépendante de variables aléatoires intégrables. Alors le produit $\prod_{i=1}^n X_i$ est également une variable aléatoire intégrable, et on a

(2.2)
$$\mathbb{E}[X_1 \cdots X_n] = \prod_{k=1}^n \mathbb{E}[X_k].$$

Si de plus les variables aléatoires X_i sont carré intégrables, alors on a

(2.3)
$$\operatorname{var}(X_1 + \dots + X_n) = \sum_{k=1}^n \operatorname{var}(X_k).$$

Démonstration. — Soit X la variable aléatoire $(X_1, \ldots, X_n) : \Omega \to \mathbb{R}^n$. L'indépendance de la famille (X_1, \ldots, X_n) montre que la loi de probabilité de X

s'identifie au produit des lois de probabilité de X_1, \ldots, X_n . L'égalité (2.4) provient donc du théorème de Fubini. Enfin, pour montrer l'égalité (2.3), il suffit de traiter le cas où n = 2. On a

$$\operatorname{var}(X_1 + X_2) = \mathbb{E}[(X_1 + X_2)^2] - (\mathbb{E}[X_1] + \mathbb{E}[X_2])^2$$

$$= \mathbb{E}[X_1^2 + 2X_1X_2 + X_2^2] - \mathbb{E}[X_1]^2 + 2\mathbb{E}[X_1]\mathbb{E}[X_2] + \mathbb{E}[X_2]^2$$

$$= \mathbb{E}[X_1^2] + \mathbb{E}[X_2^2] - \mathbb{E}[X_1]^2 - \mathbb{E}[X_2]^2 = \operatorname{var}(X_1) + \operatorname{var}(X_2),$$

où la deuxième égalité provient de (2.4).

Exemple 2.2.4. — Soit X_1, \ldots, X_n une famille indépendante de variable aléatoires qui suivent la loi de Bernoulli B(p) avec le même paramètre $p \in [0,1]$. Alors la somme $X = X_1 + \cdots + X_n$ suit la loi binomiale B(n,p). On obtient donc $\mathbb{E}[X] = np$ et $\operatorname{var}[X] = np(1-p)$.

2.3. Mesure de probabilité produit infini

Soit $((E_i, \mathcal{E}_i))_{i \in I}$ une famille infinie d'espaces mesurables. Pour tout $i \in I$, soit \mathbb{P}_i une mesure de probabilité sur (E_i, \mathcal{E}_i) . Soit (E, \mathcal{E}) le produit des espaces mesurables $((E_i, \mathcal{E}_i))_{i \in I}$. Pour tout $A \in \mathcal{E}$, il existe un sous-ensemble dénombrable J de I et un élément $A' \in \bigotimes_{j \in J} \mathcal{E}_j$ tel que

$$A = A' \times \left(\prod_{i \in I \setminus J} E_i\right).$$

En effet, les sous-ensembles de E qui vérifient cette condition forment une tribu de E, qui continent une sous-famille engendrant la tribu \mathcal{E} . Donc cette tribu s'identifie à \mathcal{E} .

Théorème 2.3.1. — Il existe une unique mesure de probabilité \mathbb{P} sur (E, \mathcal{E}) telle que, pour toute famille $(A_i)_{i \in I} \in \prod_{i \in I} \mathcal{E}_i$ avec $A_i = E_i$ pour tout sauf un nombre fini d'indices $i \in I$, on a

(2.4)
$$\mathbb{P}\Big(\prod_{i\in I} A_i\Big) = \prod_{i\in I} \mathbb{P}_i(A_i)$$

Démonstration. — On désigne par \mathcal{F}_0 la famille des sous-ensembles de E de la forme $(A_i)_{i\in I}$, où $A_i \in \mathcal{E}_i$ quel que soit $i \in I$, et $A_i = E_i$ pour tout sauf un nombre fini d'indices $i \in I$. On définit une application $\mathbb{P}: \mathcal{F}_0 \to [0,1]$ comme le membre de droite de la formule (2.4). La famille \mathcal{F}_0 est un semi-anneau et \mathbb{P} est une application additive. En outre, $\sigma(\mathcal{F}_0)$ s'identifie à la tribu produit des \mathcal{E}_i ($i \in I$). D'après le théorème 1.2.27, il suffit de montrer que l'application \mathbb{P}

est σ -additive. Soit $(A_n)_{n\in\mathbb{N}}$ une famille d'ensembles dans \mathcal{F}_0 qui sont deuxà-deux disjoints, telle que $E = \bigcup_{n\in\mathbb{N}} A_n$. Montrons que $\sum_{n\in\mathbb{N}} \mathbb{P}(A_n) = 1$ par absurde. On suppose dans la suite que $\sum_{n\in\mathbb{N}} \mathbb{P}(A_n) < 1$.

Traitons d'abord le cas où I est un ensemble dénombrable, disons $I = \mathbb{N}$. Chaque ensemble A_n s'écrit donc de la forme

$$A_n = A_{n,0} \times A_{n,2} \times \cdots$$

où chaque $A_{n,i} \in \mathcal{E}_i$ et il existe $i_n \in \mathbb{N}$ tel que $A_{n,i} = E_i$ dès que $i > i_n$. Pour tout entier $k \in \mathbb{N}$, on définit une fonction H_k sur $E_0 \times \cdots \times E_k$ comme

$$H_k(x_0,\ldots,x_k) = \sum_{n\in\mathbb{N}} \left(\prod_{j>k} \mathbb{P}_j(A_{n,j}) \right) \cdot \left(\prod_{i=0}^k \mathbb{1}_{A_{n,i}}(x_i) \right).$$

C'est une fonction qui prend valeurs dans [0,1]. Montrons qu'il existe un élément $\boldsymbol{x}=(x_i)_{i\geqslant 0}\in E$ tel que $H_k(x_0,\ldots,x_k)<1$ pour tout $k\in\mathbb{N}$. D'abord la condition $\sum_{n\in\mathbb{N}}\mathbb{P}(A_n)<1$ montre que

$$\int_{E_0} H_0(x) \, \mathbb{P}_0(\mathrm{d}x) < 1,$$

il existe alors un $x_0 \in E_0$ tel que $H_0(x_0) < 1$. Le cas général résulte de la relation

$$H_k(x_0, \dots, x_k) = \int_{E_{k+1}} H_{k+1}(x_0, \dots, x_k, x) \, \mathbb{P}_{k+1}(\mathrm{d}x)$$

par récurrence sur k. Soit $m \in \mathbb{N}$ tel que $x \in A_m$. On a évidemment

$$\left(\prod_{j>i_m} \mathbb{P}_j(A_{m,j})\right) \cdot \left(\prod_{i=0}^{i_m} \mathbb{1}_{A_{m,i}}(x_i)\right) = 1.$$

Cela contradit la relation $H_{i_m}(x_0, \ldots, x_{i_m}) < 1$.

Dans le cas où I n'est pas dénombrable, on peut choisir un sous-ensemble dénombrable J de I tel que

$$A_n \in \left\{ \left(\prod_{i \in I \setminus J} E_i \right) \times A' \,\middle|\, A' \in \bigotimes_{j \in J} \mathcal{E}_j \right\}.$$

Le résultat que l'on a démontré appliqué à $(\prod_{j\in J} E_j, \bigotimes_{j\in J} \mathcal{E}_j)$ conduit à l'inégalité souhaitée.

Corollaire 2.3.2. — Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et $(X_i)_{i \in I}$ une famille de variables aléatoires dans des espaces mesurables $((E_i, \mathcal{E}_i))_{i \in I}$. Alors la famille $(X_i)_{i \in I}$ est indépendante par rapport à la mesure de probabilité \mathbb{P} si et seulement si la loi de la variable aléatoire $X = (X_i)_{i \in I} : \Omega \to \prod_{i \in I} E_i$ s'identifie au produit des lois de probabilité des X_i $(i \in I)$.

2.4. Lemme de Borel-Cantelli, loi du zéro-un

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité. Si $(A_n)_{n \in \mathbb{N}}$ est une suite d'éléments de \mathcal{F} , on désigne par $\limsup_{n \to +\infty} A_n$ l'ensemble

$$\bigcap_{n\geqslant 1}\bigcup_{k\geqslant n}A_k.$$

Rappeolons que la fonction indicatirice de cet ensemble n'est rien d'autre que la limite supérieure de la suite $(\mathbb{1}_{A_n})_{n\in\mathbb{N}}$.

Proposition 2.4.1 (Lemme de Borel-Cantelli). — Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et $(A_n)_{n\in\mathbb{N}}$ une famille indépendante d'événements dans \mathcal{F} . Si $\sum_{n\in\mathbb{N}} \mathbb{P}(A_n) = +\infty$, alors $\mathbb{P}(\limsup_{n\to+\infty} A_n) = 1$.

Démonstration. — Comme la famille $(A_k)_{k\geqslant n}$ est indépendante, il en est de même de $(A_k^c)_{k\geqslant n}$. Donc on a

$$\mathbb{P}(\bigcap_{k \geqslant n} A_k^c) = \prod_{k \geqslant n} \mathbb{P}(A_k^c) = \prod_{k \geqslant n} (1 - \mathbb{P}(A_k)) \leqslant \exp\left(-\sum_{k \geqslant n} \mathbb{P}(A_k)\right) = 0,$$

d'où $\mathbb{P}(\bigcup_{k>n} A_k) = 1$ quel que soit $n \in \mathbb{N}$.

Théorème 2.4.2 (Loi du zéro-un). — Soient $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et $(\mathcal{F}_n)_{n\in\mathbb{N}}$ une famille indépendante de sous-tribus de \mathcal{F} . Pour tout $n \in \mathbb{N}$, soit $\mathcal{G}_n = \sigma(\bigcup_{k \geqslant n} \mathcal{F}_k)$. Soit \mathcal{G}_∞ l'intersection des \mathcal{G}_n $(n \in \mathbb{N})$. Alors les tribus \mathcal{G}_∞ et \mathcal{G}_0 sont indépendantes. De plus, pour tout $A \in \mathcal{G}_\infty$ on a $\mathbb{P}(A) \in \{0,1\}$.

Démonstration. — Pour tout entier $n \ge 1$, la tribu \mathcal{G}_n est indépendante à la tribu \mathcal{F}_i pour tout $i \in \{0, \dots, n-1\}$. On en déduit que \mathcal{G}_{∞} est indépendante à \mathcal{F}_i pour tout $i \in \mathbb{N}$. Donc elle est indépendante à la tribu $\mathcal{G}_0 = \sigma(\bigcup_{n \in \mathbb{N}} \mathcal{F}_n)$. En particulier, la tribu \mathcal{G}_{∞} est indépendante à elle-même. Pour tout $A \in \mathcal{G}_{\infty}$ on a donc

$$\mathbb{P}(A) = \mathbb{P}(A \cap A) = \mathbb{P}(A)^2,$$

c'est-à-dire que $\mathbb{P}(A) \in \{0, 1\}$.