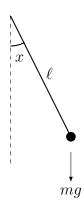
Contrôle de connaissance du 07 janvier 2015

Les documents sont autorisés. Cependant, tout appareil électronique est interdit. Lire attentivement l'ensemble des énoncés avant de répondre aux questions.

Première partie

Le but de cette partie est d'étudier l'équation de pendule. On considère une tige impondérable de longueur ℓ , suspendue par une extrémité et portant à son autre extrémité un point de masse m. On désigne par x l'angle d'écart par rapport à la verticale.



L'accélération angulaire x''(t) du pendule est proportionnelle au moment de son poids. Autrement dit, la fonction x(.) satisfait à l'équation différentielle suivante

$$x''(t) = -\frac{mg}{\ell}\sin(x(t)),$$

où g désigne l'accélération normale de la pesanteur terrestre. Dans la suite, on désigne par λ la constante $\sqrt{mg/\ell}$. L'équation au-dessus devient

$$x''(t) = -\lambda^2 \sin(x(t)). \tag{*}$$

1. En introduisant la variable y = x', transformer l'équation (*) en une équation différentielle d'ordre 1.

Solution.

$$\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \begin{pmatrix} y(t) \\ -\lambda^2 \sin(x(t)) \end{pmatrix}.$$

 $\mathbf{2}$. On désigne par V l'ensemble des solutions de l'équation différentielle

$$\varphi''(t) = -\lambda^2 \varphi(t). \tag{**}$$

Montrer que V est un espace vectoriel de dimension 2 sur \mathbb{R} . Solution. C'est un cas particulier d'un théorème du cours.

3. Vérifier que les fonctions f et q définies comme

$$\forall t \in \mathbb{R}, \quad f(t) = \cos(\lambda t) \quad \text{et} \quad g(t) = \sin(\lambda t)$$

satisfont à léquation (**).

- 4. Montrer que les fonctions f et g ne sont pas colinéaires.
- 5. En déduire que toute solution de l'équation (**) est de la forme

$$\varphi(t) = r\sin(\lambda t + \theta),$$

où r et θ sont deux constantes réelles, $r \ge 0$. Montrer que la fonction φ est périodique de période $2\pi/\lambda$.

Solution. D'après la question précédente, il existe $(u, v) \in \mathbb{R}^2$ tel que

$$\varphi(t) = u\cos(\lambda t) + v\sin(\lambda t).$$

On choisit $r = \sqrt{u^2 + v^2}$ et $\theta \in \mathbb{R}$ tel que $(u, v) = (r \sin(\theta), r \cos(\theta))$, alors $\varphi(t) = r \sin(\lambda t + \theta)$.

6. Soit x(.) une solution de l'équation (*) sur \mathbb{R} . Montrer que la fonction

$$\frac{1}{2}x'(t)^2 - \lambda^2 \cos(x(t))$$

est constante.

Solution. La dérivée de cette fonction est $x'(t)x''(t) + \lambda^2 \sin(x(t))x'(t)$, qui est identiquement nulle.

Dans la suite, on suppose que le pendule est initialement placé à la position d'angle d'écart $x_0 \in]0, \pi/2[$ et de vitesse initiale 0. On admet que l'équation (*) a une unique solution x(.) sur \mathbb{R} qui vérifie les conditions initiales $x(0) = x_0$ et x'(0) = 0.

7. Montrer que $\cos(x(t)) \geqslant \cos(x_0)$ pour tout $t \in \mathbb{R}$.

Solution. D'après la question **6**, on a

$$\frac{1}{2}x'(t)^2 - \lambda^2 \cos(x(t)) = -\lambda^2 \cos(x_0),$$

d'où $\cos(x(t)) \geqslant \cos(x_0)$.

- 8. En déduire que $|x(t)| \leq x_0$ pour tout $t \in \mathbb{R}$. On peut utiliser le théorème des valeurs intermédiaires.
- **9.** Montrer qu'il existe une constante $\varepsilon > 0$ tel que x'(t) < 0 pour tout $t \in]0, \varepsilon[$. (Indiction: on peut vérifier que la fonction x(.) prend valeurs dans $]0, \pi/2[$ dans un voisinage de 0.)

Solution. Comme $x(0) = x_0 \in]0, \pi/2[$ et comme la fonction x(.) est continue, il existe $\varepsilon > 0$ tel que $x(t) \in]0, \pi/2[$ pour $t \in [-\varepsilon, \varepsilon]$. L'équation (*) montre que x''(s) < 0 lorsque $s \in [-\varepsilon, \varepsilon]$. Donc pour tout $t \in]0, \varepsilon[$, on a

$$x'(t) = x'(0) + \int_0^t x''(s) \, ds < 0.$$

10. Soit

$$T := \inf\{t > 0 \,|\, x'(t) \geqslant 0\}.$$

Montrer que

$$\forall t \in [0, T], \quad x'(t) = -\lambda \sqrt{2(\cos(x(t)) - \cos(x_0))}$$

et

$$\lim_{t \to T} x(t) = -x_0.$$

En déduire que

$$T = \frac{x_0}{\lambda\sqrt{2}} \int_{-1}^1 \frac{\mathrm{d}u}{\sqrt{\cos(ux_0) - \cos(x_0)}} < +\infty$$

et que la fonction x(.) est périodique de période 2T (on peut montrer que la fonction $\widetilde{x}(.)$ définie comme $\widetilde{x}(t) = -x(t+T)$ vérifie aussi l'équation (*) avec les mêmes conditions initiales). Que commentez-vous sur la dépendance de T du paramètre x_0 .

Solution. On a $x'(t) \leq 0$ lorsque $t \in [0, T[$. Donc la première assertion provient immédiatement de la question **6**. En outre, on a

$$\lim_{t \to T} x'(t) = 0$$

car sinon $T=+\infty$ et x'(t) est borné supérieurement par une constante strictement négative, qui implique que $x(t)\to -\infty$ lorsqu $t\to +\infty$ (contradiction avec la question 8). On en déduit

$$\lim_{t \to T} \cos(x(t)) = \cos(x_0).$$

Comme x(t) est strictement décroissante sur $t \in]0, T[$ et $x(0) = x_0,$ on obtient

$$\lim_{t \to T} x(t) = -x_0.$$

On intègre la fonction

$$1 = -\frac{x'(t)}{\lambda \sqrt{2(\cos(x(t)) - \cos(x_0))}}$$

sur l'intervalle [0, T] et obtient

$$T = \int_{-x_0}^{x_0} \frac{\mathrm{d}y}{\lambda \sqrt{2(\cos(y) - \cos(x_0))}} = \frac{x_0}{\lambda \sqrt{2}} \int_{-1}^{1} \frac{\mathrm{d}u}{\sqrt{\cos(ux_0) - \cos(x_0)}}.$$

Enfin, la fonction y(t) = -x(t+T) vérifie aussi l'équation (*) avec $y(0) = x_0$ et y'(0) = 0. On obtient alors x(t) = -x(t+T) = x(t+2T).

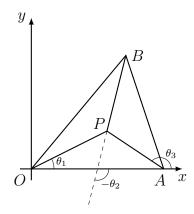
Deuxième partie

Dans cette partie, on considère un triangle $\Delta = OAB$ inscrit dans un plan muni d'un système de coordonnées comme dans le graphe au-dessous. On suppose que le point O est placé à l'orgine (0,0) du plan, et que les points A et B sont de coordonnées (a,0) et (b,c) respectivement, où a,b et c sont des constantes telles que 0 < b < a et $c > \sqrt{ab - b^2}$ (de sorte que Δ soit acutangle). On munit le plan de la norme $\|.\|$ telle que

$$||(x,y)|| = \sqrt{x^2 + y^2}.$$

Rappelons que si v=(x,y) est un vecteur non-nul dans le plan et si $\theta \in [-\pi, \pi[$ désigne l'angle entre v et l'abscisse Ox, alors on a

$$\frac{x}{\sqrt{x^2 + y^2}} = \cos(\theta) \quad \text{et} \quad \frac{y}{\sqrt{x^2 + y^2}} = \sin(\theta).$$



Le but de cette partie est d'étudier le problème suivant. Étant donné un point P dans le triangle Δ , quand est-ce que la somme des distances entre P et les trois sommets du triangle atteint son minimal? Pour étudier ce problème, on introduit une fonction S définie sur l'intérieur U du triangle Δ et à valeurs dans \mathbb{R} , qui envoie tout $(x,y) \in U$ en

$$S(x,y) = \sqrt{x^2 + y^2} + \sqrt{(x-a)^2 + y^2} + \sqrt{(x-b)^2 + (y-c)^2}.$$

11. Calculer les dérivées partielles

$$\frac{\partial S}{\partial x}$$
 et $\frac{\partial S}{\partial y}$.

Solution. On a

$$\frac{\partial S}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}} + \frac{x - a}{\sqrt{(x - a)^2 + y^2}} + \frac{x - b}{\sqrt{(x - b)^2 + (y - c)^2}},$$

$$\frac{\partial S}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}} + \frac{y}{\sqrt{(x - a)^2 + y^2}} + \frac{y - c}{\sqrt{(x - b)^2 + (y - c)^2}}.$$

- 12. Montrer que la fonction S est de classe C^1 sur U. Solution. Les fonctions $\partial S/\partial x$ et $\partial S/\partial y$ sont toutes continues sur U. Donc S est de classe C^1 sur U.
- 13. Pour tout point $P = (x, y) \in U$, soient $\theta_1 = \theta_1(x, y)$ l'angle entre les vecteurs OP et Ox, $\theta_2 = \theta_2(x, y)$ l'angle entre les vecteurs AP et Ox, et $\theta_3 = \theta_3(x, y)$ l'angle entre les vecteurs BP et Ox. Exprimer les dérivées partielles

$$\frac{\partial S}{\partial x}$$
 et $\frac{\partial S}{\partial y}$

en fonction de θ_1 , θ_2 et θ_3 .

Solution. On a

$$\frac{\partial S}{\partial x} = \cos(\theta_1) + \cos(\theta_2) + \cos(\theta_3),$$

et

$$\frac{\partial S}{\partial x} = \sin(\theta_1) + \sin(\theta_2) + \sin(\theta_3).$$

14. On suppose que $P \in U$ est un point critique de la fonction S. Montrer que

$$(\cos(\theta_1(P)) + \cos(\theta_2(P)))^2 + (\sin(\theta_1(P)) + \sin(\theta_2(P)))^2 = 1.$$

En déduire que $\cos(\theta_2(P) - \theta_1(P)) = -1/2$.

Solution. La condition DS(P) = 0 entraı̂ne que

$$\begin{cases} \cos(\theta_1) + \cos(\theta_2) + \cos(\theta_3) = 0, \\ \sin(\theta_1) + \sin(\theta_2) + \sin(\theta_3) = 0. \end{cases}$$

On en déduit aisément la première égalité. Pour la deuxième égalité, on exprime la partie du gauche de la première égalité sous la forme

$$2\cos(\theta_1)\cos(\theta_2) + 2\sin(\theta_1)\sin(\theta_2) + 2 = 2\cos(\theta_1 - \theta_2) + 2.$$

Dans les questions suivantes, on étend la fonction S par continuité en une fonction continue définie sur tout le triangle $\Delta = OAB$.

- **15.** Montrer que la fonction S atteint son minimum sur Δ en un point P_0 . Solution. La triangle Δ est un sous-ensemble compact de \mathbb{R}^2 , et S: $\Delta \to \mathbb{R}$ est continue.
- **16.** Soit Q = (b, 0) la projection du point B sur le segment de droite OA. Montrer que la restriction de la fonction S au segment de droite OA atteint son minimal en Q.

Solution. Tout point du segment de droite OA est de la forme (x,0) avec $x \in [0,a]$. On a

$$S(x,0) = x + (a-x) + \sqrt{(x-b)^2 + c^2} = a + \sqrt{(x-b)^2 + c^2}.$$

Donc $S(x,0) \ge S(b,0)$, et l'égalité est vérifiée si et seulement si x=b.

- 17. En utilisant le développement de Taylor, montrer que $S(b,\varepsilon) < S(Q)$ lorsque $\varepsilon > 0$ est assez petit. En déduire que $S(Q) > S(P_0)$. Solution.
- 18. Montrer que P_0 appartient à l'intérieure U du triangle Δ . Solution.
- **19.** Montrer que $\theta_3(P_0) \theta_1(P_0) = \theta_1(P_0) \theta_2(P_0) = 2\pi/3$. Solution.
- **20.** En déduire que le point minimal P_0 de la fonction S est unique. Solution.