Université Paris 7 Denis Diderot MT1 (Algèbre et analyse élémentaires) Groupe 1D4, 2008-2009

Feuille d'exercices 2

Exercice 1 Faire un dessin représentant les ensembles suivants :

- 1) l'ensemble $\{(x,y) \in \mathbb{R}^2 \,|\, xy = 0\}$;
- 2) l'ensemble $A \cap B$ où $A = \{(x, y) \in \mathbb{R}^2 \mid y x^2 \ge 0\}$ et $B = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$;
- 3) l'ensemble $A \times \mathbb{R}$ où $A = \{x \in \mathbb{R} \mid |x| \leq 1\}.$

Exercice 2 Soit $f: \mathbb{R} \to \mathbb{R}$ une application telle que $f(x) = x^2$. Comparer les ensembles suivants

- 1) [0,1] et $f^{-1}(f([0,1]))$;
- 2) [-1,1] et $f(f^{-1}([-1,1]))$;
- 3) $f([0,1] \cap [-1,0[) \text{ et } f([0,1]) \cap f([-1,0[).$

Exercice 3 Soit $f: E \to F$ une application. Soient A et B deux parties de E.

- 1) Montrer que $f(A \cup B) = f(A) \cup f(B)$.
- 2) Montrer que $f(A \cap B) \subset f(A) \cap f(B)$.
- 3) Constuire un exemple pour lequel l'inclusion $f(A \cap B) \subset f(A) \cap f(B)$ est stricte.
- 4) On suppose que f est injective. Montrer que $f(A \cap B) = f(A) \cap f(B)$.

Exercice 4 On désigne par \mathbb{N}_* l'ensemble des entiers strictement positifs. Soit $f: \mathbb{N} \to \mathbb{N}_*$ l'application telle que f(x) = x + 1. On montrera que f est une bijection par deux méthodes.

- 1) Montrer que f est injective et surjective.
- 2) Construire une application $g: \mathbb{N}^* \to \mathbb{N}$ qui est inverse à f.

Exercice 5 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ l'application définie par $f(x,y) = x - y^2$.

- 1) L'application f est-elle injective?
- 2) Montrer que l'application f est surjective.
- 3) Trouver une application $g: \mathbb{R} \to \mathbb{R}^2$ telle que $f \circ g = \mathrm{Id}_{\mathbb{R}}$.
- 4) Soit $h: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $h(x,y) = (x+y^2,y)$. Montrer que h est une bijection. Déterminer $f \circ h$.

Exercice 6 Soit E un ensemble.

- 1) Montrer que E est un ensemble infini si et seulement s'il existe une application injective de $\mathbb N$ dans E.
- 2) En déduire que E est un ensemble infini si et seulement s'il existe un partie $F \subsetneq E$ ainsi qu'une application bijective de E vers F.

Exercice 7 Soient $f: E \to F$ et $g: F \to G$ deux applications, $h = g \circ f$.

- 1) Montrer que l'injectivité de h implique celle de f.
- 2) Montrer que la surjectivité de h implique celle de g.

Exercice 8 Soit $f: E \to F$ une application. On dit que f est inversible à gauche s'il existe une application $g: F \to E$ tel que $g \circ f = \mathrm{Id}_E$. L'application g est appelée une inverse à gauche de f.

- 1) Montrer que, si f est inversible à gauche, alors elle est injective.
- 2) Construire un exemple pour lequel la fonction f est inversible à gauche et admet plusieurs inverses à gauche.
- 3) Montrer que, si f est injective, alors elle est inversible à gauche.

Exercice 9 Soit Ω un ensemble non-vide. Pour toute partie A de Ω , on désigne par $\mathbbm{1}_A$ l'application de Ω vers \mathbbm{R} telle que

$$1_A(\omega) = \begin{cases} 1, & \text{si } \omega \in A, \\ 0, & \text{si } \omega \notin A. \end{cases}$$

- 1) Montrer que, pour tout $A \subset \Omega$, $\mathbb{1}_A^2 = \mathbb{1}_A$, $\mathbb{1}_A + \mathbb{1}_{A^c} = 1$.
- 2) Soient A et B deux parties quelconques de Ω . Montrer que $A \subset B$ si et seulement si $\forall \omega \in \Omega$ $\mathbb{1}_A(\omega) \leq \mathbb{1}_B(\omega)$; A = B si et seulement si $\mathbb{1}_A = \mathbb{1}_B$.
- 3) Montrer que, pour toutes les parties A et B de Ω , on a

$$\mathbb{1}_{A \cap B} = \mathbb{1}_A \cdot \mathbb{1}_B$$
 et $\mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_A \cdot \mathbb{1}_B$.

- 4) Soient A,B et C trois parties de $\Omega.$ En utilisant les résultats précédents, montrer les formules suivantes :
 - i) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$,
 - ii) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$,
 - iii) $(A \cup B)^c = A^c \cap B^c$, $(A \cap B)^c = A^c \cup B^c$.
- 5) Soit $(A_i)_{i=1}^n$ une famille de parites de Ω . Montrer la formule d'inclusion-exclusion :

$$1\!\!1_{A_1 \cup \dots \cup A_n} = \sum_{\emptyset \neq I \subset \{1, \cdots, n\}} (-1)^{\#I-1} \prod_{i \in I} 1\!\!1_{A_i},$$

où #I désigne le cardinal de I. [Indication : utiliser le fait que $(A_1 \cup \cdots \cup A_n)^c = A_1^c \cap \cdots \cap A_n^c$ et faire appel à l'exercice 6 de la feuille 1]