Université Paris 7 Denis Diderot MT1 (Algèbre et analyse élémentaires) Groupe 1D4, 2008-2009

Feuille d'exercices 8

Exercice 1 On considère la fonction suivante sur \mathbb{R} :

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

La fonction f est-elle continue? est-elle dérivable en 0?

Exercice 2 On considère la fonction suivante sur \mathbb{R} :

$$g(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Montrer que la fonction g est dérivable sur \mathbb{R} et déterminer g'. La fonction g'(x) a-t-elle de limite lorsque $x \to 0$?

Exercice 3 Calculer la dérivée d'ordre 1 des fonctions suivantes :

1)
$$\sqrt{x+\sqrt{x+\sqrt{x}}}$$
, $(x>0)$, 2) $\ln \ln x$, $(x>1)$,

2)
$$\ln \ln x$$
, $(x > 1)$,

3)
$$\ln \tan(x/2)$$
, $(0 < x < \pi)$, 4) $\cos(\cos \sqrt{x})$, $(x > 0)$.

4)
$$\cos(\cos\sqrt{x}), (x>0)$$

Exercice 4 Soit f une fonction paire qui est dérivable en 0, montrer que f'(0) = 0.

Exercice 5 Soit f une fonction sur un intervalle ouvert I contenant 0. On suppose que f est dérivable en 0 et que f(0) = 0. On note, pour tout entier $n \ge 1$

$$x_n = f\left(\frac{1}{n^2}\right) + f\left(\frac{2}{n^2}\right) + \dots + f\left(\frac{n}{n^2}\right).$$

Déterminer la limite de $(x_n)_{n\geqslant 1}$.

Exercice 6 Déterminer les limites suivantes :

1)
$$\lim_{n \to +\infty} \left[\sin \frac{1}{n^2} + \sin \frac{2}{n^2} + \dots + \sin \frac{n}{n^2} \right],$$

2)
$$\lim_{n \to +\infty} \left(1 + \frac{1}{n^2}\right) \left(1 + \frac{2}{n^2}\right) \cdots \left(1 + \frac{n}{n^2}\right).$$

Exercice 7 Calculer la dérivée d'ordre 1 des fonctions suivantes :

1)
$$\arcsin \sqrt{1 - x^2}$$
, $(0 < x < 1)$,

2)
$$\ln(e^x + \sqrt{1 + e^{2x}}), (x \in \mathbb{R}),$$

3)
$$\arctan(\tan(x)^2)$$
, $(-\pi/2 < x < \pi/2)$, 4) $e^{\sqrt{x}}$, $(x > 0)$.

4)
$$e^{\sqrt{x}}$$
, $(x > 0)$

Exercice 8 Soit f une fonction définie sur \mathbb{R} qui est dérivable en x_0 . Soient $(\alpha_n)_{n\geqslant 1}$ et $(\beta_n)_{n\geqslant 1}$ deux suites strictement positives qui convergent vers 0. Montrer que

$$\lim_{n \to +\infty} \frac{f(x_0 + \alpha_n) - f(x_0 - \beta_n)}{\alpha_n + \beta_n} = f'(x_0).$$

Exercice 9 Soient m et n deux entiers strictement positifs. Soit $f(x) = x^m(1-x)^n$ $(x \in [0,1])$. Montrer qu'il existe $\xi \in (0,1)$ tel que $m/n = \xi/(1-\xi)$.

Exercice 10 Soient a_0, a_1, \dots, a_n des nombres réels tels que

$$\frac{a_0}{n+1} + \frac{a_1}{n} + \dots + a_n = 0.$$

Montrer que l'équation $a_0x^n + a_1x^{n-1} + \cdots + a_n = 0$ admet au moins une racine sur [0,1[.

Exercice 11 Soit f une fonction dérivable sur $]a, +\infty[$, $a \in \mathbb{R}$. On suppose que

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to +\infty} f(x) = A,$$

où $A \in \mathbb{R}$. Montrer qu'il existe $\xi \in]a, +\infty[$ tel que $f'(\xi) = 0$.

Exercice 12 Montrer les assertions suivantes :

- 1) $|\sin b \sin a| \leq |b a|$,
- 2) $|\arctan(b) \arctan(a)| \le |b a|$.

Exercice 13 1) Montrer qu'il existe un unique $\alpha \in \mathbb{R}$ tel que $\cos \alpha = \alpha$. Prouver que $\alpha \in]0,1[$.

2) Soit $(u_n)_{n\geqslant 1}$ la suite définie par $u_0=1$ et $\forall\,n\in\mathbb{N},\,u_{n+1}=\cos(u_n)$. Montrer que $|u_{n+1}-\alpha|\leqslant\sin(1)|u_n-\alpha|$. En déduire que la suite $(u_n)_{n\geqslant 1}$ converge vers α .

Exercice 14 Soit f une fonction dérivable sur un intervalle]a,b[(a < b). On suppose que f'(x) est une fonction monotone. Montrer que f'(x) est continue sur]a,b[

Exercice 15 Soit f une fonction sur [a,b] (a < b), qui est dérivable sur]a,b[. On suppose que f admet une dérivée à droite en a et une dérivée à gauche en b. On suppose de plus que f'(a) < f'(b). Alors pour tout $\eta \in]f'(a), f'(b)[$, il existe $\xi \in]a,b[$ tel que $f'(\xi) = \eta$.

Exercice 16 Soit f une fonction continue sur [a,b] qui est dérivable sur]a,b[(0 < a < b). Montrer qu'il existe $\xi \in]a,b[$ tel que

$$f(b) - f(a) = \xi(\ln b - \ln a)f'(\xi).$$