Feuille d'exercices V

Exercice 1 Soit ϑ un nombre irrationnel. On appelle constante de Mar-kov de ϑ la valeur

$$\gamma(\vartheta) := 1/\liminf_{q \to \infty} (q \|q\vartheta\|) \in \mathbb{R}_+ \cup \{+\infty\},$$

où $\|x\| := \operatorname{dist}(x, \mathbb{Z}).$

1) Montrer le théorème de Dirichlet sous la forme suivante :

$$\forall \alpha \in \mathbb{R}, N \in \mathbb{N}_*, \quad \min_{1 \leqslant m \leqslant N} ||m\alpha|| \leqslant \frac{1}{N+1}.$$

2) Monter que l'ensemble

$$\mathcal{D}^+(\vartheta) := \{q \geqslant 2 : \|q\vartheta\| < \min_{1 \leqslant m < q} \|m\vartheta\| \}$$
 est infini.

3) Soit $(q_n)_{n \geqslant 1}$ la suite des éléments

dans $\mathcal{D}(\vartheta)$ rangés par ordre croissant, où

$$\mathcal{D}(\vartheta) := \begin{cases} \mathcal{D}^+(\vartheta), & \text{si } \{\vartheta\} \leqslant 1/2, \\ \mathcal{D}^+(\vartheta) \cup \{1\}, & \text{si } \{\vartheta\} > 1/2. \end{cases}$$

On note en outre $q_0 := 1$. Montrer que

$$\gamma(\vartheta) = 1/\liminf_{n \to \infty} q_n ||q_n \vartheta||.$$

4) Soit $p_0 = \lfloor \vartheta \rfloor$. Pour $n \geqslant 1$, soit p_n l'entier le plus proche de $q_n\vartheta$. Montrer que

$$\lim_{n \to +\infty} p_n/q_n = \vartheta.$$

5) On note $(p_{-2}, q_{-2}) = (0, 1)$ et $(p_{-1}, q_{-1}) = (1, 0)$. Pour tout $n \ge -2$, on désigne par ϑ_n la valeur $q_n\vartheta - p_n$. Montrer que la suite $(\vartheta_n)_{n\ge 1}$ est alternée et la suite $(|\vartheta_n|)_{n\ge 1}$ est strictement décroissante et converge vers 0.

- 6) Pour $k \ge 0$, on note $\beta_k := -\vartheta_{k-2}/\vartheta_{k-1}$ et $a_k = \lfloor \beta_k \rfloor$. Montrer que $a_k \ge 1$ pour tout $k \ge 1$.
- 7) Montrer que

$$\gamma(\vartheta) = \limsup_{k \to \infty} \left(\beta_{k+1} + q_{k-1}/q_k \right).$$

- 8) Montrer que, pour tout entier $k \ge 0$, on a $\beta_{k+1} = 1/\{\beta_k\}$.
- 9) Montrer que $[a_0, a_1, \dots, a_k] = p_k/q_k \quad (k \ge 0)$.
- 10) Montrer que $[a_0, \ldots, a_{k-1}, \beta_k] = \vartheta \quad (k \ge 0).$
- 11) En déduire que

$$[a_0, \cdots, a_k] = a_0 + \sum_{0 \le j < k} \frac{(-1)^j}{q_j q_{j+1}} \quad (k \ge 1).$$

12) Montrer que

$$1/(2 + \limsup_{k \to \infty} a_k) \leqslant \liminf_{q \to \infty} q \|q\vartheta\| \leqslant 1/\limsup_{k \to \infty} a_k.$$

13) Montrer que $\gamma(\vartheta) = \infty$ si et seulement si

$$\limsup_{k \to \infty} a_k = +\infty.$$

- 14) Déterminer $\gamma((1+\sqrt{5})/2)$.
- 15) En déduire que, si $a_k = 1$ à partir d'un certain rang, alors $\gamma(\vartheta) = \sqrt{5}$.
- 16) Montrer que, si $a_k = 2$ à partir d'un certain rang, alors $\gamma(\vartheta) = \sqrt{8}$.
- 17) Montrer que, si $a_k \geqslant 3$ pour une infinité de valeurs de k, alors $\gamma(\vartheta) \geqslant 3$.
- 18) Montrer que, si $a_k = 1$ ou 2 pour k assez grand, chaque valeur étant

prise une infinité de fois, alors on a $a_k = 1$ et $a_{k+1} = 2$ pour une infinité de valeurs de k. En déduire que $\gamma(\vartheta) > \sqrt{8}$.

- 19) Montrer que $\gamma(\vartheta) \geqslant \sqrt{5}$, avec l'égalité si et seulement si $a_k = 1$ à partir d'un certain rang.
- 20) Montrer que, si a_k prend une infinité de valeurs autre que 1, alors $\gamma(\vartheta) \geqslant \sqrt{8}$, avec l'égalité si et seulement si $a_k = 2$ à partir d'un certain rang.

Exercice 2 On dit qu'un nombre réel α est un nombre de Liouville s'il existe une suite $(p_n/q_n)_{n\geqslant 1}$ de nombres rationnels avec $\lim_{n\to +\infty} q_n = +\infty$ et que

l'on a

$$\left|\alpha - \frac{p_n}{q_n}\right| < \frac{1}{q_n^n}$$

pour tout n.

- 1) Montrer que tout nombre de Liouville est nécessairement transcendent.
- 2) Soit α un nombre réel dont la forme décimale est $\alpha = n, d_1 d_2 d_3 \dots$, où $n \in \mathbb{Z}$ et $d_i \in \{0, 1, \dots, 9\}$. On suppose que l'ensemble $\{i : d_i \neq 0\}$ est infini. Pour tout entier $N \geqslant 1$, soit L_N la plus grande longueur des sous-mots de $d_1 \dots d_N$ qui ne consiste que de symbole 0. Montrer que, si

$$\limsup_{N \to +\infty} L_N/N = 1,$$

alors α est un nombre de Liouville.

- 3) Pour tout entier $n \ge 1$, soit $M_n = 1! + 2! + \cdots + n!$. Déterminer $\lim_{n \to +\infty} M_n / M_{n+1}$.
- 4) Montrer que tout nombre réel α s'écrit comme la différence de deux nombres de Liouville.