Université Paris Diderot M1 Arithmétique 2010-2011

Feuille d'exercices VI

Exercice 1 Soit μ la mesure sur \mathbb{R}_+ l'image directe de la mesure de Lebesgue par l'application de norme $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}_+$ qui envoie (x_1,\ldots,x_n) en $(x_1^2+\cdots+x_n^2)^{1/2}$.

1) Soit V_n le volume de la boule unité dans \mathbb{R}^n par rapport à la mesure de Lebesgue. Montrer que l'égalité suivante entre les mesures sur \mathbb{R}_+ :

$$\mu(\mathrm{d}t) = nV_n t^{n-1} \mathrm{d}t.$$

2) Montrer que

$$V_n = \pi^{n/2} \Gamma \left(1 + \frac{n}{2} \right)^{-1}.$$

3) Montrer que

$$\int_{\mathbb{R}^n} (1 + ||x||^2)^{-(n+1)/2} \, \mathrm{d}x = \pi^{(n+1)/2} \Gamma\left(\frac{n+1}{2}\right)^{-1}.$$

Exercice 2 Soit \mathbb{A} l'ensemble des fonctions de $\mathbb{N}^* = \{1, 2, \cdots\}$ vers \mathbb{C} . A chaque fonction $f \in \mathbb{A}$ on associe une série de fonction

$$L(f,s) := \sum_{n \ge 1} \frac{f(n)}{n^s},$$

appelée la série de Dirichlet de f. On désigne par C(f) le sous-ensemble de \mathbb{C} des points s où la série L(f,s) est convergente. Soit $C_a(f)$ le sous-ensemble de C(f) des point s où la série L(f,s) est absoluement convergente.

- 1) Soient f et g deux fonctions dans \mathbb{A} , et h = f * g.
 - (a) Montrer que, si s est un point de $C_a(f) \cap C_a(g)$, alors la série de Dirichlet de h converge absoluement en s.
 - (b) Soit s un point dans $C(f) \cap C_a(g)$. Pour tout $x \ge 1$, soit

$$A(x) := \sum_{n \le x} \frac{f(n)}{n^s}.$$

Montrer que

$$\sum_{n \le x} \frac{h(n)}{n^s} = \sum_{d \le x} \frac{g(d)}{d^s} A\left(\frac{x}{d}\right).$$

(c) En déduire que, si $s \in C(f) \cap C_a(g)$, alors $s \in C(h)$, et

$$L(h,s) = L(f,s)L(q,s).$$

2) Soit $f \in \mathbb{A}$ la fonction telle que

$$f(n) = \frac{(-1)^n}{(\log(2n))^2}$$
 $(n \ge 1)$.

Soit h = f * f.

- (a) Montrer que la série de Dirichlet de f converge en tout point de l'axe Re(s) = 0.
- (b) Montrer que la fonction h n'est pas bornée. En déduire que la série de Dirichlet de h diverge en tout point de l'axe Re(s) = 0.
- 3) Soient $f \in \mathbb{A}$ une fonction multiplicative et s un nombre complexe. On suppose que

$$\sum_{p} \sum_{\alpha \geqslant 1} \left| \frac{f(p^{\alpha})}{p^{\alpha s}} \right| < +\infty,$$

où p parcourt tous les nombres premiers.

(a) Montrer que le produit infini

$$\prod_{p} \left(1 + \sum_{\alpha \geqslant 1} \left| \frac{f(p^{\alpha})}{p^{\alpha s}} \right| \right)$$

converge vers un nombre positif M et que

$$\sum_{n \leqslant x} \left| \frac{f(n)}{n^s} \right| \leqslant M$$

pour tout $x \ge 1$.

(b) En déduire que la série de Dirichlet de f converge absolument en s, et

$$L(f,s) = \prod_{p} \sum_{\alpha \geqslant 0} \frac{f(p^{\alpha})}{p^{\alpha s}}.$$

- 4) Soit $\Lambda \in \mathbb{A}$ la fonction de Mangoldt définie comme $\Lambda = \mu * \log$.
 - (a) Montrer que $\Lambda = -\mu \log *1$.
 - (b) Montrer que, si a et b sont deux entiers $\geqslant 1$ tels que (a,b)=1, alors $\Lambda(ab)=\delta(a)\Lambda(b)+\delta(b)\Lambda(a)$.
 - (c) En déduire que $\Lambda(n) = 0$ si n n'est pas une puissance de nombre premier.
 - (d) Montrer que, si p est un nombre premier et si $\alpha \ge 1$ est un entier, alors $\Lambda(p^{\alpha}) = \log(p)$.
 - (e) Montrer que la série de Dirichlet associée à Λ converge sur le demi-plan $\mathrm{Re}(s)>1.$
 - (f) Établir l'égalité

$$-\frac{\zeta'(s)}{\zeta(s)} = L(\Lambda, s)$$

pour Re(s) > 1.