Feuille d'exercices III

Exercice 1 Soient $\sum_{n\geqslant 0} a_n$ et $\sum_{n\geqslant 0} b_n$ deux séries absolument convergentes. Montrer que leur produit est aussi absolument convergente.

Exercice 2 Montrer que, si une série réelle $\sum_{n\geqslant 0} a_n$ converge mais ne converge pas absolument, alors pour tous les éléments α et β dans $\mathbb{R} \cup \{\pm \infty\}$ avec $\alpha \leqslant \beta$, il existe une bijection $\tau : \mathbb{N} \to \mathbb{N}$ telle que

$$\liminf_{n\to\infty}\sum_{k=0}^n a_{\tau(k)}=\alpha\quad\text{et}\quad\limsup_{n\to\infty}\sum_{k=0}^n a_{\tau(k)}=\beta.$$

Exercice 3 Dans cet exercice, K désigne \mathbb{R} ou \mathbb{C} . Si $\mathbf{a} = (a_n)_{n \geqslant 0}$ et $\mathbf{b} = (b_n)_{n \geqslant 0}$ sont deux suites dans K, on désigne par $\mathbf{a} \circ \mathbf{b}$ la suite dans K dont l'élément d'indice n est

$$\sum_{i=0}^{n} a_i b_{n-i}.$$

On dit qu'une suite $(a_n)_{n\geqslant 0}$ dans K est de longueur finie si $a_n=0$ pour n suffisamment grand.

- 1) Montrer que la somme de deux suites de longueur finie est encore de longueur finie.
- 2) Montrer que la dilatation d'une suite de longueur finie par un scalaire dans K est encore de longueur finie.
- 3) Montrer que, si \boldsymbol{a} et \boldsymbol{b} sont deux suites de longueur finie, alors il en est de même de $\boldsymbol{a} \circ \boldsymbol{b}$.
- 4) Soit $\mathbf{S}^f(0,K)$ l'ensemble des suites de longueur finie dans K. Soit en outre K[T] l'ensemble des polynômes à une variable T et à coefficients dans K. Montrer que l'application de K[T] vers $\mathbf{S}^f(0,K)$ qui envoie un polynôme $a_nT^n+a_{n-1}T^{n-1}+\cdots+a_0$ en la suite

$$a_0, a_1, \ldots, a_n, 0, 0, \ldots$$

est une bijection qui préserve l'addition, la multiplication scalaire et transforme le produit de deux polynômes en le "o"-produit de leurs images.

5) Dans la suite, on écrit formellement une suite $(a_n)_{n\geq 0}$ dans K sous la forme

$$a_0 + a_1 T + \dots + a_n T^n + \dots \tag{1}$$

et on désigne par K[T] l'ensemble de toutes les suites dans K dont l'indice initial est 0. Pour simplifier les notations, les termes de coefficients 0 sont omis dans l'écriture (1) sauf si tous les termes de $(a_n)_{n\geqslant 0}$ sont nuls (on écrit 0 dans ce cas-là). Par exemple, $1+T^2$ désigne la suite

$$1, 0, 1, 0, 0, \dots$$

Si P(T) et Q(T) sont respectivement l'écriture des suites \boldsymbol{a} et \boldsymbol{b} sous la forme (1), alors P(T)Q(T) désigne l'écriture de $\boldsymbol{a} \circ \boldsymbol{b}$ sous la forme (1).

- a. Soit $P(T) = a_0 + a_1 T + \dots + a_n T^n + \dots$ un élément de K[T]. Pour tout $m \in \mathbb{N}$, déterminer $T^m P(T)$.
- b. Montrer que 1 est l'élément unité de K[T] pour la loi de composition $(P(T),Q(T))\mapsto P(T)Q(T)$.
- c. Montrer que 1-T est inversible pour la loi de composition $(P(T),Q(T))\mapsto P(T)Q(T)$ et déterminer son inverse.
- d. Soit $TK[\![T]\!]$ le sous-ensemble de $K[\![T]\!]$ des éléments de la forme TP(T), où $P(T) \in K[\![T]\!]$. Montrer que tout élément dans $K[\![T]\!] \setminus TK[\![T]\!]$ est inversible pour la loi de composition $(P(T),Q(T))\mapsto P(T)Q(T)$.

Exercice 4 1) Soient m et n deux entiers, m < n. Soit $f : [m, n] \to \mathbb{R}$ une fonction croissante. Montrer qu'il existe un nombre $\varepsilon \in [0, 1]$ tel que

$$\sum_{m < k \le n} f(k) = \int_{m}^{n} f(t) dt + \varepsilon (f(n) - f(m)).$$

2) Application: montrer que, pour tout entier n > 0, il existe $\varepsilon_n \in [0,1]$ tel que

$$\ln(n!) = n \ln n - n + 1 + \varepsilon_n \ln n.$$

Exercice 5 1) Soit s un nombre réel, s > 1. Montrer que

$$\sum_{1 \le n \le x} \frac{1}{n^s} = \frac{x^{1-s}}{1-s} + \zeta(s) + O(x^{-s}),$$

où $\zeta(s)$ est la somme de la série $\sum_{n\geqslant 1} n^{-s}$.

2) Soit s comme dans la question précédente. Montrer que

$$\sum_{n>x} \frac{1}{n^s} = O(x^{1-s}).$$

3) Soit $s \in]0,1[$. Montrer que la fonction

$$\sum_{n \leqslant x} \frac{1}{n^s} - \frac{x^{1-s}}{1-s}$$

admet une limite lorsque x tend vers l'infini.

4) Soit a un nombre réel, $a \ge 0$. Montrer que

$$\sum_{1 \leqslant n \leqslant x} n^a = \frac{n^{a+1}}{a+1} + O(x^a).$$

5) Montrer que

$$\sum_{1 \le n \le x} \frac{\ln n}{n} = \frac{1}{2} \ln(x)^2 + A + O(\ln x/x),$$

où A est une constante.

6) Montrer que

$$\sum_{2 \leqslant n \leqslant x} \frac{1}{n \ln n} = \ln \ln x + B + O(1/(x \ln x)).$$