CHAPITRE 5

ENDOMORPHISMES AUTO-ADJOINTS ET AUTOMORPHISMES ORTHOGONAUX

Dans ce chapitre, k désigne \mathbb{R} ou \mathbb{C} . On fixe en outre un espace vectoriel E de rang fini sur k, muni d'un produit scalaire \langle , \rangle .

5.1. Endomorphisme auto-adjoint

Définition 5.1. — Soit $f: E \to E$ un endomorphisme. On dit qu'un endomorphisme f^* est adjoint à φ si pour tout couple $(x,y) \in E^2$ on a

(5.1)
$$\langle f^*(x), y \rangle = \langle x, f(y) \rangle.$$

Il s'avère que tout endomorphisme de V admet un unique endomorphisme adjoint. Si $(e_i)_{i=1}^n$ est une base orthonormée de V, alors la matrice de f^* sous cette base est la conjuguée-transposée de celle de f (sous la même base). On dit que l'endomorphisme f est auto-adjoint si $f^* = f$.

Lemme 5.2. — Soit $f: E \to E$ un endomorphisme auto-adjoint de E. Si F est un sous-espace vectoriel de E qui est stable par f, alors F^{\perp} est aussi stable par f.

Démonstration. — Soit x un vecteur dans F^{\perp} . Pour tout $y \in F$ on a $\langle x, y \rangle = 0$, d'où

$$\forall y \in F$$
, $\langle f(x), y \rangle = \langle x, f(y) \rangle = 0$,

d'où
$$f(x) \in F^{\perp}$$
.

Proposition 5.3. — Soit f un endomorphisme auto-adjoint de E. Alors il existe une base orthonormée de E qui consiste de vecteurs propres de l'endomorphisme f. En outre, toutes les valeurs propres de f sont réelles.

 $D\acute{e}monstration$. — Le résultat est trivial lorsque E est l'espace vectoriel nul. Dans la suite, on suppose que E est non-nul. Pour tout $x \in E$, on a

$$\langle x, f(x) \rangle = \langle f(x), x \rangle = \overline{\langle x, f(x) \rangle}.$$

Donc $\langle x, f(x) \rangle \in \mathbb{R}$.

Soit S l'ensemble $\{x \in E : ||x|| = 1\}$. On considère la fonction $(x \in S) \to \langle x, f(x) \rangle$. Cette fonction est continue et donc atteint son maximum λ_{\max} à un point $x \in S$. Soit y un autre point de S. Pour tout $t \in \mathbb{R}$, on a

$$\langle x + ty, f(x + ty) \rangle \le \lambda_{\text{max}} ||x + ty||^2,$$

d'où

$$\langle x, f(x) \rangle + 2t \operatorname{Re}\langle x, f(y) \rangle + t^2 \langle y, f(y) \rangle \leqslant \lambda_{\max}(\|x\|^2 + 2t \operatorname{Re}\langle x, y \rangle + t^2 \|y\|^2)$$

et donc

$$2\operatorname{Re}\langle x, f(y)\rangle + t\langle y, f(y)\rangle \leqslant \lambda_{\max}(2\operatorname{Re}\langle x, y\rangle + t\|y\|^2).$$

On obtient donc

$$\operatorname{Re}\langle x, f(y)\rangle \leqslant \lambda_{\max} \operatorname{Re}\langle x, y\rangle.$$

En remplaçant y par -y, on obtient l'inégalité au sens inverse. Donc

$$\mathrm{Re}\langle f(x),y\rangle=\mathrm{Re}\langle x,f(y)\rangle=\lambda_{\mathrm{max}}\mathrm{Re}\langle x,y\rangle,$$

où la première égalité provient de l'hypothèse que f est auto-adjoint. Comme y est arbitraire, on obtient $f(x) = \lambda_{\max} x$.

Par le lemme précédent, l'espace vectoriel $(kx)^{\perp}$ est stable par f. De plus, la restriction de f à cet espace vectoriel est encore auto-adjoint. Par récurrence on obtient donc le résultat.

Proposition 5.4. — Soit F un sous-espace vectoriel de E. La projection orthogonale $p_F: E \to F \subset E$ est auto-adjoint.

Démonstration. — Soient x et y deux éléments de E. On a

$$\langle x, p_F(y) \rangle = \langle p_F(x), p_F(y) \rangle = \langle p_F(x), y \rangle.$$

5.2. Automorphismes orthogonaux

Dans ce paragraphe, on suppose que $k = \mathbb{R}$.

Définition 5.5. — On dit qu'un automorphisme $f: E \to E$ is orthogonal si

$$\forall (x,y) \in E^2, \quad \langle f(x), f(y) \rangle = \langle x, y \rangle,$$

ou de façon équivalent $f^* = f^{-1}$.

Proposition 5.6. — Soit F un sous-espace vectoriel de E. La symétrique orthogonale s_F est un automorphisme orthogonal.

Démonstration. — L'endomorphisme p_F étant auto-adjoint, s_F l'est aussi. En outre, on a $s_F^2 = \mathrm{Id}_E$. Donc s_F est un automorphisme orthogonal.

Proposition 5.7. — Soit $f: E \to E$ un automorphisme orthogonal. Si $H = \text{Ker}(f - \text{Id}_E)$ est un hyperplan, alors f est la symétrique orthogonale par rapport à H.

Démonstration. — Soit x un vecteur de norme 1 qui est orthogonal par rapport à H. Comme f préserve le produit scalaire et f(y) = y pour tout $y \in H$, on obtient que f(x) est orthogonal à H et est de norme 1, d'où f(x) = -x. Le résultat est donc démontré.

5.3. Orthogonal group

On désigne par GL(E) l'ensemble des automorphismes de E. C'est un groupe. Soit O(E) le sous-ensemble de GL(E) des automorphismes orthogonaux.

Proposition 5.8. — Le sous-ensemble O(E) de GL(E) est un sous-groupe.

 $D\acute{e}monstration$. — Si f et g sont deux éléments dans O(E), alors on a

$$(g \circ f)^* \circ (g \circ f) = (f^* \circ g^*) \circ (g \circ f) = f^* \circ f = \mathrm{Id}_E$$
.

En outre, si $f \in O(E)$, alors

$$f^{**} \circ f^* = f \circ f^* = \mathrm{Id}_E.$$

Donc $O(E, \phi)$ est un sous-groupe de GL(E).

Si f est un automorphisme orthogonal, alors

$$1 = \det(\mathrm{Id}_E) = \det(f^* \circ f) = \det(f)^2.$$

Donc $d\acute{e}t(f)=1$ or -1. On désigne par SO(E) le sous-groupe de O(E) des automorphismes orthogonaux f tels que $d\acute{e}t(f)=1$. Soit $O^-(E)=O(E)\setminus SO(E)$.

Proposition 5.9. — L'ensemble $O^-(E)$ contient toutes les symétriques par rapport aux hyperplanes.

Démonstration. — Soient H une hyperplane et x un élément de E orthogonal à H. Soit e une base de H. Alors la base de s_H sous la base $\{x\} \cup e$ est diag $(-1,1,\ldots,1)$. Donc $\det(s_{H_x}) = -1$.

Définition 5.10. — On appelle *réflexion* toute symétrique orthogonale par rapport à une hyperplane dans E.

Théorème 5.11 (Cartan-Dieudonné). — Tout endomorphisme symétrique $f: E \to E$ s'écrit comme la composition d'au plus r réflexions, où r est le rang de E. En particulier, le groupe O(E) est engendré par les réflexions.

Démonstration. — On raisonne par récurrence sur r. Le cas où r=0 est trivial. Dans la suite on suppose que le résultat est démontré pour les espace vectoriel de dimension < r.

Premier cas : On suppose qu'il existe un $x \in E \setminus \{0\}$ tel que f(x) = x. Soit $H = \{x\}^{\perp}$. Pour tout $y \in H$ on a

$$\langle x, f(y) \rangle = \langle f(x), f(y) \rangle = \langle x, y \rangle = 0.$$

Donc H est invariant par f. Par l'hypothèse de récurrence, il existe des réflexions s_1, \ldots, s_n (avec $n \in \{0, \ldots, r-1\}$) dans O(H) telles que

$$f|_H = s_1 \circ \cdots \circ s_n$$

Pour tout $i \in \{1, ..., n\}$, soit $\widetilde{s}_i : E \to E$ prolongeant s_i et telle que $\widetilde{s}_i(x) = x$. On a

$$\operatorname{Ker}(\widetilde{s}_i - \operatorname{Id}_E) = \operatorname{Ker}(s_i - \operatorname{Id}_H) \oplus kx.$$

Donc \widetilde{s}_i $(i \in \{1, ..., n\})$ sont des réflexions. En outre, on a

$$f = \widetilde{s}_1 \circ \cdots \circ \widetilde{s}_n$$

comme x est invariant par \tilde{s}_i et par f.

Second cas : On suppose que $f(x) \neq x$ pour tout $x \in E \setminus \{0\}$. Soient $x \in E \setminus \{0\}$, y = x - f(x) et $H = \{y\}^{\perp}$. On a

$$\langle x + f(x), x - f(x) \rangle = \langle x, x \rangle - \langle f(x), f(x) \rangle = 0,$$

d'où $x + f(x) \in H$. On obtient donc

$$s_H(f(x)) = \frac{1}{2}(s_H(x+f(x)) - s_H(y)) = \frac{1}{2}(x+f(x) - y) = x$$

 et

$$x + f(x) = s_H(x + f(x)) = s_H(x) + s_H(f(x)) = x + s_H(x).$$

On obtient donc que s_H exchange x et f(x) et donc $s_H \circ f$ est tombé dans le premier cas. Il existe donc des réflexions s_1, \ldots, s_n avec $n \leqslant r-1$ telles que $s_H f = s_1 \circ \cdots \circ s_n$. \square