Université Paris Diderot M2 Théorie des faisceaux et des schémas

Feuille d'exercice 4 Algèbre commutative, spectre topologique d'un anneau.

Dans cette feuille, tous les anneaux sont supposés commutatifs et unitaires.

1. Soit A un anneau.

- (1) Supposons A non nul. Montrer, en utilisant le lemme de Zorn, que A admet un idéal maximal.
- (2) Supposons A non nul. Montrer, en utilisant le lemme de Zorn, que A admet un idéal premier minimal. Que dire si A est intègre?
- (3) Soit I un idéal de A. On appelle radical de I l'idéal $\sqrt{I} = \{x \in A \mid \exists n \in \mathbb{N}^*, x^n \in I\}$. Montrer que $V(I) = V(\sqrt{I})$.
- (4) Soit I un idéal de A.
 - (a) Montrer que $\sqrt{I} \subset \bigcap_{\mathfrak{p}\supset I} \mathfrak{p}$, où l'intersection est prise sur tous les idéaux premiers \mathfrak{p} contenant I.
 - (b) Supposons qu'il existe $f \in A \setminus \overline{I}$. Montrer qu'il existe un idéal premier contenant I et disjoint de $S = \{f^n, n \in \mathbf{N}\}.$
 - (c) En déduire $\sqrt{I} = \bigcap_{\mathfrak{p} \supset I} \mathfrak{p}$.
 - (d) Montrer qu'en particulier l'ensemble des nilpotents de A est égal à l'intersection des idéaux premiers de A.

2. Soit A un anneau.

- (1) Soient x un point de Spec A et \mathfrak{p} l'idéal premier de A correspondant. Montrer que $\{\overline{x}\} = V(\mathfrak{p})$.
- (2) Montrer que les fermés irréductibles de Spec A sont les $V(\mathfrak{p})$ où \mathfrak{p} est un idéal premier de A.
 - Rappel : Un sous-espace d'un espace topologique est dit irréductible s'il n'est pas union de deux fermés stricts.
- (3) On appelle composante irréductible d'un espace topologique un sous-espace irréductible et maximal pour l'inclusion. Montrer que les composantes irréductibles de Spec A sont les $V(\mathfrak{p})$, où \mathfrak{p} est un idéal premier minimal de A.
- (4) Montrer que toute composante irréductible de Spec A admet un unique point dense. (On dit que Spec A est sobre.)

- 3. Soient A un anneau et $X = \operatorname{Spec} A$ (espace topologique). Un élément e de A est dit idempotent si et seulement si $e = e^2$.
 - (1) Montrer que $a \mapsto V(a)$ définit une bijection entre les idempotents de A et l'ensembles des ouverts fermés de Spec A. (Indication : remarquer que si e est idempotent, $X = V(e) \cup V(1 e)$.
 - (2) En déduire que X est connexe si et seulement si les idempotents de A sont 0 et 1.
- **4.** Un espace topologique X est dit *noethérien* si toute suite décroissante de fermés de X est stationnaire.

Montrer que si A est un anneau noethérien, alors l'espace topologique $\operatorname{Spec} A$ est noethérien.

- 5. Décrire Spec $\mathbf{Z}[T]$.
- **6.** Soit I un idéal d'un anneau A et soit $\varphi: A \to A/I$ le morphisme canonique. Montrer que l'application associée ${}^r\varphi$ définit un homéomorphisme de $\operatorname{Spec}(A/I)$ sur V(I).
- 7. (Lemme de Caley-Hamilton) Soient R un anneau, I un idéal de R et M un R-module qui est engendré par n éléments $n \in \mathbb{N}$. Montrer que, si φ est un endomorphisme de M tel que $\varphi(M) \subset IM$, alors il existe un polynôme unitaire

$$P(X) = X^{n} + a_1 X^{n-1} + \dots + a_n \in R[X]$$

avec $a_j \in I^j$ pour tout $j \in \{1, ..., n\}$, tel que $P(\varphi) = 0$.

- **8.** Soient R un anneau et M un R-module de type fini.
 - (1) Soit $\varphi:M\to M$ un endomorphisme. On considère M comme un R[X]-module via l'homomorphisme de R-algèbres

$$R[X] \longrightarrow \operatorname{End}_R(M), \quad f(X) \longmapsto f(\varphi).$$

En appliquant le lemme de Caley-Hamilton à l'endomorphisme de R[X]-module $1_M: M \to M$, montrer que, si φ est surjectif, alors il est un isomorphisme.

- (2) En déduire que, si M est isomorphe à R^n $(n \in \mathbb{N})$ et si $\{x_1, \ldots, x_n\}$ est un système de générateurs de M, alors il est une base de M sur R.
- **9.** Soient R un anneau et S un anneau quotient de l'anneau de polynôme R[X]. Soit I l'idéal de l'homomorphisme canonique $R[X] \to S$. Soit n un entier, $n \ge 1$.
 - (1) Montrer que S est engendré comme R-module par $\leq n$ éléments si et seulement si I contient un polynôme unitaire de degré $\leq n$.

- (2) Montrer que S est un R-module libre de rang n si et seulement si I est un idéal principal engendré par un polynôme unitaire de degré n.
- 10. (Lemme de Nakayama) Soit A un anneau. Soit \Re le radical de Jacobson de A, c'est-à-dire l'intersection des idéaux maximaux de A.
 - (1) Soient I un idéal de A et M un A-module de type fini. Montrer que, si IM = M, alors il existe $r \in I$ tel que (1 r)M = 0.
 - (2) Montrer que, pour tout $a \in \mathfrak{R}$, on a $1 a \in \mathbb{R}^{\times}$.
 - (3) Soit a un élément de A tel que $1 ax \in R^{\times}$ pour tout $x \in A$. Montrer que $a \in \Re$.
 - (4) Soit M un A-module de type fini. Montrer que, s'il existe un idéal \mathfrak{a} de A contenu dans le radical de Jacobson \mathfrak{R} tel que $\mathfrak{a}M = M$, alors on a $M = \{0\}$.
 - (5) Soient \mathfrak{a} un idéal de A contenu dans \mathfrak{R} et M un A-module de type fini. Montrer que, si $\{x_1, \ldots, x_n\}$ est une famille d'éléments de M dont l'image dans $M/\mathfrak{a}M$ forme un système de générateurs de $M/\mathfrak{a}M$ comme A/\mathfrak{a} -module, alors M est engendré comme A-module par $\{x_1, \ldots, x_n\}$.
- 11. On dit qu'un anneau est un *anneau de Jacobson* si tout idéal premier de l'anneau s'écrit comme l'intersection d'une famille d'idéaux maximaux.
 - (1) Montrer qu'un anneau A est un anneau de Jacobson si et seulement s'il vérifie la propriété suivant : pour tout anneau quotient intègre R de A, si R admet un élément b tel que $R[b^{-1}]$ soit un corps, alors R est lui-même un corps.
 - (2) Montrer que tout anneau quotient d'un anneau de Jacobson est un anneau de Jacobson.
 - (3) Montrer que, si A est un anneau de Jacobson, alors l'anneau des polynômes A[X] l'est aussi.
 - (4) Montrer le Nullstellensatz de Hilbert : si A est un anneau de Jacobson, alors toute algèbre de type fini B sur A est aussi un anneau de Jacobson. En outre, pour tout idéal maximal \mathfrak{m} de B, l'image réciproque \mathfrak{n} de \mathfrak{m} dans A est un idéal maximal de A, et le corps B/\mathfrak{m} est une extension finie de A/\mathfrak{n} .