Université Paris Diderot L2MP4 Algèbre et analyse approfondies 2016-2017

Feuille d'exercice 3

- 1. (a) Montrer que l'espace vectoriel $C^0([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_{\sup}$ est complet.
 - (b) Soit $f:[0,1] \to [0,1]$ une application de classe C^1 telle que

$$\sup_{x \in]0,1[} |f'(x)| < 1.$$

Montrer que l'équation f(x) = x admet une unique solution dans [0, 1]. On peut utiliser le résultat de la question 2 de la feuille d'exercice 2.

2. (*Méthode de Newton*) Soit f une fonction de classe C^2 définie sur un intervalle [a,b] (a < b). On suppose que $\widehat{x} \in]a,b[$ est un point tel que $f(\widehat{x}) = 0$ et $f'(\widehat{x}) \neq 0$. Montrer qu'il existe un voisinage U de \widehat{x} tel que, pour tout $x_0 \in U$, la suite $(x_n)_{n \geqslant 0}$ définie par la relation recursive

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \quad (n \geqslant 0)$$

converge vers \hat{x} .

- **3.** Soit $(u_n)_{n\geqslant 1}$ la suite de fonctions sur \mathbb{R} où $u_n(x)=(x^2+n^2)^{-1}$.
 - (a) Montrer que la série de fonctions $\sum_{n\geqslant 1}u_n$ converge normalement sur \mathbb{R} . On désigne par S la somme de cette série.
 - (b) Montrer que $\lim_{x \to \pm \infty} S(x) = 0$.
- 4. Étudier les convergences simple ou uniforme des suites de fonctions.
 - (a) $f_n(x) = nx^n \text{ sur }]0,1[, \text{ où } n \in \mathbb{N};$
 - (b) $f_n(x) = e^{-nx} \sin(nx) \sin [0, +\infty[$, où $n \in \mathbb{N}$;
 - (c) $f_n(x) = x^{1/n} \cos(nx) \sin [0, +\infty[$, où $n \in \mathbb{N}, n \ge 1$;
 - (d) $f_n(x) = n \sin(\frac{x}{n}) \text{ sur } \mathbb{R}, \text{ où } n \in \mathbb{N}, n \ge 1;$
 - (e) $f_n(x) = x^n/(1+x^n) \text{ sur } [0,1], \text{ où } n \in \mathbb{N}, n \ge 1.$
 - (f) $f_n(x) = x^n/(1+x^n) \text{ sur } [2, +\infty[, \text{ où } n \in \mathbb{N}, n \ge 1.$
 - (g) $f_n(x) = \frac{1}{n} \ln(1 + e^{-nx})$ sur \mathbb{R} , où $n \in \mathbb{N}$, $n \ge 1$.
 - (h) $f_n(x) = x^n x^{n+1} \text{ sur } [0, 1], \text{ où } n \in \mathbb{N}, n \ge 1.$
 - (i) $f_n(x) = nx/(1+n+x)$ sur [0,1], où $n \in \mathbb{N}, n \ge 1$.
- 5. Étudier les convergences simple ou normale des séries de fonctions suivantes
 - (a) $\sum_{n \ge 1} x^n \sin(nx) \sin [-1, 1[;$

- (b) $\sum_{n \ge 1} x^n \sin(nx) \sin \left[-\frac{1}{2}, \frac{1}{2} \right[;$
- (c) $\sum_{n\in\mathbb{N}} \frac{\arctan(nx)}{1+n^2} \operatorname{sur} \mathbb{R};$
- (d) $\sum_{n\in\mathbb{N}} e^{n\sin(x)} \operatorname{sur}]\pi, \frac{3\pi}{2} [.$
- **6.** On considère la fonction f(x) = x(1-x) sur [0,1].
 - (a) Déterminer la série de Fourier de la fonction f.
 - (b) En utilisant le théorème de convergence de Dirichlet, montrer que, pour tout $x \in [0,1]$, on a

$$x(1-x) = \frac{1}{6} - \sum_{n \ge 1} \frac{1}{\pi^2 n^2} \cos(2\pi nx).$$

(c) En déduire la somme de la série

$$\sum_{n\geq 1} \frac{1}{n^2}.$$

(d) En utilisant l'égalité de Parseval, montrer que

$$\sum_{n\geqslant 1} \frac{1}{n^4} = \frac{\pi^4}{90}.$$

- 7. Calculer leurs coefficients de Fourier complexes et réels des fonctions suivantes dans $C^0([0,1],\mathbb{R})$ et déterminer leurs séries de Fourier.
 - (a) $f(x) = |x \frac{1}{2}|$;
 - (b) $f(x) = |\sin(\pi x)|;$
 - (c) $f(x) = |\cos(2\pi x)|$;
 - (d) f(x) = x + 1.
- 8. Étant donné $t \in \mathbb{R}$ on définit la fonction suivante

$$f(x) := \cos(t\sin(\pi x))$$
, pour tout $x \in \mathbb{R}$.

- (a) Montrer que f est une fonction paire et 1-périodique.
- (b) Écrire les coefficients et la série de Fourier de f.
- (c) Prouver l'identité

$$ta_0(t)'' + a_0(t)' + ta_0(t) = 0.$$