CHAPITRE 1

ESPACES PRÉHILBERTIENS

1.1. Formes bilinéaires

Soit E un espace vectoriel sur \mathbb{R} .

Définition 1.1. — On appelle forme linéaire sur E toute application \mathbb{R} -linéaire de E dans \mathbb{R} . On désigne par E^{\vee} l'ensemble des formes linéaires sur E. Cet ensemble est stable par addition et par multiplication par un scalaire dans \mathbb{R} . Il est donc un espace vectoriel sur \mathbb{R} .

Exemple 1.2. — (1) Soient $E = \mathbb{R}^n$, $a = (a_1, \dots, a_n) \in \mathbb{R}^n$. L'application $\varphi_a : E \to \mathbb{R}$.

$$\varphi_a(x_1, \dots, x_n) = \sum_{i=1}^n a_i x_i,$$

est une forme linéaire sur E.

- (2) Soient Ω un ensemble non-vide et E l'espace vectoriel des fonctions à valeurs réelles sur Ω . Soit ω un élément de Ω . L'application $\lambda_{\omega}: E \to \mathbb{R}, \lambda_{\omega}(f) := f(\omega)$ est une forme linéaire sur E.
- (3) Soit $C^0([0,1])$ l'espace vectoriel des fonctions continues sur [0,1]. L'application $I: C^0([0,1]) \to \mathbb{R}$,

$$I(f) := \int_0^1 f(t)dt$$

est une forme linéaire.

Définition 1.3. — On appelle forme bilinéaire sur E toute application $b: E \times E \to \mathbb{R}$ telle que

- (i) pour tout $x \in E$, $b(x, \cdot) : E \to \mathbb{R}$ est une forme linéaire,
- (ii) pour tout $y \in E$, $b(\cdot, y) : E \to \mathbb{R}$ est une forme linéaire.

Étant donnée une forme bilinéaire b sur E, on dit que b est symétrique si b(x,y) = b(y,x) pour tout $(x,y) \in E^2$; on dit que b est positive si $b(x,x) \ge 0$ pour tout $x \in E$; on dit que b est définie si $b(x,x) \ne 0$ pour tout $x \in E \setminus \{0\}$.

On désigne par Bil(E) l'ensemble des formes bilinéaires sur E. C'est un espace vectoriel sur \mathbb{R} .

Exemple 1.4. — (1) Soit n un entier, $n \ge 1$. Soit A une matrice réelle de taille $n \times n$, alors l'application

$$b_A: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \quad b_A((x_1, \dots, x_n), (y_1, \dots, y_n)) := (x_1, \dots, x_n)A \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

est une forme bilinéaire sur \mathbb{R}^n , appelée forme bilinéaire associée à la matrice A. Elle est symétrique si et seulement si la matrice A est symétrique.

(2) Soit $E = C^0([0,1])$. L'application

$$\langle \,,\, \rangle : E \times E \to \mathbb{R}, \quad \langle f, g \rangle := \int_0^1 f(t)g(t)dt$$

est une forme bilinéaire sur $C^0([0,1])$. Elle est symétrique et définie positive.

(3) Soit E un espace vectoriel sur \mathbb{R} . Si φ et ψ sont deux formes linéaires sur E, alors l'application

$$\varphi \otimes \psi : E \times E \to \mathbb{R}, \quad (\varphi \otimes \psi)(x,y) := \varphi(x)\psi(y)$$

est une forme bilinéaire sur E, appelée produit tensoriel de φ et ψ . Si E est de rang fini sur \mathbb{R} , alors toute forme bilinéaire sur E est une combinaison linéaire de produits tensoriels de formes linéaires.

1.2. Produit scalaire

Dans la suite de la séance, k désigne \mathbb{R} ou \mathbb{C} .

Définition 1.5. — Soit E un espace vectoriel sur k. On appelle *produit scalaire* sur E toute application $\langle , \rangle : E \times E \to k$ qui satisfait aux conditions suivantes :

- (i) pour tout $x \in E$, l'application $\langle x, \cdot \rangle : E \to k$ est k-linéaire,
- (ii) pour tout $(x, y) \in E \times E$, $\langle x, y \rangle = \overline{\langle y, x \rangle}$,
- (iii) pour tout $x \in E \setminus \{0\}$, le nombre $\langle x, x \rangle$ est réel, et on a $\langle x, x \rangle > 0$.

On appelle espace préhilbertien sur k tout espace vectoriel E sur k muni d'un produit scalaire.

Remarque 1.6. — (1) Dans le cas où $k = \mathbb{R}$, un produit scalaire est simplement une forme bilinéaire symétrique et définie positive.

3

- (2) Soit E un espace préhilbertien sur k qui est de rang fini sur k. Si $k = \mathbb{R}$, on dit aussi que E est un espace euclidien; si $k = \mathbb{C}$, on dit aussi que E est un espace hermitien.
- (3) Si x, y et z sont trois éléments de E et si λ et μ sont deux éléments de k, alors

$$\langle \lambda x + \mu y, z \rangle = \overline{\lambda} \langle x, z \rangle + \overline{\mu} \langle y, z \rangle.$$

 $\textbf{\textit{Exemple 1.7}}. \ -- \ (1) \ E = k^n \text{, où } n \in \mathbb{N}. \ \text{L'application } \langle \, , \, \rangle : k^n \times k^n \to k,$

$$\langle (z_1,\ldots,z_n),(w_1,\ldots,w_n)\rangle := \sum_{j=1}^n \overline{z}_j w_j$$

est un produit scalaire sur E.

(2) On désigne par $\ell^2(k)$ l'ensemble des suites $(z_n)_{n\in\mathbb{N}}$ dans k tells que la série $\sum_{n\in\mathbb{N}}|z_n|^2$ converge. L'application $\langle \, , \, \rangle_{\ell^2}:\ell^2(k)\times\ell^2(k)\to k$,

$$\langle (z_n)_{n\in\mathbb{N}}, (w_n)_{n\in\mathbb{N}} \rangle_{\ell^2} := \sum_{n\in\mathbb{N}} \overline{z}_n w_n$$

est un produit scalaire sur $\ell^2(k)$.

(3) Soit $C^0([0,1],k)$ l'ensemble des fonctions continues sur [0,1] à valeurs dans k. L'application $\langle , \rangle_{L^2}: C^0([0,1],k) \times C^0([0,1],k) \to k$,

$$\langle f, g \rangle_{L^2} := \int_0^1 \overline{f(t)} g(t) dt$$

est un produit scalaire sur $C^0([0,1],k)$.

Théorème 1.8 (Inégalité de Cauchy-Schwarz). — Soit (E, \langle , \rangle) un espace préhibertien. Si x et y sont deux éléments de E, on a

$$|\langle x, y \rangle|^2 \leqslant \langle x, x \rangle \langle y, y \rangle.$$

 $D\'{e}monstration.$ — Si y=0, alors $\langle x,y\rangle=0$ et donc l'inégalité est triviale. Dans la suite, on suppose $y\neq 0.$ Soit

$$\lambda = \frac{\langle y, x \rangle}{\langle y, y \rangle}.$$

On a

$$0 \leqslant \langle x - \lambda y, x - \lambda y \rangle = \langle x, x \rangle - \overline{\lambda} \langle y, x \rangle - \lambda \langle x, y \rangle + |\lambda|^2 \langle y, y \rangle$$
$$= \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} + \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle} = \langle x, x \rangle - \frac{|\langle x, y \rangle|^2}{\langle y, y \rangle},$$

d'où le résultat.

1.3. Norme

Définition 1.9. — Soit E un espace vectoriel sur k. On appelle *semi-norme* sur E toute application $\|\cdot\|: E \to \mathbb{R}_+$ qui satisfait aux conditions suivantes :

- (1) pour tout $x \in E$ et tout $\lambda \in k$, $||\lambda x|| = |\lambda| \cdot ||x||$,
- (2) (inégalité triangulaire) pour tout $(x, y) \in E^2$, $||x + y|| \le ||x|| + ||y||$.

Si de plus ||x|| > 0 pour tout $x \in E \setminus \{0\}$, on dit que $||\cdot||$ est une norme et que $(E, ||\cdot||)$ est un espace vectoriel normé.

Exemple 1.10. — Soient E un espace vectoriel de rang fini sur k, et $(e_i)_{i=1}^r$ une base de E, alors l'application $\|\cdot\|: E \to \mathbb{R}_+$, $\|a_1e_1 + \cdots + a_re_r\| = \max(|a_1|, \dots, |a_r|)$ est une norme sur E.

Proposition 1.11. — Soit (E, \langle , \rangle) un espace préhilbertien. Alors l'application $\|\cdot\|$: $E \to \mathbb{R}_+, \|x\| := \langle x, x \rangle^{1/2}$ est une norme.

Démonstration. — Si $x \in E$ et si $\lambda \in k$, on a

$$\|\lambda x\|^2 = \langle \lambda x, \lambda x \rangle = \overline{\lambda} \lambda \langle x, x \rangle = |\lambda|^2 \cdot \|x\|^2.$$

Si x et y sont deux éléments de E, on a

$$||x + y||^2 = \langle x + y, x + y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^2 + 2\operatorname{Re}(\langle x, y \rangle) + ||y||^2 \le ||x||^2 + 2|\langle x, y \rangle| + ||y||^2$$

$$\le ||x||^2 + 2||x|| \cdot ||y|| + ||y||^2 = (||x|| + ||y||)^2,$$

où la dernière inégalité provient de l'inégalité de Cauchy-Schwarz. Enfin, si ||x|| = 0, alors $\langle x, x \rangle = ||x||^2 = 0$, et donc x = 0.

Définition 1.12. — Soient E un espace vectoriel sur k et $\|\cdot\|$ une norme sur E. On dit que la norme $\|\cdot\|$ est *préhilbertienne* s'il existe un produit scalaire $\langle \, , \, \rangle$ tel que $\|x\|^2 = \langle x, x \rangle$ pour tout $x \in E$.

1.4. Orthogonalité

Définition 1.13. — Soit (E, \langle , \rangle) un espace préhilbertien sur k.

On dit que deux éléments x et y de E sont orthogonaux si $\langle x, y \rangle = 0$, noté $x \perp y$. Comme $\langle x, y \rangle = \overline{\langle y, x \rangle}$ pour tout $(x, y) \in E^2$, on obtient que $\langle x, y \rangle = 0$ si et seulement si $\langle y, x \rangle = 0$. Autrement dit, l'orthogonalité est une relation binaire symétrique.

Soient x un élément de E et A un sous-ensemble de E. Si, pour tout $y \in A$, on a $x \perp y$, on dit que x est orthogonal à A, noté $x \perp A$.

On dit qu'un sous-ensemble B de E est une famille orthogonale si pour tout couple $(x,y) \in B^2, x \neq y$, on a $\langle x,y \rangle = 0$. Si de plus on a ||x|| = 1 pour tout $x \in B$, on dit que B est une famille orthonormée.

Proposition 1.14. — Soit (E, \langle , \rangle) un espace préhilbertien sur k.

- 5
- (1) Si un élément $x \in E$ est orthogonal à un sous-ensemble A de E, il est aussi orthogonal au sous-espace vectoriel de E engendré par A. En d'autres termes, on a $A^{\perp} = \operatorname{Vect}(A)^{\perp}$.
- (2) Si A est un sous-ensemble de E, alors l'ensemble A^{\perp} des éléments de E orthogonaux à A est un sous-espace vectoriel de E.
- (3) Si $\{x_1, \ldots, x_n\}$ est une famille orthogonale de vecteurs dans E, alors pour tout $(\lambda_1, \ldots, \lambda_n) \in k^n$, on a

(1.1)
$$\|\lambda_1 x_1 + \dots + \lambda_n x_n\|^2 = \sum_{j=1}^n |\lambda_j|^2 \cdot \|x_j\|^2.$$

(4) Toute famille orthogonale de vecteurs non-nuls dans E est libre.

Démonstration. — (1) Soient y_1, \ldots, y_n des éléments de A, et $\lambda_1, \ldots, \lambda_n \in k$, alors

$$\langle x, \lambda_1 y_1 + \dots + \lambda_n y_n \rangle = \sum_{j=1}^n \lambda_j \langle x, y_j \rangle = 0.$$

(2) Si x et y sont deux éléments de $A^{\perp},$ λ et μ sont deux éléments de k, pour tout $z \in A$ on a

$$\langle z, \lambda x + \mu y \rangle = \lambda \langle z, x \rangle + \mu \langle z, y \rangle.$$

Par conséquent, $\lambda x + \mu y \in A^{\perp}$.

(3) On raisonne par récurrence sur n. Le cas où n=1 est trivial. Traitons le cas où n=2. On a

$$\begin{aligned} \|\lambda_1 x_1 + \lambda_2 x_2\|^2 &= \langle \lambda_1 x_1 + \lambda_2 x_2, \lambda_1 x_1 + \lambda_2 x_2 \rangle \\ &= \overline{\lambda_1} \lambda_1 \|x_1\|^2 + \overline{\lambda_2} \lambda_2 \|x_2\|^2 + \overline{\lambda_1} \lambda_2 \langle x_1, x_2 \rangle + \overline{\lambda_2} \lambda_1 \langle x_2, x_1 \rangle. \end{aligned}$$

Comme x_1 et x_2 sont orthogonaux, on a $\langle x_1, x_2 \rangle = \langle x_2, x_1 \rangle = 0$. Par conséquent, on a

$$\|\lambda_1 x_1 + \lambda_2 x_2\|^2 = |\lambda_1|^2 \cdot \|x_1\|^2 + |\lambda_2|^2 \cdot \|x_2\|.$$

Dans la suite, on considère le cas où n > 2 en supposons que l'énoncé est vrai pour n-1 vecteurs orthogonaux. Par les énoncés (1) et (2), on obtient que $\lambda_n x_n$ est orthogonal à $\lambda_1 x_1 + \cdots + \lambda_{n-1} x_{n-1}$, d'où (par le cas où n=2)

$$\|\lambda_1 x_1 + \dots + \lambda_n x_n\|^2 = \|\lambda_1 x_1 + \dots + \lambda_{n-1} x_{n-1}\|^2 + |\lambda_n|^2 \cdot \|x_n\|^2.$$

Par l'hypothèse de récurrence, on obtient le résultat.

(4) Soit B une famille orthogonale de vecteurs non-nuls dans E. On suppose que x_1, \ldots, x_n sont des éléments non-nuls de B et $(\lambda_1, \ldots, \lambda_n) \in k^n$ est tel que $\lambda_1 x_1 + \cdots + \lambda_n x_n = 0$. Par l'énoncé (3) on obtient

$$\|\lambda_1 x_1 + \dots + \lambda_n x_n\|^2 = \sum_{j=1}^n |\lambda_j| \cdot \|x_j\|^2 = 0.$$

Donc on a $|\lambda_j| \cdot ||x_j|| = 0$ pour tout $j \in \{1, ..., n\}$. Comme $x_j \neq 0$, on a $||x_j|| > 0$ et donc $|\lambda_j| = 0$ pour tout $j \in \{1, ..., n\}$.

Proposition 1.15. — Soit (E, \langle , \rangle) un espace préhilbertien sur k.

- (1) Si A et B sont deux sous-ensembles de E tels que $A \subset B$, alors on a $B^{\perp} \subset A^{\perp}$.
- (2) Si F est un sous-espace vectoriel de E, alors on a $F \cap F^{\perp} = \{0\}$.

Démonstration. — (1) Comme $A \subset B$, tout vecteur orthogonal à B est orthogonal à A.

(2) Soit x un vecteur dans $F \cap F^{\perp}$. On a

$$||x||^2 = \langle x, x \rangle = 0.$$

Donc x = 0.

Théorème 1.16 (Inégalité de Parseval). — Soient (E, \langle , \rangle) un espace préhilbertienne, $\{e_1, \ldots, e_n\}$ une famille orthonormée dans E et F le sous-espace vectoriel engendré par e_1, \ldots, e_n . Soit x un élément de E.

(1) Le vecteur

$$\sum_{j=1}^{n} \langle e_j, x \rangle e_j$$

est l'unique vecteur dans F tel que

$$x - \sum_{j=1}^{n} \langle e_j, x \rangle e_j$$

 $soit\ orthogonal\ à\ F.$

(2) On a

$$||x||^2 \geqslant \sum_{j=1}^n |\langle e_j, x \rangle|^2,$$

l'égalité est satisfaite si et seulement si $x \in F$. De plus, dans le cas où $x \in F$ on a

$$x = \sum_{j=1}^{n} \langle e_j, x \rangle e_j.$$

Démonstration. — Soit

$$y = x - \sum_{j=1}^{n} \langle e_j, x \rangle e_j.$$

(1) Pour tout $j \in \{1, \ldots, n\}$, on a

$$\langle e_j, y \rangle = \langle e_j, x \rangle - \sum_{l=1}^n \langle e_l, x \rangle \langle e_j, e_l \rangle = \langle e_j, x \rangle - \langle e_j, x \rangle = 0.$$

D'après la proposition 1.14 (1), y est orthogonal à F. Si y'=x-z est un autre élément orthogonal à F, où $z\in F$. On a

$$y - y' \in F \cap F^{\perp}$$
.

Donc y - y' = 0 et y = y'.

(2) D'après la proposition 1.14 (3), on a

$$||x||^2 = ||y||^2 + \sum_{j=1}^n |\langle e_j, x \rangle|^2 \geqslant \sum_{j=1}^n |\langle e_j, x \rangle|^2.$$

Si l'égalité est satisfaite, alors on a ||y|| = 0 et donc y = 0. Cela revient à dire que

$$x = \sum_{j=1}^{n} \langle e_j, x \rangle e_j \in F.$$

Réciproquement, si $x \in F$, alors il est de la forme $\lambda_1 e_1 + \cdots + \lambda_n e_n$, d'où $\lambda_j = \langle e_j, x \rangle$ pour tout $j \in \{1, \ldots, n\}$ et on a

$$||x||^2 = \sum_{j=1}^n |\lambda_j|^2 = \sum_{j=1}^n |\langle e_j, x \rangle|^2.$$

Corollaire 1.17. — Soient (E, \langle , \rangle) un espace préhilbertien et B une famille orthonormée dans E. Pour tout vecteur $x \in E$ on a

$$||x||^2 \geqslant \sum_{e \in B} |\langle e, x \rangle|^2.$$

1.5. Orthogonalisation de Gram-Schmidt

Théorème 1.18. — Soient (E, \langle , \rangle) un espace préhibertien de rang fini sur k et $(v_j)_{j=1}^n$ une base de E. Pour tout $j \in \{0, \ldots, n\}$ soit E_j le sous-espace vectoriel de E engendré par v_1, \ldots, v_j (dans le cas où j = 0, on a $E_0 = \{0\}$ par convention). Il existe une unique famille orthogonale $(w_j)_{j=1}^n$ dans E qui satisfait aux conditions suivantes :

- (1) pour tout $j \in \{1, ..., n\}, w_j v_j \in E_{j-1}$,
- (2) pour tout $j \in \{1, \ldots, n\}, \{w_1, \ldots, w_i\}$ forme une base de E_i .

En particulier, tout espace préhilbertien de rang fini possède une base qui est une famille orthonormée (appelée base orthonormée).

 $D\acute{e}monstration$. — On construit les vecteurs w_j par récurrence : on prend $w_1=v_1$ et

$$(1.2) w_{j+1} = v_{j+1} - \sum_{l=1}^{j} \frac{\langle v_l, e_j \rangle}{\|v_l\|^2} v_l = e_j - \sum_{l=1}^{j} \left\langle \frac{v_l}{\|v_l\|}, e_j \right\rangle \frac{v_l}{\|v_l\|}.$$

pour $j \in \{1, ..., n-1\}$. Par construction on a $w_j - v_j \in E_{j-1}$ pour tout $j \in \{1, ..., n\}$ et donc $\{w_1, ..., w_j\}$ forme une base de E_j . D'après le théorème 1.16, le vecteur w_{j+1} est orthogonal à E_j pour tout $j \in \{1, ..., n\}$. L'unicité est garantie par la proposition 1.16 (1).

Enfin, les vecteurs $w_i/\|w_i\|$ forment une base de E qui est une famille orthonormée.

1.6. Projection orthogonale

Soient (E, \langle , \rangle) un espace préhilbertien sur k et F un sous-espace vectoriel de rang fini de E. D'après le théorème 1.2, il existe un base orthonormée de F. D'après le théorème 1.16, pour tout vecteur $x \in E$, il existe un unique vecteur dans F, que l'on note $p_F(x)$, tel que $x - p_F(x)$ soit orthogonal à F. Le vecteur $p_F(x)$ est appelé projection orthogonale de x dans F. Le vecteur $s_F(x) := 2p_F(x) - x$ est appelé le symétrique orthogonal de x par rapport à F.

Proposition 1.19. — (1) Les applications $p_F: E \to E$ et $s_F: E \to E$ sont k-linéaires.

- (2) Le noyau de p_F est F^{\perp} ; le noyau de $p_F \operatorname{Id}_E$ est F.
- (3) On $a p_F^2 = p_F$.
- (4) L'application s_F préserve le produit scalaire. En d'autres termes, pour tout $(x,y) \in E^2$, on a $\langle s_F(x), s_F(y) \rangle = \langle x,y \rangle$.

 $D\acute{e}monstration.$ — (1) Soient x et y deux vecteurs de E, λ et μ des éléments de k. On a

$$(\lambda x + \mu y) - (\lambda p_F(x) + \mu p_F(y)) = \lambda (x - p_F(x)) + \mu (y - p_F(y)),$$

qui est orthogonal à F. Par l'unicité de la projection orthogonale, on obtient

$$p_F(\lambda x + \mu y) = \lambda p_F(x) + \mu p_F(y).$$

Comme $s_F = 2p_F - \mathrm{Id}_E$, on obtient que s_F est aussi k-linéaire.

- (2) Tout élément $x \in E$ s'écrit de façon unique comme x = y + z avec $y \in F$ et $z \in F^{\perp}$. De plus on a $y = p_F(x)$. En particulier, $p_F(x) = x$ si et seulement si $x \in F$; et $p_F(x) = 0$ si et seulement si $x \in F^{\perp}$.
 - (3) Pour tout $x \in E$, on a $p_F(x) \in F$. Donc $p_F(p_F(x)) = p_F(x)$.
 - (4) On a

$$\langle s_F(x), s_F(y) \rangle = \langle 2p_F(x) - x, 2p_F(y) - y \rangle$$

$$= \langle p_F(x), p_F(y) \rangle + \langle p_F(x) - x, p_F(y) - y \rangle = \langle p_F(x), p_F(y) \rangle - \langle x, p_F(y) - y \rangle$$

$$= \langle p_F(x) - x, p_F(y) \rangle + \langle x, y \rangle = \langle x, y \rangle.$$