Subanalytic topologies and applications to filtered \mathcal{D} -modules Tianjin 24/6–28/6 2013

Pierre Schapira, University of Paris 6

This is a joint work with Stéthane Guillermou.

The subanalytic topology $M_{\rm sa}$ on a real manifold M is a Grothendieck topology for which the open sets are the relatively compact subanalytic open subsets and the coverings are the finite coverings. On $M_{\rm sa}$, one defines (among other sheaves) the sheaf $C_{M_{\rm sa}}^{\infty,t}$ of C^{∞} -functions with temperate growth. Then on a complex manifold X, using the Dolbeault complex, one gets the sheaf $\mathcal{O}_{X_{\rm sa}}^t$ of holomorphic functions with temperate growth (see [KS01]). By refining the topology $M_{\rm sa}$, one can endow $C_{M_{\rm sa}}^{\infty,t}$, hence $\mathcal{O}_{X_{\rm sa}}^t$, with a filtration (objects of the derived categories of filtered sheaves). Using the Riemann-Hilbert correspondence, one may endow functorially the regular holonomic \mathcal{D} -modules with a filtration (in the derived sense) (see [GS12]).

- [GS12] S. Guillermou and P. Schapira, Subanalytic topologies I. Construction of sheaves, arXiv:math.arXiv:1212.4326 Subanalytic topologies II. Filtrations, In preparation
- [KS01] M. Kashiwara and P. Schapira, Indsheaves, Astérisque 271 (2001).