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matrices. The group K acts also on the Heisenberg group H = V x R. By a result of
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1. Introduction. To a finite dimensional Euclidean complex vector space V one
associates the Heisenberg group H = V' x R with the product

(z,0)(Z,t") = (= + 2/, t + ' + Im(22")).

Let K be a closed subgroup of the unitary group U(V). An element k¥ € K defines
an automorphism of H: k- (z,t) = (k- 2,t). In 1980, A. Hulanicki and F. Ricci have
considered the case of V. = C", and K = T" acting diagonaly. They observed that
(G, K) with G = K x H is a Gelfand pair, and determine the corresponding spherical
functions. These functions can be expressed in terms of Laguerre polynomials. By using
a Tauberian theorem for the associated spherical Fourier transform, A. Hulanicki and F.
Ricci established a tangential convergence theorem for harmonic functions on balls in C”.
In 1980, in a conference in Wista organized by A. Hulanicki, A. Kordnyi gave a talk about
the following result: let G/K be a Riemannian symmetric space of rank one, with the
Iwasawa decomposition G = KAN, M being the centralizer of A in K, then (M N, M)
is a Gelfand pair. In particular, if G = SU(1,n + 1), then N is the Heisenberg group
H =C" xR, and M = U(n). A natural question arised: for which subgroup K C U(V)
is the pair (G, K) a Gelfand pair ? (G = K x H). The answer has been given by Carcano
[1987]: (G, K) is a Gelfand pair if and only if K acts on the space of polynomials P(V)
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multiplicity free. These Gelfand pairs and the associated spherical functions have been
studied in a series of papers by C. Benson, J. Jenkins, G. Ratcliff (among them [1992],
[1998]). The subgroups K C U(V) acting irreducibly on V' and on P(V') multiplicity free
have been classified by Kac [1980]. (A complete classification of linear multiplicity free
actions, extending [Kac,1980], is given in [Benson-Racliff,1996], and [Leahy,1998].) This
subject is now available in a book form: [Wolf,2007], Chapter 13.

If K acts multiplicity free on P(V'), hence (G, K) is a Gelfand pair. A spherical
function for (G, K) can be seen as a K-invariant function on H. That is why we make the
following definition: a continuous complex valued function ¢ on H is said to be spherical
if it satisfies the following functional equation:

[ olet k2t t 4 mGalk - ))a(dh) = ol 0601,
K

for (z,t),(#,t'") € H (o denotes the normalized Haar measure on K). The bounded
spherical functions are the characters of the commutative convolution Banach algebra
L'(H)X of K-invariant integrable functions on H. We will consider the case of V =
M (n,p; C) (p > n), with the inner product given by (z|w) = tr (zw*), and K = U(n)x U (p)
acting on V' by: k- z = uzv* if k = (u,v). We will determine the spherical functions in
that case, and then study the asymptotics of these spherical functions for large n and p.

In Section 2 we establish some series expansions in the Fock space F (V') with a
subgroup K C U(V) acting on V multiplicity free. In case of V.= M (n,p;C) and K =
U(n) x U(p), we describe explicitely the decomposition of the Fock space. Then, in Section
3, in that case we determine the spherical functions of positive type of the associated
Gelfand pair (G, K), with G=K x H, H=V x R.

In Section 4 we recall the notion of Olshanski spherical pair. Such a pair (G, K) is
the inductive limit of an increasing sequence of Gelfand pairs (G(n), K(n)). We recall the
method, due to Okounkov and Olshanski, for studying the asymptotics of the spherical
functions for the pair (G(n), K(n)), and the convergence to the spherical functions for the
pair (G, K).

Then we come back to the special case of the Gelfand pairs associated to the Heisen-
berg group H =V x R, with V' = M(n,p;C), and K = U(n) x U(p). In Section 5, n is
kept fixed and p goes to infinity. The Olshanski spherical pair (G, K) is of finite rank: the
spherical functions for the pair (G, K) depend on a finite number of real parameters. In
Section 6, we consider V.= M (n,n + q), with ¢ fixed, and n goes to infinity. Then the
rank of the Olshanski spherical pair (G, K) is infinite: the spherical functions for the pair
(G, K) depend on an infinite number of real parameters.

I would like to thank the referee for his careful reading of the manuscript, and for his
valuable comments. They have been very useful to improve the paper.

2. Preliminaries about the Fock space. Let Z be a finite dimensional complex
manifold, and K a compact group acting on Z by holomorphic automorphisms. Then K
acts on the space O(Z) of holomorphic functions:

(m(k)f)(2) = f(E" - 2).



Let H C O(Z) be a K-invariant Hilbert subspace: there is a K-invariant Hilbert structure
on H, and the injection H — O(Z) is continuous.

Lemma 2.1. Assume H irreducible. Then, for f € H,

[ 180 2)Patde) = L)1
K

where K denotes the reproducing kernel of H, a the normalized Haar measure of K, and
d=dimH.

Proof. Let K, denote the coherent state K,(w) = K(w, z). By the reproducing property,
f(z) = (fIK-), hence
fk-2) = (fIKk.2) = (flr(k)K>).

Therefore

1
[ 11t 2Pt = [ 111 Palr) = G111
K K d
by the Schur orthogonality relations. Furthermore ||K.||? = K(z, 2). []

More generally, for f1, fo € 'H,

| itk Bl Faldk) = L (Al f).
K

We assume that K acts multiplicity free on O(Z): every K-invariant Hilbert subspace
H C O(Z) decomposes multilicity free:

H=DH,,

pneM

into a Hilbert sum of irreducible K-invariant Hilbert subspaces H,,.

Proposition 2.2. For f € 'H, then

f(z) = Z fu(z) (fu€Hy)

pneM

(the series converges in H, and uniformly on compact sets), and

bmﬂwwzzfmmmwuﬁmm”

pneM K
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Let Z =V be a finite dimensional Euclidean complex vector space, and K a closed
subgroup of the unitary group U(V') acting multiplicity free on O(V'), or equivalently
acting multiplicity free on the space P(V') of polynomials on V. The Fock space F (V) is
the space of holomorphic functions f on V such that

112 = = [ I Ems) < o0
(m denotes the Euclidean measure on V; N = dim V.) The reproducing kernel of F (V) is
K(z,w) = e,
The Fock space decomposes multiplicity free:
- PH,.
neM

Let KC,, denotes the reproducing kernel of H,,. Then

eFlv) — Z K.z, w)

pneM
By Proposition 2.2, for f(z) = e*I*) (w fixed), we get

Proposition 2.3.

e Zlw 1
/K€2R (k-z| )a(dk) - Z d—]C“(z,z)/CH(w,w).

pneM K

Consider first V = CP, K = U(p). Let H,, denote the space of polynomials homoge-
neous of degree m. The irreducible K-invariant Hilbert subspaces are the spaces H,,,

_(m4p=1'_ (P)m
 omlp-1)!  m!’

K (z,w) = %(,ﬂw)m, dim H,,

(Recall the Pochhammer symbol: (&), = a(a+1)...(a+m—1).) Hence M = N. Then,
for f € F(CP),

= Z fm(2)  (fm € Pm),
m=0



we obtain
oo

k- 2)[28,(dk) =
/U(p)\f( 26,(dk) = 3

m=0

> (e v
m

(Bp is the normalized Haar measure on U(p)), and

o 1
2Re(k~z|w § : ‘ HQmH H2m
€ Y w
/(;(p) ) m!

More generally, consider V' = M (n,p;C) (n < p), with the inner product (z|w) =
tr (zw*), and K = U(n) x U(p) acting on M (n,p;C) by k-z = uzv* (u € U(n), v € U(p)).
For a partition m of length /(m) <n: m = (my,...,m,) with m; e N, my; > ... > m, >
0, let Hy, denote the space of polynomials on V generated by the polynomials 7(k)Am,
(k € K), where
Am(z) = A1(2)™ 7™ Ag(2)™2 ™2 LU AL ()™,

with

Ap(z) = det(z;) (k <mn).

1<i,j<k

The polynomial A, is a highest weight vector for the restriction 7y, of 7 to Hy, with
respect to the subgroup 7T, x T, ; , where T~ is the group of lower triangular matrices
in GL(n,C), and Tp’L of upper triangular matrices in GL(p,C). The representation 7y,
is equivalent to the tensor product of the irreducible representation of U(n) with high-
est weight (mq,...,m,) with the irreducible representation of U(p) with highest weight
(my,...,mp,0,...,0). Recall that the character yn,, of the representation of U(n) with
highest weight m can be expressed in terms of the Schur function sy,:

Xm (diag(tl, . tn)) = Sm(t1, ... tn).

Hence the dimension dy, of Hy, is given by
dm = Sm(1")sm(1P),

where 19 = (1,...,1,0,...) (1 is repeated ¢ times). We will use the following expansion,

for z € M(n,C),
trz § : 1

where h(m) is the product of the hook-lengths of the partition m ([Macdonald,1995],p.66).
This number h(m) does not depend on n. It can also be written, if /(m) < n,

where (a)m, denotes the generalized Pochhammer symbol:

(a—j+1)

n

J



(Observe that the definition of (a)m, depends on n.)

Proposition 2.4. (i) The reproducing kernel Ky, of Hpm is given by

Km(z,w) = @Xm(zw*).

(ii) Let
= me(z) (f € Hm),

be the expansion of a function f € F(V). Then

n d d [ m * 'm 2-
/U(n)xU(p)’ (uzv*)|? By (du) By (dv) ; m( m)xm (22°)]| funl|
(iii) For f(z) = e*I") one obtains
2Re(uzv™|w)  (d dv) = LL _ Vo -
Lot @0, (0) = 3 (o )

Note that, for n = 1, these formulae agree with the formulae given above in case
V =Cr.

Proof of (ii). By Proposition 2.2,

1 1
n(dw)o(dv) =S —
/U(n)xU(p) f(uze)Fan(dap(dn) = den h(m

m

7 Xm(22) [ fm %,

\_/

and

n)m (P)m i

dm = Sm(1™")sm(17) = (m) h(m)

>
~—
~—

3. Spherical functions. We come back to the Gelfand pair we introduced in Section
1. There are two kinds of spherical functions. The spherical functions of first kind are
associated to the Bargmann representation, and the ones of second kind to characters.

a) Spherical functions of positive type and first kind

We recall first the Fock realization of the Bargmann representation. (See for instance
[Faraut,1987].) For A\ € R* one considers the Fock space F» (V') of holomorphic functions
1) on V such that

1 = (21)" [ 1P I mgag) < o
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and the representation T’ of the Heisenberg H =V x R on F, (V') defined by, if A > 0,

(T (2, ) (C) = X311~y 4 o),
and Th(z,t) = T_x(z,—t) for A < 0.
We consider a closed subgroup K C U(V). The group K acts on Fy(V):
w(k)y(¢) = v(k~Q),

and
(k)T (z, ) (k™) = Ta(k - 2, 1).

We assume that K acts multiplicity free on P(V'). Then the Fock space Fy (V') decomposes
multiplicity free:

FA(V) = P H,.

pneM

Define as usual, for f € L'(H),

Ty (f) = /H Ty (2, 4) f (2 t)ym(dz)dt.

If the function f is K-invariant, then, for every p € 9, the subspace H, is an eigenspace
of T\(f): for ¢ € H,,

Ta(f)e = FO\ ).

The map f — f (\, i) is a character of the commutative convolution algebra L'(H)X. It
can be written

FOup) = /H £z D)0 s 2, t)m(dz)dt,

with a spherical function ¢(A, p;-). Suppose first A > 0. We can write, if ¢ € H,,,
[ D) (et = FO ),

Fix e € V, and ¢ € H,, such that ¢(e) = 1. Then,
(A, s 2, t) = Mgz M=l /K e Me® (e + k- 2)a(dk).

By using Proposition 2.2, it is possible to obtain an expansion of the spherical function
(A, ;)

We consider the case of V.= M(n,p;C), K = U(n) x U(p). We choose e = (I, 0),
and ¥(z) = ®m(z0), with zg = ze*, the projection of z onto M(n;C). Here ®,, is the
spherical polynomial, which is the normalized character:

O () = % (z € M(n;C)).
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(See [Faraut-Koranyi, 1994, Chapter XI.) Then we can write

/Ke—M@’C'Z)w(eJrk.z)a(dk):/Kfl(k.z)fg(k-z)a(dk),

with
fl(Z) = (I)m(In + ZO)7
falz) = Ao,
We will expand both functions. We saw that

o= (20) _ Zk:(—A)“‘ (nl)ksk(ln)Xk(ZO)-

For expanding ®, (I, + 20), we need the binomial formula for the Schur functions, which
can be written

s (m)sk(z1,. .., 2n),

Sm(1+21,,1+2n)_z 1
B (

(1) 2 T

where s}, is the shifted Schur function ([Okounkov-Olshanski,1998a] Theorem 5.1, see also
[Faraut,2008] Theorem 2.8). Hence we get the following expansion

1

P (I + 20) = Z Wsii(m)Xk(ZO)-
kCm k
By Proposition 2.4 we obtain
/ e N Dp(e + k- 2)a(dk) = > (—A)'k‘iisi@(mm(zz*),
. 2 e (e

since
Ixk(z0)[* = (7).

Proposition 3.1. The spherical functions of positive type of first kind admit the
following expansion:

o ) = M3 N gkl L

and, for A <0, (A, m; z,t) = o(—\,m; z, t).
The relation p(—A, m; z,t) = (A, m; z,t) comes from the fact that z and z are in the

same K-orbit. By this relation it suffices to consider the case A > 0, and in further proofs
we will assume A > 0.



The spherical functions @(\, m;z,t) can be expressed in terms of the multivariate

Laguerre polynomials LS,Vl_l) as defined in [Faraut-Kordnyi,1994] p.343 with a slightly
different parametrisation (see also [Faraut-Wakayama,2008], p.10). In case d = 2 (with the
notation of [Faraut-Kordnyi,1994)), for = € M (n;C),

Ly V@) 11,
o) A (0 Pl =)

Therefore (1)
eiAte—%/\HzHZLrg (Azz*)
L% (0
a2 (31227)
7 (0)

e(A,m;z,t) =

where \IIEIV,) is the multivariate Laguerre function,
T (z) = e~ @ =D (9g),
(There are similar results and proofs in [Dib,1990], Section III.)

2) Spherical functions of positive type and second kind

These functions are obtained by averaging Euclidean characters: For w € V, let
p1 > ... > pnp > 0 denote the eigenvalues of the positive Hermitian matrix ww*. We define

U(p:2) = / 2R 20 5 () B (dv),
U(n)xU(p)

By Proposition 2.4 one obtains:

Proposition 3.2.

bl ) = DM o s,

The set X of spherical functions of positive type will be called the spherical dual of
the Gelfand pair (G, K). In fact, in our case, it coincides with the set of bounded spher-
ical functions (see [Benson-Ratcliff,1992]). One considers on ¥ the topology of uniform
convergence on compact sets. Let X! be the set of spherical functions of the first kind,
and X2 of the second kind. Hence ¥ = X! U 32. We embed ¥ in R"*! as follows: to the
spherical function of the first kind ¢(\, m; z, t) corresponds the point (A, |A|my, ..., |A|m,),
and to the spherical function of the second kind #(p; z) corresponds (0, p1, ..., p,). Then
this map is a homeomorphism from ¥ onto its image (a multidimensional Heisenberg fan).
This is a consequence of:



Proposition 3.3. As A\ — 0, A\m; — p;,

lim (A, m; 2,t) = Y(p; 2),
uniformly on compact sets in H.

Proof. Recall that, by Propositions 3.1,

m: z = ei)‘te_%AHZHZ — ‘k|LLS* m ZZ*
90<)‘7 ) 7t) k%r:n( >‘) (p)k (n)k k( )Xk( )7
and by Proposition 3.2,
W(p;2) = Z(—n'k'ﬁﬁ s1c(p)xi(22°).
k

Since
Sk(m) = sx(m) + terms of degree < |k|,

the statement follows from:

Lemma 3.4. Let (1) be a sequence of C* functions on R? of positive type, and ¢ an
analytic function on a neighborhood of 0. Assume that, for every k = (ki1,...,kq) € N,

lim 9%, (0) = 0%1(0).

n—oo

Then v has an analytic extension to R, and 1, converges to 1 uniformly on compact sets
in R%.

(Lemma 4.2 in [Okounkov-Olshanski,1998b]. See also Proposition 3.10 in [Faraut,2008].)
[

We will use the following notation: for o € 3,

ploizt) = e RIS (- DK a(ou(z=").

If o = (\,m) € ©!, then
ax(0) = A"lsj (m)

if k C m, and ax(m) = 0 otherwise. If & = p € X2, then ) is taken to be 0, and

ax(0) = sk(p).
Observe that, for a partition k, ax(c) is a continuous function on X.
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We will need in Sections 5 and 6 the expansion at order 4 with respect to x of the
function given on X x R by ¢(o;xE11,0) where F1; denotes the matrix with entry 1 at
the place (1,1) and 0 elsewhere.

Recall that, for k = [k] := (k,0,...) (k € N), sk(z1,...,2,) = hg(z1,...,2,) is the
complete symmetric function. In particular

hi(pi,--.pn) =p1+ -+ pn,
ha(pry .- pn) = Y pipj-

i<j
Also, for k = [k], sg.(mq,...,m,) is the shifted complete symmetric function,
hi(mi,...,my) =mq + -+ my,
hiy(my,...,my) = Z(mz —1)m;.
1<J

Recall that, if x = (21,0,...,0), then sk(x1,0,...,0) = 0 except if k = [k] (k € N), and
then
sip)(21,0,...,0) = k.
Lemma 3.5.
o(o;xE11,0) =1 — An7p(a)x2 + Bn,p(g)x4 4+
with, if o = (\,m) € X!,

Anpl) = A(5 + b m),
1 1, 1 "
Bap(0) = 2 (§ + 5o him) + - (m)),

and, if o = p € X2,

1
An,p(g) = n_phl (p),

1
B p(o) = n(n+ Uplp + 1) ha(p).

Proof. If 0 = (\,m) € ¥!, then
S 1 1

- E, :e—%xﬁ Wk _ pF(m)a2k

1 1
1 2 2 4 >
——< ——2>\:1: ~|——8)\x +

np n(n+1pp+1) >
B 1 1, 9
1 1 1
)\2 - _h* h* 4
+ <8+2np 1(m)+n(n—i—l)p(p—i—l) 2(m)):c o
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and, if o = p € X2,

90(07 ajEllv 0) = Z(_l)kiihk (p)x2k

- n_phl('o)xQ * n(n+ 1)p(p + 1)h2(p)x4 . !

4. Olshanski spherical pairs. Let (G(n),K(n)) be an increasing sequence of
Gelfand pairs,
G(n) C K(n), Kn)=Gnh)NK(n+1),

and define
G=|JGn), K=|]JEKn)
n=1 n=1

We consider on G the inductive limit topology; then K is a closed subgroup of G. Such
pairs (G, K) have been introduced and studied in [Olshanski,1990], and we call them
Olshanski spherical pairs. In general G is not locally compact, and K is not compact. A
K-biinvariant continuous function ¢ on G is said to be spherical if

lim o(xky)an(dk) = o(z)p(y),

where o, denotes the normalized Haar measure on K(n).
Let P denote the set of K-biinvariant continuous functions ¢ on G which are of positive
type, with ¢(e) = 1.

Theorem 4.1. For ¢ € P the following properties are equivalent

- @ 1s spherical,

- @ 1is extremal in the convex set P,

- @ is pure. This means that the unitary representation associated to ¢ by the Gelfand-
Naimark-Segal construction is irreducible.

([Olshanski, 1990], §23, see also [Faraut,2008|, Chapter 1.)

Recall that, by the Gelfand-Naimark-Segal construction, given a K-biinvariant contin-
uous function ¢ of positive type, one obtains a unitary representation 7w of G on a Hilbert
space ‘H, such that

p(r) = (ulr(2)u),

where v is a K-invariant cyclic vector in H.
In the case of a Gelfand pair, the equivalence of these properties are classical. It has
been proven in [Olshanski, 1990] that it holds for an Olshanski spherical pair as well.

12



Theorem 4.2. Let ¢ be a spherical function of positive type for the pair (G, K).
There exists a sequence (@), for which ¢, is a spherical function of positive type for the
pair (G(n), K(n)), such that

p(z) = lm @ (z),

n—oo

uniformly on compact sets of G.

([Olshanski, 1990], Theorem 22.10.)

Given an Olshanski spherical pair (G, K), there is a natural program:

- Determine the spherical functions,

- Determine the set ) of spherical functions of positive type. We will call € the
spherical dual of the pair (G, K).

In several examples we know, this is done by obtaining the functions in €2 as limits of
spherical functions for the Gelfand pairs (G(n), K (n)), according to Theorem 4.2.

- A further point which will not be considered in the present paper is: For ¢ € ()
describe a realization of the irreducible representation of GG associated to ¢ by the Gelfand-
Naimark-Segal construction.

Let us give a general scheme for studying spherical functions for the pair (G, K) as
limits of spherical functions for the pairs (G(n), K(n)). This scheme is essentially the one
used in [Okounkov-Olshanski,1998b] (See also [Olshanski-Vershik,1996]). Notice that the
restriction to G(n) of a spherical function for the pair (G, K) is not spherical in general.

Let €, denote the spherical dual of the pair (G(n), K(n)), and Q the one of (G, K).
For u € Q, we write ¢, (u; z) the corresponding spherical function, and, for w € €, we
write @(w; ).

o For each n one defines an injective map T}, : Q, — Q. Let (u(™) be a sequence with
e Q.

(1) In a first step, one shows that, if lim,, o T}, (™) = w for the topology of €2, then
lim o, (1™ 2) = p(w; ),
n—oo
uniformly on compact subsets of G. For this step one uses Lemma 3.4.
(2) The second step is as follows: Assume that
lim ¢, (1" 2) = ¢(2),
n—oo

where ¢ is a continuous function on GG. The aim of this step is to show that there is w € Q
such that lim,, s T}, (1(™) = w. For that it is enough to show that the sequence (Tn (u(”)))
is relatively compact in Q. In fact, if (1("7)) is a subsequence such that lim;_ T;,, (u"7)) =
wo, then, by (1),

lim @, (1" 2) = p(wo; ),

J—00

and p(z) = p(wo; ). Hence there is only one possible limit for a subsequence. Therefore
the sequence T),(pu(™) itself converges. In the examples we know, it is enough to only

13



consider elements z in G(1) for showing that the sequence (T,,(1(™)) is relatively compact.
For this second step we will use:

Lemma 4.3. Let M be a set of probability measures on R, relatively compact for the
weak topology (tight topology). Assume that, for every u € M and k < 4,

Wiy = [ ol utd) < .
and that there is a constant A > 0 such that, for every p € M,
My (p) < A Ma(p)?.
Then there is a constant C' > 0 such that, for every u € M,

Mo (p) < C.

([Okounkov-Olshanski, 1998b], Lemma 5.2.)

Proof. Since M is relatively compact, for 0 < € < %, there is R > 0 such, for every u € M,

p({llz] > R}) <e.

By the Schwarz inequality,

<A$|I>R le\\2u(dx)>2 < eMy(p) < A Ma(p)?.

Therefore

Ma) < R+ [ falPuldn) < R+ VEA Do)
|z >R

or

R2
m < —.
W)=

5. An Olshanski spherical pair with finite rank. In this section n is fixed. We
consider the increasing sequences,

V(p) = M(n,p;C), H(p)=V(p) xR,
K(p)=U(n) xU(p), G(p)=K(p)x H(p),

the infinite dimensional Heisenberg group
oo
H=|]H(p),
p=1

14



and the Olshanski spherical pair

G=JGw), K=JEKE®)

a) Spherical functions
Let ¢ be a K-invariant continuous function on H. It can be written
o(z,t) = O(227, 1),

where @ is a continuous function on Herm(n,C) x R which is U(n)-invariant:

®(uwu*,t) = ®(w,t) (w € Herm(n,C), uec U(n)).
Then

o(z+k-2 t+t +Im(z|k- 7))

= ((z +uz'v")(z 4+ uz'v*)*, t + ' + Im(z|uz'v")),

For v € U(p), let [v],, denote the upper left m x m-block. If z,2" € V(m) = M(n,m;C),

then
(z + uz'v*)(z + uz’v*)* and (z|uz’v*), as functions of v, only depend on [v],,:

(z +uz'v*)(z + uz'v*)* = 22" + zv2""u* + u'v 2" + w2 Fu*
= 22" + 2[v] 2 + w2 ]l 2* 4 w2,

(z|uz'v*) = tr (zv2"*u*) = tr (z[v] 2" u™).

We will use the following lemma about the asymptotics of the normalized Haar measure
of U(p).

Lemma 5.1. Assume p > 2m. The image of the normalized Haar measure 3, of
U(p) under the projection v — [v],, is given as follows: If f is a continuous function on
the unit ball B, of M(m,C) (with respect to the operator norm), then

F([0)m)Bo(d0) = Cpom / F(w) det(T, — we )2 m(duw),
U(p) B,

where m is the Euclidean measure, and cy, ,, is the normalization constant. Furthermore,
for m fixed,
im [ F([olm)y(dv) = £(0).

o Ju(p)

Proof. a) This integration formula can be obtained from the Weyl integration formula for
the compact symmetric space U(p)/U(m) x U(p—m) related to the Cartan decomposition.
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The specialization of this Weyl integration formula to our present case is written down in
[Faraut,2006], Section 5.2. We obtain

f([v]m)Bp(dv) / / uldiag(cos f1,...,cos Om)uQ)
U(p) gl JU(m)xU(m)

Brn (duir) B (din) Dy, 1y (0)d01 . .. dOy,
with
Dunp(0) = am’p‘ H sin®(6; + 6,) ) sin?(0; — 6,;) H (sin 26;) 31n9i)2(p_2m)‘.
1<i<j<m i—1

On the other hand recall the integration formula on M (m;C) related to the polar decom-
position: for an integrable function on M (m;C),

/ fw)ym(dw) = / f(urdiag(aq, . . ., am)u2) B (dur ) B (dug) Ay (a)day . . . dap,,
(m;C) v

with

Ap(a) =cm H (af—a?)QHai.

1<i<j<m

(See for instance [Faraut-Kordnyi,1994], Proposition X.3.4.) By the change of variables
given by a; = cos#;, and the identity

sin(0; + 0;) sin(0; — 6;) = cos®0; — cos 0;,

noticing moreover that, if w = uydiag(ay, ..., amn)us,
H(sin 0;)2(P=2m) — H(l — cos? 0;)P 7™ = det([,,, — ww*)P~2™,
i=1 i=1

we get

F([0)m) By (dv) = /B £ (w) det(Z, — ww* P~ (dw).

U(p)

b) The proof of the second part of the lemma is standard. (See for instance Lemma
5.4 in [Faraut, 2006].) []

From Lemma 5.1 it follows that

lim o(z +uv* t + ' + Im(z|uz'v*)) B (du) By (dv)
P20 JU(n)xU(p)

= / D (22" +u'2*u* t + ') B, (du).
U(n)
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Therefore the function ¢ is spherical for the Olshanski spherical pair (G, K), i.e.

lim o(z+ k-2 t+t' +Im(zlk - 2"))ay,(dk) = p(z,t)p(2', 1),
P JK(p)

if and only if the function ® satisfies the following functional equation:
/ ®(z + uz'u*, t +t') By (du) = &(z,t)@(',t') (x,2’ € Herm(n,C)).
U(n)

This equation means that, as a function of ¢, it is an exponential, and, as a function of
x € Herm(n,C), it is a spherical function for the motion group U(n) x Herm(n,C). Such
a spherical function ¥ has the form

U(agx) = / et (“x“*a)ﬂn(du),
U(n)

with @ € M(n;C). This integral can be evaluated if « is diagonalizable. It only depends
on the eigenvalues x1,...,z, of x, and on those aq,...,a, of a. We can assume that
a =diag(a,...,a,).

5 'det<(e_‘“‘rj)1§i,j§n)

\Il ; - nj-. )

with §, = (n—1,...,1,0), (0,)! = 112!... (n —1)!, and where V' denotes the Vandermonde
polynomial. This function admits the following expansion

1

(M) m

V(azz) =) (1™ $m (@) Xm (2)-

m

Theorem 5.2. The spherical function for the Olshanski spherical pair (G, K) are
given by the following formulae

()0()\704; Z,t) _ ez‘At/ e—tr (uzz*u*a)an(du)
U(n)

det((e‘o‘iwjhgi,jgn)

iXt
= On)! )
N (O
. 1
=y (=1 Sm () Xm(227),
™ (7)m
with X\ € C, a = diag(a, ..., ay), and 1, ...,z, are the eigenvalues of v = zz*.

b) Asymptotics of spherical functions

17



In order to state the result we need some notation. As we saw in Section 3 the spherical
dual X, of the pair (G(p), K(p)) can be identified to X, = E; U 212,, with
211, ={(\,m) | A € R*, m is a partition, ¢{(m) < n},
S ={peR"|p1 > >p, >0}
We also saw that the spherical function corresponding to o € ¥, can be written
1

oo ) = M b~ L L e
SDZJ( ) 7t) zk:(n)k (p)k k( )Xk( )

Define
Q:{()‘7a)|)‘€R7 OéE]Rn, alZ"'ZanZO}v

and, for w = (\, «),

o\, a; 2, 1) = eMemz M / e~truzzuTe) g ().
U(n)

Finally define the map T}, : ¥, — Q by,
1
for o = (\,m) € 3}, Ty(0) = (A, =[Ajm),
p

1
foro=pe EIZ), T,(c) = (0, z_ap)

Theorem 5.3. If (¢(P)) is a sequence with o) € ¥, such that

lim T,(c”) =w = (A, a),

p—o0

then
lim ¢, (0®;2,t) = p(\, a; 2, 1),
p—00

uniformly on compact sets in H.

Proof. We will use
si(x) = sk(x) 4 terms of order < [k|,

(P ~p™ (p— o00).
Hence,

1 1
if lim —A®m® = q, then lim —— AP |* g (mP) = sy (),
p—00 p p—oo (P)k

1 1
if lim —p® =aq, then lim ——s.(p®) = sy (a).
p—0o0 P p—oo (P)k

18



Therefore,
1
if lim T,(c®) = (\ a), then lim ——ar(c®) = s (a).

p—00 pP—0 (P)k

It follows that, by Lemma 3.4,

, 2 1
lim o)z 1) = eMemz M E —1)lkl sk (o 22"
P00 SDP( ) - ( ) (n)k k( )Xk( )

= o\, o 2,t).

Corollary 5.4. For (A, a) € Q, the spherical function (X, a; z,t) is of positive type.

We will see that we obtain in that way all the spherical functions of positive type for
the pair (G, K).

Theorem 5.5. If (0\P)) is a sequence with o®) € ¥, such that

lim @,(0?);2,t) = ¢(2,1),

p—0o0

uniformly on compact sets in H, where ¢ is a continuous function on H, then the sequence
T,(cP)) converges in Q,
lim T,(cP) = (\, a),

p—)OO

and
(2 t) = P\, i 2,).

Proof. For z =0,
SO(O,I‘;) = lim SOp(U(p),O,t) — lim ez‘)\(P)t’
p—00

p—0o0

uniformly on compact sets in R, with ¢® = (A®) m®) if ) ¢ >}, and AP) = 0 if
o) e Zg. Hence the sequence A() converges, and ¢(0,t) = e, with A\ = lim,_, AP,
Fort =0, z = xFq1, with z € R, put

¢p($> = gpp(o'(p); k1, 0)'

The function %, is continuous and of positive type on R, with ¢,(0) = 1. By Bochner’s
Theorem, 1, is the Fourier transform of a probability measure v, on R,

uyla) = [ e, dy).
R
As in Lemma 3.5, we write the expansion at order 4 of the function 1, as
djp(x) =1- An7p(0'(p))$2 + Bn’p(g(p))lA 4+
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The moments of order 2 and 4 of the measure v, are given by
Ma(vp) =2An(0), Ma(vp) =24 By, p(0).
By Lemma 3.5 there is a constant D, which does not depend on p, such that
Bmp(a(p)) <D (An,p(a(p))f'
If the sequence (1),,) converges uniformly on compact sets, then the sequence (v,) converges
for the weak topology, hence is relatively compact. Therefore, by Lemma 4.3, there is a

constant C such that
A, ,(cP) < C.

This shows that the sequence (T » (O'(p))) is relatively compact in 2. By what has been said
at the end of Section 4, this proves the statement. []

By Corollary 5.4, and Theorem 5.5 with Theorem 4.2 we obtain:

Corollary 5.6. The spherical functions of positive type for the pair (G, K) are the
functions p(\, a; z,t), with (A, a) € Q.

6. An Olshanski spherical pair with infinite rank. We consider now the fol-
lowing increasing sequences, for ¢ fixed:

V(n)=M(n,n+¢q;C), H(n)=V(n) xR,

Kn)=U(n)xU(n+gq), Gn)=K(n)x H(n),
with the inductive limit -
H=|]H(n),
n=1
and the Olshanski spherical pair
G=|JGmn), K=|]JKn)
n=1 n=1

a) Spherical functions

Theorem 6.1. Let ¢ be a continuous function on H which is K-invariant. Then ¢
is spherical if and only there exist A € C, and a continuous function ® defined on [0, oo
with ®(0) = 1, such that
©(z,t) = eMdet (z2%).
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The matrix ®(z2*) is defined via the functional calculus. We will use an asymptotic
property of the Haar measure of the unitary group U(n). Let L,, denote the following

subgroup of U(n):
L, O
Lm—{(o U)|v€U(n—m)},

(0 -,
Wy = I, 0 .

Lemma 6.2. Let f be a continuous function on U(oco) which is Ly, -biinvariant. Then

and w,, € U(2m):

im [ ) = [ o () ) ),

(See [Olshanski, 1990], p.449-452, [Faraut,2006], Theorem 5.3, or [Faraut,2008], Propo-
sition 3.3.)

Proof of Theorem 6.1. By Lemma 6.2, if 2,2’ € V(m), then

lim e(z+ k-2 t+t +Im(z|k - 2')) a, (dk)

/U(m) xU(m)xU(m+q)xXU(m+q)
m+g

ﬁm (du1>ﬂm (dUQ)ﬁm—Fq (d'Ul )ﬁm+q (dUQ)'

/% * / /% * *
o (2 + wrwmugz'vywy, | o7, t+ '+ Im(zluywmusz vywy, 7))

Since K (m) acts trivially on the space w,V (m)wy,,, the integrant does not depend on
u1,v1, and since ¢ is K invariant, its does not depend on us,vs either. Furthermore the
spaces V(m) and w,,V (m)wy, ,, are orthogonal. Therefore

lim e(z+k -2 t+t +Im(zlk - 2'))an(dk) = p(z + wm 2wy, T+ 1),
n—oo K(n)

Hence the function ¢ is spherical if and only if it satisfies the following multiplicative
property: for z,z' € V(m),

go((z+wmz'w;+q,t+t’) = p(z,t)p(2',t). []

Such a function ¢ is an exponential with respect to ¢, and is completely determined by its
restriction to V(1) x R and this restriction is U(q + 1)-invariant: for z € V(1) ~ C+!,
t e R,

p(z,t) = Mo(|[2]%),
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where ® is a continuous function [0, co[, and X € C. [

b) The topological space =
Before introducing the spherical dual of the Olshanski spherical pair (G, K), we define

E={¢=(a,7) |a=(a)), a; >0,> a; < oo, v >0},
j=1

and consider on = the following topology. To a continuous function ¢ on [0,00[ one
associates the function L, on Z given by

Ly (€) = y(0) + 3 aplag) (&= (a,7)).

The topology on = is the initial topology with respect to the functions L. Observe that
Y — Ly (&) is a positive measure whose support is bounded. Hence Z is embeded in the
set M ([0, o0[) of bounded positive measures on [0, 00[. The topology on = is induced by
the weak topology on M ([0, 00[). The subset of the £ = («, ) for which only finitely many
a; are non zero, and v = 0 is dense in Z. Furthermore, the set = is closed in M([0, c0[)
([Rabaoui,2008], Theorem 4.3).

Lemma 6.3. For C' > 0, the set

Eo={¢= (7)) aj+7<C}

j=1
18 compact.

Proof. Since, for ¢p = 1, Ly(§) = > o; + v, the set E¢ is closed. Seen as a subset
of M([0,¢0[), E¢ is a set of measures with supports in [0,C], and total measure < C,
therefore relatively compact. ]

The following Pélya type function will play an important role in this section:

oo

o(&a) =[]

j=1

1
1+ajx

(5 = (Oé, ’7))

The function @ is continuous on = x [0, 0o[. We will study its Taylor expansion at 0. For
that we will define an algebra morphism f — f from the algebra A of symmetric functions
into the space C(Z) of continuous functions on =Z. The Newton power sums p,, generate
the algebra A, hence this morphism is well defined as soon as their images p,, are given:
put

P =7+ o
j=1
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and, for m > 2,

Proposition 6.4. (i) For{ € =, x > 0,
(&) =D hm(E)(—)™

(ii) More generally, for x = (x1,...,x,) with ; > 0,

Statement (ii) can be written: for y € Herm(n,C), semi-positive definite,

det ®(&;y) Zsm Xam (—

Proof. Let us compute the logarithmic derivative of ®(&, z) with respect to x:

d
~ L og @
——log®(&;7) = 7+Zl+%

d

It means that, as a function of £, — - log ®(, =) is the image, by the morphism f f, of

the function

S bt (2)(—a)"
m=0

One observes that

> d
> Prri()(—2)" = - log H(z, —a),
m=0 x
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with

Formula (ii) follows from (i) and the identity:
H(z,~2;) = ) sm(2)sm(—2) I

7j=1

c) Asymptotics of spherical functions
As we saw at the end of Section 3 the spherical dual 3, for the Gelfand pair
(G(n), K(n)) can be described as £} U2, with

¥ ={(A\,m)| A € R*, m is a partition, £(m) < n},
Sp={peR"|p>--->p, >0}

For w = (\,§) € Q:=R x =, (2,t) € H, define
o(w; z,t) = M=z A" get D(&;227),

where @ is the Pélya type function we have introduced.
For every n define the map

7;7,:271_)97 0’!—)(,():()\75):<)\7a77)7
with, if ¢ = (\,m) € %1,
1 . ,
aj = 5Alm; (1< j<n), aj=0(ji>n), v=0,

and, if o = p € X2,

1 : :
A=0,0;=—5p; (1<jsn) a;=0(>n), 7=0.

Theorem 6.5. Let (0(™) be a sequence with ™ € %,,. Assume that

lim 7,,(c™) = w,

n—oo
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for the topology of 2. Then

lim ¢, (0™;2,t) = p(w; 2,t),

n—oo

uniformly on compact sets in H.

Before giving the proof we need some preliminaries. Let f* € A* be a shifted sym-
metric function (see [Okounkov-Olshanski,1998a] for the definition), £ = degf*, and f the
homogeneous part of degree £ of f*. For o € ¥,,, define Q(f*, o) as follows:

if o = (A, m) € 2, then Q(f*,0) = [A|f*(m),
if 0 = pe 2, then Q(f*,0) = f(p).

With the notation introduced at the end of Section 3, ax(0) = Q(sy,0).

Proposition 6.6. Let (¢(") be a sequence with o™ € X,,. Assume that

lim 7, (c™) =w = (), &),

n—oo

for the topology of Q). Then, for every f* € A* of degree ¢,

lim —Q(f%,0™) = f(&).

n—oo M

Proof. By the definition of 7,, and the topology of =, for every continuous function v on
[0, 0],

n (n) (n) 0o
T S (M) = S aguta) +1(0),
Jj=1 j=1

with
Ky = |)\|mj7 if o= (Avm) S 27117

pj=pj, if 0 =pe Xy,
w = ()\7 «, ’}/)
The shifted power functions pj

generate the algebra A*. Hence it suffices to prove Proposition 6.6 in case of f* = p;. For
(=1,

oo
p’{(x):sz, ]51(6%7):2043""7-
i j=1
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By taking ¢ = 1, one gets from the assumption

Am e D IITLED I

j=1 Jj+1

or

Assume ¢ > 2, and expand pj:

v -3 () 5 (1) () ()

and, if o = p € X2,

j=1
By taking ¥(s) = s*~! (k > 2) one gets
n M(n) & oo
Jm S2(5) =) =3t
j=1 J=1
It follows that, for k < ¢
no ™k e—k 13 ™k 1
XGr) G =2 XGr) =o()
n n n 4 n n
j=1 j=1

and finally
lim WQ(W, o ™) = pe(a, ).

n—oo N
Proof of Theorem 6.5. Recall that, for o € X,,,

Son(o'; Z,t) z)\t ——\A||| I* Z |k| ﬁ (O)Xk(ZZ*)v
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and that ax (o) = Q(sy, o). By Proposition 6.6,

1 n
Jim —a(et™) = Si(a, 7).
Since (n)k(n + q)x ~ n?¥l (n — 00), it follows, by Lemma 3.4, that
i S50 G ()
n— 00 n + q)

= Z |k|5k (e, 7)xic(22") = det ®(a,v; 22"),

by Proposition 6.4. We have proven

lim ¢, (0'™;2,t) = p(w; 2, ). ]

n—oo

By using the same method it is possible to study asymptotics of the spherical functions

as n and p go to infinity with lim 2 = ¢ (1 < ¢ < oc0).
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