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This is an expanded version of notes of a second-year course taught at the university formerly known as
Paris 6 (at the time of writing in September 2019, it is a part of Sorbonne Université).

The arithmetic part of the course corresponds to chapters 1–4, which cover basic properties of prime
numbers and divisibility, uniqueness of factorisation for integers, Euclid’s algorithm and Bézout’s theorem,
congruences, Euler’s theorem and its variants, and basic applications to cryptography.

The algebraic part of the course corresponds to chapters 6–8, which introduce groups, rings and basic
constructions involving them, and to certain parts of chapters 9–10 treating polynomial rings in one
variable and construction of fields, in particular of finite fields.
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5.4.2 Möbius inversion formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4.4 Function ϕ(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Structure of (Z/pkZ)∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.1 p 6= 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.5 p = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Algebra – motivation 76
6.1 A preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.1 Abstract theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.1.2 Important example: polynomial rings . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2.1 Division with remainder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Groups 78
7.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.1.1 Transformation groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.1.2 Example: G = Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1.4 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1.5 Examples of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1.7 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.1.8 Product of groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2.1 Example: Z ⊂ R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2.4 Examples of subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2.8 Example: cyclic subgroups of C∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2.9 Isometries of Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Cyclic groups, cyclic subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3.1 Powers of g ∈ G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3.5 Multiplicative vs additive notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3.6 Examples of cyclic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.4 Group homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.4.1 Exponential map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.4.3 Examples of group homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.4.7 Examples of Ker(f) and Im(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.4.8 Examples of isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4.12 Example: exp and log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.4.14 Embedding of G into SG (Cayley) . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.5 Order, cyclic (sub)groups, Lagrange’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5.1 A preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5.4 Cyclic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5.7 Summary of properties of cyclic (sub)groups . . . . . . . . . . . . . . . . . . . . . 89
7.5.10 Lagrange’s theorem =⇒ Euler’s theorem . . . . . . . . . . . . . . . . . . . . . . . . 90

7.6 The quotient group G/H (abelian case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.6.1 A preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5



7.6.9 Towards G/H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.6.11 Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.6.12 Examples of quotient groups (abelian) . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.6.14 Multiplicative notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.6.17 Homomorphism theorem: examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.6.18 Universal property of G/H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.6.19 What happens if G is not abelian? . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Rings 95
8.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.1.1 Example: A = Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.1.4 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.1.5 Examples of rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.1.7 Remarks on the inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.1.8 Invertible elements (examples) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.1.11 Product of rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.2 Subrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2.2 Example: Z ⊂ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2.4 Examples of subrings of C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2.6 The centre of a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2.8 Example: C as a subring of M2(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.2.9 Example continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.3 Integral domains, fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.3.3 Examples and Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.3.6 Finite integral domains are fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.3.8 Integral domains of finite dimension (over a field) are fields . . . . . . . . . . . . . 101
8.3.10 Divisibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.3.11 Irreducible elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.4 Ring homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.4.2 Remarks and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.4.4 Example: the Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . . . . 103
8.4.9 Ker(f), Im(f): Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.5 The quotient ring A/I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.5.1 A preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.5.2 Multiplication of congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.5.3 Multiplication of congruences: examples . . . . . . . . . . . . . . . . . . . . . . . . 105
8.5.5 Examples of (bilateral) ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.5.10 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.5.11 Invertible elements of A/I (commutative case) . . . . . . . . . . . . . . . . . . . . 108
8.5.13 Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.5.16 The characteristic of a ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.5.17 The characteristic of a field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9 Polynomial rings A[X] 109
9.1 Definition and basic properties of A[X] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

9.1.1 Informal definition of A[X] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.1.3 Remarks on A[X] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.1.4 Example: deg(ab) 6= deg(a) + deg(b) . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9.2 Roots of polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6



9.2.1 Evaluation morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.2.3 Characterisation of roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.2.5 Taylor’s expansion of a polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.2.8 Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

9.3 Division with remainder in A[X] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.3.1 A preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.3.2 The quotient ring A[X]/(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.3.3 Division with remainder (examples) . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.3.6 Consequences for A[X]/(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10 Polynomial rings K[X] 116
10.1 Basic properties of K[X] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10.1.1 Basic setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

10.2 Division with remainder in K[X] and its consequences . . . . . . . . . . . . . . . . . . . . 117
10.2.1 Division with remainder in K[X] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
10.2.3 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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1 Integers, divisibility, prime numbers

1.1 Divisibility, prime numbers

In this section we introduce the main protagonists of the whole story.

1.1.1 Notation We use the standard notation

N := {0, 1, 2, 3, . . .}, N+ := {1, 2, 3, . . .}, Z := {0,±1,±2,±3, . . .}
Q :=

{
a
b | a, b ∈ Z, b 6= 0

}
for the set of natural integers, positive integers, integers and rational numbers, respectively.

For complex numbers a, b ∈ C and subsets X,Y ∈ C we let

X + Y := {x+ y | x ∈ X, y ∈ Y }, aX = Xa := {aX | x ∈ X}.

With this notation, aX + bY = {ax+ by | x ∈ X, y ∈ Y }.

1.1.2 Factorisation into primes Experience shows that positive integers admit unique factorisation
as products of prime numbers:

1 = 1 7 = 7 13 = 13

2 = 2 8 = 2 · 2 · 2 = 23 14 = 2 · 7

3 = 3 9 = 3 · 3 = 32 15 = 3 · 5
4 = 2 · 2 = 22 10 = 2 · 5 16 = 2 · 2 · 2 · 2 = 24

5 = 5 11 = 11 17 = 17

6 = 2 · 3 12 = 2 · 2 · 3 = 22 · 3 18 = 2 · 3 · 3 = 2 · 32

In this table, the boxed numbers 2, 3, 5, 7, 11, 13, 17 . . . are prime numbers — they cannot be written as
products in a non-trivial way.

1.1.3 Definition. An integer a > 1 is a prime number if a 6= bc for any b, c ∈ N such that b, c 6= 1.
Denote by P = {2, 3, 5, 7, 11, 13, 17 . . .} the set of all prime numbers.
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1.1.4 Definition. Let a, b ∈ Z. We say that b divides a (equivalently, that a is a multiple of b, or
that b is a divisor of a) if there exists c ∈ Z such that a = bc. Notation: b | a (if b does not divide a,
we write b - a).

1.1.5 Basic properties of divisibility The following properties are immediate consequences of the
definition.

• b | a ⇐⇒ bZ ⊇ aZ (“b divides a if and only if every multiple of a is a multiple of b”)

• ∀b ∈ Z b | 0 (since b · 0 = 0), ∀a ∈ Z 1 | a (since 1 · a = a)

• b | ±1 ⇐⇒ b = ±1

• b | a ⇐⇒ ±b | ±a

• b | a1, a2 =⇒ b | (a1 ± a2)

• c | b, b | a =⇒ c | a

• b1 | a1, b2 | a2 =⇒ b1b2 | a1a2 (in particular, b | a =⇒ b2 | a2)

• if c 6= 0, then it is equivalent: b | a ⇐⇒ bc | ac (since ac = bcd ⇐⇒ a = bd).

Moreover,

• if a, b ∈ Z r {0} satisfy b | a and a | b, then b = ±a.

Indeed, we have b = au and a = bv for some u, v ∈ Z, hence a = bv = auv and a(1 − uv) = 0, which
implies that uv = 1 (since a 6= 0) and therefore u, v = ±1.

1.1.6 Exercise. (1) Find all solutions x, y ∈ N of x2 − y2 = n for n = 20, 21 and 22.
(2) If x ∈ Z is even (resp. odd), then x2 = 4k (resp. x2 = 4k + 1) for some k ∈ Z.
(3) {x2 − y2 | x, y ∈ Z} ⊆ (2Z + 1) ∪ 4Z.
(4) {x2 − y2 | x, y ∈ Z} = (2Z + 1) ∪ 4Z.
(5) Does x2 + y2 = 1000003 have a solution x, y ∈ Z?

1.1.7 Exercise. Assume that a ∈ Z and 2 - a. Show that:
(1) 2 | (a± 1) and either 4 | (a− 1) or 4 | (a+ 1).

(2) a2 − 1 = (a − 1)(a + 1) is divisible by 8, a4 − 1 = (a2 − 1)(a2 + 1) is divisible by 16,..., a2
k − 1 is

divisible by 2k+2 (for any k ≥ 1).

1.1.8 Exercise. If p is a prime and p 6= 2 (resp. p 6= 2, 3), then p = 4k ± 1 (resp. p = 6k ± 1) for some
k ∈ N+.
[Hint: write p = 4k + a (resp. p = 6k + a).]

1.1.9 Proposition (Characterisation of prime numbers). An integer a > 1 is a prime number if and only
if a has precisely two positive divisors (namely, 1 and a).

Proof. Indeed, the existence of a positive divisor b | a such that b 6= 1, a is equivalent to a factorisation
a = bc, where b, c ∈ N+ and b, c 6= 1.

1.1.10 Proposition (Primality criterion). For an integer a > 1, the following properties are equivalent.
(1) a is not a prime number.
(2) There exists an integer b such that 1 < b ≤

√
a and b | a.

(3) There exists a prime number p such that p ≤
√
a and p | a.
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Proof. The implications (3) =⇒ (2) =⇒ (1) are automatic. If (1) holds, then a = bc for some integers
1 < b ≤ c; then b | a and b2 ≤ bc = a, hence b ≤

√
a, as required in (2). If (2) holds, then there exists a

prime number p dividing b, by Proposition 1.2.1 below; then p | a and p ≤
√
a.

1.1.11 Examples of primes (1) Is a = 89 a prime number? Yes, it is, since 89 < 102 and 2, 3, 5, 7 - 89
(here {2, 3, 5, 7} = {p ∈ P | p < 10}).
(2) Is a = 91 a prime number? Again 91 < 102 and 2, 3, 5 - 91, but 7 | 91 = 7 · 13; therefore 91 is not a
prime.

1.1.12 Exercise. (1) If (an) and (bn) (n ≥ 0) are two sequences of complex numbers such that
an = bn − bn−1 holds for all n ≥ 1, then

∀n ≥ 0

n∑
k=1

ak = bn − b0.

(2) Compute bn − bn−1 for bn = n, bn = n(n+ 1), bn = n(n+ 1)(n+ 2) etc.
(3) Compute

n∑
k=1

k,

n∑
k=1

k(k + 1),

n∑
k=1

k(k + 1)(k + 2),

n∑
k=1

k2,

n∑
k=1

k3.

1.2 Existence of factorisation

1.2.1 Proposition (Existence of factorisation). Every integer n ≥ 1 is a product of (not necessarily
distinct) prime numbers n = p1 · · · pr (r ≥ 0).
[Note that n = 1 ⇐⇒ r = 0. Here we use the convention that an empty product x1 · · ·xr for r = 0 is
equal to 1, in the same way that an empty sum x1 + · · ·+ xr for r = 0 is defined to be equal to 0.]

Proof. We argue by induction. If n = 1, then we can take r = 0. Assume that n > 1 and that the
statement holds for all positive integers m < n. There are two possibilities:

Case 1 . n is a prime. In this case n = p1.

Case 2 . n is not a prime. In this case n = ab for some positive integers a, b > 1 (which implies that
a = n/b < n and b = n/a < n). By induction hypothesis, both a = p1 · · · pr and b = q1 · · · qs are products
of primes, hence n = p1 · · · prq1 · · · qs is a product of primes, too.

1.2.2 Remark on proofs by induction The proof of Proposition 1.2.1 used mathematical induction.
In general, proofs by induction can be reformulated in terms of the following Minimality Principle for
subsets of N.

1.2.3 Theorem (Minimality Principle). Every non-empty subset S ⊂ N contains a minimal element
(i.e., an element a ∈ S such that there is no b ∈ S satisfying b < a).

1.2.4 Using the Minimality Principle Let us rephrase the above proof of Proposition 1.2.1 in the
language of the Minimality Principle 1.2.3. Let S ⊂ N+ be the set of all positive integers for which
1.2.1 does not hold: S := {a ∈ N+ | a 6= p1 · · · pr (r ≥ 0)}. We want to show that S = ∅. Arguing by
contradiction, assume that S is not empty. Therefore there exists a minimal element a ∈ S. It satisfies
a > 1 (since 1 6∈ S) and a 6∈ P (since S ∩ P = ∅), hence there exist integers b, c > 1 such that a = bc, by
Proposition 1.1.9. As b, c < a, the minimality of a ∈ S implies that b, c 6∈ S. Therefore a = p1 · · · pr and
b = q1 · · · qs are products of primes, and so is a = p1 · · · prq1 · · · qs.
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1.2.5 There are infinitely many primes A proof of the following fundamental result is given already
in Euclid’s Elements.

1.2.6 Theorem. There are infinitely many prime numbers.

Proof. It is enough to show that, for any given finite set of primes A = {p1, . . . , pr} (r ≥ 0), there exists
a prime p 6∈ A. Consider the positive integer N := 1 + p1 · · · pr ≥ 1 + 1 = 2 (where N = 2 ⇐⇒ r = 0).
According to Proposition 1.2.1, there exists a prime number p | N . We claim that p 6∈ A. Indeed, if
p ∈ A, then p = pi for some i, hence p | (N − 1). Therefore p | N − (N − 1), which is impossible. This
contradiction shows that p 6∈ A, as claimed.

1.2.7 Primes modulo 10 An inspection of tables of primes

p = 10k + 1 11 31 41 61 71 101 131 151

p = 10k + 3 3 13 23 43 53 73 83 103

p = 10k + 7 7 17 37 47 67 97 107 127

p = 10k + 9 19 29 59 79 89 109 139 149

seems to suggest that there are infinitely many primes in each of the four arithmetic progressions 10k+ 1,
10k + 3, 10k + 7 and 10k + 9. This is, indeed, true, as a consequence of a general result due to Dirichlet
(see Theorem 5.2.12). In Propositions 5.2.2 and 5.2.4 we show that there are infinitely many primes of
the form p = 4k + 3 and p = 4k + 1, respectively.

A second look at the above table suggests that, in a given range p ≤ X, primes of the form 10k + 3
and 10k + 7 seem to appear more frequently than those of the form 10k + 1 and 10k + 9. This kind of a
phenomenon was first noticed by Čebyšev and is still being actively investigated under the technical term
“Prime number races”.

1.3 Factorisation of numbers an ± 1

It is natural to ask whether there are any hidden rules governing factorisation of integers of special form.
For example, one can consider integers an ± 1, for fixed a > 1 and variable n.

1.3.1 Useful formulas Recall that

X4 − 1 = (X − 1)(X3 +X2 +X + 1), Y 3 + 1 = (Y + 1)(Y 2 − Y + 1).

More generally,

Xm − 1 = (X − 1)(Xm−1 +Xm−2 + · · ·+X + 1), (1.3.1.1)

Y 2k+1 + 1 = −((−Y )2k+1 − 1) = (Y + 1)(Y 2k − Y 2k−1 + · · ·+ Y 2 − Y + 1). (1.3.1.2)

1.3.2 Factorisation of Mersenne numbers 2n − 1 The following table contains factorisations of
the Mersenne numbers Mn = 2n − 1 for small values of n.
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n Mn

1 1

2 3

3 7

4 15 = 3 · 5
5 31

6 63 = 3 · 3 · 7
7 127

8 255 = 3 · 5 · 17

9 511 = 7 · 73

10 1023 = 3 · 11 · 31

We see that, for 1 ≤ n ≤ 10, the number Mn is a prime if and only n = 2, 3, 5, 7 is a prime. Does this
behaviour continue for n > 10?

For the next prime number n = 11 we have M11 = 2047 < 462. In order to test its primality, we need to
check its (non)divisibility by primes p < 46. Indeed, 2, 3, 5, 7, 11, 13, 17, 19 - M11, but 23 | M11 = 23 · 89.
So M11 is not a prime!

Nevertheless, the converse holds:

1.3.3 Proposition. If Mn = 2n − 1 is a prime, so is n.

Proof. We must show that Mn is not a prime if n is not a prime. In this case either n = 1 (when Mn = 1
is not a prime), or n = ab for some integers a, b > 1. The formula (1.3.1.1) for X = 2a and m = b shows
that

Mn = 2ab − 1 = (2a − 1)(2a(b−1) + 2a(b−2) + · · ·+ 2a + 1)

is a non-trivial product (since 1 < 2a − 1 < 2ab − 1), hence Mn is not a prime.

1.3.4 Mersenne primes If p is a prime for which Mp is also a prime, we say that Mp is a Mersenne
prime. This property can be checked using the Lucas–Lehmer criterion in Theorem (1.3.5) below or its
variants. In 1876, Lucas used his criterion to show that M127 is a prime. At the time of writing (August
2019), the biggest known explicit prime is the prime Mp for p = 82589933 (Mp has 24 862 048 decimal
digits). See https://www.mersenne.org/

1.3.5 Theorem (Lucas, Lehmer). Let (an)n≥0 be the sequence of integers defined by a0 = 2, a1 = 1 and
an+2 = an+1 + an.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
an 2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207

If p = 4k + 3 (k ∈ Z) is a prime, then Mp is a prime if and only Mp divides a2p−1 . [This can be
reformulated in terms of the recursive formulae a2n+1 = a22n − 2 (n ≥ 1).] A similar result holds for the
sequence (bn)n≥0 given by b0 = 2, b1 = 4 and bn+2 = 4bn+1 − bn (for which b2n+1 = b22n − 2 (n ≥ 0)),
without the restriction p = 4k + 3.

1.3.6 Factorisation of 2n + 1 Let us now turn to factorisations of the numbers An = 2n + 1.
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n An

1 3

2 5

3 9 = 3 · 3
4 17

5 33 = 3 · 11

6 65 = 5 · 13

7 129 = 3 · 43

8 257

9 513 = 33 · 19

10 1025 = 52 · 41

We see that, for 1 ≤ n ≤ 10, the number An is a prime if and only n = 1, 2, 4, 8 is a power of 2. Does this
behaviour continue for n > 10? Firstly, there is an analogue of Proposition 1.3.3.

1.3.7 Proposition. If An is a prime, then n = 2k (k ∈ N).

Proof. If n ∈ N+ is not of the form n = 2k (k ∈ N), then it can be written as n = ab for some integers
a, b > 1 with 2 - b. The formula (1.3.1.2) for Y = 2a and m = b shows that

An = 2ab + 1 = (2a + 1)(2a(b−1) − 2a(b−2) + · · · − 2a + 1)

is a non-trivial product (since 1 < 2a + 1 < 2ab + 1), hence An is not a prime.

1.3.8 Fermat numbers Secondly, we need to examine the Fermat numbers Fk = A2k = 22
k

+ 1. If
Fk is a prime, it is called a Fermat prime. The first five Fermat numbers in the following table are all
Fermat primes.

k 0 1 2 3 4
Fk 3 5 17 257 65537

However, Euler showed that the next one F5 = 232 + 1 is divisible by 641, and therefore is not a prime.
In fact, at the of time of writing (August 2019), it is not known whether any Fermat number Fk for k > 4
is a prime. What is known is that none of the Fk for 5 ≤ k ≤ 32 is a prime.

1.3.9 Fermat primes and geometry One of the earliest major discoveries of Gauss (and perhaps his
most treasured one) was a geometric construction of a regular polygon with 17 sides. It is no coincidence
that the address of the Mathematical Research Institute in Berkeley is 17 Gauss Way!

More precisely, Gauss showed that, for any Fermat prime p = Fk (in particular, for p = 17), one can
construct a regular p-gon inscribed to a unit circle by a geometric construction involving only iterated
intersections of lines and circles beginning with two points at a unit distance.

In general, it is known that such a geometric construction exists for a regular n-gon if and only if

n = 2ap1 · · · pr, where pj = 22
kj

+ 1 are distinct Fermat primes.

1.3.10 Factorisation of 3n ± 1 What is going on for numbers of the form 3n ± 1? Here are a few
numerical examples.

n 1 3 5 7

(3n − 1)/2 1 13 121 = 112 1093

(3n + 1)/4 1 7 61 547
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n 2 4 6 8

(3n − 1)/8 1 10 = 2 · 5 91 = 7 · 13 820 = 22 · 5 · 41

(3n + 1)/2 5 41 365 = 5 · 73 3281

1.3.11 Exercise. Let n ≥ 1 be an integer.
(1) If 2 - n, then 2 - (3n − 1)/2.
(2) If 2 - n and if (3n − 1)/2 is a prime, then n = p is a prime.
(3) If 2 | n, then 2 - (3n + 1)/2.
(4) If 2 | n and if (3n + 1)/2 is a prime, then n = 2k.

1.4 Uniqueness of factorisation, Euclid’s Lemma, p-adic valuations

1.4.1 Theorem (Uniqueness of factorisation). Every non-zero integer a ∈ Z r {0} can be written in
the form a = ±p1 · · · pr, where r ≥ 0 and p1, . . . , pr are (not necessarily distinct) prime numbers (and
±1 = sgn(a)). If a sgn(a) = p1 · · · pr = q1 · · · qs, where s ≥ 0 and q1, . . . , qs are prime numbers (again,
not necessarily distinct), then r = s and, after a suitable renumbering of the indices j = 1, . . . , s, we have
pi = qi for all i = 1, . . . , r = s.

Proof. We need to prove the uniqueness statement. If r = 0, then a sgn(a) = 1, hence s = 0. Assume that
r > 0 and that the statement holds for r − 1. The product q1 · · · qs is divisible by pr. Euclid’s Lemma
1.4.3 below implies that pr | qj for some 1 ≤ j ≤ s. After renumbering, we can assume that pr | qs. The
only positive divisors of qs are 1 and qs; thus pr = qs. We can divide the equality p1 · · · pr = q1 · · · qs by
pr, obtaining p1 · · · pr−1 = q1 · · · qs−1. By induction hypothesis, we have (after renumbering the indices),
r − 1 = s− 1 and pi = qi for all i = 1, . . . , r − 1.

1.4.2 Theorem (Uniqueness of factorisation (equivalent formulation)). Every non-zero integer a ∈ Zr{0}
can be written uniquelly in the form a = ±pk11 · · · p

kt
t , where p1 < · · · < pt are prime numbers, t ≥ 0 and

k1, . . . kt ≥ 1.

Proof. One rewrites the product in Theorem 1.4.1 by putting the primes p occurring there in an increasing
order and collecting together the terms with the same value of p. This defines a canonical numbering of
the primes in the product.

1.4.3 Lemma (Euclid’s Lemma). Let a, b ∈ Z r {0}. If a prime number p satisfies p | ab and p - b, then
p | a.

Proof. We know that p divides ab and ap; we want to show that it also divides a · 1 = a. It is natural,
therefore, to investigate the set

X := {x ∈ Z | p | ax}.

Note that x± y ∈ X whenever x, y ∈ X. As p, b ∈ X, it follows that

X ⊃ pZ + bZ = {pu+ bv | u, v ∈ Z}.

A weak form of Bézout’s theorem proved in Theorems 2.3.3 and Theorem 2.4.2 below states that pZ+bZ =
dZ for some d ∈ N+. In particular, both p, b ∈ pZ + bZ = dZ are multiples of d. However, p has only two
positive divisors, 1 and itself; thus d = p or d = 1. The case d = p is impossible, since b is not a multiple
of p. Therefore d = 1, which implies that 1 = d ∈ X and p | a · 1.
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1.5 p-adic valuations and their applications

1.5.1 Exponents in the prime factorisation The factorisation of a ∈ Z r {0} in Theorem 1.4.2
can be written as

a = ±pk11 · · · p
kt
t = ±

∏
p∈P

pk(p), k(p) =

{
ki if p = pi

0 if p 6∈ {p1, . . . , pt}.

The exponents k(p) ∈ N are non-zero only for finitely many p ∈ P, and they are uniquely determined by
a, thanks to Theorem 1.4.2. As we shall see, all divisibility relations between non-zero integers can be
stated in terms of these exponents. It is important, therefore, to give the exponents k(p) a name.

1.5.2 Definition. Let a ∈ Z r {0}. For each prime number p ∈ P the p-adic valuation vp(a) of a
is defined as the exponent with which p occurs in the (unique) factorisation of a as a product of prime
powers:

a = sgn(a)
∏
p∈P

pvp(a) (1.5.2.1)

(vp(a) ∈ N, and vp(a) = 0 for all but finitely many p ∈ P). It is also useful to define vp(0) := +∞.
[For example, ±56 = ±23 · 7, v2(±56) = 3, v7(±56) = 1, vp(±56) = 0 for all p 6= 2, 7.]

1.5.3 Warning Note that the definition of vp(a) makes sense only if we admit the truth of Theorem
1.4.2, which has not yet been fully proved in the previous sections. Its proof will be completed only when
we establish Bézout’s theorem (at least in its weak form).

1.5.4 Proposition (Properties of the p-adic valuation). Let a, b, c ∈ Z r {0}. Then:
(1) a = ±b ⇐⇒ ∀p ∈ P vp(a) = vp(b).
(2) ∀p ∈ P vp(bc) = vp(b) + vp(c).
(3) b | a ⇐⇒ ∀p ∈ P vp(b) ≤ vp(a).
(4) For each p ∈ P and k ≥ 0, pk | a ⇐⇒ k ≤ vp(a).
(5) ∀p ∈ P vp(a+ b) ≥ min(vp(a), vp(b)).
(6) If vp(a) 6= vp(b), then ∀p ∈ P vp(a+ b) = min(vp(a), vp(b)).

Proof. The parts (1) and (2) follow immediately from the definition (1.5.2.1). In part (3), if b | a, then
a = bc for some c ∈ Z r {0}, hence vp(a) = vp(b) + vp(c) ≥ vp(b) holds for all p ∈ P, by (2). Conversely,
if ∀p ∈ P vp(b) ≤ vp(a), let

c := sgn(b)−1sgn(a)
∏
p∈P

pvp(a)−vp(b).

All but finitely many exponents vp(a)− vp(b) ≥ 0 are zero, which implies that c ∈ Zr {0} is well defined
and satisfies bc = sgn(a)

∏
p∈P p

vp(a) = a. Therefore b | a. Part (4) is a special case b = pk of (3). In (5)

and (6) we can assume that k := min(vp(a), vp(b)) = vp(a) ≤ vp(b). According to (4), pk | a and pk | b,
hence pk | (a + b), which is equivalent to k ≤ vp(a + b). This proves (5). In (6) we have, in addition
k < vp(b), and therefore pk+1 | b. If it were true that vp(a + b) > k, then we would have pk+1 | (a + b),
hence also pk+1 | (a+ b)− b = a, which is false. Therefore vp(a+ b) ≤ k, which proves (6).

1.5.5 Proposition. For any a, b ∈ Z r {0} we have: b | a ⇐⇒ b2 | a2.
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Proof. The implication ‘=⇒’ is automatic: if a = bc for some c ∈ Z, then a2 = b2c2 and c2 ∈ Z, hence
b2 | a2. However, the converse ‘⇐=’ requires unique factorisation and some of its consequences proved in
Proposition 1.5.4 (cf. the discussion around Proposition 1.5.20 below): if b2 | a2, then

∀p ∈ P vp(b
2)︸ ︷︷ ︸

2vp(b)

≤ vp(a2)︸ ︷︷ ︸
2vp(a)

, hence ∀p ∈ P vp(b) ≤ vp(a), and therefore b | a.

1.5.6 Divisors of n If n = pk11 · · · p
kt
t is a prime factorisation of a given positive integer n, then the

set of positive divisors of n is equal to

{pl11 · · · p
lt
t | ∀i = 1, . . . , t 0 ≤ li ≤ ki}.

There are ki + 1 possible values of the exponent li, which means that the number of positive divisors of
n is equal to

(k1 + 1) · · · (kt + 1) =
∏
p|n

(vp(n) + 1)

(with the convention that p always denotes a prime number).

Example: n = 12 = 22 · 31. The set of all positive divisors of 12 is equal to

{2i · 3j | 0 ≤ i ≤ 2, 0 ≤ j ≤ 1} = {1, 2, 22, 3, 2 · 3, 22 · 3} = {1, 2, 4, 3, 6, 12}.
The sum of all positive divisors of 12 is equal to

1 + 2 + 22 + 3 + 2 · 3 + 22 · 3 = (1 + 2 + 22)(1 + 3) = 7 · 4 = 28.

1.5.7 Exercise. For n = pk11 · · · p
kt
t as above, the sum of all positive divisors of n is equal to

σ1(n) :=
∑
d|n

d = σ1(pk11 ) · · ·σ1(pktt ) = (1 + p1 + · · ·+ pk11 ) · · · (1 + pt + · · ·+ pktt ) =

=

t∏
i=1

(
pki+1
i − 1

pi − 1

)
=
∏
p|n

(
pvp(n)+1 − 1

p− 1

)
.

More generally, for any s ∈ C, the sum of the s-th powers of all positive divisors of n is equal to

σs(n) :=
∑
d|n

ds =

t∏
i=1

σs(p
ki
i ), σs(p

k) = 1 + ps + · · ·+ pks =
p(k+1)s − 1

p− 1
.

Explicitly, determine the number and the sum of all positive divisors of n = 2160.

1.5.8 Perfect numbers The sum of all proper positive divisors (i.e., those less than n) of n = 6 is
equal to 1 + 2 + 3 = 6 = n. Similarly, for n = 28 we have 1 + 2 + 4 + 7 + 14 = 28 = n.

Positive integers satisfying this property ∑
d|n
d6=n

d = n

(which is equivalent to σ1(n) = 2n) are called perfect numbers. Conjecturally, no odd perfect numbers
exist. Even perfect numbers are classified as follows.
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1.5.9 Exercise. If Mp = 2p − 1 is a Mersenne prime, then the number n = 2p−1(2p − 1) is perfect.
Conversely, any even perfect number is of this form.

1.5.10 Irrationality of n
√
a (1)

√
3 is irrational: if

√
3 ∈ Q, then

√
3 = a

b for some a, b ∈ N+, hence
3b2 = a2. It follows that, for every prime p ∈ P,

vp(3b
2) = vp(a

2) =⇒ vp(3) + 2vp(b) = 2vp(a).

For p = 3 we obtain 1 + 2v3(b) = 2v3(a) and 1 = 2(v3(a)− v3(b)), which is impossible, since 2 - 1.

(2) α = 5+ 3√20
7 is irrational: if α ∈ Q, then 3

√
20 = 7α − 5 ∈ Q. Writing 3

√
20 = a

b with a, b ∈ N+, we
obtain 20b3 = a3 and

∀p ∈ P vp(20b3) = vp(a
3),

hence, as above, vp(20) = 3(vp(a) − vp(b)) must divisible by 3. However, this is false for p = 2, 5, since
20 = 22 · 5: v2(20) = 2 and v5(20) = 1. So, taking p = 2 or p = 5, we obtain a contradiction.

The general result is the following.

1.5.11 Theorem (Irrationality of n
√
a). Let a, n ∈ N+. The following properties are equivalent:

(1) n
√
a ∈ Q.

(2) ∀p ∈ P n | vp(a).
(3) There exists b ∈ N+ such that a = bn.
(4) n
√
a ∈ Z.

Proof. The implications (3) ⇐⇒ (4) =⇒ (1) are automatic, whereas (3) =⇒ (2) follows from vp(a) =
vp(b

n) = nvp(b). Conversely, if (2) holds, then b :=
∏
p∈P p

vp(a)/n ∈ N+ and bn = a, proving (3). Finally,

if (1) holds, then n
√
a = b

c for some b, c ∈ N+ such that acn = bn. This implies, for each p ∈ P, that
vp(ac

n) = vp(a) + nvp(c) is equal to vp(b
n) = nvp(b), hence vp(a) = n(vp(b)− vp(c)) is divisible by n.

1.5.12 Corollary. If a, n ∈ N+ and if there exists k ∈ N+ such that kn < a < (k + 1)n, then n
√
a 6∈ Z,

hence n
√
a 6∈ Q.

1.5.13 Theorem (Uniqueness of factorisation in Q). Every non-zero rational number a ∈ Q r {0} can
be written in a unique way as a product

a = sgn(a)
∏
p∈P

pk(p),

where the exponents k(p) ∈ Z are non-zero only for finitely many p ∈ P. For each p ∈ P we define the

p-adic valuation of a to be the integer vp(a) := k(p) ∈ Z. [For example, a = 15
100 = 31·51

22·52 = 3
20 = 3

22·51 =
2−2 · 31 · 5−1 and v2(a) = −2, v3(a) = 1, v5(a) = −1 and vp(a) = 0 for p 6= 2, 3, 5.]

Proof. Existence: choose b, c ∈ Z r {0} such that a = b/c; then

a = sgn(b)
∏
p∈P

pvp(b)/sgn(c)
∏
p∈P

pvp(c) = sgn(a)
∏
p∈P

pvp(b)−vp(c).

Uniqueness: assume that ∏
p∈P

pk(p) =
∏
p∈P

pl(p), (1.5.13.1)

where the integers k(p), l(p) ∈ Z are non-zero only for p lying in a finite subset S ⊂ P. After multiplying
(1.5.13.1) by

∏
p∈S p

n, where n ≥ maxp∈S(|k(p)|+ |l(p)|, we obtain
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∏
p∈P

pk(p)+n =
∏
p∈P

pl(p)+n,

where k(p) + n, l(p) + n ≥ 0 for all p ∈ S. The uniqueness statement in Theorem 1.4.2 implies that
k(p) + n = l(p) + n (hence k(p) = l(p)) for all p ∈ S.

1.5.14 Exercise. The statements (1), (2), (5) and (6) in Proposition 1.5.4 hold for a, b ∈ Q r {0}.

1.5.15 Exercise. The number (4/7)4/7 is irrational.

1.5.16 Exercise. Let a ∈ Q, a > 0 and n ∈ N+. It is equivalent: n
√
a ∈ Q ⇐⇒ ∀p ∈ P n | vp(a).

1.5.17 Digression on subrings of C Is it possible to prove the implication b2 | a2 =⇒ b | a in
Proposition 1.5.5 without appealing to the uniqueness of factorisation? The answer is “NO”. The point
is that one can define divisibility in more general domains that in Z, and in some of them the above
implication fails to hold, as we are going to see.

1.5.18 Definition. A subring of C is a subset A ⊂ C such that

0, 1 ∈ A; a, b ∈ A =⇒ a± b, ab ∈ A.

For a, b ∈ A we define b | a (b divides a) if there exists c ∈ A such that a = bc.
A subfield of C is a subring A ⊂ C such that

a ∈ Ar {0} =⇒ a−1 ∈ A.

An additive subgroup of C is a subset X ⊂ C such that

0 ∈ X; x, y ∈ X =⇒ x± y ∈ X.

In particular, any subring of C is an additive subgroup of C.

1.5.19 Examples of subrings and additive subgroups of C (1) X = 1
2Z is an additive subgroup

of C, but it is not a subring of C (since 1
2 ·

1
2 6∈

1
2Z).

(2) A = Z is a subring of C.
(3) A = Z + iZ = {u+ iv | u, v ∈ Z} is a subring of C.
(4) A = Z + 2iZ = {u+ 2iv | u, v ∈ Z} is a subring of C.
(5) A = Q + iQ = {u+ iv | u, v ∈ Q} is a subfield of C (since (u+ iv)−1 = (u− iv)/(u2 + v2)).

1.5.20 Proposition. (1) If A ⊂ C is a subring, a, b ∈ A and b | a, then b2 | a2.
(2) In the subring A = Z + 2iZ, consider b = 2 and a = 2i. Then b2 | a2, but b - a in A.

Proof. (1) is proved as in Proposition 1.5.5. In part (2), 22 = 4 divides (2i)2 = −4 (since −1 ∈ A), but 2
does not divide 2i (since i 6∈ A).

1.5.21 Metaremark In general, “easy” implications involving divisibility, such as b | a =⇒ b2 | a2,
hold in any subring of C. This means that if we find a subring of C in which a certain implication
involving divisibility (such as b2 | a2 =⇒ b | a) does not hold, as in Proposition 1.5.20(2) above, then even
in the case when such an implication happens to hold in Z, its proof cannot follow from basic properties
of divisibility, such as those listed in Section 1.1.5.
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1.5.22 Exercise. Let a, b ≥ 1 be positive integers. Which of the following statements are true, and
why:
(1) if b2 | a3, then b | a.
(2) if b3 | a2, then b | a.
(3) if b3 | a3, then b | a.

1.5.23 Exercise. (1) What is the smallest additive subgroup of C containing 1
2 (resp. i

2 )?

(2) What is the smallest subring of C containing 1
2 (resp. i

2 )?

1.5.24 Binomial coefficients In Exercise 2.6.6 we are going to discuss divisibility of binomial coef-
ficients by various primes. Here we consider the simplest possible case.

1.5.25 Proposition. If p is a prime number, then
(
p
j

)
is divisible by p, for all integers 0 < j < p.

Proof. The formula (
p

j

)
=
p(p− 1) · · · (p− j + 1)

1 · 2 · · · j
implies that

vp(

(
p

j

)
) = vp(p) +

j−1∑
i=1

vp(p− i)−
j∑
i=1

vp(i) = 1 + 0− 0 = 1.

1.5.26 Theorem (Fermat’s little theorem). If p ∈ P and a ∈ Z, then p | (ap − a).

Proof. The binomial formula implies that

(a+ 1)p − (a+ 1) = (ap − a) +R, R =
∑

0<j<p

(
p

j

)
aj .

According to Proposition 1.5.25, the integer R is divisible by p. Consequently, the statement of the
theorem holds for a+ 1 if and only if it holds for a. As it is trivially true for a = 0, it is true for all a ∈ Z,
by induction.

1.5.27 Exercise. Prove Fermat’s little theorem for p = 2 and p = 3 directly, using the formulas a2−a =
a(a− 1) and a3− a = (a− 1)a(a+ 1). What about the case p = 5, when a5− a = (a− 1)a(a+ 1)(a2 + 1)?

1.6 The greatest common divisor, the least common multiple

1.6.1 Common divisors (example) For a = 44 = 22 · 11 and b = 16 = 24 we have

{divisors of 44} = {±1,±2,±4,±11,±22,±44}, {divisors of 16} = {±1,±2,±4,±8,±16}
{common divisors of 44 and 16} := {divisors of 44} ∩ {divisors of 16} =

= {±1,±2,±4} = {divisors of 4}.

We see that 4 is the greatest common divisor of 44 and 16 with respect to divisibility: it is a
common divisor of 44 and 16, and it is divisible by all common divisors of these two numbers. It is
denoted by
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gcd(44, 16) = 4.

1.6.2 Theorem (Existence and uniqueness of the gcd). Let a, b ∈ Z r {0}.
(1) There exists a unique positive integer d ∈ N+ such that

(a) d | a and d | b;
(b) if c ∈ Z r {0}, c | a and c | b, then c | d.

We denote it by gcd(a, b) (the greatest common divisor of a and b).
(2) If a = ±

∏
p∈P p

vp(a) and b = ±
∏
p∈P p

vp(b), then d = gcd(a, b) =
∏
p∈P p

min(vp(a),vp(b)).
(3) If gcd(a, b) = 1, we say that the integers a and b are relatively prime.

Proof. (1) The uniqueness is easy: if d, d′ ∈ N+ satisfy (a) and (b), then d | d′ and d′ | d, hence d′ = ±d.
As both of them are positive, d′ = d. We are going to prove the existence of gcd(a, b) as a consequence of
the formula (2), which in turn depends on the unique factorisation property from Theorem 1.4.2 (which
has not yet been fully proved in the previous sections). In Section 2.3 we give another proof of the
existence of gcd(a, b) which uses (a weak form of) Bézout’s theorem aZ + bZ = dZ, but does not rely on
the uniqueness of factorisation.
(2) According to Proposition 1.5.4(3),

{divisors of a} =
{
±
∏
p∈P

pcp | ∀p ∈ P 0 ≤ cp ≤ vp(a)
}

{divisors of b} =
{
±
∏
p∈P

pcp | ∀p ∈ P 0 ≤ cp ≤ vp(b)
}
,

which implies that

{divisors of a} ∩ {divisors of b} =
{
±
∏
p∈P

pcp | ∀p ∈ P 0 ≤ cp ≤ min(vp(a), vp(b))
}

=

= {divisors of d},

where d =
∏
p∈P p

min(vp(a),vp(b)).

1.6.3 Theorem (Existence and uniqueness of the lcm). Let a, b ∈ Z r {0}.
(1) There exists a unique positive integer m ∈ N+ such that

(a) a | m and b | m;
(b) if c ∈ Z r {0}, a | c and b | c, then m | c.

We denote it by lcm(a, b) (the least common multiple of a and b).
(2) If a = ±

∏
p∈P p

vp(a) and b = ±
∏
p∈P p

vp(b), then m = lcm(a, b) =
∏
p∈P p

max(vp(a),vp(b)).

Proof. (1) Again, if m′ ∈ N+ also satisfies (a) and (b), then m | m′ and m′ | m, hence m′ = ±m
and m′ = m, by positivity. The existence follows from (2), which is proved (using the uniqueness of
factorisation) as in Theorem 1.6.2, except that the inequalities go in the opposite direction:

{multiples of a} ∩ {multiples of b} =
{
±
∏
p∈P

pcp | ∀p ∈ P cp ≥ max(vp(a), vp(b))
}

=

= {multiples of m}.
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1.6.4 Characterisation of gcd and lcm To sum up, d = gcd(a, b),m = lcm(a, b) ∈ N+ are charac-
terised by the following properties:

{divisors of a} ∩ {divisors of b} = {divisors of d},
{multiples of a} ∩ {multiples of b} = {multiples of m}.

1.6.5 Exercise. (1) ∀x, y ∈ R min(x, y) + max(x, y) = x+ y.
(2) ∀a, b ∈ Z r {0} gcd(a, b)lcm(a, b) = |ab|.

1.6.6 Example of gcd(a, b) and lcm(a, b) For a = 50 = 21 · 52 and b = 15 = 31 · 51 we have
gcd(a, b) = 51 = 5 and lcm(a, b) = 21 · 31 · 52 = 150.

1.6.7 Exercise. If a1, . . . , ar ∈ Z r {0} (r ≥ 2), then

{common divisors of a1, . . . , ar} = {divisors of d = gcd(a1, . . . , ar)},
{common multiples of a1, . . . , ar} = {multiples of m = lcm(a1, . . . , ar)},

where
d =

∏
p∈P

pmin(vp(a1),...,vp(ar)), m =
∏
p∈P

pmax(vp(a1),...,vp(ar)).

Warning: for r > 2 there is no general relation between d and m.

1.6.8 Example of gcd(a, b, c) and lcm(a, b, c) The greatest common divisor gcd(6, 10, 15) is equal to
gcd(gcd(6, 10), 15) = gcd(2, 15) = 1 (alternatively, it is equal to gcd(6, gcd(10, 15)) = gcd(6, 5) = 1). We
can also use the factorisations 6 = 21 · 31, 10 = 21 · 51 and 15 = 31 · 51 to compute gcd(6, 10, 15) = 1 and
lcm(6, 10, 15) = 21 · 31 · 51 = 30.

1.6.9 Exercise. Let a, b ∈ N+. Show that there exist positive divisors a′ | a and b′ | b such that
gcd(a′, b′) = 1 and a′b′ = lcm(a, b).
[For example, for a = 15 and b = 20 we can take either a′ = 15 and b′ = 4, or a′ = 3 and b′ = 20.]
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2 Euclid’s algorithm, Bézout’s theorem

2.1 A preview

2.1.1 General description Euclid’s algorithm is of fundamental importance not only in arithmetic,
but in other contexts, too, as we shall see in Section 10. It consists of a repeated application of division
with remainder.

Its input is a pair of non-zero integers a, b ∈ Z r {0}. Its output is a non-zero integer d satisfying

aZ + bZ = dZ = |d|Z (2.1.1.1)

(a weak form of Bézout’s theorem). In fact, the algorithm also produces an explicit pair of integers
u, v ∈ Z such that

au+ bv = d (2.1.1.2)

(a Bézout relation). It is easy to deduce from (2.1.1.1) that

|d| = gcd(a, b)

in the sense that |d| ∈ N+ is a positive common divisor of a and b that is divisible by all common divisors
of a and b.

2.1.2 Bézout’s theorem This gives a direct proof of the existence of gcd(a, b), as well as a more
precise version of (2.1.1.1):

aZ + bZ = gcd(a, b)Z (2.1.2.1)

(Bézout’s theorem; not to be confused with Bézout’s theorem about intersection of two planar algebraic
curves).

All of this is important not only from a theoretical point of view (as we saw in the proof of Lemma
1.4.3, the equality (2.1.1.1) implies Euclid’s Lemma), but also for explicit calculations of gcd(a, b) and u, v
in (2.1.1.2).

2.1.3 Subgroups of Z By induction, one obtains from (2.1.2.1) that

a1Z + · · ·+ arZ = gcd(a1, . . . , ar)Z, (2.1.3.1)

for any r ≥ 2 and ai ∈ Z r {0}.
Note that the term on the left hand side of (2.1.3.1) is an additive subgroup of Z (it contains 0 and,

together with any pair of elements x and y, also x± y).
It turns out that a more abstract version of (2.1.3.1) holds: any additive subgroup X of Z is of the

form X = dZ, for unique d ∈ N (“all subgroups of Z are cyclic”, in the abstract language of Definition
7.2.7 below). In Theorem 2.3.2 we are going to prove this abstract statement directly, using division with
remainder only once (not repeatedly, as in Euclid’s algorithm).

2.2 Division with remainder, Euclid’s algorithm (example)

2.2.1 Example: division of 44 by 16 Even though 16 does not divide 44, we can write

44 = 2 · 16 + 12, 0 ≤ 12 < 16. (2.2.1.1)

In this equality, 2 is the quotient and 12 is the remainder of the division of 44 by 16. The formula
(2.2.1.1) is equivalent to
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44

16
= 2 +

12

16
. (2.2.1.2)

The general case is as follows.

2.2.2 Proposition (Division with remainder). Let a, b ∈ Z r {0}. Then there exists a unique pair of
integers q, r ∈ Z such that

a = qb+ r, 0 ≤ r < |b|

(q is the quotient and r is the remainder of the division of a by b). As in (2.2.1.2), we obtain

a

b
= q +

r

b
.

Proof. Uniqueness: if a = bq + r = bq′ + r′ and 0 ≤ r, r′ < |b|, then r′ − r = b(q − q′) and

−|b| = 0− |b| ≤ r′ − |b| < r′ − r = b(q − q′) < |b| − r ≤ |b| − 0 = |b|.

After dividing by |b| > 0, we obtain −1 < q − q′ < 1. The only integer satisfying this inequality is
q − q′ = 0, which implies that q = q′ and r = r′.
Existence: apply the Minimality Principle 1.2.3 to the subset

S := N ∩ {a− qb | q ∈ Z} = N ∩ (a+ bZ) ⊂ N

(S is non-empty, since 0 ≤ a+ |a| ≤ a+ |a||b| ∈ S). Let r = a− qb ∈ S be a minimal element of S; then
r ≥ 0. If r ≥ |b|, then 0 ≤ r−|b| = a− (q+ sgn(b))b ∈ S, which contradicts the minimality of r. Therefore
0 ≤ r < |b| and a = qb+ r, as required.

2.2.3 Euclid’s algorithm (example) Euclid’s algorithm for a pair of non-zero integers (a, b) first
computes the the quotient q and the remainder r of the division of a by b, and the replaces the pair (a, b)
by (b, r). The procedure is repeated until we obtain a pair (d, 0).

For example, for a = 44 and b = 16 we obtain

44 = 2 · 16 + 12

16 = 1 · 12 + 4

12 = 3 · 4 + 0

4 = d

Going through these equalities from the bottom to the top, we see inductively that d = 4 divides all the
numbers appearing on the left hand side, namely,

12 = 3 · 4, 16 = 1 · 12 + 4, 44 = 2 · 16 + 12.

In particular, 4 is a common divisor of 44 and 16. Conversely, going from the top to the bottom, we see
that we can write all numbers on the left hand side as integral linear combinations of 44 and 16:

44 = 1 · 44 + 0 · 16 (2.2.3.1)

16 = 0 · 44 + 1 · 16 (2.2.3.2)

12 = 1 · 44 + (−2) · 16 (2.2.3.3)

4 = 16− 1 · 12 = 16− (44− 2 · 16) = (−1) · 44 + 3 · 16 (2.2.3.4)
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In more scientific terms

4 | 44, 4 | 16 (2.2.3.5)

4 ∈ 44Z + 16Z (2.2.3.6)

We claim that the conjunction of the two statements (2.2.3.5) and (2.2.3.6) is equivalent to

44Z + 16Z = 4Z (2.2.3.7)

Indeed, (2.2.3.5) is equivalent to

44Z ⊆ 4Z, 16Z ⊆ 4Z,

hence it implies that 44Z + 16Z ⊆ 4Z, whereas (2.2.3.6) implies the reverse inclusion 4Z ⊆ 44Z + 16Z.
Conversely, the Bézout relation (2.2.3.7) implies, on one hand, (2.2.3.6), and on the other hand that

4Z = 44Z + 16Z ⊇ 44Z, 4Z = 44Z + 16Z ⊇ 16Z,

which is equivalent to (2.2.3.5).
Moreover, if c ∈ Zr{0} is any common divisor of 44 and 16, then it divides all elements of 44Z+16Z =

4Z; in particular, c divides 4.
Therefore (2.2.3.7) directly implies that 4 has the properties (a) and (b) in Theorem 1.6.2(1) (for a = 44

and b = 16), hence 4 = gcd(44, 16) and

44Z + 16Z = gcd(44, 16)Z. (2.2.3.8)

2.2.4 Euclid’s algorithm and continued fractions (example) In the above example one can
iterate the formula (2.2.1.2) to obtain

44

16
= 2 +

12

16
,

16

12
= 1 +

4

12
,

12

4
= 3,

hence

44

16
= 2 +

1

1 +
1

3

= 2 +
3

4
=

11

4
. (2.2.4.1)

This is a basic example of a (finite) continued fraction. It turns out that one can determine the coefficients
in the linear combination that was obtained from Euclid’s algorithm

4 = 3 · 16− 1 · 44 (2.2.4.2)

by taking the continued fraction (2.2.4.1) and deleting from it the last term:

2 +
1

1
=

3

1
. (2.2.4.3)

Similarly, the coefficients in the linear combination

12 = (−2) · 16 + 1 · 44 (2.2.4.4)

are obtained by deleting from (2.2.4.1) the last two terms:

2 =
2

1
. (2.2.4.5)
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In matrix form, we can rewrite the above formulas as follows:

(
−16 44

)(0 1 2 3 11
1 0 1 1 4

)
=
(
44 −16 12 −4 0

)
. (2.2.4.6)

All of the above makes sense if we replace 44 and 16 by an arbitrary pair of non-zero integers. This will
be explained in detail in Section 2.4 below.

2.3 Subgroups of Z, Bézout’s theorem

2.3.1 Subgroups of Z Recall that a subset X ⊂ Z is an (additive) subgroup of Z if 0 ∈ X and if
x± y ∈ X for all x, y ∈ X. Note that:

• If ai ∈ Z, then X = a1Z + · · ·+ arZ = {a1x1 + · · ·+ arxr | xi ∈ Z} is a subgroup of Z.

• In particular, dZ = (−d)Z is a subgroup of Z, for any d ∈ Z.

• If X ⊂ Z is a subgroup and x1, . . . , xr ∈ X, then a1x1 + · · · + arxr ∈ X, for any ai ∈ Z (in other
words, Zx1 + · · ·+ Zxr ⊂ X).

2.3.2 Theorem (Structure of subgroups of Z). If X ⊂ Z is a subgroup, then there exists d ∈ N (unique)
such that X = dZ.

Proof. If X = {0}, then d = 0. Assume X 6= {0}. We want to show that X = dZ for some d ∈ N+. In
this case d = min{|a| | 0 6= a ∈ dZ}, so we are going to define d in the same way, replacing dZ by X.
As the subset S := {|a| | 0 6= a ∈ X} ⊂ N+ is non-empty, the Minimality Principle 1.2.3 tells us that
there exists a minimal element d ∈ S. We claim that X = dZ. Firstly, X contains d or −d (or both), and
hence dZ = (−d)Z ⊆ X, by the last point in 2.3.1. If there were a ∈ X such that a 6∈ dZ, then we could
subtract from a a suitable multiple of d to obtain a non-zero element of X with smaller absolute value
than d: indeed, if we perform the division with remainder of a by d, we obtain a = qd+ r, where q, r ∈ Z,
0 ≤ r < d and r 6= 0 (since a 6∈ dZ). We know that a ∈ A and qd ∈ dZ ⊂ X; thus 0 6= r = a− qd ∈ X and
|r| = r < d. This is a contradiction with the minimality of d. Therefore no such a exists and X = dZ.

2.3.3 Theorem (Bézout’s theorem). If a, b ∈ Zr {0}, then there exists a unique positive integer d ∈ N+

such that aZ + bZ = dZ. It satisfies (a) and (b) from Theorem 1.6.2(1):
(a) d | a and d | b;
(b) if c ∈ Z r {0}, c | a and c | b, then c | d.

In other words, d = gcd(a, b) and aZ + bZ = gcd(a, b)Z.

Proof. The existence and uniqueness of d ∈ N+ such that aZ + bZ = dZ is a special case of Theorem
2.3.2, for X = aZ + bZ. Properties (a) and (b) are checked as in 2.2.3: firstly, aZ ⊆ aZ + bZ = dZ, hence
d | a (and similarly for d | b). Secondly, if c ∈ Z r {0} divides both a and b, then cZ ⊂ Z is a subgroup
containing a and b, hence cZ ⊇ aZ + bZ = dZ (by the last point in 2.3.1), which means that c | d.

2.3.4 Remarks The above proof of the existence of gcd(a, b) is unconditional. It does not rely on the
uniqueness of factorisation. In addition, it characterises gcd(a, b) as the unique positive integer d > 0 such
that aZ + bZ = dZ.

Note that the relation aZ + bZ = gcd(a, b)Z is equivalent to

1

a
Z +

1

b
Z =

1

ab
(bZ + aZ) =

gcd(a, b)

ab
Z =

1

lcm(a, b)
Z.

By induction, Theorem 2.3.3 implies that, for any ai ∈ Z r {0},
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a1Z + · · ·+ arZ = dZ,

where d ∈ N+ satisfies

{common divisors of a1, . . . , ar} = {divisors of d}.
The latter property characterises gcd(a1, . . . , ar); therefore d = gcd(a1, . . . , ar) and

a1Z + · · ·+ arZ = gcd(a1, . . . , ar)Z.

2.3.5 Exercise. (1) Determine 2
5Z + 3

7Z.
(2) Show that, for any ai ∈ Z r {0},

1

a1
Z + · · ·+ 1

ar
Z =

1

lcm(a1, . . . , ar)
Z.

2.3.6 Corollary. Let a, b, c ∈ Z r {0}. If c | a and c | b, then gcd(a/c, b/c) = gcd(a, b)/|c|. In particular,
if d = gcd(a, b), then gcd(a/d, b/d) = 1. As a result, a/b = a′/b′, where a′ = a/d, b′ = b/d and
gcd(a′, b′) = 1.

Proof. We know that c | d; we can divide, therefore, the equality aZ + bZ = dZ by c, obtaining (a/c)Z +
(b/c)Z = (d/c)Z = (d/|c|)Z, with d/|c| > 0; therefore gcd(a/c, b/c) = gcd(a, b)/|c|.

2.3.7 Exercise. (1) Give an alternative proof of Corollary 2.3.6 using Theorem 1.6.2(2).
(2) Show: if gcd(a, b) = 1, then gcd(am, bn) = 1, for all m,n ∈ N+.

2.3.8 Lemma. Let a, b, c ∈ Z r {0}. If c | ab and gcd(c, b) = 1, then c | a.

Proof. According to Bézout’s theorem, cZ + bZ = gcd(c, b)Z = Z. After multiplying this equality by a,
we obtain (since cZ ⊇ abZ) that

aZ = acZ + abZ ⊆ acZ + cZ ⊆ cZ + cZ = cZ,

hence c | a.

2.3.9 Lemma (Euclid’s Lemma (bis)). Let a, b ∈ Z r {0}. If a prime number p satisfies p | ab and p - b,
then p | a.

Proof. The positive integer d := gcd(p, b) divides p, hence d = 1 or d = p. It also divides b, but p - b; thus
d = 1. Lemma 2.3.8 then applies with c = p.

2.3.10 Remark This completes the proof of the uniqueness of factorisation (Theorem 1.4.2). A less
abstract proof of Bézout’s theorem will be given in Theorem 2.4.2 below, as a consequence of Euclid’s
algorithm.

2.3.11 Exercise. Let p be a prime and x ∈ Z. Show that:
(1) If p | (x2 − 1), then p | (x− 1) or p | (x+ 1).
(2) If pk | (x2 − 1), k > 1 and p 6= 2, then pk | (x− 1) or pk | (x+ 1).
(3) What happens if p = 2 in (2)?

2.3.12 Theorem (Yet another proof of irrationality of n
√
a). If a, n ∈ N+, then: n

√
a ∈ Q ⇐⇒ n

√
a ∈ Z.

Proof. If n
√
a ∈ Q, then n

√
a = c/b for some b, c ∈ N+ satisfying gcd(c, b) = 1. As abn = cn is divisible

by cn and gcd(cn, bn) = gcd(c, b)n = 1, Lemma 2.3.8 applied to the triple a, bn, cn tells us that cn = abn

divides a. This is possible only if |bn| = 1, which implies that b = 1 and n
√
a = c/b = c ∈ N+.
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2.3.13 Rational roots of polynomials Theorem 2.3.12 can be reformulated as follows: “if α ∈ Q
is a root of the polynomial Xn − a (where a, n ∈ N+), then α ∈ Z.” What happens for more general
polynomials?

2.3.14 Theorem (Rational roots of polynomials). Let a0, . . . , an ∈ Z, a0 6= 0, n ≥ 1. If α = a/b ∈ Q
(where a, b ∈ Zr{0} and gcd(a, b) = 1) is a root of the polynomial equation f(x) = a0x

n+a1x
n−1 + · · ·+

an−1x+ an = 0, then a | an and b | a0. In particular, if a0 = 1, then α = a/b ∈ Z.

Proof. After multiplying the equality

a0

(a
b

)n
+ a1

(a
b

)n−1
+ · · ·+ an−1

(a
b

)
+ an = 0

by bn we obtain

a0a
n + a1a

n−1b+ · · ·+ an−1ab
n−1 + anb

n = 0.

The sum of all the terms is equal to zero and all terms except the last one anb
n are divisible by a, hence

a | anbn. As gcd(a, bn) = 1, Lemma 2.3.8 implies that a | an. Similarly, all terms except the first one a0a
n

are divisible by b, hence b | a0an. The same argument based on gcd(b, an) = 1 then implies that b | a0.

2.3.15 Exercise. Find all rational solutions α ∈ Q of the equation f(x) = x3 + x2 − 5x+ 3 = 0.

2.3.16 Terminology A complex number α ∈ C satisfying a polynomial equation

a0α
n + a1α

n−1 + · · ·+ an = 0

for some aj ∈ Z (with n ≥ 1 and a0 6= 0) is called an algebraic number. If, in addition, a0 = 1, then
we say that α is an algebraic integer. The second part of Theorem 2.3.14 says that an algebraic integer
contained in Q is a usual integer.

2.4 Euclid’s algorithm

2.4.1 The general case of Euclid’s algorithm Let a, b ∈ Z r {0}. As in 2.2.3, we are going
to perform the division with remainder of a by b, then replace the pair (a, b) by (b, r), and repeat the
procedure until we obtain a pair (d, 0). All the successive remainders will be explicit linear combinations
of a and b; they will also be divisible by d. This will give a weak Bézout’s theorem aZ + bZ = dZ (hence
also gcd(a, b) = |d|), as well as an explicit pair of integers u, v ∈ Z such that au+ bv = d.

We write, recursively, r−2 = a, r−1 = b and

a = a0b+ r0 0 ≤ r0 < |b| (2.4.1.1)

b = a1r0 + r1 0 ≤ r1 < r0

r0 = a2r1 + r2 0 ≤ r2 < r1

...
...

rk−2 = akrk−1 + rk 0 = rk < rk−1

(where k ≥ 0). We let d := rk−1. Note that the decreasing sequence of positive integers

|b| = |r−1| > r0 > r1 > · · · > rk−1 = d > rk = 0
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must, indeed, terminate at some point.
This is a general version of what was done in 2.2.3 for a = 44 and b = 16. All the phenomena that were

observed there in this special case hold in general. For example, the identities

ri
ri+1

= ai+2 +
1

ri+1/ri+2
(0 ≤ i+ 2 ≤ k)

give a continues fraction

a

b
= a0 +

1

a1 +
1

. . . +
1

ak

(2.4.1.2)

2.4.2 Theorem (Properties of Euclid’s algorithm). (1) d | ri (−2 ≤ i ≤ k)
(2) ri ∈ aZ + bZ (−2 ≤ i ≤ k)
(3) d | a, d | b and there exist u, v ∈ Z such that au+ bv = d.
(4) aZ + bZ = dZ (weak form of Bézout’s theorem).
(5) |d| = gcd(a, b) and aZ + bZ = gcd(a, b)Z (strong form of Bézout’s theorem).

Proof. (1) Decreasing induction on i starting from i = k and i = k − 1: rk = 0, rk−1 = d and ri =
ai+2ri+1 + ri+2.
(2) Increasing induction on i starting from i = −2 and i = −1: r−2 = a, r−1 = b and ri+2 = ri−ai+2ri+1.
(3) This is a special case of the statement (1) for i = −2, i = −1 and of (2) for i = k − 1.
(4) As in 2.2.3, (3) implies, on one hand, that dZ ⊇ aZ and dZ ⊇ bZ, hence dZ ⊇ aZ + bZ, and on the
other hand d ∈ aZ + bZ implies that dZ ⊆ aZ + bZ.
(5) This follows from (4), as in the proof of Theorem 2.3.3.

2.4.3 Explicit Bézout relations It is very important that Euclid’s algorithm gives, for all −2 ≤ i ≤
k, explicit integers ui, vi ∈ Z such that uia+ vib = ri. In particular, for i = k− 1 we obtain u = uk−1 and
v = vk−1 such that ua+ vb = d = sgn(d) gcd(a, b).

For small values of a and b we can compute ui and vi by hand, as in (2.2.3.1)–(2.2.3.4). In general, the
coefficients ui, vi are related to the continued fraction (2.4.1.2), as in 2.2.4. The general formulas are as
follows.

For each j ≥ 0, we need to simplify the continued fraction

[a0, . . . , aj ] := a0 +
1

a1 +
1

. . . +
1

aj

(2.4.3.1)

and write it as a usual fraction pj/qj . For small values of j we have

p0
q0

=
a0
1
,

p1
q1

= a0 +
1

a1
=
a0a1 + 1

a1
,

p2
q2

= a0 +
a2

a1a2 + 1
=
a2(a0a1 + 1) + a0

a1a2 + 1
.

j −2 −1 0 1 2
aj a0 a1 a2
pj 0 1 a0 a0a1 + 1 a2(a0a1 + 1) + a0
qj 1 0 1 a1 a1a2 + 1
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This table seems to suggest that (if we let p−2 = q−1 = 0 and p−1 = q−2 = 1), for all j ≥ 0,

pj = ajpj−1 + pj−2

qj = ajqj−1 + qj−2,

which is equivalent to matrix equations(
pj pj−1
qj qj−1

)
=

(
pj−1 pj−2
qj−1 qj−2

)
Mj , Mj =

(
aj 1
1 0

)
. (2.4.3.2)

This is, indeed, the case (see Section 2.4.6 below for more details). Inductively, these formulas give

∀j ≥ −1 M0 · · ·Mj =

(
pj pj−1
qj qj−1

)
, (2.4.3.3)

which implies that

∀j ≥ −1

∣∣∣∣pj pj−1
qj qj−1

∣∣∣∣ = (−1)j+1,

(
pj pj−1
qj qj−1

)−1
= (−1)j+1

(
qj−1 −pj−1
−qj pj

)
.

Similarly, the relations rj−2 = ajrj−1 + rj can be written in a matrix form

∀j = 0, . . . , k Mj

(
rj−1
rj

)
=

(
rj−2
rj−1

)
.

Inductively, we obtain

∀j = −1, . . . , k M0 · · ·Mj

(
rj−1
rj

)
=

(
r−2
r−1

)
=

(
a
b

)
,

hence

∀j = −1, . . . , k

(
rj−1
rj

)
= (−1)j+1

(
qj−1 −pj−1
−qj pj

)(
a
b

)
.

The last formula can be rewritten as

∀j = −2, . . . , k (−1)jrj = qja− pjb =
(
−b a

)(pj
qj

)
. (2.4.3.4)

This system of equations can be reformulated as a single matrix equation

(
−b a

)(p−2 p−1 p0 · · · pk−1 pk
q−2 q−1 q0 · · · qk−1 qk

)
=
(
a −b r0 · · · (−1)jrj · · · (−1)k−1d 0

)
.

(2.4.3.5)
We have already seen a special case of this matrix formula in (2.2.4.6).

In particular, the case j = k − 1 of (2.4.3.4) gives an explicit Bézout relation

qk−1a− pk−1b = (−1)k−1d, |d| = gcd(a, b).
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2.4.4 Sample computations To sum up the previous discussion: Euclid’s algorithm applied to a, b ∈
Z r {0} produces integers aj and rj (0 ≤ j ≤ k) given by (2.4.1.1). We let r−2 = a and r−1 = b. After
that we compute integers pj and qj (−2 ≤ j ≤ k) by the recursive formulas (2.4.3.2) and put them into a
table

j −2 −1 0 1 · · · k − 1 k
aj a0 a1 · · · ak−1 ak
pj 0 1 a0 a0a1 + 1 · · · pk−1 pk
qj 1 0 1 a1 · · · qk−1 qk

In the notation of (2.4.3.1) we have

∀j = 0, . . . , k [a0, . . . , aj ] =
pj
qj
.

Moreover, gcd(pj , qj) = 1, since pjqj−1−qjpj−1 = ±1. On the other hand, gcd(a, b) = |d|, where d = rk−1.
In particular, for j = k we obtain that

a

b
= [a0, . . . , ak] =

pk
qk
, |a/d| = |pk|, |b/d| = |qk|.

Furthermore, the matrix formula (2.4.3.5) expresses each rj (in particular, also d = rk−1 and gcd(a, b) =
|d|) as an explicit linear combination of a and b (an explicit Bézout relation for a and b).

Example 1: a = 18, b = 11. In this case

18 = 1 · 11 + 7, 11 = 1 · 7 + 4, 7 = 1 · 4 + 3, 4 = 1 · 3 + 1, 3 = 3 · 1 + 0

j −2 −1 0 1 2 3 4
aj 1 1 1 1 3
pj 0 1 1 2 3 5 18
qj 1 0 1 1 2 3 11

Therefore

gcd(18, 11) = 1, 5 · 11 + (−3) · 18 = 1

and, more generally,

(
−11 18

)(0 1 1 2 3 5
1 0 1 1 2 3

)
=
(
18 −11 7 −4 3 −1

)
.

One can also compute directly

7 = 18− 11, 4 = 11− (18− 11) = 2 · 11− 18, 3 = (18− 11)− (2 · 11− 18) =

= 2 · 18− 3 · 11, 1 = (2 · 11− 18)− (2 · 18− 3 · 11) = 5 · 11− 3 · 18

or

1 +
1

1 +
1

1 + 1
1

= 1 +
1

1 + 1
2

= 1 +
2

3
=

5

3
.

Example 2: a = 31, b = 13. In this case

31 = 2 · 13 + 5, 13 = 2 · 5 + 3, 5 = 1 · 3 + 2, 3 = 1 · 2 + 1, 2 = 2 · 1 + 0
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j −2 −1 0 1 2 3 4
aj 2 2 1 1 2
pj 0 1 2 5 7 12 31
qj 1 0 1 2 3 5 13

Therefore

gcd(31, 13) = 1, 12 · 13 + (−5) · 31 = 1

and

(
−13 31

)(0 1 2 5 7 12
1 0 1 2 3 5

)
=
(
31 −13 5 −3 2 −1

)
.

Again, one can compute directly

5 = 31− 2 · 13, 3 = 13− 2 · (31− 2 · 13) = 5 · 13− 2 · 31,

2 = (31− 2 · 13)− (5 · 13− 2 · 31) = 3 · 31− 7 · 13,

1 = (5 · 13− 2 · 31)− (3 · 31− 7 · 13) = 12 · 13− 5 · 31

or

2 +
1

2 +
1

1 + 1
1

= 2 +
1

2 + 1
2

= 2 +
2

5
=

12

5
.

2.4.5 Modified Euclid’s algorithm It is often useful to modify the division with remainder from
Proposition 2.2.2 by allowing a negative remainder, but minimising its absolute value. The conditions

a = qb+ r, 0 ≤ r < |b|
are then replaced by

a = q′b+ r′, |r′| ≤ |b|/2.
For example, we can write

a = 5q + 3 = 5(q + 1) + (−2)

a = 4q + 3 = 4(q + 1) + (−1)

a = 4q + 2 = 4(q + 1) + (−2).

If b is odd, then the pair (q′, r′) is unique. The same is true if b is even and r < |b|/2. On the other hand,
if b is even and r = |b|/2, then there is a choice between a = qb+ |b|/2 and a = (q + sgn(b))b+ (−|b|/2).

In the modified Euclid’s algorithm one replaces the usual division with remainder by its modification
discussed above. The algorithm then becomes more efficient. For example, for a = 44 and b = 16 from
2.2.3 one had to perform three divisions with remainder. The modified version needs only two divisions:

44 = 3 · 16 + (−4)

16 = (−4) · (−4) + 0

−4 = d′
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The corresponding continued fraction

44

16
= 3 +

1

−4

and its table of coefficients

j −2 −1 0 1
aj 3 −4
pj 0 1 3 −11
qj 1 0 1 −4

then give explicit Bézout relations

1 · 44 + (−3) · 16 = −4, gcd(44, 16) = 4

and

(
−16 44

)(0 1 3
1 0 1

)
=
(
44 −16 −4

)
.

The two examples from Section 2.4.4 can be treated in the same way.

Example 1: a = 18, b = 11. In this case

18 = 2 · 11 + (−4), 11 = (−3) · (−4) + (−1), −4 = 4 · (−1) + 0, −1 = d′,

−4 = 18− 2 · 11, −1 = 11 + 3(18− 2 · 11) = 3 · 18− 5 · 11, 1 = 5 · 11− 3 · 18.

Alternatively, we compute

j −2 −1 0 1 2
aj 2 −3 4
pj 0 1 2 −5 −18
qj 1 0 1 −3 −11

This gives, as before (but faster), the following relations:

gcd(18, 11) = 1, 5 · 11 + (−3) · 18 = 1

and

(
−11 18

)(0 1 2 −5
1 0 1 −3

)
=
(
18 −11 −4 1

)
.

Example 2: a = 31, b = 13. In this case

31 = 2 · 13 + 5, 13 = 3 · 5 + (−2), 5 = (−2) · (−2) + 1, −2 = (−2) · 1 + 0, 1 = d′,

5 = 31− 2 · 13, −2 = 13− 3(31− 2 · 13) = 7 · 13− 3 · 31,

1 = (31− 2 · 13) + 2(7 · 13− 3 · 31) = 12 · 13− 5 · 31

j −2 −1 0 1 2 3
aj 2 3 −2 −2
pj 0 1 2 7 −12 31
qj 1 0 1 3 −5 13
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This gives, as before,

gcd(31, 13) = 1, 12 · 13 + (−5) · 31 = 1

and

(
−13 31

)(0 1 2 7 −12
1 0 1 3 −5

)
=
(
31 −13 5 2 1

)
.

2.4.6 Continued fractions and matrices Where do the matrix formulas (2.4.3.2) and (2.4.3.3) come
from?

The point is that if we let a complex matrix M =

(
A B
C D

)
∈M2(C) with det(M) 6= 0 act on C∪{∞}

by the Möbius transformation

M(z) :=
Az +B

Cz +D

(with M(∞) = A/C and M(−D/C) =∞), then

M1(M2(z)) = (M1M2)(z),

(
1 0
0 1

)
(z) = z. (2.4.6.1)

The formula (2.4.6.1) is a consequence of a natural identification of the complex projective line C∪{∞} =
P1(C) with the set of lines passing through the origin (i.e., one-dimensional vector subspaces) in C2. The

standard linear action of M ∈M2(C) on C2 sends the subspace C

(
z
1

)
onto

M
(
C

(
z
1

))
= C ·M

(
z
1

)
= C ·

(
A B
C D

)(
z
1

)
= C ·

(
Az +B
Cz +D

)
= C ·

(
Az+B
Cz+D

1

)
,

and the subspace C

(
1
0

)
onto

M
(
C

(
1
0

))
= C ·M

(
1
0

)
= C ·

(
A B
C D

)(
1
0

)
= C ·

(
A
C

)
= C ·

(
A
C
1

)
.

This is relevant to continued fractions, thanks to the formula

a+
1

z
=
a · z + 1

1 · z + 0
=

(
a 1
1 0

)
(z),

which implies, in the notation of (2.4.3.1), that

[a0, . . . , aj , z] = M0(M1(· · · (Mj(z)) · · · ) = (M0 · · ·Mj)(z), Mi =

(
aj 1
1 0

)
(2.4.6.2)

(for any a1, . . . , aj , z ∈ C). If we define pj , qj ∈ C by

M0 · · ·Mj =

(
pj ∗
qj ∗

)
,

then (
pj−1 ∗
qj−1 ∗

)(
aj 1
1 0

)
=

(
∗ pj−1
∗ qj−1

)
,

which implies that
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M0 · · ·Mj =

(
pj pj−1
qj qj−1

)
.

Finally, substituting z =∞ into (2.4.6.2), one obtains

[a0, . . . , aj ] = (M0 · · ·Mj)(∞) =
pj
qj
.

This finishes the proof of the formula (2.4.3.3).

2.5 Equations ax + by = c (x, y ∈ Z)

2.5.1 Example 44x+ 16y = 6 (x, y ∈ Z).
The left hand side 44x + 16y = 4(11x + 4y) is always divisible by 4 = gcd(44, 16), but the right hand

side is not: 4 - 6. It follows that there is no solution.

2.5.2 Example 44x+ 16y = 40 (x, y ∈ Z).
In this case the right hand side is divisible by 4 = gcd(44, 16). After dividing by 4, we obtain an

equivalent equation

11x+ 4y = 10 (x, y ∈ Z), (2.5.2.1)

this time with gcd(11, 4) = 1.
Assume that we know a particular solution x1, y1 ∈ Z of (2.5.2.1):

11x1 + 4y1 = 10. (2.5.2.2)

Subtracting (2.5.2.2) from (2.5.2.1), we obtain

11(x− x1) = 4(y1 − y), (2.5.2.3)

hence 11 | 4(y1− y). As gcd(11, 4) = 1, Lemma 2.3.8 implies that 11 | (y1− y). Therefore y1− y = 11t for
some t ∈ Z; substitution into (2.5.2.3) yields x− x1 = 4t. In other words,

x = x1 + 4t, y = y1 − 11t (t ∈ Z). (2.5.2.4)

Conversely, if (2.5.2.4) and (2.5.2.2) hold true, then

11x+ 4y = 11(x1 + 4t) + 4(y1 − 11t) = 11x1 + 4y1 + (11 · 4− 4 · 11)t = 10.

It remains to find a particular solution x1, y1 ∈ Z. We use the Bézout relation

(−1) · 44 + 3 · 16 = 4

from (2.2.3.4); it implies that

(−1) · 11 + 3 · 4 = 1. (2.5.2.5)

After multiplying the last equation by 10, we obtain a particular solution

(−10) · 11 + 30 · 4 = 10

x1 = −10, y1 = 30 of (2.5.2.1), hence a general solution

x = 4t− 10, y = 30− 11t (t ∈ Z). (2.5.2.6)
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2.5.3 Making the numbers smaller The constants appearing in (2.5.2.6) can be made smaller, by
performing a (modified) division with remainder. For example, if we write 30 = 3 · 11 + (−3), we obtain
y = −3− 11(t− 3). A change of variables t− 3 = s then yields t = s+ 3 and x = 4(s+ 3)− 10 = 4s+ 2,
hence

x = 4s+ 2, y = −3− 11s (s ∈ Z). (2.5.3.1)

We can make the numbers smaller already during the calculations. For example, if we write 10 = 2 · 4 + 2,
then we can replace (2.5.2.1) by

11x+ 4(y − 2) = 2. (2.5.3.2)

A particular solution x2, y2 ∈ Z of this equation can be found by multiplying (2.5.2.5) by 2: x2 = −2 and
y2 − 2 = 6 (hence y2 = 8). As above, this yields

x = 4t− 2, y = 8− 11t (t ∈ Z). (2.5.3.3)

If we are not satisfied with this form of the solution, we can write 8 = 1 · 11 + (−3) and y = −3− 11(t− 1)
and let t− 1 = s. This will give again the formulas in (2.5.3.1).

The general case is as follows.

2.5.4 Theorem. Let a, b ∈ Z r {0} and c ∈ Z. Consider the equation

ax+ by = c (x, y ∈ Z). (2.5.4.1)

(1) If d := gcd(a, b) does not divide c, then (2.5.4.1) has no solution.
(2) If d divides c, then (2.5.4.1) does have a solution. For any such a solution x1, y1 ∈ Z, the general
solution of (2.5.4.1) is given by

x = x1 + (b/d)t, y = y1 − (a/d)t (t ∈ Z).

Proof. We proceed as in the above examples.
(1) The left hand side ax+ by is divisible by d, for all x, y ∈ Z, but c is not.
(2) If d divides c, then we can divide (2.5.4.1) by d and obtain an equivalent equation

a′x+ b′y = c′ (x, y ∈ Z), (2.5.4.2)

where a′ = a/d, b′ = b/d and c′ = c/d. Note that gcd(a′, b′) = d/d = 1.
If x1, y1 ∈ Z is a particular solution of (2.5.4.2), then we can subtract a′x1 + b′y1 = c′ from (2.5.4.2)

and obtain

a′(x− x1) = b′(y1 − y), (2.5.4.3)

hence a′ | b′(y1 − y). As gcd(a′, b′) = 1, it follows that a′ | (y1 − y), hence y1 − y = a′t for some t ∈ Z.
Substitution of this relation into (2.5.4.3) yields

x = x1 + b′t, y = y1 − a′t (t ∈ Z).

Conversely, this formula produces solutions of (2.5.4.2), since

a′x+ b′y = a′x1 + b′y1 + (a′b′ − b′a′)t = c′.

It remains to show that (2.5.4.2) always has a solution. This follows immediately by multiplying a Bézout
relation
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a′u+ b′v = gcd(a′, b′) = 1 (u, v ∈ Z)

by c′; the pair x1 := c′u, y1 := c′v will be a solution of (2.5.4.2).
However, this solution can be fairly large, so it would make sense to apply the methods of 2.5.3 in order

to obtain a smaller particular solution.

2.5.5 Exercise. Find all solutions x, y ∈ Z of 10x+ 16y = 18.

2.6 Expansions of integers in base b

2.6.1 Base 10 The decimal expansion of n = 468 is given by

468 = 46 · 10 + 8 468 = 4 · 102 + 6 · 101 + 8 · 100

46 = 4 · 10 + 6

4 = 0 · 10 + 4

2.6.2 Base 7 The expansion of n = 468 in base 7 is given by

468 = 66 · 7 + 6 468 = 1 · 73 + 2 · 72 + 3 · 71 + 6 · 70 = (1236)7

66 = 9 · 7 + 3

9 = 1 · 7 + 2

1 = 0 · 7 + 1

2.6.3 General base Given an integer b > 1, one can expand any n ∈ N in base b using digits
ai representing the values 0, 1, . . . , b − 1 (for example, in the hexadecimal base b = 16 one uses digits
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F ). One writes

n = akb
k + ak−1b

k−1 + · · ·+ a1b+ a0 = (ak · · · a1a0)b (ai ∈ {0, 1, . . . , b− 1}),
and the digits ai of n in base b can be computed recursively as follows:

• a0 := the remainder of the division of n by b,

• n1 := (n− a0)/b the quotient of the division with remainder of n by b,

• a1 := the remainder of the division of n1 by b,

• n2 := (n1 − a1)/b the quotient of the division with remainder of n1 by b, etc.

2.6.4 First application: computing high powers One can compute am for bigm ∈ N by successive
squarings. The point is to write m =

∑
2ki in base 2 and then compute successively

a2, (a2)2 = a2
2

= a4,
(
(a2)2

)2
= a2

3

= a8, · · ·
For example,

m = 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20 = (1101001)2, a105 = a64 · a32 · a8 · a,
which means that, in order to compute a105, it is sufficient to compute the following 9 products:
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a · a = a2

a2 · a2 = a4

a4 · a4 = a8 a8 · a
a8 · a8 = a16

a16 · a16 = a32 a32 · (a8 · a)

a32 · a32 = a64 a64 · (a32 · (a8 · a)) = a105

2.6.5 Second application: Legendre’s formula for vp(n!) Example: let us compute v3(11!) (the
exponent with which 3 occurs in the prime factorisation of 11!). In the product

11! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11

only the boxed terms

3 = 3 · 1, 6 = 3 · 2, 9 = 3 · 3

are divisible by 3. As a result,

v3(11!) = v3(3 · 6 · 9) = v3(33) + v3(1 · 2 · 3) = 3 + v3(3!).

Similarly,

3! = 1 · 2 · 3 , v3(3!) = v3(3) = 1 + v3(1!) = 1,

which implies that v3(11!) = 3 + 1 = 4.

The general case: let us compute vp(n!) for n ∈ N+ and p ∈ P by the same method. Writing
n = pn1 + a0 with 0 ≤ a0 < p, we see that the terms divisible by p in the product n! = 1 · · ·n are those
equal to p · 1, p · 2, . . . p · n1. Therefore

vp(n!) = vp(p
n1(n1)!) = n1 + vp((n1)!), n1 =

⌊
n

p

⌋
.

We use the notation bxc for the integral part of a real number x ∈ R: bxc ∈ Z and bxc ≤ x < bxc+ 1.
The same procedure can be applied to n1. Recursively, we obtain (for n0 = n)

n0 = pn1 + a0 0 ≤ a0 < p

n1 = pn2 + a1 0 ≤ a1 < p

...
...

nk−1 = pnk + ak−1 0 ≤ ak−1 < p

nk = ak 0 ≤ ak < p

with

ni =

⌊
ni−1
p

⌋
=

⌊
n

pi

⌋
, vp((ni)!) = ni+1 + vp((ni+1)!),

which implies that
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vp(n!) = n1 + · · ·+ nk =

k∑
i=1

⌊
n

pi

⌋
=

∞∑
i=1

⌊
n

pi

⌋
. (2.6.5.1)

This formula can also be rewritten in terms of the expansion of n in base p

n = akp
k + · · ·+ a1p+ a0 = (ak · · · a0)p (ai = 0, 1, . . . , p− 1)

as follows:

vp(n!) = (akp
k−1 + · · ·+ a2p+ a1) + (akp

k−2 + · · ·+ a3p+ a2) + · · ·+ ak =

= ak(1 + p+ · · ·+ pk−1) + ak−1(1 + p+ · · ·+ pk−2) + · · ·+ a2(1 + p) + a1 =

=
ak(pk − 1) + ak−1(pk−1 − 1) · · ·+ a1(p− 1)

p− 1
=
n− sp(n)

p− 1
,

(2.6.5.2)

where

sp(n) = ak + ak−1 + · · ·+ a0

is the sum of the digits in the expansion of n in base p. Note that Legendre’s formula (2.6.5.2) holds also
for n = 0, hence for all n ∈ N.

2.6.6 Exercise. (1) For r ≥ 1 and 0 < a ≤ pr, the p-adic valuation of
(
pr

a

)
is equal to r − vp(a).

(2) For any m,n ∈ N and p ∈ P, the p-adic valuation of
(
m+n
m

)
= (m+n)!

m!n! is equal to the number of times
we need to carry over a digit when performing the addition of m and n in base p.
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3 Congruences, arithmetic in Z/nZ

3.1 Basic concepts

3.1.1 A preview Congruences modulo a positive integer n arise when we retain only the last digit
of the expansion in base n (equivalently, when we retain only the remainder of the division by n) of the
various integers involved.

The set of integers Z then naturally decomposes into n classes, according to this remainder. The usual
operations (addition, subtraction, multiplication) can be performed with these classes. In other words,
the remainders under the division by n of a ± b and ab depend only on the remainders of a and b (the
division is more subtle).

For example, for n = 2,

Z = (2Z) ∪ (2Z + 1),
2Z = {2k | k ∈ Z} = {even numbers}

2Z + 1 = {2k + 1 | k ∈ Z} = {odd numbers}

(2k) + (2l) = 2(k + l) even + even = even

(2k) + (2l + 1) = 2(k + l) + 1 even + odd = odd

(2k + 1) + (2l + 1) = 2(k + l + 1) odd + odd = even

(2k) · (2l) = 2(2kl) even · even = even

(2k) · (2l + 1) = 2(2kl + k) even · odd = even

(2k + 1) · (2l + 1) = 2(2kl + k + l) + 1 odd · odd = odd

Similarly, we can see immediately that 276 + 389 6= 667 by looking at the remainders under the division
by 10, since . . . 6 + . . . 9 = . . . 5.

From now on until the end of Section 3 we let m,n ≥ 1 be positive integers.

3.1.2 Definition. Let a, b ∈ Z. We say that a and b are congruent modulo n if they have the same
remainder when divided by n (equivalently, when n|(a− b)). Notation: a ≡ b (modn), or a ≡ b (n), or
a ≡ b [n]. The residue class modulo n of an integer a is the set

a (modn) := {x ∈ Z | x ≡ a (modn)} = {a+ ny | y ∈ Z} = a+ nZ.

The set of all residue classes modulo n will be denoted by Z/nZ.

3.1.3 Examples We have 17 ≡ 7 ≡ −13 (mod 10), hence

17 (mod 10) = 7 (mod 10) = −13 (mod 10) = {7, 17, 27, . . . ,−3,−13,−23, . . .} = 10Z + 7 = 10Z− 3.

There are two residue classes modulo 2, namely

0 (mod 2) = 2 (mod 2) = −4 (mod 2) = {0, 2, 4, 6, . . . ,−2,−4,−6, . . .} = 2Z

1 (mod 2) = −1 (mod 2) = −7 (mod 2) = {1, 3, 5, 7, . . . ,−1,−3,−5, . . .} = 2Z + 1

(hence Z/2Z = {0 (mod 2), 1 (mod 2)}) and three residue classes modulo 3, namely
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0 (mod 3) = 3 (mod 3) = −3 (mod 3) = {0, 3, 6, 9, . . . ,−3,−6,−9, . . .} = 3Z

1 (mod 3) = 4 (mod 3) = −2 (mod 3) = {1, 4, 7, 10, . . . ,−2,−5,−8, . . .} = 3Z + 1

2 (mod 3) = 5 (mod 3) = −1 (mod 3) = {2, 5, 8, 10, . . . ,−1,−4,−7, . . .} = 3Z + 2 = 3Z− 1

(hence Z/3Z = {0 (mod 3), ±1 (mod 3)}). In general, Z/nZ contains the following n residue classes

Z/nZ = {1 (modn), 2 (modn), . . . , n (modn)}

(with n (modn) = 0 (modn)). If n = 2k + 1 is odd, then we can also write

Z/(2k + 1)Z = {0 (modn), ±1 (modn), ±2 (modn), . . . ,±k (modn)}.

Similarly, if n = 2k is even, then

Z/2kZ = {0 (modn), ±1 (modn), ±2 (modn), . . . ,±(k − 1) (modn), k (modn)}.

3.1.4 Proposition. If a ≡ a′ (modn) and b ≡ b′ (modn), then

a± b ≡ a′ ± b′ (modn), ab ≡ a′b′ (modn).

Proof. There exist x, y ∈ Z such that a = a′ + nx and b = b′ + ny, which implies that

a± b = a′ ± b′ + n(x± y), ab = (a′ + nx)(b′ + ny) = a′b′ + n(a′y + b′x+ nxy).

3.1.5 Congruences modulo m and mn It is important to understand relations between congruences
modulo different integers.

The first observation is that

a ≡ b (modmn) =⇒ a ≡ b (modm) (3.1.5.1)

(for example, if a ≡ b (mod 18), then a ≡ b (mod 6)). Indeed, if mn | (a−b), then m | (a−b). Equivalently,
mnZ ⊆ mZ, hence a+mnZ ⊆ a+mZ.

In the opposite direction, each residue class modulo m is a disjoint union of n residue classes modulo
mn. For example, let us express the residue class 6Z+1 as a disjoint union of three residue classes modulo
18. Firstly,

x ≡ 1 (mod 6) ⇐⇒ ∃ y ∈ Z x = 6y + 1.

Secondly, y belongs to one of the three residue classes modulo 3:

y = 3z, or y = 3z + 1, or y = 3z + 2,

for some z ∈ Z. Putting these two conditions together, we obtain:

x ≡ 1 (mod 6) ⇐⇒ ∃ z ∈ Z


x = 6(3z) + 1 = 18z + 1, or

x = 6(3z + 1) + 1 = 18z + 7, or

x = 6(3z + 2) + 1 = 18z + 13,

hence
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x ≡ 1 (mod 6) ⇐⇒


x ≡ 1 (mod 18), or

x ≡ 7 (mod 18), or

x ≡ 13 (mod 18).

In general,

Z =

n−1∐
b=0

(b+ nZ), a+mZ =

n−1∐
b=0

(a+m(b+ nZ)) =

n−1∐
b=0

((a+ bm) +mnZ)

(where the symbol
∐

denotes a disjoint union), which implies that

x ≡ a (modm) ⇐⇒ x ≡ a, a+m, a+ 2m, . . . , a+ (n− 1)m (modmn). (3.1.5.2)

3.1.6 Proposition. For any m,n ≥ 1 and a, b ∈ Z, it is equivalent:

a ≡ b (modm) ⇐⇒ na ≡ nb (modmn).

Proof. The statement follows from the equivalences

a ≡ b (modm) ⇐⇒ m | (a− b) ⇐⇒ mn | n(a− b) ⇐⇒ na ≡ nb (modmn).

3.1.7 Proposition (A very useful property of congruences). It is equivalent:{
a ≡ b (modm)

a ≡ b (modn)

}
⇐⇒ a ≡ b (mod lcm(m,n))

Proof. We need to show that {
m | (a− b)
n | (a− b)

}
⇐⇒ lcm(m,n) | (a− b),

but this is true by the defining property of lcm(m,n):

{multiples of m} ∩ {multiples of n} = {multiples of lcm(m,n)}.

3.1.8 Corollary. If a, b ∈ Z and if n = pk11 · · · pkrr is the prime factorisation of an integer n ≥ 1, then it
is equivalent:

a ≡ b (modn) ⇐⇒ ∀i = 1, . . . , r a ≡ b (mod pkii ).

3.2 The values of ak (modn)

3.2.1 Fermat’s little theorem revisited In the language of congruences, Fermat’s little theorem
1.5.26 states that

∀p ∈ P ∀a ∈ Z ap ≡ a (mod p).

We are going to investigate, first numerically, then theoretically, the behaviour of the sequence of residue
classes 1, a, a2, a3, . . . (modn).
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3.2.2 Example: ak (mod 3) The table

a (mod 3) a2 (mod 3) a3 (mod 3)

0 02 ≡ 0 0 · 0 ≡ 0

±1 (±1)2 ≡ 1 (±1) · 1 ≡ ±1

shows that

∀a ∈ Z a3 ≡ a (mod 3), a2 ≡

{
0 (mod 3), 3 | a
1 (mod 3), 3 - a,

(3.2.2.1)

which implies that

∀a ∈ Z ∀k ∈ N+ a2k−1 ≡ a (mod 3), a2k ≡

{
0 (mod 3), 3 | a
1 (mod 3), 3 - a.

(3.2.2.2)

Note that we have proved Fermat’s little theorem for p = 3 by this method.
Application: for any fixed k ∈ Z, the equation

x2 − 3y2 = 3k − 1 (x, y ∈ Z)

has no solution, since

x2 − 3y2 ≡ x2 ≡ 0, 1 (mod 3), 3k − 1 ≡ −1 6≡ 0, 1 (mod 3).

3.2.3 Example: ak (mod 4) The table

a (mod 4) a2 (mod 4)

0 02 ≡ 0

2 22 ≡ 0

±1 (±1)2 ≡ 1

shows that

∀a ∈ Z a2 ≡

{
0 (mod 4), 2 | a
1 (mod 4), 2 - a.

(3.2.3.1)

Again, this implies that

∀a ∈ Z ∀k ∈ N+ a2k ≡

{
0 (mod 4), 2 | a
1 (mod 4), 2 - a.

(3.2.3.2)

Application: for any fixed k ∈ Z, the equation

x2 + y2 = 4k + 3 (x, y ∈ Z)

has no solution, since

4k + 3 ≡ 3 (mod 4), x2, y2 ≡ 0, 1 (mod 4), x2 + y2 ≡ 0, 1, 2 (mod 4) 6≡ 3 (mod 4).
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3.2.4 Example: a2 (mod 8) The table

a (mod 8) a2 (mod 8)

0 02 ≡ 0

±2 (±2)2 ≡ 4

4 42 ≡ 0

±1 (±1)2 ≡ 1

±3 (±3)2 ≡ 1

shows that

∀a ∈ Z a2 ≡

{
0, 4 (mod 8), 2 | a
1 (mod 8), 2 - a.

(3.2.4.1)

Application: for any fixed k ∈ Z, the equation

x2 + y2 + z2 = 8k + 7 (x, y, z ∈ Z)

has no solution, since

8k+7 ≡ 7 (mod 8), x2, y2, z2 ≡ 0, 1, 4 (mod 8), x2+y2+z2 ≡ 0, 1, 2, 3, 4, 5, 6 (mod 8) 6≡ 7 (mod 8).

3.2.5 Example: ak (mod 5) The table

a (mod 5) a2 (mod 5) a4 (mod 5) a5 (mod 5)

0 02 ≡ 0 02 ≡ 0 0 · 0 ≡ 0

±1 (±1)2 ≡ 1 12 ≡ 1 (±1) · 1 ≡ ±1

±2 (±2)2 ≡ 4 ≡ −1 (−1)2 ≡ 1 (±2) · 1 ≡ ±2

shows that

∀a ∈ Z a5 ≡ a (mod 5), a4 ≡

{
0 (mod 5), 5 | a
1 (mod 5), 5 - a,

(3.2.5.1)

which proves Fermat’s little theorem for p = 5.

3.2.6 Example: ak (mod 32) for 3 - a The table

a (mod 32) a3 (mod 32) a6 (mod 32)

±1 (±1)3 ≡ ±1 (±1)2 ≡ 1

±2 (±2)3 ≡ ±8 ≡ ∓1 (∓1)2 ≡ 1

±4 (±4)3 ≡ ±64 ≡ ±1 (±1)2 ≡ 1

shows that

∀a ∈ Z
[
3 - a =⇒ a3 ≡ ±1 (mod 32), a6 ≡ 1 (mod 32)

]
(3.2.6.1)

∀a ∈ Z a3 ≡ 0,±1 (mod 32). (3.2.6.2)

Application: if x, y, z ∈ Z and 3 - xyz, then x3, y3, z3 ≡ ±1 (mod 32), which implies that x3 + y3 ≡
0,±2 6≡ z3 (mod 32).
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3.2.7 Example: ak (mod 33) for 3 - a According to 3.2.6, a6 ≡ 1 (mod 32), which is equivalent to

a6 ≡ 1, 1 + 32, 1 + 2 · 32 ≡ 1, 10,−8 (mod 33).

The table

a6 (mod 33) a12 (mod 33) a18 (mod 33)

1 12 ≡ 1 1 · 1 ≡ 1

10 102 ≡ 100 ≡ −8 10 · (−8) ≡ 1

−8 (−8)2 ≡ ±64 ≡ 10 (−8) · 10 ≡ 1

shows that

∀a ∈ Z
[
3 - a =⇒ a18 ≡ 1 (mod 33)

]
. (3.2.7.1)

3.2.8 Example: ak (mod 52) for 5 - a We have shown in (3.2.5.1) that if a ∈ Z is not divisible by
5, then a4 ≡ 1 (mod 5), which is, in turn, equivalent to

a4 ≡ 1, 1 + 5, 1 + 2 · 5, 1 + 3 · 5, 1 + 4 · 5 ≡ 1, 6, 11,−9,−4 (mod 52). (3.2.8.1)

The table

a4 (mod 52) a8 (mod 52) a16 (mod 52) a20 (mod 52)

1 12 ≡ 1 12 ≡ 1 1 · 1 ≡ 1

−4 (−4)2 ≡ 16 ≡ −9 (−9)2 ≡ 81 ≡ 6 (−4) · 6 ≡ 1

6 62 ≡ 36 ≡ 11 112 ≡ 121 ≡ −4 6 · (−4) ≡ 1

−9 (−9)2 ≡ 6 62 ≡ 11 (−9) · 11 ≡ 1

11 112 ≡ −4 (−4)2 ≡ −9 11 · (−9) ≡ 1

then implies that

∀a ∈ Z
[
5 - a =⇒ a20 ≡ 1 (mod 52)

]
. (3.2.8.2)

3.2.9 Fermat’s Last Theorem (FLT) Fermat claimed that he was able to show that, for any n ≥ 3,
the equation

xn + yn = zn (x, y, z ∈ Z) (3.2.9.1)

has no solution with xyz 6= 0. He gave a proof for n = 4 using his method of infinite descent, but the
general case was solved only in 1995 by Wiles (in the 19th century, very important contributions to this
question were made by Kummer).

Fermat’s result for n = 4 implies that it is sufficient to consider only the case when n is a prime number
n = p > 2. It turns out that in this situation the case p - xyz (the first case) is much easier than the
case p | xyz (the second case).

For example, we were able to verify the first case of FLT for p = 3 in Section 3.2.6 by considering
congruences modulo 32. A more sophisticated method due to Sophie Germain (and then further developed
by Legendre) proves the first case of FLT for all primes p < 100 (among others).
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3.2.10 Exercise. (1) Determine all possible values of a5 (mod 52) if 5 - a. [Hint: It may be helpful
to consult first Proposition 4.1.5 below.]
(2) Show that x5 + y5 6≡ z5 (mod 52) if x, y, z ∈ Z and 5 - xyz.
(3) What happens if one replaces 5 by 7?

3.2.11 Exercise. Let x, y, z ∈ Z.
(1) If 3 | (x2 + y2), then 3 | x and 3 | y.
(2) If x2 + y2 = 3z2, then 3 | x, 3 | y and 3 | z.
(3) If x2 + y2 = 3z2, then x = y = z = 0.
(4) What happens if one replaces 3 by 5 (resp. by 7)?

3.2.12 Exercise. Let x, y, z ∈ Z.
(1) If 4 | (x2 + y2 + z2), then 2 | x, 2 | y and 2 | z.
(2) If x2 + y2 + z2 ≡ 3 (mod 4), then 2 - x, 2 - y, 2 - z and x2 + y2 + z2 ≡ 3 (mod 8).
(3) x2 + y2 + z2 6= 4k(8l + 7) for any k, l ∈ N.
[The three square theorem (Legendre, Gauss) states that a positive integer n 6= 4k(8l + 7) can
always be written as n = x2 + y2 + z2 for suitable x, y, z ∈ Z.]

3.3 The Chinese Remainder Theorem (CRT)

3.3.1 Example: Z/6Z and Z/2Z × Z/3Z We know from (3.1.5.1) that a residue class x (mod 6)
modulo 6 determines a residue class x (mod 2) modulo 2, as well as a residue class x (mod 3) modulo 3.
In concrete terms, this correspondence is given by the following table.

x (mod 6) x (mod 2) x (mod 3)
0 0 0
1 1 1
2 0 2
3 1 0
4 0 1
5 1 2

3a+ 4b a = a · 1 + b · 0 b = a · 0 + b · 1

Note that every possible combination

(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)

appears in the last two columns of the table precisely once. In other words, each residue class modulo 6
is uniquely determined by the corresponding pair of residue classes modulo 2 and 3, respectively.

In scientific terms, this means that the map

Z/6Z −→ Z/2Z× Z/3Z

x (mod 6) 7→ (x (mod 2), x (mod 3))
(3.3.1.1)

is bijective: every element on each side corresponds to exactly one element on the other side. We have
used the standard notation

X × Y = {(x, y) | x ∈ X, y ∈ Y } (3.3.1.2)

for the cartesian product of two sets X and Y .
In fact, the last line of the table gives a formula for the inverse of the bijective map (3.3.1.1), namely
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Z/6Z −→ Z/2Z× Z/3Z

3a+ 4b (mod 6) 7→ (a (mod 2), b (mod 3)).
(3.3.1.3)

In concrete terms, this means that, for any a, b ∈ Z, the system{
x ≡ a (mod 2)

x ≡ b (mod 3)

}
(3.3.1.4)

has a unique solution modulo 6, namely

x ≡ 3a+ 4b (mod 6). (3.3.1.5)

The formula (3.3.1.3) is analogous to the formula

R2 −→ R×R(
a
b

)
= a

(
1
0

)
+ b

(
0
1

)
7→ (a, b)

(3.3.1.6)

expressing an arbitrary vector in the plane R2 in terms of the vectors

e1 =

(
1
0

)
, e2 =

(
0
1

)
of the standard basis of R2. The residue classes 3 (mod 6) and 4 (mod 6), which are the respective solutions
of {

3 ≡ 1 (mod 2)

3 ≡ 0 (mod 3)

}
,

{
4 ≡ 0 (mod 2)

4 ≡ 1 (mod 3)

}
(3.3.1.7)

are analogues of e1 and e2. The following formulas are also analogous to each other.{
3a+ 4b ≡ a (mod 2)

3a+ 4b ≡ b (mod 3)

}
,

(
a
b

)
= a

(
1
0

)
+ b

(
0
1

)
. (3.3.1.8)

The general case is as follows.

3.3.2 Theorem (The Chinese Remainder Theorem (CRT)). Assume that m,n ≥ 1 and gcd(m,n) = 1.
For all a, b ∈ Z, the system {

x ≡ a (modm)

x ≡ b (modn)

}
(3.3.2.1)

has a unique solution modulo mn. In other words, the map

Z/mnZ −→ Z/mZ× Z/nZ

x (modmn) 7→ (x (modm), x (modn))

is bijective.

Proof. Uniqueness: if x ≡ y ≡ a (modm) and x ≡ y ≡ b (modn), then m | (x − y) and n | (x − y),
which implies that x− y is divisible by lcm(m,n) = mn/ gcd(m,n) = mn.
Construction: as in (3.3.1.7), we first find solutions when (a, b) = (1, 0) and (a, b) = (0, 1), respectively,
and we then combine them, as in (3.3.1.8), to obtain a general solution.
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Euclid’s algorithm applied to (m,n) produces u, v ∈ Z satisfying the Bézout relation mu + nv =
gcd(m,n) = 1. This implies that{

nv ≡ 1 (modm)

nv ≡ 0 (modn)

}
,

{
mu ≡ 0 (modm)

mu ≡ 1 (modn)

}
(3.3.2.2)

as in (3.3.1.7), hence

x ≡ a(nv) + b(mu) = a+ (b− a)mu = b+ (a− b)nv ≡

{
a · 1 + b · 0 ≡ a (modm)

a · 0 + b · 1 ≡ b (modn)

}
. (3.3.2.3)

3.3.3 Remarks (1) The numbers appearing in the formula x ≡ a(nv) + b(mu) (modmn) can be
quite large. However, if av ≡ A (modm) and bu ≡ B (modn) with |A|, |B| not too big, then x ≡
nA+mB (modmn) (this congruence follows from Proposition 3.1.6) and nA+mB is not too big, either.
(2) The sets Z/mnZ and Z/mZ× Z/nZ have the same cardinality. This means that, once we know that
the map in the theorem is injective (which is equivalent to the uniqueness statement), it is automatically
bijective. Unlike the proof above, this argument does not give an explicit formula for the inverse map.

3.3.4 Solving a system of congruences (example) We are going to solve the system of congruences{
x ≡ 5 (mod 27)

x ≡ 7 (mod 37)

}
. (3.3.4.1)

We apply modified Euclid’s algorithm to the pair 37, 27:

37 = 1 · 27 + 10, 27 = 3 · 10 + (−3), 10 = (−3) · (−3) + 1, −3 = (−3) · 1 + 0,

which gives linear combinations

10 = 37−27, −3 = 27−3(37−27) = 4 ·27−3 ·37, 1 = (37−27)+3(4 ·27−3 ·37) = 11 ·27−8 ·37.

Equivalently, we can use the continued fraction

1 +
1

3 +
1

−3 + 1
−3

= 1 +
1

3 + −3
10

= 1 +
10

27
=

37

27
, 1 +

1

3 +
1

−3

= 1 +
3

8
=

11

8

or its more formal form

j −2 −1 0 1 2 3
aj 1 3 −3 −3
pj 0 1 1 4 −11 37
qj 1 0 1 3 −8 27

to obtain the same Bézout relation

11 · 27 + (−8) · 37 = 1.

Therefore
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x ≡ 5 · (−8) · 37 + 7 · 11 · 27 ≡ 7 + (7− 5) · 8 · 37 (mod 27 · 37).

Note that (7− 5) · 8 ≡ 16 ≡ −11 (mod 27); it follows that (7− 5) · 8 · 37 ≡ −11 · 37 (mod 27 · 37) (again,
by Proposition 3.1.6), hence

x ≡ 7− 11 · 37 ≡ −400 ≡ 599 (mod 27 · 37)

(since 27 · 37 = 999).

3.3.5 Another approach to the CRT A system of congruences{
x ≡ a (modm)

x ≡ b (modn)

}
(3.3.5.1)

(without any conditions on m and n) can be reformulated in an equivalent way as follows: the first
congruence is equivalent to x = a + my, for some y ∈ Z. Substituting this equality to the second
congruence yields

my ≡ b− a (modn). (3.3.5.2)

Congruences of this type will be studied in Section 3.4.
Another reformulation uses the fact that the second congruence is equivalent to the existence of z ∈ Z

such that x = b+nz. Putting the two conditions together, we obtain the equation a+my = b+nz, which
can be written in the form

my − nz = b− a (y, z ∈ Z) (3.3.5.3)

(which is equivalent to (3.3.5.2)). The equation 3.3.5.3 can be solved by the method described in the proof
of Theorem 2.5.4; this will then give a solution of the system (3.3.5.1) (provided a solution exists).

3.3.6 Exercise. Assume that m1, . . . ,mr ≥ 1 and gcd(mi,mj) = 1 for all 1 ≤ i < j ≤ r. Then, for any
a1, . . . , ar ∈ Z, the system of congruences

x ≡ a1 (modm1)

...

x ≡ ar (modmr)


has a unique solution x (modm1 · · ·mr).

3.3.7 Exercise. (1) Let a, b ∈ Z. Show that the system{
x ≡ a (mod 4)

x ≡ b (mod 6)

}

has a solution if and only if a ≡ b (mod 2). If this is the case, then the solution is unique modulo 12.
(2) What happens if one replaces the numbers 4, 6 by arbitrary m,n ∈ N+?
(3) Is there a common generalisation of (2) and Exercise 3.3.6?
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3.4 Invertible elements in Z/nZ, congruences ax ≡ b (modn)

3.4.1 Inverse of a residue class Throughout Section 3.4, n ≥ 1 is a positive integer. We are
interested in the congruence

ax ≡ 1 (modn). (3.4.1.1)

A solution of this congruence — if it exists — should be thought of as an inverse of a (modn). For
example, the congruence 3 · 5 ≡ 1 (mod 7) tells us that 5 (mod 7) is an inverse of 3 (mod 7).

3.4.2 Theorem (Invertible elements in Z/nZ). If a ∈ Z and n ≥ 1, then the congruence ax ≡ 1 (modn)
has a solution if and only if gcd(a, n) = 1. If this is the case, then there is a unique solution x (modn);
we say that the residue class a (modn) is invertible and that x (modn) is its inverse. Notation: we
denote x (modn) by 1

a (modn) or by a−1 (modn). The set of all invertible elements of Z/nZ will be
denoted by (Z/nZ)∗ or by (Z/nZ)×.

Proof. Uniqueness: if ax ≡ ay ≡ 1 (modn), then y ≡ 1 · y ≡ (ax)y ≡ x(ay) ≡ x · 1 ≡ x (modn).
Existence: this follows from the equivalences

∃x ∈ Z ax ≡ 1 (modn) ⇐⇒ ∃x, y ∈ Z ax+ny = 1 ⇐⇒ 1 ∈ aZ+nZ = gcd(a, n)Z ⇐⇒ gcd(a, n) = 1.

3.4.3 Computing the inverse of a (modn) If n is small, then one can usually determine the inverse
directly. In general, one applies Euclid’s algorithm (in its modified form) to find d = gcd(a, n) and an
explicit Bézout relation au+ nv = d. The residue class a (modn) is invertible if and only if d = 1. If this
is the case, then au ≡ 1 (modn), which means that the inverse of a (modn) is equal to u (modn).

For example, the calculations from Section 2.4.5 give

5·11 ≡ 1 (mod 18), 11−1 (mod 18) = 5 (mod 18), 12·13 ≡ 1 (mod 31), 13−1 (mod 31) = 12 (mod 31).

3.4.4 Exercise. (1) Determine all invertible elements in Z/12Z. Compute the inverse of each of them.
(2) Idem for Z/18Z.
(3) If both a (modn) and b (modn) are invertible, so is their product ab (modn), and its inverse is given
by (ab)−1 ≡ a−1b−1 (modn).

3.4.5 Powers of a (modn) If a (modn) is an invertible residue class, we define, for any m ∈ N+,

a−m (modn) := (a−1)m (modn),

which is also equal to (am)−1 (modn), by Exercise 3.4.4(3).

3.4.6 Exercise. If a (modn) is invertible, show that

∀l,m ∈ Z al · am ≡ al+m (modn), (al)m ≡ alm (modn).

3.4.7 Dividing congruences Assume that a, b, c ∈ Z satisfy a 6= 0 and

ac ≡ b (modn). (3.4.7.1)

We would like to divide the congruence (3.4.7.1) by a, if possible.

49



Case 1: a divides n. This implies that a also divides b. The congruence (3.4.7.1) is equivalent to the
existence of y ∈ Z such that

ac+ ny = b. (3.4.7.2)

As both terms n and b are divisible by a, the equality (3.4.7.2) is equivalent to

c+ (n/a)y = b/a. (3.4.7.3)

Consequently, the congruence (3.4.7.1) is equivalent to

c ≡ (b/a) (modn/a) (3.4.7.4)

(see also Proposition 3.1.6).

Case 2: gcd(a, n) = 1. Theorem 3.4.2 tells us that there exists a unique inverse a−1 (modn) of a (modn).
After multiplying (3.4.7.1) by a−1 (modn), we obtain

c ≡ ba−1 (modn). (3.4.7.5)

Conversely, if we multiply (3.4.7.5) by a (modn), we obtain the original congruence (3.4.7.1). Therefore
(3.4.7.5) is equivalent to (3.4.7.1).

Case 3: the general case. Let d := gcd(a, n); then d divides b. We first apply Case 1 with d instead of
a, obtaining

(a/d)c ≡ (b/d) (modn/d). (3.4.7.6)

As gcd(a/d, n/d) = 1, we can then apply Case 2 to (3.4.7.6), obtaining

c ≡ (b/d)(a/d)−1 (modn/d) (3.4.7.7)

(which is equivalent to the original congruence (3.4.7.1)).

Example: we want to simplify the congruence

12x ≡ 15 (mod 21). (3.4.7.8)

It is equivalent to the existence of y ∈ Z such that

12x+ 21y = 15;

this equality can be divided by 3, which yields

4x+ 7y = 5,

hence an equivalent congruence

4x ≡ 5 (mod 7). (3.4.7.9)

As 4 · 2 ≡ 1 (mod 7), we then multiply (3.4.7.9) by 4−1 (mod 7) = 2 (mod 7), obtaining

x ≡ 2 · 4x ≡ 2 · 5 ≡ 3 (mod 7), (3.4.7.10)

which is equivalent to the original congruence (3.4.7.8), by the previous discussion.

The general congruence

ax ≡ b (modn)

can be treated in the same way. The final result is as follows.
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3.4.8 Theorem. Let a, b, n ∈ Z be integers such that a 6= 0 and n ≥ 1; let d := gcd(a, n).
(1) If d - b, then the congruence ax ≡ b (modn) has no solution.
(2) If d | b, then the congruence ax ≡ b (modn) is equivalent to (a/d)x ≡ (b/d) (modn/d), which has a
unique solution modulo n/d, namely x ≡ (b/d)(a/d)−1 (modn/d).

Proof. Everything was already done in Section 3.4.7 (for c = x). If we are only interested in the existence
and uniqueness of a solution (but not in an explicit formula), then we can argue directly as follows.
Uniqueness: if ax ≡ ay ≡ b (modn), then there exists z ∈ Z such that a(x−y) = nz, hence (a/d)(x−y) =
(n/d)z is divisible by n/d. As gcd(a/d, n/d) = 1, it follows from Lemma 2.3.8 that n/d divides x − y,
hence x ≡ y (modn/d).
Existence: this follows from the equivalences

∃x ∈ Z ax ≡ b (modn) ⇐⇒ ∃x, y ∈ Z ax+ny = b ⇐⇒ b ∈ aZ+nZ = gcd(a, n)Z ⇐⇒ gcd(a, n) | b.

3.4.9 Example Let us solve the system (3.3.4.1){
x ≡ 5 (mod 27)

x ≡ 7 (mod 37)

}

by the methods developed in the previous sections. The second congruence is equivalent to x = 7 + 37y
for some y ∈ Z. Substitution to the first congruence gives

5 ≡ x ≡ 7 + 37y ≡ 7 + 10y (mod 27),

which is equivalent to 10y ≡ −2 ≡ 25 (mod 27), hence to 2y ≡ 5 (mod 27) (since gcd(5, 27) = 1) and
y ≡ 14 · 2y ≡ 14 · 5 ≡ −11 (mod 27). Therefore y = −11 + 27z for some z ∈ Z and the original system is
equivalent to

x = 7− 11 · 37 + 27 · 37z ≡ 7− 11 · 37 ≡ −400 (mod 27 · 37).

3.4.10 Exercise. (1) Solve the system of congruences 21x ≡ 33 (mod 45), 15x ≡ 6 (mod 66).
(2) Solve the system of congruences x ≡ 9 (mod 15), x ≡ 3 (mod 16), x ≡ 13 (mod 17).
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4 Euler’s function ϕ, Euler’s theorem

4.1 Consequences of Fermat’s little theorem

4.1.1 Examples and a preview In Section 3.2 we proved the following congruences for a ∈ Z.

3 - a =⇒ a2 ≡ 1 (mod 3), a6 ≡ 1 (mod 32), a18 ≡ 1 (mod 33), (4.1.1.1)

5 - a =⇒ a4 ≡ 1 (mod 5), a20 ≡ 1 (mod 52). (4.1.1.2)

One is tempted to speculate that this pattern holds in general, namely, that

∀p ∈ P p - a =⇒ ap−1 ≡ 1 (mod p), (4.1.1.3)

=⇒ a(p−1)p
k−1

≡ 1 (mod pk) (k ≥ 1). (4.1.1.4)

This is, indeed, the case, as we are now going to show. We deduce (4.1.1.3) from Fermat’s little theorem

∀p ∈ P ∀a ∈ Z ap ≡ a (mod p) (4.1.1.5)

and then apply Proposition 4.1.5 below on improvement of congruences to prove (4.1.1.4). After that we
use Corollary 3.1.8 to obtain analogous congruences modulo any n = pk11 · · · pkrr ≥ 1. In particular, we
prove Euler’s theorem

gcd(a, n) = 1 =⇒ aϕ(n) ≡ 1 (modn), ϕ(n) = ϕ(pk11 ) · · ·ϕ(pkrr ), ϕ(pk) = (p− 1)pk−1 (4.1.1.6)

and its improvement (Theorem 4.1.11).
In Section 4.2 we give an alternative treatement of Euler’s function ϕ and Euler’s theorem from a more

conceptual point of view.

4.1.2 Proposition (Euler’s theorem for n = p). If p ∈ P and if a ∈ Z, p - a, then ap−1 ≡ 1 (mod p).

Proof. If we multiply the congruence given by Fermat’s little theorem (4.1.1.5) by the inverse a−1 (mod p)
of a (mod p) (it exists, since gcd(a, p) = 1, by assumption), then we obtain apa−1 ≡ aa−1 (mod p), hence
the desired congruence

ap−1 ≡ ap−1aa−1 ≡ apa−1 ≡ aa−1 ≡ 1 (mod p).

4.1.3 Exercise. Show that, for any a ∈ Z and m,n ∈ N+, am+10n ≡ am (mod 11). Determine
b ≡ 20199102 (mod 11), 0 ≤ b ≤ 10.

4.1.4 Improvement of congruences by x 7→ xp The general principle is very simple: for each prime
number p, the Frobenius map sending x to xp improves congruences modulo powers of p.

For example, in the simplest case when a ≡ b (mod 2), we can write a = b + 2c for some c ∈ Z, which
implies that

a2 = (b+ 2c)2 = b2 + 4bc+ 4c2 ≡ b2 (mod 22).

In general, we use the divisibility of the binomial coefficients
(
p
j

)
(0 < j < p) by p, proved in Proposition

1.5.25.
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4.1.5 Proposition. If p is a prime and a, b ∈ Z satisfy a ≡ b (mod pk) (k ≥ 1), then ap ≡ bp (mod pk+1).

Proof. There exists c ∈ Z such that a = b+ pkc, hence

ap = (b+ pkc)p = bp +

(
p

1

)
bp−1(pkc) +

(
p

2

)
bp−2(pkc)2 + · · ·+

(
p

p− 1

)
b(pkc)p−1 + ppkcp.

Each term
(
p
j

)
bp−j(pkc)j for 0 < j < p is divisible by p · pk = pk+1, thanks to Proposition 1.5.25. The last

term ppkcp is also divisible by pk+1, since pk ≥ 2k ≥ k + 1.

4.1.6 Proposition (Euler’s theorem for n = pk). If p ∈ P and if a ∈ Z, p - a, then a(p−1)p
k−1 ≡

1 (mod pk) holds for all k ≥ 1.

Proof. For k = 1 this was proved in Proposition 4.1.2. The general case follows by induction from

Proposition 4.1.5: if we know that a(p−1)p
k−1 ≡ 1 (mod pk), then

a(p−1)p
k

≡ (a(p−1)p
k−1

)p ≡ 1p ≡ 1 (mod pk+1).

4.1.7 Improvement for p = 2 For p = 2 the previous proposition says that

2 - a =⇒ a2 ≡ 1 (mod 4), a4 ≡ 1 (mod 8), a8 ≡ 1 (mod 16), a16 ≡ 1 (mod 32), · · ·

However, we showed in Section 3.2.4 that

2 - a =⇒ a2 ≡ 1 (mod 8),

which implies, by a repeated application of Proposition 4.1.5, that

2 - a =⇒ a2 ≡ 1 (mod 8), a4 ≡ 1 (mod 16), a8 ≡ 1 (mod 32), · · · (4.1.7.1)

We record this result (see also Exercise 1.1.7) as a formal proposition.

4.1.8 Proposition (Improved Euler’s theorem for n = 2k). If k ≥ 3 and 2 - a, then a2
k−2 ≡ 1 (mod 2k).

4.1.9 Examples modulo 15, 35 and 504 What happens for moduli that are divisible by more than
one prime? The answer is simple: we combine the previous results for several primes using the general
principle proved in Proposition 3.1.7 and its Corollary 3.1.8.

For example, n = 15 = 3 · 5 = lcm(3, 5). If gcd(a, 15) = 1 (which is equivalent to 3 - a and 5 - a), then

3 - a =⇒ a3−1 = a2 ≡ 1 (mod 3) =⇒ a4 ≡ 1 (mod 3)

5 - a =⇒ a5−1 = a4 ≡ 1 (mod 5)

}
=⇒ a4 ≡ 1 (mod lcm(3, 5)) ≡ 1 (mod 15).

Similarly, n = 35 = 5 · 7. If gcd(a, 35) = 1, then

5 - a =⇒ a5−1 = a4 ≡ 1 (mod 5) =⇒ a12 ≡ (a4)3 ≡ 1 (mod 5)

7 - a =⇒ a7−1 = a6 ≡ 1 (mod 7) =⇒ a12 ≡ (a6)2 ≡ 1 (mod 7)

}
=⇒ a12 ≡ 1 (mod lcm(5, 7︸ ︷︷ ︸

35

)).

Finally, n = 504 = 7 · 8 · 9 = 23 · 32 · 7. If gcd(a, 504) = 1, then

2 - a =⇒ a2 ≡ 1 (mod 23) =⇒ a6 ≡ (a2)3 ≡ 1 (mod 23)

3 - a =⇒ a(3−1)·3 ≡ a6 ≡ 1 (mod 32)

7 - a =⇒ a7−1 ≡ a6 ≡ 1 (mod 7)

 =⇒ a6 ≡ 1 (mod lcm(23, 32, 7)︸ ︷︷ ︸
504

).
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4.1.10 Notation: Euler’s function ϕ Euler’s function will be defined and investigated in detail in
Section 4.2 below. Here we use its explicit values (proved in Theorem 4.2.5 below) simply as a convenient
notation.

For a prime number p and k ≥ 1, we let

ϕ(pk) := (p− 1)pk−1 = pk − pk−1 = pk(1− 1
p ).

Using this notation, Proposition 4.1.6 states that aϕ(p
k) ≡ 1 (mod pk) if p - a.

For an integer n ≥ 1 with prime factorisation n = pk11 · · · pkrr (r ≥ 0, ki ≥ 1) we let

ϕ(n) := ϕ(pk11 ) · · ·ϕ(pkrr ) = (pk11 − p
k1−1
1 ) · · · (pkrr − pkr−1r ) = n(1− 1

p1
) · · · (1− 1

pr
).

4.1.11 Theorem (Improved Euler’s theorem). Let n = pk11 · · · pkrr ≥ 1 be an integer (here pi are distinct
primes, r ≥ 0, ki ≥ 1). If gcd(a, n) = 1 and if u ≥ 1 is divisible by ϕ(pkii ) = pkii −p

ki−1
i for all i = 1, . . . , r,

then
au ≡ 1 (modn).

Moreover, if p1 = 2 and k1 ≥ 3, then one can replace ϕ(pk11 ) = 2k1−1 above by ϕ(pk11 )/2 = 2k1−2.

Proof. For each i = 1, . . . , r, write u = ϕ(pkii )vi. According to Proposition 4.1.6,

aϕ(p
ki
i ) ≡ 1 (mod pkii ) =⇒ au ≡

(
aϕ(p

ki
i )
)vi ≡ 1 (mod pkii ),

which implies the same congruence modulo lcm(pk11 , . . . , p
kr
r ) = n, by Proposition 3.1.7.

In the case p1 = 2 and k1 ≥ 3 we appeal to Proposition 4.1.8 instead of Proposition 4.1.6.

4.1.12 Improvement of Euler’s theorem (optimal version) The smallest value of u satisfying
the assumptions of the previous theorem is equal to

u = lcm(ϕ(pk11 ), . . . , ϕ(pkrr )) (4.1.12.1)

(again, with ϕ(pk11 ) replaced by ϕ(pk11 )/2 if p1 = 2 and k1 ≥ 3).

4.1.13 Theorem (Euler’s theorem). Let a, n be integers such that n ≥ 1 and gcd(a, n) = 1. Then
aϕ(n) ≡ 1 (modn).

Proof. This is a special case of Theorem 4.1.11 for u = ϕ(n). Another proof will be given in 4.2.9
below.

4.1.14 Comparison of Euler’s theorem and its improvement Let us compare the two versions
of Euler’s theorem for the three values n = 15, 35 and 504 considered in Section 4.1.9. As

ϕ(15) = ϕ(3)ϕ(5) = (3− 1)(5− 1) = 8, ϕ(35) = ϕ(5)ϕ(7) = (5− 1)(7− 1) = 24,

ϕ(504) = ϕ(23)ϕ(32)ϕ(7) = (23 − 22)(32 − 31)(7− 1) = 144,

Euler’s theorem tells us that

gcd(a, 15) = 1 =⇒ a8 ≡ 1 (mod 15)

gcd(a, 35) = 1 =⇒ a24 ≡ 1 (mod 35)

gcd(a, 504) = 1 =⇒ a144 ≡ 1 (mod 504).
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Its improved version that was made explicit in 4.1.9 is much more precise:

gcd(a, 15) = 1 =⇒ a4 ≡ 1 (mod 15)

gcd(a, 35) = 1 =⇒ a12 ≡ 1 (mod 35)

gcd(a, 504) = 1 =⇒ a6 ≡ 1 (mod 504).

4.1.15 Exercise. (1) Compute 27 (mod 53), 315 (mod 53) and 315 (mod 23).
(2) Using the Chinese Remainder Theorem, compute 315 (mod 1000).

4.1.16 Exercise. Let a ∈ Z.
(1) If 2 - a and 3 - a, then a2 ≡ 1 (mod 24).
(2) If 2 - a, 3 - a and 5 - a, then a4 ≡ 1 (mod 240).
(3) If 2 - a and 5 - a, then a100 ≡ 1 (mod 1000).
(4) If b ∈ Z, then b100 ≡ 0, 1, 376, 625 (mod 1000).

4.1.17 Exercise. Let a ∈ Z.
(1) Determine all the possible values of a12 (mod 7), a12 (mod 13) and a12 (mod 91), for a ∈ Z.
(2) Idem for a6 instead of a12.
(3) If n ≥ 1 is an integer such that n ≡ 1 (mod 12), then an ≡ a (mod 91) holds for all a ∈ Z.

4.2 Euler’s function ϕ

4.2.1 Notation We use the notation |X| for the number of elements of a set X. Note that |X ×Y | =
|X| · |Y |. Recall that, for any n ∈ N+,

Z/nZ = {all residue classes (modn)} = {1 (modn), 2 (modn), . . . , n (modn)}
(Z/nZ)∗ = {invertible residue classes (modn)} = {a (modn) | 1 ≤ a ≤ n, gcd(a, n) = 1}

The Euler function ϕ : N+ −→ N+ is defined by the formula

ϕ(n) := |(Z/nZ)∗| . (4.2.1.1)

For example,

(Z/1Z)∗ = {1 (mod 1)}, (Z/2Z)∗ = {1 (mod 2)}, (Z/3Z)∗ = {1 (mod 3), 2 (mod 3)},
(Z/4Z)∗ = {1 (mod 4), 3 (mod 4)}, (Z/5Z)∗ = {1 (mod 5), 2 (mod 5), 3 (mod 5), 4 (mod 5)},

(Z/6Z)∗ = {1 (mod 6), 5 (mod 6)},

which implies that

ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 2, ϕ(5) = 4, ϕ(6) = 2.

4.2.2 Example: (Z/6Z)∗ and (Z/2Z)∗ × (Z/3Z)∗ Note that ϕ(6) = ϕ(2)ϕ(3), which suggests a
possible link to the Chinese Remainder Theorem.

We reproduce below the table from Section 3.3.1 which makes explicit the correspondence between
Z/6Z and Z/2Z× Z/3Z. We mark the invertible elements in each column by putting them into a box.

55



x (mod 6) x (mod 2) x (mod 3)

0 0 0

1 1 1

2 0 2

3 1 0

4 0 1

5 1 2

We see that a residue class modulo 6 is invertible if an only if both the correponding residue class modulo
2 and the residue class modulo 3 are invertible.

In other works, under the bijective map (3.3.1.1)

Z/6Z −→ Z/2Z× Z/3Z

x (mod 6) 7→ (x (mod 2), x (mod 3))

the subset (Z/6Z)∗ corresponds to (Z/2Z)∗× (Z/3Z)∗. In particular, both subsets have the same number
of elements, which explains the equality ϕ(6) = ϕ(2)ϕ(3) that we observed earlier.

This phenomenon is completely general, as we are now going to show.

4.2.3 Proposition. If a ∈ Z, m,n ≥ 1 and gcd(m,n) = 1, then a (modmn) is invertible in Z/mnZ if
and only if both a (modm) and a (modn) are invertible in Z/mZ and Z/nZ, respectively.
In other words, under the bijective map Z/mnZ −→ Z/mZ × Z/nZ in the Chinese Remainder Theorem
3.3.2, the subset (Z/mnZ)∗ corresponds to (Z/mZ)∗ × (Z/nZ)∗.

Proof. If a (modmn) is invertible in Z/mnZ, then there exists b ∈ Z such that ab ≡ 1 (modmn), which
implies that ab ≡ 1 (modm) and ab ≡ 1 (modn).

Conversely, if a (modm) is invertible in Z/mZ and a (modn) is invertible in Z/nZ, then there exist
b, c ∈ Z such that ab ≡ 1 (modm) and ac ≡ 1 (modn). As gcd(m,n) = 1, the Chinese Remainder
Theorem implies that there exists x ∈ Z such that x ≡ b (modm) and x ≡ c (modn). It follows that
ax ≡ ab ≡ 1 (modm) and ax ≡ ac ≡ 1 (modn), hence ax ≡ 1 (mod lcm(m,n)) ≡ 1 (modmn).

4.2.4 Corollary. If m,n ≥ 1 and gcd(m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n).

Proof. By Proposition 4.2.3, both subsets (Z/mnZ)∗ and and (Z/mZ)∗× (Z/nZ)∗ have the same number
of elements.

4.2.5 Theorem (Properties of ϕ(n)). (1) If p is a prime, then ϕ(p) = p− 1.
(2) If p is a prime and k ≥ 1, then ϕ(pk) = pk − pk−1 = pk−1(p− 1) = pk(1− 1

p ).

(3) If m,n ≥ 1 and gcd(m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n).
(4) If n = pk11 · · · pkrr (where r ≥ 0, pi are distinct primes, ki ≥ 1), then

ϕ(n) = ϕ(pk11 ) · · ·ϕ(pkrr ) = (pk11 −p
k1−1
1 ) · · · (pkrr −pkr−1r ) = n(1− 1

p1
) · · · (1− 1

pr
) = n

∏
p|n

(1− 1
p ). (4.2.5.1)

Proof. (1) (Z/pZ)∗ = {1 (mod p), 2 (mod p), . . . , p− 1 (mod p)}.
(2) In this case (Z/pkZ)∗ = {a (mod pk) | 1 ≤ a ≤ pk, p - a} = {a (mod pk) | 1 ≤ a ≤ pk}r {pb (mod pk) |
1 ≤ b ≤ pk/p}, which implies that this set has pk − pk/p elements.
Part (3) was proved in Corollary 4.2.4, and Part (4) is a straightforward combination of (2) and (3).
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4.2.6 Remarks and examples (1) If p is a prime, then ϕ(p2) = p2−p = p(p−1) 6= (p−1)2 = ϕ(p)2.
(2) ϕ(120) = ϕ(23 · 3 · 5) = (23 − 22)(3− 1)(5− 1) = 4 · 2 · 4 = 32 = 25.

4.2.7 Exercise. Show that ϕ(2n)/ϕ(n) is equal to 1 (resp. to 2) if 2 - n (resp. if 2 | n). What happens
if one replaces 2n by 3n (resp. by 6n)?

4.2.8 The inclusion-exclusion principle The formula (4.2.5.1) for ϕ(n) can be proved directly using
the inclusion-exclusion principle, as we are going to explain.

Example 1: n = 12 = 22 · 3 In this case gcd(x, 12) = 1 ⇐⇒ 2 - x and 3 - x.
The subsets A,B ⊂ Z/12Z defined as

A = {1 ≤ x ≤ 12; 2 | x} = {2a | 1 ≤ a ≤ 6} = {2, 4, 6, 8, 10, 12}
B = {1 ≤ x ≤ 12; 3 | x} = {3b | 1 ≤ b ≤ 4} = {3, 6, 9, 12}

satisfy

A ∩B = {1 ≤ x ≤ 12; 6 | x} = {6c | 1 ≤ c ≤ 2} = {6, 12}
A ∪B = {1 ≤ x ≤ 12; x (mod 12) not invertible} = {2, 4, 6, 8, 10, 12, 3, 9}

(Z/12Z)∗ = {1 ≤ x ≤ 12; x (mod 12) invertible} = Z/12Z r (A ∪B) = {1, 5, 7, 11}.

As

|A ∪B| = |A|+ |B| − |A ∩B|, |A| = 12/2, |B| = 12/3, |A ∩B| = 12/6,

it follows that

ϕ(12) = 12− |A ∪B| = 12− |A| − |B|+ |A ∩B| = 12
(
1− 1

2 −
1
3 + 1

6

)
= 12(1− 1

2 )(1− 1
3 ). (4.2.8.1)

Example 2: n = pk11 p
k2
2 p

k3
3 In this case gcd(x, n) = 1 ⇐⇒ p1 - x, p2 - x and p3 - x. If we define subsets

A,B,C ⊂ Z/nZ by the formulas

A = {1 ≤ x ≤ n; p1 | x} = {p1a | 1 ≤ a ≤ n/p1}
B = {1 ≤ x ≤ n; p2 | x} = {p2b | 1 ≤ b ≤ n/p2}
C = {1 ≤ x ≤ n; p3 | x} = {p3c | 1 ≤ c ≤ n/p3},

then

A ∩B = {1 ≤ x ≤ n; p1p2 | x}, A ∩ C = {1 ≤ x ≤ n; p1p3 | x}, B ∩ C = {1 ≤ x ≤ n; p2p3 | x},
A ∩B ∩ C = {1 ≤ x ≤ n; p1p2p3 | x}, A ∪B ∪ C = {1 ≤ x ≤ n; x (modn) not invertible},

which implies that ϕ(n) = n− |A ∪B ∪ C| and

|A| = n/p1, |B| = n/p2, |C| = n/p3, |A ∩B| = n/p1p2,

|A ∩ C| = n/p1p3, |B ∩ C| = n/p2p3, |A ∩B ∩ C| = n/p1p2p3.
(4.2.8.2)
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On the other hand,

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|, (4.2.8.3)

hence

ϕ(n) = n
(

1− 1
p1
− 1

p2
− 1

p3
+ 1

p1p2
+ 1

p1p3
+ 1

p2p3
− 1

p1p2p3

)
= n

(
1− 1

p1

)(
1− 1

p2

)(
1− 1

p3

)
. (4.2.8.4)

Example 3: n = pk11 · · · pkrr We leave this general case as an exercise.

4.2.9 Theorem (Euler’s Theorem (bis)). Let a, n be integers such that n ≥ 1 and gcd(a, n) = 1. Then
aϕ(n) ≡ 1 (modn).

Proof. We give an algebraic proof which will work in the general abstract context of finite abelian groups
(see Corollary 7.5.9 below). Denote the invertible elements in Z/nZ by x1 (modn), . . . , xϕ(n) (modn).
The idea is to multiply each of them by a (modn) and consider the elements ax1 (modn), . . . , axϕ(n) (modn).
Each residue class axj (modn) is again invertible in Z/nZ, and these classes are distinct (indeed, if
ax ≡ ay (modn), then x ≡ a−1ax ≡ a−1ay ≡ y (modn)). This implies that

{x1 (modn), . . . , xϕ(n) (modn)} = (Z/nZ)∗ = {ax1 (modn), . . . , axϕ(n) (modn)}. (4.2.9.1)

For example, if n = 12 and a = 5, then

{1, 5, 7, 11 (mod 12)} = (Z/12Z)∗ = {5, 1, 11, 7 (mod 12)}

(since 5 · 1 ≡ 5, 5 · 5 ≡ 1, 5 · 7 ≡ 11, 5 · 11 ≡ 7 (mod 12)).
The equality (4.2.9.1) implies that the product of all invertible residue classes is equal both to

x := x1 · · ·xϕ(n) (modn) (4.2.9.2)

and

(ax1) · · · (axϕ(n)) (modn) ≡ aϕ(n)x (modn), (4.2.9.3)

hence

aϕ(n)x ≡ x (modn) (4.2.9.4)

(with the residue classes on both sides being invertible, being products of invertible classes). We can,
therefore, multiply (4.2.9.4) by x−1 (modn), obtaining the desired congruence aϕ(n) ≡ 1 (modn).

4.2.10 Consequences of Euler’s theorem (1) If n = p is a prime, then ϕ(p) = p − 1 and we
recover the fact that p - a implies ap−1 ≡ 1 (mod p) (Proposition 4.1.2).
(2) More generally, if p is a prime and k ≥ 1, then ϕ(pk) = (p − 1)pk−1 and we obtain that p - a implies

a(p−1)p
k−1 ≡ 1 (mod pk) (Proposition 4.1.6).

(3) Note that Fermat’s little theorem follows immediately from (1): if p | a, then ap ≡ 0 ≡ a (mod p),
whereas if p - a, then (1) implies that ap ≡ a · ap−1 ≡ a · 1 ≡ a (mod p). As we saw in the proof of
Proposition 4.1.2, this argument can be reversed.
(4) Is there an analogue of Fermat’s little theorem for congruences (modn) if n is not a prime? In other
words, is there an integer m > 1 such that am ≡ a (modn) holds for all a ∈ Z? The answer is given in
Proposition 4.2.11 below. This result will be used in Section 4.4.2 on cryptographic applications and also
in Section 5.3.
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4.2.11 Proposition. Let n > 1 be an integer.
(1) If there exists a prime p such that p2 | n, then there is no m > 1 satisfying

∀a ∈ Z am ≡ a (modn).

(2) If n = p1 · · · pr is a product of r ≥ 1 distinct primes and if m ≥ 1 satisfies (pi − 1) | (m − 1) for all
i = 1, . . . , r (equivalently, if lcm(p1 − 1, . . . , pr − 1) | (m− 1)), then

∀a ∈ Z am ≡ a (modn).

Proof. (1) For a = p and m > 1, p2 | am and p2 - a, which implies that p2 - (am−a). Therefore n - (am−a).
(2) According to Proposition 3.1.7 and its Corollary 3.1.8, it is enough to show that

∀a ∈ Z am ≡ a (mod pi)

holds for each i = 1, . . . , r. Write (m− 1) = (pi − 1)ti. If pi | a, then am ≡ 0 ≡ a (mod pi). If pi - a, then
api−1 ≡ 1 (mod pi), hence

am ≡ a · (api−1)ti ≡ a · 1 ≡ a (mod pi).

4.2.12 Examples (1) ∀a ∈ Z a21 ≡ a (mod 55). In this case n = 55 = 5 · 11 and m− 1 = 20.
(2) ∀a ∈ Z a561 ≡ a (mod 561). In this case m = n = 561 = 3 · 11 · 17 and m − 1 = 560 = 24 · 5 · 7. In
the terminology of Definition 5.3.4, 561 is a Carmichael number.

4.3 Structure of (Z/nZ)∗

4.3.1 Motivation We know that if two residue classes a (modn) and b (modn) are invertible, so is
their product ab (modn), as well as the inverse a−1 (modn) (in the abstract language of Section 7 below,
(Z/nZ)∗ is an abelian group with respect to multiplication). However, multiplication in (Z/nZ)∗ is much
more complicated than addition in Z/nZ.

This happens already for real numbers: multiplication of (positive) real numbers is complicated, but it
can be reduced to addition using the logarithm map with respect to a fixed base a > 1

loga : (R>0, ·) −→ (R,+), loga(at) = t, loga(xy) = loga(x) + loga(y). (4.3.1.1)

This works because each positive real number can be written as a suitable power at (t ∈ R) of a.
Can something similar be done for (Z/nZ)∗ instead of R>0? Only in the case if each element of (Z/nZ)∗

can be written as a power of a fixed invertible residue class a (modn) (which is then called a generator
of (Z/nZ)∗, or a primitive root modulo n).

Let us investigate whether such a generator exists for small values of n.

4.3.2 Looking for generators of (Z/nZ)∗ For n = 3, 4, 6 we have (Z/nZ)∗ = {±1 (modn)}, with
−1 (modn) being a generator of (Z/nZ)∗.

Example 1: n = 5.

a (mod 5) a2 (mod 5) a3 (mod 5) a4 (mod 5)

1 1 1 1

2 4 3 1

3 4 2 1

4 1 4 1
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We see that both 2 (mod 5) and 3 (mod 5) = 2−1 (mod 5) are generators of (Z/5Z)∗.

Example 2: n = 7.

a (mod 7) a2 (mod 7) a3 (mod 7) a4 (mod 7) a5 (mod 7) a6 (mod 7)

1 1 1 1 1 1

2 4 1 2 4 1

3 2 6 4 5 1

4 2 1 4 2 1

5 4 6 2 3 1

6 1 6 1 6 1

Both 3 (mod 7) and 5 (mod 7) = 3−1 (mod 7) are generators of (Z/7Z)∗.

Example 3: n = 8.

a (mod 8) a2 (mod 8) a3 (mod 8) a4 (mod 8)

1 1 1 1

3 1 3 1

5 1 5 1

7 1 7 1

In this case there are no generators of (Z/8Z)∗.

Example 4: n = 9.

a (mod 9) a2 (mod 9) a3 (mod 9) a4 (mod 9) a5 (mod 9) a6 (mod 9)

1 1 1 1 1 1

2 4 8 7 5 1

4 7 1 4 7 1

5 7 8 4 2 1

7 4 1 7 4 1

8 1 8 1 8 1

Both 2 (mod 9) and 5 (mod 9) = 2−1 (mod 9) are generators of (Z/9Z)∗.

Example 5: n = 15. In this case (Z/15Z)∗ has ϕ(15) = (3− 1)(5− 1) = 8 elements, but we know from
Section 4.1.9 that a4 ≡ 1 (mod 15) if gcd(a, 15) = 1. This means that a4k+l ≡ (a4)kal ≡ al (mod 15) can
take at most 4 values (corresponding to l = 0, 1, 2, 3), and therefore a (mod 15) is never a generator of
(Z/15Z)∗.

As we are going to see, this argument applies in a very general context. It tells us that a generator of
(Z/nZ)∗ can exist only in the case when the exponent ϕ(n) in Euler’s theorem cannot be improved (in
other words, when u = ϕ(n), in the notation of Theorem 4.1.11).

4.3.3 Definition. Assume that a, n ∈ Z, n ≥ 1 and gcd(a, n) = 1. The order of the residue class
a (modn) in (Z/nZ)∗ is the smallest integer d ≥ 1 such that ad ≡ 1 (modn) (Euler’s theorem implies
that d ≤ ϕ(n)). Note that akd+l ≡ (ad)kal ≡ 1k · al ≡ al (modn), for all k, l ∈ Z.
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4.3.4 Order of a (modn) in (Z/nZ)∗ (examples) It is easy to extract from the tables in Section
4.3.2 the orders of all invertible residue classes (modn).

a (mod 5) 1 (mod 5) 2 (mod 5) 3 (mod 5) 4 (mod 5)

d 1 4 4 2

a (mod 7) 1 (mod 7) 2 (mod 7) 3 (mod 7) 4 (mod 7) 5 (mod 7) 6 (mod 7)

d 1 3 6 3 6 2

a (mod 8) 1 (mod 8) 3 (mod 8) 5 (mod 8) 7 (mod 8)

d 1 2 2 2

a (mod 9) 1 (mod 9) 2 (mod 9) 4 (mod 9) 5 (mod 9) 7 (mod 9) 8 (mod 9)

d 1 6 3 6 3 2

In these examples, the order of any element of (Z/nZ)∗ divides ϕ(n), and it is equal to ϕ(n) if and only
if the element is a generator of (Z/nZ)∗. This happens in general.

4.3.5 Exercise. For n ∈ N, let an = 3n, bn = 4n and cn = 1018 · 2018n + 1026 · 2019n.
(1) What can one say about an (mod 13) and bn (mod 13)?
(2) What can one say about cn (mod 13)? When is cn ≡ 0 (mod 13) (resp. cn ≡ 3 (mod 13))?

4.3.6 Proposition. Assume that a, n ∈ Z, n ≥ 1 and gcd(a, n) = 1. Let d ≥ 1 be the order of a (modn)
in (Z/nZ)∗.
(1) For l ∈ Z, it is equivalent: al ≡ 1 (modn) ⇐⇒ d | l.
(2) For l,m ∈ Z, it is equivalent: al ≡ am (modn) ⇐⇒ d | (l −m) ⇐⇒ l ≡ m (mod d).
(3) The set {am | m ∈ Z} is equal to {a, a2, . . . , ad ≡ 1 (modn)} and has d elements.

Proof. (1) If l = dk, then al ≡ (ad)k ≡ 1k ≡ 1 (modn). Conversely, assume that al ≡ 1 (modn). Apply
division with remainder by d to l: write l = dq + r, where q, r ∈ Z, 0 ≤ r < d. As 1 ≡ al ≡ (ad)qar ≡
1 · ar ≡ ar, minimality of d implies that r = 0, hence l = dq is divisible by d.
(2) The equivalences

al ≡ am (modn) ⇐⇒ (a−1)mal ≡ (a−1)mam (modn) ⇐⇒ al−m ≡ 1 (modn)

are automatic, and the last condition is equivalent to d | (l −m), by (1).
(3) Any m ∈ Z can be written as m = kd+l, where k, l ∈ Z and 1 ≤ l ≤ d; then am ≡ (ad)kal ≡ al (modn).
Moreover, if 1 ≤ i < j ≤ d, then 0 < j − i < d, hence d - (j − i) and ai 6≡ aj (modn), by (2).

4.3.7 Corollary. The order of any element a (modn) of (Z/nZ)∗ divides ϕ(n) (since aϕ(n) ≡ 1 (modn),
by Euler’s theorem). More precisely, this order divides u := lcm(ϕ(pk11 ), . . . , ϕ(pkrr )) if n = pk11 · · · pkrr
(since au ≡ 1 (modn), by an improved version of Euler’s theorem (Theorem 4.1.11)). If p1 = 2 and
k1 ≥ 3, then we can replace ϕ(pk11 ) by ϕ(pk11 )/2.

4.3.8 Definition. An invertible residue class a (modn) ∈ (Z/nZ)∗ is a generator of (Z/nZ)∗ (also
called a primitive root modulo n) if {am | m ∈ Z} = (Z/nZ)∗ (i.e., if each invertible residue class
(modn) is a power of a (modn)).

4.3.9 Proposition. An invertible residue class a (modn) is a generator of (Z/nZ)∗ if and only if its
order in (Z/nZ)∗ is equal to ϕ(n).

Proof. This is a special case of Proposition 4.3.6(3) (for d = ϕ(n)).
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4.3.10 Computing the order of a (modn) in (Z/nZ)∗ Example: 2 (mod 67). In this case n = 67
is a prime, hence ϕ(67) = 66 = 2 · 3 · 11. Let d be the order of 2 (mod 67) in (Z/67Z)∗. We know that
d | 66, by Corollary 4.3.7.

We are going to show that d = 66, arguing by contradiction. If d 6= 66, then there exists a prime p | 66
such that d | (66/p). According to the three cases p = 2, 3, 11 we have

d | 3 · 11 =⇒ 233 ≡ 1 (mod 67), or

d | 2 · 11 =⇒ 222 ≡ 1 (mod 67), or

d | 2 · 3 =⇒ 26 ≡ 1 (mod 67).

However,

26 ≡ 64 ≡ −3 6≡ 1 (mod 67), 212 ≡ (−3)2 ≡ 9 (mod 67), 224 ≡ 92 ≡ 81 ≡ 14 (mod 67),

223 ≡ 2−1 · 14 ≡ 7 (mod 67), 222 ≡ 2−1 · 7 ≡ 2−1 · (−60) ≡ −30 6≡ 1 (mod 67),

235 ≡ 212 · 223 ≡ 9 · 7 ≡ −4 (mod 67), 233 ≡ 2−2 · (−4) ≡ −1 6≡ 1 (mod 67).

This contradiction shows that d = 66, as claimed.
The same argument proves the following general statement.

4.3.11 Proposition. If m ≥ 1 and am ≡ 1 (modn), then it is equivalent:
m is equal to the order of a (modn) in (Z/nZ)∗ ⇐⇒ for each prime p | m we have am/p 6≡ 1 (modn).

4.3.12 Exercise. Let a ∈ Z.
(1) If 17 - a, then it is equivalent: a (mod 17) is a generator of (Z/17Z)∗ (a primitive root modulo 17)
⇐⇒ a8 6= 1 (mod 17).
(2) Find such a generator (try small values of a).
(3) If 3 - a, then it is equivalent: a (mod 27) is a generator of (Z/27Z)∗ (a primitive root modulo 27) ⇐⇒
a6, a9 6= 1 (mod 27).
(4) Find such a generator (try small values of a).

4.3.13 Proposition (Order of ak (modn)). Let d be the order of a (modn) in (Z/nZ)∗. For an integer
k 6= 0, the order of ak (modn) in (Z/nZ)∗ is equal to d/ gcd(d, |k|). In particular, it is also equal to d if
and only if gcd(d, |k|) = 1.

Proof. If we denote the order of ak (modn) by e ≥ 1, then |k|e ≥ 1 is the smallest positive multiple of |k|
for which a|k|e ≡ 1 (modn). However, this congruence is equivalent to |k|e being divisible by d, thanks to
Proposition 4.3.6(1). This means that |k|e is the smallest common multiple of |k| and d, hence

e = lcm(d, |k|)/|k| = d/ gcd(d, |k|).

4.3.14 Corollary (Number of generators). (1) If a (modn) is a generator of (Z/nZ)∗, then the set of
generators of (Z/nZ)∗ is equal to {ak (modn) | 1 ≤ k ≤ ϕ(n), gcd(ϕ(n), k) = 1}.
(2) The number of generators of (Z/nZ)∗ is equal either to zero, or to ϕ(ϕ(n)).

Proof. (1) This is a special case of the last sentence of Proposition 4.3.13. Part (2) is an immediate
consequence of (1).
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4.3.15 Proposition. Assume that n = n1n2, where n1, n2 > 2 and gcd(n1, n2) = 1. If gcd(a, n) = 1,
then aϕ(n)/2 ≡ 1 (modn). In particular, the order of any a (modn) in (Z/nZ)∗ divides ϕ(n)/2, hence
(Z/nZ)∗ contains no generator.

Proof. The assumptions imply that 2 | ϕ(ni) and ϕ(n) = ϕ(n1)ϕ(n2). Therefore

aϕ(n)/2 ≡ (aϕ(n1))ϕ(n2)/2 ≡ 1 (modn1)

aϕ(n)/2 ≡ (aϕ(n2))ϕ(n1)/2 ≡ 1 (modn2)

}
=⇒ aϕ(n)/2 ≡ 1 (modn).

4.3.16 Theorem (Existence of a generator in (Z/nZ)∗). A generator exists in (Z/nZ)∗ ⇐⇒ n =
1, 2, 4, pk, 2pk, where p 6= 2 is a prime and k ≥ 1.

Proof. We are going to prove here only the easy implication “=⇒”. As regards the converse implication
“⇐=”, the key point is to show that (Z/pZ)∗ contains a generator, for every prime p. This result was
proved by Gauss (see Theorems 5.5.2 and 5.5.4 below for more details).

Assume that (Z/nZ)∗ contains a generator. If we write n = pk11 · · · pprr for primes p1 < · · · < pr,
Proposition 4.3.15 implies that n must be of the form n = 2k, pk or 2pk (where k ≥ 0 and p 6= 2 is a
prime). But if n = 2k and k ≥ 3, Proposition 4.1.8 tells us that the order of each element of (Z/2kZ)∗ is
at most equal to ϕ(2k)/2, hence there is no generator in this case.

4.3.17 Discrete logarithm Assume that a (modn) is a generator of (Z/nZ)∗ (hence n is as in Theo-
rem 4.3.16). For any invertible residue class x (modn) there exists a unique integer m ∈ {0, 1, . . . , ϕ(n)−1}
such that x ≡ am (modn). The integer m is called the discrete logarithm of x (modn) with respect to
a (modn).

If we denote m by la(x (modn)), then we have

la(xy (modn)) ≡ la(x (modn)) + la(y (modn)) (modϕ(n)). (4.3.17.1)

4.3.18 Decimal expansion of rational numbers Such expansions are always (ultimately) periodic:

2

3
= 0, 666 . . . = 0, 6

1

15
= 0, 0666 . . . = 0, 06

3

7
= 0, 428571428571 . . . = 0, 428571

16

37
= 0, 432432 . . . = 0, 432

What can be said about the length of the period? For example,

3

7
= 0, 428571 =⇒ 106 · 3

7
= 428571, 428571 =⇒ (106 − 1) · 3

7
= 428571 =⇒

=⇒ 7 | 3 · (106 − 1) =⇒ 7 | (106 − 1) =⇒ 106 ≡ 1 (mod 7).

The order of 10 (mod 7) = 3 (mod 7) in (Z/7Z)∗ is equal to 6, which is also the length of the period of
the decimal expansion of 3

7 .
In general, for each d ≥ 1, the real number x := 0, 000 · · · 1︸ ︷︷ ︸

d

satisfies

10dx = 1, 000 · · · 1︸ ︷︷ ︸
d

= 1 + x =⇒ x =
1

10d − 1
.

For example,
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1

9
= 0, 1111 . . . = 0, 1

1

99
= 0, 010101 . . . = 0, 01

1

999
= 0, 001001001 . . . = 0, 001.

This implies that, for any decimal digits a1, . . . , ad ∈ {0, 1, . . . , 9},

0, a1a2 · · · ad = (a1 · · · ad)10 · x =
(a1 · · · ad)10

10d − 1
. (4.3.18.1)

For example,

0, 432 = 432 · 0, 001 =
432

999
=

27 · 16

27 · 37
=

16

37
.

The formula (4.3.18.1) is equivalent to the following assertion.

4.3.19 Proposition (Decimal expansion of fractions). Assume that 0 < a
b < 1, where a, b ∈ N+ and

gcd(b, 10) = 1; let d ≥ 1 be the order of 10 (mod b) in (Z/bZ)∗. Then 10d − 1 = bq, where q ∈ N+, and

a

b
=
aq

bq
=

aq

10d − 1
= 0, a1a2 · · · ad, (a1 · · · ad)10 = aq, 0 < aq < bq = 10d − 1.

4.3.20 Exercise. (1) What happens if gcd(b, 10) > 1?
(2) Write 0, 1527 = 0, 15272727 . . . in the form a

b .

4.4 Applications to cryptography

4.4.1 Creation of a common secret (Diffie–Hellman) The goal is to create a common secret
between two people (Alice and Bob) who send messages to each other through a non-secure communication
channel.

Public data: (i) a big integer n ≥ 1; (ii) an invertible residue class g (modn) whose order in (Z/nZ)∗ is
big.

In practice, n = p is a large prime and g (mod p) is a generator of (Z/pZ)∗.

Step 1: Alice chooses a secret integer a ∈ Z and sends to Bob ga (modn). Bob chooses a secret integer
b ∈ Z and sends to Alice gb (modn).

Step 2: Alice computes (gb)a ≡ gab (modn), and Bob computes (ga)b ≡ gab (modn). The residue class
gab (modn) is their common secret.

What if there was a spy intercepting their messages? The spy would know the values of g (modn),
ga (modn) and gb (modn).

In general, it is difficult to compute the value of a (modulo the order of g (modn)) from the knowledge
of g (modn) and ga (modn). However, experts keep improving the corresponding algorithms, which means
that one should use at present (August 2019) primes n = p of the size at least equal to 21000 (and such
that p− 1 is divisible by at least one large prime).

4.4.2 Public key cryptography (Rivest–Shamir–Adleman: RSA) In its abstract form, public
key cryptography encrypts messages by a publicly known algorithm, whereas the decryption algorithm
remains secret. It is based on one-way functions.

Such a function is a bijective map f : X −→ X between a suitable large finite set X and itself, which
has the following property: f is easy to compute, but the inverse map g = f−1 : X −→ X is difficult
to compute. One uses f (which can be made public) for encryption, and g (which remains secret) for
decryption.
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The RSA protocol was originally discovered in 1973 by C. Cocks, a mathematician working for the
UK intelligence service. It was independently discovered and published by R. Rivest, A. Shamir and
L. Adleman in 1977. It uses X = Z/nZ, where n = pq is a product of two large primes, and maps

f(x) ≡ xe (modn), g(y) ≡ yd (modn), (4.4.2.1)

for suitable integers d, e ≥ 1. These two maps are inverse to each other if and only if

∀a ∈ Z ade ≡ a (modn). (4.4.2.2)

Congruences of this type were discussed in Proposition 4.2.11(2), but we repeat the argument here.

4.4.3 Proposition (Congruences behind RSA). Let n = pq, where p 6= q are prime numbers. If
d, e ≥ 1 are integers such that (p − 1) | (de − 1) and (q − 1) | (de − 1) (which is equivalent to de ≡
1 (mod lcm(p− 1, q − 1))), then the maps f, g : Z/pqZ −→ Z/pqZ given by

f(x) ≡ xe (mod pq), g(y) ≡ yd (mod pq)

are inverse to each other:

∀x, y ∈ Z/pqZ g(f(x)) ≡ (xe)d ≡ xde ≡ x (mod pq), f(g(y)) ≡ (yd)e ≡ yde ≡ y (mod pq).

Proof. Let x ∈ Z. If p | x, then xde ≡ 0 ≡ x (mod p). If p - x, then xp−1 ≡ 1 (mod p). As de = 1+(p−1)a
for some a ∈ N, we have xde ≡ x·(xp−1)a ≡ x (mod p). Therefore xde ≡ x (mod p) always holds. Similarly,
xde ≡ x (mod q) always holds. Combining the two congruences using Proposition 3.1.7 and its Corollary
3.1.8, we obtain xde ≡ x (mod pq).

4.4.4 RSA communication Alice wants to receive messages encrypted by a publicly known algo-
rithm, while keeping the decryption algorithm secret.

Step 1: Alice chooses large prime numbers p 6= q (this can be done very fast on a computer, since there
are efficient algorithms for deciding whether a given integer is a prime or not).

Step 2: Alice chooses an integer e > 1 (which will be used for encryption), and then computes an integer
d > 1 (which will be used for decryption) such that

de ≡ 1 (mod lcm(p− 1, q − 1)). (4.4.4.1)

Step 3: Alice makes the pair (pq, e) (the public key) public, but keeps d (the secret key) secret.

Step 4: Messages to Alice will consist of pieces, where a piece is an element of Z/pqZ. Each piece will
be encrypted by the map x (mod pq) 7→ y ≡ xe (mod pq) (note that both e and pq are publicly known!),
and then sent to Alice through a non-secure communication channel.

Step 5: Alice will decrypt the message received by y (mod pq) 7→ yd (mod pq) ≡ xde ≡ x (mod pq).

4.4.5 Remarks Alice can also sign (and therefore authenticate) messages using the secret key d (by
sending to Bob a message consisting of a pair (or of several pairs) (y1 (mod pq), y2 (mod pq)), where
y2 ≡ yd1 (mod pq). Bob will compute ye2 ≡ (yd1)e (mod pq) and check that it is congruent to y1 (mod pq)).

In practice, one does not use RSA to encrypt the text of the message, but to encrypt a key to a more
conventional encryption algorithm, which is then used for encrypting the message.

The point of the RSA protocol is that, in general, the knowledge of pq is insufficient to determine easily
p and q (factorisation of integers is hard, unless one has a quantum computer). If one knew p, q and e,
then it would be easy to compute the secret key d from the congruence (4.4.4.1).

However, one needs to make certain precautions. For example, the primes p and q should be generated
in a sufficiently random way, and they should not be too close to each other. In addition, p− 1 (and also
q − 1) should be divisible by a large prime.
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5 More advanced topics for enthusiasts

5.1 Congruences f(x) ≡ 0 (modn)

5.1.1 Proposition (Congruence x2 ≡ 1 (mod pk)). Let p be a prime, let k ≥ 1. The solutions of
x2 ≡ 1 (mod pk) are given by {

x ≡ ±1 (mod pk), p 6= 2

x ≡ ±1 (mod 2k−1), p = 2, k > 1.

Proof. This is the content of Exercise 2.3.11.

5.1.2 Corollary. If p is a prime and if p - a, then it is equivalent:

a ≡ a−1 (mod p) ⇐⇒ a ≡ ±1 (mod p).

Proof. The condition on the left hand side is equivalent to a ·a ≡ a ·a−1 (mod p), hence to a2 ≡ 1 (mod p).

5.1.3 Application of the CRT (example) Let us solve the congruence

x2 ≡ 1 (mod 15), (5.1.3.1)

which is equivalent to the system {
x2 ≡ 1 (mod 3)

x2 ≡ 1 (mod 5)

}
Each of the two solutions x ≡ ±1 (mod 3) of the first congruence can be combined with each of the two
solutions x ≡ ±1 (mod 5) of the second congruence to obtain a solution of (5.1.3.1). Altogether, we obtain
the following 2 · 2 = 4 solutions:

x (mod 3) x (mod 5) x (mod 15)

1 1 1

−1 −1 −1

1 −1 4

−1 1 −4

To sum up,

x2 ≡ 1 (mod 15) ⇐⇒ x ≡ ±1, ±4 (mod 15).

5.1.4 Application of the CRT (general principle) Assume that we are given a polynomial with
integer coefficients f(x) = a0 + a1x+ · · ·+ adx

d (d ≥ 0, ai ∈ Z). For each n ≥ 1, denote by

N(f ;n) := |{x (modn) | f(x) ≡ 0 (modn)}|

the number of solutions (modn) of the congruence f(x) ≡ 0 (modn).
If m,n ≥ 1 and gcd(m,n) = 1, the Chinese Remainder Theorem implies that the canonical bijective

map

Z/mnZ
∼−→ Z/mZ× Z/nZ
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gives a bijection between the subsets

{x (modmn) | f(x) ≡ 0 (modmn)} ⊂ Z/mnZ

and

{x (modm) | f(x) ≡ 0 (modm)} × {x (modn) | f(x) ≡ 0 (modn)} ⊂ Z/mZ× Z/nZ.

In particular,

gcd(m,n) = 1 =⇒ N(f ;mn) = N(f ;m)N(f ;n). (5.1.4.1)

In Section 5.1.3 we considered the case m = 3, n = 5, f(x) = x2 − 1.

5.1.5 Exercise. (1) If p is a prime and k ≥ 1, then the solutions of x2 ≡ x (mod pk) are x ≡
0, 1 (mod pk). [Hint: x2 − x = x(x− 1).]
(2) The solutions of x2 ≡ x (mod 104) are x ≡ 0, 1, 625, 9376 (mod 104).
(3) For each k ≥ 1, the solutions of x2 ≡ x (mod 10k) are equal to x ≡ 0, 1, ek, 1 − ek (mod 10k), where
ek ≡ · · · 0625 (mod 10k) and 1− ek ≡ · · · 9376 (mod 10k).

5.1.6 10-adic numbers In Part (3) of 5.1.5 one can pass to the limit k −→ +∞, obtaining a funny
number e = · · · 0625 whose decimal expansion has infinitely many digits on the left and which satisfies
e2 = e (this implies that 1 − e = · · · 9376 also satisfies (1 − e)2 = 1 − e). Both e and 1 − e are examples
of 10-adic integers. Another example is given by a := · · · 11111, which satisfies 9a = · · · 99999, hence
9a+ 1 = · · · 00000 = 0 and a = − 1

9 .

5.1.7 Congruences x2 ≡ a (modn) (examples) Let us compute all possible values of squares
x2 (mod p) for small primes p 6= 2 and p - x.

x (mod 3) ±1

x2 (mod 3) 1

x (mod 5) ±1 ±2

x2 (mod 5) 1 4 ≡ −1

x (mod 7) ±1 ±2 ±3

x2 (mod 7) 1 4 ≡ −3 9 ≡ 2

x (mod 11) ±1 ±2 ±3 ±4 ±5

x2 (mod 11) 1 4 9 ≡ −2 16 ≡ 5 25 ≡ 3

x (mod 13) ±1 ±2 ±3 ±4 ±5 ±6

x2 (mod 13) 1 4 9 ≡ −4 16 ≡ 3 25 ≡ −1 36 ≡ −3

x (mod 17) ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8

x2 (mod 17) 1 4 9 ≡ −8 16 ≡ −1 25 ≡ 8 36 ≡ 2 49 ≡ −2 64 ≡ −4

x (mod 19) ±1 ±2 ±3 ±4 ±5 ±6 ±7 ±8 ±9

x2 (mod 19) 1 4 9 16 ≡ −3 25 ≡ 6 36 ≡ −2 49 ≡ −8 64 ≡ 7 81 ≡ 5

These tables contain the following information about solvability of x2 ≡ a (mod p) for a = −1,±3, 5 (and
variable p - a):

YES NO

x2 ≡ −1 (mod p) 5, 13, 17 3, 7, 11, 19

x2 ≡ −3 (mod p) 7, 13, 19 5, 11, 17

x2 ≡ 3 (mod p) 11, 13 5, 7, 17, 19

x2 ≡ 5 (mod p) 11, 19 3, 7, 13, 17
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This would seem to suggest that

• x2 ≡ −1 (mod p) has a solution
?⇐⇒ p ≡ 1 (mod 4)

• x2 ≡ −3 (mod p) has a solution
?⇐⇒ p ≡ 1 (mod 6)

• x2 ≡ 3 (mod p) has a solution
?⇐⇒ p ≡ ±1 (mod 12)

• x2 ≡ 5 (mod p) has a solution
?⇐⇒ p ≡ ±1 (mod 5)

All of this is true, as a consequence of the quadratic reciprocity law (first proved in full generality by
Gauss), according to which

• x2 ≡ −1 (mod p) has a solution ⇐⇒ p ≡ 1 (mod 4)

• x2 ≡ 2 (mod p) has a solution ⇐⇒ p ≡ ±1 (mod 8)

• x2 ≡ (−1)(q−1)/2q (mod p) has a solution ⇐⇒ x2 ≡ p (mod q) has a solution

(above, p, q > 2 are distinct odd primes).

5.1.8 Exercise. (1) Find all solutions of x2 ≡ −1 (mod 35).
(2) Find all solutions of x2 ≡ −1 (mod 85).

5.1.9 Theorem. Let p 6= 2 be a prime. The congruence x2 ≡ −1 (mod p) has a solution ⇐⇒ p ≡
1 (mod 4).

Proof. Let us begin with the easier implication “=⇒”: if x ∈ Z satisfies x2 ≡ −1 (mod p), then

(−1)
p−1
2︸ ︷︷ ︸

=±1

≡ (x2)
p−1
2 ≡ xp−1 ≡ 1 (mod p).

As −1 6≡ 1 (mod p), we must have (−1)
p−1
2 = 1, hence p−1

2 = 2k and p = 4k + 1 (for some k ∈ Z).
In order to prove the more difficult implication “⇐=” we use Wilson’s theorem 5.1.10 below. If p = 4k+1,
then

−1 ≡ (p− 1)! ≡ (4k)! ≡ 1 · 2 · · · (2k) · (2k + 1)︸ ︷︷ ︸
≡−2k

· · · (4k)︸︷︷︸
≡−1

≡ (2k)! (−1)2k · (2k)! = ((2k)!)2 (mod p).

5.1.10 Theorem (Wilson’s theorem). If p is a prime, then (p− 1)! ≡ −1 (mod p).

Proof. We can assume that p 6= 2. By definition, (p − 1)! ≡ 1 · 2 · · · (p − 1) (mod p) is congruent to the
product of all invertible residue classes (mod p). The idea is to put together each residue class with its
inverse, provided they are distinct. For example, for p = 7, we can rewrite the product defining 6! as
follows:

6! = (2 · 4)︸ ︷︷ ︸
≡1

· (3 · 5)︸ ︷︷ ︸
≡1

· (1 · 6)︸ ︷︷ ︸
≡−1

≡ −1 (mod 7).

In general, Corollary 5.1.2 tells us that invertible residue classes (mod p) different from ±1 (mod p) come
in pairs a (mod p), a−1 (mod p). Consequently,
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(p− 1)! ≡ (a · a−1) · (b · b−1) · · · (t · t−1) · (1 · (−1)) ≡ 1 · (−1) ≡ −1 (mod p).

5.1.11 Exercise. Let p 6= 2, 3 be a prime. If x ∈ Z satisfies x2 ≡ −3 (mod p), show that:
(1) The residue class y := 2−1 · (−1 + x) (mod p) behaves like 1

2 (−1 + i
√

3) = e2πi/3 ∈ C: y2 + y + 1 ≡
0 (mod p), y3 ≡ 1 6≡ y (mod p).
(2) Write p = 3k + a, where k ∈ Z and a ∈ {1, 2}. Deduce from yp−1 ≡ 1 (mod p) that a = 1, hence
p ≡ 1 (mod 3).

5.1.12 Exercise. If x, y ∈ Z and if p ≡ 3 (mod 4) is a prime such that p | (x2 + y2), then p | x and p | y.

5.1.13 Polynomial congruences with many solutions A polynomial of degree d ≥ 1 with complex
coefficients has at most d complex roots. What happens for polynomial congruences? We know that the
quadratic congruence

x2 − 1 ≡ 0 (mod 8)

has 4 solutions x ≡ ±1,±5 (mod 8). Similarly, if p1, . . . , pr 6= 2 are distinct odd primes, then the quadratic
congruence

x2 − 1 ≡ 0 (mod p1 · · · pr)

has 2r > 2 solutions, by (5.1.4.1).
The following result, which is a special case of a general abstract result proved in Theorem 9.2.7, shows

that congruences modulo primes behave in a more reasonable way.

5.1.14 Theorem. Let p be a prime, let a0, . . . , ad ∈ Z and p - ad (d ≥ 0). The congruence

f(x) = a0 + a1x+ · · ·+ adx
d ≡ 0 (mod p)

has at most d solutions (mod p).

Proof. Induction on d. The case d = 0 is straightforward. Assume that d > 0 and that the result
holds for polynomials of degree deg < d. Assume that a ∈ Z satisfies f(a) ≡ 0 (mod p). The formulas
xk − ak = (x− a)(xk−1 + axk−2 + · · ·+ ak−1) imply that there is a polynomial identity

f(x)− f(a) = (x− a)g(x), g(x) = b0 + b1x+ · · ·+ bd−1x
d−1, bi ∈ Z, p - bd−1 = ad.

If b 6≡ a (mod p) is a solution of f(b) ≡ 0 (mod p), then

(b− a)g(b) ≡ f(b)− f(a) ≡ 0 (mod p).

As b−a 6= 0 (mod p) is invertible (mod p), it follows that g(b) ≡ 0 (mod p). By induction, this congruence
has at most d− 1 possible solutions b (mod p). Together with a (mod p), this gives at most d solutions of
f(x) ≡ 0 (mod p).

5.1.15 Corollary. Let p be a prime. If a0, . . . , ad ∈ Z (d ≥ 0) and if the congruence f(x) = a0 + a1x+
· · ·+ adx

d ≡ 0 (mod p) has at least d+ 1 solutions (mod p), then p | ai for all i, hence f(a) ≡ 0 (mod p)
holds for all a ∈ Z.

5.1.16 Proposition (Another proof of Wilson’s theorem). If p is a prime, then (p− 1)! ≡ −1 (mod p).
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Proof. The polynomial

f(x) := (xp−1 − 1)−
p−1∏
j=1

(x− j)

has coefficients in Z, its degree is deg(f) < p − 1, and the congruence f(x) ≡ 0 (mod p) is satisfied for
x ≡ 1, . . . , p− 1 (mod p). By Corollary 5.1.15, all coefficients of f(x) are divisible by p, which implies that

f(0) ≡ 0 (mod p), f(0) = −1 + (−1)p(p− 1)!

5.2 Primes in arithmetic progressions

5.2.1 Primes modulo 4 and 6 Recall from Exercise 1.1.8 that a prime p 6= 2 (resp. p 6= 2, 3) satisfies
p ≡ ±1 (mod 4) (resp. p ≡ ±1 (mod 6)).

5.2.2 Proposition. There are infinitely many primes p ≡ −1 (mod 4).

Proof. We need to show the following: if p1, . . . , pr ≡ −1 (mod 4) are primes (r ≥ 0), then there exists
a prime p ≡ −1 (mod 4) such that p 6= p1, . . . , pr. Let N := 4p1 · · · pr − 1 ≥ 4 · 1 − 1 = 3. Note that
N ≡ −1 (mod 4). Write N = q1 · · · qs, where the qj are primes (not necessarily distinct). As 2 - N , qj 6= 2,
hence qj ≡ ±1 (mod 4). If qj ≡ 1 (mod 4) for all j = 1, . . . , r, then N ≡ 1 (mod 4), which is not true.
Therefore there exists p = qj such that p 6≡ 1 (mod 4), which implies that p ≡ −1 (mod 4). Note that
p | N . If p = pi for some i, then p | 4p1 · · · pr = N + 1, hence p | (N + 1) − N , which is impossible.
Therefore p 6= p1, . . . , pr.

5.2.3 Exercise. There are infinitely many primes p ≡ −1 (mod 6).

5.2.4 Proposition. There are infinitely many primes p ≡ 1 (mod 4).

Proof. We need to show the following: if p1, . . . , pr ≡ 1 (mod 4) are primes (r ≥ 0), then there exists a
prime p ≡ 1 (mod 4) such that p 6= p1, . . . , pr. Let N := (2p1 · · · pr)2 + 1 ≥ 22 + 1 = 5, let p | N be any
prime dividing N . Then p 6= 2 and x := 2p1 · · · pr ∈ Z satisfies x2 ≡ −1 (mod p). The “easier part” of
Theorem 5.1.9 implies that p ≡ 1 (mod 4). If p = pi for some i, then p | (2p1 · · · pr)2 = N − 1, hence
p | N − (N − 1), which is impossible. Therefore p 6= p1, . . . , pr.

5.2.5 Exercise. There are infinitely many primes p ≡ 1 (mod 6).
[Hint: modify the method of proof of Proposition 5.2.4 by appealing to Exercise 5.1.11 instead of Theorem
5.1.9.

5.2.6 Exercise. There are infinitely many primes p ≡ 5 (mod 12).
[Hint: combine the methods of Proposition 5.2.4 with those of Exercise 5.2.3.]

5.2.7 Exercise. There are infinitely many primes p ≡ 7 (mod 12).
[Hint: combine the methods of Proposition 5.2.2 with those of Exercise 5.2.5.]

5.2.8 Exercise. What would one need to know in order to prove (by the same method) that there are
infinitely many primes p ≡ 11 (mod 12)?

5.2.9 Exercise. (1) (x12 − 1)/((x6 − 1)(x2 + 1)) = x4 − x2 + 1 = (x2 − 1)2 + x2 = (x2 − 1
2 )2 + 3

4 .
(2) If p is a prime and if x4 − x2 + 1 ≡ 0 (mod p) has a solution, then p ≡ 1 (mod 12).
(3) There are infinitely many primes p ≡ 1 (mod 12).
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5.2.10 Exercise. (1) If p 6= 2 is a prime and if x4 ≡ −1 (mod p) has a solution, then p ≡ 1 (mod 8).
(2) There are infinitely many primes p ≡ 1 (mod 8).

(3) If p 6= 2 is a prime and if x2
k ≡ −1 (mod p) has a solution, then p ≡ 1 (mod 2k+1).

(4) For each n ≥ 2 there are infinitely many primes p ≡ 1 (mod 2n).

5.2.11 More general results Elementary methods of this kind can be used to show that there are
infinitely many primes of the form p ≡ a (modn), provided that a2 ≡ 1 (modn). The following general
result is due to Dirichlet.

5.2.12 Theorem (Dirichlet’s theorem on primes in arithmetic progressions). If gcd(a, n) = 1, then there
are infinitely many primes of the form p ≡ a (modn). More precisely,∑

p∈P
p≡a (modn)

1

p
= +∞. (5.2.12.1)

5.2.13 Dirichlet’s method A first result of this kind was proved by Euler, who showed that∑
p∈P

1

p
= +∞.

One can reformulate Euler’s method as follows: one considers the identity

∏
p∈P

1

1− p−s
=

∞∑
n=1

n−s (s > 1)

(which is an analytic reformulation of the uniqueness of factorisation in Z), then applies the expansion

− log(1− T ) =

∞∑
k=1

T k

k

to each term of the product, and finally lets s −→ 1+.
Dirichlet’s result (5.2.12.1) in the simplest case n = 4, a = ±1, can be proved in the same way, by

considering also the product∏
p∈P

p≡1 (mod 4)

1

1− p−s
∏
p∈P

p≡−1 (mod 4)

1

1 + p−s
= 1− 3−s + 5−s − 7−s + 9−s · · · (s > 1).

5.3 Pseudoprimes, Carmichael numbers

5.3.1 Question According to Fermat’s little theorem, ap ≡ a (mod p) holds for all a ∈ Z if p is a
prime. Does this property characterise primes?

5.3.2 Definition. An integer n > 1 is a pseudoprime in base a ∈ Z if n is not a prime number and
an ≡ a (modn).

5.3.3 Example: 2341 ≡ 2 (mod 341) If a = 2 and n = 341 = 11 · 31, then 25 = 32 and

25 ≡ 1 (mod 31) =⇒ 210 ≡ 1 (mod 31)

25 ≡ −1 (mod 11) =⇒ 210 ≡ 1 (mod 11)

}
=⇒ 210 ≡ 1 (mod 11 · 31) =⇒

=⇒ 2341−1 ≡ (210)34 ≡ 1 (mod 11 · 31) =⇒ 2341 ≡ 2 (mod 11 · 31).
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5.3.4 Definition. An integer n > 1 is a Carmichael number if it is a pseudoprime in every base, i.e.,
if n is not a prime number and an ≡ a (modn) holds for all a ∈ Z.

5.3.5 Proposition. An integer n > 1 is a Carmichael number ⇐⇒ n = p1 · · · pr is a product of r ≥ 2
distinct prime numbers such that ∀i = 1, . . . , r (pi − 1) | (n− 1).

Proof. The implication ‘⇐=’ is a special case of Proposition 4.2.11(2). The implication ‘=⇒’: Proposition
4.2.11(1) implies that a Carmichael number n must be square-free, hence n = p1 · · · pr (r ≥ 2, since n > 1
is not a prime). In order to show that pi − 1 divides n − 1 we need to use the fact that there exists
ai ∈ Z such that ai (mod pi) is a generator of (Z/piZ)∗ (see Theorem 5.5.2). This integer satisfies pi - ai
and ani ≡ ai (mod pi), hence an−1i ≡ 1 (mod pi), which implies that n − 1 is divisible by the order of
ai (mod pi) ∈ (Z/piZ)∗, which is equal to pi − 1.

5.3.6 Example: n = 561 The smallest Carmichael number is n = 561 = 3 · 11 · 17, since 3 − 1 = 2,
11− 1 = 2 · 5, 17− 1 = 24 and 561− 1 = 24 · 5 · 7.

5.3.7 Remark It is known that there exist infinitely many Carmichael numbers.

5.3.8 Exercise. Show that, if n = p1 · · · pr is a Carmichael number, then r ≥ 3.

5.4 Möbius inversion formula

5.4.1 Fractions 1
n ,

2
n , . . . ,

n
n We know that every rational number a

n (a, n ∈ Z, n ≥ 1) can be simplified
by dividing both the numerator and the denominator by their greatest common divisor m = gcd(a, n):

a = ma′, n = mn′,
a

n
=
a′

n′
, gcd(a′, n′) = 1. (5.4.1.1)

What happens if we apply this procedure to all rational numbers a
n (a ∈ Z) for fixed n ≥ 1? It is enough

to consider the numerators in the range 1 ≤ a ≤ n, since a+n
n = a

n + 1 and gcd(a+ n, n) = gcd(a, n).

Example: For n = 6,

1

6
=

1

6
,

2

6
=

1

3
,

3

6
=

1

2
,

4

6
=

2

3
,

5

6
=

5

6
,

6

6
=

1

1
,{

1

6
,

2

6
,

3

6
,

4

6
,

5

6
,

6

6

}
=

{
1

1

}
∪
{

1

2

}
∪
{

1

3
,

2

3

}
∪
{

1

6
,

5

6

}
.

In general: For arbitrary n ≥ 1 we obtain, after simplifying each fraction a
n (1 ≤ a ≤ n) as in (5.4.1.1),

fractions of the form b
d , where d | n, 1 ≤ b ≤ d and gcd(b, d) = 1 (and each fraction of this form arises

from some a
n ). Therefore {

a

n

∣∣∣∣ 1 ≤ a ≤ n} =
⋃
d|n

{
b

d

∣∣∣∣ 1 ≤ b ≤ d, gcd(b, d) = 1

}
(5.4.1.2)

(a disjoint union). If we compare the number of elements on each side, we obtain

∀n ≥ 1 n =
∑
d|n

ϕ(d). (5.4.1.3)
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5.4.2 Möbius inversion formula The equalities (5.4.1.3) (n ≥ 1) give a system of linear relations
for the values ϕ(d) (d ≥ 1).

More generally, for any function f : N+ −→ C we can consider the function g : N+ −→ C defined by

g(n) =
∑
d|n

f(d). (5.4.2.1)

Explicitly,

g(1) = f(1), g(2) = f(2) + f(1), g(3) = f(3) + f(1), g(4) = f(4) + f(2) + f(1), · · ·

These relations can be inverted and the values of f can be expressed as linear combinations of the values
of g:

f(1) = g(1), f(2) = g(2)− g(1), f(3) = g(3)− g(1), f(4) = g(4)− g(2), · · ·

In general, f(n) is given by the Möbius inversion formula

f(n) =
∑
n=dm

µ(d) g(m) =
∑
d|n

µ(d) g
(n
d

)
=
∑
d|n

µ
(n
d

)
g(d), (5.4.2.2)

where µ : N+ −→ {0,±1} is the Möbius function, defined by

µ(n) :=


1, n = 1

(−1)r, n = p1 · · · pr, pi distinct primes

0, ∃p ∈ P p2 | n.
(5.4.2.3)

Indeed, the function µ satisfies

∑
d|n

µ(d) =

{
1, n = 1

0, n > 1,
(5.4.2.4)

which implies that if we begin with a function g : N+ −→ C and define f : N+ −→ C by the formula
(5.4.2.2), then

∑
d|n

f(d) =
∑
d|n

∑
d=em

µ(e) g(m) =
∑
m|n

g(m)
∑
e| nm

µ(e) =
∑
m|n

g(m)

{
1, n

m = 1

0, n
m > 1

}
= g(n).

5.4.3 Exercise. Prove the formula (5.4.2.4). [Hint: write n = pk11 · · · pkrr .]

5.4.4 Function ϕ(n) Applying the Möbius inversion formula to (5.4.1.3), we obtain

ϕ(n) =
∑
d|n

µ(d)
n

d
.

If n = pk11 · · · pkrr , then the only divisors d | n with µ(d) 6= 0 are d = pi1 · · · pis , where 1 ≤ i1 < · · · < is ≤ r,
which gives

ϕ(n)

n
=
∑
d|n

µ(d)

d
=

r∑
s=0

(−1)s
∑

1≤i1<···<is≤r

1

pi1 · · · pis
=

(
1− 1

p1

)
· · ·
(

1− 1

pr

)
=
∏
p|n

(
1− 1

p

)
. (5.4.4.1)
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5.4.5 Exercise. For a given integer M ≥ 1, show that the function ϕM : N+ −→ C defined by

ϕM (n) := |{(a1, . . . , aM ) | 1 ≤ ai ≤ n, gcd(a1, . . . , aM , n) = 1}|

satisfies ∑
d|n

ϕM (n) = nM .

Prove a formula for ϕM (n) similar to (5.4.4.1).

5.5 Structure of (Z/pkZ)∗

5.5.1 p 6= 2 We are going to show that in this case (Z/pkZ)∗ always has a generator. The main point
is to prove this result for k = 1.

5.5.2 Theorem (Gauss). For each prime p there exists a generator of (Z/pZ)∗ (i.e., an invertible residue
class a (mod p) such that (Z/pZ)∗ = {a, a2, . . . , ap−1 (mod p)}).

Proof. We know that a (mod p) ∈ (Z/pZ)∗ is a generator of (Z/pZ)∗ if and only if its order is equal to
p− 1. Let us denote by ψ(d) (for any d ≥ 1) the number of elements of (Z/pZ)∗ whose order is equal to
d. We know that ψ(d) = 0 if d - (p− 1), which implies that∑

d|(p−1)

ψ(d) = |(Z/pZ)∗| = p− 1 =
∑

d|(p−1)

ϕ(d). (5.5.2.1)

The key point is to prove the following implication:

ψ(d) 6= 0 =⇒ ψ(d) = ϕ(d). (5.5.2.2)

When combined with (5.5.2.1), it implies that

∀d | (p− 1) ψ(d) = ϕ(d).

In particular, the number of generators of (Z/pZ)∗ is equal to ψ(p− 1) = ϕ(p− 1) > 0.
It remains to prove (5.5.2.2). Assume that d | (p− 1) and that there exists a (mod p) of order d. There

is an obvious inclusion

{a, a2, . . . , ad (mod p)} ⊆ {x (mod p) | xd − 1 ≡ 0 (mod p)}.

The set on the left has d elements, whereas the set on the right has at most deg(xd − 1) = d elements, by
Theorem 5.1.14 (this is the point where we are using the fact that p is a prime). Therefore the two sets
are equal:

{a, a2, . . . , ad (mod p)} = {x (mod p) | xd − 1 ≡ 0 (mod p)}.

The rest is easy: any element x (mod p) of order d must satisfy xd− 1 ≡ 0 (mod p), hence x ≡ ak (mod p)
for some k = 1, . . . , d. According to Proposition 4.3.13, the order of ak (mod p) is equal to d if and only
if gcd(k, p) = 1, which happens for ϕ(d) values of k. The implication (5.5.2.2) is proved.

5.5.3 Proposition (Improvement of congruences by x 7→ xp is uniform). Assume that p is a prime, k ≥ 1,
pk > 2 and that a, b ∈ Z satisfy p - a, a ≡ b (mod pk) and a 6≡ b (mod pk+1). Then ap ≡ bp (mod pk+1)
and ap 6≡ bp (mod pk+2).
[Note that the assumption pk > 2 is necessary: 1 ≡ 3 (mod 2) and 1 6≡ 3 (mod 22), but 12 ≡ 32 (mod 23).]
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Proof. There exists c ∈ Z such that a = b+ pkc and p - c, hence

ap − bp = (b+ pkc)p − bp =

(
p

1

)
bp−1(pkc) +

(
p

2

)
bp−2(pkc)2 + · · ·+

(
p

p− 1

)
b(pkc)p−1 + ppkcp.

As observed in the proof of Proposition 4.1.5, each term on the right hand side is divisible by pk+1.
The first term

(
p
1

)
bp−1(pkc) = pk+1bp−1c is not divisible by pk+2, since p - b and p - c. The terms(

p
j

)
bp−j(pkc)j for 1 < j < p are divisible by p · (pk)2 = p2k+1, hence by pk+2. The last term ppkcp is also

divisible by pk+2, since the assumption pk > 2 implies that pk − (k + 2) = (p − 1)k − 2 ≥ 0. Therefore
ap − bp ≡ pk+1bp−1c 6≡ 0 (mod pk+2).

5.5.4 Theorem. Let p 6= 2 be a prime, let k > 1.
(1) If a ∈ Z, p - a, ap−1 6≡ 1 (mod p2) and if a (mod p) is a generator of (Z/pZ)∗, then a (mod pk) is a

generator of (Z/pkZ)∗ (i.e., (Z/pkZ)∗ = {a, a2, . . . , a(p−1)pk−1

(mod pk)}).
(2) A generator of (Z/pkZ)∗ always exists.
(3) A generator of (Z/2pkZ)∗ always exists.

Proof. (1) Let d be the order of a (mod pk). We know that d | (p − 1)pk−1. On the other hand ad ≡
1 (mod pk) implies that ad ≡ 1 (mod p), hence (p− 1) | d, since a (mod p) is a generator of (Z/pZ)∗. This
means that d = (p− 1)pl for some 0 ≤ l ≤ k − 1. We must show that l = k − 1, but this follows from the
assumptions p > 2 and ap−1 6≡ 1 (mod p2) (and the fact that ap−1 ≡ 1 (mod p)), by applying successively

Proposition 5.5.3: a(p−1)p 6≡ 1 (mod p3), . . ., a(p−1)p
k−2 6≡ 1 (mod pk).

(2) According to Theorem 5.5.2, there exists a ∈ Z such that a (mod p) is a generator of (Z/pZ)∗. If
ap−1 6≡ 1 (mod p2), then a (mod pk) is a generator of (Z/pkZ)∗, by (1). If ap−1 ≡ 1 (mod p2), then
b := a(1 + p) ≡ a (mod p) and bp−1 ≡ ap−1(1 +

(
p−1
1

)
p) ≡ 1 − p 6≡ 1 (mod p2), hence b (mod pk) is a

generator of (Z/pkZ)∗.

(3) Let a (mod pk) be a generator of (Z/pkZ)∗. After possibly replacing a by a+ pk we can assume that
2 - a; then a (mod 2pk) will be a generator of (Z/2pkZ)∗ = (Z/2Z)∗ × (Z/pkZ)∗ = {1} × (Z/pkZ)∗.

5.5.5 p = 2 It turns out that in this case (Z/2kZ)∗ (for k ≥ 3) does not have a generator, but it does
have a “generator up to a sign”.

5.5.6 Theorem. Assume that k > 1. For every a ∈ Z satisfying a ≡ 1 (mod 22) and a 6≡ 1 (mod 23) (for

example, for a = 5), (Z/2kZ)∗ = {±a,±a2, . . . ,±a2k−2

(mod 2k)}.

Proof. There is a decomposition

(Z/2kZ)∗ = X+ ∪X−, X± = {x (mod 2k) | x ≡ ±1 (mod 22)}, |X±| = 1
2ϕ(2k) = 2k−2.

The assumption a ∈ X+ implies that ak ∈ X+, for all k ∈ Z. As in the proof of Theorem 5.5.4(2), the
assumptions a ≡ 1 (mod 22) and a 6≡ 1 (mod 23) can be used as an input into Proposition 5.5.3, which

will then give a2 ≡ 1 (mod 23) and a2 6≡ 1 (mod 24), . . ., a2
k−3 ≡ 1 (mod 2k−1) and a2

k−3 6≡ 1 (mod 2k),

and finally a2
k−2 ≡ 1 (mod 2k). This means that the order of a (mod 2k) is equal to 2k−2, hence both sets

{a, a2, . . . , a2
k−2

(mod 2k)} ⊆ X+

have the same cardinality 2k−2 = |X+|. Therefore they are equal, which implies that

X+ = {a, a2, . . . , a2
k−2

(mod 2k)}, X− = {−a,−a2, . . . ,−a2
k−2

(mod 2k)}.
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6 Algebra – motivation

6.1 A preview

6.1.1 Abstract theory The main goal of the abstract algebraic part of this course is to introduce
basic objects of abstract algebra: groups (with special emphasis on abelian groups), rings (with special
emphasis on commutative rings) and fields, and describe simple constructions involving them. We are going
to illustrate the theory by a number of concrete examples, many of them related to number-theoretical
constructions from the first part of the course.

We have already seen quite a few examples of groups, rings and fields:

• in an additive subgroup X ⊂ C one can perform operations “+” and “−” satisfying the usual rules
(X is an abelian group with respect to addition);

• in a subring A ⊂ C one can perform operations “+”, “−” and “·” satisfying the usual rules (A is a
commutative ring);

• in a subfield of C one can also perform division by non-zero elements;

• Z/nZ is a (commutative) ring (it has operations “+”, “−” and “·”), but it is not a subring of C;

• if p is a prime, then Z/pZ is a field (it is a commutative ring in which one can make division by
non-zero elements);

• the set M2(R) of 2× 2 matrices with real coefficients is a non-commutative ring (it has operations
“+”, “−” and “·”, but matrix multiplication is not commutative: M ·N 6= N ·M , in general).

Many groups occur as transformation groups in geometry, but such groups will not be treated in detail in
this course.

6.1.2 Important example: polynomial rings In the concrete algebraic part of the course we are
going to study polynomials in one variable from an algebraic point of view. Perhaps the most important
point of the whole course is the fact that the ring of integers Z = {0,±1,±2, . . .} behaves, from a purely
algebraic point of view, in the same way as the ring of polynomials K[X] = {f(X) = a0+a1X+· · ·+anXn |
aj ∈ K, n ≥ 0} in one variable with coefficients in a field K (we can take, for example, K = Q,R or C).

In both cases there is a notion of divisibility, and it has the same properties: there is a division with
remainder, Euclid’s algorithm, Bézout’s theorem, the gcd, Euclid’s Lemma and uniqueness of factorisation.

As a result, theory of congruences (including the Chinese Remainder Theorem) works in the same way
in both situations. This is not just an abstract theory; as we shall see, congruences between polynomials
are related to various concrete objects appearing in algebra, analysis and linear algebra.

Arithmetic Algebra

Z K[X]

n ∈ Z f = f(X) ∈ K[X]

a ≡ b (modn) u(X) ≡ v(X) (mod f)

Z/nZ K[X]fK[X] = K[X]/(f)

Z∗ = {±1} K[X]∗ = K∗ = K r {0}
prime numbers p irreducible monic polynomials g(X)

n = ±
∏
pvp(n) f(X) = c

∏
g(X)vg(f)
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6.2 Polynomials

6.2.1 Division with remainder Example 1: R[X]/(X) = R. Indeed, any polynomial g(X) =
b0 + b1X + · · ·+ bnX

n (bj ∈ R) can be written in a unique way as

g(X) = Xh(X) + r, h(X) ∈ R[X], r ∈ R,

h(X) = b1 + b2X + · · ·+ bnX
n−1, r = b0 = g(0).

This means that the set of residue classes modulo X is equal to

R[X]/(X) = {r (modX) | r ∈ R}.
More precisely, the maps

R −→ R[X]/(X), r 7→ r (modX),

R[X]/(X) −→ R, g(X) (modX) 7→ g(0)

are inverse to each other, and they are compatible with arithmetic operations (addition, subtraction,
multiplication).

Example 2: R[Y ]/(Y − a) = R. For any a ∈ R, one can make a change of variables X = Y − a in
Example 1, by writing g(X) = g(Y −a) = b0+b1(Y −a)+ · · ·+bn(Y −a)n = c0+c1Y + · · ·+cnY n = h(Y ).
This gives

R[Y ]/(Y − a) = {r (mod (Y − a)) | r ∈ R}
and mutually inverse maps (again, compatible with operations)

R −→ R[Y ]/(Y − a), r 7→ r (mod (Y − a)),

R[Y ]/(Y − a) −→ R, h(Y ) (mod (Y − a)) 7→ h(a)

We say that the evaluation map at Y = a

eva : R[Y ] −→ R, h(Y ) 7→ h(a)

induces an isomorphism of rings

eva : R[Y ]/(Y − a)
∼−→ R. (6.2.1.1)

Example 3: Construction of C. We are going to construct C using polynomials with real coefficients.
To do that, we need to answer the following fundamental question: what is C? Of course, C = {a+ bi |
a, b ∈ R}, but what is i? One cannot really answer this question, but one can say what i2 is: i2 = −1.
In other words, whenever we see i2, we replace it by −1.

Equivalently, whenever we see i2 + 1 (or its multiple), we replace it by 0.
This is analogous to what we do when we work with congruences (modn): we perform the usual

arithmetic operations with integers, and whenever we see a multiple of n, we replace it by 0.
This suggests that we should consider congruences modulo X2 + 1 for real polynomials.
The first thing to understand is division with remainder by X2 + 1. For example,

X3 + 2X2 + 5 = (X2 + 1)X + (2X2 −X + 5), 2X2 −X + 5 = (X2 + 1) · 2−X + 3,

X3 + 2X2 + 5 = (X2 + 1)(X + 2) + (3−X).
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In general, each polynomial g(X) ∈ R[X] can be written in a unique way as

g(X) = (X2 + 1)h(X) + (a+ bX), h(X) ∈ R[X], a, b ∈ R, (6.2.1.2)

which implies that

g(X) (mod (X2 + 1)) = a+ bX (mod (X2 + 1))

and

R[X]/(X2 + 1) = {a+ bX (mod (X2 + 1)) | a, b ∈ R} = {a+ bI | a, b ∈ R}
(a+ bI = a′ + b′I ⇐⇒ a = a′ and b = b′), where

I = X (mod (X2 + 1)) ∈ R[X]/(X2 + 1), I2 + 1 = X2 + 1 (mod (X2 + 1)) = 0 (mod (X2 + 1)).

This means that we have, indeed,

R[X]/(X2 + 1) = C (6.2.1.3)

in the sense that the evaluation map at i induces a ring isomorphism (a bijective map compatible with
arithmetic operations)

evi : R[X]/(X2 + 1)
∼−→ C, g(X) (mod (X2 + 1)) 7→ g(i). (6.2.1.4)

Note that −i is also a root of X2 + 1, which means that there is another ring isomorphism

ev−i : R[X]/(X2 + 1)
∼−→ C, g(X) (mod (X2 + 1)) 7→ g(−i) = g(i), (6.2.1.5)

which is obtained from (6.2.1.4) by composing it with complex conjugation.

Example 4: Construction of fields. In general, if K is a field and if f(X) ∈ K[X] is an irreducible
polynomial of degree deg(f) = d ≥ 1, then the quotient ring L = K[X]/(f) is a field containing K, and
each element of L can be written in a unique way as

a0 + a1α+ · · ·+ ad−1α
d−1, aj ∈ K, α = X (mod f(X)) ∈ L, f(α) = 0. (6.2.1.6)

For example, Q[X]/(X2 + 1) = {a+ bi | a, b ∈ Q}.
Another important case is when K = Z/pZ for a prime p. The field L is then finite, with pd elements

(and every finite field arises in this way).

Example 5: Interpolation. If f(X) = (X − a1) · · · (X − an) for distinct a1, . . . , an ∈ C, then the
quotient ring C[X]/(f) can be described in terms of Lagrange interpolation (finding a polynomial of
degree deg < n with prescribed values at a1, . . . , an).

7 Groups

7.1 Definition and examples

7.1.1 Transformation groups We are going to treat groups from an abstract algebraic point of view,
but it is important to know that many groups occur in a very concrete way as transformation groups.

Such a “concrete” group is simply a set G of invertible maps g : X −→ X (for a given set X) that is
stable under composition (if g, h ∈ G, then g ◦h ∈ G), under inverse (if g ∈ G, then g−1 ∈ G) and contains
the identity map id : X −→ X. Example : X = R2 and G = {rotations of R2 around the origin}.
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However, it is important to separateG fromX, since the same abstract group can act as a transformation
group of many different sets (in the above example, G acts not only on the set of points of R2, but also
on the set of lines). If we do that and forget X, what will remain will be the set G equipped with a binary
operation “◦” (for g, h ∈ G there is another element g ◦ h ∈ G) and a distinguished element id ∈ G. Their
properties are given, in an abstract form, in Definition 7.1.3 below.

7.1.2 Example: G = Z Another example of a group is given by the set of integers Z = {0,±1,±2, . . .}
equipped with the operation “+” (and the corresponding inverse operation “−”).

These operations satisfy the following identities (for all a, b, c ∈ Z).

(1) (a+ b) + c = a+ (b+ c)

(2) a+ 0 = 0 + a = a

(3) a+ (−a) = (−a) + a = 0

(4) a+ b = b+ a

(7.1.2.1)

7.1.3 Definition (Definition of a group). A group is a pair (G, ∗), where G is a set and ∗ : G×G −→ G
is a binary operation (i.e., a rule that assigns to any g, h ∈ G an element g ∗h ∈ G) satisfying the following
three axioms.

(1) (Associativity) ∀g, h, k ∈ G (g ∗ h) ∗ k = g ∗ (h ∗ k)

(2) (Neutral element) ∃e ∈ G ∀g ∈ G g ∗ e = e ∗ g = g

(3) (Inverse element) ∀g ∈ G ∃h ∈ G g ∗ h = h ∗ g = e

If, in addition, the following property holds

(4) (Commutativity) ∀g, h ∈ G g ∗ h = h ∗ g
(7.1.3.1)

then we say that (G, ∗) an abelian group (named after a celebrated Norwegian mathematician N.H. Abel
(1802–1829)).

7.1.4 Uniqueness We are going to show in Proposition 7.1.6 below that e ∈ G in Axiom (2) is unique
(the neutral element of G), and that h ∈ G in Axiom (3) (which depends on g) is also unique (the
inverse of g).

7.1.5 Examples of groups (1) In Example (G, ∗) = (Z,+) from 7.1.2 we have G = Z, ∗ = +, the
neutral element is e = 0 and the inverse of a ∈ Z is equal to −a.
(2) (R,+) (more generally, any additive subgroup of C) is an abelian group in which e = 0 and the inverse
of a is equal to −a.
(3) (R r {0}, ·) and (C r {0}, ·) are abelian groups in which e = 1 and the inverse of a is equal to a−1.
(4) (Zr{0}, ·) is not a group: Axioms (1) and (2) are satisfied (with e = 1), but g = a ∈ Zr{0} satisfies
Axiom (3) if and only if there exists b ∈ Zr {0} such that ab = ba = 1. Such an element b exists only for
a = ±1. This means that only the subset ({±1}, ·) is a group (abelian).
(5) Denote by GL2(R) := {M ∈ M2(R) | det(M) 6= 0} the set of invertible real 2 × 2 matrices. Then

(GL2(R), ·) is a group, in which e = I =

(
1 0
0 1

)
. Indeed, matrix multiplication satisfies (M ·N) ·P = M ·

(N ·P ) and M ·I = I ·M = M . Furthermore the inverse of M =

(
a b
c d

)
is M−1 = (ad−bc)−1

(
d −b
−c a

)
.

This group is not abelian, since M ·N 6= N ·M for M =

(
0 1
0 0

)
, N =

(
0 0
1 0

)
.

(6) (Z/nZ,+) is an abelian group, where e = 0 (modn) and the inverse of a (modn) is (−a) (modn).
(7) ((Z/nZ)∗, ·) is an abelian group, where e = 1 (modn) and the inverse of an invertible residue class
a (modn) is a−1 (modn).
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7.1.6 Proposition. Let (G, ∗) be a group.
(1) (Higher associativity) For any n ≥ 3 and g1, . . . , gn ∈ G, the element g1 ∗ · · · gn ∈ G does not
depend on the order in which we insert parentheses (for example, (g1 ∗ (g2 ∗g3))∗g4 = (g1 ∗g2)∗ (g3 ∗g4) =
((g1 ∗ g2) ∗ g3) ∗ g4 = · · · ).
(2) The neutral element e ∈ G in Axiom (2) in (7.1.3.1) is unique.
(3) For each g ∈ G, the element h ∈ G in Axiom (3) in (7.1.3.1) is unique. We denote it by g−1 and call
it the inverse of g.
(4) (Left inverse = right inverse) If g, h ∈ G satisfy g ∗ h = e, then h = g−1 and g = h−1 (hence
h ∗ g = e).
(5) For any g, h ∈ G we have (g ∗ h)−1 = h−1 ∗ g−1 and (g−1)−1 = g.
(6) If g, h, k ∈ G satisfy g ∗ h = g ∗ k or h ∗ g = k ∗ g, then h = k.

Proof. (1) Exercise. (2) If e, e′ satisfy g ∗ e = e ∗ g = g and h ∗ e′ = e′ ∗ h = h for all g, h ∈ G, then
e′ = e ∗ e′ = e, by taking g = e′ and h = e. (3) Similarly, if g ∗ h = h ∗ g = e = g ∗ h′ = h′ ∗ g, then
h = h ∗ e = h ∗ (g ∗ h′) = (h ∗ g) ∗ h′ = e ∗ h′ = h′. (4) If g ∗ h = e, then g−1 = g−1 ∗ e = g−1 ∗ (g ∗ h) =
(g−1∗g)∗h = e∗h = h. (5) The identity (g∗h)∗(h−1∗g−1) = (g∗(h∗h−1))∗g−1 = (g∗e)∗g−1 = g∗g−1 = e
implies, by (4), that (g ∗ h)−1 is equal to h−1 ∗ g−1. (6) If g ∗ h = g ∗ k, then g−1 ∗ (g ∗ h) = g−1 ∗ (g ∗ k).
The left hand side is equal to (g−1 ∗ g) ∗ h = e ∗ h = h and the right hand side to (g−1 ∗ g) ∗ k = e ∗ k = k.
The case h ∗ g = k ∗ g is similar.

7.1.7 Notation (1) In an nonabelian group one often uses multiplicative notation, where e = 1 and
the symbol for the operation is omitted. The formulae in Proposition 7.1.6 and its proof then become

(g1(g2g3))g4 = (g1g2)(g3g4) = ((g1g2)g3)g4, (gh)−1 = h−1g−1, g−1gh = eh = h. (7.1.7.1)

(2) In an abelian group one can choose between a multiplicative notation as in (1) and an additive
notation, where e = 0, the operation is denoted by “+”, and the inverse of x ∈ G is denoted by −x. The
first two formulae (7.1.7.1) then become

(x1+(x2+x3))+x4 = (x1+x2)+(x3+x4) = ((x1+x2)+x3)+x4, −(x+y) = (−y)+(−x) = (−x)+(−y)
(7.1.7.2)

(the last equality holds, since (G,+) is an abelian group).

7.1.8 Product of groups If (G, ∗) and (H,2) are groups, their product is the group

(G×H,4), G×H = {(g, h) | g ∈ G, h ∈ H}, (g, h)4(g′, h′) = (g ∗ g′, h2h′). (7.1.8.1)

In this group, eG×H = (eG, eH) and (g, h)−1 = (g−1, h−1).

Example: (R,+)× (R,+) = (R2,+).

7.2 Subgroups

7.2.1 Example: Z ⊂ R The additive group (Z,+) is a subgroup of (R,+).

7.2.2 Definition. Let (G, ∗) be a group. A subset H ⊂ G is a subgroup of (G, ∗) if (H, ∗) (with the
operation ∗ inherited from G) is a group.
[If this is the case, then the uniqueness of the neutral element and of the inverse implies that eH = eG =: e,
and that the inverse h−1 of any h ∈ H is the same in G and in H.]
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7.2.3 Proposition. Let (G, ∗) be a group, let H ⊂ G be a subset. The following are equivalent:
(1) H is a subgroup of (G, ∗).
(2) eG ∈ H and, for all h, h′ ∈ H, h ∗ h′ ∈ H and h−1 ∈ H.
(3) H 6= ∅ and, for all h, h′ ∈ H, h′ ∗ h−1 ∈ H.

Proof. (1) and (2) are equivalent, by definition (and by the uniqueness of the neutral element and of the
inverse).
(2) =⇒ (3): H is non-empty, since e = eG ∈ H. If h, h′ ∈ H, then h−1 ∈ H, hence h′ ∗ h−1 ∈ H.
(3) =⇒ (2): as H is non-empty, there exists k ∈ H; then k ∗ k−1 = e ∈ H. If h, h′ ∈ H, then
e ∗ h−1 = h−1 ∈ H, hence h′ ∗ (h−1)−1 = h′ ∗ h ∈ H.

7.2.4 Examples of subgroups (1) Both {e} and G are subgroups of (G, ∗).
(2) According to Theorem 2.3.2, subgroups of (Z,+) are the subsets dZ (d ∈ N).

(3) For a non-empty set X, denote by (SX , ◦) the group of permutations of X (with operation given by
composition):

SX := {bijective maps α : X −→ X}, (β ◦ α)(x) = β(α(x)), β ◦ α : X
α−→ X

β−→ X.

The neutral element is the identity map e = idX (id(x) = x, for all x ∈ X).
In the special case X = {1, 2, . . . , n} (n ≥ 1), SX = Sn is the symmetric group on n elements. A

permutation α ∈ Sn is then written as

α =

(
1 2 · · · n

α(1) α(2) · · · α(n)

)
, e =

(
1 2 · · · n
1 2 · · · n

)
.

For n > 2 the group Sn is nonabelian. For example, if n = 3, then

α =

(
1 2 3
2 3 1

)
, β =

(
1 2 3
3 2 1

)
, β ◦ α =

(
1 2 3
2 1 3

)
6= α ◦ β =

(
1 2 3
1 3 2

)
.

For any subset Y ⊂ X,

H := {α ∈ SX | α(Y ) = Y }

is a subgroup of SX . For example, if X = {1, 2, . . . , n} and Y = {n}, then SX = Sn and H = Sn−1.

(4) If V is a vector space over a field K, then the general linear group

GL(V ) := {α : V −→ V | α is bijective and K-linear} ⊂ SV
is a subgroup of SV . In the special case when V = Kn consists of column vectors with n ≥ 1 entries, then
each linear map α : Kn −→ Kn can be written in a matrix form α(x) = Ax, for some A ∈ Mn(K). The
composition of two linear maps α : x 7→ Ax and β : y 7→ By is then equal to β ◦α : x 7→ B(Ax) = (BA)x.
Therefore

GL(V ) = GL(Kn) = {x 7→ Ax (x ∈ Kn) | A ∈Mn(K), det(A) 6= 0}

can be identified with the matrix group

GLn(K) = {A ∈Mn(K) | det(A) 6= 0}

(with operation given by matrix multiplication). The special linear group

SLn(K) := {A ∈Mn(K) | det(A) = 1}
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is a subgroup of GLn(K).

(5) In the situation of (4), one can combine linear maps with translations and obtain the general affine
group

GA(V ) := {x 7→ α(x) + a (x ∈ V ) | α ∈ GL(V ), a ∈ V } ⊂ SV .

The group of translations

{x 7→ x+ a (x ∈ V ) | a ∈ V } ⊂ GA(V )

is a subgroup of GA(V ).
For V = Kn, the general affine group

GAn(K) = GA(Kn) = {x 7→ Ax+ a (x ∈ Kn) | A ∈ GLn(K), a ∈ Kn}

can be expressed in a matrix form as

GAn(K) =

{(
A a
0 1

)
| A ∈ GLn(K), a ∈ Kn

}
,

since the composition of the maps x 7→ Ax + a and y 7→ By + b is equal to x 7→ B(Ax + a) + b =
(BA)x+ (Ba+ b) and (

B b
0 1

)(
A a
0 1

)
=

(
BA Ba+ b
0 1

)
.

(6) For n ≥ 1, the orthogonal group

O(n) := {A ∈Mn(R) | tAA = I}

(where tA denotes the transpose matrix) is a subgroup of GLn(R). The special orthogonal group

SO(n) := {A ∈ O(n) | det(A) = 1} = O(n) ∩ SLn(R)

is a subgroup of both O(n) and SLn(R).
For n = 2, SO(2) is the group of matrices representing the rotations of R2 around the origin.
Similarly, the unitary group

U(n) := {A ∈Mn(C) | tAA = I}

is a subgroup of GLn(C). The special unitary group

SU(n) := {A ∈ U(n) | det(A) = 1} = U(n) ∩ SLn(C)

is a subgroup of both U(n) and SLn(C).

(7) For any integer n ≥ 1, the set of n-th roots of unity

µn := {z ∈ C | zn = 1}

is a subgroup of (C r {0}, ·). For example,

µ1 = {1}, µ2 = {±1}, µ3 = {1, −1±i
√
3

2 }, µ4 = {±1,±i}, µ6 = {±1, 1±i
√
3

2 , −1±i
√
3

2 }.

(8) For any non-zero complex number a ∈ C r {0}, the set of all powers of a
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〈a〉 := {an | n ∈ Z} (7.2.4.1)

is a subgroup of (C r {0}, ·). For example,

〈−1〉 = {−1, 1} = µ2, 〈i〉 = {i, i2 = −1, i3 = −i, i4 = 1} = µ4,

〈−i〉 = {i, (−i)2 = −1, (−i)3 = i, (−i)4 = 1} = µ4.
(7.2.4.2)

(9) The centre Z(G) := {z ∈ G | ∀g ∈ G zg = gz} of (G, ∗) is a subgroup of (G, ∗). Note that Z(G) = G
⇐⇒ (G, ∗) is abelian.

7.2.5 Exercise. Show that O(n) (resp. U(n)) is, indeed, a subgroup of GLn(R) (resp. of GLn(C)).

7.2.6 Proposition. Let (G, ∗) be a group. The intersection H :=
⋂
i∈I Hi ⊂ G of any set of subgroups

Hi ⊂ G (i ∈ I) is again a subgroup of (G, ∗).

Proof. Each Hi contains the neutral element e of G, which implies that e ∈ H. If h, h′ ∈ H =
⋂
Hi, then

h′ ∗ h−1 ∈ Hi (since each Hi is a subgroup), and therefore h′ ∗ h−1 ∈
⋂
i∈I Hi = H.

7.2.7 Definition (Subgroup generated by a subset). Let (G, ∗) be a group. For a non-empty subset
S ⊂ G, the intersection

〈S〉 :=
⋂

H⊂(G,∗)
S⊂H

H

of all subgroups H ⊂ (G, ∗) containing S is the smallest subgroup of (G, ∗) containing S. We say that
〈S〉 is the subgroup of (G, ∗) generated by S. If S = {g} consists of one element, then we say that
〈g〉 := 〈{g}〉 ⊂ G is the cyclic subgroup generated by g.

7.2.8 Example: cyclic subgroups of C∗ Any subgroup of (C r {0}, ·) containing a given complex
number a ∈ C r {0} must also contain the following elements (for all integers n ≥ 1):

1, a, a2 = a · a, a3 = a · a · a, · · · an = a · a · · · a︸ ︷︷ ︸
n times

, · · · a−1,

(a−1)2 = a−2, · · · a−n = a−1 · a−1 · · · a−1︸ ︷︷ ︸
n times

,
(7.2.8.1)

which implies that

〈a〉 = {an | n ∈ Z} (7.2.8.2)

is, indeed, given by the formula (7.2.4.1).

7.2.9 Isometries of Rn One uses the standard scalar product on Rn

(x | y) := txy = x1y1 + · · ·xnyn, x =

x1...
xn

 ∈ Rn, y =

y1...
yn

 ∈ Rn

to define the norm ‖x‖ := (x | x)1/2 and the distance d(x, y) := ‖x− y‖ (x, y ∈ Rn) on Rn.
An isometry of Rn is a map f : Rn −→ Rn that preserves distance:

83



∀x, y ∈ Rn d(f(x), f(y)) = d(x, y). (7.2.9.1)

For example, any translation f(x) = x+ a (a ∈ Rn) is an isometry.
One can show that any isometry satisfying f(0) = 0 is an R-linear map x 7→ Ax (A ∈ Mn(R))

(exercise!). Condition (7.2.9.1) is then equivalent to

∀x, y ∈ Rn (Ax | Ay) = (x | y) ⇐⇒ ∀x, y ∈ Rn tx(tAA)y = txy ⇐⇒ tAA = In ⇐⇒ A ∈ O(n).

Consequently,

{Isometries of Rn} = {x 7→ Ax+ a (x ∈ Rn) | A ∈ O(n), a ∈ Rn} ⊂ GAn(R).

7.3 Cyclic groups, cyclic subgroups

We begin by checking that the formula (7.2.8.2) holds in general.

7.3.1 Powers of g ∈ G Let (G, ∗) be a group, let g ∈ G. Define integral powers gn ∈ G (n ∈ Z) as
follows (cf. Section 3.4.5).

g0 := e, gm := g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
m times

, g−m := g−1 ∗ g−1 ∗ · · · ∗ g−1︸ ︷︷ ︸
m times

(m ∈ N+). (7.3.1.1)

7.3.2 Proposition. If (G, ∗) is a group and g ∈ G, then

∀m,n ∈ Z gm ∗ gn = gm+n = gn ∗ gm, (gm)n = gmn. (7.3.2.1)

Proof. This can be checked by a somewhat tedious but straightforward argument. For example, g3∗g−5 =
g ∗g ∗g ∗g−1 ∗g−1 ∗g−1 ∗g−1 ∗g−1 = g−1 ∗g−1 = g−2. The details are left to the reader as an exercise.

7.3.3 Corollary. The cyclic subgroup 〈g〉 ⊂ G is equal to {gn | n ∈ Z} and is abelian. Moreover,
〈g〉 = 〈g−1〉.
7.3.4 Definition. A group (G, ∗) is cyclic and g ∈ G is its generator if G = 〈g〉 = {gn | n ∈ Z}.
[According to Corollary 7.3.3, if g is a generator of G, so is g−1.]

7.3.5 Multiplicative vs additive notation Let us compare the concepts that were introduced above
using multiplicative notation (which makes sense in arbitrary groups) with additive notation (which makes
sense only for abelian groups).

Multiplicative notation Additive notation

(G, ∗) any group (G,+) abelian group

g ∗ h = gh g + h = h+ g

e = 1 e = 0

g−1 −g
gh−1 g + (−h) = (−h) + g

(gh)−1 = h−1g−1 −(g + h) = (−h) + (−g) = (−g) + (−h)

gm := g · · · g︸ ︷︷ ︸
m times

(m > 0) mg := g + · · ·+ g︸ ︷︷ ︸
m times

g−m := (g−1)m = (gm)−1 (−m)g := m(−g) = −(mg)

〈g〉 = {gn | n ∈ Z} = 〈g−1〉 〈g〉 = {ng | n ∈ Z} = 〈−g〉
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7.3.6 Examples of cyclic groups (1) For any d ∈ Z, (dZ,+) = 〈d〉 = ((−d)Z,+) = 〈−d〉 ⊂ Z is a
cyclic subgroup of (Z,+). As shown in Theorem 2.3.2, all subgroups of Z are of this form.

(2) For any z ∈ C, the cyclic subgroup of (C,+) generated by z is equal to 〈z〉 = {0,±z,±2z,±3z, . . .} ⊂
C.

(3) For each n ∈ N+, (Z/nZ,+) is a cyclic group, generated by 1 (modn) (and also by −1 (modn)). The
set of all generators of this group will be described in Example 3 of Section 7.5.3 (see also 7.5.7).

(4) As we saw in Section 4.3.2, ((Z/7Z)∗, ·) is a cyclic group, generated by 3 (mod 7) (and also by
5 (mod 7)).

(5) For each n ∈ N+, the group of n-th roots of unity is cyclic:

µn = {z ∈ C | zn = 1} = {e2πik/n = cos( 2πik
n ) + i sin( 2πik

n ) = (e2πi/n)k | 1 ≤ k ≤ n} = 〈e2πi/n〉.

(6) For each n ∈ N+, the group of rotations of R2 around the origin that preserve a regular polygon with
n sides (with centre at the origin) form a cyclic group (a subgroup of SO(2))

Cn = {r, r2, . . . , rn = id} = 〈r〉,

where rk is a rotation with angle 2πk
n .

7.3.7 Exercise. What is the relation between Examples (5) and (6) in Section 7.3.6?

7.4 Group homomorphisms

7.4.1 Exponential map It is important to understand not just individual groups, but also relations
between them. For example, the exponential map

exp : (R,+) −→ (R r {0}, ·), exp(x) = ex (7.4.1.1)

relates the operations in the two groups involved (addition and multiplication):

exp(x+ y) = exp(x) · exp(y). (7.4.1.2)

This is a special case of the following general concept.

7.4.2 Definition. Let (G, ∗), (H,2) be groups. A group homomorphism f : (G, ∗) −→ (H,2) is a
map f : G −→ H such that ∀g, g′ ∈ G f(g ∗ g′) = f(g)2f(g′).

7.4.3 Examples of group homomorphisms (1) f : G −→ H, f(g) = eH for all g ∈ G.

(2) id : G −→ G, id(g) = g for all g ∈ G.

(3) f = [×6] : (Z,+) −→ (3Z,+), f(n) = 6n. In this case 6(m+ n) = 6m+ 6n.

(4) exp : (R,+) −→ (R r {0}, ·), exp(x) = ex. In this case ex+y = exey.

(5) exp : (C,+) −→ (C r {0}, ·), exp(x+ iy) = ex+iy = ex(cos(y) + i sin(y)). In this case ez+z
′

= ezez
′
.

(6) det : (GLn(R), ·) −→ (R r {0}, ·), det(MN) = det(M)det(N).

(7) If (G, ∗) is a group and g ∈ G, then the map f : Z −→ G, f(n) = gn is a group homomorphism, since
gm+n = gmgn.

(8) If (G, ∗) is a group and H ⊂ G a subgroup, then the inclusion H ↪→ G is a group homomorphism.

(9) Canonical projection pr : (Z,+) −→ (Z/nZ,+), pr(a) = a (modn). In this case (a + b) (modn) =
(a (modn)) + (b (modn)).
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(10) The vertical projection f : (R2,+) −→ (R,+), f(

(
x
y

)
) = x.

(11) If f1 : (G, ∗) −→ (H,2) and f2 : (H,2) −→ (K,4) are group homomorphisms, so is their composition
f2 ◦ f1 : (G, ∗) −→ (H,2) −→ (K,4) ((f2 ◦ f1)(g) = f2(f1(g))).

(12) If fi : Gi −→ Hi (i = 1, 2) are group homomorphisms, so is f1 × f2 : G1 ×G2 −→ H1 ×H2.

7.4.4 Proposition. If f : (G, ∗) −→ (H,2) is a group homomorphism, then:
(1) (Compatibility with neutral elements) f(eG) = eH .
(2) (Compatibility with inverse) ∀g ∈ G f(g−1) = f(g)−1.
(3) If the map f : G −→ H is bijective, then its inverse f−1 : (H,2) −→ (G, ∗) is also a group homomor-
phism. We say that f is a group isomorphism (which implies that f−1 is a group isomorphism, too).
[In this case the two groups are “the same” from a purely algebraic point of view, but this “sameness” is
given by the map f , which is a part of the data.]
(4) If f is injective, then it defines a group isomorphism f : (G, ∗) ∼−→ (Im(f),2).

Proof. (1) ∀g ∈ G f(g)2eH = f(g) = f(g ∗ eG) = f(g)2f(eG); thus eH = f(eG). Part (2) follows from
the fact that f(g)2f(g−1) = f(g ∗ g−1) = f(eG) = eH .
(3) If f is bijective and h, h′ ∈ H, then there exist unique g, g′ ∈ G such that h = f(g) and h′ = f(g′)
(g = f−1(h), g′ = f−1(h′)). The identity h2h′ = f(g)2f(g′) = f(g ∗ g′) then implies that f−1(h2h′) =
g ∗ g′ = f−1(h) ∗ f−1(h′), as claimed in (3). Finally, (4) is an immediate consequence of the definitions,
since the injectivity of f implies that f : G −→ Im(f) is bijective.

7.4.5 Definition. The kernel and the image of a group homomorphism f : (G, ∗) −→ (H,2) are
defined, respectively, as

Ker(f) := {g ∈ G | f(g) = eH} ⊂ G, Im(f) := {f(g) | g ∈ G} ⊂ H.

7.4.6 Proposition. If f : (G, ∗) −→ (H,2) is a group homomorphism, then:
(1) Ker(f) is a subgroup of G.
(2) Im(f) is a subgroup of H.
(3) For g, g′ ∈ G, the following are equivalent: f(g) = f(g′) ⇐⇒ g−1∗g′ ∈ Ker(f) ⇐⇒ g′∗g−1 ∈ Ker(f).

Proof. (1) We know that f(eG) = eH ; thus eG ∈ Ker(f). If g, g′ ∈ Ker(f), then f(g) = f(g′) = eH .
It follows that f(g−1) = f(g)−1 = e−1H = eH and f(g ∗ g′) = f(g)2f(g′) = eH2eH = eH , hence
g−1, g ∗ g′ ∈ Ker(f).
(2) Similarly, eH = f(eG) ∈ Im(f). If h, h′ ∈ Im(f), then h = f(g) and h′ = f(g′) for some g, g′ ∈ G.
Consequently, h−1 = f(g)−1 = f(g−1) ∈ Im(f) and h2h′ = f(g)2f(g′) = f(g ∗ g′) ∈ Im(f).
(3) f(g) = f(g′) ⇐⇒ eH = f(g)−12f(g′) = f(g−1 ∗ g′) ⇐⇒ g−1 ∗ g′ ∈ Ker(f). The second equivalence
is similar.

7.4.7 Examples of Ker(f) and Im(f) Let us describe the kernel and the image of each group homo-
morphism from Section 7.4.3.

(1) The trivial homomorphism f(g) = eH : Ker(f) = G, Im(f) = {eH}.
(2) The identity id : G −→ G: Ker(id) = {eG}, Im(f) = G.

(3) f : (Z,+) −→ (3Z,+), f(n) = 6n: Ker(f) = {0}, Im(f) = (6Z,+).

(4) f = exp : (R,+) −→ (R r {0}, ·): Ker(f) = {0}, Im(f) = (R>0, ·).
(5) f = exp : (C,+) −→ (C r {0}, ·): Ker(f) = {x + iy ∈ C | ex(cos(y) + i sin(y)) = 1} = 2πiZ,
Im(f) = (C r {0}, ·).
(6) det : (GLn(R), ·) −→ (R r {0}, ·): Ker(det) = SLn(R), Im(det) = (R r {0}, ·).
(7) f : (Z,+) −→ (G, ∗), f(n) = gn: Im(f) = 〈g〉.
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(8) f : H ↪→ (G, ∗): Ker(f) = {eH} = {eG}, Im(f) = H.

(9) f = pr : (Z,+) −→ (Z/nZ,+): Ker(pr) = (nZ,+), Im(pr) = Z/nZ.

(10) The vertical projection f : (R2,+) −→ (R,+): Ker(f) = {
(

0
y

)
| y ∈ R}, Im(f) = R.

7.4.8 Examples of isomorphisms (1) The identity id : G −→ G.

(2) Conjugation by g ∈ G: f : G −→ G, f(h) = ghg−1. In this case g(hh′)g−1 = (ghg−1)(gh′g−1). The
inverse of f is given by f−1(g) = g−1hg, since g−1ghg−1g = ehe = h.

(3) If m,n ∈ N+ and gcd(m,n) = 1, then the map in the Chinese Remainder Theorem

f : (Z/mnZ,+) −→ (Z/mZ,+)× (Z/nZ,+), f(a (modmn)) = (a (modm), a (modn))

is a bijective group homomorphism, hence a group isomorphism.

7.4.9 Exercise. An automorphism of a group G is a group isomorphism G −→ G. Show that:
(1) Aut(G) := {automorphisms of G} is a subgroup of SG.
(2) The map G −→ Aut(G) sending g ∈ G to the conjugation by g (see Example 2 in Section 7.4.8) is a
group homomorphism. Its image is called the group of inner automorphisms of G.
(3) Determine the kernel of G −→ Aut(G).

7.4.10 Proposition. A group homomorphism f : (G, ∗) −→ (H,2) is injective ⇐⇒ Ker(f) = {eG}.

Proof. By definition, f is injective if, for g, g′ ∈ G, the equality f(g) = f(g′) is equivalent to g = g′.
However,

g = g′ ⇐⇒ g′ ∗ g−1 = eG

f(g) = f(g′) ⇐⇒ g′ ∗ g−1 ∈ Ker(f),

which means that the conditions g = g′ and f(g) = f(g′) are equivalent if and only if {eG} = Ker(f).

7.4.11 Corollary. A group homomorphism f : (G, ∗) −→ (H,2) with Ker(f) = {eG} is injective, hence
defines a group isomorphism f : (G, ∗) ∼−→ (Im(f),2).

7.4.12 Example: exp and log The group homomorphism (7.4.1.1) given by the exponential induces
a group isomorphism

exp : (R,+)
∼−→ (R>0, ·).

Its inverse (which is also a group isomorphism) is given by the logarithm map

ln : (R>0, ·)
∼−→ (R,+).

7.4.13 Exercise. Let f : (G, ∗) −→ (H,2) be a group homomorphism.
(1) The image f(G1) = {f(g) | g ∈ G1} of any subgroup G1 of G is a subgroup of H.
(2) The inverse image f−1(H1) = {g ∈ G | f(g) ∈ H1} of any subgroup H1 of H is a subgroup of G.
(3) In the notation of (1) and (2), G1 ⊆ f−1(f(G1)) and f(f−1(H1)) ⊆ H1.
(4) Give an example in which G1 6= f−1(f(G1)) and f(f−1(H1)) 6= H1.
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7.4.14 Embedding of G into SG (Cayley) Let (G, ∗) be a group. Left translations

L(g) : G −→ G, h 7→ g ∗ h

by elements g ∈ G are bijective maps satisfying

L(e) = id, L(g ∗ g′) = L(g) ◦ L(g′), L(g)(e) = g,

which implies that the map

L : G −→ SG, g 7→ L(g)

is an injective group homomorphism. In particular, any finite group of order |G| = n is isomorphic to a
subgroup Im(L) ⊂ SG

∼−→ Sn of Sn.

7.5 Order, cyclic (sub)groups, Lagrange’s theorem

7.5.1 A preview In Section 4.3 we investigated various properties of powers of invertible residue
classes (modn). This can be done in the following general setting.

7.5.2 Definition (Order). Let (G, ∗) be a group, let g ∈ G. The order of G is the number of elements
|G| of G (|G| ∈ N+ ∪{∞}). The order of g is defined as min{k ∈ N+ | gk = e} (if no such k exists, then
the order of g is defined to be ∞).

7.5.3 Examples (1) If G = ((Z/nZ)∗, ·), then we recover Definition 4.3.3.

(2) If (G,+) is an abelian group written additively, then the order of g ∈ G is min{k ∈ N+ | kg = 0} (or
∞, if no such k exists).

(3) If G = (Z/mZ,+) and g = a (modm) for some a ∈ Z r {0}, then kg = ka (modm), which means
that the order of g is equal to

d = min{k ≥ 1 | ka ≡ 0 (modm)}.

In other words, d|a| ≥ 1 is the smallest positive multiple of |a| divisible by m, hence d|a| = lcm(|a|,m) and
d = lcm(|a|,m)/|a| = m/ gcd(|a|,m). In particular, d = m if and only if gcd(|a|,m) = 1 (cf. Proposition
4.3.13 and its proof).

7.5.4 Cyclic groups We are now going to show that a cyclic group is determined, up to isomorphism,
by its order. More precisely, it is isomorphic to (Z/mZ,+) if it has finite order m, and to (Z,+) if its
order is infinite. Furthermore, every subgroup of a cyclic group is cyclic.

7.5.5 Proposition. Let (G, ∗) be a group, let g ∈ G. Consider the group homomorphism f : (Z,+) −→ G
given by f(n) = gn.
(1) If the order of g ∈ G is equal to ∞, then Ker(f) = {0} and f induces a group isomorphism (Z,+)

∼−→
〈g〉. An element gk (k ∈ Z) is a generator of the cyclic group 〈g〉 if and only if k = ±1. The set of
subgroups of 〈g〉 is equal to {〈gd〉 | d ∈ N}.
(2) If the order of g ∈ G is equal to m ∈ N+, then Ker(f) = mZ.

Proof. By definition, Ker(f) = {n ∈ Z | gn = e}. This is a subgroup of (Z,+), which means that
Ker(f) = mZ for some m ∈ N. The order of g is equal to min{k ∈ Ker(f) = mZ | k > 0}, hence to m if
m > 0 (resp. to ∞ when no such k exists, which is equivalent to m = 0). This proves the description of
Ker(f), both in (1) and (2).

If the order of g is infinite, then Ker(f) = {0} by the above, which implies that the group homomorphism
f is injective. Therefore it induces a group isomorphism between (Z,+) and (Im(f), ∗) = 〈g〉 (the cyclic

88



subgroup of G generated by g), hence a bijection between the set of subgroups {dZ | d ∈ N} of Z and
the set of subgroups {f(dZ) = 〈gd〉} of 〈g〉. Finally, f(k) = gk is a generator of 〈g〉 if and only if k is a
generator of Z, which is equivalent to kZ = Z, hence to k = ±1.

7.5.6 Theorem. Let (G, ∗) be a group. Assume that g ∈ G has order m ∈ N+.
(1) For k ∈ Z, it is equivalent: gk = e ⇐⇒ m | k.
(2) For k, l ∈ Z, it is equivalent: gk = gl ⇐⇒ m | (k − l) ⇐⇒ k ≡ l (modm).
(3) The subgroup {gk | k ∈ Z} = 〈g〉 is equal to {g, g2, . . . , gm = e} and has m elements.
(4) The map f : Z/mZ −→ 〈g〉 given by f(k (modm)) = gk is well-defined. It is a group isomorphism
f : Z/mZ

∼−→ 〈g〉.
(5) For k ∈ Z r {0}, the order of gk is equal to m/ gcd(|k|,m).
(6) The cyclic group 〈g〉 (of order m) has ϕ(m) generators.
(7) More generally, the number of elements of 〈g〉 of order d ∈ N+ is equal to zero (resp. to ϕ(d)) if d
does not divide m (resp. if d divides m).
(8) The set of subgroups of 〈g〉 is equal to {〈gd〉 | d | m} (where 〈gd〉 is a cyclic group of order m/d).

Proof. (1), (2) Let f : (Z,+) −→ G be the group homomorphism f(k) = gk; then gk = e ⇐⇒ k ∈ Ker(f),
but Ker(f) = mZ, as shown in Proposition 7.5.5(2). Consequently, gk = gl ⇐⇒ gk−l = gk(gl)−1 = e
⇐⇒ m | (k − l).
(3) Each k ∈ Z can be written as k = ma+ l, where a, l ∈ Z and 1 ≤ l ≤ m; then gk = (gm)agl = gl, and
the m values of g, g2, . . . , gm = e are distinct, by (2).
(4) If k ≡ l (modm), then gk = gl, which means that the map f is well-defined. It satisfies f((k (modm))+
(l (modm))) = f(k (modm))f(l (modm))), since the left hand side is equal to f((k+ l) (modm)) = gk+l

and the right hand side to gkgl. This means that f is a group homomorphism. Finally, f is bijective, by
(3).
(5) The order of gk is the smallest integer d ≥ 1 such that (gk)d = gdk = e, which is equivalent to
m | dk. Therefore d|k| is the smallest positive multiple of |k| that is divisible by m, which implies that
d|k| = lcm(|k|,m) and d = lcm(|k|,m)/|k| = m/ gcd(|k|,m).
(6) Among the m elements g, g2, . . . , gm = e of the cyclic group 〈g〉, gk is its generator if and only if the
order of gk is equal to m, which is equivalent to gcd(k,m) = 1. There are ϕ(m) possible values of such k
in the range 1 ≤ k ≤ m.
(7) According to (5), possible orders of the elements g, g2, . . . , gm = e of 〈g〉 are all divisors of m. Given a
divisor d | m, the order of gk (1 ≤ k ≤ m) is equal to d if and only if m/ gcd(k,m) = d, which is equivalent
to gcd(k,m) = m/d, hence to k = (m/d)k′, 1 ≤ k′ ≤ d, m = (m/d)d and gcd(k′, d) = 1. There are ϕ(d)
possible values of such k′.
(8) For any divisor d | m, 〈gd〉 = {gd, g2d, . . . , (gd)m/d = gm = e} is a cyclic subgroup of 〈g〉 of order m/d.
Conversely, if H is a subgroup of 〈g〉, then A := {k ∈ Z | gk ∈ H} is a subgroup of Z containing mZ;
therefore A = dZ for some d ∈ Z satisfying d | m.

7.5.7 Summary of properties of cyclic (sub)groups (1) The order of g ∈ G (finite or infinite) is
equal to the order |〈g〉| of the cyclic group generated by g.

(2) A cyclic group G of infinite order has two generators. A choice of a generator g ∈ G defines a group
isomorphism f : (Z,+)

∼−→ G, f(k) = gk. The other generator is g−1.

(3) A cyclic group G of order m ∈ N+ has ϕ(m) generators. A choice of a generator g ∈ G defines a group
isomorphism f : (Z/mZ,+)

∼−→ G, f(k (modm)) = gk. The other generators are gk for k (modm) ∈
(Z/mZ)∗ (i.e., for gcd(k,m) = 1).

(4) For example, G = µm = ({z ∈ C | zm = 1}, ·) is generated by g = e2πi/m, and the map f :
(Z/mZ,+) −→ µm given by k (modm) 7→ e2πki/m is a group isomorphism.

(5) One can show that every finite abelian group is isomorphic to a product of cyclic groups (Z/n1Z,+)×
· · · × (Z/nrZ,+), where r ≥ 0, n1 > 1 and n1 | n2 | · · · | nr. This can be proved, for example, by using
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Euclid’s algorithm and elementary operations on matrices with coefficients in Z.

7.5.8 Theorem (Lagrange). If G is a finite group and H ⊂ G is a subgroup, then |H| divides |G|.

Proof. See Theorem 7.6.15 and Section 7.6.19 below.

7.5.9 Corollary (Lagrange). If G is a finite group and g ∈ G, then the order of g (which is equal to the
order of the cyclic subgroup 〈g〉 ⊂ G) divides |G|. Consequently, g|G| = e.

Proof. We are going to prove the corollary in the special case when the group G is abelian. Let m = |G|,
G = {g1, . . . , gm}. For fixed g ∈ G, the equalities ggi = ggj ⇐⇒ gi = gj are equivalent, by Proposition
7.1.6(6). Therefore the elements gg1, . . . , ggm are distinct, which means that G = {gg1, . . . , ggm}. As the
group G is abelian, if we compute the product of its elements in an arbitrary order, then we obtain the
same result. Therefore

g1g2 · · · gm = (gg1)(gg2) · · · (ggm) = gmg1g2 · · · gm =⇒ e = gm

(again, by Proposition 7.1.6(6)).

7.5.10 Lagrange’s theorem =⇒ Euler’s theorem If G = ((Z/nZ)∗, ·), then |G| = ϕ(n) and
g = a (modn) for some a ∈ Z such that gcd(a, n) = 1. The statement g|G| = e is then equivalent
to aϕ(n) ≡ 1 (modn), and the proof given above is an abstract version of the proof of Euler’s theorem
4.2.9.

7.6 The quotient group G/H (abelian case)

7.6.1 A preview The goal of this section is to give an abstract version of the construction of the
additive group (Z/nZ,+).

From now on until the end of Section 7.6 we assume that we are given the following data.

• An abelian group (G,+) written additively (the neutral element is e = 0 and the inverse of a ∈ G
is written as −a). For a, b ∈ G, we use the notation a− b := a+ (−b) = (−b) + a; then −(a− b) =
b+ (−a) = b− a and (a− b) + (b− c) = a− c.

• A subgroup H ⊂ G.

We want to define and investigate the notion of congruences modulo H for elements of G. An example
we should keep in mind is G = Z and H = nZ.

7.6.2 Definition. For a ∈ G, let a + H := {a + h | h ∈ H} ⊂ G. Subsets of this form will be called
classes modulo H in G.

7.6.3 Examples (1) If G = Z, H = nZ and a ∈ Z, then a + nZ = {b ∈ Z | a ≡ b (modn)}, as in
chapter 3.

(2) If G = (R2,+), 0 6= u ∈ R2 and H = (Ru,+), then the elements of G correspond to points in a plane,
H is a line in the plane passing through the origin, and a + H is the unique line passing through a that
is parallel to H. In particular, for any a, b ∈ R2, the sets a + H and b + H are either disjoint, or equal.
As we are going to show, this property holds in general.

7.6.4 Proposition. If a, b ∈ G, then{
a+H = b+H, if a− b ∈ H
(a+H) ∩ (b+H) = ∅, if a− b 6∈ H.

In addition, the map H −→ a+H, h 7→ a+h is bijective, with inverse given by a′ 7→ a′−a. In particular,
if H is finite, then |a+H| = |H|.
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Proof. If (a + H) ∩ (b + H) 6= ∅, then there exist h1, h2 ∈ H such that a + h1 = b + h2, hence a − b =
h2 − h1 ∈ H. Conversely, if h0 := a − b ∈ H, then, for each h ∈ H, a + h = b + (h + h0) ∈ b + H and
b+ h = a+ (h− h0) ∈ a+H. Therefore a+H ⊆ b+H and b+H ⊆ a+H, hence a+H = b+H. The
second part of the proposition is clear, since (a+ h)− a = h and a+ (a′ − a) = a′.

7.6.5 Corollary. The set G is a disjoint union of various classes modulo H. Denote by G/H the set of
these classes (each class taken only once).

7.6.6 Definition. We say that a, b ∈ G are congruent modulo H (and we write a ≡ b (modH)) if
a − b ∈ H. According to Proposition 7.6.4, this is equivalent to a + H = b + H. Note that a + H =
{c ∈ G | c ≡ a (modH)}. In order to simplify the notation, one often uses the notation a ∈ G/H for
a+H ∈ G/H.

The index of H in G, denoted by (G : H) := |G/H|, is the number of classes modulo H in G (for
example, (Z : nZ) = n and (R : Z) =∞).

7.6.7 Proposition. Let a, b, c ∈ G.
(1) a ≡ a (modH).
(2) If a ≡ b (modH), then b ≡ a (modH).
(3) If a ≡ b (modH) and b ≡ c (modH), then a ≡ c (modH).

Proof. This is a straightforward consequence of the fact that a ≡ b (modH) is equivalent to a + H =
b+H.

7.6.8 Proposition. If a, b, a′, b′ ∈ G, then{
a ≡ a′ (modH)

b ≡ b′ (modH)

}
=⇒

{
a+ b ≡ a′ + b′ (modH)

−a ≡ −a′ (modH)

}

Proof. If a−a′, b−b′ ∈ H, then (−a)−(−a′) = −(a−a′) ∈ H and (a+b)−(a′+b′) = (a−a′)+(b−b′) ∈ H,
since H is a subgroup of G and the operation “+” satisfies x+ y = y + x.

7.6.9 Towards G/H We are now ready to show that the set G/H of all classes modulo H in G has
a natural structure of an abelian group (this will be a generalisation of (Z/nZ,+)).

There is a natural projection map

pr : G −→ G/H, a 7→ a+H = a

that sends an element a ∈ G to the unique class modulo H containing a.

7.6.10 Theorem. Let H be a subgroup of an abelian group (G,+).
(1) The set G/H of all classes modulo H in G has a natural structure of an abelian group (the quotient
group of G by H) such that

(Operation) (a+H) + (b+H) = (a+ b) +H

(Inverse) −(a+H) = (−a) +H

(Neutral element) 0G/H = 0G +H

(2) The projection map pr : G −→ G/H is a (surjective) group homomorphism.
(3) Ker(pr) = H.
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Proof. (1) The operations are well-defined: we must check that, if a+H = a′ +H and b+H = b′ +H,
then (a+ b) +H = (a′ + b′) +H and (−a) +H = (−a′) +H; this was proved in Proposition 7.6.8.

Associativity: we must check that, for any a, b, c ∈ G,

(a+H) + ((b+H) + (c+H))
?
= ((a+H) + (b+H)) + (c+H)

This follows from the fact that the left hand side (resp. the right hand side) is equal to (a+ (b+ c)) +H
(resp. to ((a+ b) + c) +H).

Commutativity: we must check that, for any a, b ∈ G,

(a+H) + (b+H)
?
= (b+H) + (a+H)

This follows from the fact that the left hand side (resp. the right hand side) is equal to (a+ b) +H (resp.
to (b+ a) +H).

Neutral element: we must check that, for any a ∈ G,

(a+H) + (0 +H)
?
= a+H

?
= (0 +H) + (a+H)

This follows from the fact that the term on the left (resp. on the right) is equal to (a+ 0) +H = a+H
(resp. to (0 + a) +H = a+H).

Inverse: we must check that, for any a ∈ G,

(a+H) + ((−a) +H)
?
= 0 +H

?
= ((−a) +H) + (a+H)

This follows from the fact that the term on the left (resp. on the right) is equal to (a+(−a))+H = 0+H
(resp. to ((−a) + a) +H = 0 +H).

(2) For any a, b ∈ H,

pr(a+ b) = (a+ b) +H = (a+H) + (b+H) = pr(a) + pr(b).

(3) a ∈ Ker(pr) ⇐⇒ a+H = 0 +H ⇐⇒ a− 0 ∈ H ⇐⇒ a ∈ H.

7.6.11 Remark The proof shows that the formulae in (1) are uniquely detemined by (2).

7.6.12 Examples of quotient groups (abelian) (1) If G = (Z,+) and H = nZ, then (G/H,+) =
(Z/nZ,+) is the set of residue classes modulo n.

(2) If G = (R2,+) and H = (Ru,+) for fixed 0 6= u ∈ R2, then H is a line in the plane G and G/H is the
set of all lines in G parallel to H. In this case G/H is not just an abelian group, but a vector space over
R (since both G and H are real vector spaces). If one chooses u′ ∈ R2 such that u and u′ are linearly
independent over R, then H ′ = Ru′ is a line in G transversal to H, which implies that the composite map

H ′ ↪→ G
pr−→ G/H (7.6.12.1)

is bijective (its inverse sends a line a+H parallel to H to the intersection (a+H)∩H ′). As (7.6.12.1) is
a group morphism, it is a group isomorphism.

In general, if V is a vector space over a field K and W ⊂ V a vector subspace, then the quotient abelian
group (V/W,+) has again a natural structure of a vector space over K (the quotient space of V by W )
with respect to the scalar multiplication

t(v +W ) = (tv) +W, v ∈ V, t ∈ K.

To show that, one needs to check the identities
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(t+ t′)(v +W )
?
= t(v +W ) + t′(v +W )

t(t′(v +W ))
?
= (tt′)(v +W )

t((v +W ) + (v′ +W ))
?
= t(v +W ) + t(v′ +W )

(t, t′ ∈ K, v, v′ ∈ V ), which is easy.
As above, if W ′ ⊂ V is a subspace complementary to W (i.e., such that V = W ⊕ W ′), then the

composite linear map

W ′ ↪→ V
pr−→ V/W (7.6.12.2)

is bijective (its inverse sends a+W to the intersection (a+W )∩W ′), hence it is an isomorphism of vector
spaces.

(3) G = (R,+), H = 2πZ. The quotient (R/2πZ,+) has the following geometric interpretation.
For any α ∈ R, denote by R(α) the rotation around the origin in R2 with oriented angle α. These

rotations form an abelian group (denoted by SO(2)) with respect to composition and satisfy

R(α) = R(β) ⇐⇒ α ≡ β (mod 2πZ) ⇐⇒ α+ 2πZ = β + 2πZ (7.6.12.3)

R(α) ◦R(β) = R(α+ β). (7.6.12.4)

This is equivalent to the fact that the map

R/2πZ
∼−→ SO(2), α+ 2πZ 7→ R(α) (7.6.12.5)

is a group isomorphism. In other words, we should think of oriented angles in the plane R2 as classes
α+ 2πZ ∈ R/2πZ of real numbers modulo integral multiples of 2π.

7.6.13 Exercise. Determine the order of mn +Z ∈ (Q/Z,+), where m,n ∈ Z, n ≥ 1 and gcd(m,n) = 1.

7.6.14 Multiplicative notation If we use multiplicative notation for the abelian group (G, ·) and its
subgroup H ⊂ G, then the classes modulo H in G will be defined as

gH := {gh | h ∈ H}, (7.6.14.1)

for g ∈ G. As before, two classes will be either disjoint, or equal. More precisely, gH = g′H ⇐⇒ g−1g′ ∈
H.

The set G/H of all classes is an abelian group with operation (gH)(g′H) = (gg′)H, neutral element
eH = H and inverse (gH)−1 = g−1H.

7.6.15 Theorem (Lagrange, abelian case). If G is a finite abelian group and H ⊂ G is a subgroup, then
|G| = |H| · |G/H|. In particular, |H| divides |G|.
Proof. We know that G is a disjoint union of |G/H| sets of the form a+H, and that |a+H| = |H| (for
any a ∈ G).

7.6.16 Theorem (Homomorphism theorem, abelian case). Assume that (G, ∗) is an abelian group and
that f : (G, ∗) −→ (H,2) is a group homomorphism. The map

f : (G/Ker(f), ∗) −→ (Im(f),2)

gKer(f) 7→ f(g)

is a group isomorphism. [We use here multiplicative notation for G and G/Ker(f), as in Section
7.6.14.]
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Proof. The map f is well-defined: if gKer(f) = g′Ker(f), then g−1g′ ∈ Ker(f), which implies that
f(g′) = f(gg−1g′) = f(g)f(g−1g′) = f(g)2eH = f(g).

The map f is a group homomorphism:

f((gKer(f))(g′Ker(f))) = f(gg′Ker(f)) = f(gg′) = f(g)2f(g′) = f(gKer(f))2f(g′Ker(f)).

In order to finish the proof, it is enough to check that f has trivial kernel, and then apply Corollary 7.4.11.
If gKer(f) lies in Ker(f), then f(g) = eH , which implies that g ∈ Ker(f), hence gKer(f) = Ker(f) is

the neutral element of G/Ker(f).

7.6.17 Homomorphism theorem: examples (1) If Ker(f) = {eG}, then we recover Corollary
7.4.11 (for an abelian group G).

(2) The exponential map exp : (C,+) −→ (C r {0}, ·) is a group homomorphism satisfying Ker(exp) =
(2πiZ,+) and Im(exp) = C r {0}. It gives rise to a group isomorphism

(C/2πiZ,+)
∼−→ (C r {0}, ·), z + 2πiZ 7→ ez.

(3) Assume that (G, ∗) is a group and g ∈ G is an element of finite order m ∈ N+. The group ho-
momorphism f : (Z,+) −→ (G, ∗), f(n) = gn from Section 7.4.3, Example 7 satisfies Im(f) = 〈g〉 and
Ker(f) = (mZ,+). It defines, therefore, a group isomorphism

f : (Z/mZ,+)
∼−→ 〈g〉, k +mZ 7→ gk,

which we saw already in Theorem 7.5.6(4).

(4) A slightly modified exponential map f : (C,+) −→ (C r {0}, ·), f(z) = e2πiz is a surjective group
homomorphism satisfying Ker(f) = (Z,+). It defines group isomorphisms

(C/Z,+)
∼−→ (C r {0}, ·), (R/Z,+)

∼−→ ({e2πiα | α ∈ R}, ·) = ({z ∈ C | |z| = 1}, ·) = U(1),

( 1
nZ/Z,+)

∼−→ ({z ∈ C | zn = 1}, ·) = µn, (Q/Z,+)
∼−→

⋃
n≥1

µn = {roots of unity in C}.

7.6.18 Universal property of G/H Let H be a subgroup of an abelian group G (written multiplica-
tively). For every group homomorphism f : G −→ G′ such that H ⊂ Ker(f) there exists a unique group
homomorphism f ′ : G/H −→ G′ satisfying

f = f ′ ◦ pr : G −→ G/H −→ G′.

This formula is equivalent to f ′(gH) = f(g) for all g ∈ G. The condition H ⊂ Ker(f) ensures that
f(g) = f(gh) for all h ∈ H, which means that f ′ is well-defined (it is a group homomorphism, since f is).

7.6.19 What happens if G is not abelian? If (G, ∗) is an arbitrary group and H ⊂ G its subgroup,
then one must distinguish between the classes (called left (resp. right) cosets of H in G)

gH := {gh | h ∈ H} ⊂ G, Hg := {hg | h ∈ H} ⊂ G (g ∈ G).

As in Proposition 7.6.4, these classes have the following properties.

• gH ∩ g′H 6= ∅ ⇐⇒ g−1g′ ∈ H ⇐⇒ gH = g′H.

• The map H −→ gH, h 7→ gh is bijective (with inverse map gH −→ H given by g′ 7→ g−1g′).

94



Consequently, G is a disjoint union of the classes gH, and each class has the same number of elements
(finite or infinite) as H.

If we denote by G/H the set of the classes gH, we obtain, as in the proof of Theorem 7.6.15, that
|G| = |H| · |G/H|.

Similarly, one denotes by H\G the set of the classes Hg. The map G/H −→ H\G, gH 7→ Hg−1 is
bijective. The index of H in G is defined as (G : H) := |G/H| = |H\G|.

It is natural to ask whether the set G/H becomes a group when equipped with operation

(g1H)(g2H)
?
= (g1g2)H. (7.6.19.1)

In general, no. The point is that a non-abelian version of Proposition 7.6.8 does not hold, in general,
which means that the formula (7.6.19.1) does not give a well-defined operation on G/H. What we need
is a validity of the property {

g1H = g′1H

g2H = g′2H

}
?

=⇒ (g1g2)H = (g′1g
′
2)H, (7.6.19.2)

which is equivalent to (g1g2)H = (g1h1g2h2)H for all gi ∈ G and hi ∈ H, which is, in turn, equivalent
to g2H = h1g2H, hence to H = g−12 h1g2H, and to g−12 h1g2 ∈ H (for all g2 ∈ G and h1 ∈ H). In other
words, we need

∀g ∈ G g−1Hg ⊆ H.

Applying this condition with g and g−1, we obtain an equivalent condition

∀g ∈ G g−1Hg = H. (7.6.19.3)

Subgroups satisfying (7.6.19.3) are called normal subgroups of G (notation: H C G). They also have
the property gH = Hg, which implies that

gH = g′H =⇒ Hg−1 = (gH)−1 = (g′H)−1 = Hg′−1 =⇒ g−1H = g′−1H. (7.6.19.4)

It follows from (7.6.19.2) and (7.6.19.4) that, for a normal subgroup H C G, G/H is a group with respect
to the operation (7.6.19.1). As in Theorem 7.6.10, the projection pr : G −→ G/H sending g to gH is a
surjective group homomorphism, and Ker(pr) = H.

Conversely, the kernel of any group homomorphism f : (G, ∗) −→ (H,2) is a normal subgroup of G.
Indeed, if g′ ∈ Ker(f), then f(g′) = eH and f(g−1g′g) = f(g)−12f(g′)2f(g) = f(g)−12eH2f(g) =
f(g)−12f(g) = eH , hence g−1g′g ∈ Ker(f).

Therefore normal subgroups of G are precisely the kernels of group homomorphisms G −→ G′.
The statement (and the proof) of the Homomorphism Theorem 7.6.16 then make sense for any group

homomorphism.
The universal property of G/H in Section 7.6.18 holds for any group G and any normal subgroup

H C G.

8 Rings

8.1 Definition and examples

8.1.1 Example: A = Z A fundamental example of a (commutative) ring is the set of integers Z =
{0,±1,±2, · · · } equipped with the operations “+” and “·”. Other examples include Z/nZ and matrix
rings Mk(R) (non-commutative if k > 1).
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8.1.2 Definition. A ring (with a unit) is a triple (A,+, ·), where A is a set equipped with two binary
operations a, b 7→ a+ b and a, b 7→ a · b = ab satisfying the following axioms.

(1) (Additive structure) (A,+) is an abelian group with neutral element 0 = 0A

and inverse a 7→ −a
(2) (Associativity) ∀a, b, c ∈ A (a · b) · c = a · (b · c)
(3) (Unit) ∃1 = 1A ∈ A ∀a ∈ A a · 1 = 1 · a = a

(4) (Distributivity) ∀a, b, c ∈ A (a+ b) · c = (a · c) + (b · c), a · (b+ c) = (a · b) + (a · c)
(8.1.2.1)

8.1.3 Definition. If, in addition, the following property holds

(5) (Commutativity) ∀a, b ∈ A a · b = b · a

then we say that A is a commutative ring.

8.1.4 Basic properties

• ∀a ∈ A 0 · a = a · 0 = 0 (since 0 · a = (0 + 0) · a = 0 · a+ 0 · a).

• 1 is unique: if there exist 1, 1′ ∈ A such that ∀a, b ∈ A a · 1 = 1 · a = a and b · 1′ = 1′ · b = b, then
we obtain, by taking a = 1′ and b = 1, that 1′ = 1 · 1′ = 1.

• 0 = 1 in A ⇐⇒ A = {0} (the zero ring). Indeed, if 0 6= 1 in A, then A 6= {0}. Conversely, if
0 = 1 in A, then a = a · 1 = a · 0 = 0 holds, for any a ∈ A.

8.1.5 Examples of rings (1) Commutative rings Z, Z/nZ, Q, R, C, Z + iZ, Z + 2iZ, Q + iQ.

(2) Non-commutative matrix rings Mn(R), Mn(C) (n > 1). The unit is the identity matrix I = In.

(3) More generally, if V is a vector space over a field K, then the set of K-linear endomorphisms of V

EndK(V ) := {α : V −→ V | α is K − linear}

is a ring with respect to the operations (α+ β)(v) = α(v) + β(v) and (β ◦ α)(v) = β(α(v)) (v ∈ V ). The
unit is the identity map idV : v 7→ v.

Of course, if V = Kn, then EndK(Kn) = Mn(K) (cf. Example (4) in Section 7.2.4).

(4) In fact, if A is any ring (not necessarily commutative), then the set Mn(A) of n × n matrices with
coefficients in A is a ring with respect to the standard matrix sum and product.

(5) If A is a commutative ring, so is the ring of polynomials A[T ] = {a0 +a1T + · · ·+adT
d | d ≥ 0, ai ∈ A}

in one variable with coefficients in A. By induction, we obtain rings A[T1, . . . , Tn] of polynomials in several
variables.

(6) One sometimes encounters rings without a unit, but such rings usually have “approximate units”.
Example: A := {α ∈ EndK(V ) | dimK(Im(α)) <∞}, where V is a vector space of infinite dimension over
a field K.

8.1.6 Definition. Let A be a ring. An element a ∈ A is invertible in A if there exists b ∈ A such that
ab = ba = 1. Such an element b ∈ A is then unique; we say that b is the inverse of a and we write
b = a−1. The set of invertible elements of A

A∗ := {a invertible in A}

is a group with respect to the product (its neutral element is 1). We say that A∗ is the multiplicative
group of A.
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8.1.7 Remarks on the inverse (1) Uniqueness of the inverse: if ab = ba = 1 = ac = ca, then
b = b · 1 = b(ac) = (ba)c = 1 · c = c.

(2) (A∗, ·) is a group: firstly, 1 ∈ A∗, since 1 · 1 = 1. Secondly, if a, a′ ∈ A∗, then ab = ba = 1 = a′b′ = b′a′

for b = a−1, b′ = a′−1. It follows that (aa′)(b′b) = a(a′b′)b = a · 1 · b = ab = 1 and (b′b)(aa′) = b′(ba)a′ =
b′ · 1 · a′ = b′a′ = 1. Therefore ab ∈ A∗ and the inverse (ab)−1 of ab is equal to b′a′ = b−1a−1, as
in Proposition 7.1.6(5). Finally, if a ∈ A∗, then aa−1 = a−1a = 1, which implies that a−1 ∈ A∗ and
(a−1)−1 = a (again, as in Proposition 7.1.6(5)).

(3) In fact, the argument in (1) shows that a stronger statement holds: if b, c ∈ A satisfy ba = 1 = ac,
then b = b · 1 = b(ac) = (ba)c = 1 · c = c. In other words, if a ∈ A admits both a left inverse b ∈ A and
a right inverse c ∈ A, then b = c, and this element is unique.

8.1.8 Invertible elements (examples) (1) R∗ = (Rr {0}, ·), C∗ = (Cr {0}, ·), Q∗ = (Qr {0}, ·),
(Q + Qi)∗ = ((Q + Qi)r {0}, ·), Z∗ = ({±1}, ·), (Z + Zi)∗ = ({±1,±i}, ·), (Z + Z

√
2)∗ = ({±(1 +

√
2)n |

n ∈ Z}, ·), (Z + Z 1+
√
5

2 )∗ = ({±( 1+
√
5

2 )n | n ∈ Z}, ·).
(2) For any ring A denote the multiplicative group of the matrix ring Mn(A) by

GLn(A) := Mn(A)∗ = {M ∈Mn(A) | ∃N ∈Mn(A) MN = NM = In}.

8.1.9 Proposition. If A is a commutative ring, then

GLn(A) = {M ∈Mn(A) | det(M) ∈ A∗}
= {M ∈Mn(A) | ∃N ∈Mn(A) MN = In}
= {M ∈Mn(A) | ∃N ∈Mn(A) NM = In}

Proof. If M,N ∈ Mn(A) satisfy MN = In, then det(M)det(N) = det(In) = 1, hence det(M),det(N) ∈
A∗.
Conversely, if we denote by adj(M) ∈ Mn(A) the adjoint matrix of M (recall that (−1)i+jadj(M)ij is
defined to be the determinant of the (n−1)× (n−1) matrix obtained from M by deleting the i-th column
and the j-th row), then

M · adj(M) = adj(M) ·M = det(M)In. (8.1.9.1)

For example, for n = 2,

M =

(
a b
c d

)
, adj(M) =

(
d −b
−c a

)
, M · adj(M) = adj(M) ·M =

(
ad− bc 0

0 ad− bc

)
.

If det(M) ∈ A∗, then the formulas (8.1.9.1) imply that the matrix N := (det(M))−1adj(M) ∈ Mn(A)
satisfies MN = NM = In.

8.1.10 Exercise. Give an example when an element a of a ring A has a left inverse, but not a right
inverse (and vice versa).
[Hint: try A = EndK(V ) for an infinite-dimensional vector space V .]

8.1.11 Product of rings Let A1, A2 be rings. Their product

A = A1 ×A2 = {(a1, a2) | ai ∈ Ai}

is again a ring when equipped with the operations
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(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2), (a1, a2) · (b1, b2) = (a1 · b1, a2 · b2),

0A = (0A1
, 0A2

), 1A = (1A1
, 1A2

).

Note that

A∗ = A∗1 ×A∗2 = {(a1, a2) | ai ∈ A∗i }, (a1, a2)−1 = (a−11 , a−12 ).

8.2 Subrings

8.2.1 Definition. A subring of a ring A is a subset B ⊂ A which is a ring with respect to the operations
“+” and “·” in A (this implies that B has the same 0 and 1 as A, that B∗ ⊂ A∗ ∩B and that the inverse
of any b ∈ B∗ is the same when computed in B or in A).

8.2.2 Example: Z ⊂ C Z is a subring of C and Z∗ = {±1} ( Z ∩C∗ = Z r {0}.

8.2.3 Proposition. Let B ⊂ A be a subset of a ring A. It is equivalent:
(1) B is a subring of A;
(2) 0A, 1A ∈ B and ∀b, b′ ∈ B b− b′, bb′ ∈ B.
[This shows that Definition 8.2.1 is, indeed, a generalisation of the definition of a subring of C from
Definition 1.5.18.]

Proof. The implication (1) =⇒ (2) is automatic. Let us prove that (2) implies (1). We know, by Propo-
sition 7.2.3(3), that (2) implies that (B,+) is an abelian group. The rest is again automatic.

8.2.4 Examples of subrings of C Proposition 8.2.3 implies that the following subsets of C are
subrings of C:

A1 = Z + Z
√

6, A2 = Q + Q
√

6, A3 = Z + Z
3
√

2 + Z
3
√

4, A4 = Q + Q
3
√

2 + Q
3
√

4. (8.2.4.1)

8.2.5 Exercise. (1) Every subring of C contains Z.
(2) What is the smallest subring of C containing 2

√
6 (resp. 4

√
2, resp.

√
6/2)?

8.2.6 The centre of a ring The centre

Z(A) := {z ∈ A | ∀a ∈ A za = az}

of a ring A is a subring of A. The ring A is commutative ⇐⇒ Z(A) = A.

8.2.7 Exercise. For any ring A and any n ≥ 1,

Z(Mn(A)) = Z(A) · In = {a · In | a ∈ Z(A)}.

8.2.8 Example: C as a subring of M2(R) We can write elements C as complex numbers z = x+iy,

or as pairs of real numbers

(
x
y

)
. This identification of real vector spaces

C
∼−→ R2, z = x+ iy 7→

(
x
y

)

98



allows us to write every C-linear map C −→ C (i.e., a 1×1 complex matrix) as an R-linear map R2 −→ R2

(i.e., as a 2× 2 real matrix).
Explicitly, multiplication by a fixed complex number w = a+bi of a variable complex number z = x+yi

defines an R-linear map

z = x+ yi 7→ wz = (a+ bi)(x+ yi) = (ax− by) + (bx+ ay)i (8.2.8.1)(
x
y

)
7→
(
ax− by
bx+ ay

)
=

(
a −b
b a

)(
x
y

)
(8.2.8.2)

represented by the matrix

(
a −b
b a

)
.

The correponding matrix representation of complex numbers

M : C −→M2(R), M(a+ bi) =

(
a −b
b a

)
(8.2.8.3)

has the following properties.

• ∀a ∈ R M(a) = a · I2 (in particular, M(1) = I2);

• M(w + w′) = M(w) +M(w′) (since (w + w′)z = wz + w′z);

• M(ww′) = M(w)M(w′) (since (ww′)z = (ww′)z);

• M(w) = 0 ⇐⇒ w = 0;

• more generally, M(w) = M(w′) ⇐⇒ w = w′.

These properties imply that we can consider C as a subring of M2(R) by identifying w ∈ C with the matrix
M(w). More precisely, in the language of Definition 8.4.1 below, M is an injective ring homomorphism.

In abstract terms, we have written C = M1(C) = EndC(C) as a subring of EndR(C) = EndR(R2) =
M2(R).

8.2.9 Example continued If we restrict M to the set of invertible elements of C, we obtain an
injective group homomorphism

M : C∗ ↪→ GL2(R).

Note that, for each α ∈ R, the matrix

M(eiα) = r(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
represents the rotation of R2 around the origin with oriented angle α. We obtain, therefore, four different
algebraic incarnations of the group of such rotations:

R/2πZ, U(1) = {z ∈ C | zz = 1}, SO(2) = {a ∈M2(R) | tAA = I2}, {r(α) | α ∈ R}.

They are related by the following explicit group isomorphisms.

R/2πZ
∼−→ U(1), α+ 2πZ 7→ eiα; M : U(1)

∼−→ {r(α) | α ∈ R} = SO(2).
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8.3 Integral domains, fields

8.3.1 Examples (1) A product of non-zero complex numbers is always non-zero.

(2) In the ring A = Z/6Z, the elements a = 2 (mod 6) ∈ Z/6Z r {0 (mod 6)} and b = 3 (mod 6) ∈
Z/6Z r {0 (mod 6)} are non-zero, but their product is equal to zero: ab = 6 (mod 6) = 0 (mod 6).

8.3.2 Definition. Let A be a commutative ring A.
(1) A is an integral domain if A 6= {0} and if a product of non-zero elements is non-zero:

∀a, b ∈ Ar {0} ab 6= 0.

(2) A is a field if A 6= {0} and if every non-zero element is invertible:

Ar {0} = A∗.

(3) A subfield of a field K is a subring of K which is itself a field.

8.3.3 Examples and Remarks (1) Q,R,C and Q + Qi are fields (in fact, subfields of C), whereas
Z and Z + Zi are not (but they are integral domains).

(2) There exist non-commutative rings A 6= {0} satisfying A r {0} = A∗ (for example, the ring H of
Hamilton quaternions). Such rings are called skew-fields or division algebras.

(3) If A is a ring and if a, b ∈ A satisfy ab = 0 and a ∈ A∗, then b = a−1ab = a−1 · 0 = 0. This implies
that every field is an integral domain.

(4) Every subring of an integral domain (in particular, every subring of a field) is again an integral domain.

(5) Conversely, one can show that every integral domain A is a subring of a suitably minimal field
K constructed in terms of fractions whose numerators and denominators are contained in A (example:
Z ⊂ Q). Informally,

K =
{a
b
| a, b ∈ A, b 6= 0

}
,

a

b
=
c

d
⇐⇒ ad− bc = 0 ∈ A, a

b
+
c

d
=
ad+ bc

bd
,

a

b
· c
d

=
ac

bd
,

0K =
0

1
, 1K =

1

1

(but one must show that these conditions do not lead to a contradiction, that the ring axioms (8.1.2.1)
are satisfied by K, and that K is a field, with inverse (ab )−1 = b

a ). We say that K is the fraction field
of A (or the quotient field of A).

8.3.4 Exercise. Which among the rings Aj in (8.2.4.1) are fields?

8.3.5 Proposition. Let n ≥ 1 be an integer. The following conditions are equivalent:
(1) Z/nZ is a field.
(2) Z/nZ is an integral domain.
(3) n = p is a prime number.

Proof. (1) =⇒ (2): this is automatic.
(2) =⇒ (3): we follow Example 2 of Section 8.3.1. If n 6= p is not a prime, then either n = 1 (when Z/nZ =
{0}), or n = kl for some integers 1 < k, l < n. The residue classes a = k (modn) and b = l (modn) are
non-zero elements of Z/nZ, but their product is zero: ab = kl (modn) = 0 (modn) ∈ Z/nZ.
(3) =⇒ (1): if n = p is a prime, then ϕ(p) = p−1 > 0, which implies that (Z/pZ)∗ = Z/pZr{0} 6= ∅.
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8.3.6 Finite integral domains are fields The non-trivial implication (2) =⇒ (1) in Proposition
8.3.5 can also be deduced from the following abstract statement.

8.3.7 Proposition. If A 6= {0} is a commutative ring with finitely many elements, then it is equivalent:
(1) A is a field.
(2) A is an integral domain.

Proof. The implication (1) =⇒ (2) is automatic. Conversely, assume that (2) holds. This means that, for
any a ∈ Ar {0}, the multiplication map

ma : A −→ A, b 7→ ab

is injective. However, an injective map between two finite sets of the same cardinality must be bijective.
Therefore there exists b ∈ A such that 1 = ma(b) = ab, which means that a is invertible and b = a−1.

8.3.8 Integral domains of finite dimension (over a field) are fields Proposition 8.3.7 has the
following linear algebra analogue.

8.3.9 Exercise. Assume that A is a commutative ring containing a subring K such that K is a field.
Show that:
(1) A is a K-vector space (with respect to the multiplication A×A −→ A restricted to K ×A −→ A).
(2) If the dimension of A as a K-vector space is finite, then it is equivalent: A is a field ⇐⇒ A is an
integral domain.
(3) Solve Exercise 8.3.4 using (2).

8.3.10 Divisibility Let A be a commutative ring. Divisibility in A is defined in the usual way: if
a, b ∈ A, we say that b divides a (notation: b | a) if there exists c ∈ A such that a = bc. This is equivalent
to bA ⊇ aA.

The properties of divisibility listed in Section 1.1.5 hold in this generality, with the following modifica-
tions:

• b | 1 ⇐⇒ b ∈ A∗

• if u ∈ A∗, then it is equivalent: b | a ⇐⇒ b | au

• if A is an integral domain and if a, b ∈ Ar {0} satisfy b | a and a | b, then b = au for some u ∈ A∗.

8.3.11 Irreducible elements Let A be an integral domain. An element a ∈ A is irreducible in A
if it has the following properties:

• a 6= 0

• a 6∈ A∗

• a is not a non-trivial product: if a = bc for b, c ∈ A, then b ∈ A∗ or c ∈ A∗ (but not simultaneously,
since a 6∈ A∗).

Note: if a is irreducible in A and u ∈ A∗, then au is irreducible, too.

Example: {irreducible elements in Z} = {±p | p prime}.
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8.4 Ring homomorphisms

8.4.1 Definition. Let A,B be rings. A map f : A −→ B is a ring homomorphism if it satisfies the
following conditions.
(1) ∀a, a′ ∈ A f(a+ a′) = f(a) + f(a′).
(2) ∀a, a′ ∈ A f(aa′) = f(a)f(a′).
(3) f(1A) = 1B .

8.4.2 Remarks and examples (1) Condition (1) in Definition 8.4.1 implies that f defines a homo-
morphism of additive groups f : (A,+) −→ (B,+) (hence f(0A) = 0B and f(−a) = −f(a) for all a ∈ A).
Similarly, conditions (2) and (3) imply that f(A∗) ⊂ B∗ and that f defines a homomorphism of multi-
plicative groups f : (A∗, ·) −→ (B∗, ·) (in particular, if a ∈ A∗, then f(a) ∈ B∗ and f(a)−1 = f(a−1)).

(2) The projection pr : Z −→ Z/nZ, pr(a) = a (modn) is a ring homomorphism.

(3) Similarly, the map Z/mnZ −→ Z/nZ given by a (modmn) 7→ a (modn) is a ring homomorphism.

(4) Let A1, A2 be rings. The projections A1
pr1←− A1×A2

pr2−→ A2, prj(a1, a2) = aj are ring homomorphisms.

(5) The inclusion of a subring B ↪→ A is a ring homomorphism.

(6) Warning: conditions (1) and (2) in Definition 8.4.1 do not imply (3), in general. For example, the
map f : Z/6Z −→ Z/6Z given by f(a (mod 6)) := 3a (mod 6) satisfies 3(a + a′) ≡ 3a + 3a′ (mod 6) and
3(aa′) ≡ (3a)(3a′) (mod 6) (since 3 ≡ 32 (mod 6)), but 3 · 1 6≡ 1 (mod 6).

(7) Similarly, the inclusions A1
i1−→ A1 × A2

i2←− A2 given by i1(a1) = (a1, 0) and i2(a2) = (0, a2) satisfy
conditions (1) and (2) in Definition 8.4.1, but not (3) (if A1, A2 6= {0}).
(8) For any ring A there is a unique ring homomorphism f : Z −→ A. Indeed, such a homomorphism must
satisfy f(0) = 0A, f(1) = 1A, f(2) = f(1+1) = f(1)+f(1) = 1A+1A, f(3) = f(2)+f(1) = 1A+1A+1A,
f(−1) = −f(1) = −1A, f(−2) = −(1A + 1A) etc. In other words, if we define, for m ∈ N+ and a ∈ A,

m · a := a+ · · ·+ a︸ ︷︷ ︸
m times

, (−m) · a := − a+ · · ·+ a︸ ︷︷ ︸
m times

, 0 · a := 0A,

then f must be given by the formula f(n) = n · 1A (n ∈ Z), which proves the uniqueness of f . Conversely,
Proposition 7.3.2 for G = (A,+) and g = 1A tells us that f(m) + f(n) = f(m+ n). The multiplicativity
property f(mn) = f(m)f(n) is a consequence of the distributivity rule 8.1.2.1(4). Finally, f(1) = 1A.

Note that f(Z) = {n · 1A | n ∈ Z} ⊂ Z(A) is contained in the centre Z(A) of A.

(9) If f : A −→ B and g : B −→ C are ring homomorphisms, so is their composition g◦f : A −→ B −→ C.

(10) If fi : Ai −→ Bi (i = 1, 2) are ring homomorphisms, so is f1 × f2 : A1 ×A2 −→ B1 ×B2.

(11) If p is a prime number and if A is a commutative ring such that p ·1A = 0A, then the map ϕ : A −→ A
given by ϕ(a) = ap is a ring homomorphism (called the Frobenius morphism). Indeed, ϕ(1A) = 1A,
ϕ(ab) = (ab)p = apbp = ϕ(a)ϕ(b) and

ϕ(a+ b) = (a+ b)p = ap + bp +

p−1∑
j=1

(
p

j

)
ajbp−j = ap + bp = ϕ(a) + ϕ(b),

since
(
p
j

)
∈ pZ for 1 ≤ j ≤ p− 1. For each n ≥ 1, the n-fold composition ϕ ◦ · · · ◦ ϕ : A −→ A is given by

the formula a 7→ ϕq(a) = aq, where q = pn. It is also a ring homomorphism.

8.4.3 Proposition. If a ring homomorphism f : A −→ B is bijective, then its inverse f−1 : B −→ A
is also a ring homomorphism. We say that f is a ring isomorphism (which implies that f−1 is a ring
isomorphism, too).

102



Proof. Given b, b′ ∈ B, let a = f−1(b), a′ = f−1(b′) ∈ A. The identities f(a+ a′) = f(a) + f(a′) = b+ b′

and f(aa′) = f(a)f(a′) = bb′ imply that f−1(b + b′) = a + a′ = f−1(b) + f−1(b′) and f−1(bb′) = aa′ =
f−1(b)f−1(b′). Finally, f−1(1B) = f−1(f(1A)) = 1A. Therefore f−1 : B −→ A is a ring homomorphism.

8.4.4 Example: the Chinese Remainder Theorem If m,n ≥ 1 satisfy gcd(m,n) = 1, then the
bijective map in the Chinese Remainder Theorem

f : Z/mnZ −→ Z/mZ× Z/nZ, f(a (modmn)) = (a (modm), a (modn))

is a bijective ring homomorphism, hence a ring isomorphism.

8.4.5 Exercise. Explain, using the Chinese Remainder Theorem, why Example 6 in Section 8.4.2 is a
special case of Example 7.

8.4.6 Definition. The kernel and the image of a ring homomorphism f : A −→ B are defined, respec-
tively, as

Ker(f) := {a ∈ A | f(a) = 0} ⊂ A, Im(f) := {f(a) | a ∈ A} ⊂ B.

8.4.7 Proposition. If f : A −→ B is a ring homomorphism, then:
(1) Im(f) is a subring of B.
(2) If f is injective, then it defines a ring isomorphism A

∼−→ Im(f).
(3) For a, a′ ∈ A, the following are equivalent: f(a) = f(a′) ⇐⇒ a′ − a ∈ Ker(f).
(4) f is injective ⇐⇒ Ker(f) = {0}.

Proof. (1) We know that f(1A) = 1B and f(0A) = 0B ; thus 0B , 1B ∈ Im(f). If b, b′ ∈ Im(f), then b = f(a)
and b′ = f(a′) for some a, a′ ∈ A. Consequently, b − b′ = f(a − a′) ∈ Im(f) and bb′ = f(aa′) ∈ Im(f).
This shows that Im(f) is a subring of B, by Proposition 8.2.3.
(2) This follows from the definitions.
(3) This is a special case of Proposition 7.4.6(3), for G = (A,+) and H = (B,+). We can also argue
directly: f(a) = f(a′) ⇐⇒ 0 = f(a′)− f(a) = f(a′ − a) ⇐⇒ a′ − a ∈ Ker(f).
(4) This is a special case of Proposition 7.4.10 for G = (A,+) and H = (B,+) (or a direct consequence of
(3)).

8.4.8 Corollary. If a ring homomorphism f : A −→ B satisfies Ker(f) = {0}, then it is injective, hence
it defines a ring isomorphism f : A

∼−→ Im(f).

8.4.9 Ker(f), Im(f): Examples (1) Inclusion of a subring B ⊂ A: Ker = {0}, Im = B.

(2) Projection pr : Z −→ Z/nZ: Ker(pr) = nZ, Im(pr) = Z/nZ.

(3) Projection Z/mnZ −→ Z/nZ: Ker = nZ/mnZ, Im(pr) = Z/nZ.

(4) Projections prj : A1 × A2 −→ Aj (pr(a1, a2) = aj): Im(prj) = Aj , Ker(pr1) = {0} × A2, Ker(pr2) =
A1 × {0}.

8.4.10 Exercise. (Decomposing a ring into a product of rings) (1) In the notation of Section 8.4.2,
Example 4, the elements

e1 := i1(1A1
) = (1A1

, 0A2
) = (1, 0) ∈ A1 ×A2, e2 := i2(1A2

) = (0A1
, 1A2

) = (0, 1) ∈ A1 ×A2
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have the following properties (they form a full system of orthogonal central idempotents in A1×A2):

(e1, e2 are central) e1, e2 ∈ Z(A1 ×A2)

(e1, e2 are idempotents) e21 = e1, e
2
2 = e2

(e1, e2 are orthogonal) e1e2 = e2e1 = 0

e1 + e2 = 1

(2) Conversely, if A is a ring and e1, e2 ∈ A have the properties listed in (1), then the subset Aj := ejA =
Aej = {eja = aej | a ∈ A} ⊂ A equipped with the operations “+” and “·” from A is a ring with unit ej
(j = 1, 2), and the map

A −→ A1 ×A2, a 7→ (e1a, e2a)

is a ring isomorphism.

8.4.11 Exercise. Let A be a commutative ring. We know that there is a unique ring homomorphism
Z −→ A. What can one say about ring homomorphisms Z× Z −→ A?

8.4.12 Exercise. Let (G,+) and (H,+) be abelian groups. Show that:
(1) The set HomAb(G,H) := {group homomorphisms f : G −→ H} is an abelian group with respect to
the operation (f1 + f2)(g) := f1(g) + f2(g).
(2) The set EndAb(G) := HomAb(G,G) is a ring, with product given by the composition of maps.
(3) EndAb((Z,+)) = Z and EndAb((Z

2,+)) = M2(Z).

8.5 The quotient ring A/I

8.5.1 A preview The goal of this section is to give an abstract version of the construction of the ring
(Z/nZ,+, ·).

8.5.2 Multiplication of congruences From now on until the end of Section 8.5 we assume that

• A is a ring;

• I ⊂ (A,+) is an additive subgroup.

As in Section 7.6, we write, for a, b ∈ A, a ≡ b (mod I) if and only if a − b ∈ I (which is equivalent to
a+ I = b+ I).

It was shown in Proposition 7.6.8 that congruences can be added and subtracted: for any a, b, a′, b′ ∈ A,{
a ≡ a′ (mod I)

b ≡ b′ (mod I)

}
=⇒ a± b ≡ a′ ± b′ (mod I).

Our goal is to understand under what conditions one can multiply congruences (mod I). In other words,
when does the following implication hold:{

a ≡ a′ (mod I)

b ≡ b′ (mod I)

}
?

=⇒ ab ≡ a′b′ (mod I). (8.5.2.1)

As in the proof of Theorem 7.6.10, this property would imply that the set A/I = {a+I | a ∈ A} of residue
classes (mod I) in A has a natural structure of a ring, for which the projection map pr : A −→ A/I
(pr(a) = a+ I) is a ring homomorphism.
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8.5.3 Multiplication of congruences: examples (1) If A = Z and I = nZ, then (8.5.2.1) holds.

(2) If A = R and I = 2πZ, then (8.5.2.1) does not hold. Indeed, we have, for each a ∈ R r Z,

a ≡ a (mod 2πZ)

0 ≡ 2π (mod 2πZ)

a · 0︸︷︷︸
0

6≡ a · 2π︸ ︷︷ ︸
2πa

(mod 2πZ)

This means that one cannot multiply two angles α, β ∈ R/2πZ.

8.5.4 Theorem. An additive subgroup I ⊂ (A,+) of a ring A satisfies (8.5.2.1) if and only if AI ⊂ I
and IA ⊂ I; in other words, if

∀a ∈ A ∀x ∈ I ax ∈ I, xa ∈ I.

Such an additive subgroup is called a (bilateral) ideal of A.

Proof. Let a ∈ A and x ∈ I. If (8.5.2.1) holds, then{
a ≡ a (mod I)

0 ≡ x (mod I)

}
=⇒ a · 0 ≡ a · x (mod I) =⇒ ax ∈ I (8.5.4.1)

and {
0 ≡ x (mod I)

a ≡ a (mod I)

}
=⇒ 0 · a ≡ x · a (mod I) =⇒ xa ∈ I. (8.5.4.2)

Conversely, if ax ∈ I and xa ∈ I whenever a ∈ A and x ∈ I, then

{
a ≡ a′ (mod I)

b ≡ b′ (mod I)

}
=⇒ a− a′, b− b′ ∈ I =⇒ ab− a′b′ = (a− a′)b+ a′(b− b′) ∈ IA+AI ⊂ I + I ⊂ I.

(8.5.4.3)

8.5.5 Examples of (bilateral) ideals (1) Both {0} and A are (bilateral) ideals of A.

(2) A non-empty subset I ⊂ A is a (bilateral) ideal if (and only if) it satisfies

∀x, y ∈ I ∀a ∈ A x+ y ∈ I, ax ∈ I, xa ∈ I.

Indeed, taking a = 0A resp. a = −1A we obtain that 0A ∈ I and −x ∈ I if x ∈ I. Therefore I is a
subgroup of (A,+), by Proposition 7.2.3(3).

(3) If I, J are (bilateral) ideals of A, so are I+J := {x+y | x ∈ I, y ∈ J}, I∩J and IJ := {x1y1+· · ·+xryr |
r ≥ 0, xi ∈ I, yi ∈ J}.
(4) The kernel Ker(f) = {a ∈ A | f(a) = 0B} of any ring homomorphism f : A −→ B is a (bilateral)
ideal of A. Indeed, Ker(f) is a subgroup of (A,+), and if a ∈ A and x ∈ Ker(f), then f(x) = 0 and
f(ax) = f(a)f(x) = f(a)·0 = 0, which means that ax ∈ Ker(f) (similarly, f(xa) = f(x)f(a) = 0·f(a) = 0,
hence xa ∈ Ker(f)).

(5) Conversely, Theorem 8.5.9 below says that any (bilateral) ideal I ⊂ A is the kernel of a (surjective)
ring homomorphism A −→ A/I. Consequently,
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{(bilateral) ideals of A} = {kernels of ring homomorphisms A −→ B} =

= {kernels of surjective ring homomorphisms A −→ B}

(6) If f : A −→ B is a ring homomorphism and J ⊂ B is a (bilateral) ideal of B, then I := f−1(J) = {a ∈
A | f(a) ∈ J} is a (bilateral) ideal of A.

(7) If the ring A is commutative, than the conditions ax ∈ I and xa ∈ I in Theorem 8.5.4 are equivalent.
In this case we drop the adjective “bilateral” and simply say that I is an ideal of A.

(8) Assume that the ring A is commutative. The simplest example of an ideal I ⊂ A is the principal
ideal generated by x ∈ A:

(x) := xA = Ax = {ax | a ∈ A}

consisting of the multiples of x. Note that (x) = (ux), for any invertible element u ∈ A∗.
More generally, for any x1, . . . , xr ∈ A, the subset

(x1, . . . , xr) := (x1) + · · ·+ (xr) = Ax1 + · · ·+Axr = {a1x1 + · · ·+ arxr | ai ∈ A}

is an ideal of A, called the ideal generated by x1, . . . , xr (it is contained in any ideal I ⊂ A containing
x1, . . . , xr).

(9) A subset I ⊂ Z is an ideal ⇐⇒ I ⊂ (Z,+) is an additive subgroup ( ⇐⇒ I = dZ = (d) = (−d) for
some d ∈ N). In other words, every ideal of Z is principal.

(10) If A is commutative and if I ⊂ A is an ideal containing an invertible element u ∈ A∗, then I contains
u · (u−1a) = a, for all a ∈ A; therefore I = A = (1).

(11) In particular, if A = K is a field, then the only ideals of K are (0) = {0} and (1) = K, since every
non-zero element of K is invertible.

(12) A subset I ⊂ Z/nZ is an ideal ⇐⇒ I = dZ/nZ for some d | n.

(13) If A is not commutative, then there are two weaker notions of ideals in A. A subgroup I ⊂ (A,+) of
the additive group of A is a left ideal (resp. a right ideal) of A if ax ∈ I (resp. xa ∈ I) holds, for all
a ∈ A and x ∈ I. This means that I is a bilateral ideal ⇐⇒ it is simultaneously a left and a right ideal.

Example: let A = Mn(K), where K is a field. For any K-vector subspace W ⊂ Kn, let

IW := {M ∈Mn(K) | all columns of M lie in W}, tIW := {M ∈Mn(K) | all columns of tM lie in W}.

One can show that

{right ideals of Mn(K)} = {IW |W ⊂ Kn}, {left ideals of Mn(K)} = {tIW |W ⊂ Kn},
{bilateral ideals of Mn(K)} = {{0},Mn(K)}.

8.5.6 Exercise. For any m,n ∈ Z r {0},

(m) + (n) = (gcd(m,n)), (m)(n) = (mn), (m) ∩ (n) = (lcm(m,n)).

8.5.7 Exercise. Assume that K is a field and B 6= {0} is a ring. Show that any ring homomorphism
f : K −→ B is injective. What can one say about ring homomorphisms f : Mn(K) −→ B for n > 1?
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8.5.8 Exercise. Let A be a commutative ring.
(1) An element a ∈ A is called nilpotent if there exists an integer n ≥ 1 such that an = 0. Show that
the nilradical of A Nil(A) := {a ∈ A | a is nilpotent} is an ideal of A.
(2) If A is an integral domain, then Nil(A) = {0} = (0).
(3) Determine Nil(Z/6Z), Nil(Z/12Z) and Nil(Z/nZ), for any n ∈ N+.
(4) If f : A −→ B is a ring homomorphism (and both A and B are commutative), then f(Nil(A)) ⊂ Nil(B).
In particular, if B is an integral domain, then Nil(A) ⊂ Ker(f).
(5) More generally, if I ⊂ A is any ideal, show that

√
I := {a ∈ A | ∃n ≥ 1 an ∈ I} (the radical of I) is

an ideal of A (note that
√

(0) = Nil(A)).

8.5.9 Theorem. If I ⊂ A is a (bilateral) ideal of a ring A, then the set A/I = {a+ I | a ∈ A} of residue
classes (mod I) in A is a ring with respect to the operations

(Sum) (a+ I) + (b+ I) = (a+ b) + I

(Product) (a+ I) · (b+ I) = ab+ I

(Zero) 0A/I = 0A + I

(Unit) 1A/I = 1A + I

(2) The projection map pr : A −→ A/I (pr(a) = a+ I) is a (surjective) ring homomorphism.
(3) Ker(pr) = I.

Proof. (1) The operations “+” and “·” on A/I are well-defined, by Proposition 7.6.8 and Theorem 8.5.4,
respectively. We need to check the ring axioms (8.1.2.1). Property (1) was proved in Theorem 7.6.10.
Associativity follows from

((a+ I) · (b+ I)) · (c+ I) = (ab+ I) · (c+ I) = (ab)c+ I,

(a+ I) · ((b+ I) · (c+ I)) = (a+ I) · (bc+ I) = a(bc) + I,

the unit axiom from

(a+ I) · (1 + I) = (a · 1 + I) = (a+ I),

(1 + I) · (a+ I) = (1 · a+ I) = (a+ I),

and distributivity from

((a+ I) + (b+ I)) · (c+ I) = ((a+ b) + I) · (c+ I) = (a+ b)c+ I,

(a+ I) · (c+ I) + (b+ I) · (c+ I) = (ac+ I) + (bc+ I) = (ac+ bc) + I

(and a similar formula involving a(b+ c)).

Part (2) is automatic (in fact, the definition of the operations in A/I was forced upon us by the the
requirement (2)), and Part (3) was proved in Theorem 7.6.10.

8.5.10 Remarks (1) If I = {0}, then A/I = A.

(2) If I = A, then A/I = {0}.
(3) If the ring A is commutative, so is A/I.
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8.5.11 Invertible elements of A/I (commutative case) Let I ⊂ A be an ideal of a commutative
ring A, let a ∈ A. As in the proof of Theorem 3.4.2, it is equivalent:

a (mod I) = a+ I ∈ A/I is invertible in A/I ⇐⇒ ∃u ∈ A au ≡ 1 (mod I)

⇐⇒ ∃u ∈ A ∃y ∈ I au+ y = 1

⇐⇒ 1 ∈ aA+ I = (a) + I

⇐⇒ (a) + I = A.

(8.5.11.1)

In the special case when I = (b) = bA is a principal ideal, then

a (mod b) = a+ (b) ∈ A/(b) is invertible in A/(b) ⇐⇒ 1 ∈ aA+ bA ⇐⇒ aA+ bA = A. (8.5.11.2)

Explicitly, if u, v ∈ A satisfy au + bv = 1, then au ≡ 1 (mod b) and u (mod b) is the inverse of a (mod b)
in A/(b).

8.5.12 Theorem (Homomorphism theorem). Let f : A −→ B be a ring homomorphism. The map

f : A/Ker(f) −→ Im(f)

a+ Ker(f) 7→ f(a)

is a ring isomorphism.

Proof. According to Theorem 7.6.16, the map f is well-defined, bijective and satisfies f(x+ y) = f(x) +
f(y). It remains to show that it satifies the remaining properties (2) and (3) in Definition 8.4.1, but this
is automatic: f(1A + Ker(f)) = f(1A) = 1B and

∀a, b ∈ A f((a+Ker(f))(b+Ker(f))) = f(ab+Ker(f)) = f(ab) = f(a)f(b) = f(a+Ker(f))f(b+Ker(f)).

8.5.13 Reformulation Theorem 8.5.12 says that any ring homomorphism f : A −→ B can be written
in a natural way as a composition

f : A
pr−→ A/Ker(f)

f−→ Im(f)
i−→ B, (8.5.13.1)

where pr is the projection on a quotient ring, f is an isomorphism and i is the inclusion of a subring.
There are two important special cases (the first of which we already know):

f is injective ⇐⇒ pr = id ⇐⇒ f : A
∼−→ Im(f),

f is surjective ⇐⇒ i = id ⇐⇒ f : A/Ker(f)
∼−→ B.

There is a similar decomposition

f : G
pr−→ G/Ker(f)

f−→ Im(f)
i−→ H (8.5.13.2)

of any group homomorphism f : G −→ H.

8.5.14 Exercise. Let I be a (bilateral) ideal of a ring A.
(1) If J ⊂ A/I is a (bilateral) ideal of A/I, then J := pr−1(J) = {a ∈ A | a (mod I) ∈ J} is a (bilateral)
ideal of A containing I, and J = J/I.
(2) Conversely, if J ⊃ I is a (bilateral) ideal of A, then J/I is a (bilateral) ideal of A/I and J = pr−1(J/I).
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8.5.15 Exercise. Let I ⊂ A be an ideal of a commutative ring A. Show that Nil(A/I) =
√
I/I, in the

language of Exercise 8.5.8.

8.5.16 The characteristic of a ring Let A be a ring. We know that there is a unique ring ho-
momorphism f : Z −→ A, namely, f(n) = n · 1A. The image of f is contained in the centre Z(A) of
A.

Case 1. Ker(f) = 0. We say that A has characteristic zero. In this case f is injective and we can
consider Z as a subring of A if we identify n ∈ Z with its image f(n) = n · 1A.

Case 2. Ker(f) 6= 0. In this case Ker(f) is a non-zero ideal of Z, hence Ker(f) = mZ for a (unique)
integer m ≥ 1. We say that A has characteristic m.

Note that m = 1 if and only if f(1) = 0, which is equivalent to A = {0}. Therefore m > 1 if A 6= {0}.
According to Theorem 8.5.12, f defines a ring isomorphism f : Z/mZ

∼−→ Im(f), which means that we
can consider Z/mZ as a subring of A if we identify n (modm) = n+mZ ∈ Z/mZ with f(n) = n · 1A.

8.5.17 The characteristic of a field If A = K is a field, then one can say more.
If K has characteristic zero, then Z is a subring of K, via n 7→ n · 1K (n ∈ Z). If n ∈ Z r {0}, then

n · 1K 6= 0K , which means that n · 1K is invertible in K. The injective ring homomorphism

Z ↪→ K, n 7→ n · 1K
extends uniquely to a ring homomorphism (necessarily injective, by Exercise 8.5.7)

Q ↪→ K,
m

n
= mn−1 7→ (m · 1K)(n · 1K)−1. (8.5.17.1)

Therefore there is a unique ring homomorphism Q −→ K, given by the formula (8.5.17.1). This homo-
morphism is injective and Q can be identified with its image, which is a subfield of K.

If K has characteristic m > 0, then Z/mZ is a subring of K, via n (modm) 7→ n ·1K (n ∈ Z). The field
K is an integral domain, which means that Z/mZ is an integral domain, too. This implies that m = p is
a prime number, by Proposition 8.3.5. The ring Z/pZ is then a field, often denoted by Fp.

For future reference, let us summarise the previous discussion in a formal proposition.

8.5.18 Proposition. Let K be a field.
(1) If K has characteristic zero, then K contains Q as a subfield, via the map m

n = mn−1 7→ (m · 1K)(n ·
1K)−1.
(2) If K has non-zero characteristic m ≥ 1, then m = p is a prime number and K contains Z/pZ = Fp
as a subfield, via the map n (mod p) 7→ n · 1K .

9 Polynomial rings A[X]

Throughout Section 9, A is a commutative ring.

9.1 Definition and basic properties of A[X]

9.1.1 Informal definition of A[X] Polynomials in one variable (say, X) with coefficients in A are
formal expressions

a = a(X) = a0 + a1X + · · ·+ amX
m = amX

m + · · ·+ a1X + a0 (m ≥ 0, ai ∈ A).

By definition, a polynomial does not change if one adds terms with zero coefficients. For example:

a0 + a1X + · · ·+ amX
m = a0 + a1X + · · ·+ amX

m + 0 ·Xm+1 + 0 ·Xm+2.
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It is convenient to add all subsequent terms with zero coefficients am+1 = am+2 = · · · = 0, and consider
the polynomial a = a(X) to be an expression

a = a(X) =

∞∑
i=0

aiX
i, ai ∈ A, only finitely many ai are non-zero.

Such a polynomial can then be identified with its sequence of coefficients

(a0, a1, a2, . . .) = (ai)i∈N, ai ∈ A, only finitely many ai are non-zero.

Given another polynomial

b = b(X) =

∞∑
i=0

biX
i, bi ∈ A, only finitely many bi are non-zero,

one can compute the sum and the product of a and b by the usual formal computation:

a+ b = (a0 + a1X + a2X
2 + · · · ) + (b0 + b1X + b2X

2 + · · · ) =

= (a0 + b0) + (a1 + b1)X + (a2 + b2)X2 + · · ·
ab = (a0 + a1X + a2X

2 + · · · )(b0 + b1X + b2X
2 + · · · ) =

= (a0b0) + (a0b1 + a1b0)X + (a0b2 + a1b1 + a2b0)X2 + · · ·

In terms of the coefficients,

(a0, a1, a2, . . .) + (b0, b1, b2, . . .) = (a0 + b0, a1 + b1, a2 + b2, . . .)

(a0, a1, a2, . . .) · (b0, b1, b2, . . .) = (c0, c1, c2, . . .), ck =
∑
i+j=k

aibj .
(9.1.1.1)

One uses these formulas to give a formal definition of the ring of polynomials.

9.1.2 Definition. The polynomial ring A[X] in one variable X with coefficients in a commutative ring
A is defined as follows. As a set,

A[X] = {a = (a0, a1, a2, . . .) | ai ∈ A, only finitely many ai are non-zero}.

Addition and multiplication in A[X] are defined by the formulas (9.1.1.1). With these operations, A[X]
becomes a commutative ring, with zero 0 = (0, 0, 0, . . .) and unit 1 = (1, 0, 0, . . .).

9.1.3 Remarks on A[X] (1) We leave it to the reader to check that the operations (9.1.1.1) on A[X]
are well-defined and satisfy the ring axioms 8.1.2.1.

(2) If one omits the condition “only finitely many ai are non-zero” in the definition, one obtains the ring

A[[X]] = {
∞∑
i=0

aiX
i | ai ∈ A}

of formal power series with coefficients on A, of which A[X] is a subring.

(3) A ⊂ A[X] is a subring of A[X], with α ∈ A corresponding to the constant polynomial (α, 0, 0, . . .) =
α+ 0 ·X + 0 ·X2 + · · · .
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(4) For each polynomial a ∈ A[X] there exists an integer m ≥ 0 such that ai = 0 for all i > m. One then
writes

a = a(X) = a0 + a1X + · · ·+ amX
m = amX

m + · · ·+ a1X + a0.

If a 6= 0, then there is a unique such m ≥ 0 satisfying am 6= 0. We define the degree of a to be
deg(a) := m. In particular, a ∈ Ar {0} ⇐⇒ deg(a) = 0.

The degree of the zero polynomial is defined as deg(0) := −∞. With this convention, deg(ab) =
deg(a) + deg(b) = −∞ if a = 0 or b = 0.

(5) A polynomial a = amX
m + · · ·+ a1X + a0 of degree m ≥ 0 is called monic if am = 1.

9.1.4 Example: deg(ab) 6= deg(a) + deg(b) Consider the polynomial ring (Z/4Z)[X]. For any m ∈ Z,
denote the residue class m (mod 4) ∈ Z/4Z by m. The polynomial a = 1 + 2X ∈ (Z/4Z)[X] has the
following properties (since 2 + 2 = 0 = 2 · 2):

deg(a) = 1, a2 = 1
2

+ (2 + 2)X + 2
2
X2 = 1, deg(a2) = 0, a = a−1 ∈ (Z/4Z)[X])∗.

9.1.5 Proposition. Let a, b ∈ A[X] r {0}. Write a = amX
m + · · ·+ a0 and b = bnX

n + · · ·+ b0, where
m = deg(a) ≥ 0 and n = deg(b) ≥ 0.
(1) deg(a+ b) ≤ max(deg(a),deg(b)).
(2) deg(ab) ≤ deg(a) + deg(b).
(3) If am ∈ A∗, then deg(ab) = deg(a) + deg(b).
(4) If A is an integral domain, then deg(ab) = deg(a) + deg(b).

Proof. (1) If i > m and i > n, then ai = bi = 0, hence ai + bi = 0.
(2) The equality ab = ambnX

m+n + · · ·+ a0b0 implies that deg(ab) ≤ m+ n, with equality equivalent to
ambn 6= 0.
(3) The assumptions am ∈ A∗ and bn 6= 0 imply that ambn 6= 0 (see Section 8.3.3, Remark 3).
(4) The assumptions am, bn 6= 0 imply that ambn 6= 0, since A is an integral domain.

9.1.6 Corollary. If A is an integral domain, so is A[X], and A[X]∗ = A∗.

Proof. If a, b ∈ A[X] r {0}, then ab 6= 0, by Proposition 9.1.5(4) (or its proof). Therefore A[X] is an
integral domain. The inclusion A∗ ⊂ A[X]∗ is automatic. Conversely, if a, b ∈ A[X] satisfy ab = 1, then
0 = deg(1) = deg(ab) = deg(a) + deg(b), hence deg(a) = deg(b) = 0, which implies that a, b ∈ A r {0}.
As ab = 1, both a and b lie in A∗.

9.1.7 Exercise. (1) (A1 ×A2)[X] = A1[X]×A2[X].
(2) If A = A1 × · · · ×Ar and if each A1, . . . , Ar is an integral domain, then A[X]∗ = A∗.
(3) If n = p1 · · · pr is a product of distinct primes, then ((Z/nZ)[X])∗ = (Z/nZ)∗.
(4) What can one say about ((Z/nZ)[X])∗ for general n ≥ 1?

9.1.8 Exercise. Assume that a = a0+a1X+· · ·+amXm ∈ A[X], a0 ∈ A∗ and that each a1, . . . , am ∈ A
is nilpotent in A (see Exercise 8.5.8). Show that a ∈ (A[X])∗.
[Hint: consider (a0 − a)n for a sufficiently large integer n > 0.]
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9.2 Roots of polynomials

9.2.1 Evaluation morphisms Assume that a = amX
m + · · · + a0 ∈ A[X], that A is a subring of a

commutative ring B, and that β ∈ B. The value of a at β is defined as

a(β) := amβ
m + · · ·+ a0 =

m∑
i=0

aiβ
i ∈ B.

If a(β) = 0, we say that β is a root of a.
It is useful to change the traditional point of view, according to which a ∈ A[X] is fixed and β ∈ B is

variable, and consider instead β ∈ B as being fixed and a ∈ A[X] as being variable.

9.2.2 Proposition. The map “evaluation at β”

evβ : A[X] −→ B, a 7→ a(β)

is a ring homomorphism satisfying evβ(a) = a, for all a ∈ A.

Proof. We need to check that

(a+ b)(β) = a(β) + b(β), (ab)(β) = a(β)b(β), 1(β) = 1.

The only non-trivial statement is the one in the middle, which follows from

(ab)(β) =
∑
k≥0

( ∑
i+j=k

aibjβ
k
)

=
(∑
i≥0

aiβ
i
)(∑
j≥0

bjβ
j
)

= a(β)b(β).

9.2.3 Characterisation of roots When is β ∈ A a root of a polynomial a =
∑m
k=0 akX

k ∈ A[X]?
We are going to show that the answer is the same as in the case A = C, namely

a(β) = 0 ⇐⇒ (X − β) | a ⇐⇒ a ≡ 0 (mod (X − β)). (9.2.3.1)

Indeed, if a(X) = (X − β)b(X) for some b ∈ A[X], then a(β) = (β − β)b(β) = 0, by Proposition 9.2.2 (in
particular, a 6∈ Ar {0}). In the opposite direction, the formulas

Xk − βk = (X − β)(Xk−1 + βXk−2 + · · ·+ βk−1) (k ≥ 1)

imply that the difference

a− a(β) = a(X)− a(β) = (X − β)

m∑
k=1

ak(Xk−1 + βXk−2 + · · ·+ βk−1) (9.2.3.2)

is divisible by (X − β) in A[X], hence

a(X) ≡ a(β) (mod (X − β)). (9.2.3.3)

In particular, if a(β) = 0, then (X − β) | a. The discussion above can be reformulated in more abstract
terms as follows.

9.2.4 Proposition. For any β ∈ A, the evaluation morphism evβ : A[X] −→ A satisfies Ker(evβ) =
(X − β), hence induces a ring isomorphism

evβ : A[X]/(X − β)
∼−→ A, a (mod (X − β)) 7→ a(β).

Its inverse is given by the composition A ↪→ A[X]
pr−→ A[X]/(X − β). In other words, the set of residue

classes in A[X] modulo (X − β) is equal to {α (mod (X − β)) | α ∈ A}, with α1 6≡ α2 (mod (X − β)) if
α1 6= α2.
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9.2.5 Taylor’s expansion of a polynomial The congruence (9.2.3.2) can be refined to a congruence
modulo (X − β)2 as follows. The derivative of a = a(X) =

∑m
k=0 akX

k is defined as

a′ = a′(X) :=

m∑
k=1

kakX
k−1 ∈ A[X], kak := ak + · · ·+ ak︸ ︷︷ ︸

k times

∈ A.

If we combine (9.2.3.2) with (9.2.3.3), we obtain that

a− a(β)− (X − β)a′(β) (9.2.5.1)

is divisible by (X − β)2 in A[X], hence

a(X) ≡ a(β) + (X − β)a′(β) (mod (X − β)2) ≡ a(β) + (X − β)a′(X) (mod (X − β)2). (9.2.5.2)

What about congruences modulo higher powers of (X − β)?

9.2.6 Exercise. (Taylor’s formula) For each n ≥ 0,

a(X) ≡
n∑
k=0

(Dka)(β) (X − β)k (mod (X − β)n+1), (9.2.6.1)

where Dka =
∑
i≥k
(
i
k

)
aiX

i−k ∈ A[X].

[Note that, if A = C, then k!(Dka)(X) = (d/dX)ka(X) is the k-th derivative of a(X).]

9.2.7 Theorem. If A is an integral domain, then a non-zero polynomial a ∈ A[X] r {0} has at most
deg(a) distinct roots in A.

Proof. We proceed as in the proof of Theorem 5.1.14, by induction on d := deg(a). If d = 0, then
a ∈ Ar {0} and there is no root. Assume that d > 0 and that the result holds for polynomials of degree
deg < d. If α ∈ A is a root of a, then a = (X − α)b for some polynomial b ∈ A[X] r {0} of degree
deg(b) = d − 1. If β ∈ A, β 6= α and a(β) = 0, then 0 = a(β) = (β − α)b(β). By assumption, A is an
integral domain and β−α 6= 0, which implies that b(β) = 0. There are at most deg(b) = d− 1 such values
of β, by induction hypothesis. Together with α, they give at most (d− 1) + 1 = d roots of a in A.

9.2.8 Remark We saw in Section 5.1.13 examples of polynomials a ∈ (Z/nZ)[X] of degree deg(a) = 2
with (at least) four roots in Z/nZ (for n = 8 or n = p1 · · · pr, where r ≥ 2 and pi 6= 2 are distinct primes).

9.2.9 Exercise. For each prime p 6= 2 give an example of a monic polynomial a ∈ (Z/p2Z)[X] of degree
deg(a) < p2 satisfying ∀α ∈ Z/p2Z a(α) = 0.

9.3 Division with remainder in A[X]

9.3.1 A preview Residue classes (modn) in Z correspond to remainders of division by n ≥ 1 in Z.
In order to understand residue classes (mod b) in A[X] we need to understand remainders of division by
b ∈ A[X] in A[X].

9.3.2 The quotient ring A[X]/(b) For any b ∈ A[X] one can consider congruences in A[X] modulo
b (more precisely, modulo the principal ideal (b) = bA[X] generated by b), defined in the usual way:

a ≡ ã (mod b) ⇐⇒ b | (a− ã) ⇐⇒ ∃c ∈ A[X] a− ã = bc.
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The residue classes (mod b) form a commutative ring A[X]/(b) = A[X]/bA[X] with respect to the usual
operations: if we denote, for any polynomial a ∈ A[X], by a = a+ (b) = a (mod b) its image in A[X]/(b)
(i.e., the residue class of a modulo b), then

a (mod b)± ã (mod b) = (a± ã) (mod b), (a (mod b)) · (ã (mod b)) = aã (mod b).

Furthermore,

a (mod b) is invertible in A[X]/(b) ⇐⇒ 1 ∈ aA[X] + bA[X] ⇐⇒ aA[X] + bA[X] = A[X], (9.3.2.1)

by (8.5.11.2). If u, v ∈ A[X] satisfy au + bv = 1, then au ≡ 1 (mod b) and u (mod b) is the inverse of
a (mod b) in A[X]/(b).

There is a distinguished element of A[X]/(b), given by the residue class of the variable X. This class
X = X (mod b) ∈ A[X]/(b) satisfies the polynomial equation

b(X) = 0 ∈ A[X]/(b), (9.3.2.2)

since b(X) = b(X) and b(X) ≡ 0 (mod b).
In the simplest non-trivial case b = X − β (β ∈ A) considered in Proposition 9.2.4, the quotient ring

A[X]/(X − β) is identified with A via the evaluation morphism evβ , and X corresponds to the value
evβ(X) = X(β) = β ∈ A.

The main goal of Section 9.3 is to describe the quotient ring A[X]/(b) for polynomials b whose leading
coefficient is invertible in A (this condition is automatically satisfied if A = K is a field). This will be
done using division with remainder for polynomials.

9.3.3 Division with remainder (examples) (1) Division of a = a(X) = 2X3+2X2−X+1 ∈ Q[X]
by b = b(X) = 2X + 3. We compute, consecutively,

2X3 + 2X2 −X + 1 = (2X + 3)X2 + (−X2 −X + 1),

−X2 −X + 1 = (2X + 3)(− 1
2X) + ( 1

2X + 1),

1
2X + 1 = (2X + 3) · 14 + 1

4 ,

2X3 + 2X2 −X + 1 = (X2 − 1
2X + 1

4 )(2X + 3) + 1
4 .

These calculations can be performed purely mechanically, by manipulating the coefficients of the polyno-
mials involved:

X3 X2 X 1

b 2 3

a 2 2 −1 1

X2b 2 3

a−X2b −1 −1 1

− 1
2Xb −1 − 3

2

a− (X2 − 1
2X)b 1

2 1
1
4b

1
2

3
4

a− (X2 − 1
2X + 1

4 )b 1
4
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(2) Division of a = a(X) = X3 − 2X2 − 7X + 3 ∈ Q[X] by b = b(X) = 2X2 + 4X − 1. In this case

X3 − 2X2 − 7X + 3 = (2X2 + 4X − 1)( 1
2X) + (−4X2 − 13

2 X + 3),

−4X2 − 13
2 X + 3 = (2X2 + 4X − 1)(−2) + ( 3

2X + 1),

2X3 − 2X2 − 7X + 3 = ( 1
2X − 2)(2X2 + 4X − 1) + ( 3

2X + 1).

Alternatively,

X3 X2 X 1

b 2 4 −1

a 1 −2 −7 3
1
2Xb 1 2 − 1

2

a− 1
2Xb −4 − 13

2 3

−2b −4 −8 2

a− ( 1
2X − 2)b 3

2 1

(3) Division of a =
∑m
k=0 akX

k ∈ A[X] by b = X − β (β ∈ A) is equivalent to the formula (9.2.3.2).

9.3.4 Proposition. Assume that b = bnX
n + · · · + b0 ∈ A[X], deg(b) = n ≥ 0 and bn ∈ A∗. Then, for

each a ∈ A[X], there exists a unique pair q, r ∈ A[X] such that

a = bq + r, deg(r) < deg(b).

Moreover, b | a in A[X] iff and only if r = 0.

Proof. If n = 0, then b = b0 ∈ A∗ and q = b−10 a, r = 0. Assume that n > 0.

Uniqueness: if a = bq+ r = bq̃+ r̃ and deg(r),deg(r̃) < deg(b), then b(q− q̃) = r̃− r, which implies that

deg(b) > deg(r̃ − r) = deg(b(q − q̃)) = deg(b) + deg(q − q̃)
(we have used here the assumption bn ∈ A∗ and Proposition 9.1.5(3)). Therefore deg(q − q̃) < 0, which
means that q − q̃ = 0, hence q = q̃ and r = r̃.

Existence: induction on m = deg(a), a = amX
m + · · · + a0. If m < n, then we take q = 0, r = a. If

m ≥ n, then

a = (amb
−1
n Xm−n)b+ c, c ∈ A[X], deg(c) < m.

By induction hypothesis, there exist q̃, r̃ ∈ A[X] such that c = bq̃ + r̃ and deg(r̃) < deg(b), which implies
that

a = b(amb
−1
n Xm−n + q̃) + r̃, deg(r̃) < deg(b).

Divisibility: if r = 0, then a = bq is divisible by b in A[X]. Conversely, if a = bc for some c ∈ A[X], then
a = cb+ 0 and deg(0) = −∞ < deg(b); therefore r = 0 by uniqueness.

9.3.5 Corollary. Let A ⊂ Ã be a subring of a commutative ring Ã, let a ∈ A[X]. Assume that b =
bnX

n + · · ·+ b0 ∈ A[X], deg(b) = n ≥ 0 and bn ∈ A∗. It is equivalent:

b | a in A[X] ⇐⇒ b | a in Ã[X].

[Warning: the assumption bn ∈ A∗ cannot be omitted (2 divides 1 in C[X], but not in Z[X])].
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Proof. As bn ∈ A∗ ⊂ Ã∗, there exist unique q, r ∈ A[X] and q̃, r̃ ∈ Ã[X] such that

a = bq + r, deg(r) < deg(b), a = bq̃ + r̃, deg(r̃) < deg(b).

Uniqueness implies that q̃ = q and r̃ = r, hence

b | a in A[X] ⇐⇒ r = 0 ⇐⇒ r̃ = 0 ⇐⇒ b | a in Ã[X].

9.3.6 Consequences for A[X]/(b) Assume that b = bnX
n + · · · + b0 ∈ A[X], deg(b) = n ≥ 0 and

bn ∈ A∗. Proposition 9.3.4 can be reformulated by saying that, for each polynomial a ∈ A[X], there is a
unique polynomial r ∈ A[X] of degree deg(r) < n such that

a ≡ r (mod b).

In other words, if we write

A[X]deg<n := {r ∈ A[X] | deg(r) < n} = {r0 + r1X + · · ·+ rn−1X
n−1 | rj ∈ A}

(note that A[X]deg<0 = {0}), then the composite map

A[X]deg<n ↪→ A[X]
pr−→ A[X]/(b) (9.3.6.1)

is bijective:

A[X]/(b) = {r (mod b) | r ∈ A[X], deg(r) < n}
= {r0 + r1X + · · ·+ rn−1X

n−1 (mod b) | rj ∈ A}

= {r0 + r1X + · · ·+ rn−1X
n−1 | rj ∈ A},

(9.3.6.2)

where X = X (mod b) ∈ A[X]/(b) (the residue class (mod b) of the variable X) satisfies b(X) = 0, as
observed in (9.3.2.2). If we denote this class by, say, α := X (mod b) ∈ A[X]/(b), then

A[X]/(b) = {r(α) | r ∈ A[X], deg(r) < n} = {r0 + r1α+ · · ·+ rn−1α
n−1 | rj ∈ A},

b(α) = bnα
n + · · ·+ b0 = 0

(9.3.6.3)

and distinct n-tuples (r0, . . . , rn−1) (rj ∈ A) correspond to distinct elements of A[X]/(b).
The map (9.3.6.1) is A-linear: it is compatible with operations “+” and “multiplication by a constant

c ∈ A” on both sides. Products (a (mod b)) · (ã (mod b)) are computed by writing aã = qb + r with
deg(r) < n; then (a (mod b)) · (ã (mod b)) = r (mod b).

If we use the notation of (9.3.6.3) for elements of A[X]/(b), then a(α)ã(α) = r(α).

10 Polynomial rings K[X]

Throughout Section 10, K is a field.

10.1 Basic properties of K[X]

10.1.1 Basic setup Recall that a field is a non-zero commutative ring in which every non-zero element
is invertible. Basic examples are K = Q,R,C,Q + Qi or Z/pZ = Fp (for a prime p).

The property K∗ = K r {0} has the following consequences.
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• K[X] is an integral domain and K[X]∗ = K∗ = K r {0} = {a ∈ K[X] | deg(a) = 0}.

• deg(ab) = deg(a) + deg(b) for any a, b ∈ K[X].

• Any non-zero polynomial a = anX
n + · · · + a0 can be written in a unique way as a = an(a−1n a),

where an ∈ K∗ and a−1n a = Xn + · · ·+ a−1n a0 ∈ K[X] is monic (n = deg(a) ≥ 0).

• A non-constant polynomial a ∈ K[X] rK is irreducible in K[X] in the sense of Section 8.3.11 if
a 6= bc for any non-constant polynomials b, c ∈ K[X] rK. For example, a is irreducible in K[X] if
deg(a) = 1. Denote by PK the set of all (non-constant) monic irreducible polynomials in K[X].
Note that {π ∈ PK | deg(π) = 1} = {X − α | α ∈ K}.

As we are going to see, the polynomial ring K[X] behaves very much like the ring of integers Z; in
particular, elements of PK behave like prime numbers.

For example, much of the discussion in Section 1.1.5 applies with very minor modifications:

10.1.2 Proposition (Existence of factorisation). Every non-zero polynomial a ∈ K[X] r {0} can be
written as a = λπ1 · · ·πr, where λ ∈ K∗, r ≥ 0 and πj ∈ PK .

Proof. Induction on deg(a), entirely analogous to induction on n in the proof of Proposition 1.2.1.

10.1.3 Proposition (Irreducibility criterion). For a non-constant polynomial a ∈ K[X]rK, the follow-
ing properties are equivalent.
(1) a is not irreducible in K[X].
(2) There exists b ∈ K[X] rK such that deg(b) ≤ 1

2 deg(a) and b | a.
(3) There exists π ∈ PK such that deg(π) ≤ 1

2 deg(a) and π | a.

Proof. If (1) holds, then a = bc for some non-zero polynomials b, c such that deg(b) ≤ deg(c); then b | a
and 2 deg(b) ≤ deg(b) + deg(c) = deg(bc) = deg(a), which proves (2). If (2) holds, then there exists
π ∈ PK dividing b; then π | a and deg(π) ≤ deg(b) ≤ 1

2 deg(a).

10.1.4 Corollary. If a ∈ K[X] is of degree deg(a) ∈ {2, 3}, then it is equivalent:

a is irreducible in K[X] ⇐⇒ a has no root in K.

Proof. Indeed, π ∈ PK satisfies Property (3) in Proposition 10.1.3 if and only if π = X −α, where α ∈ K
and a(α) = 0.

10.1.5 Examples (1) If n ∈ {2, 3}, a ∈ N+ and n
√
a 6∈ N+, then Xn − a has no roots in Q (by

Theorem 1.5.11), hence is irreducible in Q[X].

(2) This is no longer true for n = 4, since

X4 + 4 = (X2 − 2X + 2)(X2 + 2X + 2).

10.2 Division with remainder in K[X] and its consequences

10.2.1 Division with remainder in K[X] The following proposition is entirely analogous to its
arithmetic counterpart Proposition 2.2.2.

10.2.2 Proposition. If a, b ∈ K[X] and b 6= 0, then there exists a unique pair q, r ∈ K[X] such that

a = bq + r, deg(r) < deg(b).

Moreover, b | a in K[X] iff and only if r = 0.

Proof. This is a special case of Proposition 9.3.4 for A = K. The key assumption bn ∈ K∗ (n = deg(b))
in that proposition is an automatic consequence of the fact that b 6= 0.
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10.2.3 Consequences All the statements that were deduced from Proposition 2.2.2 in Sections 2 and
3 have immediate analogues in K[X]. Here is a brief list.

10.2.4 Euclid’s algorithm, Bézout relations For any a, b ∈ K[X] r {0}, iterated division with
remainder along the lines of Section 2.4 produces elements

d ∈ K[X] r {0}, u, v ∈ K[X]

such that

d | a, d | b
d = au+ bv

}
=⇒ aK[X] + bK[X] = dK[X]. (10.2.4.1)

In other words, the ideal (a, b) = (a) + (b) = (d) of K[X] is principal, generated by d. This is a weak form
of Bézout’s theorem for K[X].

10.2.5 Greatest common divisor Relation (10.2.4.1) implies that

d | a, d | b
if c ∈ K[X] r {0} and c | a, c | b, then c | d.

(10.2.5.1)

The element d in (10.2.4.1) is unique up to multiplication by an element of K[X]∗ = K∗ = K r {0}. It
will be unique if we require it to be monic.

We then say that d is the greatest common divisor of a and b, denoted by gcd(a, b) := d. The
relation

aK[X] + bK[X] = gcd(a, b)K[X]. (10.2.5.2)

is a strong form of Bézout’s theorem for K[X].

10.2.6 Examples Consider the first two examples from Section 9.3.3.

(1) a = 2X3 + 2X2 −X + 1, b = 2X + 3 ∈ Q[X]. We know that

2X3 + 2X2 −X + 1 = (X2 − 1
2X + 1

4 )(2X + 3) + 1
4 ,

which implies that gcd(a, b) = 1, and gives directly

4(2X3 + 2X2 −X + 1) + (−4X2 + 2X − 1)(2X + 3) = 1.

(2) a = X3 − 2X2 − 7X + 3, b = 2X2 + 4X − 1 ∈ Q[X]. We know that

2X3 − 2X2 − 7X + 3 = ( 1
2X − 2)(2X2 + 4X − 1) + ( 3

2X + 1),

but we must perform one more division with remainder:

2X2 + 4X − 1 = (4
3X + 16

9 )( 3
2X + 1)− 25

9 ,

obtaining gcd(a, b) = 1 and

− 25
9 = b− ( 4

3X + 16
9 )(a− ( 1

2X − 2)b) = − 4
9 (3X + 4)a+ b

9 (6X2 − 16X − 23),

4
25 (3X + 4)a+ 1

25 (−6X2 + 16X + 23)b = 1.
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10.2.7 Ideals in K[X] In fact, every ideal of K[X] is principal. Indeed, if I ⊂ K[X] is a non-zero
ideal and if b ∈ I r {0} is an element of minimal degree, the argument from the proof of Theorem 2.3.2
shows that I = (b) = bK[X].

Again, b is unique up to multiplication by an element of K∗. It will be unique if we require it to be
monic.

10.2.8 Euclid’s Lemma As in Sections 1.4 and 2.3, Bézout’s theorem in its weak form (10.2.4.1)
implies Euclid’s Lemma in K[X], which implies, in turn, uniqueness of factorisation in K[X].

10.2.9 Lemma (Euclid’s Lemma in K[X]). If π ∈ PK , a, b ∈ K[X] r {0}, π | ab and π - b, then π | a.

10.2.10 Theorem (Uniqueness of factorisation in K[X]). A non-zero polynomial a ∈ K[X] r {0} has
unique factorisation

a = λ
∏
π∈PK

πvπ(a) (λ ∈ K∗)

Above, vπ(a) ∈ N, and vπ(a) = 0 for all but finitely many π ∈ PK .

10.2.11 π-adic valuations The exponents vπ in Theorem 10.2.10 are analogues of p-adic valuations
of integers. They have all the properties given in Proposition 1.5.4, with the following modification: a = λb
for some λ ∈ K∗ ⇐⇒ vπ(a) = vπ(b) holds for all π ∈ PK .

10.2.12 Least common multiple As in Theorem 1.6.2,

∀a, b ∈ K[X] r {0} gcd(a, b) =
∏
π∈PK

πmin(vπ(a),vπ(b)).

Similarly, if we define the least common multiple of a and b by

m = lcm(a, b) :=
∏
π∈PK

πmax(vπ(a),vπ(b)),

then m is monic, it is a common multiple of a and b, and every common multiple of a and b is a multiple
of m, as in Theorem 1.6.3.

Note that gcd(a, b) lcm(a, b) = λab, for some λ ∈ K∗.

10.3 Algebraically closed fields

10.3.1 The Fundamental Theorem of Algebra This is the statement that any non-constant poly-
nomial with complex coefficients has a complex root (in the terminology of Definition 10.3.2 below, the
field of complex numbers is algebraically closed). In spite of its name, this theorem is of analytic nature.

10.3.2 Definition. A field K is algebraically closed if for each f ∈ K[X]rK there exists α ∈ K such
that f(α) = 0.

10.3.3 Proposition. If K is an algebraically closed field and if f ∈ K[X], deg(f) = n ≥ 0, then there
exist α1, . . . , αn ∈ K (not necessarily distinct) and an ∈ K r {0} such that f = an(X − α1) · · · (X − αn).

Proof. Induction on n. There is nothing to prove if n = 0. Assume that n > 0 and that the statement holds
for polynomials of degree deg < n. By assumption, there exists α1 ∈ K such that f(α1) = 0, which implies
that f = (X − α1)f1 for some f1 ∈ K[X], by (9.2.3.1); then deg(f1) = n − 1. By induction hypothesis,
f1 = an(X − α2) · · · (X − αn) for some αj ∈ K and an ∈ K r {0}; thus f = an(X − α1) · · · (X − αn).

10.3.4 Theorem (The Fundamental Theorem of Algebra). For each f ∈ C[X] r C there exists α ∈ C
such that f(α) = 0.
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Proof. The proof below (due to Argand) uses the following analytic facts.

• Compactness: every continuous real-valued function F : DR −→ R defined on a closed disc
DR = {z ∈ C | |z| ≤ R} attains its infimum: there exists z0 ∈ DR such that F (z0) = infz∈DR F (z).

• Existence of m-th roots: for any z ∈ C such that |z| = 1 and any integer m ≥ 1 there exists
w ∈ C satisfying wm = z.

The polynomial f(z) = anz
n + · · ·+ a0 (n = deg(f) ≥ 1) satisfies

lim
z∈C

|z|→+∞

f(z)/zn = an 6= 0,

which implies that there exists R > 0 such that |f(z)| > |f(0)| for all z ∈ C satisfying |z| > R. Therefore

inf
z∈C
|f(z)| = inf

|z|≤R
|f(z)| = |f(z0)|

for some z0 ∈ C, |z0| ≤ R. This equality implies that f(z0) = 0, by Lemma 10.3.5 below; thus z0 is a root
of f .

10.3.5 Lemma (Argand). If f ∈ C[z] r C, z0 ∈ C and f(z0) 6= 0, then, for each r > 0, there exists
z ∈ C such that |z − z0| < r and |f(z)| < |f(z0)|.

Proof. Consider the polynomial g(z) := f(z0 + z)/f(z0). It is of the form

g(z) = 1 + bmz
m + zm+1(bm+1 + · · ·+ bnz

n−m−1) = 1 + bmz
m + h(z), bm 6= 0, (1 ≤ m ≤ n).

We must find z ∈ C such that |z| < r and |g(z)| < 1. The idea is simple: if |z| > 0 is small enough, then
the term |h(z)| will be smaller than |bmzm|, so it will be sufficient to choose the argument of z in such a
way that bmz

m ∈ R and bmz
m < 0.

More precisely, if |z| < 1 and 0 < |z| < r1 := |bm|/(|bm+1|+ · · ·+ |bn|), then

|h(z)| < |zm+1|(|bm+1|+ · · ·+ |bn||zn−m−1|) < |zm+1|(|bm+1|+ · · ·+ |bn|) < |bmzm|.

Furthermore, if |z| < r2 := 1/|bm|1/m, then |bmzm| < 1. Therefore |h(z)| < |bmzm| < 1 if 0 < |z| < r0 :=
min(1, r1, r2).

We need to find z such that bmz
m < 0, which is equivalent to (−bm/|bm|)zm > 0. We know that

there exists w ∈ C such that wm = −|bm|/bm; we let z = tw, for any 0 < t < min(r, r0). In this case
bmz

m = −|bm|tm < 0 and |h(z)| < |bmzm| < 1, hence

g(z) = 1 + bmz
m + h(z) = 1− |bmzm|+ h(z), |g(z)| ≤ |1− |bmzm||+ |h(z)| = 1− |bmzm|+ |h(z)| < 1.

10.3.6 Another proof of Argand’s Lemma Proof of the existence ofm-th roots of complex numbers
of modulus |z| = 1 requires some trigonometry: one needs to know that z can be written as z = cos(α) +
i sin(α) for some α ∈ R, and that z = (cos(α/m) + i sin(α/m))m.

Here is another proof of Lemma 10.3.5 which uses only the existence of square roots of complex numbers:

• if z = a+ bi ∈ C, then w :=
√

(a+
√
a2 + b2)/2 + i

√
(−a+

√
a2 + b2)/2 ∈ C satisfies w2 = z.
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If we write g(z) = 1 + g0(z), g0(z) = zm(bm + z(bm+1 + · · · + bnz
n−m−1)) (bm 6= 0), then |g(z)|2 =

(1 + g0(z))(1 + g0(z)) = 1 + 2 Re(g0(z)) + |g0(z)|2. Fix w ∈ C r {0} and take z = tw, for t > 0. The fact
that limz→0 g0(z)/zm = bm implies that

lim
t→0+

|g(tw)|2 − 1

tm
= 2 Re(bmw

m).

It is enough to show, therefore, that Re(bmw
m) < 0 for some w ∈ C. Write m = 2kn, where 2 - n.

• If Re(bm) < 0, take w = 1.

• If Re(bm) > 0, take w such that w2k = −1; then wm = −1.

• If Re(bm) = 0 and Re(inbm) < 0, take w such that w2k = i; then wm = in.

• If Re(bm) = 0 and Re(inbm) > 0, take w such that w2k = −i; then wm = −in.

10.3.7 Exercise. Assume that z0 ∈ C, R > 0, a0, a1, a2, . . . ∈ C, am 6= 0 for some m > 0 and
supn∈N |an|Rn < +∞.
(1) The series f(z) :=

∑∞
n=0 an(z − z0)n is absolutely convergent if z ∈ C and |z − z0| < R.

(2) There exists z ∈ C such that |z − z0| < R and |f(z)| > |f(z0)| = |a0|.
(3) If f(z0) = a0 6= 0, then there exists z ∈ C such that |z − z0| < R and |f(z)| < |f(z0)| = |a0|.

10.3.8 Proposition. (1) If K is an algebraically closed field (for example, K = C), then the set PK of
(non-constant) monic irreducible polynomials in K[X] is equal to {X − α | α ∈ K}.
(2) The set PR is equal to {X − α | α ∈ R} ∪ {(X − β)(X − β) = X2 − 2 Re(β)X + |β|2 | β ∈ C r R}.

Proof. (1) Let f ∈ PK . By assumption, there exists α ∈ K such that f(α) = 0, which means that f
is divisible by X − α in K[X]. As both f and X − α are irreducible (and non-constant), there exists
b ∈ K[X]∗ = K∗ = Kr{0} such that f = b(X−α). However, both f and X−α are monic, and therefore
b = 1.

(2) Let f ∈ PR. By Theorem 10.3.4, there exists α ∈ C such that f(α) = 0. If α ∈ R, then the argument
from (1) implies that f = X − α. If α 6∈ R, then 0 = f(α) = f(α) = f(α). Consequently, f is divisible
in C[X] by both X − α and X − α, hence also by g := lcm(X − α,X − α) = (X − α)(X − α) ∈ R[X]
(the equality follows from the fact that α 6= α). Corollary 9.3.5 implies that g | f in R[X], since f = gh
for some h ∈ C[X] and f, g ∈ R[X]. The polynomial g = X2 − 2 Re(α)X + |α|2 ∈ R[X] is monic and
irreducible in R[X], since deg(g) = 2 and g has no roots in R. The argument from (1) then shows that
f = g.

10.4 The quotient ring K[X]/(b)

10.4.1 Dimension of K[X]/(b) If b ∈ K[X]r {0} is a non-zero polynomial of degree deg(b) = n ≥ 0,
then the map

K[X]deg<n ↪→ K[X] −→ K[X]/(b) (10.4.1.1)

is K-linear and bijective, as observed in 9.3.6.1. In particular, it is an isomorphism of K-vector spaces,
hence the quotient ring K[X]/(b) is a vector space of dimension n over K.

If n = 1, then b = a1(X − α) for some α ∈ K and a1 ∈ K r {0}. The map (10.4.1.1) is then a ring
isomomorphism

K
∼−→ K[X]/(X − α),
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whose inverse is given by the evaluation isomorphism

evα : K[X]/(X − α)
∼−→ K, a (mod (X − α)) 7→ a(α). (10.4.1.2)

10.4.2 The Chinese Remainder Theorem in K[X] The arithmetic version of CRT given in The-
orem 3.3.2 was deduced from the strong form of Bézout’s theorem. One can use the relation (10.2.5.2) in
the same way, or one can argue directly, in analogy with Remark 2 in Section 3.3.3.

10.4.3 Theorem (The Chinese Remainder Theorem in K[X]). If a, b ∈ K[X] r {0} and gcd(a, b) = 1,
then the map

f : K[X]/(ab) −→ K[X]/(a)×K[X]/(b)

c (mod ab) 7→ (c (mod a), c (mod b))

is bijective (hence it is a ring isomorphism).

Proof. The map f is a ring homomorphism. If c (mod ab) ∈ Ker(f), then c is divisible in K[X] by both a
and b, hence also by lcm(a, b) = λab/ gcd(a, b) = λab (λ ∈ K∗). Therefore c ≡ 0 (mod ab) and Ker(f) =
{0}. This implies that the map f is injective. It is then automatically bijective, since it is K-linear and
both K[X]/(ab) and K[X]/(a)×K[X]/(b) are K-vector spaces of dimension deg(ab) = deg(a)+deg(b).

10.4.4 Example: R[X]/(X2 − 1) If we combine the ring isomorphism

R[X]/(X2 − 1)
∼−→ R[X]/(X − 1)×R[X]/(X + 1)

f (mod (X2 − 1)) 7→ (f (mod (X − 1)), f (mod (X + 1)))

given by the CRT with the evaluation isomorphisms (10.4.1.2)

ev±1 : R[X]/(X ∓ 1)
∼−→ R, f (mod (X ∓ 1)) 7→ f(±1),

we obtain a ring isomorphism

(ev1, ev−1) : R[X]/(X2 − 1)
∼−→ R×R, f (mod (X2 − 1)) 7→ (f(1), f(−1)). (10.4.4.1)

Explicitly,

R[X]/(X2−1) = {u+vX (mod (X2 − 1)) | u, v ∈ R}, (ev1, ev−1) : u+vX (mod (X2 − 1)) 7→ (u+v, u−v).

The inverse to (10.4.4.1) is given, therefore, by the formula

R×R
∼−→ R[X]/(X2 − 1), (s, t) 7→ (s+t)+(s−t)X

2 (mod (X2 − 1)). (10.4.4.2)

In other words, f(X) = (s+t)+(s−t)X
2 is the unique polynomial in R[X] of degree deg < 2 such that

f(1) = s and f(−1) = t.

10.4.5 Example: R[X]/(X2 + 1) The polynomial X2 + 1 is irreducible in R[X], but it factors in
C[X] as (X − i)(X + i); its roots are ±i. The evaluation map

evi : R[X] −→ C, f 7→ f(i)

is a ring homomorphism such that Im(evi) = C (since evi(u+ vX) = u+ vi) and Ker(evi) = (X2 + 1) =
(X2 + 1)R[X].

Indeed, if f ∈ R[X] satisfies f(i) = 0, then 0 = f(i) = f(i) = f(−i), which imples that f is divisible
in C[X] by both X − i and X + i, hence by their lcm(X − i,X + i) = X2 + 1. By Corollary 9.3.5, f is
divisible by X2 + 1 in R[X] (cf. the arguments in the proof of Proposition 10.3.8)).
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The Homomorphism Theorem 8.5.12 then implies that the map

evi : R[X]/(X2 + 1)
∼−→ C, f (mod (X2 + 1)) 7→ f(i)

is a ring isomorphism (the inverse of which sends u+ vi to the residue class u+ vX (mod (X2 + 1))).
All of the above holds if we replace everywhere i by −i. The corresponding ring isomorphism

ev−i : R[X]/(X2 + 1)
∼−→ C, f (mod (X2 + 1)) 7→ f(−i)

is obtained from evi by composition with the complex conjugation on C, since ev±i(u+ vX) = u± vi.

10.4.6 Exercise. Describe the quotient ring R[X]/(X2 +X + 1) along the same lines.

10.4.7 Theorem. Let a, b ∈ K[X], b 6= 0. The residue class a (mod b) ∈ K[X]/(b) is invertible in
K[X]/(b) if and only if gcd(a, b) = 1.

Proof. As observed in (8.5.11.2) and (9.3.2.1), a (mod b) is invertible in K[X]/(b) if and only if 1 ∈
aK[X] + bK[X] = gcd(a, b)K[X], which is equivalent to gcd(a, b) = 1.

10.4.8 Computing the inverse of a (mod b) One computes gcd(a, b) using Euclid’s algorithm. If
gcd(a, b) 6= 1, then a (mod b) is not invertible in K[X]/(b). If gcd(a, b) = 1, Euclid’s algorithm also gives
an explicit Bézout relation au+ bv = 1 for some u, v ∈ K[X], which implies that au ≡ 1 (mod b) and that
u (mod b) is the inverse of a (mod b) in K[X]/(b).

10.4.9 Exercise. (1) Compute the inverse of X2 − 2X + 3 (mod (X3 − 2)) in Q[X]/(X3 − 2).
(2) Write (3− 2 3

√
2 + 3
√

4)−1 in the form a+ b 3
√

2 + c 3
√

4 for suitable a, b, c ∈ Q.
(3) What is the relation between (1) and (2)?

10.4.10 Theorem. Let b ∈ K[X], b 6= 0. The following properties are equivalent.
(1) K[X]/(b) is a field.
(2) K[X]/(b) is an integral domain.
(3) The polynomial b is non-constant and irreducible in K[X].

Proof. The implication (1) =⇒ (2) is automatic.
(2) =⇒ (3): If b is constant, then (b) = (1) = K[X] and K[X]/(b) = {0} is not an integral domain.
If b = fh is non-constant but reducible (f, h ∈ K[X], f, h non-constant), then deg(f),deg(h) < deg(b),
which implies that b - f and b - h. This means that the residue classes f (mod b) and h (mod b) are
non-zero elements of K[X]/(b), but their product is equal to zero, since fh ≡ 0 (mod b).
(3) =⇒ (1): we can assume that b is irreducible and monic. We must show that every non-zero residue
class a (mod b) 6= 0 ∈ K[X]/(b) is invertible in K[X]/(b). The greatest common divisor d := gcd(a, b)
divides b, hence is equal either to 1 or to b, by irreducibility of b. If d = b, then b | a, which implies
that a (mod b) = 0. This contradiction shows that d = 1, hence a (mod b) is invertible in K[X]/(b), by
Theorem 10.4.7.

10.4.11 Remark The non-trivial implication (2) =⇒ (1) can also be proved in a more abstract way
as in Proposition 8.3.7 (see Exercise 8.3.9).

10.5 Applications of K[X]/(b) (examples)

10.5.1 A preview The examples below are intended to illustrate the general theory from Section
10.4. They are not used anywhere else in these notes and can be skipped by the reader.
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10.5.2 Lagrange interpolation Assume that we are given the following data.

• A field K

• n distict elements α1, . . . , αn ∈ K

• n elements t1, . . . , tn ∈ K

The goal is to find a polynomial g ∈ K[X] such that

deg(g) < n, ∀i = 1, . . . , n g(αi) = ti. (10.5.2.1)

A very special case of this problem (n = 2, α1 = 1, α2 = −1) was solved in Section 10.4.4.

Uniqueness: if g, h ∈ K[X] are solutions of (10.5.2.1), then g − h ∈ K[X] is a polynomial of degree
deg(g − h) < n with at least n distinct roots in K, namely α1, . . . , αn ∈ K. Therefore g − h = 0, by
Theorem 9.2.7.

Construction: there is a simple expression for g in terms of the following polynomials:

f(X) =

n∏
i=1

(X − αi), fi(X) =

n∏
j=1

j 6=i

(X − αj) = f(X)/(X − αi).

Indeed,

(X − αi)fi(X) = f(X), deg(fi) = n− 1, fi(αj) =

{
fi(αi) 6= 0, j = i

0, j 6= i,
(10.5.2.2)

which implies that the polynomials pi(X) = fi(X)/fi(αi) satisfy pi(αj) = δij (Kronecker’s symbol) and
that

g =

n∑
i=1

ti pi(X)

is a solution of (10.5.2.1). Note that

(X − αi)(fi(X)− f ′(αi)) = f(X)− f(αi)− (X − αi)f ′(αi) ≡ 0 (mod (X − αi)2),

by (9.2.5.2), which implies that fi(αi) = f ′(αi). Consequently,

pi(X) =
1

f ′(αi)

f(X)

X − αi
, g =

n∑
i=1

ti
1

f ′(αi)

f(X)

X − αi

is a solution of (10.5.2.1).
The constant polynomial 1 is a solution of (10.5.2.1) for t1 = · · · = tn, which implies that

n∑
i=1

pi(X) = 1.
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10.5.3 Algebraic reformulation Conditions g(αi) = ti are equivalent to g ≡ ti (mod (X − αi)),
which means that (10.5.2.1) is equivalent to inverting the ring isomorphism

K[X]/(f)
∼−→

n∏
i=1

K[X]/(X − αi)
∼−→

n∏
i=1

K

g (mod f) 7→ (g (mod (X − αi))) 7→ (g(α1), . . . , g(αn)),

(10.5.3.1)

since K[X]/(f) = {g (mod f) | deg(g) < n}. Under this isomorphism, the residue classes pi(X) (mod f)
correspond to the elements ei = (0, . . . , 1, . . . , 0) ∈ K × · · · ×K.

10.5.4 Exercise. Define a ring isomorphism R[X]/(X2+X−2)
∼−→ R×R and give an explicit formula

for its inverse.

10.5.5 Determinantal formulas For small values of n one can solve (10.5.2.1) by hand. For n = 1,
g(X) = t1.

For n = 2, g(X) = u+ vX and u+ vαi = ti (i = 1, 2), which implies that v(α2 − α1) = t2 − t1 and

v = t2−t1
α2−α1

, u = t1 − vα1 = t1(α2−α1)−(t2−t1)α1

α2−α1
= −α1t2−α2t2

α2−α1
, g(X) = (t2−t1)X−(α1t2−α2t2)

α2−α1

These formulas can be rewritten as follows.

v =

∣∣∣∣ 1 1
t1 t2

∣∣∣∣∣∣∣∣ 1 1
α1 α2

∣∣∣∣ , u = −

∣∣∣∣α1 α2

t1 t2

∣∣∣∣∣∣∣∣ 1 1
α1 α2

∣∣∣∣ , Y − g(X) =

∣∣∣∣∣∣
1 1 1
α1 α2 X
t1 t2 Y

∣∣∣∣∣∣∣∣∣∣ 1 1
α1 α2

∣∣∣∣
10.5.6 Exercise. Write an analogous formula for Y − g(X) for arbitrary n ≥ 1.

10.5.7 Diagonalisability of matrices Let A ∈Mn(K) be a square matrix with entries in a field K.
Denote by PA(X) := det(X · In −A) ∈ K[X] its characteristic polynomial.

The matrix A defines a linear map

Kn −→ Kn, X 7→ AX.

The image of this map is the subspace ofKn generated by the images Aei of the vectors ei = t(0, . . . , 1, . . . 0)
of the standard basis of Kn. Note that Aei is equal to the i-th column of A, which means that Im(A) is
generated by the columns of A.

For any scalar α ∈ K denote by

V (α) := Ker(A− α · In) = {v ∈ V = Kn | Av = αv} ⊂ V = Kn

the corresponding eigenspace of A. The subspace V (α) is non-zero if and only if PA(α) = 0. A non-zero
element of some V (α) is called an eigenvector of A, and α ∈ K the corresponding eigenvalue.

Note that if v ∈ V (α), then A2v = A(αv) = α2v, A3v = A(α2v) = α3v, etc. Therefore g(A)v = g(α)v
holds for all g ∈ K[X].

The matrix A is called diagonalisable over K if there exists a basis of V = Kn consisting of eigen-
vectors of A. If we put together elements of such a basis as columns of a matrix P ∈ Mn(K), then
P ∈ GLn(K) is invertible and P−1AP is a diagonal matrix, with diagonal entries equal to the correspond-
ing eigenvalues.
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We are going to show that eigenvectors and diagonalisability can be studied using Lagrange interpola-
tion, i.e., using an explicit version of the Chinese Remainder Theorem

K[X]/

m∏
i=1

(X − αi)
∼−→

m∏
i=1

K[X]/(X − αi)
∼−→

m∏
i=1

K (10.5.7.1)

(for α1, . . . , αm ∈ K distinct).

10.5.8 Proposition. Let α1, . . . , αm ∈ K be distinct. Define polynomials

f(X) =

m∏
i=1

(X − αi), fi(X) =

m∏
j=1

j 6=i

(X − αj) = f(X)/(X − αi), pi(X) = fi(X)/fi(αi)

as in (10.5.2.2).
(1) If v = v1 + · · · vm and vj ∈ V (αj) for all j, then vi = pi(A)v holds for all i.
(2) If 0 6= vi ∈ V (αi), then v1, . . . , vm are linearly independent in V = Kn.
(3) The subspace W := V (α1) + · · ·+ V (αm) = {v1 + · · ·+ vm | vi ∈ V (αi)} ⊂ V is a direct sum of the
subspaces V (α1), . . . , V (αm).
(4) The projection of W = V (α1)⊕ · · · ⊕ V (αm) on its i-th factor is given by v 7→ pi(A)v. In particular,
pi(A)W = V (αi).
(5) W = Ker(f(A)) := {v ∈ V | f(A)v = 0}.

Proof. (1) This follows from the formulas

pi(αj) =

{
1, i = j

0, i 6= j,
pi(A)vj = pi(αj)vj =

{
vi, i = j

0, i 6= j,
pi(A)

( m∑
j=1

vj
)

= vi.

(2) If
∑
tjvj = 0 for some tj ∈ K, then 0 = pi(A)

∑
tjvj = tivi, hence ti = 0.

(3), (4) This is an abstract reformulation of (1).
(5) If (A − αi · I)v = 0, then f(A)v = fi(A)(A − αi · I)v = 0. Therefore Ker(f) contains each V (αi),

hence also their sum W . Conversely, if v ∈ Ker(f(A)), then (A− αi · I)pi(A)v = f(A)
fi(αi)

v = 0. Therefore

pi(A)v ∈ V (αi) and v = (
∑
i pi(A))v ∈

∑
V (αi) = W .

10.5.9 Proposition. Assume that the characteristic polynomial of A is of the form PA(X) =
∏n
i=1(X −

αi), where α1, . . . , αn ∈ K lie in K and are distinct.
(1) Each eigenspace V (αi) = Kvi is one-dimensional and the eigenvectors v1, . . . , vn form a basis of
V = Kn.
(2) The matrix A is diagonalisable over K.
(3) PA(A) = 0 (the Cayley–Hamilton theorem for A).
(4) The projection of V = Kv1⊕· · ·⊕Kvn on its i-th factor Kvi is given by v 7→ pi(A), where pi(X) ∈ K[X]
is defined as in Proposition 10.5.8 for f(X) = PA(X).

Proof. (1) According to Proposition 10.5.8, the subspace W := V (α1) + · · ·+V (αn) ⊂ V = Kn is a direct
sum W = V (α1)⊕ · · · ⊕ V (αn) of n non-zero subspaces. If we count dimensions, we obtain

n = dim(V ) ≥ dim(W ) =

n∑
i=1

dim(V (αi)) ≥
n∑
i=1

1 = n,

which gives equalities everywhere: V = W , dim(V (αi)) = 1, V (αi) = Kvi and Kn = V = Kv1⊕· · ·⊕Kvn.
The last equality is equivalent to saying that the eigenvectors v1, . . . , vn form a basis of Kn, which proves
(2). Part (3) follows from the fact that PA(A)vi = fi(A)(A− αi · I)vi = 0, for all i. Part (4) is a special
case of Proposition 10.5.8(4).

126



10.5.10 Examples (1) The matrixA =

(
4 −2
1 1

)
∈M2(R) satisfies Tr(A) = 5, det(A) = 6, PA(X) =

X2 − 5X + 6 = (X − 2)(X − 3) and

A− 2I =

(
2 −2
1 −1

)
, A− 3I =

(
1 −2
1 −2

)
, (A− 2I)(A− 3I) = 0,

Im(A− 2I) = R

(
2
1

)
= Ker(A− 3I), Im(A− 3I) = R

(
1
1

)
= Ker(A− 2I).

In this case α1 = 2, α2 = 3, f1 = X − 3, f2 = X − 2, p1 = 3−X, p2 = X − 2.

(2) Consider the matrix

A =

−7 18 27
0 5 6
−2 2 4

 ∈M3(R), PA(X) = X3 − 2X2 −X + 2 = (X − 1)(X − 2)(X + 1).

In this case α1 = 1, α2 = 2, α3 = −1, f1 = (X − 2)(X + 1), f2 = (X − 1)(X + 1), f3 = (X − 1)(X − 2),
p1 = −f1/2, p2 = f2/3, p3 = f3/6 and

Ker(A− αiI) = Rvi, v1 =

 0
−3
2

 , v2 =

 1
2
−1

 , v3 =

 3
−2
2

 ,

f1(A) =
(
4v1
∣∣− 10v1

∣∣− 16v1
)
, f2(A) =

(
−6v2

∣∣18v2
∣∣27v2

)
, f3(A) =

(
6v3
∣∣− 12v3

∣∣− 18v3
)
.

10.5.11 Proposition (Characterisation of diagonalisable matrices). The following properties are equiv-
alent:
(1) A ∈Mn(K) is diagonalisable over K.
(2) There exists f =

∏m
i=1(X − αi) ∈ K[X] such that α1, . . . , αm ∈ K are distinct and f(A) = 0.

(3) There exists f as in (2) such that, in addition, PA(αi) = 0 for all i = 1, . . . ,m.

Proof. (3) =⇒ (2) is automatic.
(2) =⇒ (3): Write

f =
∏

PA(αi)=0

(X − αi)
∏

PA(αi)6=0

(X − αi) = f1f2.

If PA(αi) 6= 0, then A− αi · I is invertible; thus f2(A) is invertible, too. Therefore f(A) = 0 implies that
f1(A) = f(A)f2(A)−1 = 0.
(1) =⇒ (3): By (1), V = Ku1⊕· · ·⊕Kun, Auj = λjuj . Write PA(A) =

∏n
j=1(X−λj) =

∏m
i=1(X−αi)ki ,

where α1, . . . , αm ∈ K are distinct and ki ≥ 1. For each j = 1, . . . , n there exists i ∈ {1, . . . ,m} such that
λj = αi, which implies that f(A)uj =

∏m
i=1(A− αi · I)uj = 0.

(2) =⇒ (1): According to Proposition 10.5.8, Ker(f(A)) = V (α1)⊕· · ·⊕V (αm), but Ker(f(A)) = V , since
f(A) = 0. Choosing an arbitrary basis of each V (αi), we obtain a basis of V consisting of eigenvectors of
A.

10.5.12 Remarks (1) The set J := {g ∈ K[X] | g(A) = 0} ⊂ K[X] is an ideal of K[X]. It is non-zero,

since the n2 + 1 > n2 = dimK(Mn(K)) matrices I, A,A2, . . . , An
2 ∈ Mn(K) must satisfy a non-trivial

linear relation with coefficients in K. Therefore J = (fA) = fAK[X] for a unique monic polynomial
fA ∈ K[X], called the minimal polynomial of A.
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(2) Proposition 10.5.11 implies that A ∈ Mn(K) is diagonalisable over K if and only if its minimal
polynomial fA is of the form fA(X) =

∏m
i=1(X − αi), where α1, . . . , αm ∈ K lie in K and are distinct.

(3) According to the Cayley–Hamilton theorem, PA(A) = 0. This implies that the minimal polynomial
fA divides the characteristic polynomial PA in K[X].

Examples:

A =

(
0 1
0 0

)
, PA(X) = fA(X) = X2; B =

(
0 0
0 0

)
, PB(X) = X2, fB(X) = X.

(4) The evaluation map

evA : K[X] −→Mn(K) = EndK(V ), g(X) 7→ g(A)

is a ring homomorphism with kernel Ker(evA) = (fA) = fAK[X]. It induces, therefore, a ring isomorphism

evA : K[X]/(fA)
∼−→ Im(evA), g (mod fA) 7→ g(A).

In the special case when fA(X) =
∏m
i=1(X − αi), where α1, . . . , αm ∈ K lie in K and are distinct, then

there is another ring isomorphism (10.5.7.1)

(evα1
, . . . , evαm) : K[X]/(fA)

∼−→
m∏
i=1

K[X]/(X − αi)
∼−→

m∏
i=1

K.

Under this isomorphism the residue class pi (mod fA) corresponds to ei = (0, . . . , 1, . . . , 0) ∈ K × · · · ×K.
On the other hand, evA(pi) is the matrix defining the projection of V = Kn on V (αi).

10.6 Construction of fields

10.6.1 Theorem. If f ∈ K[X] is an irreducible polynomial of degree deg(f) = n ≥ 1, then the ring
L := K[X]/(f) is a field containing K and a distinguished element α := X = X (mod f) satisfying
f(α) = 0. Elements of L can be written in a unique way as

β = r0 + r1α+ · · ·+ rn−1α
n−1 = r(α) (r = r0 + r1X + · · ·+ rn−1X

n−1 ∈ K[X], deg(r) < n).

Equivalently, L is a K-vector space of dimension n with basis 1, α, . . . , αn−1.

Proof. According to Theorem 10.4.10, the ring L is a field. The rest was proved in Section 9.3.6.

10.6.2 Corollary. If g ∈ K[X] is a polynomial of degree deg(g) = m ≥ 1, then there exists a field L ⊃ K
in which g has a root, and a field M ⊃ K such that g = am(X − α1) · · · (X − αm) for some am ∈ K∗ and
α1, . . . , αm ∈M (not necessarily distinct).

Proof. There exists an irreducible polynomial f ∈ K[X] (non-constant) dividing g in K[X]. If we let
L := K[X]/(f) and α1 := X (mod f) ∈ L, then L ⊃ K is a field and f(α1) = 0, hence g = (X − α1)h for
some h ∈ L[X] of degree deg(h) = m− 1. We conclude by induction on m.

10.6.3 Exercise. In the situation of Corollary 10.6.2, it is equivalent: α1, . . . , αm are distinct ⇐⇒
gcd(g, g′) = 1 in K[X].
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10.6.4 Converse The reader can skip the rest of Section 10.6, as it will not be used anywhere else in
these notes.

The construction in Theorem 10.6.1 can be reversed along the lines of what we did in Section 10.4.5.
Assume that K ⊂ M are fields and that α ∈ M is a root of some non-constant polynomial with

coefficients in K (we say that α is algebraic over K). A toy model is the case K = R, M = C and
α = i considered in Section 10.4.5.

• There exists a non-constant monic polynomial f ∈ K[X] of minimal degree such that f(α) = 0. It
is unique, since the difference of two such polynomials has smaller degree and vanishes at α. We say
that f is the minimal polynomial of α over K.

• The polynomial f is irreducible in K[X] (if f = gh, then g(α) = 0 or h(α) = 0).

• If g ∈ K[X] satisfies g(α) = 0, division with remainder in K[X] gives g = qf + r, q, r ∈ K[X] and
deg(r) < deg(f). As r(α) = g(α)− q(α)f(α) = 0, minimality of deg(f) implies that r = 0, hence f
divides g in K[X].

• In particular, if g ∈ K[X] is monic, irreducible and g(α) = 0, then g = f .

• Conversely, if g ∈ K[X] is divisible by f , then g(α) = 0.

• In other words, the kernel of the evaluation ring homomorphism evα : K[X] −→ M is equal to
Ker(evα) = fK[X]. According to the Homomorphism Theorem 8.5.12, evα induces a ring isomor-
phism (sending each element of K to itself) evα : K[X]/(f)

∼−→ Im(evα) between the abstract ring
K[X]/(f) and the smallest subring K[α] ⊂M containing both K and α.

• Theorem 10.6.1 tells us that K[X]/(f) is a field (hence K[α] coincides with the smallest subfield
K(α) ⊂M containing both K and α). Moreover, K(α) = Im(evα) = K +Kα+ · · ·+Kαn−1 ⊂M
is a K-vector space of dimension n = deg(f), with basis 1, α, . . . , αn−1.

• If K = R, M = C and α = i, then f = X2 + 1 and R(i) = R[i] = R + Ri = C.

• An abstract form of the above argument goes as follows: by assumption, the kernel of the evaluation
ring homomorphism evα : K[X] −→ M (evα(h) = h(α)) is non-zero. As it is an ideal in K[X], it
must be equal to Ker(evα) = fK[X] for some (non-constant) polynomial f ∈ K[X]. As K[X]/(f)
is isomorphic to Im(evα) ⊂M , which is an integral domain, f must be irreducible.

• If K = Q, M = C and α =
√

3, then g = X2 − 3 is monic, irreducible in Q[X] (since it has no root
in Q and deg(g) ≤ 3) and g(

√
3) = 0. Therefore g = f is the minimal polynomial of

√
3 over Q and

the map ev√3 : Q[X]/(X2−3)
∼−→ Q+Q

√
3 sending h (mod (X2 − 3)) to h(

√
3) is an isomorphism

of fields.

• If K = Q, M = C and α = 3
√

2, then g = X3 − 2 is monic, irreducible in Q[X] (since it has no root
in Q and deg(g) ≤ 3) and g( 3

√
2) = 0. Therefore g = f is the minimal polynomial of 3

√
2 over Q

and the map ev 3√2 : Q[X]/(X3− 2)
∼−→ Q + Q 3

√
2 + Q 3

√
4 sending h (mod (X3 − 2)) to h( 3

√
2) is an

isomorphism of fields. See also Exercise 10.4.9.

10.6.5 Irreducibility in Q[X] The above examples show that it is important to be able to decide
whether a given polynomial g ∈ Q[X] is reducible or irreducible in Q[X]. The following irreducibility
criteria are very useful.

10.6.6 Theorem (Gauss). (1) If g, h ∈ Z[X] and if there exists a prime p such that p | gh in Z[X], then
p | g or p | h in Z[X].
(2) (Gauss’ Lemma) Define the content ct(g) of a non-zero polynomial g ∈ Z[X] to be the gcd of its
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coefficients. Then ct(gh) = ct(g)ct(h).
(3) If f ∈ Z[X] r Z and if f = gh for some g, h ∈ Q[X] r Q, then there exists u ∈ Q∗ such that
f = (ug)(u−1h) with ug, u−1h ∈ Z[X] r Z. [“If f is reducible in Q[X], it is reducible in Z[X].”]

Proof. (1) The quotient ring Z[X]/pZ[X] = (Z/pZ)[X] is an integral domain, since Z/pZ is. By as-
sumption, the product of the residue classes g (mod p), h (mod p) ∈ Z[X]/pZ[X] is equal to zero, since
gh ∈ pZ[X]. Therefore g (mod p) or h (mod p) must also be equal to zero in Z[X]/pZ[X].
(2) After dividing g (resp. h) by its content, we can assume that ct(g) = ct(h) = 1. If ct(gh) 6= 1, then
it is divisible by some prime p. Part (1) then implies that p | ct(g) or p | ct(h), which is a contradiction.
Therefore ct(gh) = 1.
(3) There exist integers c, d ≥ 1 such that cg, dh ∈ Z[X]. The polynomials G := cg/ct(cg) = ug (u :=
c/ct(cg) ∈ Q∗) and H := dh/ct(dh) then lie in Z[X]. On the other hand, cdf/(GH) = ct(cg)ct(dh) =
ct((cg)(dh)) = ct(cdf) = cd ct(f), by (2). Therefore GHct(f) = f and u−1h = Hct(f) ∈ Z[X].

10.6.7 Exercise. (1) Assume that f = anX
n + · · ·+ a0 ∈ Z[X], n = deg(f) ≥ 1, and that there exists

a prime p - an such that f (mod p) is irreducible in (Z/pZ)[X]. Then f is irreducible in Q[X].
(2) The polynomial a(X) = X3 − 2X2 − 7X + 3 is irreducible in Q[X]. [Hint: take p = 2.]

10.6.8 Theorem (Eisenstein’s irreducibility criterion). If f = Xn + an−1X
n−1 + · · ·+ a1X + a0 ∈ Z[X]

is a polynomial for which there exists a prime p such that p | ai for all i = 0, . . . , n− 1 and p2 - a0, then
f is irreducible in Q[X].

Proof. Exercise.

10.6.9 Corollary. For each n ≥ 1, the polynomials Xn − 2 and Xn − 6 are irreducible in Q[X].

10.7 Construction of finite fields

10.7.1 A preview We know that, for each prime p, the ring Z/pZ = Fp is a field with p elements.
The goal of Section 10.7 is to construct more general finite fields F as quotient rings F = Fp[X]/(f), for
irreducible polynomials f ∈ Fp[X].

Recall from Proposition 8.5.18 that a field F contains as a subfield in a canonical way either Q (“F is
of characteristic zero”), or Fp (“F is of characteristic p”) for some prime p, which is unique.

10.7.2 Proposition. Let F be a field.
(1) F is finite ⇐⇒ F is of characteristic p for some prime p and F is of finite dimension as a vector
space over its subfield Fp.
(2) If dimFp(F ) = n, then |F | = pn = q, |F ∗| = pn − 1 = q − 1 and

∀a ∈ F ∗ aq−1 = 1, ∀a ∈ F aq = a.

Proof. (1) Finiteness of F implies that F cannot contain Q; thus F ⊃ Fp for some prime p. If dimFp(F ) =

n < ∞, then F
∼−→ Fnp as a vector space, hence |F | = |Fp|n = pn. If dimFp(F ) = ∞, then F contains

vector subspaces isomorphic to Fnp for all n ≥ 1, hence |F | =∞.
(2) The multiplicative group F ∗ = (F r {0}, ·) has |F ∗| = pn− 1 = q− 1 elements. Lagrange’s theorem in
the form of Corollary 7.5.9 tells us that ∀a ∈ F ∗ aq−1 = 1 (which implies that aq = a). If a ∈ F r F ∗,
then a = 0, hence aq = 0 = a.

10.7.3 Construction of finite fields We apply Theorem 10.6.1 in the special case K = Fp.

For any monic irreducible polynomial f ∈ Fp[X] of degree deg(f) = n ≥ 1, the quotient ring F =
Fp[X]/(f) is a field. It contains Fp and a distinguished element α = X = X (mod f) ∈ F such that
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f(α) = 0. Its elements are written in a unique way as

r0+r1α+· · ·+rn−1αn−1 = r(α) = r(X) (mod f) (r = r0+r1X+· · ·+rn−1Xn−1 ∈ Fp[X], deg(r) < n).

Equivalently, F is an Fp-vector space of dimension n with basis 1, α, . . . , αn−1. In particular, |F | = pn.
If f is reducible in Fp[X], then the quotient ring Fp[X]/(f) is no longer a field, but the remaining

statements above still hold, by the discussion in Section 9.3.6.

10.7.4 Computations in finite fields If we write elements of the field F = Fp[X]/(f) as residue
classes r (mod f) = r(α) of polynomials r ∈ Fp[X] of degree deg(r) < n, then we can compute sums by
addition of polynomials, and products by taking the remainder of a product of polynomials after division
by f (see the discussion in Section 9.3.6).

If r 6= 0 and deg(r) < n, then β = r (mod f) = r(α) is invertible in F . Euclid’s algorithm applied to f
and r gives an explicit Bézout relation ru+ vf = 1 for some u, v ∈ Fp[X]; then ru (mod f) = 1 (mod f)
and u (mod f) = u(α) is the inverse of β in F .

10.7.5 Examples (1) p = 2, n = 2. We write F2 = Z/2Z = {0, 1}, 1 + 1 = 0 (hence −1 = 1 in F2).
The polynomial f = X2 +X + 1 ∈ F2[X] is irreducible in F2[X], since deg(f) ≤ 3 and f has no roots in
F2 (f(0) = f(1) = 1 ∈ F2).

The quotient ring F = F2[X]/(X2 +X + 1) is therefore a field with pn = 22 = 4 elements. Explicitly,
F = {0, 1, X,X + 1} = {0, 1, α, α+ 1}, where α = X = X (mod (X2 +X + 1)) satisfies α2 + α+ 1 = 0.

For example,

α2 = −α− 1 = α+ 1, α3 = α(α+ 1) = α2 + α = −1 = 1, (α+ 1)2 = α2 + 2α+ 1 = α2 + 1 = α.

Note that

X2 −X = X(X − 1),
X4 −X
X2 −X

= X2 +X + 1 ∈ F2[X].

(2) p = 3, n = 2. In this case F3 = Z/3Z = {0, 1, 2} with 2 = 1 + 1 and 1 + 1 + 1 = 0. In particular,
2 = −1 ∈ F3. The polynomial f = X2 + 1 ∈ F3[X] is irreducible in F3[X], since deg(f) ≤ 3 and f has no
roots in F3 (f(0) = 1 and f(±1) = 2 = −1 ∈ F3).

The quotient ring F = F3[X]/(X2 + 1) is therefore a field with pn = 32 = 9 elements. Explicitly,
F = {0,±1,±X,X±1,−X±1} = {0,±1,±α, α±1,−α±1}, where α = X = X (mod (X2 + 1)) satisfies
α2 + 1 = 0.

For example,

0 = α2 + 1 = (α+ 1)(α− 1)− 1, (α+ 1)−1 = α− 1, (α+ 1)2 = α2 + 2α+ 1 = 2α = −α,
(α+ 1)4 = (−α)2 = α2 = −1, (α+ 1)3 = −(α+ 1)−1 = 1− α,
α6 + α5 − α3 − α+ 1 = (α2 + 1)(α4 + α3 − α2 + α+ 1) + α = α.

One can construct other irreducible polynomials from f by a simple change of variables. Two such
polynomials are

f±(Y ) := f(Y ± 1) = (Y ± 1)2 + 1 = Y 2 ± 2Y + 2 = Y 2 ∓X − 1 ∈ F3[X].

The same change of variables X = Y ± 1 defines an isomorphism between F and the corresponding field
F± := F3[Y ]/(f±(Y )):
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F± = F3[Y ]/(f±(Y ))
∼−→ F3[X]/(f(X)) = F, r(Y ± 1) (mod f±(Y )) 7→ r(X) (mod f(X)).

Note that

X9 −X
X3 −X

= X6 +X4 +X2 + 1 = (X2 + 1)(X4 + 1) = f(X)f+(X)f−(X) ∈ F3[X].

10.7.6 General results on finite fields Here is a list of basic properties of finite fields. We give
some indications as to how to prove them, without going into all the details.

(1) The multiplicative group F ∗ of a finite field F is cyclic (of order q − 1 = |F | − 1).
This was proved in Theorem 5.5.2 for F = Fp. The same argument shows that any finite subgroup A

of the multiplicative group K∗ of any field K is cyclic (the statement above corresponds to K = F and
A = K∗ = F ∗).

(2) The construction from Section 10.7.3 gives all finite fields. More precisely, every finite field F is
isomorphic to a field of the form Fp[X]/(f), for some monic irreducible polynomial f ∈ Fp[X].

This follows from the discussion in Section 10.6.4 applied to K = Fp, M = F and α ∈ F an arbitrary
generator of the cyclic group F ∗ (this condition implies that Fp(α) = F ).

(3) A field F with |F | = q <∞ elements exists ⇐⇒ q = pn for some prime p and n ≥ 1. Such a field is
unique up to isomorphism; it is denoted by Fq.

We know that |F | = q = pn if it exists. In such a case Proposition 10.7.2(2) implies that the elements
of F must be precisely the roots of the polynomial Xq − X ∈ Fp[X]. This polynomial has q roots
α1, . . . , αq ∈ L contained in some field L ⊃ Fp, by Corollary 10.6.2, and these roots are distinct, by
Exercise 10.6.3 (since the derivative of Xq −X ∈ Fp[X] is equal to −1 ∈ Fp[X]).

This makes the uniqueness of F intuitively obvious; the key words are “uniqueness of the splitting field”.
The existence follows from the fact that F := {α ∈ L | αq = α} is a subfield of L, since the iterated
Frobenius map ϕq : α 7→ αq is a ring homomorphism L −→ L. The field F contains all q roots αi of
Xq −X ∈ Fp[X], but it has at most deg(Xq −X) = q elements; thus |F | = q.

(4) Fq is a subfield of Fq′ ⇐⇒ q′ = qm for some integer m ≥ 1.

The implication “=⇒” is automatic, since Fq′ is a vector space over its subfield Fq. Conversely, if

q′ = qm, then Xq′ − X is divisible by Xq − X in Fp[X], and so the set of roots of Xq − X ∈ Fp[X] is

contained in the set of roots of Xq′ −X ∈ Fp[X].

(5) For q = pn and m ≥ 1, the polynomial Xqm −X ∈ Fq[X] factors as

Xqm −X =
∏

f∈PFq

deg(f)|m

f

(recall that PK denotes the set of all monic irreducible polynomials in K[X]).

Indeed, for any f ∈ PFq of deg(f) = d, the field F = Fq[X]/(f) has qd elements. As aq
d − a = 0 for all

a ∈ F , one must have f | (Xqd−X) in Fq[X]. If d | m, then (qd−1) | (qm−1), hence (Xqd−X) | (xqm−X)
in Fq[X]. Conversely, if f | (xq

m − X) in Fq[X], then αq
m

= α for all α ∈ F , hence αq
m−1 = 1 for all

α ∈ F ∗. Taking α a generator of the cyclic group F ∗, we see that qm − 1 must be divisible by qd − 1 (the
order of α). Write m = da + b with a, b ∈ N, 0 ≤ b < d. Then qm = (qd)aqb ≡ qb (mod (qd − 1)), hence
(qd − 1) | (qb − 1). This is possible only if b = 0, since 0 ≤ qb − 1 < qd − 1. Therefore d | m. Finally,
f2 - (Xqm −X) in Fq[X], since the polynomial Xqm −X ∈ Fq[X] has distinct roots, as observed in (3)
above.
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11 Appendix: Quotients

11.1 Abstract quotients

11.1.1 Quotients and partitions Quotients naturally arise from the following data:

• a set X;

• a partition X =
∐
s∈S Xs of X into a disjoint union of non-empty subsets (“classes”) Xs. In other

words, each element of X belongs to exactly one of the classes Xs.

Two elements x, y ∈ X (not necessarily distinct) are called equivalent if they belong to the same class
Xs (notation: x ∼ y). The set {Xs}s∈S of equivalence classes (which can be identified with S) is called
the quotient of X by the equivalence relation ∼ and is denoted by X/∼.

There is a canonical surjective projection map pr : X −→ X/∼ assigning to each element x ∈ X the
unique class to which it belongs.

This construction can be reformulated in several equivalent ways.

11.1.2 Quotients and projections If p : X −→ S is any surjective map between two sets, then its
fibres

Xs := p−1(s) = {x ∈ X | p(x) = s} (s ∈ S)

form a partition of X. Two elements x, y ∈ X belong to the same fibre p−1(s) if and only if p(x) = p(y) = s.
We recover the situation considered in Section 11.1.1 with X/∼= S and pr = p.

11.1.3 Relations A relation on a set X is a subset R ⊂ X ×X. If x, y ∈ X satisfy (x, y) ∈ R, we
say that x and y are in relation R, and we write xRy.

Examples: X = Z and (1) xR1y if x = y;
(2) xR2y if x 6= y;
(3) xR3y if x ≤ y;
(4) xR4y if x < y;
(5) xR5y if x ≡ y (mod 5).

A relation R on X is called

• reflexive if ∀x ∈ X xRx;

• symmetric if ∀x, y ∈ X [xRy =⇒ yRx];

• transitive if ∀x, y, z ∈ X [xRy, yRz =⇒ xRz];

• an equivalence relation if it is reflexive, symmetric and transitive.

In the above examples, R1,R3 and R5 are reflexive, R1,R2 and R5 are symmetric, and R1,R3,R4 and
R5 are transitive. In particular, R1 and R5 are equivalence relations (but R2,R3,R4 are not).

11.1.4 Quotients and equivalence relations If X =
∐
s∈S Xs is as in Section 11.1.1 and if we

define x ∼ y as above, then ∼ is an equivalence relation on X.
Conversely, assume that R is an equivalence relation on a set X. For each x ∈ X consider the subset

Cx := {y ∈ X | xRy} ⊂ X

(in Example 5 of Section 11.1.3, Cx = x (mod 5)). We have
⋃
x∈X = X (since x ∈ Cx, by reflexivity).

If y ∈ Cx and z ∈ Cy, then z ∈ Cx (by transitivity), hence Cy ⊂ Cx. However, symmetry implies that
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x ∈ Cy, hence Cx ⊂ Cy. To sum up, Cy = Cx whenever y ∈ Cx (which implies that Cx ∩ Cx′ = ∅ if
x′ 6∈ Cx).

As a result, we obtain a partition X =
∐
s∈S Xs into classes Xs = Cx (for any x ∈ Xs). The relation x ∼

y defined as in Section 11.1.1 then coincides with xRy. As in Section 11.1.1, we denote the corresponding
quotient by X/R and we say that X/R is the quotient of X by the equivalence relation R.

11.1.5 Universal property of X/R Let R be an equivalence relation on a set X. The quotient X/R
has the following universal property.

If Y is a set and f : X −→ Y is a map such that f(x) = f(x′) whenever xRx′, then there exists a
unique map f ′ : X/R −→ Y satisfying

f = f ′ ◦ pr : X −→ X/R −→ Y.

Indeed, f ′ is determined by this property: f ′(pr(x)) = f(x), and this definition makes sense, since
f(x) = f(x′) whenever pr(x) = pr(x′), by assumption.

11.1.6 Relation to G/H IfH is a subgroup of an abelian groupG, then the relation x ≡ y (modH) on
G is an equivalence relation (see Proposition 7.6.7) and the corresponding abstract quotientG/ ≡ (modH)
coincides with the set G/H defined in Corollary 7.6.5.
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12 Solutions to some of the exercises

1.1.7 (1) Every integer is of the form either 2b or 2b + 1, for some b ∈ Z. As 2 - a, we have a = 2b + 1,
hence both a− 1 = 2b and a+ 1 = 2(b+ 1) are divisible by 2. If b = 2c, then a− 1 = 4c is divisible by 4.
If b = 2c+ 1, then a+ 1 = 4(c+ 1) is divisible by 4.
(2) Both terms (a − 1) and (a + 1) are divisible by 2, and one of them is divisible by 4; their product
is then divisible by 2 · 4 = 8. Similarly, (a2 − 1) is divisible by 8 and (a2 + 1) is divisible by 2 (since
a2 + 1 = (2b+ 1)2 + 1 = 2(2b2 + 2b+ 1)); thus their product is divisible by 16. The general case is proved
in the same way by induction.

1.5.7 The solution is given, more all less, in the text of the exercise. As 2160 = 24 · 33 · 51, the number
of positive divisors of 2160 is equal to (4 + 1)(3 + 1)(1 + 1) = 40, and their sum is equal to (1 + 2 + 22 +
23 + 24)(1 + 3 + 32 + 33)(1 + 5) = 31 · 40 · 6 = 24 · 3 · 5 · 31 = 7440.

1.5.9 If Mp = 2p − 1 = q is a prime, then the sum of all positive divisors of n = 2p−1q is equal to
σ1(n) = σ1(2p−1)σ1(q) = (1 + 2 + · · ·+ 2p−1)(1 + q) = (2p − 1)2p = 2n.

Conversely, if n = 2a−1m is perfect and a > 1, 2 - m, then

2am = 2n = σ1(n) = (1 + 2 + · · ·+ 2a−1)σ1(m) = (2a − 1)σ1(m).

This implies that (2a − 1) | m, hence m = (2a − 1)k and 2a = σ1((2a − 1)k) ≥ σ1(2a − 1) ≥ 1 + (2a − 1).
Therefore both inequalities must be equalities: the first one implies that k = 1 and m = 2a−1, the second
one that 2a − 1 is a prime.

1.5.15 If (4/7)4/7 = a/b for some a, b ∈ N+, then 28b7 = 74a7, hence

∀p ∈ P 8vp(2) + 7vp(b) = vp(2
8b7) = vp(7

4a7) = 4vp(7) + 7vp(a),

which implies that 8vp(2)− 4vp(7) = 7(vp(a)− vp(b)) is divisible by 7, for each prime p ∈ P. This is false
both for p = 2 (when 8v2(2)− 4v2(7) = 8) and for p = 7 (when 8v7(2)− 4v7(7) = −4).

1.5.27 Among the two consecutive numbers a− 1, a there must be a multiple of 2: either a = 2k (when
2 | a), or a = 2k + 1 (when 2 | a − 1). Similarly, among the three consecutive numbers a − 1, a, a + 1
there must be a multiple of 3: either a = 3k (when 3 | a), or a = 3k ± 1 (when 3 | a ∓ 1). For the
same reason, among the five consecutive numbers a− 2, a− 1, a, a + 1, a+ 2 there must be a multiple of
5 (since a = 5k, 5k ± 1, 5k ± 2). However, the product (a − 2)(a − 1)a(a + 1)(a − 2) = (a3 − a)(a2 − 4)
(which is divisible by 5, by the above) is not quite equal to a5 − a = (a3 − a)(a2 + 1). Their difference
a5 − a− (a− 2)(a− 1)a(a+ 1)(a− 2) = 5(a3 − a) is divisible by 5, though.

1.6.5 (1) If x ≤ y, then min(x, y) = x and max(x, y) = y. The case x ≥ y is similar. (2) Use the formulas
in Theorem 1.6.2(2) and Theorem 1.6.3(2) and apply (1) to x = vp(a) and y = vp(b).

1.6.7 Easy induction on r.

2.3.7 (1) We need to show that, for each p ∈ P, the p-adic valuations vp(gcd(a/c, b/c)) = min(vp(a) −
vp(c), vp(b)− vp(c)) and vp(gcd(a, b)/|c|) = min(vp(a), vp(b))− vp(c) are equal to each other. This follows
from the fact that min(x− z, y − z) = min(x, y)− z holds for all x, y, z ∈ R.
(2) For each p ∈ P we have vp(a) = 0 (hence vp(a

m) = 0) or vp(b) = 0 (hence vp(b
n) = 0). In either

case, min(vp(a
m), vp(n)) = 0. Alternatively, we can use Bézout’s theorem: there exist u, v ∈ Z such that

au+ bv = 1. Raising this equality to the power m+ n− 1, we obtain (au+ bv)m+n−1 = 1. Each term in
the binomial expansion of the left hand side is divisible by am or by bn. This means that the left hand
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side is equal to amU + bnV for some U, V ∈ Z. The equality amU + bnV = 1 implies that gcd(am, bn)
divides 1.

2.3.11 (1) As p | (x− 1)(x+ 1), Euclid’s Lemma implies that p | (x− 1) or p | (x+ 1).
(2) By (1), p divides x− 1 or x+ 1. However, it cannot divide both of them, since it does not divide their
difference (x+ 1)− (x− 1) = 2. In other words, if p | (x− a) for one of the two values a ∈ {1,−1}, then
gcd(p, x+ a) = 1, hence gcd(pk, x+ a) = 1. As pk | (x− a)(x+ a), Lemma 2.3.8 implies that pk | (x− a).
(3) In this case 2 divides both x±1, hence x−1 = 2y and x+1 = 2(y+1), for some y ∈ Z. By assumption,
2k divides x2 − 1 = 22y(y + 1), hence 2k−2 | y(y + 1). If k = 2, then we can only conclude that 2 - x.
Assume that k > 2. The greatest common divisor gcd(y, y + 1) divides (y + 1) − y = 1, and so is equal
to 1. This means that 2 cannot divide both y and y + 1. The same argument as in (2) then shows that
either 2k−2 | y, or 2k−2 | (y + 1), which implies that 2k−1 | (x− 1) or 2k−1 | (x+ 1). Conversely, if either
of these conditions is satisfied, then 2k divides x2 − 1.

2.3.15 Write α = a/b, where a, b ∈ Z, b ≥ 1 and gcd(a, b) = 1. According to Theorem 2.3.14, a divides
3 and b divides 1; thus b = 1 and α = a ∈ {±1,±3}. We compute f(1) = 0, f(−1) = 8, f(3) = 24
and f(−3) = 0. The rational roots of f are, therefore, α = 1,−3. The polynomial f(x) then factors as
f(x) = (x− 1)(x+ 3)(x− 1) = (x− 1)2(x+ 3).

2.6.6 (1) Use the formula (
pr

a

)
=
pr

a

a−1∏
j=1

pr − j
j

.

As 1 ≤ a ≤ pr, each term in the product satisfies vp(j) < r = vp(p
r); thus vp(p

r−j) = min(vp(j), vp(p
r)) =

vp(j). As a result,

vp
((pr

a

))
= vp

(pr
a

)
= r − vp(a).

3.2.10 (1), (2) According to Proposition 4.1.5, a5 (mod 52) depends only on a (mod 5). Taking a =
±1,±2, we obtain a5 ≡ ±1,±7 (mod 52). Consequently, if 5 - xyz, then

x5 + y5 ≡ 0,±2,±6,±8 6≡ ±1,±7 ≡ z5 (mod 52).

(3) Alas, 17 + 27 ≡ 37 (mod 72). In fact, one can show that, for any prime p ≡ 1 (mod 3) and any r ≥ 1,
there exist x, y, z ∈ Z such that p - xyz and xp + yp ≡ zp (mod pr).

3.3.6 Induction on r (one needs to show that gcd(m1 · · ·mr−1,mr) = 1).

3.3.7 (1) The first (resp. the second) congruence is equivalent to the existence of y ∈ Z (resp. of z ∈ Z)
such that x = a+4y (resp. x = b+6z). The system has a solution if and only if the equation a+4y = b+6z
(which is equivalent to 4y − 6z = b− a) has a solution y, z ∈ Z. This is true if and only if 2 = gcd(4,−6)
divides b− a, in which case the general solution is given by y = y1 + 3t, z = z1 + 2t (t ∈ Z), and therefore
x = x1 + 12t is unique modulo 12. The same method works in (2), with 2 and 12 being replaced by
gcd(m,n) and lcm(m,n), respectively.
(3) If one drops the assumption gcd(mi,mj) = 1 for all i < j in Exercise 3.3.6, then a necessary condition
for the existence of a solution is that ai ≡ aj (mod gcd(mi,mj)) holds, for all 1 ≤ i < j ≤ r. The solution
is then unique modulo lcm(m1, . . . ,mr).
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5.2.3 Replace everywhere in the proof of Proposition 5.2.2 the number 4 by 6.

5.2.5 Given primes p1, . . . , pr ≡ 1 (mod 6), consider x := 2p1 · · · pr ∈ Z and N := x2 + 3 ≥ 22 + 3 = 7.
Let p | N be any prime dividing N . According to Exercise 5.1.11, p ≡ 1 (mod 3), hence p ≡ 1 (mod 6).
If p = pi for some i, then p | x, hence p | (N − 3) and p | N − (N − 3), which is impossible. Therefore
p 6= p1, . . . , pr.

5.2.6 The integer N in the proof of Proposition 5.2.4 satisfies N ≡ 1 (mod 4) and N ≡ 1 + 1 (mod 3),
hence N ≡ 5 (mod 12). We know that each prime p | N satisfies p ≡ 1 (mod 4), hence p ≡ 1, 5 (mod 12)
(p 6≡ 9 (mod 12), since 3 | 9 and 3 | 12). As in the proof of Proposition 5.2.2, there exists a prime p | N
such that p 6≡ 1 (mod 12); therefore p ≡ 5 (mod 12). We also know that p 6= p1, . . . , pr.

5.2.8 If we knew that the existence of a solution of x2 ≡ 3 (mod p) (for a prime p 6= 2, 3) implies that
p ≡ ±1 (mod 12), then we could take N := (4p1 · · · pr)2 − 3 ≥ 13 and argue as in the proof of Exercise
5.2.6.
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