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Jan Nekovář

(1) (A combinatorial proof of Euler’s pentagonal number formula) Inter-
pret in terms of suitable partitions the coefficients of

∞∏
n=1

(1 + qn) = (1 + q)(1 + q2)(1 + q3) · · · = 1 +
∞∑
n=1

p∗(n)qn.

Idem for the coefficients of

∞∏
n=1

(1− qn) = (1− q)(1− q2)(1− q3) · · · = 1 +
∞∑
n=1

c(n)qn.

Find a combinatorial proof of the fact that c(n) = (−1)m if n = (3m2±m)/2 (and
c(n) = 0 otherwise).

(2) (Spaces of Eisenstein series) Let k > 2 and N ≥ 1 be integers. Denote by
Eisk,N the complex vector space of holomorphic Eisenstein series of weight k and
level N . Its elements are the functions

Gk(τ, φ) =
∑
m,n∈Z

′ φ(m,n)

(mτ + n)k
(τ ∈ C \R),

where φ : (Z/NZ)2 −→ C is a function.
Express Gk(τ, φ) in terms of the Weierstrass function ℘(z;Lτ ) of the lattice

Lτ = Zτ + Z. Write it as a power series in qN = e2πiτ/N .
Show that there is a natural left action of α ∈ GL2(Z/NZ) on Eisk,N given by

α ∗Gk(·, φ) = Gk(·, α ∗ φ) (where (α ∗ φ)(m,n) = φ((m,n)α)) and a natural right
action of GL2(Q) on Eisk =

⋃
N≥1 Eisk,N given by (f |kg)(τ) = | det(g)|k/2(cτ +

d)−kf(g(τ)). Are these two actions related in any way? Is there an action of a
bigger group on Eisk that incorporates both of these actions? How can one recover
the subspace Eisk,N from Eisk in terms of these actions?

Show that all of the above makes sense for k = 2 if one considers only functions
φ satisfying

∑
m,n∈Z/NZ φ(m,n) = 0.

More generally, consider non-holomorphic Eisenstein series

Gk,s(τ, φ) = (Im(τ))s
∑
m,n∈Z

′ φ(m,n)

(mτ + n)k|mτ + n|2s
,

where s ∈ C and k + 2 Re(s) > 2. Can one obtain another Eisenstein series
Gk′,s′(τ, φ) from Gk,s(τ, φ) by applying a suitable differential (or integral) operator?
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In particular, can one relate the function∑
m,n∈Z

′ φ(m,n)

(mτ + n)α(mτ + n)β
(α, β ∈ Z, α + β > 2)

to Gα+β(τ, φ)? Can this function be written in terms of qN and Im(τ)?

(3) Show that the subgroup 〈S, T 2〉 ⊂ SL2(Z) generated by the matrices S =(
0 −1
1 0

)
and T 2 =

(
1 2
0 1

)
is equal to the theta group

Γθ =

{
γ ∈ SL2(Z)

∣∣∣∣ γ ≡ (1 0
0 1

)
,

(
0 1
1 0

)
(mod 2)

}
.

(4) Determine the subgroup Γ = 〈a, b〉 ⊂ SL2(Z) generated by b = T 2 and a =

ST 2S−1 =

(
1 0
−2 1

)
.

By considering the action of a±1 and b±1 on the discs {|z ± 1/2| < 1/2} and
the half-planes {Re(z) > 1}, {Re(z) < −1} (and their complements), show that
the group Γ is freely generated by a and b.

Why does the existence of such a free subgroup of finite index Γ ⊂ SL2(Z)
imply that there exist subgroups of finite index in Γ that are not congruence
subgroups of SL2(Z) (i.e., they do not contain any principal congruence subgroup
Γ(N) = {α ∈ SL2(Z) | α ≡ I2 (modN)})?

(5) Why is the group SO(2) isomorphic to U(1), via the map

(
cos(α) − sin(α)
sin(α) cos(α)

)
7→

eiα? Does this statement generalise to other situations?

(6) Show that {g ∈ SL2(C) | g(H) = H} = SL2(R). Show that the Cayley map
τ 7→ (τ − i)/(τ + i) = w is a holomorphic isomorphism between H and the open

unit disc D = {|w| < 1}. Determine the groups G̃ = {g ∈ SL2(C) | g(D) = D}
and K̃ = {g ∈ G̃ | g(0) = 0}. For a, b ∈ D give an explicit element g ∈ G̃ such
that g(a) = b. Determine all holomorphic isomorphisms f : D

∼−→ D (hint: use
the Schwarz Lemma from complex analysis to treat the case f(0) = 0). Idem for
holomorphic isomorphisms H ∼−→ H.

(7) What are natural higher-dimensional analogues of H, D, the Cayley map, the

groups SL2(R) ⊃ SO(2) and G̃ ⊃ K̃?

(8) Let a, b,N ≥ 1 be integers satisfying (a, b,N) = 1. Show that there exists an
integer b′ ≡ b (modN) such that (a, b′) = 1. Deduce that the natural morphism

2



SL2(Z) −→ SL2(Z/NZ) is surjective. What happens if Z (resp. N) is replaced
by a Dedekind ring and N by a non-zero ideal of A?

(9) (Lattices with full level structures) Let N ≥ 1 be an integer. A full
level N structure on a lattice L ⊂ C is an isomorphism of abelian groups λ :
L/NL

∼−→ (Z/NZ)2 (where we consider elements of (Z/NZ)2 as row vectors).
Show that, for any integer k ∈ Z, there is a natural bijection between the space
of functions F : {(lattices L ⊂ C, λ : L/NL

∼−→ (Z/NZ)2} −→ C satisfying
∀t ∈ C× F (tL, λ ◦ t−1) = t−kF (L, λ), the space of functions f̃ : (C \ R) ×
GL2(Z/NZ) −→ C satisfying

∀α =

(
a b
c d

)
∈ GL2(Z) ∀β ∈ GL2(Z/N/Z) f̃

(
aτ + b

cτ + d
, αβ

)
= (cτ+d)k f̃(τ, β)

and an analogous space of functions f : H × GL2(Z/NZ) −→ C, this time with
α ∈ SL2(Z). Describe f in terms of a collection of independent functions fu :
H −→ C (u ∈ (Z/NZ)×) satisfying appropriate functional equations.

(10) (Basic theta function) Deduce from Poisson’s formula that∑
n∈Z

e−πt(n+x)
2

= t−1/2
∑
m∈Z

e−πm
2/t+2πimx (x, t ∈ R, t > 0).

Let φ : Z/NZ −→ C be a function. Denote by φ̂ its Fourier transform: φ̂(b) =∑
a∈Z/NZ φ(a)e2πiab/N . Relate the theta function θφ(τ) =

∑
n∈Z φ(n)eπin

2τ to

θφ̂(−1/N2τ).
For any rational number a/c (a, c ∈ Z), find an expression for the limit S(a/c) =

limt→0+ t
1/2θ(a/c+ it). Deduce a formula for the eighth root of unity in the trans-

formation formula for θ under an arbitrary element of Γθ. What happens if one
compares S(a/c) to S(−c/a)?

Show that Euler’s pentagonal number formula implies that

η(24τ) = q
∞∏
n=1

(1− q24n) = θφ(τ),

for a suitable function φ : Z/12Z −→ C. Deduce from the previous discussion
that η(−1/τ) =

√
τ/i η(τ).

(11) (Hyperbolic geometry in H and D) Show that the hyperbolic (Poincaré)
metric ds2 = (dx2 + dy2)/y2 on H (τ = x + iy) is invariant under the action of
SL2(R).
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Show that the vertical half-lines x = c are geodesics and compute the corre-
sponding distance d(ia, ib) in this metric (0 < a < b). Interpret this distance in
terms of a suitable cross ratio.

Determine geometrically all geodesics and isometries with respect to the metric
ds2.

Compute the area of a geodesic triangle.
What metric on D corresponds to ds2 under the Cayley map? Show that hy-

perbolic circles d(·, P ) = r in H and in D are Euclidean circles, and vice versa.
Determine the centre and the hyperbolic radius of the hyperbolic circle in H con-
taining ia and ib (0 < a < b). Determine its hyperbolic circumference and area.

Determine the set of points at a fixed distance from a given geodesic, and the
set of points equidistant from two points.

(12) (The modular tessellation of H) Apply to the geodesic triangle ∆ ⊂ H
with vertices ∞, 0, 1 all elements of SL2(Z). Which triangles are obtained in this
way, and what kind of a pattern do they form?

(13) (Free subgroups of PGL2(C) from geometry) Is there a general con-
struction of free subgroups of PGL2(C) encoded in geometry of several pairs of
discs in C ∪ {∞} (as we saw in a special case in (4))?

(14) (The upper half-plane H and quadratic forms) The action of G =
SL2(R) on H is transitive and the stabiliser Gi of i ∈ H is the special orthogonal
group K = SO(2). On the other hand, the standard linear action of SLn(R) on Rn

gives rise to a transitive action on the set of all positive definite quadratic forms on
Rn of fixed determinant, and the stabiliser of the standard form x21+ · · ·+x2n is the
subgroup SO(n). Describe explicitly a natural correspondence between points of
H and positive definite quadratic forms on R2 of determinant equal to 1, which is
compatible with the action of SL2(R). What sets of quadratic forms do geodesics
in H correspond to?

(15) (Möbius geometry) The group of transformations of C ∪ {∞} given by
Möbius maps z 7→ w = (az + b)/(cz + d) (a, b, c, d ∈ C, ad − bc 6= 0) and their
complex conjugates z 7→ w can be described geometrically as the group generated
by symmetries (inverses) with respect to Euclidean circles and affine lines.

What can one say about the group generated by analogous symmetries in a
higher-dimensional Euclidean space (completed by a one point {∞} at infinity)?

One can identify C ∪ {∞} with a sphere S2 ⊂ R3 via stereographic projection
of S2 from the north pole to the equatorial plane. Can the Möbius transforma-
tions (and their complex conjugates) acting on C ∪ {∞} be described in terms of
geometry of R3 ⊃ S2? If yes, what is the relation to the hyperbolic geometry of
H equipped with the action of SL2(R)?
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