Introduction to Modular Forms - Questions and exercises 2 Jan Nekovár

(1) (Modular forms on $\Gamma(N)$ and $\Gamma_{0}(N)$) Let $N \geq 1, \alpha=\left(\begin{array}{cc}N & 0 \\ 0 & 1\end{array}\right)$. Show that $\alpha^{-1} \Gamma(N) \alpha \supset \Gamma_{1}(N)$. Deduce that any $f(\tau) \in M_{k}(\Gamma(N))$ can be written as $f(\tau)=\sum_{j=1}^{M} c_{j} f_{j}(\tau / N)$, where $c_{j} \in \mathbf{C}$ and $f_{j}(\tau) \in M_{k}\left(\Gamma_{0}\left(N^{2}\right), \chi_{j}\right)$ for a suitable Dirichlet character $\chi_{j}:\left(\mathbf{Z} / N^{2} \mathbf{Z}\right)^{\times} \longrightarrow \mathbf{C}^{\times}$.
(2) (Hauptmodules for $\Gamma_{0}(p)$) Let $N \geq 1$ be an integer. Show that $f_{N}(\tau)=$ $\Delta(N \tau) / \Delta(\tau)$ is a meromorphic function on $X_{0}(N)$; compute its divisor. If $N \in$ $\{2,3,5,7,13\}$, show that $g_{N}=f_{N}^{1 /(N-1)}$ is also a meromorphic function on $X_{0}(N)$ and that g_{N} defines an isomorphism $X_{0}(N) \xrightarrow{\sim} \mathbf{P}^{1}(\mathbf{C})$.
(3) (Ford circles) All examples of fundamental domains that we have seen (for $\Gamma=S L_{2}(\mathbf{Z}), \Gamma(2), \Gamma_{\theta}, \Gamma^{0}(p), p>2$ prime $)$ were of the form $\{u<\operatorname{Re}(\tau)<u+h\} \cap$ $\bigcap D_{j}$, where D_{j} is the exterior of a suitable circle $\left|c_{j} \tau+d_{j}\right|=1$. Why was that the case? Is there a general statement along these lines?

In the examples above, $h=1,2,2, p$ and the circles are given by $|\tau+n|=1$ $(n \in \mathbf{Z}),|2 \tau+(2 n+1)|=1(n \in \mathbf{Z}),|\tau+2 n|=1(n \in \mathbf{Z})$ and $|\tau+n|=1(n \in \mathbf{Z}$, $p \nmid n)$, respectively.
(4) (Rankin-Selberg L-function for Hecke eigenforms) If

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\prod_{p} \frac{1}{\left(1-\alpha_{p} p^{-s}\right)\left(1-\alpha_{p}^{\prime} p^{-s}\right)} \tag{1}\\
& \sum_{n=1}^{\infty} \frac{b_{n}}{n^{s}}=\prod_{p} \frac{1}{\left(1-\beta_{p} p^{-s}\right)\left(1-\beta_{p}^{\prime} p^{-s}\right)}, \tag{2}
\end{align*}
$$

what can one say about $\sum_{n=1}^{\infty} a_{n} b_{n} / n^{s}$?
Let $k, l>2$ be even integers and $f \in S_{k+l}\left(S L_{2}(\mathbf{Z})\right)$ a normalised Hecke eigenform. Compute the Petersson scalar product

$$
\left(f, E_{k} E_{l}\right)_{S L_{2}(\mathbf{Z})}=\iint_{S L_{2}(\mathbf{Z}) \backslash \mathcal{H}} f(\tau) \overline{E_{k}(\tau) E_{l}(\tau)} y^{k+l} \frac{d x d y}{y^{2}} .
$$

(5) A compact Riemann surface of genus $g \geq 2$ is called a Hurwitz Riemann surface (or a Hurwitz curve when considered as a non-singular projective complex curve) if its group of holomorphic automorphisms (which are all algebraic) has maximal possible order $84(g-1)$ (see Exercise 6 below).

Show that $X(7)$ is a Hurwitz curve of genus 3. Make explicit the ramification points of $X(7) \longrightarrow X(1) \xrightarrow{\sim} \mathbf{P}^{1}(\mathbf{C})$ and the corresponding ramification indices.
(6) (Theorem of Hurwitz) Let X be a compact Riemann surface of genus $g \geq 2$, let G be the group of holomorphic automorphisms of X.
(a) By considering the actions of G on $H_{1}(X, \mathbf{Z}),\left(H_{d R}^{1}(X, \mathbf{R}), \cup\right)$ and $\Omega^{1}(X)$ respectively, show that the image of G in $\operatorname{Aut}_{\mathbf{z}}\left(H_{1}(X, \mathbf{Z})\right) \xrightarrow{\sim} G L_{2 g}(\mathbf{Z})$ is finite and the action of G on $\Omega^{1}(X)$ is faithful; deduce that G is finite.
(b) Show that, for each $x \in X$, the stabiliser $G_{x}=\{g \in G \mid g(x)=x\}$ is a finite cyclic group and there exists a local coordinate z_{x} at x such that $z_{x} \circ g=\chi(g) z_{x}$ for all $g \in G_{x}$, where $\chi: G_{x} \longrightarrow \mathbf{C}^{\times}$an injective character. Deduce that $Y=G \backslash X$ has a natural structure of a compact Riemann surface.
(c) Show that, for each $x \in X$, the ramification index of the projection $\pi: X \longrightarrow Y$ at x is equal to $e_{x}=\left|G_{x}\right|$ and depends only on $y=\pi(x)$; denote it by e_{y} and let $\operatorname{Ram}=\left\{y \in Y \mid e_{y} \neq 1\right\}$ be the ramification locus of π.
(d) Deduce from the Riemann-Hurwitz formula that

$$
\frac{2 g-2}{|G|}=2 g(Y)-2+\sum_{y \in \operatorname{Ram}}\left(1-\frac{1}{e_{y}}\right) .
$$

(e) Show that $|G| \leq 84(g-1)$, with equality if and only if $g(Y)=0, \mid$ Ram $\mid=3$ and $\left\{e_{y}\right\}=\{2,3,7\}$.
(7) (Theorem of Siegel) If $\Gamma \subset S L_{2}(\mathbf{R})$ is a Fuchsian subgroup of the first kind, then $\operatorname{vol}(\Gamma \backslash \mathcal{H}) \geq \pi / 21$. Is there any relation to Exercise 6?
(8) (Eisenstein series and modular units) Modular forms without zeroes in \mathcal{H} (and therefore with divisor supported on the cusps) are very interesting objects (example: $\Delta(N \tau)$). Quotients of such modular forms are modular units: meromorphic functions on X_{Γ} with divisor supported on the cusps of X_{Γ} (example: $\Delta(N \tau) / \Delta(\tau))$.

Recall that, for any integer $k \geq 3$,

$$
\wp^{(k-2)}(z ; \mathbf{Z} \tau+\mathbf{Z})=(-1)^{k}(k-1)!G_{k}(z, \tau), \quad G_{k}(z, \tau)=\sum_{m, n \in \mathbf{Z}} \frac{1}{(z+m \tau+n)^{k}} .
$$

We know that, for each $(u, v)=\left(\frac{a}{N}, \frac{b}{N}\right) \in\left(\frac{1}{N} \mathbf{Z} / \mathbf{Z}\right)^{2} \backslash\{(0,0)\}$,

$$
G_{k ;(u, v)}(\tau)=G_{k}\left(\frac{a \tau+b}{N}, \tau\right)=N^{k} \sum_{\substack{m \equiv a(\bmod N) \\ n \equiv b(\bmod N)}} \frac{1}{(m \tau+n)^{k}} \in M_{k}(\Gamma(N)) .
$$

Show that:
(a) If $(u, v) \in\left(\frac{1}{N} \mathbf{Z} / \mathbf{Z}\right)^{2} \backslash\left(\frac{1}{2} \mathbf{Z} / \mathbf{Z}\right)^{2}$, then the function $G_{3 ;(u, v)}(\tau)$ has no zeroes in \mathcal{H}.
(b) If $v \in\left(\frac{1}{N} \mathbf{Z} / \mathbf{Z}\right) \backslash\{0\}$, then $G_{k ;(0, v)}(\tau) \in M_{k}\left(\Gamma_{1}(N)\right)$ and

$$
\forall \alpha=\left.\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in \Gamma_{0}(N) \quad G_{k ;(0, v)}\right|_{k} \alpha=G_{k ;(0, D v)} .
$$

(c) If $v=\frac{b}{N} \in\left(\frac{1}{N} \mathbf{Z} / \mathbf{Z}\right) \backslash\left(\frac{1}{2} \mathbf{Z} / \mathbf{Z}\right)$, then

$$
\lim _{\operatorname{Im}(\tau) \rightarrow+\infty} G_{k ;(0, v)}(\tau)=N^{k} \sum_{\substack{n \in \mathbf{Z} \\ n \equiv b[N]}} \frac{1}{n^{k}} \neq 0
$$

(d) If $u=\frac{a}{N}$, where $0<a<N / 2$, then $G_{k ;(u, 0)}=c q_{N}^{a}+\cdots$ as $\operatorname{Im}(\tau) \rightarrow+\infty$, where $q_{N}=e^{2 \pi i \tau / N}$ and $c \neq 0$.
(e) If $p>2$ is a prime, then

$$
f(\tau)=\prod_{b=1}^{\frac{p-1}{2}} G_{3 ;\left(0, \frac{b}{p}\right)}(\tau) \in M_{\frac{3(p-1)}{2}}\left(\Gamma_{0}(p),\left(\frac{\cdot}{p}\right)\right) .
$$

This function has the same divisor as $\left(\eta^{p}(\tau) / \eta(p \tau)\right)^{3}$, hence

$$
\left(\eta^{p}(\tau) / \eta(p \tau)\right)^{3}=c f(\tau) \in M_{\frac{3(p-1)}{2}}\left(\Gamma_{0}(p),\left(\frac{\cdot}{p}\right)\right) \quad(c \neq 0)
$$

(f) Replace \wp^{\prime} in the previous construction by \wp to show that, for a prime p,

$$
\left(\eta^{p}(\tau) / \eta(p \tau)\right)^{2} \in M_{p-1}\left(\Gamma_{0}(p)\right), \quad \eta^{p}(\tau) / \eta(p \tau) \in M_{\frac{p-1}{2}}\left(\Gamma_{0}(p),\left(\frac{\cdot}{p}\right)\right)
$$

(9) (Examples of cusp forms) Let $k, N \geq 1$ be integers such that $k(N+1)=24$.

Let $f_{k}(\tau)=(\eta(\tau) \eta(N \tau))^{k}$. Show that:
(a) If $S_{k}\left(\Gamma_{1}(N)\right) \neq 0$, then $S_{k}\left(\Gamma_{1}(N)\right)=\mathbf{C} f_{k}$.
(b) If $S_{k}\left(\Gamma_{0}(N)\right) \neq 0$, then $S_{k}\left(\Gamma_{0}(N)\right)=S_{k}\left(\Gamma_{1}(N)\right)=\mathbf{C} f_{k}$.
(c) Deduce from Exercise 8 that

$$
\begin{aligned}
(\eta(\tau) \eta(11 \tau))^{2} \in S_{2}\left(\Gamma_{0}(11)\right), & (\eta(\tau) \eta(5 \tau))^{4} \in S_{4}\left(\Gamma_{0}(5)\right), \\
\eta(\tau) \eta(23 \tau) \in M_{1}\left(\Gamma_{0}(23),\left(\frac{\cdot}{23}\right)\right), & \eta(\tau) \eta(7 \tau) \in S_{3}\left(\Gamma_{0}(7),\left(\frac{\dot{7}}{7}\right)\right)
\end{aligned}
$$

(10) Let $p>2$ be a prime, let $d=(p-1,12)$. Show that:
(a) The function $(\eta(p \tau) / \eta(\tau))^{24 / d}$ is a meromorphic function on $X_{0}(p)$. Its divisor is equal to $\frac{p-1}{d}((\infty)-(0))$.
(b) The result in (a) is optimal: the class of the divisor (∞) - (0) in $C l^{0}\left(X_{0}(p)\right)$ is torsion, of order $\frac{p-1}{d}$ (which is equal to the numerator of $\frac{p-1}{12}$).

It turns out that, according to a theorem of Manin and Drinfeld, all divisors of the form $(x)-(y)$ (where x, y are arbitrary cusps of $X(N)$) have torsion class in $C l^{0}(X(N))$.
(11) Is it just a coincidence that the coefficients of

$$
D \Delta / \Delta=E_{2}(\tau)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}
$$

are given by $\sigma_{1}(n)=\operatorname{deg} T(n)$?

