Evaluation of Complex Elementary Functions
A New Version of BKM

Jean-Claude Bajard and Laurent Imbert

LIM — CNRS ESA 6077
Université de Provence, Marseille, France

ABSTRACT

We present an improvement of BKM: a shift-and-add algorithm based on the CORDIC that allows fast computation
of complex exponential and logarithm functions. BKM is accelerated by the use of a redundant binary number
system. Unlike the previous redundant CORDIC methods, we do not need neither to calculate the scale factor
during the computation, nor to double the number of iterations. So our algorithm is suitable for an efficient hardware
implementation.

Keywords: BKM, elementary functions, redundant number system, CORDIC, complex numbers, hardware algo-
rithm.

1. INTRODUCTION

The CORDIC algorithm was introduced by J. Volder [1] in 1959 and generalized by Walther [2] in 1971 to compute
logarithms, exponentials, trigonometric functions, rotations and square roots. It is very attractive since the same
algorithm allows the computation of many elementary functions using only simple shift-and-add steps. CORDIC
is implemented in many pocket calculators and arithmetic coprocessors. Recent survey can be found in [3]. In an
other hand, Henry Briggs had proposed in the 17th century an algorithm for computing logarithms which was used
to make the first logarithm table.

The BKM algorithm which was presented for the first time in [4], merges CORDIC and Briggs’ algorithm. It
allows us to compute many complex functions (logarithm, exponential, ...) and to perform rotations, as well as
complex multiplications and divisions without scaling factor. BKM is very attractive for an hardware implementation
since it takes both advantages of the shifts-and-add methods, and in the use of redundant arithmetic [5].

Nevertheless, in its original form, the computation of the complex logarithm (L-mode of BKM) is not trivial
since it requires a dedicated first step with many comparisons. In this paper, we propose some improvements for the
computation of the complex logarithm. This new algorithm converges in a slightly larger domain. We define a new
range reduction step which can be easily performed by additions and shifts, and we propose a new approach to the
proof of the convergence.

In the next section we will describe the former BKM algorithm. Then, in section 3 we propose our improvements
of the L-mode and proved it in section 4. A dedicated circuit will be proposed in section 6.

2. THE BKM ITERATION

The BKM algorithm computes the complex exponential and logarithm functions. From these computations, we can
deduce a lot of other complex or real functions such as trigonometric functions, 2-D rotations, complex multiplications
and divisions, square roots, ...

As CORDIC based methods, BKM essentially consists of finding a representation of a number in a numeric
system, which is interpreted in another one to obtain the desired evaluation [6].

Further author information: (Send correspondence to Laurent Imbert)
Jean-Claude Bajard : Jean-Claude.Bajard@gyptis.univ-mrs.fr
Laurent Imbert : Laurent.Imbert@gyptis.univ-mrs.fr

For instance, to compute the logarithm of x we find a sequence dy = —1,0, 1, such that:
e [] (1 +d27%) ~1 (1)
k=1

Thus, the representation of % in this multiplicative system gives the logarithm of x in the additive one.

Inz~—Y In(l+d27) (2)
k=1

BKM is based on the following iterations:
Ek+1 = FE (1 + dk27k) (3)
L1 =Ly —In (1 +dp27%) (4)

with dy = d} +id}, and d,di, = —1, 0, 1
e E-mode: If we find a sequence dj such that Lj goes to 0, then we will obtain E}, — Eqelr,

e L-mode: If we find a sequence dj such that Fj goes to 1, then we will obtain Ly, — Lq + In (Fy).

In the following we will focus on the L-mode of the algorithm since it is the most complex part of the original
algorithm and it needed to be improved. The E-mode is well studied in [4].

3. COMPUTATION OF THE LOGARITHM FUNCTION (L-MODE)
So, in this mode, our goal is to find a sequence dj such that Fjy goes to 1.
If we define: Sy = 2* (E), — 1), then eq. 3 becomes:

Skt1 =2 (Sk + dk) + 2_k+1Skdk (5)

One can easily see that if we find a sequence dj, such that Sy is bounded, then Ej converges to 1. We propose
the following algorithm to computes such a sequence.

3.1. New BKM algorithm for the L-mode:
e Start with Fy € Py ={x +iy; 0.64 <z <14, and — %x <y< %x}
o Initialize Sy = 22 () — 1)
e for k =2 to n (n depends on the accuracy required)

_ Sk+1 =2 (Sk =+ dk) =+ 27k+15kdk
Liy1 =Ly — In (1 + de—k)
with dy = di, +idi, and dj, di. = —1,0, 1.
— define 5,2 et 5,2 as the values obtained by truncating the real and imaginary parts of S} and S} after their
4th fractional digits, where Sy, = S} +i5],.

if Sp<-% then, di, =1
- if—%fs,zgé then,d’,;zg
if%<5’£ then, di =1
ifg,ig—i then, dj, = 1
=4 if —3<Sp <5 then, di =0
if%<5’}c then, dj, =1
] S bounded
e Result: { Ly — Ly +1n(EY)

Remarks:

The major differences with the algorithm presented in [4] can be resumed in two points:

e The convergence domain is slightly different: By € Py = {x +iy; 0.64 <2 < 1.4, and — 22 <y < Zz}

e The first iteration of the original algorithm, which was rather tricky, is now useless since this new domain allows
us to choose d; = 0. Thus we have only one kind of very simple iteration, and then, the algorithm proposed is
now really efficient for an hardware implementation.

3.2. About the range reduction

The modification of the convergence domain modifies also the reduction part of the algorithm. For the logarithm
function, the range reduction is multiplicative. Thus, in order to compute the logarithm of z, we have to define K
such that K x z becomes to the convergence domain of the algorithm, then compute In(z) = In(K x z) — In(K). K
is selected to reduce the multiplication K X z to shifts and additions.

For our algorithm the range reduction is very easy since we can define K with relatively simple comparisons. Our
goal is to define a constant K such that, for each complex z = = + iy, the product K x z € Py = {z +iy; 0.64 < z <
1.4, and — %x <y< %x}

The range reduction is done in 3 steps.

In the first one we use symmetrical properties to obtain a point z = x + iy belonging to the domain:
x>0
O<y<uz

if we consider the polar representation of z = pe'®, this square with 0 < 0 < I

Then we define the complex number k as follow:

if v<y<g then k=1-—i
if $<y<ig then k=1-3
Thus, we obtain a point 2’ = k X z such that —%Z,) < $(2') < 0. This ensure that 2 belongs to an area which is

included into the convergence domain between x = 0.64 and = = 1.4.

In the third step, we define the real number k' as the power of 2 which satisfies 0.64 < R(k’ x 2’) < 1.4. The
figure 1 shows the 3 steps of this reduction step.

One can notice that the three steps requires multiplications but each can be done using only additions and shifts.
Thus, that new range reduction is very easy to perform.

4. A NEW PROOF OF THE CONVERGENCE

In [4], we used the following property: “if n > 4 and ||.S,|| < 2, then for any k > n, ||Si| < 2”, and we proved that for
Eie{z+iy; 05 <z <13and — % <y <2}, the algorithm builds a sequence Sy, such that for k = 6, ||Se| < 3.
Thus, considering the previous property, we obtained that for k£ > 6, ||Sk|| < 3, in other words, that the algorithm
converges. The major drawback of that proof is the number computations. Actually, the original proof required a
program which computes approximately 95 vertex of polygons.

Now, we propose a new method to the proof which requires very much less computations. Thus we can perform it
by a pen-and-pencil method. As the original one, this new proof is geometric and uses the same property: “if n > 4
and ||Sy| < 3, then for any k > n, ||Si|| < 2”. In the following, we will consider complex numbers as 2-D points,
and operations as plane transformations.

Each iteration of the algorithm computes the transformation 74, , where the value Sj4; is the image of Si:

Tay © Sk = Spt1 = 25k (1+ di27%) + 24y,

y=x
1.5+

1 y=x/2

) -7 y=05
1-i o2

1- 1 A
051 \ 2
0102 04 o6 08 113 1/4 16 18 2
24 2 ‘/L

y=2x/9

-0.54

~ y=-x/3

TS yzaxss

Figure 1. Range reduction for the logarithm function (L-mode).

Figure 2. the square P, and its antecedent computed with d, = —1 — 4.

Unlike the previous one, that new proof is ascendant. We consider one step k£ + 1 > 4, and we compute the

values at step k. Let us consider that for k + 1 > 4, [|Sk41]] < %, in other words, Si4+1 is inside the square
P= [—%, %] +1 [—%, %} In order to find antecedents of Si+1, we have to compute the 9 antecedents of P depending

on the 9 values of d, (=1 —14, —1, =144, —i, 0, i, 1 —4, 1, 1+41).

We define the reciprocal function:

Sk+1 — 2d

-1 . _ c+1 k

T S S S g g

For instance, figure 2 shows P and one of its antecedent computed with dp = —1—1. If we call P’ that antecedent,

it is clear that the image, by 7_1_;, of each point of P’ belongs to P.

The principle of our new proof is to start with the square P at one step greater than 4, and to compute all its
antecedents for the previous step. Then go back like that up to the first iteration.

To be sure to overlap our convergence domain, we start with P at step 7 and we compute its 9 antecedent at step
6. We obtain 9 overlapping polygons. The union of these polygons could be used to go back to step 5, but in order

B A
N
I M
154
M
J K
D
C
15 1 45 0 o5 1 15
-05
1
-15
N M

Figure 3. The trapezoid T defined with the 9 antecedents of P at step 6.

to decrease the number of computations, we define a trapezoid enclosed into this union of 9 polygons stemmed from
P (see figure 3). In the following, we call T} the trapezoid defined at step k.

Now we must verify that the trapezoid 7§ is correct. If we apply the algorithm to each points of T, whatever
the choice of the algorithm may be (see dashed lines on fig 3), the points computed must be in the square P at step
7. Let us explain that with an example:

Let (A, B, C, D) be the antecedent of P computed with dg = —1 — .
Ts = (M, N, N', M’) is the trapezoid defined using the 9 antecedents of P at step 6. I is the point of intersection of
the segment [M N] and the straight line z = £, K is the point of intersection of the segment [M M’] and the straight
line y = 1, and J is the point of coordinates (3, 3). The two straight lines correspond to the splitting into which
the algorithm gives dg = —1 — 1.
It is easy to verify that the points M, I, J, and K belongs to the polygon (A4, B, C, D), and therefore the convex
polygon (M, I, J, K) is enclosed into the polygon (A, B, C, D).
Thus we verify that the choice of dg = —1 — i, for the points of the polygon (M, I, J, K) allows to embed it in P.

As we use redundant number system to write Si and Ly, we can not easily make comparisons, so we only examine
the first 4th digits of the real and imaginary parts of Sy to choose each di. Thus, in this proof, we must take care

to the error due to the comparisons. For instance, rather than consider z = % and y = 1 we use the two straight

2
lines z = % — % and y = % — % in our example. We verify in the same way the enclosure of the 9 zones of
(M, N, N', M) into the 9 polygons stemmed from P. In order to finish the proof, we use the same method with
Ts = (M, N, N', M), then with the trapezoids Ts, Ty, T3, T>, and T} defined at each step. The figure 4 shows the

progress of the proof.

It is clear that starting with By € Py = {z +iy; 0.64 <2 < 1.4, and — 2z <y < 2z}, i.e. the area into which
dy = 0, the new algorithm converges (see figure 5).

One can notice that, in order to also prove the convergence of the original algorithm, we have defined a pentagon
rather than a trapezoid at the iteration 2, and we have considered the special cutting out of the first iteration.

We have proved that starting with E; into Py, the new algorithm converges. This proof require much less
computations than the original one and it can be done by a pen-and-pencil method.

Actually, to define T)_1, we compute the 9 antecedents of T}, (with k = 7---2). The polygons considered having
less than 5 vertices, we compute less than 9 x 5 transformations by 7, ! at each step. Thus the proof requires less

-2

(a) step 5

—ofs

25

(b) step 3

Figure 4. The steps 5 and 3 of the proof.

Figure 5. At step 1

Lo Ey

y \

‘ range reduction ‘

L FEr
‘ init. step ‘
4
Lz 52 digit selection 4
’
1 1 d
dy,
arctan Table In Table w
= L, = Sk T——
@
Computation of L, Computation of Sy, ¢
l Ly+1 =2 Sk+1

Figure 6. circuit for the L-mode of BKM

than 9 x 5 x 6 = 270 computations of 2-D points. For symmetrical reasons we can approximatively divide by 2 the
number of points to be computed.

5. HARDWARE IMPLEMENTATION

In this section, we present a brief description of the implementation for the calculation of In(z). The architecture
proposed here uses directly the algorithm presented above. As in previous sections, we consider only the L-mode of
the algorithm. We shows in figure 5 the different components of a dedicated circuit for the L-mode.

The computations performed during a BKM iteration are:

e For the variable L:

1 .)
;+1:L;—§1n[1+d;x2—k+1+(;+d;)x2—2k} (6)
i i i 2%
E+1 — Lk — ay, arctan (W) (7)
e For the variable S:
Sy =2(Sp +dy) + 27 (Spdy — Sidy) (8)
S =2 (S +di) + 27 (S1d), + Sidy) (9)

We have shown that BKM allows the computation of the complex logarithm and exponential functions. Therefore,
it makes it possible to compute many elementary functions of real and complex variables (complex exponential and
logarithm functions, complex multiplication and division, complex functions (ab)e® and (%) e?, real functions sin,
cos, arctan £, In(z® + y?), zv/a, zva? + b2, ©/Va? + b?, and 2-D rotations). You can refer to [4], for the details of
the way these functions are obtained.

In order to obtain p significant bits, BKM roughly needs p iterations and the storage of 92—” constants. BKM
looks more complicated than CORDIC but the use of a redundant number system makes it more interesting since
additions (subtractions) can be performed without carry propagation. Several authors suggested redundant versions
of CORDIC, to get faster iterations [7, 8, 9, 10], but it requires a doubling of the iterations in space or in time.

6. CONCLUSION

We have presented a new version to the BKM algorithm which improves the original one, and which can be efficiently
implemented on hardware. This algorithm becomes more interesting to implement than others redundant CORDIC. It
allows to compute more functions without the drawback of the scaling factor. Elementary operations can be performed
in redundant arithmetic. Thus we obtain an efficient implementation of the BKM algorithm. The drawback of the
first iteration has disappeared without reduce the domain of convergence. Now at each step, the digit selection is
made independently on the real and imaginary parts: i.e, the real (respectively imaginary) part of dj, only depends
of the real (respectively imaginary) part of Si. Furthermore, the range reduction is always made with only one
shift-and-add operation. Unlike the original one which was very complicated, the new proof proposed in this paper
is easy and can be shaped by hand.

10.

REFERENCES

J. Volder, “The CORDIC computing technique,” IEEE Transactions on Computers , 1959. Reprinted in E. E.
Swartzlander, Computer Arithmetic, Vol. 1, IEEE Computer Society Press Tutorial, Los Alamitos, CA, 1990.

. J. S. Walther, “A unified algorithm for elementary functions,” Joint Computer Conference Proceedings , 1971.

Reprinted in E. E. Swartzlander, Computer Arithmetic, Vol. 1, IEEE Computer Society Press Tutorial, Los
Alamitos, CA, 1990.

J. M. Muller, Elementary functions, Algorithms and Implementation, Birkhduser, 1997.

J. C. Bajard, S. Kla, and J. M. Muller, “BKM : A new complex algorithm for complex elementary functions,”
IEEE Transactions on Computers 43, pp. 955-963, august 1994.

A. Avizienis, “Signed-digit number representation for fast parallel arithmetic,” IRE Transaction on electonic
computers 10, pp. 389-400, 1961.

J. M. Muller, “Discrete basis and computation of elementary functions,” IEEE Transactions on Computers 34(9),
pp. 857862, 1985.

H. Dawid and H. Meyr, “The differential CORDIC algorithm: Constant scale factor redundant implementation
without correcting iterations,” IEEE Transactions on Computers 45, pp. 307-318, mar 1996.

M. D. Ercegovac and T. Lang, “Redundant and on-line CORDIC: Application to matrix triangularization and
SVD,” IEEFE Transactions on Computers 39, pp. 725-740, jun 1990.

N. Takagi, T. Asada, and S. Yajima, “Redundant CORDIC methods with a constant scale factor for sine and
cosine computation,” IEEE Transactions on Computers 40, pp. 989-995, september 1991.

J. Duprat and J. M. Muller, “The CORDIC algorithm: New results for fast VLSI implementation,” IEEFE
Transactions on Computers 42, pp. 168-178, feb 1993.

