Minimalism in Symmetric Cryptography

Anne Canteaut
Inria, Paris

NAC 2024, February 29, 2024
inzéa

Minimalism

Credit: Hans Peter Schaefer

Maybe less exciting?

Maybe less exciting?

Why is minimalism interesting?

Why is minimalism interesting?

Besides (niche) application needs, it helps us understand where security comes from.

Outline

1. Designing a practical PRP
2. How to make it lightweight?
3. Possible weaknesses coming from "minimal" Sboxes

Designing a Practical PRP

Practical PRP

$$
E_{k}:\{0,1\}^{n} \longrightarrow\{0,1\}^{n}
$$

- indistinguishable from randomly chosen permutations of $\{0,1\}^{n}$ with $n \in\{64,128\}$
- implementable

Iterated construction

Iterated construction

Iterated construction

AES [Daemen-Rijmen 98][FIPS PUB 197]

- blocksize: 128 bits
- 10 rounds for the 128 -bit key version
- Sbox operates on 8 bits
- diffusion layer is linear over $\mathbf{F}_{2}{ }^{8}$
- nonlinear key schedule.

How to make it lightweight?

Lightweight block ciphers

AES [Daemen-Rijmen 98][FIPS PUB 197]

- blocksize: 128 bits
- Sbox operates on 8 bits
- diffusion layer is linear over $\mathbf{F}_{2}{ }^{8}$

To make it smaller in hardware:

- blocksize: 64 bits
- smaller Sbox, on $\mathbf{3}$ or $\mathbf{4}$ bits
- linear diffusion layer over a smaller alphabet
- simplified key-schedule

The usual design strategy: PRESENT [Bogdanov et al. 07]

Lightweight but secure...

Increase the number of rounds!

- PRESENT [Bogdanov et al. 07]. 31 rounds
- LED [Guo et al. 11]:

LED-64: 32 rounds, LED-128: 48 rounds

- SPECK [Beaulieu et al. 13]:

SPECK64/128: 27 rounds, SPECK128/256: 34 rounds

- SIMON [Beaulieu et al. 13]:

SIMON64/128: 44 rounds, SIMON128/256: 72 rounds

Does lightweight mean "light + wait"? [Knežević et al. 12]

Lightweight Competitions

CAESAR for authenticated encryption (2014-2019) :
https://competitions.cr.yp.to/caesar.html
Use case 1: Lightweight applications (resource constrained environments)

1. Ascon [Dobraunig, Eichlseder, Mendel, Schläffer 14]
2. Acorn $[\mathrm{Wu} 14]$

NIST Lightweight Cryptography standardization process (2019-2023)
Ascon family (announced in Feb. 2023)

Duplex-Sponge mode for AEAD encryption [Bertoni et al. 12]

where \mathcal{P} is a permutation of $\{0,1\}^{n}$.

Duplex-Sponge mode in Ascon

where \mathcal{P} is a permutation on 320 bits of which 64 are known/controlled.

\mathcal{P} in Ascon [Dobraunig, Eichlseder, Mendel, Schläffer 16]

Permutation operating on a 320-bit state:

- 8-bit constant addition;
- Nonlinear Sbox on 5 bits of degree 2 (on the 64 columns);
- 5 simple linear transformations on 64 bits

$$
\Sigma_{i}\left(X_{i}\right)=X_{i} \oplus\left(X_{i} \ggg a_{i}\right) \oplus\left(X_{i} \ggg b_{i}\right)
$$

$\rightarrow 6$ rounds

Use low-cost Sboxes

Low-degree Sboxes and algebraic attacks

Algebraic Normal Form of $f: \mathrm{F}_{2}^{n} \rightarrow \mathrm{~F}_{2}$:
unique polynomial representation in $\mathrm{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}\right)$.

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bigoplus_{u \in \mathbb{F}_{2}^{n}} c_{u} x^{u} \text { with } \boldsymbol{c}_{\boldsymbol{u}} \in \mathbb{F}_{\mathbf{2}}
$$

Evaluation of a monomial:
Evaluation of $x^{(0101)}$ at $x=(0011)$:

$$
0^{0} 0^{1} 1^{0} 1^{1}=1011=0
$$

$$
x^{u}=1 \text { if and only if } u \preceq x
$$

i.e., $\boldsymbol{u}_{\boldsymbol{i}} \leq \boldsymbol{x}_{\boldsymbol{i}}$ for all $\mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$.

ANF and values:

$$
f(a)=\bigoplus_{u \preceq a} c_{u} \text { and } c_{u}=\bigoplus_{a \preceq u} f(a)
$$

Cube-like attacks [Dinur-Shamir 09]

$$
\begin{aligned}
& f: \mathbb{F}_{2}^{64} \times \mathbb{F}_{2}^{256} \rightarrow \mathbb{F}_{2} \\
& (x, k) \quad \mapsto f(x, k) \\
& f(x, k)=\bigoplus_{u \in \mathbb{F}_{2}^{64}} \underbrace{\left(\bigoplus_{u \in \mathbb{F}_{2}^{256}} \alpha_{u, v} k^{v}\right)}_{A_{u}(k)} x^{u}
\end{aligned}
$$

Attack:

- Offline: determine the polynomial expression of $\boldsymbol{A}_{\boldsymbol{u}}(k)$ for a given \boldsymbol{u}.
- Online: for the key used \boldsymbol{k}^{*}, compute the value

$$
A_{u}\left(k^{*}\right)=\bigoplus_{v \preceq u} f\left(v, k^{*}\right)
$$

Cube-like attacks on Ascon [Rohit et al. 21][Baudrin-C.-Perrin 22]

$$
S(x, a, b, c, d)=\left\{\begin{aligned}
&(a \oplus 1) x \oplus \\
& a b \oplus a d \oplus a \oplus b \oplus c \\
& x \oplus b \oplus a c \oplus b c \oplus a \oplus b \oplus c \oplus d \\
& c d \oplus a \oplus b \oplus d \oplus 1 \\
&(c \oplus d \oplus 1) x \oplus \\
& a \oplus b \oplus c \oplus d \\
& a x \oplus
\end{aligned}\right.
$$

\rightarrow The degree in \boldsymbol{x} after \boldsymbol{r} rounds is 2^{r-1}, for $\boldsymbol{r} \leq \mathbf{6}$.

After two rounds:
The coefficient of $x_{0} x_{i}$ is

$$
\left(a_{0} \oplus 1\right) \boldsymbol{P} \oplus \boldsymbol{Q} \oplus\left(c_{0} \oplus d_{0} \oplus 1\right) \boldsymbol{R} \oplus a_{0} S
$$

For some well-chosen \boldsymbol{i}, it equals $\left(a_{0} \oplus 1\right) \boldsymbol{P}$ or $\left(c_{0} \oplus d_{0} \oplus 1\right) \boldsymbol{R}$.

Cube attack on Ascon [Baudrin-C.-Perrin 22]

After six rounds:

For all 64 outputs, the coefficient of some monomials of degree 2^{5} containing x_{0} can be written as

$$
\left(a_{0} \oplus 1\right) \boldsymbol{P} \oplus\left(c_{0} \oplus d_{0} \oplus 1\right) \boldsymbol{R}
$$

\rightarrow If these 64 coefficients do not all vanish, then

$$
a_{0}=0 \text { or } c_{0} \oplus d_{0}=0
$$

+ The converse also holds in practice.

Practical attack in the nonce-misused scenario [Baudrin-C.-Perrin 22]

Recover the full initial state from less than $2^{39.6}$ ciphertexts obtained from the same (K, N) with time complexity 2^{40}.

Minimalism in cryptography is more fun than in cooking

