Minimalism in Symmetric Cryptography

Anne Canteaut

Inria, Paris

NAC 2024, February 29, 2024

Ínría

Minimalism

Credit: Hans Peter Schaefer

Maybe less exciting?

Maybe less exciting?

Why is minimalism interesting?

Why is minimalism interesting?

Besides (niche) application needs, it helps us understand where security comes from.

Outline

- 1. Designing a practical PRP
- 2. How to make it lightweight?
- 3. Possible weaknesses coming from "minimal" Sboxes

Designing a Practical PRP

Practical PRP

$E_k: \{0,1\}^n \longrightarrow \{0,1\}^n$

- indistinguishable from randomly chosen permutations of $\{0,1\}^n$ with $n\in\{64,128\}$
- implementable

 $\rightarrow \mathsf{Contradiction!}$

Iterated construction

Iterated construction

Iterated construction

AES [Daemen-Rijmen 98][FIPS PUB 197]

- ullet blocksize: 128 bits
- $\bullet~10$ rounds for the $128\mbox{-bit}$ key version
- Sbox operates on 8 bits
- $\bullet\,$ diffusion layer is linear over F_{2^8}
- nonlinear key schedule.

How to make it lightweight?

Lightweight block ciphers

AES [Daemen-Rijmen 98][FIPS PUB 197]

- ullet blocksize: 128 bits
- Sbox operates on 8 bits
- diffusion layer is linear over ${f F_{2^8}}$

To make it smaller in hardware:

- \bullet blocksize: 64 bits
- $\bullet\,$ smaller Sbox, on 3 or 4 bits
- linear diffusion layer over a smaller alphabet
- simplified key-schedule

The usual design strategy: PRESENT [Bogdanov et al. 07]

rounds (+ a key addition)

Lightweight but secure...

Increase the number of rounds!

- PRESENT [Bogdanov et al. 07]. 31 rounds
- LED [Guo et al. 11]: LED-64: 32 rounds, LED-128: 48 rounds
- SPECK [Beaulieu et al. 13]: SPECK64/128: 27 rounds, SPECK128/256: 34 rounds
- SIMON [Beaulieu et al. 13]:

SIMON64/128: 44 rounds, SIMON128/256: 72 rounds

Does lightweight mean "light + wait"? [Knežević et al. 12]

Lightweight Competitions

CAESAR for authenticated encryption (2014-2019) :

https://competitions.cr.yp.to/caesar.html

Use case 1: Lightweight applications (resource constrained environments)

- 1. Ascon [Dobraunig, Eichlseder, Mendel, Schläffer 14]
- 2. Acorn [Wu 14]

NIST Lightweight Cryptography standardization process (2019-2023) Ascon family (announced in Feb. 2023)

Duplex-Sponge mode for AEAD encryption [Bertoni et al. 12]

where ${\mathcal P}$ is a permutation of $\{0,1\}^n$.

Duplex-Sponge mode in Ascon

where ${m {\cal P}}$ is a permutation on 320 bits of which 64 are known/controlled.

P in Ascon [Dobraunig, Eichlseder, Mendel, Schläffer 16]

Permutation operating on a 320-bit state:

- 8-bit constant addition;
- Nonlinear Sbox on 5 bits of degree 2 (on the 64 columns);
- 5 simple linear transformations on 64 bits

 $\Sigma_i(X_i) = X_i \oplus \ (X_i \ggg a_i) \oplus \ (X_i \ggg b_i)$

 \rightarrow 6 rounds

Use low-cost Sboxes

Low-degree Sboxes and algebraic attacks

Algebraic Normal Form of $f: \mathbb{F}_2^n \to \mathbb{F}_2$: unique polynomial representation in $\mathbb{F}_2[x_1, \dots, x_n]/(x_1^2 - x_1, \dots, x_n^2 - x_n)$. $f(x_1, \dots, x_n) = \bigoplus_{u \in \mathbb{F}_2^n} c_u x^u$ with $c_u \in \mathbb{F}_2$

Evaluation of a monomial:

Evaluation of $x^{(0101)}$ at x = (0011): $0^0 0^1 1^0 1^1 = 1011 = 0$

 $x^u=1$ if and only if $u \preceq x$

i.e., $u_i \leq x_i$ for all $1 \leq i \leq n$.

ANF and values:

$$f(a) = igoplus_{lpha \leq a} c_u$$
 and $c_u = igoplus_{lpha \leq u} f(a)$

Cube-like attacks [Dinur-Shamir 09]

$$egin{aligned} f: & \mathbb{F}_2^{64} imes \mathbb{F}_2^{256} & o & \mathbb{F}_2 \ & (x,m{k}) & \mapsto & f(x,m{k}) \end{aligned} \ f(x,m{k}) & = igoplus_{u\in\mathbb{F}_2^{64}} \left(igoplus_{u\in\mathbb{F}_2^{256}} lpha_{u,v} igoplus_{m{k}}^v
ight) x^u \end{aligned}$$

Attack:

- Offline: determine the polynomial expression of $A_u(k)$ for a given u.
- Online: for the key used k^* , compute the value

$$A_u(k^*) = igoplus_{v \preceq u} f(v,k^*)$$

 $A_u(k)$

Cube-like attacks on Ascon [Rohit et al. 21][Baudrin-C.-Perrin 22]

$$S(x,a,b,c,d) = \left\{egin{array}{cccc} (a\oplus 1)x & \oplus & ab\oplus ad\oplus a\oplus b\oplus c\ x & \oplus & ab\oplus ac\oplus bc\oplus a\oplus b\oplus c\oplus d\ & cd\oplus a\oplus b\oplus d\oplus 1\ (c\oplus d\oplus 1)x & \oplus & a\oplus b\oplus c\oplus d\ & ax & \oplus & ad\oplus a\oplus c\oplus d\ \end{array}
ight.$$

ightarrow The degree in x after r rounds is 2^{r-1} , for $r\leq 6$.

After two rounds:

The coefficient of $x_0 x_i$ is

 $(a_0 \oplus 1)P \oplus Q \oplus (c_0 \oplus d_0 \oplus 1)R \oplus a_0S.$

For some well-chosen i, it equals $(a_0 \oplus 1)P$ or $(c_0 \oplus d_0 \oplus 1)R$.

After six rounds:

For all 64 outputs, the coefficient of some monomials of degree 2^5 containing x_0 can be written as

 $(a_0\oplus 1)P\oplus (c_0\oplus d_0\oplus 1)R$

 \rightarrow If these 64 coefficients do not all vanish, then

 $a_0=0$ or $c_0\oplus d_0=0$

+ The converse also holds in practice.

Practical attack in the nonce-misused scenario [Baudrin-C.-Perrin 22]

Recover the full initial state from less than $2^{39.6}$ ciphertexts obtained from the same (K, N) with time complexity 2^{40} .

Minimalism in cryptography is more fun than in cooking

