??? Representations of Numbers and Electrical Activity

Arnaud TISSERAND

CNRS, Lab-STICC
NAC 2024 Paris

Topics:

- Computer arithmetic: representations of numbers and algorithms
- Crypto: asymmetric (RSA, (H)ECC, lattice based PQC), hash functions, symmetric ciphers, homomorphic encryption
- Observation and perturbation attacks
- Secure implementations:
- hardware: accelerators and secure processors (ASIC, FPGA)
- software: microcontrollers, embedded processors, high-end multicores

Power consumption:

- Static power due to leakage(s)
- Dynamic power due to transitions
- useful/logical transitions due to state switching ($0 \rightarrow 1$ and $1 \rightarrow 0$)
- parasitic transitions due to timings imperfections (skew, glitches, ...)

In this talk, we only deal with logical activity

General principle:

1. Measure/observe external physical parameter(s) on a running device
2. Deduce internal (secret) informations

Examples:

- Timings
- Power consumption
- Electromagnetic radiation
- Temperature
- Number of cache misses
- ...

Attacks are always improving (strong statistics, deep learning, ...)

Secure Hardware Accelerator for ECC Example

Activity trace Protected Mastrovito ADD operation
 Current measures Protected Mastrovito DBL operation

Activity trace Protected Mastrovito DBL operation

Current measures Unprotected Mastrovito DBL operation
 Activity trace Unprotected Mastrovito DBL operation

PhD Thesis Danuta Pamula 2012: https://theses.hal.science/tel-00767537

RISC-V CV32E40P core from OpenHW Group (documentation)

HDL code(s), complete software toolchain, numerous libraries and works

Operation to be executed: $\quad \mathrm{r} \leftarrow \mathrm{x}+\mathrm{y}$

- AS: ALU status and internal pipeline
- Internal status: pipeline management, bypasses, memory hierarchy, branch predictor, monitoring, etc
- Very (over?) simplified 32-bit processor
- Register file (RF): 32 registers, 2 read ports (rs1, rs2) and 1 write port (rd) active at each instruction
- Arithmetic and logic unit (ALU)
- Basic instruction set (e.g., R1 <- R2 + R3)
- Simulation: only logical transitions (no glitch), 1-cycle instructions
- Only (rs1, rs2, rd) are observable (not other signals!)
- Start with random data in registers (crypto context)

NOP

R0 <- R1 + R2	// all sources and destinations
R3 <- R4 + R5	// are different and random
R6 <- R7 + R8	

Traces for 10 sets of initial (random) values in the registers:

Average trace:

Time

> 保

Code: Independent Additions (3/3)

Abstract

> .
\qquad
\qquad

$$
\begin{aligned}
& \text { R1 <- } 1 \quad / /+1 \text { for loop index incr. } \\
& \text { NOP } \\
& \text { NOP }
\end{aligned}
$$

```
loop: R2 <- R2 + R1
```

// incr. (R2 random)

R1 <- $1 \quad / /+1$ for loop index incr.

R2 <- 0 // reset acc.
loop: R2 <- R2 + R1
// incr.

$$
\text { R1 <- } 1
$$

NOP

NOP

R2 $<-$ R2 + R3	// acc. random
R2 $<-$ R2 + R4	// acc. random
R2 $<-$ R2 + R1	// acc. 1
R2 $<-$ R2 + R5	// acc. random
R2 $<-$ R2 + R6	// acc. random

R1 <- 0xFFFFFFFF

NOP
NOP
R2 $<-$ R2 + R3
R2 $<-$ R2 + R4
R2 $<-$ R2 + R1
R2 $<-$ R2 + R5
R2 $<-$ R2 + R6

RO <- 0	// index
R1<- 1	// +1 for loop index incr.
NOP	
NOP	

loop: R2 <- R2 + R3
R2 <- R2 + R4
R0 <- R0 + R1 JMP loop

// acc. random
// i <- i + 1

Assumptions:

- b is a bit (i.e. $b \in\{0,1\}$, logical or mathematical value)
- electrical states for a wire: $V_{D D}($ logical 1$)$ or GND (logical 0)

	$b=0$	$b=1$
standard	GND	$\left.\begin{array}{l}V_{\mathrm{DD}} \\ \hline \text { dual rail } \\ \end{array} \quad \begin{array}{l}r_{0}=V_{\mathrm{DD}} \\ r_{1}=\mathrm{GND}\end{array}\right](1,0)_{\mathrm{DR}}$
$\left.r_{1}=V_{\mathrm{DD}}\right](0,1)_{\mathrm{DR}}$		

Precharge style:

Other encodings:

- different states for odd/even cycles
- many other solutions

Often lead to important overheads (silicon area in operators \& registers)

$$
X=\sum_{i=0}^{n-1} x_{i} \beta^{i} \quad \text { with } \quad x_{i} \in \mathcal{D}
$$

- Carry-save (CS): $\beta=2, \mathcal{D}_{\mathrm{CS}}=\{0,1,2\}$
- Borrow-save (BS): $\beta=2, \mathcal{D}_{\mathrm{BS}}=\{-1,0,1\}$
- Avizienis: $\beta>2, \mathcal{D}_{\alpha}=\{-\alpha, \ldots,-1,0,1, \ldots, \alpha\}$ with $2 \alpha+1>\beta$
- Other solutions

Question: how to select β, α, and all digits encodings?

I tested numerous solutions, up to now the interest is limited!

- activity variations are reduced but not enough
- leads to silicon overheads
- 2 bits with same weight
$w=1 \quad w=1$
- one bit for each digit
$\longrightarrow d=0$
$d=1$
$d=2$
- odd/even cycles and bits of same weight
$\rightleftarrows \mathrm{w}=1, \mathrm{e} \quad \rightleftarrows \mathrm{w}=1, \mathrm{e}$
- odd/even cycles and one bit for each digits

- 2 bits of same weight and one bit for logical inversion
$\longrightarrow \mathrm{w}=1 \quad \mathrm{w}=1 \quad$ inv
- other (silly?) encodings
- Redundant number systems (CS, BS, Avizienis, variants, other ideas?) help to reduce activity variations, but this is not sufficient
- Low-level encoding of digits is important
- Value 0 (as a digit and as a number) is tricky to manage w.r.t. activity variations
- RNS and variants have potential
- Combine with other arithmetic level solutions (e.g. GF (P) with Montgomery domain $\delta P, \delta$ small and add random multiples of P)
- Instructions and control flow are very important for SCA but operands also participate to side-channel leakage
- Do not overestimate "constant-time" protection
- Compilers (and CAD tools) optimizations can remove some protection "tricks"
- Number systems impact electrical activity and lead to side-channel leakage
- Still need more work:
- RNS and variants
- randomization
- models for links between arithmetic properties and electrical properties
- selection/design of appropriate algorithms/implementations
- take into account parasitic transitions (tricky)
- "calibration" of library components from implementationS resultS
- Countermeasures against observation and perturbation attacks

Thank you! Questions?

 arnaud.tisserand@cnrs.fr / https://www.arnaud-tisserand.fr