
??? Representations of Numbers
and Electrical Activity

Arnaud TISSERAND

CNRS, Lab-STICC

NAC 2024 Paris



Activities in Computer Arithmetic and Applied Crypto 2
23

Topics:

▶ Computer arithmetic: representations of numbers and algorithms

▶ Crypto: asymmetric (RSA, (H)ECC, lattice based PQC), hash functions,
symmetric ciphers, homomorphic encryption

▶ Observation and perturbation attacks

▶ Secure implementations:
▶ hardware: accelerators and secure processors (ASIC, FPGA)
▶ software: microcontrollers, embedded processors, high-end multicores



Electrical Activity in Digital Circuits 3
23

Power consumption:

▶ Static power due to leakage(s)

▶ Dynamic power due to transitions
▶ useful/logical transitions due to state switching (0→ 1 and 1→ 0)
▶ parasitic transitions due to timings imperfections (skew, glitches, . . . )

a=1

b=1

c

a

b

c

s

a

b

s

y y

In this talk, we only deal with logical activity



Side-Channel Attacks (SCA) 4
23

General principle:

1. Measure/observe external physical parameter(s) on a running device
2. Deduce internal (secret) informations

Examples:

▶ Timings
▶ Power consumption
▶ Electromagnetic radiation
▶ Temperature
▶ Number of cache misses
▶ . . .

Attacks are always improving (strong statistics, deep learning, . . . )



Secure Hardware Accelerator for ECC Example 5
23

   0
 100
 200
 300

 0  50  100  150  200  250  300  350

#
tr

a
n

s
it
.

cycles

DBL operation
Mastrovito
Unprotected
Activity trace

0.00
0.02
0.04
0.06
0.08

c
u

rr
e

n
t 

[m
A

]

DBL operation
Mastrovito
Unprotected
Current measures

   0
 100
 200
 300

#
tr

a
n

s
it
.

DBL operation
Mastrovito
Protected
Activity trace

0.00
0.04
0.08
0.12
0.16

c
u

rr
e

n
t 

[m
A

]

DBL operation
Mastrovito
Protected
Current measures

   0
 100
 200
 300

#
tr

a
n

s
it
.

ADD operation
Mastrovito
Protected
Activity trace

PhD Thesis Danuta Pamula 2012: https://theses.hal.science/tel-00767537

https://theses.hal.science/tel-00767537


Example of Embedded Processor 6
23

RISC-V CV32E40P core from OpenHW Group (documentation)

HDL code(s), complete software toolchain, numerous libraries and works

https://docs.openhwgroup.org/projects/cv32e40p-user-manual/en/latest/intro.html


Activity in a Processor 7
23

Operation to be executed: r ← x + y
tim

e

signals

x y

r

+

ADD R3,R1,R2

AS

internal status

internal status

internal status

▶ AS: ALU status and internal pipeline
▶ Internal status: pipeline management, bypasses, memory hierarchy,

branch predictor, monitoring, etc



Processor Model to Focus on Arithmetic Aspects 8
23

▶ Very (over?) simplified 32-bit processor
▶ Register file (RF): 32 registers, 2 read ports (rs1, rs2) and 1 write port

(rd) active at each instruction
▶ Arithmetic and logic unit (ALU)
▶ Basic instruction set (e.g., R1 <- R2 + R3)
▶ Simulation: only logical transitions (no glitch), 1-cycle instructions
▶ Only (rs1, rs2, rd) are observable (not other signals!)
▶ Start with random data in registers (crypto context)

RF ALU

rs1

rs2
rd

id
wi2
i1

op status



Code: Independent Additions (1/3) 9
23

NOP
R0 <- R1 + R2 // all sources and destinations
R3 <- R4 + R5 // are different and random
R6 <- R7 + R8
...

0 2 4 6 8 10
Time

0

10

20

30

40

50

Ac
tiv

ity



Code: Independent Additions (2/3) 10
23

Traces for 10 sets of initial (random) values in the registers:

0 2 4 6 8 10
Time

0

10

20

30

40

50

60

Ac
tiv

ity



Code: Independent Additions (3/3) 11
23

Average trace:

0 2 4 6 8 10
Time

0

10

20

30

40

50

Ac
tiv

ity



Code: Incrementation Loop 12
23

R1 <- 1 // +1 for loop index incr.
NOP
NOP

loop: R2 <- R2 + R1 // incr. (R2 random)
JMP loop

0 20 40 60 80 100
Time

0

10

20

30

Ac
tiv

ity



Code: Incrementation Loop Starting From 0 13
23

R1 <- 1 // +1 for loop index incr.
R2 <- 0 // reset acc.
NOP
NOP

loop: R2 <- R2 + R1 // incr.
JMP loop

0 25 50 75 100 125 150 175 200
Time

0

10

20

30

Ac
tiv

ity



Code: Accumulation of Random Values and 1 14
23

R1 <- 1
NOP
NOP
R2 <- R2 + R3 // acc. random
R2 <- R2 + R4 // acc. random
R2 <- R2 + R1 // acc. 1
R2 <- R2 + R5 // acc. random
R2 <- R2 + R6 // acc. random

0 1 2 3 4 5 6 7 8
Time

0

10

20

30

40

50

Ac
tiv

ity



Code: Accumulation of Random Values and (111 . . . 111)2 15
23

R1 <- 0xFFFFFFFF
NOP
NOP
R2 <- R2 + R3
R2 <- R2 + R4
R2 <- R2 + R1
R2 <- R2 + R5
R2 <- R2 + R6

0 1 2 3 4 5 6 7 8
Time

0

10

20

30

40

50

Ac
tiv

ity



Code: Accumulation Loop 16
23

R0 <- 0 // index
R1 <- 1 // +1 for loop index incr.
NOP
NOP

loop: R2 <- R2 + R3 // acc. random
R2 <- R2 + R4 // acc. random
R0 <- R0 + R1 // i <- i + 1
JMP loop

0 10 20 30 40 50
Time

0

10

20

30

40

50

Ac
tiv

ity



Code: Using the Same Register Twice 17
23

NOP
NOP

loop: R2 <- R2 + R3 // acc. random
R2 <- R2 + R4 // acc. random
R2 <- R2 + R10 // acc. random
R2 <- R2 + R10 // acc. same random
JMP loop

0 10 20 30 40 50
Time

0

10

20

30

40

50

Ac
tiv

ity



Low-Level Coding and Circuit Activity 18
23

Assumptions:

▶ b is a bit (i.e. b ∈ {0, 1}, logical or mathematical value)
▶ electrical states for a wire: VDD (logical 1) or GND (logical 0)



Circuit Logic Styles for Power Uniformization 19
23

Precharge style:

Other encodings:

▶ different states for odd/even cycles
▶ many other solutions

Often lead to important overheads (silicon area in operators & registers)



Redundant Number Systems 20
23

X =
n−1∑
i=0

xi βi with xi ∈ D

▶ Carry-save (CS): β = 2, DCS = {0, 1, 2}

▶ Borrow-save (BS): β = 2, DBS = {−1, 0, 1}

▶ Avizienis: β > 2, Dα = {−α, . . . ,−1, 0, 1, . . . , α} with 2α + 1 > β

▶ Other solutions

Question: how to select β, α, and all digits encodings?

I tested numerous solutions, up to now the interest is limited!

▶ activity variations are reduced but not enough
▶ leads to silicon overheads



Tested encodings for Carry-Save (β = 2, DCS = {0, 1, 2}) 21
23

▶ 2 bits with same weight
w=1 w=1

▶ one bit for each digit
d=0 d=1 d=2

▶ odd/even cycles and bits of same weight
w=1,e w=1,e
w=1,o w=1,o

▶ odd/even cycles and one bit for each digits
d=0,e d=1,e d=2,e
d=0,o d=1,o d=2,o

▶ 2 bits of same weight and one bit for logical inversion
w=1 w=1 inv

▶ other (silly?) encodings



Summary on Current Work 22
23

▶ Redundant number systems (CS, BS, Avizienis, variants, other ideas?)
help to reduce activity variations, but this is not sufficient

▶ Low-level encoding of digits is important

▶ Value 0 (as a digit and as a number) is tricky to manage w.r.t. activity
variations

▶ RNS and variants have potential

▶ Combine with other arithmetic level solutions (e.g. GF(P ) with
Montgomery domain δP , δ small and add random multiples of P )

▶ Instructions and control flow are very important for SCA but operands
also participate to side-channel leakage

▶ Do not overestimate “constant-time” protection

▶ Compilers (and CAD tools) optimizations can remove some protection
“tricks”



Conclusion and Future Prospects 23
23

▶ Number systems impact electrical activity and lead to side-channel
leakage

▶ Still need more work:
▶ RNS and variants
▶ randomization
▶ models for links between arithmetic properties and electrical properties
▶ selection/design of appropriate algorithms/implementations
▶ take into account parasitic transitions (tricky)
▶ “calibration” of library components from implementationS resultS

▶ Countermeasures against observation and perturbation attacks

Thank you! Questions?

arnaud.tisserand@cnrs.fr / https://www.arnaud-tisserand.fr

emailto:arnaud.tisserand@cnrs.fr
https://www.arnaud-tisserand.fr

