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Zero-knowledge proofs (ZKP)

Alice Bob
I know the solution to
this complex equation

No idea what the solution is
but Alice claims to know it

Challenge

Response

• Sound: Alice has a wrong solution =⇒ Bob is not convinced.
• Complete: Alice has the solution =⇒ Bob is convinced.
• Zero-knowledge: Bob does NOT learn the solution.

slide Y. El Housni
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Example: Sigma protocol

Alice Bob

I know x such that gx = y

n $←− Zr
A = gn

c $←− Zr
c

s = n + c · x s g s ?= A · y c

with A · y c = gn · gx ·c

then gn · gx ·c = gn+x ·c

slide Y. El Housni
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Non-Interactive Zero-Knowledge (NIZK) Sigma protocol

Alice Bob

I know x such that gx = y

n $←− Zr
g

︸︷︷︸
Setup

; A = gn

c = H(A, y)
s = n + c · x

︸ ︷︷ ︸
Prove

π = (A, c, s)︸ ︷︷ ︸
proof

g s ?= A · y c

c ?= H(A, y)︸ ︷︷ ︸
Verify

slide Y. El Housni
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ZKP literature landmarks

• First ZKP work [GMR85]
• Non-Interactive ZKP [BFM88]
• Succinct ZKP [Kil92]
• Succinct Non-Interactive ZKP [Mic94]

• Pairing-based succinct NIZK [Gro10]
• “SNARK” terminology and characterization of existence [BCCT12]
• Pairing-based SNARK in quasi-linear prover time [GGPR13]
• Pairing-based SNARK with shortest proof and verifier time [Gro16]
• SNARK with universal and updatable setup [GKM+18], [MBKM19] (Sonic),

[GWC19] (PlonK), [CHM+20] (Marlin), ...

slide Y. El Housni
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What is a zero-knowledge proof?

“I have a sound, complete and zero-knowledge proof that a statement is true”.
[GMR85]

Sound
False statement =⇒ cheating prover cannot convince honest verifier.

Complete
True statement =⇒ honest prover convinces honest verifier.

Zero-knowledge
True statement =⇒ verifier learns nothing other than statement is true.

slide Y. El Housni
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zk-SNARK: Zero-Knowledge Succinct Non-interactive ARgument of
Knowledge

”I have a computationally sound, complete, zero-knowledge, succinct,
non-interactive proof that a statement is true and that I know a related secret”.

Succinct
A proof is very short and easy to verify.

Non-interactive
No interaction between the prover and verifier for proof generation and verification
(except the proof message).

ARgument of Knowledge
Honest verifier is convinced that a computationally bounded prover knows a secret
information.

slide Y. El Housni
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Preprocessing zk-SNARK for NP language
F : public NP program, x , z : public inputs, w : private input (witness)
z := F (x , w)

A zk-SNARK consists of algorithms S, P, V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)
Prove : π ← P(x , z , w , pk)
Verify : false/true ← V (x , z , π, vk)

Anyone
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z , w , pk) V (x , z , π, vk)?π

slide Y. El Housni

9/38



Preprocessing zk-SNARK for NP language
F : public NP program, x , z : public inputs, w : private input (witness)
z := F (x , w)
A zk-SNARK consists of algorithms S, P, V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)
Prove : π ← P(x , z , w , pk)
Verify : false/true ← V (x , z , π, vk)

Anyone
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z , w , pk) V (x , z , π, vk)?π

slide Y. El Housni

9/38



Preprocessing zk-SNARK for NP language
F : public NP program, x , z : public inputs, w : private input (witness)
z := F (x , w)
A zk-SNARK consists of algorithms S, P, V s.t. for a security parameter λ:

Setup : (pk, vk) ← S(F , 1λ)
Prove : π ← P(x , z , w , pk)
Verify : false/true ← V (x , z , π, vk)

Anyone
(pk, vk)← S(F , 1λ)

Alice (prover) Bob (verifier)

pk vk

π ← P(x , z , w , pk) V (x , z , π, vk)?π

slide Y. El Housni
9/38



zk-SNARKs in a nutshell

Main ideas:

1. Reduce a general statement satisfiability to a polynomial equation satisfiability.
2. Use Schwartz–Zippel lemma to succinctly verify the polynomial equation with

high probability.
3. Use homomorphic hiding cryptography to blindly verify the polynomial equation.
4. Make the protocol non-interactive.

slide Y. El Housni
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Data flow

Statement

(knowledge of a
hash function preimage,
a discrete log...)

Arithmetic
circuit

Intermediate
representation

Polynomial
identities

zk-SNARK
proof

(QAP: Quadratic
Arithmetic Program)

Group ⟨g⟩ of order r ,
arithmetic over Fq

g s ?= A · y c

c ?= H(A, y)

Compiler
(internal machinery)

Group of order q,
arithmetic over Fp
Fq in the exponent

11/38



Data flow

Statement

(knowledge of a
hash function preimage,
a discrete log...)

Arithmetic
circuit

Intermediate
representation

Polynomial
identities

zk-SNARK
proof

(QAP: Quadratic
Arithmetic Program)

Group ⟨g⟩ of order r ,
arithmetic over Fq

g s ?= A · y c

c ?= H(A, y)

Compiler
(internal machinery)

Group of order q,
arithmetic over Fp
Fq in the exponent

11/38



Data flow

Statement

(knowledge of a
hash function preimage,
a discrete log...)

Arithmetic
circuit

Intermediate
representation

Polynomial
identities

zk-SNARK
proof

(QAP: Quadratic
Arithmetic Program)

Group ⟨g⟩ of order r ,
arithmetic over Fq

g s ?= A · y c

c ?= H(A, y)

Compiler
(internal machinery)

Group of order q,
arithmetic over Fp
Fq in the exponent

11/38



Data flow

Statement

(knowledge of a
hash function preimage,
a discrete log...)

Arithmetic
circuit

Intermediate
representation

Polynomial
identities

zk-SNARK
proof

(QAP: Quadratic
Arithmetic Program)

Group ⟨g⟩ of order r ,
arithmetic over Fq

g s ?= A · y c

c ?= H(A, y)

Compiler
(internal machinery)

Group of order q,
arithmetic over Fp
Fq in the exponent

11/38



Outline

zk-SNARK

Elliptic Curves

Pairings

Pairing-friendly curves

SNARK-friendly curves

12/38



Elliptic curves in cryptography
• 1985 (published in 1987) Hendrik Lenstra Jr., Elliptic Curve Method

(ECM) for integer factoring
• 1985, Koblitz, Miller: Elliptic Curves over a finite field form a group suitable for

Diffie–Hellman key exchange
• 1985, Certicom: company owning patents on ECC

• 2000 Elliptic curves in IEEE P1363 standard
• 2000 Bilinear pairings over elliptic curves
• NSA cipher suite B, elliptic curves for public-key crypto
• 2014: Quasi-polynomial-time algorithm

for discrete log computation in GF(2n), GF(3m)
No more pairings on elliptic curves over these fields
• 2015: Tower Number Field Sieve in GF(pn)

Pairing-friendly curves should have larger key sizes
• 2016: NIST Post-Quantum competition

Isogenies on elliptic curves
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Examples of elliptic curves
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Chord and tangent rule

ℓP,Q(x , y)

P
Q

R

vP+Q(x)

P + Q

P(x1, y1), Q(x2, y2), x1 ̸= x2

slope λ = ∆y
∆x = y2 − y1

x2 − x1
line L through P and Q has equation
L : y = λ(x − x1) + y1
P, Q, R ∈ L ∩ E
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Elliptic curves over finite fields
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What is a pairing?

(G1, +), (G2, +), (GT , ·) three cyclic groups of large prime order n
Pairing: map e : G1 × G2 → GT

1. bilinear: e(P1 + P2, Q) = e(P1, Q) · e(P2, Q), e(P, Q1 + Q2) = e(P, Q1) · e(P, Q2)
2. non-degenerate: e(G1, G2) ̸= 1 for ⟨G1⟩ = G1, ⟨G2⟩ = G2

3. efficiently computable.
Most often used in practice:

e([a]P, [b]Q) = e([b]P, [a]Q) = e(P, Q)ab .

; Many applications in asymmetric cryptography.
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Pairing setting: elliptic curves

E/Fp : y2 = x3 + ax + b, a, b ∈ Fp, p ≥ 5

• proposed in 1985 by Koblitz, Miller
• E (Fp) has an efficient group law (chord an tangent rule) → G1
• #E (Fp) = p + 1− t, trace t: |t| ≤ 2√p
• efficient group order computation (point counting)

• large subgroup of prime order n s.t. n | p + 1− t and n coprime to p
• E (Fp)[n] = {P ∈ E (Fp) : [n]P = O} has order n
• E [n] ≃ Z/nZ× Z/nZ (for crypto)
• only generic attacks against DLP on well-chosen genus 1 and genus 2 curves
• optimal parameter sizes
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Tate pairing

From its definition to its efficient implementation
• John Tate, 1958
• Stephen Lichtenbaum, 1969
• Victor Miller, 1986, Miller algorithm for fP
• Frey–Rück, 1994: the MOV attack with the Tate pairing instead of the Weil

pairing
• Harasawa, Shikata, Suzuki, Imai, 1999, 161467 s (112 days)

163-bit supersingular curve, GT ⊂ Fp2 of 326 bits.
• Antoine Joux, 2000: how to compute Miller algorithm more efficiently

1 s on a supersingular 528-bit curve, GT ⊂ Fp2 of 1055 bits
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Cryptographic pairing

Modified Weil or Tate pairing on an elliptic curve
Discrete logarithm problem with one more dimension.

e : E (Fp)[n]× E (Fpk )[n] F∗
pk , e([a]P, [b]Q) = e(P, Q)ab

Attacks

• inversion of e : hard problem (exponential)
• discrete logarithm computation in E (Fp) : hard problem (exponential, in O(

√
n))

• discrete logarithm computation in F∗
pk : easier, subexponential → take a large

enough field
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Jens Groth’s proof composition [Gro16]
Given an instance Φ = (a0, . . . , aℓ) ∈ Fℓ

r of a public NP program F
• (pk, vk)← S(F , τ , 1λ) where

vk = (vkα,β, {vkπi}ℓi=0, vkγ , vkδ) ∈ GT × Gℓ+1
1 × G2 × G2

• π ← P(Φ, w , pk) where

π = (A, B, C) ∈ G1 × G2 × G1 (Oλ(1))

• 0/1← V (Φ, π, vk) where V is

e(A, B) = vkα,β · e(vkx , vkγ) · e(C , vkδ) (Oλ(|Φ|)) (1)

and vkx =
∑ℓ

i=0 [ai ]vkπi depends only on the instance Φ and vkα,β = e(vkα, vkβ)
can be computed in the trusted setup for (vkα, vkβ) ∈ G1 × G2.

slide Y. El Housni
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Applications not in cryptocurrencies

ZK Microphone: Trusted audio in the age of deepfakes
https://ethglobal.com/showcase/zk-microphone-8161v
Proving sound authenticity

Using ZK Proofs to Fight Disinformation
https://iacr.org/submit/files/slides/2023/rwc/rwc2023/13/slides.pdf
Proving image authenticity

A Tool for Proving Software Vulnerabilities in Zero Knowledge
https://galois.com/blog/2024/02/

introducing-cheesecloth-a-tool-for-proving-software-vulnerabilities-in-zero-knowledge/
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First ordinary pairing-friendly curves: MNT

Miyaji, Nakabayashi, Takano, #E (Fp) = p(u) + 1− t(u) = q(u)

k = 3


t(u) = −1± 6u
q(u) = 12u2 ∓ 6u + 1
p(u) = 12u2 − 1
Dy2 = 12u2 ± 12u − 5

k = 4


t(u) = −u, u + 1
q(u) = u2 + 2u + 2, u2 + 1
p(u) = u2 + u + 1
Dy2 = 3u2 + 4u + 4

k = 6


t(u) = 1± 2u
q(u) = 4u2 ∓ 2u + 1
p(u) = 4u2 + 1
Dy2 = 12u2 − 4u + 3

CODA [MS18]:
k = 6, 753 bits, E6 ≈ 137 bits of security, D = −241873351932854907, seed u =
0xaa3a58eb20d1fec36e5e772ee6d3ff28c296465f137300399db8a5521e18d33581a262716214583d3b89820dd0c000

k = 4, 753 bits, E4 ≈ 113 bits of security
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Cycle of curves: unlimited chains of SNARKs [BCTV14]

elliptic curve
E1(Fp) of prime order q

elliptic curve
E0(Fq) of prime order p

statement
in a group of
prime order p
over a field Fq

statement
in a group of
prime order q
over a field Fp
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MNT-4 and MNT-6 curves form a cycle
k = 4, MNT-4 parameters t4 = −v , q4 = v2 + 1, p4 = v2 + v + 1
k = 6, MNT-6 parameters t6 = 1− 2u, q6 = 4u2 + 2u + 1, p6 = 4u2 + 1

q4 = p6
and

p4 = q6

⇐⇒
v = 2u

and
q4, q6 are primes

Unique known cycle of pairing-friendly curves.
Impossibility results:

Alessandro Chiesa, Lynn Chua, and Matthew Weidner.
On cycles of pairing-friendly elliptic curves.
SIAM Journal on Applied Algebra and Geometry, 3(2):175–192, 2019.

Marta Bellés-Muñoz, Jorge Jiménez Urroz, and Javier Silva.
Revisiting cycles of pairing-friendly elliptic curves.
In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part II,
volume 14082 of LNCS, pages 3–37. Springer, Heidelberg, August 2023.
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Very popular pairing-friendly curves: Barreto-Naehrig (BN)

EBN : y2 = x3 + b, p ≡ 1 mod 3, D = −3 (ordinary)

p = 36x4 + 36x3 + 24x2 + 6x + 1
t = 6x2 + 1
q = p + 1− t = 36x4 + 36x3 + 18x2 + 6x + 1

t2 − 4p = −3(6x2 + 4x + 1)2 → no CM method needed
Comes from the Aurifeuillean factorization of Φ12 :
Φ12(6x2) = q(x)q(−x)

Security level log2 q finite field k log2 p deg P, p = P(u) ρ

102 256 3072 12 256 4 1
123 384 4608 12 384 4 1
132 448 5376 12 448 4 1

Formerly BN-254 in Euthereum with seed 0x44e992b44a6909f1
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BLS12

Barreto, Lynn, Scott method.
Becomes more and more popular, replacing BN curves

EBLS : y2 = x3 + b, p ≡ 1 mod 3, D = −3 (ordinary)

p = (u − 1)2/3(u4 − u2 + 1) + u
t = u + 1
q = (u4 − u2 + 1) = Φ12(u)

p + 1− t = (u − 1)2/3︸ ︷︷ ︸
cofactor

(u4 − u2 + 1)

t2 − 4p = −3y(u)2 → no CM method needed

BLS12-381 (Zcash [Bow17]) with seed -0xd201000000010000
BLS12-377 (Zexe [BCG+18]) with seed 0x8508c00000000001
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CØCØ embedded curve: Kosba et al. construction [KZM+15]

BN curve E1(Fp)
of prime order r

elliptic curve E0(Fr )
of order 4s

CØCØ: given r , search for a curve
E0 over Fr of order 4 times a prime

statement
in a group of
prime order s
over a field Fr

SNARK with
a pairing e :

G1 × G2 → GT
#Gi = r

polynomials
in Fr [X ]

arithme-
tisation

proof of
the circuit
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Embedded SNARK-friendly curves

Usually a twist-secure elliptic curve in Montgomery or (twisted) Edwards form

Input: field Fp
Output: an embedded curve of order 4s or 8s with prime s
Procedure: Increment the curve coefficient(s) until a suitable curve is found

CØCØ [KZM+15] with BN-254a,
JubJub [ZCa21] or Bandersnatch [MSZ21] with BLS12-381, ...
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2-chains of elliptic curves

inner curve:
curve E0(Fp)

of prime order r

outer curve:
curve E1(Fq)
of order h × p

Given p, search for a pairing-friendly curve
E1 of order h · p over a field Fq

SNARK-0 with
a pairing e :

G1 × G2 → GT
#Gi = r

computation
in Fp[X ]

SNARK-1 with
a pairing e :

G′
1 × G′

2 → G′
T

#G′
i = p

pairing
statement

proof of
statement
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Geppetto construction [CFH+15]

pairing-friendly
BN curve E1(Fp)
of prime order r

pairing-friendly
BW curve E2(Fq)

of order h × p

Geppetto: given p, search for a pairing-friendly curve
BW6 (Brezing–Weng) of order h · p over a field Fq

SNARK-1 with
a pairing e :

G1 × G2 → GT
#Gi = r

polynomials
in Fp[X ]

SNARK-2 with
a pairing e :

G′
1 × G′

2 → G′
T

#G′
i = p

arithme-
tisation

proof of
the circuit
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2-chains of pairing-friendly curves

• Geppetto [CFH+15]: BN254b + BW6-509
• Zexe [BCG+18]: BLS12-377 + CP6-782
• BLS12-377 + BW6-761 [EHG20] for Gorth16
• BLS24-315 + BW6-633 [EHG22] For KZG / universal SNARK
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More plain/hybrid cycles of curves
Plain cycles: 2 plain prime-order elliptic curves (no pairing)
secp256k1/secq256k1 https://moderncrypto.org/mail-archive/curves/2018/000992.html

HALO: Tweedledum/tweedledee curves https://github.com/daira/tweedle
HALO2: Pallas-Vesta – Pasta curves https://github.com/zcash/pasta_curves

E0/Fp
prime order q

j(E0) = 0, D = −3

E1/Fq
prime order p

j(E1) = 0, D = −3

Hybrid cycles: a plain curve and a BN pairing-friendly curve, both prime order
BN254-Grumpkin https://hackmd.io/@aztec-network/ByzgNxBfd
BN382-plain https://github.com/o1-labs/zexe/tree/master/algebra/src/bn_382

Pluto (BN446) - Eris https://github.com/daira/pluto-eris/
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Conclusion
Statement SNARK 1 SNARK 2

embedded curve inner curve outer curve
CØCØ [KZM+15] BN254a Ethereum

E0 BN254b BW6-509 Geppetto [CFH+15]
Jubjub [ZCa21]

Bandersnatch [MSZ21] BLS12-381 [Bow17]

E ′
0 BLS12-377 [BCG+18] CP6-782 [BCG+18]

BW6-761 [EHG20]
E ′′

0 BLS24-315 BW6-633 [EHG22]

Survey paper [AEHG23]

Diego F. Aranha, Youssef El Housni, and Aurore Guillevic.
A survey of elliptic curves for proof systems.
Des. Codes Cryptogr., Special Issue: Mathematics of Zero-Knowledge:1–46,
December 2022. ePrint 2022/586

37/38

https://eprint.iacr.org/2022/586


Félicitations Jean-Claude et bonne retraite bientôt en Bretagne !
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