Multi-Party Computation in the Head: Techniques and Applications

Damien Vergnaud

Sorbonne Université - LIP6
> (with special thanks to Charles Bouillaguet, Thibauld Feneuil, Jules Maire, Matthieu Rivain and the CCA master students)

Images by juicy_fish from flaticon

Outline

MPC-in-the-Head
 MPC protocol
 $\stackrel{\downarrow}{\text { ZK proof }}$

Generic technique
Optimizations
Applications

Main Application: Digital Signatures

- consider some one-way function F
- picks uniformly at random sk in F's domain
- sets and publishes $\mathrm{pk}=F(\mathrm{sk})$
- to sign m, Alice proves
- in zero-knowledge
- non-interactively (using Fiat-Shamir heuristic using m) that she knows sk such that $\mathrm{pk}=F(\mathrm{sk})$
- F one-way against quantum computers
\rightsquigarrow "post-quantum" signatures
(7-9 submission to the recent NIST call for signatures)

Zero-knowledge interactive proof

Goldwasser, Micali, Rackoff - STOC 1985
(1993 Gödel Prize) Goldreich, Micali, Wigderson - FOCS 1986

Zero-knowledge interactive proof

Goldwasser, Micali, Rackoff - STOC 1985 Goldreich, Micali, Wigderson - FOCS 1986

Completeness

Zero-knowledge interactive proof

Goldwasser, Micali, Rackoff - STOC 1985 Goldreich, Micali, Wigderson - FOCS 1986

Completeness
(Knowledge) Soundness

Zero-knowledge interactive proof

Goldwasser, Micali, Rackoff - STOC 1985 Goldreich, Micali, Wigderson - FOCS 1986

Completeness
(Knowledge) Soundness
(Honest-Verifier)
Zero-knowledge

Guillou-Quisquater Protocol (ZK for RSA - 1988)

Guillou-Quisquater Protocol (ZK for RSA - 1988)

$r \stackrel{\odot}{\longleftarrow}(\mathbb{Z} / N \mathbb{Z})^{*}$
$k \leftarrow r^{e} \bmod N$

Guillou-Quisquater Protocol (ZK for RSA - 1988)

$$
\begin{aligned}
& r \stackrel{\odot}{\Leftarrow}(\mathbb{Z} / N \mathbb{Z})^{*} \\
& k \leftarrow r^{e} \bmod N
\end{aligned}
$$

$$
c \stackrel{\because:}{\leftrightarrows}\{0, \ldots, e-1\}
$$

Guillou-Quisquater Protocol (ZK for RSA - 1988)

Guillou-Quisquater Protocol (ZK for RSA - 1988)

Commitments

- digital analogue of a sealed envelope \rightsquigarrow hide a value that cannot be changed
- (Commit, Open)
- Commit $(m ; r) \rightsquigarrow(c, s)$
- $\operatorname{Open}(c, s) \rightsquigarrow m$ or \perp

Commitments

- digital analogue of a sealed envelope \rightsquigarrow hide a value that cannot be changed
- (Commit, Open)
- Commit $(m ; r) \rightsquigarrow(c, s)$
- $\operatorname{Open}(c, s) \rightsquigarrow m$ or \perp

Hiding

Commitments

- digital analogue of a sealed envelope \rightsquigarrow hide a value that cannot be changed
- (Commit, Open)
- Commit $(m ; r) \rightsquigarrow(c, s)$
- $\operatorname{Open}(c, s) \rightsquigarrow m$ or \perp

Hiding
Binding

Multi-Party Computation

- computation between parties who do not trust each other
- preserve the privacy of each player's inputs
- guarantee the correctness of the computation

Multi-Party Computation

- Parties P_{1}, \ldots, P_{n} with private input x_{1}, \ldots, x_{n} \rightsquigarrow wish to compute a joint function $f\left(x_{1}, \ldots, x_{n}\right)$

Multi-Party Computation

- Parties P_{1}, \ldots, P_{n} with private input x_{1}, \ldots, x_{n} \rightsquigarrow wish to compute a joint function $f\left(x_{1}, \ldots, x_{n}\right)$
- Some parties might be corrupted:
- Semi-honest: follow the protocol specifications
- Malicious: might act arbitrarily

Multi-Party Computation

- Parties P_{1}, \ldots, P_{n} with private input x_{1}, \ldots, x_{n} \rightsquigarrow wish to compute a joint function $f\left(x_{1}, \ldots, x_{n}\right)$
- Some parties might be corrupted:
- Semi-honest: follow the protocol specifications
- Malicious: might act arbitrarily

Perfect
 Correctness

Multi-Party Computation

- Parties P_{1}, \ldots, P_{n} with private input x_{1}, \ldots, x_{n} \rightsquigarrow wish to compute a joint function $f\left(x_{1}, \ldots, x_{n}\right)$
- Some parties might be corrupted:
- Semi-honest: follow the protocol specifications
- Malicious: might act arbitrarily

Perfect
 Correctness

t-Privacy

Multi-Party Computation

- Parties P_{1}, \ldots, P_{n} with private input x_{1}, \ldots, x_{n} \rightsquigarrow wish to compute a joint function $f\left(x_{1}, \ldots, x_{n}\right)$
- Some parties might be corrupted:
- Semi-honest: follow the protocol specifications
- Malicious: might act arbitrarily

Perfect
 Correctness

t-Privacy

- For any f, there exist a t-private protocol (for $t<n / 2$) with unconditional semi-honest security

Ben-Or, Goldwasser, Wigderson - STOC 1988

n-out-of- n Secret Sharing

- Let x be a secret from a group (\mathbb{G}, \boxplus).
- Dealer chooses random x_{1}, \ldots, x_{n-1} in \mathbb{G} and computes

$$
x_{n}=x \boxminus\left(x_{1} \boxplus \cdots \boxplus x_{n-1}\right)
$$

The shares are $\left(x_{1}, \ldots, x_{n}\right) \stackrel{\ominus \cdot \odot}{\succcurlyeq} \operatorname{SHARE}(x)$

- Given $\left(x_{1}, \ldots, x_{n}\right)$, one can successfully recover

$$
x=x_{1} \boxplus \cdots \boxplus x_{n}=\operatorname{RECONStRUCT}\left(x_{1}, \ldots, x_{n}\right)
$$

- Given all but one x_{i} 's \rightsquigarrow no information about x

MPC-in-the-Head

Ishai, Kushilevitz, Ostrovsky, Sahai - STOC 2007

- Given a public y, Alice wants to prove that she knows x s.t.

$$
F(x)=y
$$

- Alice uses a n-party secret-sharing (Share, Reconstruct):

$$
\left(x_{1}, \ldots, x_{n}\right) \stackrel{(}{\hookleftarrow} \text { SHARE }(x)
$$

- Consider an n-party computation:

$$
f\left(x_{1}, \ldots, x_{n}\right):=F\left(\operatorname{ReconstRUCT}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

- Alice simulates (in her head) a secure MPC protocol for f with
- 2-privacy in the semi-honest model
- perfect correctness

Views of Parties in MPC

- view of P_{i} denoted V_{i} is
- its input w_{i}
- its random coins r_{i}
- all the messages received by P_{i} (in particular, $f\left(x_{1}, \ldots, x_{n}\right)$)
- Given V_{i} one can perform the same computation as P_{i} (using the description of the MPC protocol)
identical to the incoming messages $P_{j} \leftarrow P_{i}$ (and vice versa)

Views of Parties in MPC

- view of P_{i} denoted V_{i} is
- its input w_{i}
- its random coins r_{i}
- all the messages received by P_{i} (in particular, $f\left(x_{1}, \ldots, x_{n}\right)$)
- Given V_{i} one can perform the same computation as P_{i} (using the description of the MPC protocol)
- V_{i} and V_{j} are consistent if the outgoing messages $P_{i} \rightarrow P_{j}$ are identical to the incoming messages $P_{j} \leftarrow P_{i}$ (and vice versa)

Views of Parties in MPC

- view of P_{i} denoted V_{i} is
- its input w_{i}
- its random coins r_{i}
- all the messages received by P_{i} (in particular, $f\left(x_{1}, \ldots, x_{n}\right)$)
- Given V_{i} one can perform the same computation as P_{i} (using the description of the MPC protocol)
- V_{i} and V_{j} are consistent if the outgoing messages $P_{i} \rightarrow P_{j}$ are identical to the incoming messages $P_{j} \leftarrow P_{i}$ (and vice versa)
- Proposition 1: All pairs of views $\left(V_{i}, V_{j}\right)$ are consistent iff there exists an execution of the protocol in which the view of P_{i} is V_{i}.

MPC-in-the-Head

MPC-in-the-Head

MPC-in-the-Head

MPC-in-the-Head

MPC-in-the-Head

MPC-in-the-Head

MPC-in-the-Head

MPC-in-the-Head

MPC-in-the-Head - Security
 (1) Completeness: by inspection

(2) Soundness: by Proposition 1, if all pairs of views are consistent

and Π outputs 1 then

detects it with probability

3 Zero-knowledge: by the hiding property of the commitment scheme and the 2-nrivacy of Π

MPC-in-the-Head - Security

(1) Completeness: by inspection
(2) Soundness: by Proposition 1, if all pairs of views are consistent and Π outputs 1 then

$$
F\left(\operatorname{ReconstRuct}\left(x_{1}, \ldots, x_{n}\right)\right)=y
$$

If $(F(x) \neq y$ or (at least) one pair of views is inconsistent), Bob detects it with probability

$$
\geq\binom{ n}{2}^{-1}=\frac{2}{n(n-1)}
$$

MPC-in-the-Head - Security

(1) Completeness: by inspection
(2) Soundness: by Proposition 1, if all pairs of views are consistent and Π outputs 1 then

$$
F\left(\operatorname{RECONSTRUCT}\left(x_{1}, \ldots, x_{n}\right)\right)=y
$$

If $(F(x) \neq y$ or (at least) one pair of views is inconsistent), Bob detects it with probability

$$
\geq\binom{ n}{2}^{-1}=\frac{2}{n(n-1)}
$$

(3) Zero-knowledge: by the hiding property of the commitment scheme and the 2-privacy of Π

MPC-in-the-Head using BGW

- the complexity increases with n the cheating probability increases with n \rightsquigarrow pick the minimal n !

MPC-in-the-Head using BGW

- the complexity increases with n the cheating probability increases with n \rightsquigarrow pick the minimal n !
- for 2-privacy with BGW, we need at least $n \geq 5$ players
- with $n=5$, a cheating Alice is not detected

MPC-in-the-Head using BGW

- the complexity increases with n the cheating probability increases with n \rightsquigarrow pick the minimal n !
- for 2-privacy with BGW, we need at least $n \geq 5$ players
- with $n=5$,
- Alice has to commit 5 views of the protocol (and reveals 2)
- If she cheats, Bob detects it with probability $\geq 1 / 10$
- with $n=5$, a cheating Alice is not detected

MPC-in-the-Head using BGW

- the complexity increases with n the cheating probability increases with n \rightsquigarrow pick the minimal n !
- for 2-privacy with BGW, we need at least $n \geq 5$ players
- with $n=5$,
- Alice has to commit 5 views of the protocol (and reveals 2)
- If she cheats, Bob detects it with probability $\geq 1 / 10$
- with $n=5$, a cheating Alice is not detected
- in one run with probability $\leq 9 / 10$
- in k independent runs with probability $\leq(9 / 10)^{k}$
\rightsquigarrow with $k \geq 842$. Alice is not detected with probability $\leq 2^{-128}$

n-out-of-n Secret Sharing in MPC

- Is it possible to reveal $n-1$ shares in the MPC and remain secure?
\rightsquigarrow would lead to better soundness!
- impossible classically for general functions (for IT security)
- but, possible for "linear" functions, e.g. for $a, b \in \mathbb{Z}$:

n-out-of-n Secret Sharing in MPC

- Is it possible to reveal $n-1$ shares in the MPC and remain secure?
\rightsquigarrow would lead to better soundness!
- impossible classically for general functions (for IT security)
- but, possible for "linear" functions, e.g. for $a, b \in \mathbb{Z}$:

$$
\begin{aligned}
a \cdot x \boxplus b \cdot y & =a \cdot\left(x_{1} \boxplus \cdots \boxplus x_{n}\right) \boxplus b \cdot\left(y_{1} \boxplus \cdots \boxplus y_{n}\right) \\
& =\left(a \cdot x_{1} \boxplus b \cdot y_{1}\right) \boxplus \cdots \boxplus\left(a \cdot x_{n} \boxplus b \cdot y_{n}\right)
\end{aligned}
$$

where $a \cdot x=\underbrace{x \boxplus \cdots \boxplus x}_{a \text { times }}($ for $a \geq 0)$

RSA-in-the-head
 (Maire-V. 2023)

RSA-in-the-head
 (Maire-V. 2023)

$$
\begin{aligned}
& \llbracket x \rrbracket \because\left[(\mathbb{Z} / N \mathbb{Z})^{*}\right]^{n} \\
& \left(y_{i} \leftarrow x_{i}^{e} \bmod N\right)_{i}
\end{aligned}
$$

RSA-in-the-head
 (Maire-V. 2023)

$$
\begin{aligned}
& \llbracket \times \rrbracket \because\left[(\mathbb{Z} / N \mathbb{Z})^{*}\right]^{n} \\
& \left(y_{i} \leftarrow x_{i}^{e} \bmod N\right)_{i}
\end{aligned}
$$

$$
i^{*} \stackrel{\odot}{〔}\{1, \ldots, n\}
$$

RSA-in-the-head
 (Maire-V. 2023)

RSA-in-the-head
 (Maire-V. 2023)

$$
\begin{aligned}
& \llbracket x] \stackrel{(G)}{ }\left[(\mathbb{Z} / N \mathbb{Z})^{*}\right]^{n} \\
& \left(y_{i} \leftarrow x_{i}^{e} \bmod N\right)_{i}
\end{aligned}
$$

Compressing the Proof - Tree PRG

Compressing the Proof - Tree PRG

Commitment
(1) $\left(x_{i}, r_{i}\right)=\operatorname{PRG}\left(\rho_{i}\right)$
(2) r_{n}, r picked at random
(0) $c_{i}=H\left(y_{i}, r_{i}\right)$
(1) $c=H\left(c_{0}, \ldots, c_{n}, r\right)$ and Δ_{x}

Compressing the Proof - Tree PRG

Commitment
(1) $\left(x_{i}, r_{i}\right)=\operatorname{PRG}\left(\rho_{i}\right)$
(2) r_{n}, r picked at random
(0) $c_{i}=H\left(y_{i}, r_{i}\right)$
(1) $c=H\left(c_{0}, \ldots, c_{n}, r\right)$ and Δ_{x}

Compressing the Proof - Tree PRG

Commitment
(1) $\left(x_{i}, r_{i}\right)=\operatorname{PRG}\left(\rho_{i}\right)$
(2) r_{n}, r picked at random
(0) $c_{i}=H\left(y_{i}, r_{i}\right)$
(0) $c=H\left(c_{0}, \ldots, c_{n}, r\right)$ and Δ_{x}

Response
Alice reveals r and
(1) $\log _{2}(n)$ values in the tree (in blue)
(2) $C_{i *}$

RSA-in-the-head

$$
e=3, N \simeq 2^{2048}, \lambda=128
$$

(1) Guillou-Quisquater

- Soundness error: $1 / e=1 / 3$
- Iterations: 80
- Proof size: $80 \times 2048+256=20.5$ KBytes
(2) RSA-in-the-head
- Soundness error: $1 / n=1 / 256$
- Iterations: 16
- Proof size: $16 \times(8 \times 128+2048)+256+128=6.5$ KBytes

RSA-in-the-head

$$
e=17, N \simeq 2^{2048}, \lambda=128
$$

(1) Guillou-Quisquater

- Soundness error: $1 / e=1 / 17$
- Iterations: 32
- Proof size: $32 \times 2048+256=8.2$ KBytes
(2) RSA-in-the-head
- Soundness error: $1 / n=1 / 256$
- Iterations: 16
- Proof size: $16 \times(8 \times 128+2048)+256+128=6.5$ KBytes

Beyond Linear functions?

- use additive sharing (n-out-of- n) in a finite field \mathbb{F}
- represent f using an arithmetic circuit over \mathbb{F}

- linear gates are "easy"
- How to handle multiplication gates?

MPC with Pre-Processing

- parties obtain correlated secret inputs
- pre-processing is input independent

MPC with Pre-Processing

- parties obtain correlated secret inputs
- pre-processing is input independent
- parties then run the MPC protocol

MPC with Pre-Processing

- parties obtain correlated secret inputs
- pre-processing is input independent
- parties then run the MPC protocol
- lowers the cost
(broadcast only)

MPC with Pre-Processing

- parties obtain correlated secret inputs
- pre-processing is input independent
- parties then run the MPC protocol
- lowers the cost
(broadcast only)
- How to use it in MPC in the head?

MPC with Pre-Processing

- parties obtain correlated secret inputs
- pre-processing is input independent
- parties then run the MPC protocol
- lowers the cost
(broadcast only)
- How to use it in MPC in the head?
- ... gives Alice more opportunities to cheat!

Multiplication with Pre-Processing

$$
\llbracket x \rrbracket=\operatorname{Share}(x) \llbracket y \rrbracket=\operatorname{Share}(y) \llbracket z \rrbracket=\operatorname{Share}(x \cdot y)
$$

- Beaver (C 1991) / Katz, Kolesnikov, Wang (CCS 2018)
- given $\llbracket a \rrbracket, \llbracket b \rrbracket$ and $\llbracket c \rrbracket$ where a and b are random and $c=a \cdot b$
- compute $\llbracket \alpha \rrbracket=\llbracket x-a \rrbracket, \llbracket \beta \rrbracket=\llbracket y-b \rrbracket$ s.t.

$$
\alpha \cdot \beta+\beta \cdot a+\alpha \cdot b+c=x y=z
$$

\rightsquigarrow need for 'cut and choose"

Multiplication with Pre-Processing

$$
\llbracket \llbracket \rrbracket=\operatorname{Share}(x) \llbracket y \rrbracket=\operatorname{Share}(y) \llbracket \rrbracket \rrbracket=\operatorname{Share}(x \cdot y)
$$

- Beaver (C 1991) / Katz, Kolesnikov, Wang (CCS 2018)
- given $\llbracket a \rrbracket, \llbracket b \rrbracket$ and $\llbracket c \rrbracket$ where a and b are random and $c=a \cdot b$
- compute $\llbracket \alpha \rrbracket=\llbracket x-a \rrbracket, \llbracket \beta \rrbracket=\llbracket y-b \rrbracket$ s.t.

$$
\alpha \cdot \beta+\beta \cdot a+\alpha \cdot b+c=x y=z
$$

\rightsquigarrow need for 'cut and choose"

- Baum-Nof (PKC 2020)
- Idea: Replace computing $\llbracket z \rrbracket$ by committing it and checking that it is correct
- "sacrifice" a triple ($\llbracket a \rrbracket, \llbracket b \rrbracket, \llbracket c \rrbracket)$ with $c=a \cdot b$ \rightsquigarrow checked simultaneously!

Example: Subset-Sum

Given $\left(w_{1}, \ldots, w_{\ell}, t\right) \in(\mathbb{Z} / p \mathbb{Z})^{\ell+1}$, find $\left(x_{1}, \ldots, x_{\ell}\right) \in\{0,1\}^{\ell}$ s.t.

$$
w_{1} \cdot x_{1}+\cdots+w_{\ell} \cdot x_{\ell}=t \bmod p
$$

- Linear relation: $w_{1} \cdot x_{1}+\cdots+w_{\ell} \cdot x_{\ell}=t \bmod p$
- $x_{i} \in\{0,1\} \xrightarrow{\text { Arithmetization }} x_{i}\left(x_{i}-1\right)=0 \bmod p$ $\rightsquigarrow \ell$ triples $\rightsquigarrow 2 \ell$ auxiliary values + Tree PRG
- For $\ell=\left[\log _{2}(p)\right]=256, n=256 \rightsquigarrow 264 \mathrm{~KB}$!

Example: Subset-Sum

Given $\left(w_{1}, \ldots, w_{\ell}, t\right) \in(\mathbb{Z} / p \mathbb{Z})^{\ell+1}$, find $\left(x_{1}, \ldots, x_{\ell}\right) \in\{0,1\}^{\ell}$ s.t.

$$
w_{1} \cdot x_{1}+\cdots+w_{\ell} \cdot x_{\ell}=t \bmod p
$$

- Linear relation: $w_{1} \cdot x_{1}+\cdots+w_{\ell} \cdot x_{\ell}=t \bmod p$
- $x_{i} \in\{0,1\} \xrightarrow{\text { Arithmetization }} x_{i}\left(x_{i}-1\right)=0 \bmod p$ $\rightsquigarrow \ell$ triples $\rightsquigarrow 2 \ell$ auxiliary values + Tree PRG
- For $\ell=\left[\log _{2}(p)\right]=256, n=256 \rightsquigarrow 264 \mathrm{~KB}$!

Shamir - Unpublished, 1986
Ling, Nguyen, Stehlé, Wang - PKC 2013
1186 KB
2350 KB
Beullens - Eurocrypt 2020
122 KB
Feneuil, Maire, Rivain, V. - Asiacrypt 2022

Conclusion

- MPC-in-the-Head is fun!
- Efficient and short ZK proofs for one-way functions
- \rightsquigarrow post-quantum signatures (but not only!)
- Many efficiency/communication improvements in the last 5 years (see presentations byThibauld, Antoine and Jules!)

Conclusion

- MPC-in-the-Head is fun!
- Efficient and short ZK proofs for one-way functions
- \rightsquigarrow post-quantum signatures (but not only!)
- Many efficiency/communication improvements in the last 5 years (see presentations byThibauld, Antoine and Jules!)
- Join the game:
- pick your favorite OWF
- find a cute, MPC-friendly arithmetization
- get an efficient signature scheme!

Bonne retraite Jean Claude!

