Multi-Party Computation in the Head: Techniques and Applications

Damien Vergnaud

Sorbonne Université – LIP6

(with special thanks to Charles Bouillaguet, Thibauld Feneuil, Jules Maire, Matthieu Rivain and the CCA master students)

Images by juicy_fish from flaticon

Outline

MPC-in-the-Head

MPC protocol

ZK proof

Generic technique
Optimizations
Applications

Main Application: Digital Signatures

- consider some one-way function F
- ullet picks uniformly at random sk in F's domain
- sets and publishes pk = F(sk)
- to sign *m*, Alice proves
 - in zero-knowledge
 - non-interactively (using Fiat-Shamir heuristic using m) that she knows ${\rm sk}$ such that ${\rm pk}=F({\rm sk})$
- F one-way against quantum computers
 "post-quantum" signatures
 (7-9 submission to the recent NIST call for signatures)

Goldwasser, Micali, Rackoff – STOC 1985 Goldreich, Micali, Wigderson – FOCS 1986 (1993 Gödel Prize)

Goldwasser, Micali, Rackoff – STOC 1985 Goldreich, Micali, Wigderson – FOCS 1986 (1993 Gödel Prize)

Completeness

Goldwasser, Micali, Rackoff – STOC 1985 Goldreich, Micali, Wigderson – FOCS 1986 (1993 Gödel Prize)

4 / 23

Completeness

(Knowledge)
Soundness

Goldwasser, Micali, Rackoff – STOC 1985 Goldreich, Micali, Wigderson – FOCS 1986 (1993 Gödel Prize)

Completeness

(Knowledge)
Soundness

(Honest-Verifier) Zero-knowledge

$$(N,e) \quad y = x^e \bmod N$$

5/23

x y

$$r \xleftarrow{\mathbf{C} \cdot \mathbf{C}} (\mathbb{Z}/N\mathbb{Z})^*$$

$$k \leftarrow r^e \mod N$$

Commitments

- digital analogue of a sealed envelope
 → hide a value that cannot be changed
- (COMMIT, OPEN)
 - COMMIT $(m; r) \rightsquigarrow (c, s)$
 - Open $(c,s) \leadsto m$ or \perp

Commitments

- digital analogue of a sealed envelope
 → hide a value that cannot be changed
- (COMMIT, OPEN)
 - COMMIT $(m; r) \rightsquigarrow (c, s)$
 - Open $(c,s) \leadsto m$ or \perp

Hiding

Commitments

- (COMMIT, OPEN)
 - COMMIT $(m; r) \rightsquigarrow (c, s)$
 - Open $(c,s) \leadsto m$ or \perp

Hiding

Binding

- computation between parties who do not trust each other
- preserve the privacy of each player's inputs
- guarantee the correctness of the computation

- Parties P_1, \ldots, P_n with private input x_1, \ldots, x_n \rightsquigarrow wish to compute a joint function $f(x_1, \ldots, x_n)$
- Some parties might be corrupted:
 - Semi-honest: follow the protocol specifications
 - Malicious: might act arbitrarily

- Parties P_1, \ldots, P_n with private input x_1, \ldots, x_n \rightsquigarrow wish to compute a joint function $f(x_1, \ldots, x_n)$
- Some parties might be corrupted:
 - Semi-honest: follow the protocol specifications
 - Malicious: might act arbitrarily

- Parties P_1, \ldots, P_n with private input x_1, \ldots, x_n \rightsquigarrow wish to compute a joint function $f(x_1, \ldots, x_n)$
- Some parties might be corrupted:
 - Semi-honest: follow the protocol specifications
 - Malicious: might act arbitrarily

Perfect Correctness

- Parties P_1, \ldots, P_n with private input x_1, \ldots, x_n \rightsquigarrow wish to compute a joint function $f(x_1, \ldots, x_n)$
- Some parties might be corrupted:
 - Semi-honest: follow the protocol specifications
 - Malicious: might act arbitrarily

Perfect Correctness

t-Privacy

- Parties P_1, \ldots, P_n with private input x_1, \ldots, x_n \rightsquigarrow wish to compute a joint function $f(x_1, \ldots, x_n)$
- Some parties might be corrupted:
 - Semi-honest: follow the protocol specifications
 - Malicious: might act arbitrarily

Perfect Correctness

t-Privacy

Damien Vergnaud

8 / 23

• For any f, there exist a t-private protocol (for t < n/2) with **unconditional** semi-honest security

Ben-Or, Goldwasser, Wigderson - STOC 1988

n-out-of-*n* Secret Sharing

- Let x be a secret from a group (\mathbb{G}, \boxplus) .
- Dealer chooses random x_1, \ldots, x_{n-1} in $\mathbb G$ and computes

$$x_n = x \boxminus (x_1 \boxminus \cdots \boxminus x_{n-1})$$

The shares are $(x_1, \ldots, x_n) \stackrel{\frown}{\longleftarrow} SHARE(x)$

• Given (x_1, \ldots, x_n) , one can successfully recover

$$x = x_1 \boxplus \cdots \boxplus x_n = \text{Reconstruct}(x_1, \dots, x_n)$$

• Given all but one x_i 's \rightsquigarrow no information about x

MPC-in-the-Head

Ishai, Kushilevitz, Ostrovsky, Sahai - STOC 2007

• Given a public y, Alice wants to prove that she knows x s.t.

$$F(x) = y$$

• Alice uses a *n*-party secret-sharing (SHARE, RECONSTRUCT):

$$(x_1,\ldots,x_n) \stackrel{\bigodot}{\longleftarrow} \operatorname{SHARE}(x)$$

• Consider an *n*-party computation:

$$f(x_1,\ldots,x_n):=F(\text{Reconstruct}(x_1,\ldots,x_n))$$

- Alice simulates (in her head) a secure MPC protocol for f with
 - 2-privacy in the semi-honest model
 - perfect correctness

Views of Parties in MPC

- view of P_i denoted V_i is
 - its input w;
 - its random coins r_i
 - all the messages received by P_i (in particular, $f(x_1, \dots, x_n)$)
- Given V_i one can perform the same computation as P_i (using the description of the MPC protocol)
- V_i and V_j are consistent if the outgoing messages $P_i \rightarrow P_j$ are identical to the incoming messages $P_i \leftarrow P_i$ (and *vice versa*)
- Proposition 1: All pairs of views (V_i, V_j) are consistent iff there exists an execution of the protocol in which the view of P_i is V_i .

Views of Parties in MPC

- view of P_i denoted V_i is
 - its input w;
 - its random coins r_i
 - all the messages received by P_i (in particular, $f(x_1, ..., x_n)$)
- Given V_i one can perform the same computation as P_i (using the description of the MPC protocol)
- V_i and V_j are consistent if the outgoing messages $P_i \rightarrow P_j$ are identical to the incoming messages $P_j \leftarrow P_i$ (and *vice versa*)
- Proposition 1: All pairs of views (V_i, V_j) are consistent iff there exists an execution of the protocol in which the view of P_i is V_i .

Views of Parties in MPC

- view of P_i denoted V_i is
 - its input w;
 - its random coins r_i
 - all the messages received by P_i (in particular, $f(x_1, ..., x_n)$)
- Given V_i one can perform the same computation as P_i (using the description of the MPC protocol)
- V_i and V_j are consistent if the outgoing messages $P_i \rightarrow P_j$ are identical to the incoming messages $P_i \leftarrow P_i$ (and *vice versa*)
- Proposition 1: All pairs of views (V_i, V_j) are consistent iff there exists an execution of the protocol in which the view of P_i is V_i .

Feb 29 2024 MPC in the Head Damien Vergnaud

MPC-in-the-Head - Security

- Completeness: by inspection
- **Soundness:** by Proposition 1, if all pairs of views are consistent and Π outputs 1 then

$$F(\text{RECONSTRUCT}(x_1,\ldots,x_n))=y$$

If $(F(x) \neq y \text{ or (at least) one pair of views is inconsistent)}$, Bob detects it with probability

$$\geq \binom{n}{2}^{-1} = \frac{2}{n(n-1)}$$

3 Zero-knowledge: by the hiding property of the commitment scheme and the 2-privacy of Π

MPC-in-the-Head - Security

- Completeness: by inspection
- **Soundness:** by Proposition 1, if all pairs of views are consistent and Π outputs 1 then

$$F(\text{RECONSTRUCT}(x_1,\ldots,x_n))=y$$

If $(F(x) \neq y \text{ or (at least) one pair of views is inconsistent)}$, Bob detects it with probability

$$\geq \binom{n}{2}^{-1} = \frac{2}{n(n-1)}$$

3 Zero-knowledge: by the hiding property of the commitment scheme and the 2-privacy of Π

MPC-in-the-Head – Security

- Completeness: by inspection
- **Soundness:** by Proposition 1, if all pairs of views are consistent and Π outputs 1 then

$$F(\text{RECONSTRUCT}(x_1,\ldots,x_n))=y$$

If $(F(x) \neq y \text{ or (at least) one pair of views is inconsistent)}$, Bob detects it with probability

$$\geq \binom{n}{2}^{-1} = \frac{2}{n(n-1)}$$

3 Zero-knowledge: by the hiding property of the commitment scheme and the 2-privacy of Π

- for 2-privacy with BGW, we need at least $n \ge 5$ players
- with n = 5,
 - Alice has to commit 5 views of the protocol (and reveals 2)
 - ullet If she cheats, Bob detects it with probability $\geq 1/10$
- with n = 5, a cheating Alice is not detected
 - in one run with probability $\leq 9/10$
 - in k independent runs with probability $\leq (9/10)^k$

Feb 29 2024 MPC in the Head Damien Vergnaud 14 / 23

- for 2-privacy with BGW, we need at least $n \ge 5$ players
- with n = 5,
 - Alice has to commit 5 views of the protocol (and reveals 2)
 - ullet If she cheats, Bob detects it with probability $\geq 1/10$
- with n = 5, a cheating Alice is not detected
 - in one run with probability $\leq 9/10$
 - in k independent runs with probability ≤ (9/10)^k

 with k ≥ 842, Alice is not detected with probability ≤ 2⁻¹²⁸

Feb 29 2024 MPC in the Head Damien Vergnaud 14 / 23

- for 2-privacy with BGW, we need at least $n \ge 5$ players
- with n = 5,
 - Alice has to commit 5 views of the protocol (and reveals 2)
 - ullet If she cheats, Bob detects it with probability $\geq 1/10$
- with n = 5, a cheating Alice is not detected
 - in one run with probability $\leq 9/10$
 - in k independent runs with probability $\leq (9/10)^k$ \rightsquigarrow with $k \geq 842$, Alice is not detected with probability $\leq 2^{-128}$

- for 2-privacy with BGW, we need at least $n \ge 5$ players
- with n=5,
 - Alice has to commit 5 views of the protocol (and reveals 2)
 - ullet If she cheats, Bob detects it with probability $\geq 1/10$
- with n = 5, a cheating Alice is not detected
 - in one run with probability $\leq 9/10$
 - in k independent runs with probability $\leq (9/10)^k$ \rightsquigarrow with $k \geq 842$, Alice is not detected with probability $\leq 2^{-128}$

n-out-of-*n* Secret Sharing in MPC

- Is it possible to reveal n-1 shares in the MPC and remain secure?
 - → would lead to better soundness!
- impossible classically for general functions (for IT security)
- **but**, possible for "linear" functions, e.g. for $a, b \in \mathbb{Z}$:

$$a \cdot x \boxplus b \cdot y = a \cdot (x_1 \boxplus \cdots \boxplus x_n) \boxplus b \cdot (y_1 \boxplus \cdots \boxplus y_n)$$
$$= (a \cdot x_1 \boxplus b \cdot y_1) \boxplus \cdots \boxplus (a \cdot x_n \boxplus b \cdot y_n)$$

where
$$a \cdot x = \underbrace{x \boxplus \cdots \boxplus x}_{a \text{ times}}$$
 (for $a \ge 0$)

n-out-of-*n* Secret Sharing in MPC

- Is it possible to reveal n-1 shares in the MPC and remain secure?
 - → would lead to better soundness!
- impossible classically for general functions (for IT security)
- **but**, possible for "linear" functions, e.g. for $a, b \in \mathbb{Z}$:

$$a \cdot x \boxplus b \cdot y = a \cdot (x_1 \boxplus \cdots \boxplus x_n) \boxplus b \cdot (y_1 \boxplus \cdots \boxplus y_n)$$
$$= (a \cdot x_1 \boxplus b \cdot y_1) \boxplus \cdots \boxplus (a \cdot x_n \boxplus b \cdot y_n)$$

where
$$a \cdot x = \underbrace{x \boxplus \cdots \boxplus x}_{a \text{ times}}$$
 (for $a \ge 0$)

(Maire-V. 2023)

$$(N, e)$$
 $y = x^e \mod N$

$$(N,e) \quad y = x^e \bmod N$$

$$\llbracket x \rrbracket \xleftarrow{\text{!`}} \left[(\mathbb{Z}/N\mathbb{Z})^* \right]^n (y_i \leftarrow x_i^e \mod N)_i$$

$$(N, e)$$
 $y = x^e \mod N$

$$(N, e)$$
 $y = x^e \mod N$

Commitment

- $c_i = H(y_i, r_i)$
- \circ $c = H(c_0, \ldots, c_n, r)$ and Δ_{\times}

Response

Alice reveals *r* and

• $\log_2(n)$ values in the tree (in blue)

Damien Vergnaud

 \bigcirc C_{i^3}

Commitment

- $c_i = H(y_i, r_i)$
- \circ $c = H(c_0, \ldots, c_n, r)$ and Δ_x

Response

Alice reveals r and

- $\log_2(n)$ values in the tree (in blue)
- ② C_i*

Commitment

- $c_i = H(y_i, r_i)$
- \circ $c = H(c_0, \ldots, c_n, r)$ and Δ_x

Response

Alice reveals r and

- $\log_2(n)$ values in the tree (in blue)
- \bigcirc C_i

Commitment

- $c_i = H(y_i, r_i)$
- \circ $c = H(c_0, \ldots, c_n, r)$ and Δ_{\times}

Response

Alice reveals r and

- $\log_2(n)$ values in the tree (in blue)
- C_{i*}

$$e=3$$
, $N\simeq 2^{2048}$, $\lambda=128$

- Guillou-Quisquater
 - Soundness error: 1/e = 1/3
 - Iterations: 80
 - Proof size: $80 \times 2048 + 256 = 20.5$ KBytes
- RSA-in-the-head
 - Soundness error: 1/n = 1/256
 - Iterations: 16
 - Proof size: $16 \times (8 \times 128 + 2048) + 256 + 128 = 6.5$ KBytes

$$e=17$$
, $N\simeq 2^{2048}$, $\lambda=128$

Guillou-Quisquater

• Soundness error: 1/e = 1/17

Iterations: 32

• Proof size: $32 \times 2048 + 256 = 8.2$ KBytes

RSA-in-the-head

• Soundness error: 1/n = 1/256

Iterations: 16

• Proof size: $16 \times (8 \times 128 + 2048) + 256 + 128 = 6.5$ KBytes

Beyond Linear functions?

- use **additive sharing** (n-out-of-n) in a finite field \mathbb{F}
- represent f using an arithmetic circuit over \mathbb{F}

- linear gates are "easy"
- **How** to handle multiplication gates?

Feb 29 2024

- parties obtain correlated secret inputs
- pre-processing is input independent

- parties obtain correlated secret inputs
- pre-processing is input independent
- parties then run the MPC protocol

- parties obtain correlated secret inputs
- pre-processing is input independent
- parties then run the MPC protocol
- lowers the cost (broadcast only)

- parties obtain correlated secret inputs
- pre-processing is input independent
- parties then run the MPC protocol
- lowers the cost (broadcast only)

• How to use it in MPC in the head?

- parties obtain correlated secret inputs
- pre-processing is input independent
- parties then run the MPC protocol

- lowers the cost (broadcast only)
- How to use it in MPC in the head?
- ... gives Alice more opportunities to cheat!

Multiplication with Pre-Processing

$$\llbracket x \rrbracket = \operatorname{Share}(x) \quad \llbracket y \rrbracket = \operatorname{Share}(y) \quad \llbracket z \rrbracket = \operatorname{Share}(x \cdot y)$$

- Beaver (C 1991) / Katz, Kolesnikov, Wang (CCS 2018)
 - given [a], [b] and [c] where a and b are random and $c = a \cdot b$
 - compute $[\![\alpha]\!] = [\![x-a]\!]$, $[\![\beta]\!] = [\![y-b]\!]$ s.t.

$$\alpha \cdot \beta + \beta \cdot a + \alpha \cdot b + c = xy = z$$

- → need for 'cut and choose"
- Baum-Nof (PKC 2020)
 - Idea: Replace computing [z] by committing it and checking that it is correct
 - "sacrifice" a triple ([a], [b], [c]) with $c = a \cdot b$ \rightsquigarrow checked simultaneously!

Multiplication with Pre-Processing

$$\llbracket x \rrbracket = \operatorname{Share}(x) \quad \llbracket y \rrbracket = \operatorname{Share}(y) \quad \llbracket z \rrbracket = \operatorname{Share}(x \cdot y)$$

- Beaver (C 1991) / Katz, Kolesnikov, Wang (CCS 2018)
 - given [a], [b] and [c] where a and b are random and $c = a \cdot b$
 - compute $[\![\alpha]\!] = [\![x a]\!], [\![\beta]\!] = [\![y b]\!]$ s.t.

$$\alpha \cdot \beta + \beta \cdot a + \alpha \cdot b + c = xy = z$$

→ need for 'cut and choose"

- Baum-Nof (PKC 2020)
 - Idea: Replace computing \[z\] by committing it and checking that it is correct
 - "sacrifice" a triple ([a], [b], [c]) with $c = a \cdot b$

Example: Subset-Sum

Given
$$(w_1,\ldots,w_\ell,t)\in (\mathbb{Z}/p\mathbb{Z})^{\ell+1}$$
, find $(x_1,\ldots,x_\ell)\in \{0,1\}^\ell$ s.t.
$$w_1\cdot x_1+\cdots+w_\ell\cdot x_\ell=t \bmod p$$

- Linear relation: $w_1 \cdot x_1 + \cdots + w_\ell \cdot x_\ell = t \mod p$
- $x_i \in \{0,1\} \xrightarrow{\text{Arithmetization}} x_i(x_i 1) = 0 \mod p$ $\sim \ell \text{ triples} \sim 2\ell \text{ auxiliary values} + \text{Tree PRG}$
- For $\ell = [\log_2(p)] = 256$, $n = 256 \rightsquigarrow 264$ KB!

2350 KB 122 KB

Example: Subset-Sum

Given
$$(w_1,\ldots,w_\ell,t)\in (\mathbb{Z}/p\mathbb{Z})^{\ell+1}$$
, find $(x_1,\ldots,x_\ell)\in \{0,1\}^\ell$ s.t.
$$w_1\cdot x_1+\cdots+w_\ell\cdot x_\ell=t \bmod p$$

- Linear relation: $w_1 \cdot x_1 + \cdots + w_\ell \cdot x_\ell = t \mod p$
- $x_i \in \{0,1\} \xrightarrow{\text{Arithmetization}} x_i(x_i 1) = 0 \mod p$ $\leadsto \ell \text{ triples} \leadsto 2\ell \text{ auxiliary values} + \text{Tree PRG}$
- For $\ell = [\log_2(p)] = 256$, $n = 256 \rightsquigarrow 264$ KB!

Shamir – Unpublished, 1986	1186 KB
Ling, Nguyen, Stehlé, Wang – PKC 2013	2350 KB
Beullens – Eurocrypt 2020	122 KB
Feneuil, Maire, Rivain, V. – Asiacrypt 2022	16 KB

Conclusion

- MPC-in-the-Head is fun!
- Efficient and short ZK proofs for one-way functions
 - → post-quantum signatures (but not only!)
- Many efficiency/communication improvements in the last 5 years (see presentations by Thibauld, Antoine and Jules!)
- Join the game:
 - pick your favorite OWF
 - find a cute, MPC-friendly arithmetization
 - get an efficient signature scheme

Feb 29 2024 MPC in the Head Damien Vergnaud 23 / 23

Conclusion

- MPC-in-the-Head is fun!
- Efficient and short ZK proofs for one-way functions
 - → post-quantum signatures (but not only!)
- Many efficiency/communication improvements in the last 5 years (see presentations by Thibauld, Antoine and Jules!)
- Join the game:
 - pick your favorite OWF
 - find a cute, MPC-friendly arithmetization
 - get an efficient signature scheme!

 Feb 29 2024
 MPC in the Head
 Damien Vergnaud
 23 / 23

Bonne retraite Jean Claude!