Variations on the Knapsack Generator

Florette Martinez

ENS-PSL

March 1st, at Journées NAC

Table of Contents

(1) Definition of the Knapsack Generator
(2) Attacks on the Knapsack Generator

Table of Contents

(1) Definition of the Knapsack Generator
(2) Attacks on the Knapsack Generator

Knapsack Problem

Optimization Problem

$\leq C$

ω_{1}, p_{1}

ω_{3}, p_{3}
ω_{2}, p_{2}

ω_{4}, p_{4}

Knapsack Problem

Optimization Problem

Goal: Finding bits u_{i}

$$
\sum_{i=1}^{4} u_{i} \omega_{i} \leq C \text { and } \sum_{i=1}^{4} u_{i} p_{i} \text { maximal }
$$

Subset Sum Problem (SSP)

Guessing Problem

images made by surang from www.flaticon.com

Subset Sum Problem (SSP)

Guessing Problem

Goal: Finding bits u_{i}

$$
\sum_{i=1}^{4} u_{i} \omega_{i}=C
$$

Formalization

Parameters:

- an integer n
- a vector of weights $\boldsymbol{\omega}=\left(\omega_{0}, \ldots, \omega_{n-1}\right)$
- a target C
- a modulo M

The goal is finding u such that

$$
\langle\mathbf{u}, \boldsymbol{\omega}\rangle=C \bmod M
$$

Formalization

Parameters:

- an integer n
- a vector of weights $\boldsymbol{\omega}=\left(\omega_{0}, \ldots, \omega_{n-1}\right)$
- a target C
- a modulo M

The goal is finding u such that

$$
\langle\mathbf{u}, \boldsymbol{\omega}\rangle=C \bmod M
$$

The closer M is to 2^{n}, the harder the problem is. For now $M=2^{n}$

Knapsack Generator by Rueppel and Massey ${ }^{1}$

$$
\text { seed } \longrightarrow P R N G \longrightarrow s_{0}, s_{1}, s_{2}, \ldots
$$

Knapsack Generator by Rueppel and Massey ${ }^{1}$

$$
\mathbf{u} \longrightarrow\langle\cdot, \boldsymbol{\omega}\rangle \bmod M \longrightarrow s_{0}, s_{1}, s_{2}, \ldots
$$

Knapsack Generator by Rueppel and Massey ${ }^{1}$

$$
\mathbf{u} \longrightarrow\langle., \boldsymbol{\omega}\rangle \bmod M \longrightarrow s_{0}, s_{1}, s_{2} \ldots
$$

Knapsack Generator by Rueppel and Massey ${ }^{1}$

Knapsack Generator by Rueppel and Massey ${ }^{1}$

$\mathbf{U}_{0}, \mathbf{U}_{1}, \ldots \longrightarrow\langle\cdot, \boldsymbol{\omega}\rangle \bmod M \longrightarrow s_{0}, s_{1}, s_{2}, \ldots$

Knapsack Generator by Rueppel and Massey ${ }^{1}$

${ }^{1}$ Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE Intern. Symp. of Inform. Theory, vol. 46 (1985)

Formalization of the Knapsack Generator

Public	Secret
n and $\ell \in \mathbb{N}$	$\mathbf{u} \in\{0,1\}^{n}$
$f \in \mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right]$	$\omega \in\left\{0, \ldots, 2^{n}-1\right\}^{n}$

Formalization of the Knapsack Generator

Public	Secret
n and $\ell \in \mathbb{N}$	$\mathbf{u} \in\{0,1\}^{n}$
$f \in \mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right]$	$\boldsymbol{\omega} \in\left\{0, \ldots, 2^{n}-1\right\}^{n}$

m is the number of outputs

Formalization of the Knapsack Generator

Public	Secret
n and $\ell \in \mathbb{N}$	$\mathbf{u} \in\{0,1\}^{n}$
$f \in \mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right]$	$\omega \in\left\{0, \ldots, 2^{n}-1\right\}^{n}$

m is the number of outputs

Intermediate states	
$\left(u_{i}\right)_{i \geq n}$	$u_{n+i}=f\left(u_{i}, \ldots, u_{n+i-1}\right)$
$\left(\mathbf{U}_{i}\right)_{0, \ldots, m-1}$	$\mathbf{U}_{i}=\left(u_{i}, \ldots u_{n+i-1}\right)$

Formalization of the Knapsack Generator

Public	Secret
n and $\ell \in \mathbb{N}$	$\mathbf{u} \in\{0,1\}^{n}$
$f \in \mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right]$	$\omega \in\left\{0, \ldots, 2^{n}-1\right\}^{n}$

m is the number of outputs

Intermediate states	
$\left(u_{i}\right)_{i \geq n}$	$u_{n+i}=f\left(u_{i}, \ldots, u_{n+i-1}\right)$
$\left(\mathbf{U}_{i}\right)_{0, \ldots, m-1}$	$\mathbf{U}_{i}=\left(u_{i}, \ldots u_{n+i-1}\right)$
$\mathbf{v}=\left(v_{0}, \ldots, v_{m-1}\right)$	$v_{i}=\left\langle\mathbf{U}_{i}, \omega\right\rangle \bmod M$

Formalization of the Knapsack Generator

Public	Secret
n and $\ell \in \mathbb{N}$	$\mathbf{u} \in\{0,1\}^{n}$
$f \in \mathbb{F}_{2}\left[X_{1}, \ldots, X_{n}\right]$	$\omega \in\left\{0, \ldots, 2^{n}-1\right\}^{n}$

m is the number of outputs

Intermediate states	
$\left(u_{i}\right)_{i \geq n}$	$u_{n+i}=f\left(u_{i}, \ldots, u_{n+i-1}\right)$
$\left(\mathbf{U}_{i}\right)_{0, \ldots, m-1}$	$\mathbf{U}_{i}=\left(u_{i}, \ldots u_{n+i-1}\right)$
$\mathbf{v}=\left(v_{0}, \ldots, v_{m-1}\right)$	$v_{i}=\left\langle\mathbf{U}_{i}, \omega\right\rangle \bmod M$
$\mathbf{s}=\left(s_{0}, \ldots, s_{m-1}\right)$	$s_{i}=v_{i} / / 2^{\ell}$
$\boldsymbol{\delta}=\left(\delta_{0}, \ldots, \delta_{m-1}\right)$	$v_{i}=2^{\ell} s_{i}+\delta_{i},\|\boldsymbol{\delta}\|_{\infty} \leq 2^{\ell}$

Table of Contents

(1) Definition of the Knapsack Generator

(2) Attacks on the Knapsack Generator

The secret is unbalanced.

The secret is unbalanced.
For a secret of ~ 1024 bits, the seed (\mathbf{u}) is only made of 32 bits.

Layout

ApproxWeights(u,s(short)): ???
Return $\left(\boldsymbol{\omega}^{\prime}\right)$

Check Consistency ($\mathbf{u}^{\prime}, \boldsymbol{\omega}^{\prime}, \mathbf{s}($ long $)$):
$\mathbf{s}^{\prime}=\operatorname{PRNG}\left(\mathbf{u}^{\prime}, \boldsymbol{\omega}^{\prime}\right)$
Return Boolean(\mathbf{s}^{\prime} is close to \mathbf{s})

Layout

ApproxWeights(u,s(short)): ???
Return $\left(\boldsymbol{\omega}^{\prime}\right)$

Check Consistency ($\mathbf{u}^{\prime}, \boldsymbol{\omega}^{\prime}, \mathbf{s}($ long $)$):
$\mathbf{s}^{\prime}=\operatorname{PRNG}\left(\mathbf{u}^{\prime}, \boldsymbol{\omega}^{\prime}\right)$
Return Boolean(\mathbf{s}^{\prime} is close to \mathbf{s})

Full Attack(s):
For $\mathbf{u}^{\prime} \in\{0,1\}^{n}$:
$\omega^{\prime}=$ ApproxWeights($\mathbf{u}^{\prime}, \mathbf{s}($ short $\left.)\right)$
If Check Consistency $\left(\mathbf{u}^{\prime}, \boldsymbol{\omega}^{\prime}, \mathbf{s}(\right.$ long $\left.)\right)=$ True Return ($\mathbf{u}^{\prime}, \boldsymbol{\omega}^{\prime}$)
End If
End For

Norms

- If $\mathbf{v}=\left(v_{0}, \ldots v_{n-1}\right),\|\mathbf{v}\|_{\infty}=\max _{i \in\{0, \ldots, n-1\}}\left|v_{i}\right|$
- If M is a matrix, $\|M\|_{\infty}=\max _{\|\mathbf{v}\|_{\infty}=1}\|\mathbf{v} M\|_{\infty}$

Hence

$$
\|\mathbf{v} M\|_{\infty} \leq\|\mathbf{v}\|_{\infty}\|M\|_{\infty}
$$

Attack of Knellwolf and Meier ${ }^{2}$

$$
U=\left(\begin{array}{c}
\mathbf{U}_{0} \\
\mathbf{U}_{1} \\
\ldots \\
\mathbf{U}_{m-1}
\end{array}\right)
$$

${ }^{2}$ Knellwolf, S., \& Meier, W. (2011). Cryptanalysis of the knapsack generator. FSE 2011

Attack of Knellwolf and Meier ${ }^{2}$

$$
U=\left(\begin{array}{c}
\mathbf{U}_{0} \\
\mathbf{U}_{1} \\
\ldots \\
\mathbf{U}_{m-1}
\end{array}\right)
$$

$$
\begin{aligned}
\omega U & =v \bmod M \\
& =2^{\ell} \mathbf{s}+\delta \bmod M
\end{aligned}
$$

${ }^{2}$ Knellwolf, S., \& Meier, W. (2011). Cryptanalysis of the knapsack generator. FSE 2011

Attack of Knellwolf and Meier ${ }^{2}$

$$
U=\left(\begin{array}{c}
\mathbf{U}_{0} \\
\mathbf{U}_{1} \\
\ldots \\
\mathbf{U}_{m-1}
\end{array}\right)
$$

$$
\begin{aligned}
\omega U & =v \bmod M \\
& =2^{\ell} \mathbf{s}+\delta \bmod M
\end{aligned}
$$

T such that $U T=I_{n} \bmod M$

[^0]
Attack of Knellwolf and Meier ${ }^{2}$

$$
U=\left(\begin{array}{c}
\mathbf{U}_{0} \\
\mathbf{U}_{1} \\
\ldots \\
\mathbf{U}_{m-1}
\end{array}\right)
$$

$$
\begin{aligned}
\omega U & =v \bmod M \\
& =2^{\ell} \mathbf{s}+\delta \bmod M
\end{aligned}
$$

$$
\omega=v T \bmod M
$$

$$
=2^{\ell} \mathbf{s} T+\delta T \bmod M
$$

$$
\omega-2^{\ell} \mathbf{s} T=\delta T \bmod M
$$

${ }^{2}$ Knellwolf, S., \& Meier, W. (2011). Cryptanalysis of the knapsack generator. FSE 2011

Attack of Knellwolf and Meier ${ }^{2}$

$$
U=\left(\begin{array}{c}
\mathbf{U}_{0} \\
\mathbf{U}_{1} \\
\ldots \\
\mathbf{U}_{m-1}
\end{array}\right)
$$

$$
\begin{aligned}
\omega U & =v \bmod M \\
& =2^{\ell} \mathbf{s}+\delta \bmod M
\end{aligned}
$$

$$
\omega=v T \bmod M
$$

T such that $U T=I_{n} \bmod M$

$$
=2^{\ell} \mathbf{s} T+\delta T \bmod M
$$

$$
\omega-2^{\ell} \mathbf{s} T=\delta T \bmod M
$$

Goal : Construct small \hat{T} such that $\|\delta \hat{T}\|_{\infty}<M$

[^1]Lattice Interlude: CVP and Babai Rounding

Lattice Interlude: CVP and Babai Rounding

$$
x=(-2,1.1)
$$

$$
\begin{gathered}
M=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right) \text { and } \\
\mathcal{L}=\left\{\alpha M \mid \alpha \in \mathbb{Z}^{2}\right\}
\end{gathered}
$$

Lattice Interlude: CVP and Babai Rounding

Lattice Interlude: CVP and Babai Rounding

Lattice Interlude: CVP and Babai Rounding

Lattice Interlude: CVP and Babai Rounding

β such that $\mathrm{x}=\beta \mathrm{M}, \beta=(-0.45,-1.55)$

Lattice Interlude: CVP and Babai Rounding

β such that $\mathrm{x}=\beta \mathrm{M}, \beta=(-0.45,-1.55)$

$$
x^{\prime}=\lfloor\beta\rceil M=(-2,2)
$$

I have $v=\omega U \bmod M$

I have $\mathbf{v}=\omega U \bmod M$ and $\mathbf{v}=2^{\ell} \mathbf{s}+\delta$ with δ small

I have $\mathbf{v}=\omega U \bmod M$ and $\mathbf{v}=2^{\ell} \mathbf{s}+\delta$ with δ small

I have $\mathbf{v}=\omega U \bmod M$ and $\mathbf{v}=2^{\ell} \mathbf{s}+\delta$ with δ small

Failed, this is not \mathbf{v}, we call it \mathbf{v}^{\prime}

I have $\mathbf{v}=\omega U \bmod M$ and $\mathbf{v}=2^{\ell} \mathbf{s}+\delta$ with δ small

We compute $\boldsymbol{\omega}^{\prime}$ as

$$
\omega^{\prime} U=\mathbf{v}^{\prime} \bmod M
$$

Why is ω^{\prime} close to ω ?

Failed, this is not \mathbf{v}, we call it \mathbf{v}^{\prime}

Why does it work ? First Explanation

$$
\left(\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right) U=\mathbf{v}-\mathbf{v}^{\prime} \bmod M
$$

Why does it work? First Explanation

$$
\left(\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right) U=\mathbf{v}-\mathbf{v}^{\prime} \bmod M \quad \Leftrightarrow\left(\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right)=\left(\mathbf{v}-\mathbf{v}^{\prime}\right) \hat{T} \bmod M
$$

Why does it work? First Explanation

$$
\begin{aligned}
\left(\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right) U=\mathbf{v}-\mathbf{v}^{\prime} \bmod M & \Leftrightarrow\left(\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right)=\left(\mathbf{v}-\mathbf{v}^{\prime}\right) \hat{T} \bmod M \\
& \Rightarrow\left\|\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right\|_{\infty} \leq\|\hat{T}\|_{\infty}\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|_{\infty}
\end{aligned}
$$

Why does it work? First Explanation

$$
\begin{aligned}
\left(\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right) U=\mathbf{v}-\mathbf{v}^{\prime} \bmod M & \Leftrightarrow\left(\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right)=\left(\mathbf{v}-\mathbf{v}^{\prime}\right) \hat{T} \bmod M \\
& \Rightarrow\left\|\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right\|_{\infty} \leq\|\hat{T}\|_{\infty}\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|_{\infty}
\end{aligned}
$$

In KW case: $\left\|\boldsymbol{\omega}-2^{\ell} \mathbf{s} \hat{T}\right\|_{\infty} \simeq\|\hat{T}\|_{\infty}\|\boldsymbol{\delta}\|_{\infty}$

Why does it work? First Explanation

$$
\begin{aligned}
\left(\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right) U=\mathbf{v}-\mathbf{v}^{\prime} \bmod M & \Leftrightarrow\left(\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right)=\left(\mathbf{v}-\mathbf{v}^{\prime}\right) \hat{T} \bmod M \\
& \Rightarrow\left\|\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right\|_{\infty} \leq\|\hat{T}\|_{\infty}\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|_{\infty}
\end{aligned}
$$

In KW case: $\left\|\boldsymbol{\omega}-2^{\ell} \mathbf{s} \hat{T}\right\|_{\infty} \simeq\|\hat{T}\|_{\infty}\|\boldsymbol{\delta}\|_{\infty}$
But in our case $\left\|\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right\|_{\infty} \ll\|\hat{T}\|_{\infty}\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|_{\infty}$, precisely $\left\|\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right\|_{\infty} \leq\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|_{\infty}$

Why does it work ? Second Explanation
I already have $\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|_{\infty} \leq 2^{\ell+1} \Leftarrow\left\|\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right\|_{\infty} \leq \frac{2^{\ell+1}}{\|U\|_{\infty}}(1)$

Why does it work ? Second Explanation
I already have $\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|_{\infty} \leq 2^{\ell+1} \Leftarrow\left\|\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right\|_{\infty} \leq \frac{2^{\ell+1}}{\|U\|_{\infty}}(1)$

Why does it work ? Second Explanation

I already have $\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|_{\infty} \leq 2^{\ell+1} \Leftarrow\left\|\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right\|_{\infty} \leq \frac{2^{\ell+1}}{\|U\|_{\infty}}(1)$
If I call $\mathcal{L}=\left\{\alpha U \bmod M \mid \alpha \in \mathbb{Z}^{n}\right\}$, then

$$
\begin{gathered}
\left(\mathbf{v}-\mathbf{v}^{\prime}\right) \in \mathcal{A}=\mathcal{L} \cap B_{m, \infty}\left(2^{\ell+1}\right) \\
\left(\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right) \in \mathcal{B}=\mathbb{Z}^{n} \cap B_{n, \infty}\left(\frac{2^{\ell+1}}{\|U\|_{\infty}}\right)
\end{gathered}
$$

Why does it work ? Second Explanation

I already have $\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|_{\infty} \leq 2^{\ell+1} \Leftarrow\left\|\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right\|_{\infty} \leq \frac{2^{\ell+1}}{\|U\|_{\infty}}(1)$
If I call $\mathcal{L}=\left\{\alpha U \bmod M \mid \alpha \in \mathbb{Z}^{n}\right\}$, then

$$
\begin{gathered}
\left(\mathbf{v}-\mathbf{v}^{\prime}\right) \in \mathcal{A}=\mathcal{L} \cap B_{m, \infty}\left(2^{\ell+1}\right) \\
\left(\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right) \in \mathcal{B}=\mathbb{Z}^{n} \cap B_{n, \infty}\left(\frac{2^{\ell+1}}{\|U\|_{\infty}}\right)
\end{gathered}
$$

By (1), $\mathcal{B} \times U \subseteq \mathcal{A}$

Why does it work ? Second Explanation

I already have $\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|_{\infty} \leq 2^{\ell+1} \Leftarrow\left\|\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right\|_{\infty} \leq \frac{2^{\ell+1}}{\|U\|_{\infty}}(1)$
If I call $\mathcal{L}=\left\{\alpha U \bmod M \mid \alpha \in \mathbb{Z}^{n}\right\}$, then

$$
\begin{gathered}
\left(\mathbf{v}-\mathbf{v}^{\prime}\right) \in \mathcal{A}=\mathcal{L} \cap B_{m, \infty}\left(2^{\ell+1}\right) \\
\left(\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right) \in \mathcal{B}=\mathbb{Z}^{n} \cap B_{n, \infty}\left(\frac{2^{\ell+1}}{\|U\|_{\infty}}\right)
\end{gathered}
$$

By (1), $\mathcal{B} \times U \subseteq \mathcal{A}$ and I want $\mathcal{A} \subseteq \mathcal{B} \times U$

Why does it work ? Second Explanation

I already have $\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|_{\infty} \leq 2^{\ell+1} \Leftarrow\left\|\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right\|_{\infty} \leq \frac{2^{\ell+1}}{\|U\|_{\infty}}(1)$
If I call $\mathcal{L}=\left\{\alpha U \bmod M \mid \alpha \in \mathbb{Z}^{n}\right\}$, then

$$
\begin{gathered}
\left(\mathbf{v}-\mathbf{v}^{\prime}\right) \in \mathcal{A}=\mathcal{L} \cap B_{m, \infty}\left(2^{\ell+1}\right) \\
\left(\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right) \in \mathcal{B}=\mathbb{Z}^{n} \cap B_{n, \infty}\left(\frac{2^{\ell+1}}{\|U\|_{\infty}}\right)
\end{gathered}
$$

By (1), $\mathcal{B} \times U \subseteq \mathcal{A}$ and I want $\mathcal{A} \subseteq \mathcal{B} \times U$
We will show that $|\mathcal{B}| \geq|\mathcal{A}|$

Why does it work ? Second Explanation

I already have $\left\|\mathbf{v}-\mathbf{v}^{\prime}\right\|_{\infty} \leq 2^{\ell+1} \Leftarrow\left\|\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right\|_{\infty} \leq \frac{2^{\ell+1}}{\|U\|_{\infty}}(1)$
If I call $\mathcal{L}=\left\{\alpha U \bmod M \mid \alpha \in \mathbb{Z}^{n}\right\}$, then

$$
\begin{gathered}
\left(\mathbf{v}-\mathbf{v}^{\prime}\right) \in \mathcal{A}=\mathcal{L} \cap B_{m, \infty}\left(2^{\ell+1}\right) \\
\left(\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right) \in \mathcal{B}=\mathbb{Z}^{n} \cap B_{n, \infty}\left(\frac{2^{\ell+1}}{\|U\|_{\infty}}\right)
\end{gathered}
$$

By (1), $\mathcal{B} \times U \subseteq \mathcal{A}$ and I want $\mathcal{A} \subseteq \mathcal{B} \times U$
We will show that $|\mathcal{B}| \geq|\mathcal{A}|$

$$
|\mathcal{B}|=\left(2\left\lfloor\frac{2^{\ell+1}}{\|U\|_{\infty}}\right\rfloor-1\right)^{n}
$$

Lattice Interlude n2: Fundamental domain

Lattice Interlude n2: Fundamental domain

Lattice Interlude n2: Fundamental domain

Lattice Interlude n2: Fundamental domain

Lattice Interlude n2: Fundamental domain

Lattice Interlude n2: Fundamental domain

End of the attack

$$
\begin{gathered}
|\mathcal{B}|=\left(2\left\lfloor\frac{2^{\ell+1}}{\|U\|_{\infty}}\right\rfloor-1\right)^{n} \\
|\mathcal{A}| \simeq \frac{2^{n}\left(2^{\ell+1}-1\right)^{n}}{2^{n-m}}
\end{gathered}
$$

For $n=32$ and $m=40$ we obtain $|\mathcal{B}| \geq|\mathcal{A}|$ for $\ell \leq 14$.

End of the attack

$$
\begin{gathered}
|\mathcal{B}|=\left(2\left\lfloor\frac{2^{\ell+1}}{\|U\|_{\infty}}\right\rfloor-1\right)^{n} \\
|\mathcal{A}| \simeq \frac{2^{n}\left(2^{\ell+1}-1\right)^{n}}{2^{n-m}}
\end{gathered}
$$

For $n=32$ and $m=40$ we obtain $|\mathcal{B}| \geq|\mathcal{A}|$ for $\ell \leq 14$.

ℓ	5	10	15	20	25		
$\log _{2}\left(\left\\|\boldsymbol{\omega}-2^{\ell} \hat{\boldsymbol{T}}\right\\|_{\infty}\right)$	9.9	14.9	19.8	24.7	3		
$\log _{2}\left(\left\\|\boldsymbol{\omega}-\boldsymbol{\omega}^{\prime}\right\\|_{\infty}\right)$	3.6	8.7	13.6	18.7	3		

[^0]: ${ }^{2}$ Knellwolf, S., \& Meier, W. (2011). Cryptanalysis of the knapsack generator. FSE 2011

[^1]: ${ }^{2}$ Knellwolf, S., \& Meier, W. (2011). Cryptanalysis of the knapsack generator. FSE 2011

