
Variations on the Knapsack Generator

Florette Martinez

ENS-PSL

March 1st, at Journées NAC

PRNG

seed PRNG s0, s1, s2, . . .

easy

hard

PRNG

seed PRNG s0, s1, s2, . . .

easy

hard

PRNG

seed PRNG s0, s1, s2, . . .

easy

hard

Table of Contents

1 Definition of the Knapsack Generator

2 Attacks on the Knapsack Generator

Table of Contents

1 Definition of the Knapsack Generator

2 Attacks on the Knapsack Generator

Knapsack Problem

Optimization Problem

≤ C

ω1, p1 ω2, p2

ω3, p3 ω4, p4

Goal: Finding bits ui

4∑
i=1

uiωi ≤ C and
4∑

i=1

uipi maximal

images made by surang from www.flaticon.com

Knapsack Problem

Optimization Problem

≤ C

ω1, p1 ω2, p2

ω3, p3 ω4, p4

Goal: Finding bits ui

4∑
i=1

uiωi ≤ C and
4∑

i=1

uipi maximal

images made by surang from www.flaticon.com

Subset Sum Problem (SSP)

Guessing Problem

= C

ω1 ω2

ω3 ω4

Goal: Finding bits ui
4∑

i=1

uiωi = C

images made by surang from www.flaticon.com

Subset Sum Problem (SSP)

Guessing Problem

= C

ω1 ω2

ω3 ω4

Goal: Finding bits ui
4∑

i=1

uiωi = C

images made by surang from www.flaticon.com

Formalization

Parameters:

• an integer n

• a vector of weights ω = (ω0, . . . , ωn−1)

• a target C

• a modulo M

The goal is finding u such that

⟨u,ω⟩ = C mod M

The closer M is to 2n, the harder the problem is. For now M = 2n

Formalization

Parameters:

• an integer n

• a vector of weights ω = (ω0, . . . , ωn−1)

• a target C

• a modulo M

The goal is finding u such that

⟨u,ω⟩ = C mod M

The closer M is to 2n, the harder the problem is. For now M = 2n

Knapsack Generator by Rueppel and Massey1

seed PRNG s0, s1, s2, . . .

u ⟨.,ω⟩ mod M s0,(((((hhhhhs1, s2, . . .

u

LFSR

U0,U1, . . .

f

s0, s1, s2, . . .

ea
sy

ω

⟨.,ω⟩ mod M v0, v1, v2, . . .

//2ℓ

s0, s1, s2, . . .

1Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE
Intern. Symp. of Inform. Theory, vol. 46 (1985)

Knapsack Generator by Rueppel and Massey1

seed PRNG

s0, s1, s2, . . .u ⟨.,ω⟩ mod M

s0,(((((hhhhhs1, s2, . . .

u

LFSR

U0,U1, . . .

f

s0, s1, s2, . . .

ea
sy

ω

⟨.,ω⟩ mod M v0, v1, v2, . . .

//2ℓ

s0, s1, s2, . . .

1Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE
Intern. Symp. of Inform. Theory, vol. 46 (1985)

Knapsack Generator by Rueppel and Massey1

seed PRNG s0, s1, s2, . . .

u ⟨.,ω⟩ mod M s0,(((((hhhhhs1, s2, . . .

u

LFSR

U0,U1, . . .

f

s0, s1, s2, . . .

ea
sy

ω

⟨.,ω⟩ mod M v0, v1, v2, . . .

//2ℓ

s0, s1, s2, . . .

1Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE
Intern. Symp. of Inform. Theory, vol. 46 (1985)

Knapsack Generator by Rueppel and Massey1

seed PRNG s0, s1, s2, . . .u

⟨.,ω⟩ mod M

s0,(((((hhhhhs1, s2, . . .

u

LFSR

U0,U1, . . .

f

s0, s1, s2, . . .

ea
sy

ω

⟨.,ω⟩ mod M v0, v1, v2, . . .

//2ℓ

s0, s1, s2, . . .

1Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE
Intern. Symp. of Inform. Theory, vol. 46 (1985)

Knapsack Generator by Rueppel and Massey1

seed PRNG s0, s1, s2, . . .u

⟨.,ω⟩ mod M

s0,(((((hhhhhs1, s2, . . .

u

LFSR

U0,U1, . . .

f

s0, s1, s2, . . .

ea
sy

ω

⟨.,ω⟩ mod M v0, v1, v2, . . .

//2ℓ

s0, s1, s2, . . .

1Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE
Intern. Symp. of Inform. Theory, vol. 46 (1985)

Knapsack Generator by Rueppel and Massey1

seed PRNG s0, s1, s2, . . .u ⟨.,ω⟩ mod M s0,(((((hhhhhs1, s2, . . .

u

LFSR

U0,U1, . . .

f

s0, s1, s2, . . .

ea
sy

ω

⟨.,ω⟩ mod M v0, v1, v2, . . .

//2ℓ

s0, s1, s2, . . .

1Rueppel, R.A., Massey, J.L.: Knapsack as a nonlinear function. In: IEEE
Intern. Symp. of Inform. Theory, vol. 46 (1985)

Formalization of the Knapsack Generator

Public Secret

n and ℓ ∈ N u ∈ {0, 1}n
f ∈ F2[X1, . . . ,Xn] ω ∈ {0, . . . , 2n − 1}n

m is the number of outputs

Intermediate states

(ui)i≥n un+i = f (ui , . . . , un+i−1)

(Ui)0,...,m−1 Ui = (ui , . . . un+i−1)

v = (v0, . . . , vm−1) vi = ⟨Ui , ω⟩ mod M

s = (s0, . . . , sm−1) si = vi//2
ℓ

δ = (δ0, . . . , δm−1) vi = 2ℓsi + δi , |δ|∞ ≤ 2ℓ

Formalization of the Knapsack Generator

Public Secret

n and ℓ ∈ N u ∈ {0, 1}n
f ∈ F2[X1, . . . ,Xn] ω ∈ {0, . . . , 2n − 1}n

m is the number of outputs

Intermediate states

(ui)i≥n un+i = f (ui , . . . , un+i−1)

(Ui)0,...,m−1 Ui = (ui , . . . un+i−1)

v = (v0, . . . , vm−1) vi = ⟨Ui , ω⟩ mod M

s = (s0, . . . , sm−1) si = vi//2
ℓ

δ = (δ0, . . . , δm−1) vi = 2ℓsi + δi , |δ|∞ ≤ 2ℓ

Formalization of the Knapsack Generator

Public Secret

n and ℓ ∈ N u ∈ {0, 1}n
f ∈ F2[X1, . . . ,Xn] ω ∈ {0, . . . , 2n − 1}n

m is the number of outputs

Intermediate states

(ui)i≥n un+i = f (ui , . . . , un+i−1)

(Ui)0,...,m−1 Ui = (ui , . . . un+i−1)

v = (v0, . . . , vm−1) vi = ⟨Ui , ω⟩ mod M

s = (s0, . . . , sm−1) si = vi//2
ℓ

δ = (δ0, . . . , δm−1) vi = 2ℓsi + δi , |δ|∞ ≤ 2ℓ

Formalization of the Knapsack Generator

Public Secret

n and ℓ ∈ N u ∈ {0, 1}n
f ∈ F2[X1, . . . ,Xn] ω ∈ {0, . . . , 2n − 1}n

m is the number of outputs

Intermediate states

(ui)i≥n un+i = f (ui , . . . , un+i−1)

(Ui)0,...,m−1 Ui = (ui , . . . un+i−1)

v = (v0, . . . , vm−1) vi = ⟨Ui , ω⟩ mod M

s = (s0, . . . , sm−1) si = vi//2
ℓ

δ = (δ0, . . . , δm−1) vi = 2ℓsi + δi , |δ|∞ ≤ 2ℓ

Formalization of the Knapsack Generator

Public Secret

n and ℓ ∈ N u ∈ {0, 1}n
f ∈ F2[X1, . . . ,Xn] ω ∈ {0, . . . , 2n − 1}n

m is the number of outputs

Intermediate states

(ui)i≥n un+i = f (ui , . . . , un+i−1)

(Ui)0,...,m−1 Ui = (ui , . . . un+i−1)

v = (v0, . . . , vm−1) vi = ⟨Ui , ω⟩ mod M

s = (s0, . . . , sm−1) si = vi//2
ℓ

δ = (δ0, . . . , δm−1) vi = 2ℓsi + δi , |δ|∞ ≤ 2ℓ

Table of Contents

1 Definition of the Knapsack Generator

2 Attacks on the Knapsack Generator

The main flaw

= (u) + (ω)
n(1 + n) bits n bits n2 bits

↑
SMALL

The main flaw

= (u) + (ω)
n(1 + n) bits n bits n2 bits

↑
SMALL

The secret is unbalanced.

For a secret of ∼ 1024 bits, the seed (u) is only made of 32 bits.

The secret is unbalanced.
For a secret of ∼ 1024 bits, the seed (u) is only made of 32 bits.

Layout

ApproxWeights(u, s(short)):

???

Return(ω′)

Check Consistency (u′,ω′, s(long)):

s′ = PRNG (u′,ω′)

Return Boolean(s′ is close to s)

———————

Full Attack(s):

For u′ ∈ {0, 1}n:
ω′ = ApproxWeights(u′, s(short))
If Check Consistency(u′,ω′, s(long)) = True

Return (u′,ω′)

End If

End For

Layout

ApproxWeights(u, s(short)):

???

Return(ω′)

Check Consistency (u′,ω′, s(long)):

s′ = PRNG (u′,ω′)

Return Boolean(s′ is close to s)

———————

Full Attack(s):

For u′ ∈ {0, 1}n:
ω′ = ApproxWeights(u′, s(short))
If Check Consistency(u′,ω′, s(long)) = True

Return (u′,ω′)

End If

End For

Layout

ApproxWeights(u, s(short)):

???

Return(ω′)

Check Consistency (u′,ω′, s(long)):

s′ = PRNG (u′,ω′)

Return Boolean(s′ is close to s)

———————

Full Attack(s):

For u′ ∈ {0, 1}n:
ω′ = ApproxWeights(u′, s(short))
If Check Consistency(u′,ω′, s(long)) = True

Return (u′,ω′)

End If

End For

Norms

• If v = (v0, . . . vn−1), ∥v∥∞ = max
i∈{0,...,n−1}

|vi |

• If M is a matrix, ∥M∥∞ = max
∥v∥∞=1

∥vM∥∞

Hence
∥vM∥∞ ≤ ∥v∥∞∥M∥∞

Attack of Knellwolf and Meier 2

U =

U0

U1

. . .
Um−1

ωU = v mod M

= 2ℓs+ δ mod M

T such that UT = In mod M

ω = vT mod M

= 2ℓsT + δT mod M

ω − 2ℓsT = δT mod M

Goal : Construct small T̂ such that ∥δT̂∥∞ < M

2Knellwolf, S., & Meier, W. (2011). Cryptanalysis of the knapsack
generator. FSE 2011

Attack of Knellwolf and Meier 2

U =

U0

U1

. . .
Um−1

 ωU = v mod M

= 2ℓs+ δ mod M

T such that UT = In mod M

ω = vT mod M

= 2ℓsT + δT mod M

ω − 2ℓsT = δT mod M

Goal : Construct small T̂ such that ∥δT̂∥∞ < M

2Knellwolf, S., & Meier, W. (2011). Cryptanalysis of the knapsack
generator. FSE 2011

Attack of Knellwolf and Meier 2

U =

U0

U1

. . .
Um−1

 ωU = v mod M

= 2ℓs+ δ mod M

T such that UT = In mod M

ω = vT mod M

= 2ℓsT + δT mod M

ω − 2ℓsT = δT mod M

Goal : Construct small T̂ such that ∥δT̂∥∞ < M

2Knellwolf, S., & Meier, W. (2011). Cryptanalysis of the knapsack
generator. FSE 2011

Attack of Knellwolf and Meier 2

U =

U0

U1

. . .
Um−1

 ωU = v mod M

= 2ℓs+ δ mod M

T such that UT = In mod M

ω = vT mod M

= 2ℓsT + δT mod M

ω − 2ℓsT = δT mod M

Goal : Construct small T̂ such that ∥δT̂∥∞ < M

2Knellwolf, S., & Meier, W. (2011). Cryptanalysis of the knapsack
generator. FSE 2011

Attack of Knellwolf and Meier 2

U =

U0

U1

. . .
Um−1

 ωU = v mod M

= 2ℓs+ δ mod M

T such that UT = In mod M

ω = vT mod M

= 2ℓsT + δT mod M

ω − 2ℓsT = δT mod M

Goal : Construct small T̂ such that ∥δT̂∥∞ < M

2Knellwolf, S., & Meier, W. (2011). Cryptanalysis of the knapsack
generator. FSE 2011

Lattice Interlude: CVP and Babai Rounding

x

M =

(
1 3
2 4

)
and

L = {αM | α ∈ Z2}

M =

(
1 1
1 −1

)
and

L = {αM | α ∈ Z2}

x = (−2, 1.1)

β such that x= βM, β = (5.1,−3.55)
β such that x= βM, β = (−0.45,−1.55)
x ′ = ⌊β⌉M = (−3,−1)
x ′ = ⌊β⌉M = (−2, 2)

Lattice Interlude: CVP and Babai Rounding

x

M =

(
1 3
2 4

)
and

L = {αM | α ∈ Z2}

M =

(
1 1
1 −1

)
and

L = {αM | α ∈ Z2}

x = (−2, 1.1)

β such that x= βM, β = (5.1,−3.55)
β such that x= βM, β = (−0.45,−1.55)
x ′ = ⌊β⌉M = (−3,−1)
x ′ = ⌊β⌉M = (−2, 2)

Lattice Interlude: CVP and Babai Rounding

x

M =

(
1 3
2 4

)
and

L = {αM | α ∈ Z2}

M =

(
1 1
1 −1

)
and

L = {αM | α ∈ Z2}

x = (−2, 1.1)
β such that x= βM, β = (5.1,−3.55)

β such that x= βM, β = (−0.45,−1.55)
x ′ = ⌊β⌉M = (−3,−1)
x ′ = ⌊β⌉M = (−2, 2)

Lattice Interlude: CVP and Babai Rounding

x

M =

(
1 3
2 4

)
and

L = {αM | α ∈ Z2}

M =

(
1 1
1 −1

)
and

L = {αM | α ∈ Z2}

x = (−2, 1.1)
β such that x= βM, β = (5.1,−3.55)

β such that x= βM, β = (−0.45,−1.55)

x ′ = ⌊β⌉M = (−3,−1)

x ′ = ⌊β⌉M = (−2, 2)

Lattice Interlude: CVP and Babai Rounding

x

M =

(
1 3
2 4

)
and

L = {αM | α ∈ Z2}

M =

(
1 1
1 −1

)
and

L = {αM | α ∈ Z2}

x = (−2, 1.1)

β such that x= βM, β = (5.1,−3.55)
β such that x= βM, β = (−0.45,−1.55)
x ′ = ⌊β⌉M = (−3,−1)
x ′ = ⌊β⌉M = (−2, 2)

Lattice Interlude: CVP and Babai Rounding

x

M =

(
1 3
2 4

)
and

L = {αM | α ∈ Z2}

M =

(
1 1
1 −1

)
and

L = {αM | α ∈ Z2}

x = (−2, 1.1)

β such that x= βM, β = (5.1,−3.55)

β such that x= βM, β = (−0.45,−1.55)

x ′ = ⌊β⌉M = (−3,−1)
x ′ = ⌊β⌉M = (−2, 2)

Lattice Interlude: CVP and Babai Rounding

x

M =

(
1 3
2 4

)
and

L = {αM | α ∈ Z2}

M =

(
1 1
1 −1

)
and

L = {αM | α ∈ Z2}

x = (−2, 1.1)

β such that x= βM, β = (5.1,−3.55)

β such that x= βM, β = (−0.45,−1.55)

x ′ = ⌊β⌉M = (−3,−1)

x ′ = ⌊β⌉M = (−2, 2)

My variation

I have v = ωU mod M

and v = 2ℓs+ δ with δ small

x
2ℓs

v?v′

L = {αU mod M | α ∈ Zn}

Failed, this is not v, we call it v′

We compute ω’ as

ω′U = v′ mod M

Why is ω′ close to ω ?

My variation

I have v = ωU mod M and v = 2ℓs+ δ with δ small

x
2ℓs

v?v′

L = {αU mod M | α ∈ Zn}

Failed, this is not v, we call it v′

We compute ω’ as

ω′U = v′ mod M

Why is ω′ close to ω ?

My variation

I have v = ωU mod M and v = 2ℓs+ δ with δ small

x
2ℓs

v?

v′

L = {αU mod M | α ∈ Zn}

Failed, this is not v, we call it v′

We compute ω’ as

ω′U = v′ mod M

Why is ω′ close to ω ?

My variation

I have v = ωU mod M and v = 2ℓs+ δ with δ small

x
2ℓs

v?

v′

L = {αU mod M | α ∈ Zn}

Failed, this is not v, we call it v′

We compute ω’ as

ω′U = v′ mod M

Why is ω′ close to ω ?

My variation

I have v = ωU mod M and v = 2ℓs+ δ with δ small

x
2ℓs

v?

v′

L = {αU mod M | α ∈ Zn}

Failed, this is not v, we call it v′

We compute ω’ as

ω′U = v′ mod M

Why is ω′ close to ω ?

Why does it work ? First Explanation

(ω − ω′)U = v − v′ mod M

⇔ (ω − ω′) = (v − v′)T̂ mod M

⇒ ∥ω − ω′∥∞ ≤ ∥T̂∥∞∥v − v′∥∞

In KW case: ∥ω − 2ℓsT̂∥∞ ≃ ∥T̂∥∞∥δ∥∞
But in our case ∥ω − ω′∥∞ ≪ ∥T̂∥∞∥v − v′∥∞, precisely
∥ω − ω′∥∞ ≤ ∥v − v′∥∞

Why does it work ? First Explanation

(ω − ω′)U = v − v′ mod M ⇔ (ω − ω′) = (v − v′)T̂ mod M

⇒ ∥ω − ω′∥∞ ≤ ∥T̂∥∞∥v − v′∥∞

In KW case: ∥ω − 2ℓsT̂∥∞ ≃ ∥T̂∥∞∥δ∥∞
But in our case ∥ω − ω′∥∞ ≪ ∥T̂∥∞∥v − v′∥∞, precisely
∥ω − ω′∥∞ ≤ ∥v − v′∥∞

Why does it work ? First Explanation

(ω − ω′)U = v − v′ mod M ⇔ (ω − ω′) = (v − v′)T̂ mod M

⇒ ∥ω − ω′∥∞ ≤ ∥T̂∥∞∥v − v′∥∞

In KW case: ∥ω − 2ℓsT̂∥∞ ≃ ∥T̂∥∞∥δ∥∞
But in our case ∥ω − ω′∥∞ ≪ ∥T̂∥∞∥v − v′∥∞, precisely
∥ω − ω′∥∞ ≤ ∥v − v′∥∞

Why does it work ? First Explanation

(ω − ω′)U = v − v′ mod M ⇔ (ω − ω′) = (v − v′)T̂ mod M

⇒ ∥ω − ω′∥∞ ≤ ∥T̂∥∞∥v − v′∥∞

In KW case: ∥ω − 2ℓsT̂∥∞ ≃ ∥T̂∥∞∥δ∥∞

But in our case ∥ω − ω′∥∞ ≪ ∥T̂∥∞∥v − v′∥∞, precisely
∥ω − ω′∥∞ ≤ ∥v − v′∥∞

Why does it work ? First Explanation

(ω − ω′)U = v − v′ mod M ⇔ (ω − ω′) = (v − v′)T̂ mod M

⇒ ∥ω − ω′∥∞ ≤ ∥T̂∥∞∥v − v′∥∞

In KW case: ∥ω − 2ℓsT̂∥∞ ≃ ∥T̂∥∞∥δ∥∞
But in our case ∥ω − ω′∥∞ ≪ ∥T̂∥∞∥v − v′∥∞, precisely
∥ω − ω′∥∞ ≤ ∥v − v′∥∞

Why does it work ? Second Explanation

If I call L = {αU mod M | α ∈ Zn}, then

(v − v′) ∈ A = L ∩ Bm,∞(2ℓ+1)

(ω − ω′) ∈ B = Zn ∩ Bn,∞

(
2ℓ+1

∥U∥∞

)
By (1), B × U ⊆ A and I want A ⊆ B × U
We will show that |B| ≥ |A|

|B| = (2⌊ 2ℓ+1

∥U∥∞
⌋ − 1)n

I already have ∥v − v′∥∞ ≤ 2ℓ+1 ⇐ ∥ω − ω′∥∞ ≤ 2ℓ+1

∥U∥∞ (1)

Why does it work ? Second Explanation

If I call L = {αU mod M | α ∈ Zn}, then

(v − v′) ∈ A = L ∩ Bm,∞(2ℓ+1)

(ω − ω′) ∈ B = Zn ∩ Bn,∞

(
2ℓ+1

∥U∥∞

)
By (1), B × U ⊆ A and I want A ⊆ B × U
We will show that |B| ≥ |A|

|B| = (2⌊ 2ℓ+1

∥U∥∞
⌋ − 1)n

I already have ∥v − v′∥∞ ≤ 2ℓ+1 ⇐ ∥ω − ω′∥∞ ≤ 2ℓ+1

∥U∥∞ (1)

Why does it work ? Second Explanation

If I call L = {αU mod M | α ∈ Zn}, then

(v − v′) ∈ A = L ∩ Bm,∞(2ℓ+1)

(ω − ω′) ∈ B = Zn ∩ Bn,∞

(
2ℓ+1

∥U∥∞

)

By (1), B × U ⊆ A and I want A ⊆ B × U
We will show that |B| ≥ |A|

|B| = (2⌊ 2ℓ+1

∥U∥∞
⌋ − 1)n

I already have ∥v − v′∥∞ ≤ 2ℓ+1 ⇐ ∥ω − ω′∥∞ ≤ 2ℓ+1

∥U∥∞ (1)

Why does it work ? Second Explanation

If I call L = {αU mod M | α ∈ Zn}, then

(v − v′) ∈ A = L ∩ Bm,∞(2ℓ+1)

(ω − ω′) ∈ B = Zn ∩ Bn,∞

(
2ℓ+1

∥U∥∞

)
By (1), B × U ⊆ A

and I want A ⊆ B × U
We will show that |B| ≥ |A|

|B| = (2⌊ 2ℓ+1

∥U∥∞
⌋ − 1)n

I already have ∥v − v′∥∞ ≤ 2ℓ+1 ⇐ ∥ω − ω′∥∞ ≤ 2ℓ+1

∥U∥∞ (1)

Why does it work ? Second Explanation

If I call L = {αU mod M | α ∈ Zn}, then

(v − v′) ∈ A = L ∩ Bm,∞(2ℓ+1)

(ω − ω′) ∈ B = Zn ∩ Bn,∞

(
2ℓ+1

∥U∥∞

)
By (1), B × U ⊆ A and I want A ⊆ B × U

We will show that |B| ≥ |A|

|B| = (2⌊ 2ℓ+1

∥U∥∞
⌋ − 1)n

I already have ∥v − v′∥∞ ≤ 2ℓ+1 ⇐ ∥ω − ω′∥∞ ≤ 2ℓ+1

∥U∥∞ (1)

Why does it work ? Second Explanation

If I call L = {αU mod M | α ∈ Zn}, then

(v − v′) ∈ A = L ∩ Bm,∞(2ℓ+1)

(ω − ω′) ∈ B = Zn ∩ Bn,∞

(
2ℓ+1

∥U∥∞

)
By (1), B × U ⊆ A and I want A ⊆ B × U
We will show that |B| ≥ |A|

|B| = (2⌊ 2ℓ+1

∥U∥∞
⌋ − 1)n

I already have ∥v − v′∥∞ ≤ 2ℓ+1 ⇐ ∥ω − ω′∥∞ ≤ 2ℓ+1

∥U∥∞ (1)

Why does it work ? Second Explanation

If I call L = {αU mod M | α ∈ Zn}, then

(v − v′) ∈ A = L ∩ Bm,∞(2ℓ+1)

(ω − ω′) ∈ B = Zn ∩ Bn,∞

(
2ℓ+1

∥U∥∞

)
By (1), B × U ⊆ A and I want A ⊆ B × U
We will show that |B| ≥ |A|

|B| = (2⌊ 2ℓ+1

∥U∥∞
⌋ − 1)n

I already have ∥v − v′∥∞ ≤ 2ℓ+1 ⇐ ∥ω − ω′∥∞ ≤ 2ℓ+1

∥U∥∞ (1)

Lattice Interlude n2: Fundamental domain

D

vol(rectangle)

vol(D)
= 12.5 ∼ 13

Lattice Interlude n2: Fundamental domain

D

vol(rectangle)

vol(D)
= 12.5 ∼ 13

Lattice Interlude n2: Fundamental domain

D

vol(rectangle)

vol(D)
= 12.5 ∼ 13

Lattice Interlude n2: Fundamental domain

D

vol(rectangle)

vol(D)
= 12.5 ∼ 13

Lattice Interlude n2: Fundamental domain

D

vol(rectangle)

vol(D)
= 12.5 ∼ 13

Lattice Interlude n2: Fundamental domain

D

vol(rectangle)

vol(D)
= 12.5 ∼ 13

End of the attack

|B| = (2⌊ 2ℓ+1

∥U∥∞
⌋ − 1)n

|A| ≃ 2n(2ℓ+1 − 1)n

2n−m

For n = 32 and m = 40 we obtain |B| ≥ |A| for ℓ ≤ 14.

ℓ 5 10 15 20 25

log2(∥ω − 2ℓT̂∥∞) 9.9 14.9 19.8 24.7 ��ZZ31

log2(∥ω − ω′∥∞) 3.6 8.7 13.6 18.7 ��ZZ31

End of the attack

|B| = (2⌊ 2ℓ+1

∥U∥∞
⌋ − 1)n

|A| ≃ 2n(2ℓ+1 − 1)n

2n−m

For n = 32 and m = 40 we obtain |B| ≥ |A| for ℓ ≤ 14.

ℓ 5 10 15 20 25

log2(∥ω − 2ℓT̂∥∞) 9.9 14.9 19.8 24.7 ��ZZ31

log2(∥ω − ω′∥∞) 3.6 8.7 13.6 18.7 ��ZZ31

