
La malédiction des preuves longues et
ennuyeuses

Jean-Michel Muller
avec des contributions de M. Joldes, V. Popescu, L. Rideau, B. Salvy

Numération, Algorithmes et Cryptographie, Paris, Février 2024

CNRS - Laboratoire LIP

http://perso.ens-lyon.fr/jean-michel.muller/

1

http://perso.ens-lyon.fr/jean-michel.muller/

Lyon, 1991. . .

je suis chargé d’organiser une
séance photos pour réaliser la
première plaquette du LIP;

on fait appel aux top-models
locaux.

2

Lyon, 1991. . .

Outre JCB, on reconnait Christine Paulin et Pierre Fraigniaud.
3

À quoi bon tout cela ?

We wish to prove error bounds of medium-size,
“atomic” algorithms in FP arithmetic, but. . .

error bounds. . . for what purpose?

proofs. . . for what purpose?

4

Context: base 2, precision-p FP arithmetic

A Floating-Point number (FPN) x is represented by two integers:

Floating-Point number:

x =

(
M

2p−1

)
· 2e

where M, e ∈ Z, with |M| ≤ 2p − 1 and emin ≤ e ≤ emax. Additional
requirement: e smallest under these constraints.

largest finite FPN Ω = 2emax+1 − 2emax−p+1;

unit roundoff: u = 2−p.

5

Error bounds. . .

FP system parametered by precision p or unit round-off u = 2−p;

for a given algorithm relative error bound B(u);

the (most likely unknown) worst case error is W(u).

The bound B is

certain (for u ≤ u0) if W(u) ≤ B(u) for u ≤ u0;

asymptotically optimal if W(u)/B(u)→ 1 as u → 0;

tight (for u ≤ u0) if W(u) is close to B(u) for u ≤ u0.

6

Mais pourquoi veut-il tant calculer des bornes d’erreur ?

choice between different algorithms:

an informed choice of the algorithm that has the best balance
performance/accuracy requires tight bounds;
certainty not that important;

guaranteeing the behavior of a possibly critical software:

need to prove that the error is not ≥ some threshold
→ certainty important,

tightness not always needed;

fully validated set of “atomic” algorithms:

the most common transcendental functions such as exp, ln;
simple algebraic functions such as 1/

√
x , hypot(x , y) =

√
x2 + y2

are “basic building blocks” of numerical computing : users expect same
behavior as for +, −, ×, ÷, √.

→ having bounds that are both certain and tight is desirable.

7

Proofs. . . for what purpose ?

1 to check, by following the proof step by step, that the claimed property
holds;

2 to have a deep and “global” understanding of what is behind the claimed
property.

Rather antagonistic goals:

goal 1 requires many details,

goal 2 needs a focus on the “big things” (hence many “without loss of
generality. . . ” or “the second case is similar”).

In general our “paper proofs” are in between: is this the right solution?

8

The two examples considered in this talk

“double word” arithmetic: formal proofs helped to

strengthen claimed results,
improve them,
find (hmmm. . . embarassing) bugs.

hypotenuse function
√

x2 + y2: computer algebra helped to

obtain tight bounds,
explore several variants.

Before presenting that: additional notions on FP arithmetic (roundings,
error-free transforms, double-word arithmetic).

9

Correct rounding, ulp (unit in the last place)

the sum, product, . . . of two FP numbers is not, in general, a FP number
→ must be rounded;

the IEEE 754 Std for FP arithmetic specifies several rounding functions;

the default function is RN ties to even.

Correctly rounded operation: returns what we would get by exact operation
followed by rounding.

correctly rounded +, −, ×, ÷, √. are required;

→ when c = a + b appears in a program, we get c = RN (a + b).

If |x | ∈ [2e , 2e+1), then ulp (x) = 2max{e,emin}−p+1.

Frequently used for expressing errors of atomic functions.

10

Relative error due to rounding

if 2emin ≤ |x | ≤ Ω, then

|x − RN (x)| ≤ 1
2
ulp (x) = 2blog2 |x|c−p,

therefore,
|x − RN (x)| ≤ u · |x |, (1)

with u = 2−p . Hence the relative error

|x − RN (x)|
|x |

(for x 6= 0) is ≤ u.

u, called unit round-off is frequently used for expressing errors.

11

Absolute error (in ulps) of rounding to nearest a
real number x ∈ [1/2, 16], assuming a binary FP

“toy” system with p = 5.

Relative error (in multiples of u = 2−p) of rounding
to nearest a real number x ∈ [1/2, 16], assuming a

binary FP “toy” system with p = 5.

The relative error bound u is tight only slightly above a power of 2.

12

Error-free transforms and double-word arithmetic

2Sum(a, b)

s ← RN (a + b)

a′ ← RN (s − b)

b′ ← RN (s − a′)

δa ← RN (a− a′)

δb ← RN (b − b′)

t ← RN (δa + δb)

return (s, t)

Fast2Sum(a, b)

s ← RN (a + b)

z ← RN (s − a)

t ← RN (b − z)

return (s, t)

Barring overflow:

the pair (s, t) returned by 2Sum satisfies s = RN (a + b) and
t = (a + b)− s;

if |a| ≥ |b| then the pair (s, t) returned by Fast2Sum satisfies
s = RN (a + b) and t = (a + b)− s.

Such algorithms: Error-free transforms.

13

Error-free transforms and double-word arithmetic

2Prod(a, b)

π ← RN (ab)

ρ← RN (ab − π)

return (π, ρ)

Barring overflow, if the exponents ea and eb of a and b satisfy
ea + eb ≥ emin + p − 1 then then the pair (π, ρ) returned by Fast2Sum satisfies
π = RN (ab) and ρ = (ab)− π.

Fast2Sum, 2Sum and 2Prod: return x represented by a pair (xh, x`) of
FPN such that xh = RN (x) and x = xh + x`;

Such pairs: double-word numbers (DW).

Algorithms for manipulating DW suggested by various authors since 1971.

14

DW+DW: “accurate version”

Sum of two DW numbers. There also exists a “quick & dirty” algorithm, but its
relative error is unbounded.

DWPlusDW

1: (sh, s`)← 2Sum(xh, yh)

2: (th, t`)← 2Sum(x`, y`)

3: c ← RN (s` + th)

4: (vh, v`)← Fast2Sum(sh, c)

5: w ← RN (t` + v`)

6: (zh, z`)← Fast2Sum(vh,w)

7: return (zh, z`)

ah I Xl 9h I Ye

v
v

s
t

25mm 25mm

v v

sh se th te

> <

±
C

] L

Fast 2am
d

'h I ve

v
v

z ,
Footage#

L

15

DW+DW: “accurate version”

We have (after a rather tedious proof):

Theorem (Joldeş, Popescu, M., 2017)
If p ≥ 3, the relative error of Algorithm DWPlusDW is bounded by

3u2

1− 4u
= 3u2 + 12u3 + 48u4 + · · · , (2)

That theorem has an interesting history. . .

16

17

18

19

DW+DW: “accurate version”

So the theorem gives an error bound

3u2

1− 4u
' 3u2 . . .

As said before, that theorem has an interesting history:

the authors of the first paper where a bound was given (in 2000) claimed
(without published proof) that the relative error was always ≤ 2u2 (in
binary64 arithmetic);

when trying (without success) to prove their bound, we found an example
with error ≈ 2.25u2;

we finally proved the theorem, and Laurence Rideau started to write a
formal proof in Coq;

of course, that led to finding a (minor) flaw in our proof. . .

(I hate Coq people)

20

DW+DW: “accurate version”

fortunately the flaw was quickly corrected (before final publication of the
paper. . . Phew)!

still, the gap between worst case found (≈ 2.25u2) and the bound (≈ 3u2)
was frustrating, so I spent months trying to improve the theorem. . .

and of course this could not be done: it was the worst case that needed
spending time!

we finally found that with
xh = 1
x` = u − u2

yh = − 1
2 + u

2

y` = − u2

2 + u3.

error 3u2−2u3

1+3u−3u2+2u3 is attained. With p = 53 (binary64 arithmetic), gives
error 2.99999999999999877875 · · · × u2.

21

DW × DW

Product z = (zh, z`) of two DW numbers x = (xh, x`) and y = (yh, y`);

several algorithms → tradeoff speed/accuracy. We just give one of them.

DWTimesDW

1: (ch, c`1)← 2Prod(xh, yh)
2: t` ← RN (xh · y`)
3: c`2 ← RN (t` + x`yh)

4: c`3 ← RN (c`1 + c`2)

5: (zh, z`)← Fast2Sum(ch, c`3)

6: return (zh, z`)

ah I Xl 9h I be

inv
÷:p ÷
-

vv v

FMA

✓

Clz
✓
<

+

✓

✓
Cls

z <
Festonna

22

DW × DW

We have

Theorem (M. and Rideau, 2022)
If p ≥ 5, the relative error of Algorithm DWTimesDW is less than or equal to

5u2

(1 + u)2
< 5u2.

and that theorem too has an interesting (hmmm. . . a bit more annoying?)
history!

in 2017, I participated to the proof of an initial relative error bound 6u2;

again, Laurence tried translating the proof in Coq. . . and it turned out the
proof was based on a wrong lemma (and this was after publication).

(what did I say about Coq people?)

23

DW × DW

after a few nights of bad sleep, turn-around. . . that also improved the
bound: 6u2 → 5u2!

no proof of asymptotic optimality, but in binary64 arithmetic, we have
examples with error > 4.98u2;

real consolation or lame excuse? Maybe without the flaw, we would never
have found the better bound.

24

Halfway conclusion

Full set of validated DW algorithms for the arithmetic operations and the square
root (M. and Rideau, 2022; Lefèvre, Louvet, Picot, M. and Rideau, 2023).

That class of algorithms really needs formal proof:

Proofs have too many subcases to be certain you have not forgotten one;

they are boring: almost nobody reads them.

Alternate–or complementary–solution? try to automatically compute bounds:

short-term goal: limit human intervention (and therefore, human error);
and make simpler the exploration of many variants;

long-term goal: bounds correct by construction.

25

An example: hypotenuse function
√

x2 + y 2

NaiveHypot

1: sx ← RN (x2)

2: sy ← RN (y2)

3: σ ← RN (sx + sy)

4: ρ1 = RN (
√
σ)

classical relative error
bound 2u +O(u2);

refinement: 2u
(Jeannerod & Rump);

asymptotically optimal
(Jeannerod, M., Plet).

Major drawback: “spurious” overflow/underflow

Examples in binary64/double precision
arithmetic (p = 53):

if x = 2600 and y = 0, returned result
+∞, exact result 2600;

if x = 65× 2−542 and y = 72× 2−542,
returned result 96× 2−542, exact result
97× 2−542.

⇒ need to scale the operands.

26

Simple scaling

1: if |x | < |y | then
2: swap (x , y)

3: end if
4: r ← RN (y/x)

5: t ← RN (1 + r2)

6: s ← RN (
√
t)

7: ρ2 = RN (|x | · s)

relative error bounded by 5
2u + 3

8u
2;

asymptotically optimal.

⇒ avoiding spurious overflow has a significant cost in terms of accuracy.

Improvements?

27

Simple scaling with compensation (Nelson Beebe, 2017)

1: if |x | < |y | then
2: swap(x , y)

3: end if
4: r ← RN (y/x)

5: t ← RN (1 + r2)

6: s ← RN (
√
t)

7: ε← RN (t − s2)

8: c ← RN (ε/(2s))

9: ν ← RN (|x | · c)

10: ρ3 ← RN (|x | · s + ν)

this version: requires an FMA;

one Newton-Raphson iteration;

relative error bound 8
5u + 7

5u
2 (Salvy & M., 2023);

known case with error 1.5999739u in binary64 FP
arithmetic.

28

The various bounds obtained

Algorithm reference error bound condition status

Naive folklore 2u − 8
5 (9− 4

√
6)u2 p ≥ 2 asympt. optimal

Simple scaling folklore 5
2 u + 3

8 u2 p ≥ 2 asympt. optimal

Scaling w. compensation N. Beebe (2017) 8
5 u + 7

5 u2 p ≥ 4 sharp

Borges “fused” C. Borges (2020) u + 14u2 p ≥ 5 asympt. optimal

Kahan W. Kahan (1987) 1.5355u +O(u2) ? TBD a bit loose

29

Goal: tight and certain relative error bounds

Programs that at step k have an instruction of the form

x_k = x_i op x_j or x_k = sqrt(x_i)

where op is +, -, * or /, and x_i and x_j are either precomputed values
or input values (i , j < k);

Computed values:

xk = RN (xi op xj) or xk = RN (
√
xi);

basic relations:

xk = xi op xj ± 1
2 ulp (xi op xj),

xk = (xi op xj)(1 + ε), with |ε| ≤ u
1+u

< u.
(3)

(or the same with
√
xi)

Optimisation problem: find the maximum and the minimum of the quantity
ρ/
√

x2 + y2 − 1 in the region defined by the equalities and inequalities
obtained from analyzing the program (e.g., (3)) → Algebraic bound.

30

Goal: tight and certain relative error bounds

Computed values

xk = RN (xi op xj) or xk = RN (
√
xi);

we compare the computed values xk with the exact values:

x∗k = x∗i op x∗j or x∗k =
√

x∗i ;

(initial values: xi = x∗i for i ≤ 0).

The analysis consists in iteratively computing relative error bounds ε`k(u)

and εrk(u) such that (here, for positive xk and x∗k)

x∗k

(
1− ε`k(u)

)
≤ xk ≤ x∗k (1 + εrk(u)) ; (4)

31

Goal: tight and certain relative error bounds

with care, iteratively computing bounds of the form (4), using at each
step the “basic relations” (3) is not so difficult;

ending up with a tight bound is difficult. Two reasons:
requires existence of input values for which the individual rounding
errors attain their maximum (with the right sign) at each operation.

→ Not always possible: Correlations. 3 · (x · y), one cannot have
both (x · y) and 3 · (x · y) very slightly above a power of 2;

(and, indeed, 3 · (x · y) more accurate than (3 · x) · y)
the “basic relations” (3) are not the last word: additional properties
(e.g., Sterbenz Lemma) specific to FP arithmetic.

32

Analysis of Beebe’s algorithm

1: if |x | < |y | then
2: swap(x , y)

3: end if
4: r ← RN (y/x)

5: t ← RN (1 + r2)

6: s ← RN (
√
t)

7: ε← RN (t − s2)

8: c ← RN (ε/(2s))

9: ν ← RN (|x | · c)

10: ρ3 ← RN (|x | · s + ν)

33

Analysis of Beebe’s algorithm

Simplification: x ≥ y > 0

1: r ← RN (y/x)

2: t ← RN (1 + r2)

3: s ← RN (
√
t)

4: ε← RN (t − s2)

5: c ← RN (ε/(2s))

6: ν ← RN (x · c)

7: ρ3 ← RN (x · s + ν)

Main idea: Newton-Raphson iteration

ε

2s
+ s =

t − s2

2s
+ s =

√
t +

(s −
√
t)2

2s
,

so that (ε
2s

+ s
)
−
√
t =

(s −
√
t)2

2s
.

34

Analysis of Beebe’s algorithm

1: r ← RN (y/x)

2: t ← RN (1 + r2)

3: s ← RN (
√
t)

4: ε← RN (t − s2)

5: c ← RN (ε/(2s))

6: ν ← RN (x · c)

7: ρ3 ← RN (x · s + ν)

define α by y = αx , so that r = RN (α);

r = α + uεr , with

|εr | ≤

 1
4 , if α ≤ 1/2,
1
2 , if α > 1/2.

t = 1 + r2 + uεt , with |εt | ≤ 1 (comes from
1 + r2 ≤ 2);

s =
√
t + uεs , with |εs | ≤ 1 (comes from t < 2);

ε = t − s2 (comes from Sterbenz Lemma).

35

Analysis of Beebe’s algorithm

1: r ← RN (y/x)

2: t ← RN (1 + r2)

3: s ← RN (
√
t)

4: ε← RN (t − s2)

5: c ← RN (ε/(2s))

6: ν ← RN (x · c)

7: ρ3 ← RN (x · s + ν)

∣∣ ε
2s

∣∣ =
∣∣∣ t−s2

2s

∣∣∣
=

∣∣∣ (s−uεs)
2−s2

2s

∣∣∣
=

∣∣∣−uεs +
u2ε2s
2s

∣∣∣ ≤ u + u2

2 .

(5)

If |ε/(2s)| ≤ u then the error committed by
rounding ε

2s to nearest is ≤ u2/2;

If |ε/(2s)| > u, then since the FPN above u is
u + 2u2, (5) implies RN (ε/(2s)) = ±u
⇒ again the rounding error is ≤ u2/2.

Hence in all cases, |c| ≤ u and

c =
ε

2s
+ εc

u2

2
,

with |εc | ≤ 1.

36

Analysis of Beebe’s algorithm

1: r ← RN (y/x)

2: t ← RN (1 + r2)

3: s ← RN (
√
t)

4: ε← RN (t − s2)

5: c ← RN (ε/(2s))

6: ν ← RN (x · c)

7: ρ3 ← RN (x · s + ν)

ν = xc(1 + uεν) with |εν | ≤ 1/(1 + u);

ρ3 = (ν + xs)(1 + uερ) with |ερ| ≤ 1/(1 + u);

37

Analysis of Beebe’s algorithm

Putting all this together:

ρ3 = (ν + xs)(1 + uερ),

= x
(

(−uεs + u2

2 (εc + ε2s /s))(1 + uεν) +
√
t + uεs

)
(1 + uερ),

= x
(√

t + u2

2 ((εc + ε2s /s)(1 + uεν)− 2εsεν)
)

(1 + uερ)

= x
√
1 + r2

√
1 + uεt

1+r2

(
1 + u2

2
√
t
((εc + ε2s /s)(1 + uεν)− 2εsεν)

)
(1 + uερ),

Lemma

The relative error of the algorithm is

R =
√

1 + r2−α2

1+α2

√
1 + uεt

1+r2

×
(
1 + u2

2
√
t
((εc + ε2s /s)(1 + uεν)− 2εsεν)

)
(1 + uερ)− 1,

Moreover, |εs |, |εt |, |εc | are bounded by 1 and |εν | and |ερ| by 1/(1 + u).

38

Now, the painful work

linear term (
2αεr + εt
2(1 + α2)

+ ερ

)
· u

increasing function of εr , εt and ερ,
εr ≤ 1/4 if α ≤ 1/2, εr ≤ 1/2 otherwise,
εt , ερ ≤ 1

→ max. value 8/5;

show that for u ∈ [0, 1/2],

∂R

∂ερ
≥ 0,

∂R

∂εt
≥ 0,

∂R

∂εr
≥ 0,

∂R

∂εc
≥ 0.

→ it suffices to consider the extremum values of ερ, εt , εr , and εc ;

process the cases α < 1/2 and 1/2 ≤ α ≤ 1 separately;

in each case, lower and upper bound on R. . .

39

Analysis of Beebe’s algorithm

Theorem
Assuming u ≤ 1/16 (i.e., p ≥ 4), the relative error of Beebe’s algorithm is
bounded by

χ4(u) = (1 + 2u)

√
1 + u/5

1 + u
− 1 + u2 (1 + 2u)2

(1 + u)2


√
5

5
+

1

5
√

(1+u)
(
1+ u

5
)

2 − u

+
2
√
5

5 (1 + 2u)

 ,

≤
8

5
u +

7

5
u2
.

How do we publish a proof? Have a Maple worksheet publicly available and
just get a rough sketch (similar to these slides) in a paper?

40

And the other algorithms?

Another algorithm due to Borges: really painful. . . but we managed to
obtain the result;

Kahan’s algorithm. . . the first result was:

We are succeeding (paper to come soon)
It seems we are approaching a limit. . .

. . . and again, as for DW arithmetic, if we fully “expand” the proofs they are
terrible (probably unpublishable).

41

But, really, what were we trying to do?

obtain the best “algebraic bound”: the best one could deduce from the
individual bounds on the rounding errors of the operations and a few
properties such as Sterbenz Lemma;

but when the algorithms become complex, does that bound remain tight?

we have seen: correlations;
even without correlations: tightness requires that for each operation
the maximum error is almost reached, with the right signs;
in general: probability of this decreases exponentially with number
of operations;

→ Rule of thumb: when the number of operations is no longer small in front
of p, little hope of having a worst-case error close to the algebraic bound.

42

Conclusion

formal proof and computer algebra:

add confidence to the computed bounds;
allow us to get to grips with (slightly) bigger algorithms;
make it possible to explore many variants of an algorithm (just
“replay” the calculation with small modifications);

long-term goal: use both techniques together (have the computer algebra
tool generate a certificate);

seems we are approaching the limit (in terms of algorithm size) of what
can be done “exactly”;

consolation: for larger algorithms, little hope of having a worst-case error
close to the algebraic bound;

what is a publishable proof? A human-readable rough sketch along with a
Coq file and/or a Maple (or whatever tool) worksheet? What we
currently do is just a stylistic exercise. . .

43

