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Lyon, 1991. . .

je suis chargé d’organiser une
séance photos pour réaliser la
première plaquette du LIP;

on fait appel aux top-models
locaux.
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Lyon, 1991. . .

Outre JCB, on reconnait Christine Paulin et Pierre Fraigniaud.
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À quoi bon tout cela ?

We wish to prove error bounds of medium-size,
“atomic” algorithms in FP arithmetic, but. . .

error bounds. . . for what purpose?

proofs. . . for what purpose?
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Context: base 2, precision-p FP arithmetic

A Floating-Point number (FPN) x is represented by two integers:

Floating-Point number:

x =

(
M

2p−1

)
· 2e

where M, e ∈ Z, with |M| ≤ 2p − 1 and emin ≤ e ≤ emax. Additional
requirement: e smallest under these constraints.

largest finite FPN Ω = 2emax+1 − 2emax−p+1;

unit roundoff: u = 2−p.
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Error bounds. . .

FP system parametered by precision p or unit round-off u = 2−p;

for a given algorithm relative error bound B(u);

the (most likely unknown) worst case error is W(u).

The bound B is

certain (for u ≤ u0) if W(u) ≤ B(u) for u ≤ u0;

asymptotically optimal if W(u)/B(u)→ 1 as u → 0;

tight (for u ≤ u0) if W(u) is close to B(u) for u ≤ u0.
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Mais pourquoi veut-il tant calculer des bornes d’erreur ?

choice between different algorithms:

an informed choice of the algorithm that has the best balance
performance/accuracy requires tight bounds;
certainty not that important;

guaranteeing the behavior of a possibly critical software:

need to prove that the error is not ≥ some threshold
→ certainty important,

tightness not always needed;

fully validated set of “atomic” algorithms:

the most common transcendental functions such as exp, ln;
simple algebraic functions such as 1/

√
x , hypot(x , y) =

√
x2 + y2

are “basic building blocks” of numerical computing : users expect same
behavior as for +, −, ×, ÷, √.

→ having bounds that are both certain and tight is desirable.
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Proofs. . . for what purpose ?

1 to check, by following the proof step by step, that the claimed property
holds;

2 to have a deep and “global” understanding of what is behind the claimed
property.

Rather antagonistic goals:

goal 1 requires many details,

goal 2 needs a focus on the “big things” (hence many “without loss of
generality. . . ” or “the second case is similar”).

In general our “paper proofs” are in between: is this the right solution?
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The two examples considered in this talk

“double word” arithmetic: formal proofs helped to

strengthen claimed results,
improve them,
find (hmmm. . . embarassing) bugs.

hypotenuse function
√

x2 + y2: computer algebra helped to

obtain tight bounds,
explore several variants.

Before presenting that: additional notions on FP arithmetic (roundings,
error-free transforms, double-word arithmetic).
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Correct rounding, ulp (unit in the last place)

the sum, product, . . . of two FP numbers is not, in general, a FP number
→ must be rounded;

the IEEE 754 Std for FP arithmetic specifies several rounding functions;

the default function is RN ties to even.

Correctly rounded operation: returns what we would get by exact operation
followed by rounding.

correctly rounded +, −, ×, ÷, √. are required;

→ when c = a + b appears in a program, we get c = RN (a + b).

If |x | ∈ [2e , 2e+1), then ulp (x) = 2max{e,emin}−p+1.

Frequently used for expressing errors of atomic functions.
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Relative error due to rounding

if 2emin ≤ |x | ≤ Ω, then

|x − RN (x)| ≤ 1
2
ulp (x) = 2blog2 |x|c−p,

therefore,
|x − RN (x)| ≤ u · |x |, (1)

with u = 2−p . Hence the relative error

|x − RN (x)|
|x |

(for x 6= 0) is ≤ u.

u, called unit round-off is frequently used for expressing errors.
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Absolute error (in ulps) of rounding to nearest a
real number x ∈ [1/2, 16], assuming a binary FP

“toy” system with p = 5.

Relative error (in multiples of u = 2−p) of rounding
to nearest a real number x ∈ [1/2, 16], assuming a

binary FP “toy” system with p = 5.

The relative error bound u is tight only slightly above a power of 2.
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Error-free transforms and double-word arithmetic

2Sum(a, b)

s ← RN (a + b)

a′ ← RN (s − b)

b′ ← RN (s − a′)

δa ← RN (a− a′)

δb ← RN (b − b′)

t ← RN (δa + δb)

return (s, t)

Fast2Sum(a, b)

s ← RN (a + b)

z ← RN (s − a)

t ← RN (b − z)

return (s, t)

Barring overflow:

the pair (s, t) returned by 2Sum satisfies s = RN (a + b) and
t = (a + b)− s;

if |a| ≥ |b| then the pair (s, t) returned by Fast2Sum satisfies
s = RN (a + b) and t = (a + b)− s.

Such algorithms: Error-free transforms.
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Error-free transforms and double-word arithmetic

2Prod(a, b)

π ← RN (ab)

ρ← RN (ab − π)

return (π, ρ)

Barring overflow, if the exponents ea and eb of a and b satisfy
ea + eb ≥ emin + p − 1 then then the pair (π, ρ) returned by Fast2Sum satisfies
π = RN (ab) and ρ = (ab)− π.

Fast2Sum, 2Sum and 2Prod: return x represented by a pair (xh, x`) of
FPN such that xh = RN (x) and x = xh + x`;

Such pairs: double-word numbers (DW).

Algorithms for manipulating DW suggested by various authors since 1971.
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DW+DW: “accurate version”

Sum of two DW numbers. There also exists a “quick & dirty” algorithm, but its
relative error is unbounded.

DWPlusDW

1: (sh, s`)← 2Sum(xh, yh)

2: (th, t`)← 2Sum(x`, y`)

3: c ← RN (s` + th)

4: (vh, v`)← Fast2Sum(sh, c)

5: w ← RN (t` + v`)

6: (zh, z`)← Fast2Sum(vh,w)

7: return (zh, z`)

ah I Xl 9h I Ye

v
v

s
t

25mm 25mm

v v

sh se th te

> <

±
C

] L

Fast 2am
d

'h I ve

v
v

z ,
Footage#

L

15



DW+DW: “accurate version”

We have (after a rather tedious proof):

Theorem (Joldeş, Popescu, M., 2017)
If p ≥ 3, the relative error of Algorithm DWPlusDW is bounded by

3u2

1− 4u
= 3u2 + 12u3 + 48u4 + · · · , (2)

That theorem has an interesting history. . .
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DW+DW: “accurate version”

So the theorem gives an error bound

3u2

1− 4u
' 3u2 . . .

As said before, that theorem has an interesting history:

the authors of the first paper where a bound was given (in 2000) claimed
(without published proof) that the relative error was always ≤ 2u2 (in
binary64 arithmetic);

when trying (without success) to prove their bound, we found an example
with error ≈ 2.25u2;

we finally proved the theorem, and Laurence Rideau started to write a
formal proof in Coq;

of course, that led to finding a (minor) flaw in our proof. . .

(I hate Coq people)
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DW+DW: “accurate version”

fortunately the flaw was quickly corrected (before final publication of the
paper. . . Phew)!

still, the gap between worst case found (≈ 2.25u2) and the bound (≈ 3u2)
was frustrating, so I spent months trying to improve the theorem. . .

and of course this could not be done: it was the worst case that needed
spending time!

we finally found that with
xh = 1
x` = u − u2

yh = − 1
2 + u

2

y` = − u2

2 + u3.

error 3u2−2u3

1+3u−3u2+2u3 is attained. With p = 53 (binary64 arithmetic), gives
error 2.99999999999999877875 · · · × u2.
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DW × DW

Product z = (zh, z`) of two DW numbers x = (xh, x`) and y = (yh, y`);

several algorithms → tradeoff speed/accuracy. We just give one of them.

DWTimesDW

1: (ch, c`1)← 2Prod(xh, yh)
2: t` ← RN (xh · y`)
3: c`2 ← RN (t` + x`yh)

4: c`3 ← RN (c`1 + c`2)

5: (zh, z`)← Fast2Sum(ch, c`3)

6: return (zh, z`)
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DW × DW

We have

Theorem (M. and Rideau, 2022)
If p ≥ 5, the relative error of Algorithm DWTimesDW is less than or equal to

5u2

(1 + u)2
< 5u2.

and that theorem too has an interesting (hmmm. . . a bit more annoying?)
history!

in 2017, I participated to the proof of an initial relative error bound 6u2;

again, Laurence tried translating the proof in Coq. . . and it turned out the
proof was based on a wrong lemma (and this was after publication).

(what did I say about Coq people?)
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DW × DW

after a few nights of bad sleep, turn-around. . . that also improved the
bound: 6u2 → 5u2!

no proof of asymptotic optimality, but in binary64 arithmetic, we have
examples with error > 4.98u2;

real consolation or lame excuse? Maybe without the flaw, we would never
have found the better bound.
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Halfway conclusion

Full set of validated DW algorithms for the arithmetic operations and the square
root (M. and Rideau, 2022; Lefèvre, Louvet, Picot, M. and Rideau, 2023).

That class of algorithms really needs formal proof:

Proofs have too many subcases to be certain you have not forgotten one;

they are boring: almost nobody reads them.

Alternate–or complementary–solution? try to automatically compute bounds:

short-term goal: limit human intervention (and therefore, human error);
and make simpler the exploration of many variants;

long-term goal: bounds correct by construction.
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An example: hypotenuse function
√

x2 + y 2

NaiveHypot

1: sx ← RN (x2)

2: sy ← RN (y2)

3: σ ← RN (sx + sy )

4: ρ1 = RN (
√
σ)

classical relative error
bound 2u +O(u2);

refinement: 2u
(Jeannerod & Rump);

asymptotically optimal
(Jeannerod, M., Plet).

Major drawback: “spurious” overflow/underflow

Examples in binary64/double precision
arithmetic (p = 53):

if x = 2600 and y = 0, returned result
+∞, exact result 2600;

if x = 65× 2−542 and y = 72× 2−542,
returned result 96× 2−542, exact result
97× 2−542.

⇒ need to scale the operands.
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Simple scaling

1: if |x | < |y | then
2: swap (x , y)

3: end if
4: r ← RN (y/x)

5: t ← RN (1 + r2)

6: s ← RN (
√
t)

7: ρ2 = RN (|x | · s)

relative error bounded by 5
2u + 3

8u
2;

asymptotically optimal.

⇒ avoiding spurious overflow has a significant cost in terms of accuracy.

Improvements?

27



Simple scaling with compensation (Nelson Beebe, 2017)

1: if |x | < |y | then
2: swap(x , y)

3: end if
4: r ← RN (y/x)

5: t ← RN (1 + r2)

6: s ← RN (
√
t)

7: ε← RN (t − s2)

8: c ← RN (ε/(2s))

9: ν ← RN (|x | · c)

10: ρ3 ← RN (|x | · s + ν)

this version: requires an FMA;

one Newton-Raphson iteration;

relative error bound 8
5u + 7

5u
2 (Salvy & M., 2023);

known case with error 1.5999739u in binary64 FP
arithmetic.
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The various bounds obtained

Algorithm reference error bound condition status

Naive folklore 2u − 8
5 (9− 4

√
6)u2 p ≥ 2 asympt. optimal

Simple scaling folklore 5
2 u + 3

8 u2 p ≥ 2 asympt. optimal

Scaling w. compensation N. Beebe (2017) 8
5 u + 7

5 u2 p ≥ 4 sharp

Borges “fused” C. Borges (2020) u + 14u2 p ≥ 5 asympt. optimal

Kahan W. Kahan (1987) 1.5355u +O(u2) ? TBD a bit loose
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Goal: tight and certain relative error bounds

Programs that at step k have an instruction of the form

x_k = x_i op x_j or x_k = sqrt(x_i)

where op is +, -, * or /, and x_i and x_j are either precomputed values
or input values (i , j < k);

Computed values:

xk = RN (xi op xj) or xk = RN (
√
xi );

basic relations:

xk = xi op xj ± 1
2 ulp (xi op xj),

xk = (xi op xj)(1 + ε), with |ε| ≤ u
1+u

< u.
(3)

(or the same with
√
xi )

Optimisation problem: find the maximum and the minimum of the quantity
ρ/
√

x2 + y2 − 1 in the region defined by the equalities and inequalities
obtained from analyzing the program (e.g., (3)) → Algebraic bound.
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Goal: tight and certain relative error bounds

Computed values

xk = RN (xi op xj) or xk = RN (
√
xi );

we compare the computed values xk with the exact values:

x∗k = x∗i op x∗j or x∗k =
√

x∗i ;

(initial values: xi = x∗i for i ≤ 0).

The analysis consists in iteratively computing relative error bounds ε`k(u)

and εrk(u) such that (here, for positive xk and x∗k )

x∗k

(
1− ε`k(u)

)
≤ xk ≤ x∗k (1 + εrk(u)) ; (4)
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Goal: tight and certain relative error bounds

with care, iteratively computing bounds of the form (4), using at each
step the “basic relations” (3) is not so difficult;

ending up with a tight bound is difficult. Two reasons:
requires existence of input values for which the individual rounding
errors attain their maximum (with the right sign) at each operation.

→ Not always possible: Correlations. 3 · (x · y), one cannot have
both (x · y) and 3 · (x · y) very slightly above a power of 2;

(and, indeed, 3 · (x · y) more accurate than (3 · x) · y)
the “basic relations” (3) are not the last word: additional properties
(e.g., Sterbenz Lemma) specific to FP arithmetic.

32



Analysis of Beebe’s algorithm

1: if |x | < |y | then
2: swap(x , y)

3: end if
4: r ← RN (y/x)

5: t ← RN (1 + r2)

6: s ← RN (
√
t)

7: ε← RN (t − s2)

8: c ← RN (ε/(2s))

9: ν ← RN (|x | · c)

10: ρ3 ← RN (|x | · s + ν)
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Analysis of Beebe’s algorithm

Simplification: x ≥ y > 0

1: r ← RN (y/x)

2: t ← RN (1 + r2)

3: s ← RN (
√
t)

4: ε← RN (t − s2)

5: c ← RN (ε/(2s))

6: ν ← RN (x · c)

7: ρ3 ← RN (x · s + ν)

Main idea: Newton-Raphson iteration

ε

2s
+ s =

t − s2

2s
+ s =

√
t +

(s −
√
t)2

2s
,

so that ( ε
2s

+ s
)
−
√
t =

(s −
√
t)2

2s
.
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Analysis of Beebe’s algorithm

1: r ← RN (y/x)

2: t ← RN (1 + r2)

3: s ← RN (
√
t)

4: ε← RN (t − s2)

5: c ← RN (ε/(2s))

6: ν ← RN (x · c)

7: ρ3 ← RN (x · s + ν)

define α by y = αx , so that r = RN (α);

r = α + uεr , with

|εr | ≤

 1
4 , if α ≤ 1/2,
1
2 , if α > 1/2.

t = 1 + r2 + uεt , with |εt | ≤ 1 (comes from
1 + r2 ≤ 2);

s =
√
t + uεs , with |εs | ≤ 1 (comes from t < 2);

ε = t − s2 (comes from Sterbenz Lemma).
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Analysis of Beebe’s algorithm

1: r ← RN (y/x)

2: t ← RN (1 + r2)

3: s ← RN (
√
t)

4: ε← RN (t − s2)

5: c ← RN (ε/(2s))

6: ν ← RN (x · c)

7: ρ3 ← RN (x · s + ν)

∣∣ ε
2s

∣∣ =
∣∣∣ t−s2

2s

∣∣∣
=

∣∣∣ (s−uεs )
2−s2

2s

∣∣∣
=

∣∣∣−uεs +
u2ε2s
2s

∣∣∣ ≤ u + u2

2 .

(5)

If |ε/(2s)| ≤ u then the error committed by
rounding ε

2s to nearest is ≤ u2/2;

If |ε/(2s)| > u, then since the FPN above u is
u + 2u2, (5) implies RN (ε/(2s)) = ±u
⇒ again the rounding error is ≤ u2/2.

Hence in all cases, |c| ≤ u and

c =
ε

2s
+ εc

u2

2
,

with |εc | ≤ 1.
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Analysis of Beebe’s algorithm

1: r ← RN (y/x)

2: t ← RN (1 + r2)

3: s ← RN (
√
t)

4: ε← RN (t − s2)

5: c ← RN (ε/(2s))

6: ν ← RN (x · c)

7: ρ3 ← RN (x · s + ν)

ν = xc(1 + uεν) with |εν | ≤ 1/(1 + u);

ρ3 = (ν + xs)(1 + uερ) with |ερ| ≤ 1/(1 + u);
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Analysis of Beebe’s algorithm

Putting all this together:

ρ3 = (ν + xs)(1 + uερ),

= x
(

(−uεs + u2

2 (εc + ε2s /s))(1 + uεν) +
√
t + uεs

)
(1 + uερ),

= x
(√

t + u2

2 ((εc + ε2s /s)(1 + uεν)− 2εsεν)
)

(1 + uερ)

= x
√
1 + r2

√
1 + uεt

1+r2

(
1 + u2

2
√
t
((εc + ε2s /s)(1 + uεν)− 2εsεν)

)
(1 + uερ),

Lemma

The relative error of the algorithm is

R =
√

1 + r2−α2

1+α2

√
1 + uεt

1+r2

×
(
1 + u2

2
√
t
((εc + ε2s /s)(1 + uεν)− 2εsεν)

)
(1 + uερ)− 1,

Moreover, |εs |, |εt |, |εc | are bounded by 1 and |εν | and |ερ| by 1/(1 + u).

38



Now, the painful work

linear term (
2αεr + εt
2(1 + α2)

+ ερ

)
· u

increasing function of εr , εt and ερ,
εr ≤ 1/4 if α ≤ 1/2, εr ≤ 1/2 otherwise,
εt , ερ ≤ 1

→ max. value 8/5;

show that for u ∈ [0, 1/2],

∂R

∂ερ
≥ 0,

∂R

∂εt
≥ 0,

∂R

∂εr
≥ 0,

∂R

∂εc
≥ 0.

→ it suffices to consider the extremum values of ερ, εt , εr , and εc ;

process the cases α < 1/2 and 1/2 ≤ α ≤ 1 separately;

in each case, lower and upper bound on R. . .
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Analysis of Beebe’s algorithm

Theorem
Assuming u ≤ 1/16 (i.e., p ≥ 4), the relative error of Beebe’s algorithm is
bounded by

χ4(u) = (1 + 2u)

√
1 + u/5

1 + u
− 1 + u2 (1 + 2u)2

(1 + u)2


√
5

5
+

1

5
√

(1+u)
(
1+ u

5
)

2 − u

+
2
√
5

5 (1 + 2u)

 ,

≤
8

5
u +

7

5
u2
.

How do we publish a proof? Have a Maple worksheet publicly available and
just get a rough sketch (similar to these slides) in a paper?
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And the other algorithms?

Another algorithm due to Borges: really painful. . . but we managed to
obtain the result;

Kahan’s algorithm. . . the first result was:

We are succeeding (paper to come soon)
It seems we are approaching a limit. . .

. . . and again, as for DW arithmetic, if we fully “expand” the proofs they are
terrible (probably unpublishable).
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But, really, what were we trying to do?

obtain the best “algebraic bound”: the best one could deduce from the
individual bounds on the rounding errors of the operations and a few
properties such as Sterbenz Lemma;

but when the algorithms become complex, does that bound remain tight?

we have seen: correlations;
even without correlations: tightness requires that for each operation
the maximum error is almost reached, with the right signs;
in general: probability of this decreases exponentially with number
of operations;

→ Rule of thumb: when the number of operations is no longer small in front
of p, little hope of having a worst-case error close to the algebraic bound.
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Conclusion

formal proof and computer algebra:

add confidence to the computed bounds;
allow us to get to grips with (slightly) bigger algorithms;
make it possible to explore many variants of an algorithm (just
“replay” the calculation with small modifications);

long-term goal: use both techniques together (have the computer algebra
tool generate a certificate);

seems we are approaching the limit (in terms of algorithm size) of what
can be done “exactly”;

consolation: for larger algorithms, little hope of having a worst-case error
close to the algebraic bound;

what is a publishable proof? A human-readable rough sketch along with a
Coq file and/or a Maple (or whatever tool) worksheet? What we
currently do is just a stylistic exercise. . .
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