Institut
Mines-Télécom

WRAC'H 2019

Analysis of Mixed PUF-TRNG Circuit Based on SR-Latches in FD-SOI Technology

Jean-Luc DANGER, Télécom ParisTech

In collaboration with:
Risa Yashiro, Kazuo Sakiyama (UEC)
Noriyuki Miura, Makoto Nagata (Kobe University)
Yves Mathieu, Tarik Graba, Abdelmalek Si-Merabet (TPT) Sylvain Guilley (Secure-IC)

Outline

\square Principle
\square Analysis
\square Conclusions

SR-latch as PUF -TRNG

What is the state of Q when S / R goes from 1 to 0 ?

SR-latch as PUF -TRNG

What is the state of Q when S / R goes from 1 to 0 ?

- If Gates perfectly balanced => metastability ($\sim \mathrm{Vdd} / 2 \mathrm{Q}$ will converge to a stable state randomly, thanks to the noise) => TRNG

SR-latch as PUF -TRNG

What is the state of Q when S / R goes from 1 to 0 ?
\square If Gates perfectly balanced => metastability ($\sim \mathrm{Vdd} / 2 \mathrm{Q}$ will converge to a stable state randomly, thanks to the noise)
=> TRNG
\square If imbalance $=>$ goes to the same stable state
$=>$ PUF (as SRAM-PUF)

What is the cause of imbalance?

\square CMOS process mismatch
$>$ Oxide thickness
$>$ Metal line edge roughness
$>$ Random dopant fluctuation

> Can be characterized by a time difference T_su for an SR latch
> Has a Gaussian distribution

SR latch as PUF or TRNG according to T_su

Set of SR-latch as PUF -TRNG

Set of SR-latch as TRNG

TRNG Requirements:

If noise is independent between latches:
$\mathbb{P}[T R N G=0]=\frac{1+\left(2 p_{i}-1\right)^{N}}{2}$

$$
\mathbb{P}\left[Q_{i}==1\right]=p_{i}
$$

Entropy $=0.997 \Rightarrow \mathrm{~N}=12$

AIS31 With pi $\in[0.1,0.9]$

Set of SR-latch as PUF

PUF Requirements :

The Imbalance (T_su) has to be controlled in order to:

- Select the most reliable latches during the enrollment phase
- Obtain as many latches at '0' as '1'

How to analyze/control the SR latch Imbalance?

T_su adjustment
Not so easy to design in ASIC
FD-SOI Body biasing

FD-SOI Body bias

Set-up time T_su vs Body Bias

$$
\Delta \mathrm{V}=\mathrm{VB} 1-\mathrm{VB} 2
$$

Outline

\square Principle
\square Analysis
\square Conclusions

Test chip architecture

1024 SR latches driven by a buffer tree
Address:

Techno $=$ UTBB FD-SOI 28 nm

Layout

latches

Adjustment by VB1-VB2 for PUF

PUF: number of stable latches ($\mathrm{pi}=0$ or 1 after 1000 tries)
Optimal point (as many 0 as 1)

$\mathrm{VB} 1=0 \mathrm{~V}$

(b) Device B
$\mathrm{VB1}=0.5 \mathrm{~V}$

$\mathrm{VB} 1=1.1 \mathrm{~V}$

Adjustment by VB1-VB2 for TRNG

TRNG: number of unstable latches (pi $\in[0.1,0.9]$ after 1000 tries)

Impact of the process

VB1-VB2 at the optimal point is constant for a given device and is specific to a device

Device C not significant as the VB range is limited due to a bug in the test chip

Analysis with the timing generator

The optimal point is the same for the PUF and TRNG, but different from a device to another

Number of latches in PUF or TRNG at Optimal point

Probability of the 1024 latches according to Δt

Device	Optimal point	stable latches at 0 or 1	unstable latches with $p_{i} \in[0.1,0.9]$
A	-33.43 ps	287	178
B	-24.81 ps	280	184
C	-19.17 ps	258	233

Table I: Number of latches at the optimal point.

Imbalance due to P/R

Number of latches with p_i=0.5

4 sub-branches

16 sub-branches

Entropy

Combinations for stable latches between 3 devices
Histogram of combinations with three boards

$\mathrm{H}=2.98$ bits instead of 3

Outline

\square Principle
\square Analysis
\square Conclusions

Conclusions

\square Simple structure to get PUF-TRNG
$>$ High speed TRNG
$>$ Reliable PUF as the reliabilty of each latch can be known
\square Every device needs to be adjusted to the optimal point
> The optimal point is when as many ' 0 ' as ' 1 '
\square FD-SOI technology allows to obtain the optimal point by body biasing
\square The buffer tree and the number of latches could be largely reduced

THANK YOU FOR YOUR ATTENTION!

